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Abstract

This thesis deals with the design of stable portfolios. The term stability in the context

of portfolio design was introduced by Wuertz [2010]. First the drivers of instabilities

within financial returns are identified. Second a mathematical model is defined that can

explain to which extend the drivers are activated.

A possible approach would be to explain unstable times of financial returns by outliers

or dominant oscillators. For this thesis two different approaches are pursued. The first

approach assumes that unstable times are characterized through a change within the

underlying dynamics of the returns. The second approach assumes that the shape of the

investment universe is changing for such times. The first approach is generally applicable

for the univariate case and the second approach for the multivariate case.

A mathematical model for the first approach is the Bayesian change point (BCP)

algorithm as introduced by Barry and Hartigan [1993]. The first part of this thesis

implements the BCP model using a new approach which does not only react on changes

within the trend but also the variance (see also Loschi et al. [1999]). In comparison to

already existing implementations the variance is modelled using a generalized inverse

Gaussian (GIG) distribution.

A mathematical model for the second approach are the geometric shape factors (GSF).

Those are explained in detail for the first time within the second part of this thesis. The

investment universe is described as an image of the feasible set. The GSF define an ellipse

which has the same area, orientation, eccentricity and centre as the image of the feasible

set. The GSF can be described as a function of the image moments of the feasible set.

Additionally it is shown how the results of the BCP method can be used to calculate the

image of the feasible set. To achieve this the orthogonalized Gnanadesikan–Kettenring

(OGK) estimator [Maronna and Zamar, 2002] is used to calculate the covariance matrix.

This leads to positive semidefinite and approximately affine equivariant estimations which

are suitable for quadratic optimization.

In the last part of this thesis the concepts of the BCP method and the GSF are

used to design portfolios which are controlled by the results of these analyses. The
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Abstract

results of the BCP method are used to design a dynamically hedged signal portfolio.

The orientation as a geometric shape factor is used to define the distance of the target

portfolio [Markowitz, 1952] to the minimum variance portfolio. In the last step these two

portfolios are combined.

Besides the introduction of mathematical concepts (first and second part of this thesis)

this thesis has its focus on the application of these concepts to construct novel dynamic

portfolios (third part of the thesis). Particular attention is given to ensure that parameters

are either set globally for any kind of returns input or if this is not possible to define

routines which are independently determining these parameters based on the input

without any external intervention. This to avoid that results of the past are mainly

driven by parameters which are not valid anymore in the future.
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Zusammenfassung

Diese Arbeit beschäftigt sich mit dem Entwurf von stabilen Portfolios. Der Begriff

Stabilität im Portfolio-Kontext wurden eingeführt von Wuertz [2010]. Als erstes macht

man sich Gedanken über die Treiber von Instabilitäten in Finanzrenditen. Als zweites

wird ein mathematisches Modell gesucht, dass beschreiben kann, wie stark diese Treiber

aktiv sind.

Ein möglicher Ansatz wäre, dass sich instabile Phasen in Finanzrenditen durch Aus-

reisser oder dominante Oszillatoren erklären lassen. In dieser Arbeit werden zwei andere

Ansätze verfolgt. Der erste Ansatz geht davon aus, dass sich in instabilen Phasen die

Dynamik des zugrundeliegenden Prozesses der Renditen fundamental verändert. Der

zweite Ansatz geht davon aus, dass sich die Form des Anlageuniversums in solchen Phasen

verändert. Der erste Ansatz ist grundsätzlich für den eindimensionalen Fall und der

zweite Ansatz für den multivariaten Fall.

Ein mathematisches Modell für den ersten Ansatz ist der Bayesian change point (BCP)

Algorithmus von Barry and Hartigan [1993]. Im ersten Teil dieser Arbeit wird das BCP

Modell mit einem neuen Ansatz implementiert, der nicht nur auf Veränderungen im

Trend der Renditen reagiert, sondern auch in der Varianz (siehe dazu auch Loschi et al.

[1999]). Neu dabei ist, dass die Varianz als generalisierte inverse Gauss (GIG) Verteilung

beschrieben wird.

Ein mathematisches Modell für den zweiten Ansatz sind die geometrischen Form-

Faktoren (GSF) [Wuertz, 2010]. Diese werden im zweiten Teil der Arbeit erstmals

ausführlich erklärt. Dabei wird das Anlageuniversum durch ein Bild der Menge aller

möglichen Portfolios beschrieben. Die GSF definieren eine Ellipse welche die gleiche

Fläche, Orientierung, Exzentrizität sowie das gleiche Zentrum wie das Bild aller möglichen

Portfolios hat. Die GSF können als Funktion der Bild-Momente der Menge aller möglichen

Portfolios beschrieben werden. Ausserdem wird gezeigt, wie sich die Resultate der BCP

Methode benutzen lassen, um das Bild aller möglichen Portfolios zu berechnen. Dazu wird

der orthogonalisierte Gnanadesikan–Kettenring (OGK) Schätzer [Maronna and Zamar,

2002] verwendet um die Kovarianz-Matrix zu berechnen. Dies führt zu Schätzungen
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Zusammenfassung

welche positiv semidefinit und schätzungsweise affin-äquivariant sind und sich daher mit

quadratischen Optimierern verwenden lassen.

Im letzten Teil dieser Arbeit werden die Konzepte der BCP Methode und der GSF

benutzt um Portfolios zu definieren, die sich Anhand der Resultate dieser Analysen steuern

lassen. Die Resultate der BCP Methode werden benutzt um ein dynamisch abgesichertes

Signal-Portfolio zu konstruieren. Die Orientierung als geometrischer Form-Faktor wird

benutzt um den Abstand des optimierten Zielportfolios [Markowitz, 1952] zum Portfolio

mit der kleinsten Varianz zu definieren. Danach werden diese zwei Portfolios miteinander

kombiniert.

Neben der Einführung von mathematischen Konzepten (erster und zweiter Teil der

Arbeit) legt diese Arbeit auch einen Fokus auf die Umsetzung dieser Konzepte zur

Konstruktion neuartiger dynamischer Portfolios (dritter Teil der Arbeit). Dabei wird

auch darauf geachtet, dass sich Parameter entweder global für beliebige Renditen als

Input definieren lassen und wenn dies nicht möglich ist Routinen zu definieren, welche

diese Parameter selbständig basierend auf dem Input festlegen ohne dass von aussen in

das Modell eingegriffen wird. Dies um zu verhindern, dass Resultate in der Vergangenheit

mehrheitlich durch Parameter getrieben sind, welche in der Zukunft keine Gültigkeit

mehr haben.
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1 Introduction

Part I of this thesis deals with the Bayesian change point (BCP) model as introduced

by Barry and Hartigan [1992, 1993] and later extended by Loschi et al. [1999, 2003] (see

Chapter 2 and Chapter 3). Given a set of data the model involves repeated Bayesian

analyses of contiguous subsets of that data (clusters). These analyses are used to calculate

a probability of change at any point within the dataset. Barry and Hartigan [1992, 1993]

assume that the data within a given cluster is normally (N) distributed and that the

mean of that normal distribution is also normally (N) distributed depending on the

variance. The variance has an improper distribution which is constant for the whole

dataset. The change points are therefore only based on changes within the mean of the

data. Loschi et al. [1999, 2003] extended the model by assuming that the variance is

distributed according to an inverse gamma (IG) distribution inside every cluster (the

BCP N-NIG model). The change points are therefore based on changes within the mean

and/or the variance of the data. The contribution of this thesis is to modify the model of

Loschi et al. [2003] by replacing the IG distribution with a generalized inverse Gaussian

(GIG) distribution (the BCP N-NGIG model) (see Chapter 5). Additionally it is shown

how to implement the BCP N-NGIG model such that it is numerically stable for large

datasets. The IG distribution is a special case of the GIG distribution. Therefore the

BCP N-NGIG model represents a generalisation of the BCP N-NIG model (see Chapter 6).

The N-NGIG model (without using it in the BCP context) was studied by Thabane and

Safiul Haq [1999]. They derived the posterior distribution and the prediction distribution

of future responses and showed that these distributions belong to the family of generalized

modified Bessel distributions. For the BCP model the marginal likelihood of the data and

the posterior marginal (or conditional) distributions of the mean and the variance are

needed. This thesis contributes to the topic by deriving closed form expressions of these

distributions and showing that they belong to the family of generalized hyperbolic (GH)

and GIG distributions (see Chapter 4). A special emphasis was also given on the question

of how to choose the hyperparameters in an automated way. For the prior of the mean it

is proposed to use the sample mean. Since inside the clusters the estimation of the mean
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1 Introduction

can move around this global guess. For the prior of the variance it is proposed to assume

that the variance is distributed according to a gamma distribution which is a special

case of the GIG distribution. The hyperparameters can then be set by using the sample

variance and using an additional parameter to control the dispersion of the variance (see

Chapter 6). It was shown that the BCP N-NGIG model as well as the BCP model of

Barry and Hartigan [1993] can both detect changes within the mean of the underlying

dynamic reliably if the variance is kept constant. For the case where the variance changes

as well it was shown that the BCP N-NGIG model can still reliably detect the changes

while the model of Barry and Hartigan can get in trouble. Additionally both models

were compared on a real financial returns series where the BCP N-NGIG model shows

smother results for the estimation of the mean.

While Part I of this thesis presented risk measures for the univariate case, Part II of

this thesis presents a new kind of multivariate risk measures. They are based on the

portfolio optimization approach as introduced by Markowitz [1952]. In finance a portfolio

is a collection of investable assets (the investment universe) where the investment weights

describe which fraction of the available capital is invested into which of these underlying

assets (see Chapter 8). Every possible combination of the investment weights represents

a different portfolio. Visualizing the performance and variance of all these portfolios

leads to the feasible set (see Chapter 9). The feasible set is basically a function of

the performance and the covariance matrix of the underlying assets. There are various

approaches to calculate these figures. In this thesis the sample estimator and the robust

orthogonalized Gnanadesikan–Kettenring (OGK) estimator as introduced by Maronna

and Zamar [2002] are considered. The OGK estimator presents a procedure to calculate

the covariances from the univariate formulation of the variance. This thesis contributes

to the topic by defining a new estimator which is based on the univariate BCP model of

Part I (see Chapter 9). Thus respecting possible changes within the underlying dynamic

of the investment universe. The results of the BCP model are used to estimate the

performances and the variances of the underlying assets. To calculate the covariances the

same procedure as for the OGK estimator is used. Since this approach is computationally

very expensive a second approach is presented where the covariances are calculated by

mixing the BCP variances with the sample correlations. Note that for this approach the

correlations are not reacting on possible changes within the underlying dynamic of the

investment universe. However, it was shown that the results of these two estimators lead

to very similar results (see Chapter 11). The shape of the feasible set offers valuable

insights into the current state of the investment universe. If the feasible set is understood

2



as an image one can calculate the image moments of the feasible set (see Chapter 10).

Using the image moments it is possible to approximate the feasible set through an ellipse

that has the same area, centre, orientation and eccentricity as the feasible set. These

figures were called the geometric shape factors (GSF). The idea was first outlined by

Wuertz [2010]. This thesis contributes to the topic by presenting for the first time the

detailed mathematical framework to calculate these multivariate risk measures. Another

interesting family of factors are the Hu moments [Hu, 1962] which are invariant under

translation, scale and rotation. The GSF and the Hu moments were visualized for different

investment universes on a sliding window of 36 month for the sample, robust and BCP

estimators (see Chapter 11). Monthly data was used. The results generally show that

the GSF are varying greatly over time. Even when using a reasonably long window of

36 month. The GSF can be associated with a geometric meaning (see Chapter 8). For

example the orientation describes the direction of the risk premium. If the direction is

positive taking more risk would generally lead to more performance. And the eccentricity

describes the correlation between risk and performance. The higher the correlation the

higher the probability that taking more risk does indeed lead to more or less performance

(depending on the direction). The analyses most notably show that the risk premium is

not granted unconditionally over time.

The univariate and multivariate risk measures introduced in Part I and Part II of this

thesis were consequently applied in Part III of this thesis to design stable portfolios. The

term stability in the context of portfolio design was first presented by Wuertz [2010].

The contributions of this thesis to the topic is in explaining the concept in more detail

for the first time (see Section 13.1). Namely that stability is associated to a model

of change. The model of changing dynamics (Section 14.1) considers times as stable

when the underlying dynamic of the investment universe is unlikely to change. The

BCP model is measuring this. If the underlying dynamics change the BCP model is

quick in updating the performances and the variances of the underlying assets. The

model of shape shifts (see Section 15.1) considers times as stable when the shape of the

investment universe does not change. The GSF are measuring this. If the shape of the

investment universe changes an adjustment of allocation tactics might make sense. This

thesis contributes to the topic of portfolio design by introducing three novel approaches

to design portfolios. All portfolios were backtested on a sliding window of 36 month

by applying the results out of sample and using monthly data. The first portfolio (the

BCP-Signal-Portfolio (BSP)) calculates the investment weights based on univariate BCP

analyses of the underlying assets (see Chapter 14) and does therefore respect the model

3



1 Introduction

of changing dynamics. For that the concept of signal portfolios was introduced. The

results of the BCP analyses are used to calculate a signal between 0 and 1 for every

underlying asset. Then every asset gets a maximum investment weight. The actual

investment weight is the multiplication of this maximum weight and the signal. The

signals describe the hedging degree of any underlying asset. Hedging can be achieved by

moving the difference of the maximum weight and the actual weight to a cash account.

The natural benchmark for this portfolio is a constant 50% hedge of any underlying

asset. The backtest for the European equity universe shows that the dynamic hedge

based on the BCP signals results in a more appealing risk/return profile than the passive

benchmark. For the second portfolio the investment weights are calculated through

Markowitz portfolio optimization (see Chapter 15). The target portfolio is defined based

on the orientation of the GSF and does therefore respect the model of shape shifts. To get

full control over the target portfolio the Lambda-2-Portfolio (L2P) was introduced. The

weights of the target portfolio are calculated by using the multivariate BCP estimator.

Therefore the portfolio does also respect the model of changing dynamics. The backtest

for the European bonds and precious metals universe shows that this portfolio offers a

more appealing risk/return profile than the portfolio where the capital is distributed

equally to all underlying assets (EWP). The dynamic L2P using the BCP estimator

was tested against various variants where it was considered the best choice in means of

performance, risk profile and diversification. This includes the L2P using the sample and

robust OGK estimators. The L2P where the orientation is kept constant. And a multi

objective approach to define the target portfolio. The third portfolio is a combination of

the BSP and the dynamic L2P using the BCP estimator (see Chapter 16). Instead of

moving capital to a cash account to hedge the underlying assets this capital is moved to

the L2P. The backtest shows that this portfolio offers a more appealing risk/return profile

than the portfolio where the capital is distributed equally to the EWP of the European

equity universe and the EWP of the European bonds and precious metals universe. All

three actively managed portfolios (the BSP, the L2P and the combination) offer more

preferable return and risk profiles than their passive natural benchmarks. They are

simple, dynamic and stable portfolios for risk-averse and long-term investors. Simple in

the sense that the portfolios can be implemented by just buying or selling the underlying

assets. Which means that the realization of the portfolios do not involve concepts like

short selling, leverage or the purchase of complicated financial instruments. Dynamic and

stable in the sense that the investment weights are adapted at any point in time based

on thorough statistical analyses that assess the stability of the investment universe. This

4



in order to realize the performance that the market realistically offers from a long-term

perspective while reducing the risks.
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2 Introduction

It is well konwn that financial returns show various stylized facts such as heavy tails,

skewness or dependency structures [Cont, 2001]. Many methods have been developed

to model these properties. Such as more flexible distributions (stable distribution

[Mandelbrot, 1963; Fama, 1965], generalized hyperbolic (GH) distribution [Barndorff-

Nielsen, 1977], generalized lambda distribution [Ramberg and Schmeiser, 1974]) or time

series models (ARIMA [Box and Jenkins, 1970], GARCH [Engle, 1982; Bollerslev, 1986]).

This thesis focuses on the Bayesian analysis for multiple change point problems as

introduced by Barry and Hartigan [1992, 1993] and later extended by Loschi et al. [1999,

2003]. In the remainder of this thesis it will be referred as the Bayesian change point

(BCP) method or model. A given set of data is usually modelled with one common

distribution. In contrast the BCP method assumes that a given set of data can be

modelled by contiguous subsequences (clusters) where the data inside each cluster has

a common distribution. As the number of clusters is a priori unknown the BCP model

also provides inference about it. The case where the data is modelled with one common

distribution is therefore a special case of the BCP method. In the most extreme case

every observation is generated by its own distribution. Furthermore the number of change

points has not to be known as opposed to many other methods. Generally speaking all

possible cluster combinations (partitions) are considered and influence the result. The

more probable a partition is (based only on the data) the more influence that partition

will have on the result.

Chapter 3 reviews the current state of the BCP method. The BCP method consists

of two important concepts. First the Bayesian analysis of a given distribution. And

second the combination of the posterior distributions from that analysis with the product

partition model (PPM). Chapter 4 presents the Bayesian analysis of the Gaussian

distribution using a Normal-Generalized-Inverse-Gaussian (NGIG) prior. The posterior

conditional and marginal distributions as well as the marginal likelihood are derived. It

is especially shown that these distributions do all belong to the family of generalized

hyperbolic (GH) and generalized inverse Gaussian (GIG) distributions.
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2 Introduction

These results will be used to set-up the final BCP model in Chapter 5. Since averaging

over all possible partitions is computationally very expensive the partitions are sampled

through a Markov Chain Monte Carlo (MCMC) approach. To sample the partitions the

marginal likelihood is used. In combination with the derived posterior marginal distribu-

tions the unknown parameters of the normal distribution can be sampled. Additionally

it is shown how to generate samples of the parameters if only the posterior conditional

distributions are known. This can be achieved by using a Gibbs sampling scheme. The

numerical implementation of the BCP method poses some challenges. More precisely it

is the evaluation of the Bessel function that breaks for large samples. It is shown how to

neutralize that problem by first doing the critical computations in log-space and second

using an asymptotic expansion of the Bessel function if necessary.

Chapter 6 discusses and evaluates the model. The main difference of the new model to

the model of Loschi et al. [2003] is analysed. The role of the hyperparameters is examined

and the method is tested on artificial datasets and an actual financial returns series. The

method will be used again in Part III to construct a stable equity portfolio.

10



3 The Bayesian Change Point Method

A change point can be described as the position within a dataset where the data before

and after that point cannot be explained anymore with the same statistical model. Many

work has been done in identifying such points. Non-Bayesian approaches include e.g.

binary segmentation [Edwards and Cavalli-Sforza, 1965; Scott and Knott, 1974; Sen and

Srivastava, 1975] and Markov switching models [Hamilton, 1989]. This thesis focuses

on the Bayesian method of Barry and Hartigan [1992, 1993] which is designed to find

multiple change points for the normal mean. The BCP method does not necessarily look

for distinct change points but assigns a probability of change to any sample inside a given

dataset.

Loschi et al. [1999] extended the results from Barry and Hartigan [1993] to find multiple

change points for the normal mean and variance. For that they combined the PPM with

the Normal-Inverse-Gamma (NIG) prior. Additionally they introduced a Gibbs sampling

scheme to solve the model. Later Loschi et al. [2003] extended the model further by

introducing a prior distribution for the parameter p which describes the probability of

having a change point at any position within a given dataset.

In this thesis the PPM will be combined with the Normal-Generalized-Inverse-Gaussian

(NGIG) prior (see Chapter 5). Thus introducing a generalisation of the model of Loschi

et al. [2003] (see Section 6.1). The NGIG prior was studied by Thabane and Safiul Haq

[1999] where they derived the posterior distribution and the prediction distribution of

future responses in the context of generalized modified Bessel distributions. For the

BCP analysis the marginal likelihood and the posterior marginal distributions are needed

and were therefore derived by showing that they belong to the family of generalized

hyperbolic (GH) and generalized inverse Gaussian (GIG) distributions (see Chapter 4).

For the PPM the same prior distribution for the parameter p is used as by Loschi et al.

[2003]. The partitions are sampled through an MCMC approach by using the marginal

likelihood. The unknown mean and variance are sampled by using the posterior marginal

distributions. Alternatively the posterior conditional distributions could be used through

a Gibbs sampling scheme and were therefore derived as well (see Chapter 4).
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3 The Bayesian Change Point Method

3.1 The general algorithm

In this section the general setup of the BCP model as described by Barry and Hartigan

[1992, 1993] will be summarized and generalized for the case where more than one

parameter is unknown. The BCP method combines Bayesian inference with the PPM.

The PPM assumes that a given dataset can undergo sudden changes in its dynamic at

unknown positions. The dataset can be partitioned into different blocks separated by the

change points (partitions). Every partition can be described by a common multivariate

probability distribution. For every partition the parameters can be found by the Bayesian

analysis. Since the partitions itself do also follow a probability distribution every sample

inside the dataset is in principle generated by a different dynamic.

3.1.1 Partitions

Given a set of observations ~X = {X1,X2, . . . ,Xn} the partitions of the PPM are

expressed as

ρ = (i0, i1, . . . , ib)

0 = i0 < i1 < i2 < . . . < ib = n

Xij = {Xi+1, Xi+2, . . . , Xj}

(3.1)

where ik describes a change point at ik + 1 and b is the number of breakpoints. The PPM

is specified as

~θ = {θ1,θ2, . . . ,θn}

θk = {θ1, θ2, . . . , θh}

f( ~X|~θ, ρ) =
b∏

k=1

fik−1ik(Xik−1ik |θik) =
∏
ij∈ρ

fij(Xij |θk)

(3.2)

where fij is a multivariate probability distribution for the observations Xij inside the

cluster ij = {i+ 1, i+ 2 . . . , j} with parameters θk and k ∈ ij. Which means that all

θk for k ∈ ij are identical if the partition ρ is known. For example if fij is a normal

distributions then θk = {µk, σ2
k} (see also Eq. (5.1)).

12



3.1 The general algorithm

3.1.2 Bayesian inference

By applying Bayes’ law on a given partition we can formulate the posterior distribution

of the unknown parameters as

fij(θk|Xij) =
fij(Xij |θk)fij(θk)

fij(Xij)
(3.3)

where fij(Xij |θk) is the likelihood of the data and fij(θk) the prior distribution of the

parameters. The marginal likelihood (or datafactor) is calculated as

fij(Xij) =

∫
fij(Xij |θk)fij(θk)dhθk (3.4)

The expectation value of an unknown parameter for a given partition Eij(θk,l|Xij) can

be calculated from the posterior marginal distribution:

fij(θk,l|Xij) =

∫
fij(θk|Xij)d

h−1{θk \ θk,l} (3.5)

where 1 ≤ l ≤ h. θk,l describes one of the h unknown parameters of the likelihood (θk) at

position k. Note that we assume that we know the partition. Therefore θk,l is identical

for any k ∈ ij. Using a numerical Gibbs sampling approach it is also possible to calculate

the expectation values from the posterior conditional distribution:

fij(θk,l|Xij , {θk \ θk,l}) =
fij(Xij |θk)fij(θk)
fij(Xij |{θk \ θk,l})

(3.6)

The prior probability distribution of the partitions is defined as a product partition

distribution:

f(ρ) = K

b∏
k=1

cik−1ik = K
∏
ij∈ρ

cij (3.7)

where cij are the cohesions. The posterior probability distribution of the partitions can

be calculated as

f(ρ| ~X) =
f( ~X|ρ)f(ρ)∑
ρ f( ~X|ρ)f(ρ)

=
f( ~X|ρ)f(ρ)

f( ~X)
(3.8)

where f( ~X|ρ) =
∏
ij∈ρ fij(Xij) is the product of the marginal likelihoods as defined in

Eq. (3.4). The expectation values of the unknown parameters independent from the

13



3 The Bayesian Change Point Method

partitions can be calculated as

E(θk,l| ~X) =
∑
ρ

Eij(θk,l|Xij)f(ρ| ~X) (3.9)

where 1 ≤ k ≤ n which allows to calculate the expectation values of the h unknown

parameters at any position k.

As one can assume solving this model can be rather challenging. From an analytical

point of view the problem can be separated in first deriving the expectation values for a

given partition (Eij(θk,l|Xij)) and second for the case that is independent of the partitions

(E(θk,l| ~X)).

For the first part various solutions are available depending on the chosen likelihood and

prior distribution since this problem represents a classical Bayesian distribution analysis.

The needed expressions for the normal likelihood and the NGIG prior were not available

and are derived in Chapter 4.

For the second part analytical solutions are not available. In principle an exact

numerical enumeration would be possible by summing over all possible partitions ρ.

For small sample sizes this might even be feasible. But the numerical complexity is of

order O(n!) and grows therefore dramatically with sample size. Also the finite numerical

precision of a computer will become more and more a problem as the sample size grows.

To solve this problem an MCMC approach is used as proposed by Barry and Hartigan

[1992] which reduces the numerical complexity to O(n). For the MCMC approach the

finite numerical precision becomes a problem as well. This will be addressed in Chapter 5.

3.1.3 Markov Chain Monte Carlo

The Markov sampling technique [Metropolis et al., 1953; Hammersley and C., 1964;

Hastings, 1970] is a prominent concept in statistical physics. Instead of summing over

all possible partitions we can approximate the result by generating partition samples

that are distributed according to the posterior probability distribution of the partitions

(f(ρ| ~X)).

The random partition samples are generated through a Markov Chain. First we

describe the partitions as

ρ = (U1, U2, . . . , Un)

Uk ∈ {0, 1}, Un = 1
(3.10)

where Uk = 1 describes a change point at position k + 1. This is equivalent with the

14



3.1 The general algorithm

definition in Eq. (3.1). To start the process an initial partition is generated where Uk = 0

for i < n and Un = 1. A new partition is generated by iterating through the old partition

(from position 1 to n− 1) and at each position i we set Uk = 1 with probability pi:

pi =
r

1 + r

r =
f(ρ| ~X,Uk = 1)

f(ρ| ~X,Uk = 0)

(3.11)

where r is the ratio between f(ρ| ~X,Uk = 1) of accepting the change point and f(ρ| ~X,Uk =

0) of not accepting the change point. This allows us to generate M partitions that are

distributed according to f(ρ| ~X):

P = {ρ1, ρ2, ... , ρM}

ρm = (U1,m, U2,m, . . . , Un,m)
(3.12)

Using these partitions the expectation values of the parameters can be calculated as a

simple average of the estimated parameters where the partitions are given:

〈E(θk,l| ~X)〉 =
1

M

∑
ρ∈P

Eij(θk,l|Xij) =
1

M

M∑
m=1

θ̂k,l,m (3.13)

θ̂k,l(ρ) = θ̂k,l,m = Eij(θk,l|Xij) (3.14)

mk,l = 〈E(θk,l| ~X)〉 = 〈θ̂k,l〉 = θ̂k,l (3.15)

where θ̂k,l,m is the expectation value of an unknown parameter given the partition ρm and

mk,l is an approximation of the expectation value of an unknown parameter independent

from the partitions. The vector θ̂k,l = (θ̂k,l,1, θ̂k,l,2, . . . , θ̂k,l,M ) holds the M parameter

samples at position k calculated from the partition samples P . The variance within the

estimation of E(θk,l| ~X) is calculated as

s2
k,l =

n

n− 1

(
θ̂k,l · θ̂k,l − θ̂k,l · θ̂k,l

)
(3.16)

An alternative for the variance is to calculate the Highest Posterior Density (HPD)

interval [Box and Tiao, 1992] of the sample expectation values θ̂k,l. The HPD interval

hk,l(θ̂k,l) is the shortest possible interval for a given target probability. If that probability

is chosen to be e.g. 95% then the posterior probability that the true estimation of mk,l
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3 The Bayesian Change Point Method

lies within the HPD interval is 95%. The posterior probabilities pk if the point k + 1 is a

change point can be calculated from the partition samples as

pk =
1

M

M∑
m=1

Uk,m (3.17)

Note that the MCMC approach brings many advantages. The numerical complexity

is reduced to O(n). The posterior probability distribution of the partitions f(ρ| ~X) as

defined in Eq. (3.8) needs only to be calculated partially. This since the datafactor f( ~X)

and many more factors from the expression f( ~X|ρ) cancel out in Eq. (3.11).

3.1.4 Summary

Combining Bayesian inference, the product partition model and a Markov chain Monte

Carlo approach the BCP model can be solved efficiently. To set-up the BCP model one

can follow these steps:

1. To calculate the expectation values of the unknown parameters θ̂k,l(ρ) = Eij(θk,l|Xij)

given the partition one needs to derive the posterior marginal (or conditional)

distributions fij(θk,l|Xij) (see Eq. (3.5)).

2. To generate the sample partitions one needs to derive the marginal likelihood

fij(Xij) (see Eq. (3.4)).

3. Also needed to generate the sample partitions is the prior probability distribution

of the partitions f(ρ). For that the cohesions cij have to be defined (see Eq. (3.7)).

Once these expressions are derived the expectation values independent from the

distributions θ̂k,l = E(θk,l| ~X) (see Eq. (3.9)) can be calculated. If this is numerically

not feasible one can approximate the results (mk,l = 〈E(θk,l| ~X)〉) through the MCMC

approach as presented in Section 3.1.3.

Note that for steps one to three it is preferable to derive full analytical expressions.

Having the posterior marginal distributions in the form of a probability distribution it

is usually a simple task to calculate the expectation values. The same is true for the

marginal likelihood where we need the evaluation of the distribution itself. A numerical

approach for these expressions might not be feasible. Especially for large datasets there

are various numerical pitfalls in solving the respective integral expressions.
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3.2 The specific implementation of Barry and Hartigan

3.2 The specific implementation of Barry and Hartigan

In this section the specific implementation of Barry and Hartigan [1993] will be

summarized. We will follow the procedure as described in Section 3.1.4. The derivations

of the following expressions are given in Barry and Hartigan [1993].

3.2.1 Prior Design

In the paper of Barry and Hartigan [1993] the BCP model is specified for one parameter

which is the mean µ of the normal distribution where it is assumed that the variance σ2

is constant over time. The prior distribution for the mean is specified to be a normal

distribution as well with unknown hyperparameters µ0 and σ2
0:

(Xij |µk, σ2)
iid∼ N(µk, σ

2) (3.18)

(µk|µ0, σ
2
0)

iid∼ N(µ0, σ
2
0/(j − i)) (3.19)

where the division by j − i expresses that larger deviations from µ0 are expected in

short blocks than in long blocks. The likelihood (Xij |µk, σ2) is a multivariate normal

distribution where is is assumed that the observations Xij = Xi+1,Xi+2, . . . ,Xj are

independent and identically distributed.

The cohesions cij are defined after Yao [1984] as

cij = (1− p)j−i−1p if j > n

= (1− p)j−i−1 if j = n
(3.20)

which leads to the prior probability distribution of the partitions (see Eq. (3.7)) as

f(ρ|p) = pb−1(1− p)n−b (3.21)

where 0 ≤ p ≤ 1 describes the probability of having a change point at any given position

k within the dataset ~X and b is the number of change points within the partition ρ.
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3 The Bayesian Change Point Method

3.2.2 Posterior Design

The expectation value of the unknown parameter µk(ρ) given the partition can then

be calculated as

µ̂k(ρ) = Eij(µk|Xij) = (1− w)X̄ij + wµ0 (3.22)

X̄ij =

j∑
l=i+1

Xl

j − i
(3.23)

w =
σ2

σ2 + σ2
0

(3.24)

and the marginal likelihood is given as

fij(Xij) =

∫
fij(Xij |µ)fij(µ)dµ =

1

(2πσ2)(j−i)/2

(
σ2

σ2
0 + σ2

)1/2

eVij

Vij = −
∑j

l=i+1(Xl − X̄ij)
2

2σ2
− (j − i)(X̄ij − µ0)2

2(σ2
0 + σ2)

(3.25)

In principle all the expressions to calculate the unknown parameters µk using the

MCMC approach as described in Section 3.1.3 are available at this point. Nonetheless

Barry and Hartigan [1993] made some Bayesian refinements which will be discussed in

the next section.

3.2.3 Refinements

The Bayesian refinements concern the variance of the data σ2 and the hyperparametrs

of the model as described in the previous section. The hyperparametrs are the mean

µ0 and the variance σ2
0 of the unknown parameters µk, and the transition probability p.

These parameters are described through the following prior probability distributions:

f(σ2) =
1

σ2
· I(0 ≤ σ2 ≤ ∞) (3.26)

f(µ0) = 1 · I(−∞ ≤ µ0 ≤ ∞) (3.27)

f(w) =
1

w0
· I(0 ≤ w ≤ w0) (3.28)

f(p) =
1

p0
· I(0 ≤ p ≤ p0) (3.29)
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3.2 The specific implementation of Barry and Hartigan

where I is the indicator function and w = σ2/(σ2 + σ2
0). This reduces the four hyper-

parameters to the two hyperparameters w0 that describes the maximum signal-to-noise

ratio and p0 that describes the maximum probability of change. Note that the variance

of the data and the hyperparameters are constant for the whole dataset. They do not

vary depending on the position k inside the dataset.

As a consequence f( ~X|ρ) is not just the product of the marginal likelihoods fij(Xij) any-

more. The expression f( ~X|ρ) can be derived by first integrating over the hyperparameter

σ2 as

f( ~X|ρ, µ0, w) =

∫
f( ~X|ρ, σ2, µ0, w)f(σ2)dσ2 ∝

∫
1

σ2

∏
ij∈ρ

fij(Xij)dσ
2

∝ wb/2

[W +Bw + wn(µ0 − X̄)2]n/2

X̄ =

n∑
i=1

Xi

n
, B =

∑
ij∈ρ

(j − i)(X̄ij − X̄)2, W =
∑
ij∈ρ

j∑
l=i+1

(Xl − X̄ij)
2

(3.30)

and then over the remaining parameters µ0 and w as

f( ~X|ρ) ∝
∫ ∫

f( ~X|ρ, µ0, w)f(µ0)f(w)dµ0dw

∝
∫ w0

0

w(b−1)/2

(W +Bw)(n−1)/2
dw

(3.31)

Since the hyperparameters are now described through distributions it will be necessary

to calculate the expectation values of µ0 and w to calculate µ̂k(ρ):

µ̂k(ρ) = (1− w∗)X̄ij + w∗µ∗0 (3.32)

where w∗ = E(w| ~X) and µ∗0 = E(µ0| ~X). The expectation values µ∗0 and w∗ given the

partitions ρ are calculated as

µ∗0 = E(µ0| ~X, ρ, w) =

∫
µ0
f( ~X|ρ, µ0, w)f(µ0)

f( ~X|ρ, w)
dµ0 = X̄ (3.33)

w∗ = E(w| ~X, ρ) =

∫
w
f( ~X|ρ, w)f(w)

f( ~X|ρ)
dw =

∫ w0

0
w(b+1)/2

(W+Bw)(n−1)/2dw∫ w0

0
w(b−1)/2

(W+Bw)(n−1)/2dw
(3.34)
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3 The Bayesian Change Point Method

Additionally the expectation value of σ2 can be calculated as

σ2∗ = E(σ2| ~X, ρ) =

∫ ∫ ∫
σ2 f( ~X|ρ, σ2, µ0, w)f(σ2)f(µ0)f(w)

f( ~X|ρ)
dµ0dwdσ

2

=
1

n− 3

∫ w0

0
w(b−1)/2

(W+Bw)(n−3)/2dw∫ w0

0
w(b−1)/2

(W+Bw)(n−1)/2dw

(3.35)

Since p is described through a probability distribution the prior probability distribution

of the partitions f(ρ) has to be re-evaluated:

f(ρ) =

∫ p0

0
f(ρ|p)f(p)dp =

1

p0

∫ p0

0
pb−1(1− p)n−bdp (3.36)

where b is the number of blocks in ρ. Combining Eq. (3.31) and Eq. (3.35) the posterior

probability distribution of the partitions can be approximated as:

f(ρ| ~X) =
f( ~X|ρ)f(ρ)∑
ρ f( ~X|ρ)f(ρ)

∝

[∫ w0

0

w(b−1)/2

(W +Bw)(n−1)/2
dw

] [
1

p0

∫ p0

0
pb−1(1− p)n−bdp

] (3.37)

Note that this is actually sufficient to calculate the MCMC partition samples since it is

only necessary to calculate ratios of the probability distribution of the partitions (see

Eq. (3.11)).

3.2.4 Implementation

For a numerical implementation the main problem is the integral of Eq. (3.31). For

example, to generate the partition samples the ratio of Eq. (3.11) has to be calculated as

r =
f(ρ| ~X,Uk = 1)

f(ρ| ~X,Uk = 0)
=

∫ w0

0
wb/2

(W1+B1w)(n−1)/2dw
∫ p0

0 pb(1− p)n−b−1dp∫ w0

0
w(b−1)/2

(W0+B0w)(n−1)/2dw
∫ p0

0 pb−1(1− p)n−bdp
(3.38)
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3.2 The specific implementation of Barry and Hartigan

In Erdman and Emerson [2007] the Eq. (3.31)-like integrals are simplified as incomplete

beta integrals. For example, the ratio of Eq. (3.11) above can then be re-expressed as

r = C ·
∫ B1w0/W1

1+B1w0/W1
0 p(b+2)/2(1− p)(n−b−3)/2dp

∫ p0
0 pb(1− p)n−b−1dp∫ B0w0/W0

1+B0w0/W0
0 p(b+1)/2(1− p)(n−b−2)/2dp

∫ p0
0 pb−1(1− p)n−bdp

C =

(
W0

W1

)n−b−2
2
(
B0

B1

) b+1
2
√
W1

B1

(3.39)

which is numerically stable.

Using the ratio of Eq. (3.39) it is possible to generate M random partition samples

according to f(ρ| ~X) as described in Section 3.1.3. For every sample the expectation

values µ̂k(ρ) can be calculated using Eq. (3.32). Using Eq. (3.15) an approximation of

the expectation values mk independent from the partitions can be calculated as

mk = 〈E(µk| ~X)〉 =
1

M

∑
ρ∈P

µ̂k(ρ) = µ̂k (3.40)

where µ̂k is the vector that holds the estimations µ̂k(ρ) of the M partition samples. The

variance within the estimations can be calculated following Eq. (3.16) as

s2
k =

n

n− 1

(
µ̂k · µ̂k − µ̂k · µ̂k

)
(3.41)

and the posterior probabilities pk if the point k + 1 is a change point following Eq. (3.17)

as

pk =
1

M

M∑
m=1

Uk,m (3.42)

where Uk,m is the k-th entry of the m-th sample partition ρm (see also Eq. (3.12)).

3.2.5 Evaluation

The specific implementation of Barry and Hartigan as described in Section 3.2.4 was

implemented by Erdman and Emerson [2007] and is available in the R [R Core Team,

2015] package bcp. Thorough evaluations of the specific implementation of Barry and

Hartigan are documented in Barry and Hartigan [1993], and Erdman and Emerson [2007].

The intention of this section is to demonstrate for which kind of breakpoint problems the

specific implementation of Barry and Hartigan might not be suited.
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3 The Bayesian Change Point Method

While the general model as defined in Section 3.1 does allow for changes in any

parameter of the likelihood the specific implementation of Barry and Hartigan assumes

a constant variance (homoscedasticity). Therefore it makes sense to assume that the

specific implementation of Barry and Hartigan gets into troubles if the different regimes

of the dataset have not the same variance.

In Fig. 3.1 a dataset where only the mean changes is examined. The means are detected

reliably. In Fig. 3.2 not only the mean changes but also the variance. As expected the

change points cannot be detected reliably anymore. Especially regions with a high

variance lead to large posterior probabilities.

In the remainder of Part I the general model will be solved such that it can not only

detect changes for the mean but also for the variance. To achieve this goal the needed

posterior distributions for the normal likelihood and the NGIG prior are derived in

Chapter 4. The obtained results will then be combined with the PPM in Chapter 5.
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Figure 3.1: The dataset has four clusters of 50 normal random samples. The first one
has a mean of -2, the second one a mean of 2, the third one a mean of -1 and
the fourth one a mean of 3. The standard deviation is constant and defined
to be 0.5 for all clusters.
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Figure 3.2: The dataset has four clusters of 50 normal random samples. The first one
has a mean of -2 and a standard deviation of 0.2, the second one a mean of 2
and a standard deviation of 1.5, the third one a mean of -1 and a standard
deviation of 0.5 and the fourth one a mean of 3 and a standard deviation of 1.
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4 Normal-GIG-Prior of the Gaussian

Distribution

4.1 Prior Distributions

By applying Bayes’ law it is possible to infer on the unknown parameters θ of a given

distribution f( ~X|θ) as

f(θ| ~X) =
f( ~X|θ)f(θ)

f( ~X)
(4.1)

where f( ~X|θ) is the likelihood of the data, f(θ) the prior distribution of the parameters

and f( ~X) the marginal likelihood.

For our model the likelihood is defined to be a normal distribution (N), the prior

distribution for the mean of the likelihood is defined to be a normal distribution (N)

as well, and the prior distribution for the variance of the likelihood is defined to be a

generalized inverse Gaussian (GIG) distribution. All random variables are assumed to be

independent and identically distributed (iid). The N-NGIG model can be summarized as

f(µ, σ2| ~X) =
f( ~X|µ, σ2)f(µ, σ2)

f( ~X)
=
f( ~X|µ, σ2)f(µ|µ0, vσ

2)f(σ2|ψ, χ, λ)

f( ~X)
(4.2)

( ~X|µ, σ2)
iid∼ N(µ, σ2) (4.3)

(µ|µ0, vσ
2)

iid∼ N(µ0, vσ
2) (4.4)

(σ2|ψ, χ, λ)
iid∼ GIG(ψ, χ, λ) (4.5)

Depending on the choice of the likelihood and the prior distributions there are various

analytical solutions available. If analytical solutions for the posterior marginal (or

conditional) distributions and the posterior likelihood are available they can be used

directly to complete the BCP analysis using the MCMC approach (see Section 3.1.3). In

the following these expressions are derived for the N-NGIG model as defined in Eq. (4.2)
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4 Normal-GIG-Prior of the Gaussian Distribution

through Eq. (4.5).

To achieve this the posterior conditional distributions are derived in Section 4.2.2 as

f(µ|σ2, ~X) =
f( ~X|µ, σ2)f(µ, σ2)

f( ~X|σ2)
(4.6)

f(σ2|µ, ~X) =
f( ~X|µ, σ2)f(µ, σ2)

f( ~X|µ)
(4.7)

the posterior marginal distributions in Section 4.2.3 as

f(µ| ~X) =

∫
f(µ, σ2| ~X)dσ2 (4.8)

f(σ2| ~X) =

∫
f(µ, σ2| ~X)dµ (4.9)

and the marginal likelihood in Section 4.2.4 as

f( ~X) =

∫ ∫
f( ~X|µ, σ2)f(µ, σ2)dµdσ2 (4.10)

4.2 Posterior Distributions

4.2.1 Definitions

Some distributions are extensively used throughout this section. These are the iid

multivariate normal distribution to model the likelihood (see also Eq. (4.3)) as

f( ~X|µ, σ2) =
n∏
i=1

(
1

2πσ2

)1/2

exp

(
−(xi − µ)2

2σ2

)
(4.11)

=

(
1

2πσ2

)n/2
exp

(
−1

2

n∑
i=1

(xi − µ)2

σ2

)
(4.12)

the normal distribution to model the prior for the mean (see also Eq. (4.4)) as

f(µ|µ0, vσ
2) =

(
1

2πvσ2

)1/2

exp

(
−(µ− µ0)2

2vσ2

)
(4.13)
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4.2 Posterior Distributions

and the GIG distribution to model the prior for the variance (see also Eq. (4.5)) as

f(σ2|ψ, χ, λ) =
(ψ/χ)λ/2

2Kλ(
√
ψχ)

σ2(λ−1) exp

(
−ψσ

2 + χσ−2

2

)
(4.14)

where Kλ is a modified Bessel function of the third kind.

Some of the distributions that will be derived in the next sections are distributed

according to the symmetric iid generalized hyperbolic (GH) distribution. The general

multivariate case is defined as

f( ~X|λ, α, µ,∆, δ,β) =(
1

2π

)n
2

(
1√
|∆|

)(√
σ2 + (x− µ)′∆−1(x− µ)

α

)λ−n
2
(√

α2 − β′∆β
δ

)λ

×

(
Kλ−n

2
(α
√
σ2 + (x− µ)′∆−1(x− µ))

Kλ(δ
√
α2 − β′∆β)

)
exp

(
β′(x− µ)

)
(4.15)

where Kλ is again a modified Bessel function of the third kind. Fore the symmetric

(β = 0) and iid case (∆ = In where In is the identity matrix) the expression simplifies to

f( ~X|λ, α, µ, δ) =

(
1

2π

)n
2 (α

c̃

)n
2

(
c̃

δ

)λ(Kλ−n
2
(αc̃)

Kλ(αδ)

)

c̃(δ,x, µ) =

√√√√δ2 +
n∑
i=1

(xi − µ)2

(4.16)

for the univariate case the expression reduces further to

f(x|λ, α, µ, δ) =

(
1

2π

) 1
2 (α

c̃

) 1
2

(
c̃

δ

)λ(Kλ− 1
2
(αc̃)

Kλ(αδ)

)

c̃(δ, x, µ) =
√
δ2 + (x− µ)2

(4.17)

4.2.2 Posterior Conditional Distributions

For the final BCP model in Chapter 5 where the results of this chapter are applied the

marginal distributions are used. Note that it would also be possible to apply the MCMC

procedure as described in Section 3.1.3 by using the conditional distributions (Gibbs
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4 Normal-GIG-Prior of the Gaussian Distribution

sampling). The conditional distribution of the variance as defined in Eq. (4.7) will be

an important ingredient to calculate the marginal distributions and is therefore derived

within this section. The conditional distribution of the mean as defined in Eq. (4.6) is a

well known expression. Only for the sake of completeness it will be derived.

If we assume that the variance is known then the posterior conditional distribution of

the mean can be calculated as

f(µ|σ2, ~X) ∝ f( ~X|µ, σ2)f(µ)

∝ exp

(
−1

2

n∑
i=1

(xi − µ)2

σ2

)
exp

(
−(µ− µ0)2

2vσ2

)

∝ exp

(
− 1

2σ2

n∑
i=1

((xi − x)− (µ− x))2

)
exp

(
− 1

2vσ2
(µ− µ0)2

)

∝ exp

(
− 1

2σ2

n∑
i=1

(xi − x)2 +
n∑
i=1

(µ− x)2

)
exp

(
− 1

2vσ2
(µ2 − 2µµ0 + µ2

0)

)

∝ exp

(
− 1

2σ2
n(µ− x)2 − 1

2vσ2
(µ2 − 2µµ0)

)

∝ exp

(
− 1

2σ2

(
nµ2 − 2nµx+ nx2 +

µ2

v
− 2µµ0

v

))
∝ exp

(
− 1

2σ2

(
(n+

1

v
)µ2 − 2µ(nx+

µ0

v
)

))
∝ exp

(
−nv + 1

2vσ2

(
µ2 − 2µ

nvx+ µ0

nv + 1

))
(4.18)

which is the kernel of a normal distribution. Therefore we conclude that the posterior

conditional distribution of the mean is normally distributed as

(µ|σ2, ~X) ∼ N
(
µ̃ =

nvx+ µ0

nv + 1
, σ̃2 =

vσ2

nv + 1

)
(4.19)

x =
1

n

n∑
i=1

xi (4.20)

where x is the mean of the observations ~X.

If we assume that the mean is known then the posterior conditional distribution of the
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4.2 Posterior Distributions

variance can be calculated as

f(σ2|µ, ~X) ∝ f( ~X|µ, σ2)f(µ)f(σ2)

∝
(

1

σ2

)n+1
2

exp

(
− 1

2σ2

n∑
i=1

(xi − µ)2

)
exp

(
− 1

2σ2

(µ− µ0)2

v

)

×
(
σ2
)λ−1

exp

(
−ψσ

2 + χσ−2

2

)

∝
(
σ2
)λ−n+1

2
−1

exp

[
−1

2

(
ψσ2 +

1

σ2

(
χ+

(µ− µ0)2

v
+

n∑
i=1

(xi − µ)2

))]

which is the kernel of a GIG distribution. Therefore we conclude that the posterior

conditional distribution of the variance is distributed according to a GIG distribution as

(σ2|µ, ~X) ∼ GIG ( ψ̃ = ψ, λ̃ = λ− n+ 1

2
,

χ̃ = χ+
(µ− µ0)2

v
+

n∑
i=1

(xi − µ)2

) (4.21)

Note that there were no factors dropped that contain µ. Therefore we can make use of

this result to calculate the posterior marginal distributions.

4.2.3 Posterior Marginal Distributions

To derive the posterior marginal distribution of the mean we can make use of our

findings in Eq. (4.21). If we assume that the variance is unknown then the posterior

marginal distribution of the mean can be formulated as

f(µ| ~X) ∝
∫
f( ~X|µ, σ2)f(µ)f(σ2)dσ2

∝
∫ (

σ2
)λ−n+1

2
−1

exp

[
−1

2

(
ψσ2 +

1

σ2

(
χ+

n∑
i=1

(xi − µ)2 +
(µ− µ0)2

v

))]
dσ2

∝
∫ (

σ2
)p̃−1

exp

[
−1

2

(
ãσ2 + b̃σ−2

)]
dσ2

where

p̃ = λ− n+ 1

2
, ã = ψ, b̃ = χ+

n∑
i=1

(xi − µ)2 +
(µ− µ0)2

v
(4.22)
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4 Normal-GIG-Prior of the Gaussian Distribution

The expression within the integral is the kernel of a GIG distribution; therefore:

f(µ| ~X) ∝ 2Kp̃

(√
ãb̃
)( b̃

ã

)p̃/2

∝ Kp̃

(√
ãb̃
)
b̃p̃/2 (4.23)

The expression for b̃ can be reformulated as

b̃ = χ+
n∑
i=1

(x2
i − 2µxi + µ2) +

1

v
(µ2 − 2µ0µ+ µ2

0)

= χ+
n∑
i=1

x2
i +

µ2
0

v
+ µ2(n+

1

v
)− 2µ

v
∑n

i=1 xi + µ0

v

= χ+

n∑
i=1

x2
i +

µ2
0

v
+
nv + 1

v

(
µ2 − 2µ

nvx+ µ0

nv + 1

)

= χ+
n∑
i=1

x2
i +

µ2
0

v
− (nvx+ µ0)2

v(nv + 1)
+
nv + 1

v

(
µ− nvx+ µ0

nv + 1

)2

=
nv + 1

v

[
v

nv + 1

(
χ+

n∑
i=1

x2
i +

µ2
0

v
− (nvx+ µ0)2

v(nv + 1)

)
+

(
µ− nvx+ µ0

nv + 1

)2
]

Using this result Eq. (4.23) can be reformulated as

f(µ| ~X) ∝ Kp̃

(√
ãb̃
)
b̃p̃/2

∝ Kλ−n
2
− 1

2

[
ψ1/2

(
nv + 1

v

)1/2

(
v

nv + 1

(
χ+

n∑
i=1

x2
i +

µ2
0

v
− (nvx+ µ0)2

v(nv + 1)

)
+

(
µ− nvx+ µ0

nv + 1

)2
)1/2



×

( v

nv + 1

(
χ+

n∑
i=1

x2
i +

µ2
0

v
− (nvx+ µ0)2

v(nv + 1)

)
+

(
µ− nvx+ µ0

nv + 1

)2
)1/2

λ−n2− 1
2

which is the kernel of a univariate symmetric iid GH distribution as defined in Eq. (4.17).

Therefore we conclude that the posterior marginal distribution of the mean is distributed
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4.2 Posterior Distributions

according to a GH distribution as

(µ| ~X) ∼ GH ( λ̃ = λ− n

2
, α̃ = ψ1/2

(
nv + 1

v

)1/2

,

µ̃ =
nvx+ µ0

nv + 1
, ∆̃ = 1, β̃ = 0,

δ̃ =

√√√√ v

nv + 1

(
χ+

n∑
i=1

x2
i +

µ2
0

v
− (nvx+ µ0)2

v(nv + 1)

)
(4.24)

If we assume that the mean is unknown then the posterior marginal distribution of the

variance can be formulated as

f(σ2| ~X) ∝
∫
f( ~X|µ, σ2)f(µ)f(σ2)dµ

∝
∫ (

σ2
)λ−n+1

2
−1

exp

[
−1

2

(
ψσ2 +

1

σ2

(
χ+

n∑
i=1

(xi − µ)2 +
(µ− µ0)2

v

))]
dµ

∝
(
σ2
)λ−n+1

2
−1

×
∫

exp

[
−ψσ

2

2
− 1

2σ2

(
χ+

n∑
i=1

(x2
i − 2µxi + µ2) +

µ2 − 2µµ0 + µ2
0

v

)]
dµ

∝
(
σ2
)λ−n+1

2
−1

exp

[
−1

2
(ψσ2 + χσ−2)− 1

2σ2

n∑
i=1

x2
i −

µ2
0

2vσ2

]

×
∫

exp

[
− n

2σ2
(µ2 − 2µx)− 1

2vσ2
(µ2 − 2µµ0)

]
dµ

∝
(
σ2
)λ−n+1

2
−1

exp

[
−1

2

(
ψσ2 + (χ+

n∑
i=1

x2
i +

µ2
0

v
)σ−2

)]

×
∫

exp

[
− 1

2σ2

(
(n+

1

v
)µ2 − 2µ(nx+

µ0

v
))

)]
dµ

∝
(
σ2
)λ−n+1

2
−1

exp

[
−1

2

(
ψσ2 + (χ+

n∑
i=1

x2
i +

µ2
0

v
)σ−2

)]

×
∫

exp

[
−nv + 1

2vσ2

(
µ2 − 2µ

(
nvx+ µ0

nv + 1

))]
dµ

where the expression within the integral is the kernel of a normal distribution. Note that
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4 Normal-GIG-Prior of the Gaussian Distribution

the expression within the integral was already derived in Eq. (4.18) where the factors

containing σ2 outside the integral were discarded. Solving the integral expression leads

to:

f(σ2| ~X) ∝
(
σ2
)λ−n+1

2
−1

exp

[
−1

2

(
ψσ2 + (χ+

n∑
i=1

x2
i +

µ2
0

v
)σ−2

)]

×
(

2π
vσ2

nv + 1

) 1
2

exp

[
nv + 1

2vσ2

(
nvx+ µ0

nv + 1

)2
]

(4.25)

∝
(
σ2
)λ−n

2
−1

× exp

[
−1

2

(
ψσ2 +

(
χ+

n∑
i=1

x2
i +

µ2
0

v
− (nvx+ µ0)2

v(nv + 1)

)
σ−2

)]
(4.26)

which is the kernel of a GIG distribution. Therefore we conclude that the posterior

marginal distribution of the variance is distributed according to a GIG distribution as

(σ2| ~X) ∼ GIG ( ψ̃ = ψ, λ̃ = λ− n

2
,

χ̃ = χ+

n∑
i=1

x2
i +

µ2
0

v
− (nvx+ µ0)2

v(nv + 1)

) (4.27)

4.2.4 Marginal Likelihood

The last ingredient that is needed for the BCP analysis is the marginal likelihood. It

can be formulated as

f( ~X) =

∫ ∫
f( ~X|µ, σ2)f(µ)f(σ2)dµdσ2

using Eq. (4.25) and Eq. (4.26) we get:

f( ~X) =

(
1

2π

)n+1
2
(

1

v

) 1
2 (ψ/χ)λ/2

2Kλ(
√
ψχ)

(
2π

v

nv + 1

) 1
2

×
∫ (

σ2
)λ−n

2
−1

exp

[
−1

2

(
ψσ2 +

(
χ+

n∑
i=1

x2
i +

µ2
0

v
− (nvx+ µ0)2

v(nv + 1)

)
σ−2

)]
dσ2
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where the expression within the integral is the kernel of a GIG distribution. Solving the

integral expression leads to:

f( ~X) =

(
1

2π

)n
2
(

1

nv + 1

) 1
2 (ψ/χ)λ/2

2Kλ(
√
ψχ)

2Kp̃

(√
ãb̃
)( b̃

ã

)p̃/2

=

(
1

2π

)n
2
(

1

nv + 1

) 1
2
(
ψ

χ

)λ/2( b̃
ã

)p̃/2 Kp̃

(√
ãb̃
)

Kλ(
√
ψχ)

(4.28)

where

p̃ = λ− n

2
, ã = ψ, b̃ = χ+

n∑
i=1

x2
i +

µ2
0

v
− (nvx+ µ0)2

v(nv + 1)
(4.29)

re-substituting p̃ and ã leads to:

f( ~X) =

(
1

2π

)n
2
(

1

nv + 1

) 1
2
(
ψ

χ

)λ/2( b̃

ψ

)λ
2
−n

4 Kλ−n
2

(√
ψb̃

)
Kλ(
√
ψχ)

=

(
1

2π

)n
2
(

1

nv + 1

) 1
2 ψn/4

χλ/2
b̃
1
2

(λ−n
2

)
Kλ−n

2

(
ψ1/2b̃1/2

)
Kλ(ψ1/2χ1/2)

(4.30)

=

(
1

2π

)n
2
(

1

nv + 1

) 1
2

(
ψ1/2

b̃1/2

)n/2(
b̃1/2

χ1/2

)λ Kλ−n
2

(
ψ1/2b̃1/2

)
Kλ(ψ1/2χ1/2)

(4.31)

The expression for ψb̃ can be reformulated as

ψb̃ = ψ

[
χ+

n∑
i=1

x2
i +

µ2
0

v
− (nvx+ µ0)2

v(nv + 1)

]

= ψ

[
χ+

nv2
∑
x2
i + v

∑
x2
i + nvµ2

0 + µ2
0 − v2 (

∑
xi)

2 − 2vµ0
∑
xi − µ2

0

v(nv + 1)

]

=
ψ

nv + 1

[
χ(nv + 1) + nv

∑
x2
i − v

(∑
xi

)2
+
∑

(x2
i − 2µ0xi + µ2

0)

]
=

ψ

nv + 1

[
χ(nv + 1) + n2v(x2 − x2) +

∑
(xi − µ0)2

]
=

ψ

(nv + 1)1/n

[
χ(nv + 1)1/n + (nv + 1)1/n−1

(∑
(xi − µ0)2 + n2v(x2 − x2)

)]
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4 Normal-GIG-Prior of the Gaussian Distribution

=
ψ

(nv + 1)1/n

[
χ(nv + 1)1/n + c

(∑
(xi − µ0)2 + s

)]
where

c = (nv + 1)1/n−1, s = n2v(x2 − x2) (4.32)

Solving the following equation for µ:∑
(xi − µ)2 = c

(∑
(xi − µ0)2 + s

)
nx2 − 2nµx+ nµ2 = cnx2 − 2cnµ0x+ ncµ2

0 + cs

nµ2 − 2nµx = c(s+ nµ2
0 − 2nµ0x) + (c− 1)nx2

µ2 − 2µx = c(
s

n
+ µ2

0 − 2µ0x) + (c− 1)x2

(µ− x)2 = x2 + c(
s

n
+ µ2

0 − 2µ0x) + (c− 1)x2

µ = x+
[
x2 + c(

s

n
+ µ2

0 − 2µ0x) + (c− 1)x2
]1/2

and matching the expression Kλ−n
2

(
ψ1/2b̃1/2

)
to the GH distribution as defined in

Eq. (4.16) we can conclude that the posterior likelihood is distributed according to a GH

distribution as

( ~X) ∼ GH ( λ̃ = λ, α̃ =

(
ψ

(nv + 1)1/n

)1/2

,

δ̃ =
(
χ(nv + 1)1/n

)1/2
, ∆̃ = In, β̃ = 0,

µ̃ = x+
[
x2 + c(

s

n
+ µ2

0 − 2µ0x) + (c− 1)x2
]1/2

) (4.33)

One can easily verify that inserting the expressions of Eq. (4.33) into Eq. (4.16) will lead

to Eq. (4.31):

α̃
n
2 =

(
ψ1/2

)n
2

(
1

nv + 1

) 1
4

1

δ̃

λ̃

=

(
1

χ1/2

)λ( 1

nv + 1

) λ
2n
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4.3 Summary

c̃λ−
n
2 =

[
χ(nv + 1)1/n + c

(∑
(xi − µ0)2 + s

)] 1
2(λ−n2 )

=
[
(nv + 1)1/n

]λ
2
−n

4
[
b̃1/2

](λ−n2 )

=
[
b̃1/2

](λ−n2 )
(

1

nv + 1

) 1
4
− λ

2n

Note that using Eq. (4.21) and Eq. (4.28) leads to the posterior distribution as

f(µ, σ2| ~X) =
f( ~X|µ, σ2)f(µ)f(σ2)

f( ~X)

=

(
nv + 1

2πv

) 1
2 (ã/b̃)p̃/2

2Kp̃

(√
ãb̃
) (σ2

)λ−n+1
2
−1

× exp

[
−1

2

(
ψσ2 +

1

σ2

(
χ+

(µ− µ0)2

v
+
∑
i=1

(xi − µ)2

))]
(4.34)

where ã, b̃ and p̃ are defined in Eq. (4.29).

4.3 Summary

It was shown that the posterior conditional distributions, the posterior marginal distri-

butions and the posterior likelihood all belong to the family of generalized hyperbolic (GH)

and generalized inverse Gaussian (GIG) distributions. The GH and GIG distributions

are very well documented in literature. The moments and expectation values of the

posterior distributions are therefore readily available. Also there are various software

implementations such as the GeneralizedHyperbolic [Scott, 2014] or ghyp [Luethi and

Breymann, 2013] packages for R that makes it e.g. also possible to generate random

samples from all these distributions or to fit the parameters. Using the GH and GIG

formulations for the posterior distributions makes it very convenient to work with the

Bayesian model as derived within this chapter.
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5 Bayesian Change Point Model

5.1 Prior Design

The model is set up for the unknown mean and variance of the normal distribution.

The prior distribution of the mean is specified to be a normal distribution with unknown

hyperparameters µ0 and v while the prior distribution of the variance is specified to be a

GIG distribution with unknown hyperparameters ψ, χ and λ:

(Xij |µk, σ2
k)

iid∼ N(µk, σ
2
k) (5.1)

(µk|µ0, vσ
2
k)

iid∼ N(µ0, vσ
2
k) (5.2)

(σ2
k|ψ, χ, λ)

iid∼ GIG(ψ, χ, λ) (5.3)

Note that throughout this chapter the notation as introduced in Section 3.1 is used. It

follows the procedure as described in Section 3.1.4 and already applied to describe the

specific implementation of Barry and Hartigan in Section 3.2.

The same cohesions as for the specific implementation of Barry and Hartigan (see

Eq. (3.20)) are used:

cij = (1− p)j−i−1p if j > n

= (1− p)j−i−1 if j = n
(5.4)

which leads to the prior probability distribution of the partitions as

f(ρ|p) = pb−1(1− p)n−b (5.5)

where 0 ≤ p ≤ 1 describes the probability of having a change point at any given position

k within the dataset ~X and b is the number of change points within the partition ρ.
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5 Bayesian Change Point Model

5.2 Posterior Design

We can now make use of our findings in Chapter 4. The expectation values of the

unknown mean and variance can be derived from the posterior marginal distributions.

All these distributions belong to the family of GH and GIG distributions. The properties

of these distributions are well known. Besides the expectation values of the mean and

the variance it would also be possible to examine other moments of these parameters.

Like e.g. the variance of the mean or the variance of the variance.

The posterior marginal distribution of the mean (µk|Xij) was derived in Eq. (4.24).

The expectation value µ̂k(ρ) follows from that distribution as

(µk|Xij) ∼ GH ( λ̃ = λ− n

2
, α̃ = ψ1/2

(
nv + 1

v

)1/2

,

µ̃ =
nvx+ µ0

nv + 1
, ∆̃ = 1, β̃ = 0,

δ̃ =

√√√√ v

nv + 1

(
χ+

n∑
i=1

x2
i +

µ2
0

v
− (nvx+ µ0)2

v(nv + 1)

)
(5.6)

x =
1

n

n∑
i=1

xi (5.7)

µ̂k(ρ) = Eij(µk|Xij) = µ̃ (5.8)

where ij = {i+ 1, j + 2, . . . , j} and n = j − i. Assuming we can’t derive the posterior

marginal distribution for some reason it is also possible to estimate the expectation value

of the mean by using the posterior conditional distribution (µk|σ2
k,Xij) of the mean

(Gibbs sampling) which was derived in Eq. (4.19). The expectation value µ̂ck(ρ) follows

from that distribution as

(µk|σ2
k, Xij) ∼ N

(
µ̃ =

nvx+ µ0

nv + 1
, σ̃2 =

vσ2
k

nv + 1

)
(5.9)

µ̂ck(ρ) = Ecij(µk|Xij) = µ̃ (5.10)

Note that the marginal and conditional expectation values are identical. For higher

moments this is not true anymore.

The posterior marginal distribution of the variance (σ2
k|Xij) was derived in Eq. (4.27).
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5.2 Posterior Design

The expectation value σ̂2
k(ρ) follows from that distribution as

(σ2
k|Xij) ∼ GIG ( ψ̃ = ψ, λ̃ = λ− n

2
,

χ̃ = χ+
n∑
i=1

x2
i +

µ2
0

v
− (nvx+ µ0)2

v(nv + 1)

) (5.11)

σ̂2
k(ρ) = Eij(σ

2
k|Xij) =

(
χ̃

ψ̃

) 1
2 Kλ̃+1

(
(ψ̃χ̃)

1
2

)
Kλ̃

(
(ψ̃χ̃)

1
2

) (5.12)

The posterior conditional distribution (σ2
k|µk, Xij) of the variance was derived in Eq. (4.21).

The expectation value (σ̂2
k)
c(ρ) follows from that distribution as

(σ2
k|µk, Xij) ∼ GIG ( ψ̃ = ψ, λ̃ = λ− n+ 1

2
,

χ̃ = χ+
(µk − µ0)2

v
+

n∑
i=1

(xi − µk)2

) (5.13)

(σ̂2
k)
c(ρ) = Ecij(σ

2
k|Xij) =

(
χ̃

ψ̃

) 1
2 Kλ̃+1

(
(ψ̃χ̃)

1
2

)
Kλ̃

(
(ψ̃χ̃)

1
2

) (5.14)

Note that the marginal and conditional expectation values are not identical.

The marginal likelihood was derived in Eq. (4.33) as

(Xij) ∼ GH ( λ̃ = λ, α̃ =

(
ψ

(nv + 1)1/n

)1/2

,

δ̃ =
(
χ(nv + 1)1/n

)1/2
, ∆̃ = In, β̃ = 0,

µ̃ = x+
[
x2 + c(

s

n
+ µ2

0 − 2µ0x) + (c− 1)x2
]1/2

) (5.15)

However for the implementation we will use the formulation as given in Eq. (4.30) and

Eq. (4.29):

fij(Xij) =

(
1

2π

)n
2
(

1

nv + 1

) 1
2 ψn/4

χλ/2
b̃
1
2

(λ−n
2

)
Kλ−n

2

(
ψ1/2b̃1/2

)
Kλ(ψ1/2χ1/2)

(5.16)
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b̃ = χ+
n∑
i=1

x2
i +

µ2
0

v
− (nvx+ µ0)2

v(nv + 1)
(5.17)

5.3 Refinements

In the specific implementation of Barry and Hartigan [1993] all the hyperparameters

were described through probability distributions. For this implementation the hyper-

parameters (µ0, v, ψ, χ, λ) are assumed to be known a priori. Only for p the beta

distribution is used as

p ∼ Beta(α, β) (5.18)

f(p|α, β) =
pα−1(1− p)β−1

B(α, β)
(5.19)

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
(5.20)

where Γ is the gamma function. The final model has therefore seven hyperparameters µ0,

v, ψ, χ, λ, α and β. The parameters µ0 and v are used to model the prior knowledge

about the mean. The parameters ψ, χ and λ are used to model the prior knowledge

about the variance. And the parameters α and β are used to model the prior knowledge

about the change point probability.

As a consequence the prior probability distribution of the partitions f(ρ) has to be

re-evaluated:

f(ρ) =

∫ 1

0
f(ρ|p)f(p)dp

=

∫ 1

0
pb−1(1− p)n−bpα−1(1− p)β−1 1

B(α, β)
dp

=
1

B(α, β)

∫ 1

0
p(α+b−1)−1(1− p)(β+n−b)−1dp

where the expression within the integral is the kernel of a beta distribution; therefore:

f(ρ) =
Γ(α+ β)Γ(α+ b− 1)Γ(β + n− b)

Γ(α)Γ(β)Γ(α+ β + n− 1)
(5.21)
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Note that the posterior distribution of the change point probability can be derived as

f(p| ~X, ρ) ∝ f(ρ|p)f(p)

∝ p(α+b−1)−1(1− p)(β+n−b)−1

(p| ~X, ρ) ∼ Beta(α+ b− 1, β + n− b) (5.22)

which is a beta distribution. This allows to calculate the expectation value of the change

point probability given the partition as

p̂(ρ) = E(p| ~X, ρ) =
α+ b− 1

α+ β + n− 1
(5.23)

Combining Eq. (5.16) and Eq. (5.21) the posterior probability distribution of the

partitions can be approximated as

f(ρ| ~X) =
f( ~X|ρ)f(ρ)∑
ρ f( ~X|ρ)f(ρ)

(5.24)

f( ~X|ρ) =
∏
ij∈ρ

fij(Xij) (5.25)

where the marginal likelihood for all observations ~X is in product form. The expectation

values of the unknown parameters independent from the partitions can be calculated as

θ̂k = E(θk| ~X) =
∑
ρ

Eij(θk|Xij)f(ρ| ~X) (5.26)

where 1 ≤ k ≤ n and θ represents the unknown parameter µ or σ2.

5.4 Implementation

Solving Eq. (5.24) will not be feasible from a numerical point of view. Therefore the

partitions P = {ρ1, ρ2, . . . , ρM} are sampled using the MCMC approach as described in

Section 3.1.3. For that the ratio as defined in Eq. (3.31) has to be calculated as

r =
f(ρ| ~X,Uk = 1)

f(ρ| ~X,Uk = 0)
=
f( ~X|ρ, Uk = 1)f(ρ|Uk = 1)

f( ~X|ρ, Uk = 0)f(ρ|Uk = 0)
(5.27)
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Using Eq. (5.16) and Eq. (5.21) the ratio can be expressed as

r =

∏
ij∈ρ fij(Xij |Uk = 1)f(ρ|Uk = 1)∏
ij∈ρ fij(Xij |Uk = 0)f(ρ|Uk = 0)

=
flk(Xlk)fkr(Xkr)

flr(Xlr)

Γ(α+ b)Γ(β + n− b− 1)

Γ(α+ b− 1)Γ(β + n− b)

=
flk(Xlk)fkr(Xkr)

flr(Xlr)

α+ b− 1

β + n− b− 1
(5.28)

where l is the first change point left of the position k and r is the first change point right

of the position k. In Eq. (5.28) it is sufficient to calculate the marginal likelihood from

Eq. (5.16) as

fij(Xij) ∝
(

1

nv + 1

) 1
2
(

1

χ

)λ/2
b̃
1
2

(λ−n
2

)
Kλ−n

2

(
ψ1/2b̃1/2

)
Kλ(ψ1/2χ1/2)

(5.29)

b̃ = χ+
n∑
i=1

x2
i +

µ2
0

v
− (nvx+ µ0)2

v(nv + 1)
(5.30)

All other factors cancel out.

For a numerical implementation the main problem are the Bessel functions Kν(x) in

Eq. (5.29) and Eq. (5.12). The expression gets numerically unstable if either x or ν

get large. The problem for large x can be solved through exponential scaling by rather

calculating exKν(x) than Kν(x). This method is implemented for R in the package base

[R Core Team, 2015]. The problem for large ν can be solved by using an asymptotic

expansion in Debye polynomials for large ν. The method of Abramowitz and Stegun

[1964] together with exponential scaling is implemented for R in the package Bessel

[Maechler, 2015].

Using these methods will still not be sufficient to evaluate Eq. (5.28) and Eq. (5.12).

Additionally the marginal likelihoods and therefore the Bessel functions have to be

calculated in log-space. The ratio is evaluated as

r = exp [log(flk(Xlk)) + log(fkr(Xkr))− log(flr(Xlr))]
α+ b− 1

β + n− b− 1
(5.31)

The logarithm of the marginal likelihood can be calculated as

log(fij(Xij)) = −1

2
log(nv + 1)− λ

2
log(χ) +

1

2
(λ− n

2
) log(b̃)
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5.4 Implementation

+ log
(
Kλ−n

2

(
ψ1/2b̃1/2

))
− log

(
Kλ(ψ1/2χ1/2)

)
(5.32)

The logarithm of the Bessel function using the exponential scaling can be calculated as

log(Kν(x)) = log(exKν(x))− x (5.33)

For the evaluations of Eq. (5.32) the method was implemented by calculating the expo-

nentially scaled logarithmic values of the Bessel functions. If ν > 30 the exponentially

scaled logarithmic values of the Bessel functions using the asymptotic expansion was

used.

Using the ratio of Eq. (5.31) it is possible to generate M random partition samples

according to f(ρ| ~X) as described in Section 3.1.3. For every sample the expectation

values µ̂k(ρ) (see Eq. (5.8)) and σ̂2
k(ρ) (see Eq. (5.12)) can be calculated. Using Eq. (3.15)

an approximation of the expectation values mk independent from the partitions can be

calculated as

mk = 〈E(θk| ~X)〉 =
1

M

∑
ρ∈P

θ̂k(ρ) = θ̂k (5.34)

where θ represents the unknown parameter µ or σ2 and θ̂k is the vector that holds the

estimations θ̂k(ρ) of the M partition samples. The variance within the estimations can

be calculated following Eq. (3.16) as

s2
k =

n

n− 1

(
θ̂k · θ̂k − θ̂k · θ̂k

)
(5.35)

Alternatively the conditional expectation values (Eq. (5.10) and Eq. (5.14)) could be

used (Gibbs sampling). The posterior probabilities pk if the point k + 1 is a change point

can be calculated following Eq. (3.17) as

pk =
1

M

M∑
m=1

Uk,m (5.36)

where Uk,m is the k-th entry of the m-th sample partition ρm (see also Eq. (3.12)).
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6 Discussion

6.1 Comparison

The main difference of the model described in Chapter 4 (the N-NGIG model) to the

model used by Loschi et al. [2003] (the N-NIG model) is that the prior for the variance is

a GIG distribution (see Eq. (4.5)) instead of an inverse gamma distribution. The gamma

(G) and the inverse gamma (IG) distributions are defined as

G(x|η, κ) =
κη

Γ(η)
xη−1 exp (−κx) (6.1)

IG(x|η, κ) =
κη

Γ(η)
x−η−1 exp

(
−κ
x

)
(6.2)

These distributions are both special cases of the GIG distribution [Jorgensen, 1982]

and related to each other as

G(η, κ) = GIG(ψ = 2κ, χ = 0, λ = η) (6.3)

IG(η, κ) = GIG(ψ = 0, χ = 2κ, λ = −η) (6.4)

using the definition of the GIG distribution in Eq. (4.14). Therefore the BCP N-NGIG

model represents a generalisation of the BCP N-NIG model.

Note that choosing a gamma prior (χ = 0) does not mean that the posterior distribution

is a gamma distribution (see Eq. (4.27)). For the gamma prior the marginal likelihood

becomes a symmetric variance gamma distribution (see Eq. (4.33)). The inverse gamma

distribution can only be modelled approximately in the limit of ψ → 0. The reason is

that the marginal likelihood is only defined for α̃ > 0 (see Eq. (4.33)). In that limit the

posterior distribution is only an inverse gamma distribution if λ̃ < 0 (see Eq. (4.27)).

In the framework of the N-NIG model the variance can only be modelled through an

IG distribution. While for the N-NGIG model various distributions are possible. Besides

the gamma distribution and the approximated IG distribution these are for example
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the (reciprocal) inverse Gaussian distribution or the hyperbolic distribution. Of course

one can also choose parameter values where the GIG distribution can not be described

through another distribution. Generally the GIG distribution allows for more flexibility

in modelling the prior and the posterior distribution of the variance. More precisely this

model allows for more combinations of the mean, the variance, the skewness and the

kurtosis of the variance.

The sample variance is defined to be the mean of the squared mean deviations (σ̂2 =

(1/n)
∑n

i=1(xi − x)2). One could use the squared mean deviations ((xi − x)2) itself as a

model for the variance. If the data is assumed to be normally distributed then so are the

mean deviations (X ∼ N(0, σ2)). This would suggest that the squared mean deviations

are distributed as

X2 ∼ σ2χ2
1 ∼ G(

1

2
,
1

2
σ−2) ∼ GIG(σ−2, 0,

1

2
) (6.5)

where χ2
k represents the chi-squared distribution. This implies that the variance is

distributed according to a gamma distribution. Which raises the question why the

inverse gamma distribution is used to model the variance. The reason is that the gamma

distribution is not a conjugate prior for the normal assumption of the data. Only if

the gamma distribution is considered to be a special case of the GIG distribution it is

possible to use the gamma distribution as the prior distribution of the variance.

6.2 Hyperparameters

The hyperparameters µ0 and v are used to model the prior knowledge about the mean.

One might say that all the knowledge we have are our observations ~X. And that the

best guess for the mean of the data would be the mean of the observations.

µ0 =
1

n

n∑
i=1

xi (6.6)

What this means for the Bayesian model can be seen in Eq. (5.8). Choosing for µ0 the

mean of the observations means that the expectation value of the unknown mean is

exactly the mean of the observations. It is disputable on whether a Bayesian analysis is

of much benefit under these circumstances. This is different if breakpoints are introduced.

The assumption is that the different clusters have means that are distributed around µ0.

Taking for µ0 the mean of all the samples might therefore be a reasonable choice since
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6.2 Hyperparameters

inside the clusters the means will be different from µ0 and if there are no change points

the mean will converge into the sample mean.

Eq. (5.8) shows another interesting property; the more observations are available the

more the sample mean will dominate the outcome. For few data the assumptions about

µ0 will dominate. Also it shows how v influences the outcome. The smaller v the more

µ0 will dominate the outcome. Which means that if we are insecure about µ0 we would

choose a flat prior (v large). These are general principles about priors. If we make them

flat then the data will dominate the outcome. If we have few data then the priors will

dominate the outcome. This should be kept in mind when modelling our prior knowledge

of the variance through ψ, χ and λ or our prior knowledge of the change point probability

through α and β.

The variance of the GIG distribution can generally not be modified without modifying

the mean. This is different for the gamma distribution since

E[G(η, κ)] =
η

κ
, V ar[G(η, κ)] =

η

κ2
(6.7)

If the prior distribution of the variance is modelled by using the gamma distribution (see

Eq. (6.5)) the parameters of the GIG distribution can be estimated as

ψ =
1

σ̂2
v−1

2 , χ = 0, λ =
1

2
v−1

2 (6.8)

where v2 alters the variance of the GIG distribution but not the mean. For a flat prior

v2 would be chosen large. Note that this is just a suggestion for an automated way of

setting the hyperparameters. Since for a large amount of time series it might become

infeasible to set these parameters manually. Especially if those series are analysed on a

sliding window where it might be preferable to set the parameters individually for each

window. But of course the parameters can also be set manually.

Fig. 6.1 visualizes the likelihood as defined in Eq. (4.3). The multivariate likelihood

is always evaluated for the same data ~X but with varying parameters µ and σ2. This

can be seen as a representation of the maximum likelihood estimation (MLE) that would

find the unknown mean and variance at the maximum of the likelihood function.

Fig. 6.2 visualizes the prior distribution as defined in Eq. (4.4) and Eq. (4.5). Choosing

µ0 = 0.9 and v = 0.3 is quite a narrow prior around the mean which means that we

are confident in that mean. But still it allows for some deviation from that assumption.

Choosing ψ = 0.01, χ = 0.1 and λ = 0.5 is quite a flat prior with a mean of 103 and a
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mu

0.0

0.1

0.2

0.3
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3e−32

4e−32

Likelihood

●

(0.1/0.5)

Figure 6.1: The plot shows on the z-axis the density of the multivariate normal distribution
f( ~X|µ, σ2) for the µ′s on the x-axis and the σ2’s on the y-axis. The data
~X has 100 normally distributed samples with a mean of 0.1 and a standard
deviation of 0.5.

variance of 20316. Which means that we have no idea what the variance could be. But

note that at the same time we give variances very far away from 0.5 a chance.

Fig. 6.3 visualizes the posterior distribution as defined in Eq. (4.34). The prior for

the mean influences the outcome such that the maximum of the posterior distribution is

larger than 0.1. But still the data dominates the outcome. As already mentioned the

prior for the variance is very flat. Which also means that variances very far away from

0.5 are taken into consideration which moves the variance away from 0.5.

If the priors would be fitted to the data; which means to define a vary narrow prior

for the mean around 0.1 and a very narrow prior for the variance around 0.5. Then the

posterior distribution would have its maximum almost exactly at the same location as the
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mu

−0.5

0.0

0.5

1.0

1.5
2.0sd

0.0

0.2
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1.0
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0.2

0.3

Prior

●

(0.9/0.15)

Figure 6.2: The plot shows on the z-axis the density of the prior distribution f(µ, σ2) =
f(µ|µ0, vσ

2)f(σ2|ψ, χ, λ) for the µ’s on the x-axis and the σ2’s on the y-axis.
The hyperparameters are: µ0 = 0.9, v = 0.3, ψ = 0.01, χ = 0.1 and λ = 0.5.

likelihood. If we assume that there are no change points in the data then the posterior

Bayesian estimations of the expectation values of the mean and the variance might not

bring much benefit compared to a sample fit (although we would get more information

about the mean and the variance than only the expectation values). On the other hand

if there are change points it might make sense to generate the prior distributions around

the estimations from the whole dataset by allowing enough deviation from these global

estimations inside the clusters. This allows the expectation values of the mean and the

variance inside the clusters to move around this global estimations.
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mu

0.0

0.1

0.2

0.3
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0.40
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●
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Figure 6.3: The plot shows on the z-axis the density of the posterior distribution
f(µ, σ2| ~X, µ0, v, ψ, χ, λ) for the µ’s on the x-axis and the σ2’s on the y-
axis. The data ~X has 100 normal distributed samples with mean 0.1 and a
standard deviation 0.5. The hyperparameters are: µ0 = 0.9, v = 0.3, ψ = 0.01,
χ = 0.1 and λ = 0.5.

6.3 Evaluation

It was already shown in Section 3.2.5 that the specific implementation of Barry and

Hartigan [1992] was not designed to detect changes in the variance. In the following

the same scenes as analysed in Fig. 3.1 and Fig. 3.2 are compared to the BCP N-NGIG

model as defined in Chapter 5. For all analyses 300 partition samples were created

(see Section 3.1.3) where the first 100 samples are discarded (burn-in samples). For the

specific implementation of Barry and Hartigan the hyperparameters were always set to

p0 = 0.2 and w0 = 0.2. For the BCP N-NGIG model the hyperparameters for the change

points were set to α = 4 and β = 16. This represents the case where the change point
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probability is distributed around 0.2. The hyperparameter µ0 was set to be the mean of

the data (see Eq. (6.6)) and v was set to be 1. This represents the case were we believe

that the means inside the clusters are distributed around µ0 and allow for some deviation

through v. For the same reason the hyperparameters ψ, χ and λ were calibrated on the

data (see Eq. (6.8)) and v2 set to 1. Note that based on the dataset one might have

better ideas about the nature of the unknown parameters µ and σ2. Then this can be

modelled through the hyperparameters.

As already shown in Fig. 3.1 the specific implementation of Barry and Hartigan can

detect changes for the case where only the mean changes but not the variance (Fig. 6.4).

Fig. 6.5 shows the analysis of this data using the BCP N-NGIG model. The change

points are detected reliably as well. Note that variances are very sensitive to outliers.

The real change points are at k = {50, 150, 200}. Once in a while the Markov Chain will

put the change point not exactly there which leads to an outlier within the estimation of

the variances. For the mean this effect is less dominant. As already shown in Fig. 3.2 the

specific implementation of Barry and Hartigan can get in trouble if the variance within

the clusters change (Fig. 6.6). Fig. 6.7 shows the analysis of this data using the BCP

N-NGIG model where the change points are detected reliably.

Fig. 6.8 shows the BCP analysis using the specific implementation of Barry and

Hartigan for artificial normal returns that have the same mean and variance as the

European equity index. Also the number of returns n = 280 is the same. Which means

that all the returns are generated from the same dynamic. The specific implementation

of Barry and Hartigan as well as the BCP N-NGIG model (see Fig. 6.9) can detect this

reliably. Ultimately the idea is to use the BCP N-NGIG model to generate trading signals

for financial time series (Part III). Fig. 6.10 shows the BCP analysis using the specific

implementation of Barry and Hartigan for the returns of the European equity index and

Fig. 6.11 shows the same analysis using the BCP N-NGIG model. Both analyses show

that these financial returns can hardly be explained with a common dynamic as it is the

case for the normal random returns. It is the times where the underlying dynamic of the

returns are about to change that we would like to detect in order to adjust the estimation

of the trend and the risk early. In phases of crisis (like around the year 2000) the specific

implementation of Barry and Hartigan shows lots of structural breaks and therefore the

estimation of the mean can jump. For the BCP N-NGIG model the estimation of the

trend within these phases is smoother. Since the BCP N-NGIG model does not assume

that all the clusters have to be explained with the same variance.
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Figure 6.4: The dataset has four clusters of 50 normal random samples. The first one
has a mean of -2, the second one a mean of 2, the third one a mean of -1 and
the fourth one a mean of 3. The standard deviation is constant and defined
to be 0.5 for all clusters. Hyperparameters: p0 = 0.2, w0 = 0.2.
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Figure 6.5: The dataset has four clusters of 50 normal random samples. The first one
has a mean of -2, the second one a mean of 2, the third one a mean of -1 and
the fourth one a mean of 3. The standard deviation is constant and defined
to be 0.5 for all clusters. Hyperparameters: µ0 = 0.5, v = 1, ψ = 0.22, χ = 0,
λ = 0.5, α = 4, β = 16.
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Figure 6.6: The dataset has four clusters of 50 normal random samples. The first one
has a mean of -2 and a standard deviation of 0.2, the second one a mean of 2
and a standard deviation of 1.5, the third one a mean of -1 and a standard
deviation of 0.5 and the fourth one a mean of 3 and a standard deviation of
1. Hyperparameters: p0 = 0.2, w0 = 0.2.
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Figure 6.7: The dataset has four clusters of 50 normal random samples. The first one
has a mean of -2 and a standard deviation of 0.2, the second one a mean of 2
and a standard deviation of 1.5, the third one a mean of -1 and a standard
deviation of 0.5 and the fourth one a mean of 3 and a standard deviation of 1.
Hyperparameters: µ0 = 0.5, v = 1, ψ = 0.19, χ = 0, λ = 0.5, α = 4, β = 16.
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Figure 6.8: The artificial index has normally distributed returns that have the same
mean (0.6%) and standard deviation (4.5%) as the European equity index
(EQEU.EUR). Hyperparameters: p0 = 0.2, w0 = 0.2. See also Appendix A
for more information about the data.
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Figure 6.9: The artificial index has normally distributed returns that have the same
mean (0.6%) and standard deviation (4.5%) as the European equity index
(EQEU.EUR). Hyperparameters: µ0 = 0.01, v = 1, ψ = 502.36, χ = 0,
λ = 0.5, α = 4, β = 16. See also Appendix A for more information about the
data.
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Figure 6.10: The European equity index. The shaded areas indicate times where the
posterior mean is negative. Hyperparameters: p0 = 0.2, w0 = 0.2. See also
Appendix A for more information about the data.
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Figure 6.11: The European equity index. The shaded areas indicate times where the
posterior mean is negative. Hyperparameters: µ0 = 0.01, v = 1, ψ = 502.36,
χ = 0, λ = 0.5, α = 4, β = 16. See also Appendix A for more information
about the data.
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7 Summary and Outlook

The posterior marginal and conditional distributions as well as the marginal likelihood

were derived and it was shown that they all belong to the family of generalized hyperbolic

(GH) and generalized inverse Gaussian (GIG) distributions. Therefore the mean and the

variance for the N-NGIG model have proper conjugate priors. It was shown that the

BCP N-NGIG model of this thesis represents a generalisation of the BCP N-NIG model

as introduced by Loschi et al. [2003]. Since the family of GH and GIG distributions is

well documented in literature and since various software implementations are available

it is convenient to work with these kind of distributions. The calculation of moments,

fitting of data and random sampling for these distributions is readily available. The

implementation of the BCP N-NGIG model can reliably detect change points for scenarios

where both the mean and the variance change. Analyses of real world financial returns

lead therefore to smother results for the estimation of the trend.

For the BCP model it was sufficient to derive the posterior marginal distributions and

the posterior likelihood. For a complete Bayesian analysis it would be of interest to also

find closed forms of the posterior distribution and the predictive distribution. While

those distributions have been derived by Thabane and Safiul Haq [1999] in the context of

generalized modified Bessel distributions it might be possible to define these distributions

in the context of GH distributions. Also the Bayesian refinements of the new model

(see Section 5.3) could be extended to more hyperparameters. A further iteration of the

model could be to change the normal assumption of the data. A possible candidate could

be the normal inverse Gaussian (NIG) distribution which has four parameters that can

also explain the skewness and the kurtosis of the data. Although one has to consider that

defining prior distributions for all four parameters would result in quite a challenging

setup with many more hyperparameters. Additionally the model could be set up for

the multivariate case in order to calculate the covariances. It would also be of interest

to answer the question on how robust the new method is when it is faced with many

different scenarios where the mean and/or the variance change for various parts of the

data.
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Part II

Morphological Shape Factors of the

Feasible Set
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8 Introduction

The first part of this thesis discussed risk measures for the univariate case. This part

of the thesis deals with a new kind of multivariate risk measures. The first step of an

investment process is usually to define the investment universe. After that decisions have

to be made on how the available capital should be allocated to the different assets within

the investment universe. Throughout this part of the thesis it is always assumed that the

investor can only buy assets (no short-selling) with no leverage.

There are various approaches on how the available capital could be allocated. There

are for example discretionary approaches where a well informed investment committee

makes those decisions. In this thesis the focus lies on quantitative approaches. Investment

decisions could for example be based on the univariate risk measures presented in Part I

and shown in Part III. A very popular multivariate alternative is the portfolio optimization

approach as presented by Markowitz [1952].

Markowitz portfolio optimization characterizes the investment universe through the

individual performance of the assets within the investment universe and the covariance

matrix of those underlying assets. Depending on how the available capital is allocated

to the different assets various portfolios can be designed that have itself their very own

performance and variance (risk). Reversing this approach one can design portfolios

that have a desired performance and variance. Visualizing all possible performance and

variance combinations results in an image of the feasible set.

The feasible set is basically a function of the performance and the covariance matrix of

the underlying assets. There are various approaches on how to calculate those statistics.

Every approach will lead to a different image of the feasible set. In Chapter 9 the

calculation of the feasible set by using different estimators is discussed. Besides the

sample and a robust estimator the BCP method as described in Chapter 5 is used to

calculate the performance and the risk of the underlying assets.

By describing the feasible set as an image it is possible to calculate the moments

of that image. The representation of the feasible set as an image will be discussed in

Chapter 10. Characterizing images through their moments is a concept that is widely
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8 Introduction

used in image processing and computer vision. In Chapter 10 the image moments as

published by Hu [1962] are presented. Those moments are independent of location, scale

and/or orientation. As such they could be used to identify unique shapes of the feasible

set.

In portfolio optimization it is crucial to have a good idea of the shape of the feasible

set. This makes the process of finding the right portfolio more convenient. Combinations

of the raw and central image moments can be associated with a geometric meaning. This

makes it possible to design the geometric shape factors (GSF) as discussed in Chapter 10.

More precisely the GSF define an ellipse that has the same area, centre, orientation and

eccentricity as the feasible set. The orientation and eccentricity can be found through

a Principal Component Analysis (PCA). Either by using the covariance matrix of the

image of the feasible set or the covariance matrix of the hull of the feasible set.

While this allows to get an idea of the shape of the feasible set at first glance the GSF

do also have a statistical meaning. The area is a measure for the optimization benefit.

Which means that if the area is large then the space of possible portfolios is large as

well. The other measures generally describe the risk premium. The centre ratio is a

measure for the expected performance per unit of risk. A high centre ratio is preferable.

The orientation describes the direction of the risk premium. If the direction is positive

taking more risk would generally lead to more performance. The eccentricity describes

the correlation between risk and performance. The higher the correlation the higher the

probability that taking more risk does indeed lead to more or less performance (depending

on the direction). Therefore the GSF offer a convenient insight into the shape of the

feasible set and some central statistical properties of the investment universe.

In Chapter 11 the Hu moments and GSF are calculated for selected investment universes.

The sample, robust and BCP estimations are compared. In Chapter 12 the results are

summarized. Note that all analyses within this thesis were made by using monthly data.
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9 The Feasible Set

The feasible region is the solution space of an optimization problem that satisfies the

constraints of the problem. Portfolio optimization as initially presented by Markowitz

[1952] describes a given investment universe through the performance and the covariance

matrix of the different assets within the investment universe. In all generality the basic

problem can be defined as follows:

min
w

f(w)

s.t.

g(w) = 0

lh ≤ h(w) ≤ uh

lw ≤ w ≤ uw

(9.1)

where w = {w1, w2, . . . , wn} describes the investment weights of the underlying assets.

If for example w2 = 0.1 it means that 10% of the available capital is invested in asset

number two. g(w) = 0 expresses the (non-)linear equality constraints, l[h] ≤ h(w) ≤ u[h]

the (non-)linear inequality constraints and l[w] ≤ w ≤ u[w] the upper and lower bounds

of the weights. The objective function f(w) is often chosen as one of the following

equations

f(w) = −µ′w (9.2)

f(w) = w′Σw (9.3)

where Eq. (9.2) describes the maximization of the profit and Eq. (9.3) the minimization

of the variance (risk). µ = {µ1, µ2, . . . , µn} is the vector that holds the expected

performances of the underlying assets and Σ the covariance matrix of those assets. If for

example Eq. (9.3) is used to solve the problem of Eq. (9.1) the result will be the weights

of the portfolio that has the lowest variance given the constraints. This portfolio is also
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9 The Feasible Set

called the minimum variance portfolio (MVP). Another prominent portfolio is the equal

weights portfolio (EWP). The global EWP is defined as

w =

{
w1 =

1

n
,w2 =

1

n
, . . . , wn =

1

n

}
(9.4)

which is actually the portfolio that has the highest diversification. Under the presence of

constraints the maximum diversification portfolio can be found by defining the objective

function as

f(w) = var(w) (9.5)

The performances µ and the covariance matrix Σ of the underlying assets can be

estimated from the returns R = {r1, r2, . . . , rn} of the assets. The returns of the assets

over time rk = {r1, r2, . . . , rs} are calculated from the index values (prices) of the assets

over time pk = {p1, p2, . . . , ps} as

rt,k = ln
pt,k
pt−1,k

= ln(pt,k)− ln(pt−1,k) (9.6)

which is the logarithmic return for the asset k at time t. An alternative would be to

use discrete returns. In contrary to the logarithmic returns the discrete returns are not

symmetric (skewed) or time additive (non-normal). This can lead to undesired artefacts

when estimating parameters or solving optimization problems. Therefore all analyses

within this thesis are made by using logarithmic returns.

Often the sample estimators of the normal distribution are used to calculate µ and Σ.

Those estimators do not reflect many of the stylized facts encountered when dealing with

financial returns [Cont, 2001]. Alternative approaches to calculate µ and Σ include the

use of other elliptical distributions that can model fat tails or the use of robust estimators.

To model even more stylized facts more elaborate objective functions have to be defined.

In contrary to the quadratic objective functions of Eq. (9.3) this will usually lead to more

complicated non-linear objective functions. For such non-linear problems it is crucial to

use solid optimizers in order to find the global minimum.

Using alternative approaches to calculate µ and Σ or even completely changing the

objective function will result in different images of the feasible set. The calculation of

the feasible set is explained by using the unbiased sample estimators for µ and Σ in

Section 9.1. To illustrate the difference between sample and alternative calculations of the
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9.1 Sample Estimation

feasible set two alternative approaches will be discussed. In Section 9.2 the feasible set is

calculated by using a robust estimator for µ and Σ. In Section 9.3 the BCP estimates

(as defined in Chapter 5) of the underlying assets are used to estimate µ and Σ.

9.1 Sample Estimation

To calculate the hull of the feasible set the quadratic optimization problem as defined

in Eq. (9.7) is solved repeatedly for different target returns r̄ = {r̄1, r̄2, . . . , r̄m}.

min
w

±w′Σw

s.t.

1′w = 1

µ′w = r̄i

0 ≤ wi ≤ 1

(9.7)

The sequence of equally spaced target returns r̄ goes from the minimum of the expected

returns r̄1 = min(µ) to the maximum of the expected returns r̄m = max(µ). The more

target returns (m) that are chosen between the minimum and the maximum the higher

the resolution of the hull. For every target return the problem of Eq. (9.7) is solved for

+w′Σw and −w′Σw.

Note that the weights are restricted such that they have to be between 0 and 1 (long-

only) and sum up to one (fully-invested). This represents a natural and straightforward

investment style. Many investors do or can not deviate from these restrictions. Since

this problem cannot be solved analytically anymore for more than two assets it must

be solved numerically. For R the problem of Eq. (9.7) can be solved using the quadprog

package [Turlach and Weingessel, 2013] which can solve optimization problems for linear

or quadratic objective functions and linear constraints. For more general problems where

the objective functions and the constraints are (non-)linear the Rsolnp package [Ghalanos

and Theussl, 2015] can be used. Various industrial solvers can be accessed through the

AMPL interface.

The solution will be a portfolio defined through the weights (w) that minimize the

objective function while respecting the constraints. The portfolio will have a return of

µ′w = r̄i and a variance of w′Σw where the variance is the lowest or highest possible

variance for that return. Every portfolio can be visualized through its expected return
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Figure 9.1: The feasible set of the global equity and bond universe using sample estima-
tions. See also Appendix A for more information about the data.

(performance) and variance (risk) within the risk-performance-plane which leads to the

hull of the feasible set (see Fig. 9.1). Randomly choosing weights between zero and one

such that they sum up to one will always lead to a portfolio that lies inside the feasible

set. Note that the axes of Fig. 9.1 are chosen such that they have an aspect ratio of 1.

This ensures that a circle is actually shown as a circle and not as an ellipse.

In Fig. 9.1 the sample estimator was used to calculate the expected returns µ =

{µ1, µ2, . . . , µn} and the covariance matrix Σ of the underlying assets. The sample mean

and covariances can be calculated as

µk = µ̂(rk) =
1

s

s∑
t=1

rt,k (9.8)
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9.1 Sample Estimation

σkl = ĉov(rk, rl) =
1

s− 1

s∑
t=1

(rt,k − µk)(rt,l − µl) (9.9)

where rt,k is the logarithmic return for asst k at time t.

The left part of the hull that goes from the asset with the lowest expected return to

the asset with the highest expected return is called the minimum variance locus. Vice

versa the right part of the hull is called the maximum variance locus. The part of the

minimum variance locus that goes from the MVP to the asset with the highest expected

return is called the efficient frontier. If only variance and expected return matter any

portfolio that does not live on the efficient frontier is not optimal and should therefore

not be chosen. If other statistics as for example the diversification are considered then

this might be different.

The maximum variance locus can be found by minimizing −w′Σw. But since that part

of the hull is concave many optimizers struggle to find the minimum. On the other hand

the maximum variance locus does always consist of only two assets and can therefore be

calculated analytically. For that the problem as defined in Eq. (9.7) has to be solved for

two assets. This can be done by solving the equation system of the constraints as

w1 =
r̄i − µ2

µ1 − µ2

w2 = 1− w1

σp =
[
w1 w2

] [σ11 σ12

σ21 σ22

][
w1

w2

]

rp = r̄i

(9.10)

where rp is the return and σp the variance of the pairwise portfolio that has weights

w = {w1, w2}. After calculating the efficient frontiers of all pairwise portfolios (pair-lines)

the maximum variance locus consists of the pairwise portfolios that have the highest

variance given the target return r̄i. For all figures within this thesis that show the

maximum variance locus this was the method that was used.

The underlying assets of the investment universe are a mix of four equity and four bond

indices (in euro). The equity indices cover the global equity market. The government

bond indices cover the bond market of the G7 and the eurozone countries while the

corporate bond indices cover the global corporate bond market. The time frame is chosen

such that the shape of the feasible set is somewhat expected. Which means that there is

71



9 The Feasible Set

a risk premium from the bond indices (low variance) to the equity indices (high variance).

The question arises on whether this is actually a reasonable assumption at all times. The

remainder of this part of the thesis will focus on that question. In Chapter 15 a portfolio

that positions itself within the feasible set based on these findings will be presented. All

illustrations to visualize the concepts of the morphological shape factors are made with

the investment universe and time frame as in Fig. 9.1. Other universes will be discussed

in Chapter 11.

9.2 Robust Estimation

9.2.1 Motivation

A problem that arises when using the sample estimators is that these estimates are

sensible to outliers. Robust estimations of the mean (location) and the covariance matrix

(dispersion or scale) are designed to address this problem. Ultimately this will lead to

different images of the feasible set. A first approach to robust estimation would be to

winsorize (equalizing outliers to a fixed quantile threshold) or trim (removing outliers)

the data or to use the median as an alternative for the mean and the interquartile range

(IQR) as an alternative for the standard deviation.

A measure for the degree of robustness for an estimator is the breakdown point (BP)

[Donoho, 1982; Donoho and J., 1983] which can take values between 0 and 0.5. It describes

the extend to which outliers will affect the estimation of a parameter. The mean for

example has a BP of 0 since one new sample can make the estimation arbitrarily high.

While the median has a breakdown point of 0.5 since the estimation stays robust if not

more than half of the samples are outliers. For the multivariate case the situation is

more complex. See also Maronna and Yohai [2016] and Pfaff [2013] for more details of

the following summary.

The M estimator was introduced by Huber [1964] and Maronna [1976] where the

unknown multivariate parameters µ and Σ are the solution of a minimization problem

which is defined as

min
µ,Σ

∑
t

ρ(rt,µ,Σ) (9.11)

where ρ is an arbitrary function that can be defined such that extreme data points receive

less weight and rt is the row vector of the matrix R of returns that has s observations

for n assets. Special cases of this formulation are the maximum likelihood estimator

(MLE) and the method of least squares (LS). Note that for these two cases outliers do

72



9.2 Robust Estimation

not receive less weight. The maximum BP for M estimators is 1/n.

To overcome the maximum BP limitation various estimators have been introduced

that minimize a robust scale of the Mahalanobis distances d2
t = d(rt,µ,Σ)2 = (rt −

µ)′Σ−1(rt − µ) in some way or another. Davies [1987] introduces a general formulation

as

min
µ,Σ

g = g(d(r1,µ,Σ), . . . , d(rs,µ,Σ)) s.t. |Σ| = 1 (9.12)

where g is a robust metric and |·| the determinant of a matrix. If g is the mean of the

values the solution for µ and Σ are the sample mean and a scalar multiply of the sample

covariance matrix. If g is the median the solution is the minimum volume ellipsoid

(MVE) estimator which estimates the parameters using the points within the smallest

ellipsoid that covers at least half of the points of R. If g is the mean of the smaller

half of the values the solution is the minimum covariance determinant (MCD) estimator

which estimates the parameters using the points within the ellipsoid that has the smallest

determinant of all ellipsoids that contain at least half of the points of R. The MVE and

MCD estimators were already introduced earlier by Rousseeuw [1985] and Rousseeuw

and Leroy [1987] where it was shown that they have an asymptotic BP of α where α can

be chosen between 0 and 0.5.

The S estimator is defined for g being an M estimate of scale [Huber, 1981; Hampel

et al., 1986]. This means that g satisfies s−1
∑s

t=1 ρ(dt/g) = b = Eφ(ρ(r/k)) where

dt = d(rt,µ,Σ), ρ is bounded and non-decreasing, φ is the standard normal distribution,

r the sample variable, and k the consistency factor for normal samples. Since ρ is bounded

the BP of S estimates can be equal to 0.5.

The MM estimates were introduced by Yohai [1987] in the context of regression

analysis and adapted for the multivariate case by Lopuhaa [1992] and Tatsuoka and Tyler

[2000]. First the unknown parameters are estimated (µ̂, Σ̂) through a robust estimation

(e.g. MCD). Let S(µ̂, Σ̂) be the M estimate of scale which can be found by solving

s−1
∑s

t=1 ρ(d̂(rt, µ̂, Σ̂)/S(µ̂, Σ̂)) = b. The final parameters (µ,Σ) are then estimated by

minimizing
∑s

t=1 ρ(d(rt,µ,Σ)/(cS(µ̂, Σ̂))) such that |Σ| = 1 and where c is a control

parameter of efficiency that depends on ρ. The BP of the MM estimator is 0.5.

The τ estimates were introduced by Yohai and Zamar [1988] in the context of regression

analysis and adapted for the multivariate case by Lopuhaa [1992]. The concept is very

much related to the S estimator. But instead of minimizing the M estimate of scale

a robust scale (the τ -scale) is minimized that allows to control the efficiency of the

estimation. Let S(µ,Σ) be the M estimate of scale which can be found by solving
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9 The Feasible Set

s−1
∑s

t=1 ρ1(d(rt,µ,Σ)/S(µ,Σ)) = b. The τ -scale is then defined as

τ2(µ,Σ) = S2(µ,Σ)
1

n

n∑
i=1

ρ2

(
d(rt,µ,Σ)

cS(µ,Σ)

)
(9.13)

such that |Σ| = 1 and where c is a control parameter of efficiency that depends on ρ2.

The BP of the τ estimator is 0.5.

The MVE and MCD estimators are quite prominent in portfolio optimization. But

one has to be careful when using these estimators for small sample sizes and/or many

variables. Since the estimators can only have a BP of 0.5 when half of the sample

size is still sufficient for estimating the unknown parameters. Generally the robust

estimators are affine invariant but can result in non-convex problems. The orthogonalized

Gnanadesikan–Kettenring (OGK) estimator [Maronna and Zamar, 2002] avoids this

problem by calculating the robust covariance matrix from robust univariate estimations.

This leads to a positive semidefinite and approximately affine equivariant covariance

matrix which is better suited for quadratic optimization. This also represents a framework

where the BCP analysis as defined in Chapter 5 can be used to calculate the covariance

matrix.

9.2.2 The Orthogonalized Gnanadesikan–Kettenring Estimator

The Gnanadesikan–Kettenring (GK) estimator [Gnanadesikan and Kettenring, 1972]

is based on the following identity

σkl = ĉov(rk, rl) =
1

4

(
σ̂(rk + rl)

2 − σ̂(rk − rl)2
)

(9.14)

where rk is the column vector of the returns matrix R that has s observations for n

assets. This means that only the univariate estimates of σ(rk + rl) and σ(rk − rl) are

needed to calculate the covariance between rk and rl. And if those univariate variances

are robust so will be the covariance matrix. The problem is that the resulting covariance

matrix Σ is not necessarily positive semidefinite and is not affine equivariant. Especially

the non-positive semidefiniteness makes it unpreferable for quadratic programming.

Maronna and Zamar [2002] propose an algorithm to make the covariance matrix positive

semidefinite and approximately affine equivariant after it has been estimated through

Eq. (9.14). They called this estimator the orthogonalized Gnanadesikan–Kettenring

(OGK) estimator which will be summarized in the remainder of this section.
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9.2 Robust Estimation

Let Rk be the row vectors and rk the column vector of the returns matrix R that has

s observations (rows) for n assets (columns), σ(·) a robust variance estimator, µ(·) a

robust location estimator and v(·, ·) a robust estimate for the covariance (e.g. by using

σ(·) in Eq. (9.14)). Then the OGK estimator can be calculated as

1. Calculate D = diag(σ(r1), . . . , σ(rn)) and Y = RD−1.

2. Compute the matrix U where Uii = 1 and Uij = v(ri, rj).

3. Compute the eigenvalues λi and eigenvectors ei of U such that U = EΛE′ where

Λ = diag(λ1, . . . , λn) and E = [e1, . . . , en].

4. Calculate A = DE and Z = Y E. Note that R = ZA′.

5. Calculate the parameters as Σ(R) = AΓ(Z)A′ and µ(R) = Aν(Z) where Γ =

diag(σ(z1)2, . . . , σ(zn)2) and ν = (µ(z1), . . . , µ(zn)).

The first step makes the estimates scale-equivariant. In the second step the covariances are

estimated. After the fourth step the columns of Z should be approximately uncorrelated

and its covariance matrix Γ approximately diagonal. In the last step the covariance

matrix Γ is transformed back to its original coordinate system. The same is true for the

location parameters.

The method can be iterated. For that Σ and µ are calculated for Z after step 4. Then

the estimates for R are calculated as Σ(R) = AΣ(Z)A′ and µ(R) = Aµ(Z). This can be

repeated as often as desired. Maronna and Zamar [2002] propose a further improvement

by a reweighing step. For that the Mahalanobis distances of the row vectors Ri are

calculated using the robust estimates of Σ and µ. Based on these distances a hard

rejection scheme is proposed to calculate a weighted version of Σ and µ.

9.2.3 The Univariate τ Estimate

To calculate an OGK estimate a robust estimator for the univariate variance and

mean has to be chosen. The robust covariance estimate is then given through Eq. (9.14).

Maronna and Zamar [2002] propose the univariate τ estimate as defined in Eq. (9.13) for
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9 The Feasible Set

σ and a weighted mean for µ. The weighted mean can be calculated as

µ0 = med(rk), σ0 = MAD(rk) = med(|rk − µ0|)

Wc(x) =

(
1−

(x
c

)2
)2

I(|x| ≤ c)

wi = Wc1

(
ri − µ0

σ0

)
µk = µ̂(rk) =

∑s
i=1wiri∑s
i=1wi

(9.15)

where I is the indicator function and ri is the i-th observation of the s observations of rk.

The standard estimations are then calculated as

ρc = min(x2, c2)

σ̂(rk)
2 =

σ2
0

s

s∑
i=1

ρc2

(
ri − µ̂(rk)

σ0

) (9.16)

Amongst many robust estimators such as the MVE or MCD estimators the robustbase

package [Maechler et al., 2016] for R implements the OGK estimate and the univariate τ

estimates. There the estimation of Eq. (9.16) is divided by a consistency factor and a

finite sample correction factor to make it consistent with the normal model and unbiased

for small sample sizes. The estimation of the variance is then given as

σ2
k = σ̂(rk)

2 =
σ2

0

(s− 2)b

s∑
i=1

ρc2

(
ri − µ̂(rk)

σ0

)
(9.17)

where s− 2 expresses the two degrees of freedom within the calculation of ρc2 and b can

be calculated as

b = EΦ(ρc) =

∫ c

−c
x2dΦ(x) + c2P (|x| > c)

= 2

∫ c

0
x2dΦ(x) + 2c2(1− Φ(c))

= 2 [Φ(x)− xϕ(x)]c0 + 2c2(1− Φ(c))

= 2Φ(c)− 2cϕ(c)− 1 + 2c2(1− Φ(c))

= 2
(
(1− c2)Φ(c)− cϕ(c) + c2

)
− 1 (9.18)
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9.2 Robust Estimation

where c = c2Φ−1(3/4) to take into account the consistency correction of the MAD (σ0).

9.2.4 The Feasible Set

The feasible set can now be calculated as described in Section 9.1. But instead of using

the sample estimators for Σ and µ the robust OGK estimators are used as described in

Section 9.2.2 by using the univariate τ estimates as described in Section 9.2.3. Since we

will use rather small sample sizes for the calculation of the feasible set in the remainder

of this thesis the additional reweighing step was not considered. The result can be seen

in Fig. 9.2.
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Figure 9.2: The feasible set of the global equity and bond universe using robust estimations.
See also Appendix A for more information about the data.

Of course it is possible to calculate the feasible set by using any other kind of robust

estimator such as MVE or MCD. Note that the interpretation of the sample and the

robust feasible set differs. If one would have invested in e.g. the European equities
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9 The Feasible Set

(EQEUROPE.EUR) then the profit would have been around 1% per month for the given

time period (as can be seen in Fig. 9.1). In Fig. 9.2 the profit is calculated to be around

1.3%. But the robust estimation is not what one would have experienced (in contrary to

the sample estimation). It is rather an expectation of the profit under the absence of

outliers. The same is true for any other portfolio within the feasible set.

9.3 BCP Estimation

9.3.1 Motivation

Since the BCP model as described in Chapter 5 delivers univariate estimates of the

location µ(·) and the dispersion σ(·) parameters it is apparent to use these estimates to

calculate the covariance matrices through Eq. (9.14) and to make the matrix positive

semidefinite as described in Section 9.2.2.

In contrary to common estimations that in the univariate setup deliver at any point in

time one value for the location and dispersion the BCP estimation delivers estimations

for any point in time. A straightforward approach would be to take just the most recent

estimation. When there are no change points this estimation would be similar to the

sample estimator. If there are recent change points then this estimation is based on the

more recent data.

This will make the feasible set change its shape quickly if a new regime is about to form.

Which raises some questions about our individual understanding of financial markets.

Robust estimation is driven by the assumption that the financial returns are subjected

to sporadic outliers which can be ignored to a certain extend to estimate the parameters.

While the BCP model might see extreme values as the formation of a new dynamic and

therefore react on these outliers.

The BCP estimation is therefore driven by a different thinking that is based on

changing dynamics. For the robust case robust univariate estimations are transformed

into a robust multivariate estimation. For the BCP case dynamic univariate estimations

are transformed into a dynamic multivariate estimation. The two approaches will be

compared in Chapter 10 through the GSF.

9.3.2 The Exponential Moving Average

Using only the most recent estimations of a BCP analysis might result in very drastic

changes of the feasible set if a new observation occurs that can not be explained with the
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9.3 BCP Estimation

older observations. That is if the posterior probabilities tend towards 1. An alternative

would be to take also the older estimations into account by calculating the mean of all

the estimations. While that would make the changes smooth again it would lead to very

similar results as using the sample estimations and therefore not be of much benefit.

A possibility to lessen the effect of drastic changes and still favouring the more recent

estimations is to use an exponential moving average (EMA) [Roberts, 1959] as

zt =

x1 t = 1

λxt + (1− λ)zt−1 t > 1
(9.19)

where z is the EMA at time t. If we are just interested in the most recent estimation (at

time s) the EMA can be formulated as

EMAλ(x) =

s∑
t=2

λ(1− λ)s−txt + (1− λ)s−1x1 (9.20)

where 0 ≤ λ ≤ 1 controls to which extend newer observations are favoured towards older

observations. The higher λ the more newer observations are favoured.

Let M = {m1,m2, . . . ,mn} be the matrix that holds the BCP estimations (see

Eq. (3.40)) of the trends for every asset where mk = {m1,m2, . . . ,ms} is the vector

that holds the estimations for every point in time t. And in the same way let S =

{s1, s2, . . . , sn} be the matrix that holds the BCP estimations of the standard deviations.

Using an EMA the univariate BCP estimation of the trend and the standard deviation of

an asset’s returns rk can be calculated as

µ̂(rk) = EMAλµ(mk) (9.21)

σ̂(rk) = EMAλσ(sk) (9.22)

Note that for λ = 1 the result will be the most recent estimation and for λ = 0 the

oldest observation.
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9 The Feasible Set

9.3.3 The BCP Estimator

Using Eq. (9.14), Eq. (9.21) and Eq. (9.22) the BCP estimator can be summarized as

µk = µ̂(rk) = EMAλµ(mk), σk = σ̂(rk) = EMAλσ(sk)

σkl = ĉov(rk, rl) =
1

4

(
σ̂(rk + rl)

2 − σ̂(rk − rl)2
) (9.23)

where in an additional step the covariance matrix can be made positive semidefinite and

approximately affine equivariant by using the orthogonalization procedure as described

in Section 9.2.2.

Since the estimations µk and σk are the parameters of the (assumed) normally dis-

tributed returns rk an alternative would be to mix the sample correlations ρ̂(rk, rk) with

the BCP variances as

µk = µ̂(rk) = EMAλµ(mk), σk = σ̂(rk) = EMAλσ(sk)

σkl = ĉov(rk, rl) = σ̂(rk)σ̂(rl)ρ̂(rk, rl)
(9.24)

Note that for this procedure the correlations do not react to any breakpoints (in contrary

to Eq. (9.23)). The advantage is that it is computationally much more efficient and that

the covariance matrix is positive semidefinite.

9.3.4 The Feasible Set

For Eq. (9.23) there are various variants. If it is calculated without the orthogonalization

step the covariance matrix will not be positive semidefinite (at least it is the case for this

dataset) and the feasible set can therefore not be calculated using a quadratic optimizer.

Also it would be possible to calculate the estimations for µk from the orthogonalization

step. For the feasible set in Fig. 9.3 the orthogonalization step was performed using two

iterations to make σkl positive semidefinite and approximately affine equivariant. The

additional reweighing step was not considered. The estimations for µk are not taken

from the orthogonalization step. Additionally the figure shows the feasible set calculated

using Eq. (9.24) (BCP-Sample-Correlation Mixture).

For the univariate estimators µk and σk the parameters λµ = λσ were set to 0.2. This

means that approximately 93% of the total weight is within the first 12 observations.

The parameters to calculate the BCP estimations M and S were set by first calibrating

the model on the data (see Eq. (6.6) and Eq. (6.8)) using v = 2 and v2 = 1.5 to make the
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Figure 9.3: The feasible set of the global equity and bond universe using BCP estimations.
See also Appendix A for more information about the data.

priors more flat. The breakpoint parameters α = 4 and β = 16 were chosen such that

the expected breakpoint probability is 20%. For performance reasons the calculation of

the covariances was parallelised.

Fig. 9.1, Fig. 9.2 and Fig. 9.3 are only snapshots to demonstrate the calculations of

different images of the feasible set. To get a better idea how these estimations compare

the feasible sets are calculated on a sliding window (in Chapter 10) and compared through

the GSF. This will also show how the feasible set changes its shape over time.
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10 Morphological Shape Factors

Various fields of science are faced with the problem of classifying real images that show

some variations to the ideal image. These includes remote sensing, astronomy, medicine

or vision guided robotic systems. Image moments offer a solution to this problem since

they can be constructed such that variations within the image lead to the same result.

The initial mathematical framework was developed in the context of algebraic invariants

[Hilbert, 1993; Gurevich, 1964; Schur, 1968]. Moment invariants for pattern recognition

were introduced by Hu [1962] where various moments are defined that are invariant under

scale, translation and/or rotation. A summary about more recent work can be found in

Flusser [2007].

If the feasible set is understood as an image these moments can be calculated for the

feasible set where some of them also have a geometrical meaning. The idea was presented

by Wuertz [2010]. If this analysis is performed over time it offers valuable insights into

the dynamics of the feasible set. The results will be a new set of risk measures where

some of them are invariant under certain transformations.

10.1 The Feasible Set as an Image

To represent the feasible set as an image a grid is put on top of it. The hull of the

feasible set can be described as a polygon. The grid points inside the feasible set receive

a value of 1 and the grid points outside the feasible set a value of 0 as

I(x, y) = 1, for grid points inside the polygon

I(x, y) = 0, for grid points outside the polygon
(10.1)

where (x, y) are the coordinates of a grid point within the risk-performance-plane (see

Fig. 10.1). The feasible set in Fig. 10.1 was calculated by using the sample estimators

(see Section 9.1). The same procedure can be applied to the robust or BCP estimations.

There are various algorithms to find points inside a polygon. For R the sp package
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10 Morphological Shape Factors
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Figure 10.1: Grid points of the feasible set using 30 points in each direction.

[Pebesma and Bivand, 2005] offers an algorithm. The method is described in detail in

O’Rourke [1998]. The higher the resolution of the grid (more grid points) the more exact

the calculation of the moments will become.

10.2 Raw Moments

For the continuous case the (p+q)th order raw moments (see Hu [1962]) of a density

function f(x, y) are defined as

mp,q =

∫ ∞
∞

∫ ∞
∞

xpyqf(x, y)dxdy, p, q = 0, 1, 2, . . . (10.2)

To calculate the raw moments of the discrete image as defined in Eq. (10.1) one can
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10.3 Central Moments

use the discrete representation of Eq. (10.2) as

mp,q =
∑
x

∑
y

xpyqI(x, y)∆x∆y, p, q = 0, 1, 2, . . . (10.3)

where the summation goes over all possible combinations of x and y, and where ∆x and

∆y are constant.

Using the raw moments the area A, the centre (xc, yc) and the centre ratio cs of the

feasible set can be calculated as

A = m00 (10.4)

(xc, yc) = (
m10

m00
,
m01

m00
) (10.5)

cs =
yc
xc

(10.6)

The area is invariant under translation and rotation while the centre is invariant under

scale and rotation.

10.3 Central Moments

For the continuous case the (p+q)th order central moments (see Hu [1962]) are defined

as

µp,q =

∫ ∞
∞

∫ ∞
∞

(x− xc)p(y − yc)qf(x, y)dxdy, p, q = 0, 1, 2, . . . (10.7)

and for the discrete case the central moments can be calculated as

µp,q =
∑
x

∑
y

(x− xc)p(y − yc)qI(x, y)∆x∆y, p, q = 0, 1, 2, . . . (10.8)

where the summation goes over all possible combinations of x and y, and where ∆x and

∆y are constant.

The central moments can be formulated as a function of the raw moments. The

binomial theorem for a positive integer n (see e.g. Johnson et al. [2005]) is defined as

(a+ b)n =
n∑
j=0

(
n

j

)
an−jbj (10.9)
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Applying this to Eq. (10.8) leads to

µp,q =
∑
x

∑
y

(−xc + x)p(−yc + y)qI(x, y)∆x∆y

=
∑
x

∑
y

 p∑
i=0

(
p

i

)
(−xc)p−ixi

q∑
j=0

(
q

j

)
(−yc)q−jyj

 I(x, y)∆x∆y

=

p∑
i=0

(
p

i

)
(−xc)p−i

q∑
j=0

(
q

j

)
(−yc)q−j

∑
x

∑
y

xiyjI(x, y)∆x∆y

=

p∑
i=0

q∑
j=0

(
p

i

)(
q

j

)
(−xc)p−i(−yc)q−jmi,j (10.10)

which means that for the calculation of the central moments only the calculation of the

raw moments are needed. The central moments are translation invariant.

The orientation θ and eccentricity e of the feasible set can be found through a principal

component analysis (PCA) [Pearson, 1901; Hotelling, 1933; Abdi and Williams, 2010].

For that one has to solve the eigenvalue problem of the covariance matrix of the discrete

image of the feasible set which is defined as

Σ =

[
µ2,0 µ1,1

µ1,1 µ0,2

]
(10.11)

The eigenvalue problem is defined as Aλ = λv where λ is the eigenvalue and v the

eigenvector of the matrix A. The problem can be reformulated as (A− λI)v = 0 where I

is the identity matrix. For a 2x2 matrix this leads to the following equation:

(A− λI)v =

[
a11 − λ a12

a21 a22 − λ

][
v1

v2

]
=

[
0

0

]
(10.12)

The equation has non-zero solutions for v if the determinant of A− λI equals to 0. The

eigenvalues can then be calculated as

|A− λI| = (a11 − λ)(a22 − λ)− a12a21 = 0

λ1,2 =
a11 + a22

2
±
√

4a12a21 + (a11 − a22)2

2
(10.13)
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10.3 Central Moments

=
µ2,0 + µ0,2

2
±

√
4µ2

1,1 + (µ2,0 − µ0,2)2

2
(10.14)

The eccentricity can be calculated through the eigenvalues as

e =

√
1− λ2

λ1
(10.15)

The following eigenvectors satisfy Eq. (10.12):

v1 =

[
cos(θ)

sin(θ)

]
=

[
a12

λ− a11

]

v2 =

[
cos(θ)

sin(θ)

]
=

[
λ− a22

a21

] (10.16)

where θ describes the angle of the eigenvector to its nearest axis. Note that per definition

the relation (λ − a11)/a12 = a21/(λ − a22) holds. Which means the orientation angle

satisfies the following equation system:

tan(θ) =
λ− a11

a12

tan(θ) =
a21

λ− a22

By eliminating λ the orientation angle θ can be calculated as

a12 tan(θ) + a11 =
a21

tan(θ)
+ a22

µ1,1(1− tan2(θ)) = (µ2,0 − µ0,2) tan(θ)

θ =
1

2
arctan

2µ1,1

µ2,0 − µ0,2
(10.17)

using the relation tan(2θ) = 2 tan(θ)/(1 − tan2(θ)). Note that the eigenvectors are

perpendicular to each other. Calculating the angle like this leads to two singularities. If

the angle approaches π/4 (towards the x-axis) it will jump to −π/4 (towards the y-axis).

And if the angle approaches π/4 (towards the y-axis) it will jump to −π/4 (towards

the x-axis). On the other hand; if the order of the eigenvalues changes (the smaller one

becomes the bigger one); the angle will be the same.

Alternatively one could also calculate the angle from the eigenvector (v = [v1, v2]) of
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10 Morphological Shape Factors

the biggest eigenvalue towards the x-axis as

θ = arctan
v2

v1
(10.18)

This leads to two singularities as well. If the angle approaches π/2 (towards the x-axis)

it will jump to −π/2 (towards the x-axis). If the order of the eigenvalues changes the

angle will jump from θ to θ − (π/4).

The orientation is invariant under translation and scale while the eccentricity is invariant

under translation, scale and rotation.

10.4 Scale and Rotation Invariant Moments

Scale and translation invariant moments were presented by Hu [1962] (see also Flusser

[2007]) as

νp,q =
µp,q

µ
p+q
2

+1

0,0

(10.19)

In the same paper Hu [1962] presents seven moments that are invariant to translation,

scale and rotation as

h1 = ν2,0 + ν0,2 (10.20)

h2 = (ν2,0 − ν0,2)2 + 4ν2
1,1 (10.21)

h3 = (ν3,0 − 3ν1,2)2 + (3ν2,1 − ν0,3)2 (10.22)

h4 = (ν3,0 + ν1,2)2 + (ν2,1 + ν0,3)2 (10.23)

h5 =(ν3,0 − 3ν1,2)(ν3,0 + ν1,2)[(ν3,0 + ν1,2)2 − 3(ν2,1 + ν0,3)2]

+ (3ν2,1 − ν0,3)(ν2,1 + ν0,3)[3(ν3,0 + ν1,2)2 − (ν2,1 + ν0,3)2]
(10.24)

h6 =(ν2,0 − ν0,2)[(ν3,0 + ν1,2)2 − (ν2,1 + ν0,3)2]

+ 4ν1,1(ν3,0 + ν1,2)(ν2,1 + ν0,3)
(10.25)

h7 =(3ν2,1 − ν0,3)(ν3,0 + ν1,2)[(ν3,0 + ν1,2)2 − 3(ν2,1 + ν0,3)2]

− (ν3,0 − 3ν1,2)(ν2,1 + ν0,3)[3(ν3,0 + ν1,2)2 − (ν2,1 + ν0,3)2]
(10.26)

also known as the Hu moments. The seventh moment is also skew invariant. Which
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allows to distinguish between mirrored images.

10.5 Geometric Shape Factors

The geometric shape factors (GSF) are the parameters that define an ellipse. These

are the area (Eq. (10.4)), the centre (Eq. (10.5)), the orientation (Eq. (10.18)) and the

eccentricity (Eq. (10.15)). Instead of calculating theses parameters through the image

moments they can also be calculated by using the polygon that describes the feasible

set. These calculations are more precise and computationally more efficient since they

don’t rely on the representation of the feasible set as an image (I(x, y)) but only on the

coordinates of the hull of the feasible set.

Let P = [x,y] be the coordinates of the hull of the feasible set (the polygon). The hull

is visualized in Fig. 10.2. The area and the centre of the feasible set (see e.g. Bourke

[1988]) can be calculated from the coordinates of the hull as

A =
1

2

n−1∑
i=1

(xiyi+1 − xi+1yi) (10.27)

xc =
1

6A

n−1∑
i=1

(xi + xi+1)(xiyi+1 − xi+1yi) (10.28)

yc =
1

6A

n−1∑
i=1

(yi + yi+1)(xiyi+1 − xi+1yi) (10.29)

The orientation and the eccentricity can be calculated in exactly the same way as

described in Section 10.3. With the only difference that the covariance matrix is calculated

from the coordinates of the hull as

Σ =

[
var(x) cov(x,y)

cov(x,y) var(y)

]
(10.30)

θ = arctan
v2

v1
(10.31)

e =

√
1− λ2

λ1
(10.32)

where λ1,2 are the eigenvalues of Σ and v = [v1, v2] is the eigenvector of the biggest

eigenvalue. Note that the orientation and the eccentricity of the points inside the polygon
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tend towards the orientation and the eccentricity of the hull of the polygon if the resolution

of the grid is increased. The same is true for the area and the centre.
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Figure 10.2: The feasible set of the global equity and bond universe using sample esti-
mations. Plotted on the top of the feasible set is the ellipse that has the
same area, centre, orientation and eccentricity as the feasible set. See also
Appendix A for more information about the data.

To plot the ellipse that has area A, centre (xc, yc), orientation θ and eccentricity e the

semi major axis a and the semi minor axis b are calculated as

ab =
A

π
,

a

b
=

1√
1− e2

a =
A

π
√

1− e2
(10.33)

b =
A
√

1− e2

π
(10.34)
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The coordinates of the ellipse E = [x̂, ŷ] can then be calculated as[
x̂

ŷ

]
=

[
xc

yc

]
+

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

][
a cos(t)

b sin(t)

]

=

[
xc + a cos(t) cos(θ)− b sin(t) sin(θ)

yc + a cos(t) sin(θ) + b sin(t) cos(θ)

]
(10.35)

for 0 ≤ t ≤ 2π. The result is shown in Fig. 10.2. In the same way the GSF can be

calculated for the feasible set using robust or BCP estimators. In Chapter 11 the GSF

will be calculated over time for different investment universes. By visualizing the area,

centre ratio, orientation and eccentricity over time it is possible to get an idea of the

shape of the feasible set at any point in time without visualizing the feasible set itself.
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The images from Fig. 11.1 to Fig. 11.8 show the GSF as described in Section 10.5 and

the Hu moments (Eq. (10.20) to Eq. (10.26)) for different investment universes. Different

methods to calculate the feasible set are compared. This are the sample estimations

(Eq. (9.8) and Eq. (9.9)), the robust estimations (see Section 9.2.2 and Section 9.2.3) and

the two versions of the BCP estimations (Eq. (9.23) and Eq. (9.24)). The GSF and the

Hu moments were calculated at any point in time by using the last 36 monthly returns.

11.1 Global Universe

The global equity and bond universe (Fig. 11.1 and Fig. 11.2) is the same as used in

Chapter 9 and Chapter 10. It consists of global equities, government bonds for the G7

and eurozone countries and global corporate bonds (in euro). The analyses exemplarily

illustrate the behaviour during a crisis. In Fig. 10.2 a time frame was chosen where

the feasible set has a shape as it is often assumed. It shows a risk premium (positive

orientation) from the bonds towards the equities. In Fig. 11.1 the time period from

around mid of 2007 until around the beginning of 2009 can be associated with a crisis

within the given investment universe.

It is apparent that the orientation becomes negative during that time which means that

the risk premium becomes negative. Generally speaking one can observe some patterns

during the unfolding of a crisis. At first single assets start to move away from the bulk

of the assets; this makes the area larger. Usually these assets tend to move towards a

lower performance and a higher risk (variance). For the global equity and bond universe

the equities will turn around the bonds. This moves the orientation from positive to

negative. Once the bulk starts to follow the first movers the centre will move towards a

lower performance and a higher risk as well. The eccentricity seems to be rather high

during these times which means that confidence in the (negative) risk premium is high.

The Hu moments are invariant under translation, scale and rotation. Which means

that if the feasible set is just moving to a different location (translation), the performance
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and the variance of the underlying assets change but not the Sharpe ratio (scale) or the

feasible set rotates the Hu moments will be the same. Whenever the Hu moments are

changing it means that the feasible set shows a unique shape and that the underlying

investment universe is therefore in a unique state. During the time period from 2013

to 2015 the investment universe was more or less identical under translation, scale

and rotation. Whenever the Hu moments change drastically it means that there are

fundamental changes within the investment universe that cannot be associated with

translation, scaling or rotation.

Comparing the different estimators shows that the two variants of the BCP estimation

deliver almost the same results. The line that is labelled with ”BCP1”shows the estimation

using Eq. (9.23) and the line that is labelled with ”BCP2” shows the estimation using

Eq. (9.24). The robust estimation does not change as much as the BCP estimations and

the sample estimations lie somewhere in between. Interestingly the robust estimation

shows the largest changes for the estimation of the eccentricity between 2015 and 2016.

11.2 Various Universes

The European equity universe (Fig. 11.3 and Fig. 11.4) consists of the 19 European

industry sectors (in euro). It shows similar behaviour during the crises of around 2002

and 2008 as the global equity and bond universe. The mechanisms are the same. During

the crisis of 2008 it shows singularities within the orientation (see also Section 10.3 for

the reason why). Therefore one has to be careful when designing a portfolio based upon

the orientation to make sure that the desired portfolio is the same when the orientation

is around ±90 degrees (see also Chapter 15).

The pure bond universe (Fig. 11.5 and Fig. 11.6) consists of the government bonds of

11 of the countries that have adopted the euro. Additionally it contains a bond index for

the United States, the United Kingdom and the European Union as a whole (in euro). It

shows the largest changes during the European debt crisis which started to unfold in 2010.

It was mainly dominated through the movement of the Greek and Portuguese bonds

away from the bulk. The Hu moments show that up to that point the bond universe was

identical under translation, scale and rotation.

The European bonds and precious metals universe (Fig. 11.7 and Fig. 11.8) consists of

three indices which describe the eurozone bond market with maturities from one to ten

years and an index that describes the global corporate bond market for bonds issued in

euros. The precious metals are described through the euro hedged prices of gold, silver,
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palladium and platinum. The results are mainly characterized through the movements

of the precious metals around the bonds. For portfolios that consist of different asset

classes the orientation usually doesn’t show singularities. Also the eccentricity is generally

high. This universe will be used in Chapter 15 to define a portfolio that based on the

orientation tries to position itself optimally within the feasible set.
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Figure 11.1: The GSF for the global equity and bond universe. The shaded areas show
the times where the BCP estimation of the trend is negative. See also
Appendix A for more information about the underlying data.
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Figure 11.2: The Hu Moments for the global equity and bond universe. The shaded areas
show the times where the BCP estimation of the trend is negative. See also
Appendix A for more information about the underlying data.
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Figure 11.3: The GSF for the European equity universe. The shaded areas show the times
where the BCP estimation of the trend is negative. See also Appendix A for
more information about the underlying data.
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11.2 Various Universes
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Figure 11.4: The Hu Moments for the European equity universe. The shaded areas show
the times where the BCP estimation of the trend is negative. See also
Appendix A for more information about the underlying data.
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Figure 11.5: The GSF for the pure bond universe. The shaded areas show the times
where the BCP estimation of the trend is negative. See also Appendix A for
more information about the underlying data.
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Figure 11.6: The Hu Moments for the pure bond universe. The shaded areas show
the times where the BCP estimation of the trend is negative. See also
Appendix A for more information about the underlying data.
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Figure 11.7: The GSF for the European bonds and precious metals universe. The shaded
areas show the times where the BCP estimation of the trend is negative.
See also Appendix A for more information about the underlying data.
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Figure 11.8: The Hu Moments for the European bonds and precious metals universe.
The shaded areas show the times where the BCP estimation of the trend is
negative. See also Appendix A for more information about the underlying
data.
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12 Summary and Outlook

In Chapter 9 it was shown how the feasible set can be calculated by using different

estimators. The focus was on sample and robust estimators, and estimators based on

a BCP analysis. For the robust case the OGK estimator as defined by Maronna and

Zamar [2002] was used. For the BCP case two new estimators were defined. The first one

calculates the covariance matrix through the univariate variance estimator of the BCP

and uses the concepts of the OGK estimator to transform the covariance matrix such

that it becomes positive semidefinite and approximately affine equivariant. The second

one mixes the sample correlations with the univariate variance estimator of the BCP to

calculate the covariance matrix.

In Chapter 10 it was shown how the feasible set can be represented as an image in

order to calculate its image moments and how these moments define the GSF. The GSF

are the parameters that define an ellipse that has the same area, centre, orientation and

eccentricity as the feasible set. It was additionally shown how the GSF can be calculated

directly from the polygon that describes the feasible set to get better accuracy.

In Chapter 11 the GSF and Hu moments were calculated on a rolling window for

different investment universes. It is important to note that the two BCP estimators

deliver almost the same results. The second estimator (Eq. (9.24)) is computationally

much more efficient than the first estimator (Eq. (9.23)).

By combining the field of image analysis with portfolio optimization the dynamics

of the investment universe can be visualized. This offers very valuable insights into

the behaviour of a given investment universe and allows to get a feel for the current

state of that universe. The GSF, image moments and Hu moments can be calculated

for many other estimation methods of the feasible set and it would be of interest to

compare even more of them. No work has been done so far to exploit this information in

portfolio design. A first proposal will be presented in Chapter 15 based on the orientation.

The orientation is used because it can be associated with a geometrical meaning and is

therefore interpretable. So are the other GSF. It would be of interest to come up with

accessible interpretations for the image moments or the Hu moments as well.
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Part III

Stability in Portfolio Design
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13 Introduction

In the first and second part of this thesis risk measures for the univariate and multivari-

ate case were derived and discussed. The last part of the thesis deals with the application

of these measures. More precisely on how they are used to construct stable portfolios

that react on changes within the investment universe. The notion of stability will be

discussed in Section 13.1.

The proposed models follow the philosophy of a risk-averse and long-term investor.

The models are not designed to earn a huge profit in a short amount of time but to realize

what the market realistically offers from a long-term perspective while reducing the risks.

A portfolio is defined through its allocation of the available capital to the underlying

assets of the investment universe (the weights). Following the long-term perspective

monthly data with a three year look-back window were used for the calculation of the

weights.

In Chapter 14 the univariate BCP risk measures (see Chapter 5) are used to calculate

the weights for an equity universe that consists of the European sector indices. For that

the concept of signal portfolios is introduced. Any statistical analysis can be used to

calculate signals between 0 and 1 that indicate for every asset within the investment

universe on whether to rather buy (1) or sell (0) an asset. Based on these signals the

weights for the assets within the investment universe can be calculated. There are various

possibilities on how to calculate the weights. For example the assets that show high

signals could be weighted higher than the assets that show low signals. Following the

risk-averse philosophy the proposed model creates a dynamic hedge. For every sector

the signals are calculated based on a BCP analysis. If a signal suggests to lower the

investment into a certain sector the freed capital is moved to a cash account that offers

zero interest rate. This is equivalent to setting up a hedge (under the assumption that

the hedge is for free). Since the signals will have values around 0.5 the natural benchmark

is a constant hedge where 50% of the capital is always hedged.

In Chapter 15 a different investment universe is considered that consists of bonds and

precious metals. The weights are calculated through Markowitz portfolio optimization
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13 Introduction

(see Chapter 9). But instead of having a model that stays constant over time, the model

is dynamically adapted to the current shape of the feasible set. The orientation of the

GSF (see Section 10.5) is used to choose a portfolio within the feasible set. To have good

control about where this portfolio is situated within the feasible set the lambda-2-portfolio

(L2P) is introduced. Additionally a multi objective approach is considered. For the L2P

the dynamic Markowitz portfolio using different estimators are compared.

In Chapter 16 the BCP-Signal-Portfolio (BSP) and the dynamic L2P are combined.

The freed capital of the BSP is not used for a hedge but moved to the L2P. The resulting

portfolio is suited for risk-averse and long-term investors that need to always be fully

invested and cannot use leverage. Also the portfolio is very well diversified through three

different asset classes.

13.1 Stability

The notion of financial market stability was introduced by Wuertz [2010]. It is based

on the idea that financial markets and economies can be in a state of steady development

with constant growth (stable) or in a state of unusual behaviour showing stagnation or

deterioration (unstable). The method chosen to identify such states depends on one’s

individual understanding of the driver of such states.

One could assume that a market is subject to sporadic outliers. Then a principal

component outlier analysis that measures the degree of outliers could be an indication

for stable or unstable times. Another approach for such markets would be to use robust

estimators that smooth the outliers. One could also understand the returns of a market

as a superposition of harmonic oscillators. A Fourier transformation or wavelet analysis

could identify the dominant modes. The more equally the modes are distributed the

more stable the market is considered. There are many other models thinkable.

This thesis follows two different models. The first model assumes that any observation

within a market can be explained by the outcome of an underlying generating statistical

process. And that this process can change at any point in time. Times are considered

as stable if the probability for such a change is low. The BCP method offers a way to

measure these probabilities. The model of changing dynamics is further explained in

Section 14.1. The second model assumes that changes within the shape of an investment

universe are an indication for stable or unstable times. The GSF offer a way to measure

such changes. The model of shape shifts is further explained in Section 15.1.

Generally stability is associated with a model of change. For that the driver of change
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13.1 Stability

has to be identified and a statistical model defined that can measure the degree on how

much the driver is activated. Based on these measurements statistical properties can be

calculated and/or rules defined to make investment decisions.
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14 Signal Portfolios

Today a lot of investment decisions are still made on a discretionary basis. This

means that an investor informs himself about an asset through various sources to make

a decision on how much to buy from that asset. This is a rather univariate approach.

Signal portfolios work in a similar way. Only that the decisions are made on a completely

quantitative basis. A model is defined to generate signals between 0 and 1 that describe

the degree of investment in the asset under consideration. If various assets are analysed

those assets are integrated into one portfolio that holds the investment capital. The

portfolio presented in this chapter is strictly univariate and doesn’t need any optimization

routines as it is the case for Markowitz portfolios.

14.1 The Model of Changing Dynamics

The input for this model are financial returns of a given asset. The model is based on

the assumption that these observations are generated by an underlying dynamic that

can be described through a probability distribution (e.g. a normal distribution) which

itself can be described by a set of parameters (e.g. the mean and the variance). Further

the model assumes that this dynamic is not necessarily constant over time. Times are

considered stable when the underlying dynamic (the model and/or parameters) is unlikely

to change.

Many models assume that financial returns can be described through a random walk

where the underlying dynamic is constant over time. In that case the observations would

have a constant expected return with variations around that trend that are all generated

by the random nature of the underlying dynamic. Every drawdown or crisis (large

drawdowns) would solely be a result of that randomness and couldn’t be associated to a

fundamental change within the market. In such a scenario there is not much need to act.

For the long run it would just be a decision on whether one is satisfied with the return

compensation given the risk.

The model of changing dynamics assumes that an economic crisis is not necessarily
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14 Signal Portfolios

only an expression of the random nature of the underlying dynamic. It is assumed that

before, during and after a crisis the underlying dynamic itself can be subject to change. It

can go as far as to the point where any observation is considered to have its own dynamic.

But that for stable times these dynamics are almost the same while for unstable times

they could possibly be very different. Within this framework a financial time series could

be understood as a sequence of different random walks instead of one single random walk.

If the model measures a high likelihood for a changing dynamic an adjustment of tactics

might make sense.

The BCP model measures the likelihood of change for the mean (performance) and

the variance (risk) of a normal distribution and therefore is a suitable mathematical

framework for the model of changing dynamics. To explain the stylized facts of financial

returns the approach is not to find a distribution that explains the returns as a whole.

But to explain the financial returns through piecewise normal distributions that have a

different performance and risk if they cannot be explained through a normal distribution

as a whole. If new observations and older observations cannot be explained with the

same dynamic the BCP model is quick in updating the current performance and risk

based on these new observations. The lag associated with sliding windows is therefore

minimized. Note that for the BCP model drawdowns are not necessarily a sign for a

crisis. Only if these observations cannot be explained anymore with the same dynamic as

older observations.

One might ask about the fundamental reasons that justify such a model. Let’s assume

a world where all the market participants always follow the same routines. They wouldn’t

panic during bearish markets as much as they wouldn’t get excited about bullish markets.

It could be assumed that such a market could indeed be explained by a constant dynamic

and that all the ups and downs are just a result of the randomness of the underlying

process. The model of changing dynamics assumes that this is not necessarily true

and that the market participants behaviour might dramatically change based on the

movements of the market. The assumption is that for such times the market doesn’t

follow the same rules anymore and that therefore also the market cannot be described

anymore with the same underlying dynamic.

14.2 Signal Calculation

The signal calculation follows three steps. First a statistical analysis delivers the results

of the model of change. In this case it is the BCP analysis that describes the model of
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14.2 Signal Calculation

changing dynamics. In the second step the results of the analysis are used to define an

indicator. In the last step the indicator is used to generate the signals in the range of 0

to 1.

14.2.1 Analysis

At any point in time t the BCP analysis (see also Section 5.4) is calculated by

using the last 36 monthly returns (look-back window of l = 36 months). The matrix

Rt = {rt,1, rt,2, . . . , rt,n} holds the returns of the lookback window at time t for the n

assets under consideration. The vector rt,k = {rt−l+1, rt−l+2, . . . , rt} holds the returns of

the look-back window for asset k at time t.

The result will be at any point in time t the matrices Mt = {mt,1,mt,2, . . . ,mt,n},
St = {st,1, st,2, . . . , st,n} and Pt = {pt,1,pt,2, . . . ,pt,n} that hold the estimations of the

posterior means (see Eq. (3.40)), standard deviations (see Eq. (3.41)) and probabilities (see

Eq. (3.42)). The vectors mt,k = {mt−l+1,mt−l+2, . . . ,mt}, st,k = {st−l+1, st−l+2, . . . , st}
and pt,k = {pt−l+1, pt−l+2, . . . , pt} hold the posterior means, standard deviations and

probabilities of the look-back window for asset k at time t.

Using the definition of the BCP estimator in Section 9.3.3 the estimations of the mean,

the standard deviation and the structural break probability at time t for asset k can be

calculated as

µt,k = µ̂(rt,k) = EMAλµ(mt,k) (14.1)

σt,k = σ̂(rt,k) = EMAλσ(st,k) (14.2)

pt,k = p̂(rt,k) = EMAλp(pt,k) (14.3)

14.2.2 Indicators

The indicator follows the same rule as the BCP estimator and is calculated as the

Sharpe ratio of the posterior means and variances as

dt,k = d̂(rt,k) = EMAλd

(
mt,k

st,k

)
(14.4)

This leads to an indicator that is high if the posterior means are high and the posterior

variances are low. Note that the posterior probabilities are not used directly for the

calculation of the indicator since they are already used to get recent estimations of the
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14 Signal Portfolios

mean and the standard deviation of the asset under consideration.

The indicator values can theoretically have arbitrarily high or low values. The question

arises for which values the asset under consideration should be considered favourable to

invest. Often this is solved through setting a threshold. A natural threshold would for

example be 0. Which can be described as the case where the posterior means are rather

positive. The problem with thresholds is that they can be tailored to get favourable

results for the backtest. One has to be careful that a chosen threshold does not dominate

the results. Also a threshold that works good for one asset might not work for another.

The models presented here are always designed such that a given parameter does not

have to be changed for different assets. And if so the model itself should find a reasonable

parameter without using any information of the future in a backtest.

Another problem with thresholds is the practical aspect. Setting thresholds often leads

to binary models in the sense that an investment is made into an asset when the signal is

above the threshold (signal of 1) and no investment is made when the signal is below the

threshold (signal of 0). But for many investors it is not possible to withdraw the total

investment from an asset at once.

14.2.3 Signals

To circumvent the problems associated with the introduction of thresholds the signals

are calculated through a transformation of the signals into a range between 0 and 1. For

that the logistic function is used as

et,k =
1

1 + exp (−c · dt,k)
(14.5)

where c controls the steepness of the curve. This leads to a non-binary signal that tends

to 1 if the indicator has a high positive value and to 0 if the indicator has a low negative

value. An indicator value of 0 will result in a signal value of 0.5.

The logistic function belongs to the family of S-shaped sigmoid functions. The logistic

function is for example used in machine learning for logistic regression or in the field of

neural networks to transform signals into a specific range (as it is done in Eq. (14.5)).

Fig. 14.1 shows the shape of the logistic function and the impact of the steepness parameter

c. If the steepness parameter gets large the signals tend towards a binary model.
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Figure 14.1: The logistic function for different steepness parameters c.

14.2.4 Application

The signals are calculated for every asset within the investment universe individually.

Fig. 14.2 and Table 14.1 show the backtest of the signals for just one index. It is the

same index (the European equity index) as analysed in Fig. 6.11. If the signal is 1 one

would be fully invested into the market and if the signal is 0 the investment would be

fully hedged. For a signal of for example 0.8 the investment would be hedged to 20%.

Note that it is important on how the signals are applied for the backtest. A signal on

any given date has to be applied on the return of the next date (out of sample).

Performance Volatility Sharpe Max. Drawdown

BCP-Strategy 8.13 9.84 0.83 20.38
EQEU.EUR (50% Hedge) 3.67 7.86 0.47 32.43

EQEU.EUR 7.47 15.66 0.48 54.34

Table 14.1: Key figures for the indices shown in Fig. 14.2. The performance and the
volatility are the annualized return and volatility, respectively.

For the backtest the evaluations of Eq. (14.1) and Eq. (14.2) are identical to the

evaluations of Eq. (9.23) to calculate the feasible set. The parameters used are therefore

the same (see also Section 9.3.4). For the lambdas this is λµ = λσ = λd = 0.2 and
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λp = 0.8. Note that the posterior probabilities (pt,k) are not used directly to calculate the

signals (as explained in Section 14.2.2). They are just shown in Fig. 14.2 as additional

information. The parameters to calculate the BCP analyses were set by first calibrating

the model on the data of the look-back window (see Eq. (6.6) and Eq. (6.8)) using v = 2

and v2 = 1.5 to make the priors more flat. The breakpoint parameters α = 4 and β = 16

were chosen globally such that the expected breakpoint probability is 20%. The indicator

values are an estimation of the Sharpe ratio of the asset under consideration. For financial

returns this is usually always somewhere between −1 and 1. Higher Sharpe ratios would

be preferable but the market is usually not offering it. The steepness parameter c of

the logistic function is globally set to 4 for positive indicator values and 8 for negative

indicator values. The reason for this is to be more risk-averse. Which means that the

signals tend to zero faster when the indicator gets negative than they tend to 1 when the

indicator gets positive. These values are somewhat arbitrary.

Note that these parameters are the same for any calculations of the feasible set or for

any calculation of the signals for any asset. This is in line with the philosophy of either

using global parameters which are the same for any data under consideration or letting

the model decide the parameters by itself without using information from the future.

Applying the signals represents a dynamic hedge. This can be realized as a portfolio

that consists of two assets. The first one the index itself and the second one an investment

into cash with zero interest rate. If the signal is 0.8 then 20% of the investment would be

moved into the cash account. This is equivalent of setting up a hedge (assuming no costs).

Therefore the natural benchmark is the EWP of the index and the cash account. Which

is equivalent to a 50% hedge. Note that in practice it is often assumed that such trading

signals should outperform the index. In my personal opinion this is a misconception

which leads to exaggerated expectations. This might lead to models that are highly

optimized on the past to match these expectations.

The backtest shows that the strategy outperforms the index; but this is only due to

the extreme drawdowns around 2002 and 2008. For other periods where there are no

extreme drawdowns one can only expect to receive a more favourable portfolio than the

50% hedge. The benchmark can be adapted by multiplying the signals with a constant

factor. If that factor would be 0.5 then the natural benchmark would become the 25%

hedge. If the factor is for example 2 then the benchmark will indeed be the index. But

applying signals with a factor of 2 means that the exposure needs to be leveraged if the

signals become bigger than 1.

The constantly 50% hedged index has obviously approximately the same Sharpe ratio
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as the unhedged index (see Table 14.1). But the risk profile is more favourable since the

drawdowns do only have half the size. The price to pay for a constant hedge is straight

forward. The performance is only half that of the unhedged index and so is the risk.

The BCP strategy (dynamic hedge) has a much better Sharpe ratio. And the risk

profile is similar to the 50% hedge. More details can be seen in Fig. 14.2. The risk of a

dynamic hedge is that the signals might not react to the formation of a crisis fast enough

and therefore realize the full drawdowns. This can be seen around the mid of 1998. But

generally the dynamic hedge will benefit from upward trends and secure against severe

downward trends. Working with higher data frequencies (e.g. weekly or daily) might

reduce the risk of missing the formation of a crisis. But also the nature of the data

would fundamentally change since the higher the frequency the less the data is normally

distributed. For this thesis monthly data was used to demonstrate the fundamental

concepts.

14.3 Portfolio Design

14.3.1 The BCP-Signal-Portfolio

The index that was used for the backtest in Fig. 14.2 and Table 14.1 is a benchmark

for the European equity market which can be divided into 19 industry sectors. It is the

same universe (European equity universe) as analysed in Fig. 11.3 and Fig. 11.4 through

the GSF. To construct the signal portfolio the BCP signals are calculated for every sector

in exactly the same way as they have been calculated for the total index in Section 14.2.

This portfolio will be referenced as the BCP-Signal-Portfolio (BSP) for the remainder of

this thesis.

Let W = (wt,k) be the weights matrix where wt,k describes the weight of asset k at

time t. The weights are constrained such that the sum of the weights at any point in

time shall be between 0 and 1 and the individual weights are not allowed to be smaller

than 0. This corresponds to a portfolio where leverage or short selling is not allowed but

hedging is. This is for example the basic setup for a pension fund.

To use the signals et,k an upper bound for any asset within the investment universe

is introduced. The upper bound is defined to be 100% divided by the number of assets.

For the 19 sectors this is wmax = 100/n = 5.26%. The weights for any asset k at time t

are now defined as

wt,k = et,k · wmax (14.6)
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which satisfies the constraints. For any asset within the investment universe the signals

define the grade of investment which is between 0 and wmax. If all signals are 1 the sum

of the weights will also be 1 and there is no hedging involved. Vice versa the same is

true if all signals are 0 and the invested capital will be fully hedged. The case where all

signals are 0.5 corresponds to the EWP of the individual 50% hedged assets.

Performance Volatility Sharpe Max. Drawdown

BCP-Signal-Portfolio 7.26 8.78 0.83 18.55
EWP (50% Hedge) 3.81 7.88 0.48 32.82

EWP 7.77 15.69 0.50 54.86

Table 14.2: Key figures for the indices shown in Fig. 14.3. The EWP corresponds to
the EWP European Sectors. The performance and the volatility are the
annualized return and volatility, respectively. For the 50% hedge the sector
indices are hedged separatelly.

The results of the backtest (out of sample) are shown in Fig. 14.3 and Table 14.2. The

results are similar as calculating the signals for the total index (Fig. 14.2 and Table 14.1).

The BCP portfolio shows a higher Sharpe ratio and a more attractive risk profile.

The reason why the sector approach might be preferred to the total index approach is

that the signals are diversified. Diversification within the assets of an investment universe

is considered an important investment concept. If one asset within the investment universe

shows a singular extreme event that the other assets do not show then the impact of that

event is the smaller the higher the diversification. In a similar way it can be argued that

diversification is also important for signal calculation. If one signal is wrong then the

impact of that wrong signal is the smaller the more signals are used. In the same way as

any discretionary investment advise might turn out in an unpreferable result a signal

based on a quantitative analysis might result in an unpreferable result. If only one signal

for one index is calculated the risk for such an outcome is much higher than for the case

where several signals are calculated on several indices.
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Figure 14.3: The BSP for the European equity universe (19 industry sectors). The
exposure shows the amount of capital that is invested. It is the sum of the
weights at any point in time. The shaded areas show the times where the
BCP estimation of the trend for the EWP is negative. See also Appendix A
for more information about the data.
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Markowitz portfolios [Markowitz, 1952] were introduced in Chapter 9. Those portfolios

are characterized through an objective function that is minimized (e.g. the variance)

under certain constraints (e.g. long-only, no short-selling and/or fully invested). Usually

the objective and constraints are not modified over time. Dynamic Markowitz portfolios

are doing exactly that. Based on the current market situation the objective and/or

constraints are adapted.

15.1 The Model of Shape Shifts

The feasible set is a visual representation of the investment universe and pictures the

performance and risks of the individual assets and the relations of these assets to each

other. In that sense it is a multivariate view that can reveal important information about

the current state of an investment universe. The feasible set can be described through

an ellipse that has the same area, centre, orientation and eccentricity as the feasible set.

Those key figures are called the geometric shape factors (GSF) and are a subgroup of the

morphological shape factors which describe the image moments of the feasible set.

Variations in those moments might be an indication about fundamental changes within

the investment universe and an adjustment of allocation tactics might make sense. While

most of the moments do not have a geometrical meaning and are therefore difficult to

interpret the GSF do. The model that will be introduced in the further course of this

thesis uses the orientation of the GSF which describes the direction of the risk premium.

The shape of the feasible set is often assumed to look like in Fig. 10.2. It is assumed

that there is a risk premium from the assets that have a low variance towards the assets

with a higher variance. For such cases the orientation is positive. It is reasonable to think

that this is generally true in the long run. The GSF (see Fig. 11.1) show that at least for

time periods of three years this is very often not true. The orientation gets sometimes

clearly negative which means that the risk premium is negative.

During times where the risk premium is negative it might make sense to withdraw
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from the assets that are assumed to offer a risk premium and move into the assets that

generally have a lower risk. To achieve this a dynamic Markowitz approach is pursued.

The more the risk premium is positive the more the target portfolio will be allowed to

move away from the minimum risk portfolio (MVP) towards higher returns while always

making sure that there is a certain degree of diversification.

15.2 Portfolio Design

The investment universe for this part of the thesis consists of the European bonds and

precious metals universe (base assets) as analysed in Fig. 11.7 and Fig. 11.8 through the

GSF. The GSF and the weights of the portfolio were calculated at any point in time by

using the last 36 monthly returns. The weights are always applied out of sample. The

GSF are the same as shown in Fig. 11.7.

15.2.1 The Lambda-2-Portfolio

The Lambda-2-Portfolio (L2P) is defined as

min
w

f(w)

s.t.

µ′w = λ1µupper + (1− λ1)µlower

w′Σw = λ2σupper + (1− λ2)σlower

1′w = 1

0 ≤ wi ≤ 1

(15.1)

where 0 ≤ λ1,2 ≤ 1. w describes the weights of the assets within the investment universe,

µ the estimated performance of the assets and Σ the covariance matrix. The last two

constraints define a portfolio that has to be fully invested and forbids leverage and

short-selling. This are constraints often encountered in practice. The first constraint

defines the target return (µ′w) and the second constraint the target risk (w′Σw). One

has to be careful to choose µupper,lower and σupper,lower such that the portfolio is feasible

(it is situated within the feasible set). Then this setup allows to define any point within

the feasible set.

An alternative setup through a multi objective approach will be discussed in Sec-
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tion 15.2.2. The advantage of this setup is that the location of the target portfolio based

on the lambdas is obvious. If µupper = µmax, µlower = µmin, σupper = σmax, σlower = σmin

and λ1 = λ2 = 0.5 the portfolio will be in the middle of the feasible maximum and

minimum return, and the feasible maximum and minimum variance. This is different if

the lambdas are used for a multi objective function. The location of the target portfolio

is in principle defined but also somewhat arbitrary (see Section 15.2.2).

The second constraint is quadratic. To solve the portfolio a suitable solver has to

be used. For R the packages Rsolnp [Ghalanos and Theussl, 2015] or Rdonlp2 [Wuertz

et al., 2014] are suitable. Those solvers can deal with any kind of non-linear objective

functions and/or constraints. For the backtest f(w) = 1 was chosen. Which means that

the objective function does not have any particular meaning; the portfolio is only defined

through the constraints. An optimizer is still needed since the portfolio does not have a

unique solution. It would be possible to define any objective function; for example the

diversification (f(w) = var(w)). Since the backtest results are very much identical the

solution that is numerically less complex was chosen. The reason why the results are

very much identical is most likely that the optimization starts with the weights of the

EWP; which has globally the best diversification.

To calculate the dynamic L2P portfolio the lower return is globally set to be the return

of the minimum variance portfolio (MVP) (µlower = µMV P ) and the upper return to

be the maximum return (µupper = µmax). Of course other solutions are possible. The

parameters λ1,2 and σupper,lower are chosen based on the orientation of the feasible set.

The orientation o is naturally bounded between −90° and 90°. This is an advantage since

we do not have to care about the magnitude of this key figure. It means that 90° is a

big positive value and −90° a small negative value. For unbounded key figures which lie

between −∞ and ∞ it is not always obvious which values can be considered big or small.

If the orientation is divided by 90 the values will be bounded by −1 and 1.

In the following the algorithm to calculate the dynamic L2P portfolio is summarized.

Let W = (wt,k) be the weights matrix where wt,k describes the weight of asset k at time

t and the vector wt = {w1, w2, . . . , wn} holds the weights at time t for all assets. At any

point in time t the weights wt can be calculated as

1. Calculate the orientation ō = o/90 of the feasible set. Calculate λ1 = f1(ō) and

λ2 = f2(ō).

2. Calculate the expected return of the minimum variance portfolio (µMV P ) and the

maximum return portfolio (µmax = max(µ)).
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3. Define the target return: µ′wt = λ1µmax + (1− λ1)µMV P .

4. Calculate the portfolio that has the smallest risk given the target return. Use the

risk of that portfolio as the lower risk (σlower). Calculate the portfolio that has the

highest diversification given the target return. Use the risk of that portfolio as the

upper risk (σupper).

5. Define the target risk: w′tΣwt = λ2σupper + (1− λ2)σlower.

6. Calculate wt using Eq. (15.1).

For step one f1(ō) and f2(ō) have to be defined. Generally the following function is

used:

f(ō, c, l, u) = min(u,max(l, g(ō)c)) (15.2)

where c scales the orientation, u defines an upper bound for the lambdas and l a lower

bound. The function g(·) defines how the orientation is used. For the backtest the

following instances of f(·) were used:

λ1 = f1(ō) = f(ō, c = 0.25, l = 0.00, u = 1.00) = min(u,max(l, |ō|c)) (15.3)

λ2 = f2(ō) = f(ō, c = 4.00, l = 0.10, u = 1.00) = min(u,max(l, |ō|c))I(ō > 0) (15.4)

where I is the indicator function. Generally the parameters for λ1 and λ2 and the function

g(·) can be chosen in any other way. λ1 was designed such that the portfolio will generally

be more risk-averse and not affected by the orientation jump at around ±90°. λ2 was

designed such that the portfolio always enforces a minimum amount of diversification

and goes to the maximum possible amount of diversification quickly if the orientation

gets positive but not negative.

In step three a target return is chosen that lies on the efficient frontier. λ1 controls the

distance from the MVP in means of the target return. Choosing c = 0.25 is a risk-averse

approach. It means that the distance from the MVP is limited. The absolute value

of ō is used to make the target portfolio independent on the sign of the orientation.

Whether the orientation has a large positive or negative value the target portfolio will

always be one that looks for more return than the MVP. As explained in Section 10.3

the orientation can suddenly jump from 90° to −90° and vice versa. Using the absolute

value of the orientation makes sure that this does not influence the target portfolio. The

reason to retreat towards the MVP if the orientation is around 0 is that in that case the
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efficient frontier could switch sides. If the orientation becomes negative it usually means

that the risk premium gets lost. This happens if the assets that formerly showed a high

performance and risk (e.g. the precious metals) suddenly show lower performances (while

keeping the risk) than the assets that showed formerly low performances and risks (e.g.

the bonds). It is usually a sign of a crisis within the investment universe that results

in the formation of a completely new state. At the point where the last formerly high

performing asset shows not the highest performance anymore the efficient frontier will

switch side. If a target portfolio on the upper part of the efficient frontier is chosen it

will be greatly affected by this change. In contrary the MVP (and any portfolios that

have the same target return as the MVP) will not be greatly affected by this change.

Therefore λ1 is used to retreat to a target portfolio that is robust against a change of

the sign of the risk premium and the formation of a new state within the investment

universe. Since the absolute value of the orientation is used and the orientation is scaled

to be smaller than 1 choosing l = 0.00 and u = 1.00 does not have any effect.

In step five a target risk is chosen for the target return defined through λ1. The target

risk will be situated between the efficient frontier and the minimum diversification line

that defines for any target return the portfolio that has the highest diversification. If the

orientation has a large positive value λ2 will tend to 1 and the target portfolio will move

towards the diversification line. A better diversification means that the exposure into

assets that tend to have higher risks is raised. For positive orientations this might be a

risk worth taking. But for negative orientations only a minimum amount of diversification

is enforced. This is the reason for the indicator function. Choosing c = 4.00 means that

the transition from the efficient frontier towards the diversification line is speeded up.

Choosing u = 1.00 makes sure that λ2 is not greater than 1. Choosing l = 0.10 makes

sure that there is always a minimum amount of diversification enforced.

Note that σlower,upper can be defined in any other way. The parameters µ and Σ can

be calculated by any estimator. One just has to make sure that these estimators are also

used to calculate the orientation (o) and the lower and upper bounds (µupper,lower and

σupper,lower).

Fig. 15.1 visualizes the concept. It shows the feasible set for one of the 36 month

windows of the backtest. The shaded area indicate the degree of diversification. The

EWP is the portfolio that globally has the highest diversification. The diversification

declines radially towards the hull. The diversification line (MLP-Line) shows the portfolio

that has the highest diversification given the target return. In terms of diversification it

does not make sense to choose a portfolio that lies behind the diversification line. This is
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Figure 15.1: The feasible set of the European bonds and precious metals universe using
the sample estimator. The shaded areas show the degree of diversification
which declines radially from the EWP towards the hull. See also Appendix A
for more information about the data.

enforced in step four of the algorithm. Target return wise the dynamic L2P will always

lie somewhere in between the MVP and the maximum return portfolio; which are the

returns of the efficient frontier. Target risk wise the portfolio will always lie between the

efficient frontier and the diversification line. The orientation of this feasible set is 3.57°.

The figure shows that the L2P portfolio for this orientation is located close to the MVP.

The L2P-Line shows the portfolios for orientations manually set between 0° and 90°. If

the L2P is calculated using Eq. (15.1), Eq. (15.2) and Eq. (15.3) by setting ō manually

to 0 it would be situated at the bottom of the L2P-Line (close to the MVP). If ō = 1 the

L2P would be situated at the top of the L2P-Line (close to the EWP) and if ō = 0.5 in

the middle of this line. Not that the top of the L2P-Line is not necessarily situated close
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to the EWP; especially not for negative orientations. The reason for the hockey stick like

shape of the L2P-Line is the design of λ1,2 where λ2 was designed such that the target

portfolio travels quickly towards the diversification line if the orientation gets positive.

The results of the backtest (out of sample) are shown in Fig. 15.2 and Table 15.1.

The MVP is almost exclusively invested into the 1-3 year government bonds. This is

certainly not very much preferable since one could just invest all the capital manually

in that index. The dynamic L2P (L2P Dynamic) uses the BCP estimator (Eq. (9.23)

including orthogonalization) to calculate µ and Σ. The parameters used are the same

as those used in Section 9.3.4 and Section 14.2.4. This portfolio respects the model of

changing dynamics (see Section 14.1) and the model of shape shifts at the same time. It

offers a reasonably high return while keeping the risks low. Using the sample estimator

(Eq. (9.8) and Eq. (9.9)) for µ and Σ leads to a portfolio (L2P Dynamic Sample) that has

a similar Sharpe ratio than the dynamic L2P. One could argue that through a leverage

approach the dynamic L2P and the dynamic sample L2P would have about the same

performance and risk. While this is true it might be preferable to have the performance

of the dynamic L2P without setting up a leverage scheme. The portfolio (L2P Dynamic

Robust) that uses the robust estimator (Section 9.2.2) is similar to the dynamic sample

L2P. All portfolios are certainly more preferable than the EWP.

Performance Volatility Sharpe Max. Drawdown

L2P Dynamic 4.79 3.00 1.60 4.08
L2P Dynamic Sample 3.99 2.50 1.60 2.70

EWP Base Assets 5.39 11.28 0.48 31.75
MVP 3.36 1.61 2.08 2.24

L2P Dynamic Robust 4.15 2.80 1.48 5.31
L2P Constant 4.10 2.98 1.38 4.50

Table 15.1: Key figures for the indices shown in Fig. 15.2. The performance and the
volatility are the annualized return and volatility, respectively.

To asses on whether the dynamic lambdas offer a benefit the dynamic L2P is compared

to an L2P where the lambdas are kept constant (L2P Constant). More precisely λ1 = 0.038

and λ2 = 0.268 are the mean values of the lambdas that were used for the dynamic L2P.

It shows that the dynamic lambdas offer a benefit. Note that the constant L2P actually

uses information from the future by setting λ1,2 to the mean values. For the dynamic L2P

only the upper and lower bounds are set which define the risk-averseness of the investor.

The time dependent (dynamic) lambdas are then chosen based on the orientation.
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Figure 15.2: The L2P for the European bonds and precious metals universe (base assets).
The shaded areas show the times where the BCP estimation of the trend for
the EWP is negative. See also Appendix A for more information about the
data.
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15.2.2 The Multi-Objective Approach

The multi objective approach follows the same steps as the L2P. First the portfolio is

defined as
min
w

λf1(w) + (1− λ)f2(w)

s.t.

1′w = 1

0 ≤ wi ≤ 1

(15.5)

where 0 ≤ λ ≤ 1 and w describes the weights of the assets within the investment universe.

For the backtest the objective functions f1,2 were chosen as

f1(w) = var(w) (15.6)

f2(w) = w′Σw (15.7)

where Σ is the covariance matrix. If λ = 1 the result will be the EWP and if λ = 0 the

result will be the MVP. In contrast to the L2P this portfolio definition does not allow to

reach any point within the feasible set. It is always situated on the pair-line of the EWP

and the MVP. Taking other objective functions would just lead to a different pair-line

If e.g. f1 is the maximum return portfolio the target portfolios would always lie on the

efficient frontier without the possibility to get a better diversified portfolio. This could

be solved by introducing a third objective function and a second lambda. The problem is

that the exact location of the target portfolio based on the lambdas is not obvious. For

the above setup setting λ = 0.5 does not mean that the target portfolio will be in the

middle of the pair-line between the EWP and the MVP. If a second λ is introduced the

situation gets even more complex.

Let W = (wt,k) be the weights matrix where wt,k describes the weight of asset k at

time t and the vector wt = {w1, w2, . . . , wn} holds the weights at time t for all assets. At

any point in time t the weights wt can be calculated as

1. Calculate the orientation ō = o/90 of the feasible set. Calculate λ = f(ō).

2. Calculate wt using Eq. (15.5), Eq. (15.6) and Eq. (15.7).

The advantage of this setup is that it is much more compact than the L2P. For the
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backtest λ was defined in the same way as the lambdas for the L2P by using Eq. (15.3) as

λ = f(ō) = f(ō, c = 0.05, l = 0.001, u = 1.00) = min(u,max(l, |ō|c))I(ō > 0) (15.8)

where I is the indicator function. As already mentioned the impact of the λ is not quite

linear. To not move too far away from the MVP (risk-averse) the scaling factor c = 0.05

has to be chosen quite small. Setting l = 0.001 always enforces a minimum amount

of diversification. The indicator function is used to not move towards the EWP if the

orientation gets negative. This wouldn’t make sense since for a negative diversification

the EWP would generally have a lower return and higher risk than the MVP. For the

same reasoning as for the L2P the target portfolio will be the MVP if the orientation

goes towards 0.

Performance Volatility Sharpe Max. Drawdown

MOP Dynamic 4.86 3.20 1.52 4.84
MOP Constant 5.07 3.19 1.59 4.84

EWP Base Assets 5.39 11.28 0.48 31.75
MVP 3.36 1.61 2.08 2.24

5% EWP + 95% MVP 3.46 1.78 1.95 2.60

Table 15.2: Key Figures for the indices shown in Fig. 15.3. The performance and the
volatility are the annualized return and volatility, respectively.

The results of the backtest (out of sample) are shown in Fig. 15.3 and Table 15.2. The

dynamic multi objective portfolio (MOP Dynamic) is quite similar to the dynamic L2P

although it shows a lower Sharpe ratio. As the dynamic L2P the dynamic MOP uses the

BCP estimator (using the same parameters) to calculate µ and Σ and is more preferable

than the EWP.

The constant multi objective portfolio (MOP Constant) was calculated by setting

λ = 0.0036 at all times. This value is the mean value of the lambdas that were used

for the dynamic MOP. There seems not to be much of an impact on whether having a

constant lambda or a dynamic one. It means that setting any low value for lambda leads

to very similar results. This implies that it doesn’t matter too much on whether the

orientation offers valuable information. Since it wouldn’t have much of an impact anyway.

The reason is that if a small lambda is increased by a small step the portfolio does not

go far on the pair-line. For large lambdas and small increases this would be the opposite.

Note that the constant MOP uses information from the future by using the mean
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value of the dynamic MOP for the lambda. Also the dynamic MOP is generally more

robust against dramatic changes within the investment universe since the lambda can be

adapted to a new situation. It make sense to choose a model that is conceptually more

attractive even tough the results within the backtest might be slightly lower.

The lambdas suggest to always move slightly away from the MVP. The results do

therefore also include the 5%-EWP+95%-MVP benchmark. Such a portfolio does not

significantly differ from the MVP. But moving slightly away from the MVP on its pair-line

with the EWP seems to have quite an impact on the performance. One could argue that

this shows a diversification benefit. At least for this case the reason is that the MVP is

very much concentrated into the asset that is closest to it; which is almost exclusively

the 1-3 years government bonds. This effect can be observed in other universes as well.

Therefore it might generally make sense to add some diversification to any MVP approach.
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Figure 15.3: The multi objective portfolio (MOP) for the European bonds and precious
metals universe (base assets). The shaded areas show the times where the
BCP estimation of the trend for the EWP is negative. See also Appendix A
for more information about the data.
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16 Combined Portfolios

The BCP-Signal-Portfolio (BSP) for the European equity universe (see Fig. 14.3) is

a dynamically hedged portfolio. At any point in time there is either a hedge in place

for part of the assets within the investment universe or the invested amount that would

be hedged is moved to a cash account. Instead of moving it to a cash account it could

also be moved to a different portfolio that consists of a more conservative investment

universe than the equity universe of the BSP. The Lambda-2-Portfolio (L2P) for the

European bonds and precious metals universe (see Fig. 15.2) represents such a portfolio.

The combined portfolio is therefore a combination of the BSP and the L2P where the

potentially hedged investment amount of the BSP is moved to the L2P.

Let W = (wt,k) be the weights matrix where wt,k describes the weight of asset k at

time t and the vector wt = {w1, w2, . . . , wn} holds the weights at time t for all assets.

Let wt,BSP be the weights of the assets (the 19 industry sectors of the European equity

universe) within the BSP universe and wt,L2P the weights of the assets (the European

government and corporate bonds and the precious metals) within the L2P universe. At

any point in time t the weights wt can be calculated as

e =
∑

wt,BSP

wt = {wt,BSP , (1− e)wt,L2P }
(16.1)

where e is the sum of the weights of the assets within the BSP universe. Therefore e

describes the equity exposure. A value of for example e = 0.4 means that 40% of the

capital is invested into the BSP universe and 60% into the L2P universe. The sum of the

weights of the combined portfolio is always 1 (fully invested) and the weights are always

between 0 and 1 (no short-selling and no leverage). Also does the combined portfolio not

need any hedging scheme.

The combined universes of the BSP and L2P represent a reasonably well diversified

universe of European equities, bonds and precious metals. The currency for all indices is

the Euro. The precious metals are hedged against movements within the euro-US dollar
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16 Combined Portfolios

currency. For unstable times within the European equity market the investment is shifted

to European bonds and precious metals where a stable constellation is searched. Because

of the non-linear behaviour of the lambda for the dynamic MOP the dynamic L2P was

chosen.

Performance Volatility Sharpe Max. Drawdown

Combined Portfolio 7.28 7.49 0.97 12.99
50% ES + 50% BA 4.80 10.48 0.46 34.69

EWP European Sectors (ES) 4.22 15.80 0.27 54.86
EWP Base Assets (BA) 5.39 11.28 0.48 31.75

Table 16.1: Key Figures for the indices shown in Fig. 16.1. The performance and the
volatility are the annualized return and volatility, respectively.

The results of the backtest (out of sample) are shown in Fig. 16.1 and Table 16.1. The

exposure within the BSP universe is between 0% and 100%. The same is true for the

L2P universe. Therefore the natural benchmark is the portfolio that is invested to 50%

within the BSP universe and to 50% within the L2P universe. The combined portfolio

shows a higher Sharpe ratio and risk profile than the benchmark.

This portfolio combines all the concepts and tools introduced during this thesis. All

the indices used for this portfolio are actually eligible for investment through ETF’s.

Since there is no hedging, leverage or short-selling involved anyone with a basic bank

account can realize this portfolio by only buying and selling ETF’s. In practice there are

of course further constraints like minimum or maximum weights for certain assets. The

goal for this thesis was just to demonstrate how the concepts and tools introduced could

be applied. But generally the model is open for the introduction of any constraints or

also schemes that for example reduce the rebalancing amount.
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Figure 16.1: The combined portfolio of the BSP for the European equity universe (see
Fig. 14.3) and the L2P of the European bonds and precious metals universe
(see Fig. 15.2). The exposure shows the amount of the capital that is
invested within the equities. The shaded areas show the times where the
BCP estimation of the trend for the 50%-ES+50%-BA index is negative.
See also Appendix A for more information about the data.
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17 Summary and Outlook

The tools that were presented in Part I and Part II were consequently applied in

Part III. The notion of stability was introduced in Chapter 13.

In Chapter 14 signal portfolios and the model of changing dynamics were introduced.

It was shown how the results of a BCP analysis can be used to generate hedging signals

between 0 and 1 for individual indices and how these results can be combined into a signal

portfolio. There might be other ways to calculate the indicator values or to transform

the indicator values into the range between 0 and 1 that could be tested. Also it would

be interesting to test this concept on other investment universes.

In Chapter 15 dynamic Markowitz portfolios and the model of shape shifts were

introduced. It was shown how the results of a geometric shape factor (GSF) analysis can

be used to define a target portfolio based on the orientation. For that the Lambda-2-

Portfolio (L2P) was introduced. Additionally a multi objective approach was examined.

It would be of interest to find models that include other GSF (the area, centre and/or

eccentricity) or moments (e.g. the Hu moments) to define the target portfolio. The

backtested L2P portfolios did not define the objective function since the results were

very similar to the case where the objective function was defined to be the diversification

of the portfolio. However, it would be of interest to study the impact of defining the

objective function for various risk measures or combinations of them in more detail. Also

there might be other interesting definitions for the target portfolio than the L2P or the

multi objective approach. For the multi objective approach it would be of interest to

study the impact of the lambda on the target portfolio in more detail. Additionally it

would be interesting to test this concept on other investment universes.

In Chapter 16 the BCP-Signal-Portfolio (BSP) and the dynamic L2P were combined.

Instead of setting up hedges within the BSP universe by moving capital to a cash

account that capital is moved to the L2P universe. This leads to a portfolio that can be

implemented without the use of any additional instruments than buying and selling. It

would be of interest to design similar portfolios for investors that are based in a different

currency than the euro. Also the investment universe could be extended to even more
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17 Summary and Outlook

investment classes and/or indices.

All the results showed appealing Sharpe ratios and risk profiles compared to their

benchmarks. Generally it would be of interest to test these concepts on a higher frequency

(e.g. weekly or daily). Note that the tools introduced in Part I and Part II could in general

also be used for the examination of any other measurements than financial returns.
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18 Conclusion and Outlook

In Part III the notion of stability in the context of portfolio design [Wuertz, 2010] was

outlined. It follows a two step procedure. First the drivers of unstable times (for financial

returns) are identified. Then a mathematical model is defined that can measure on how

much these drivers are activated.

One possible model for instabilities is the model of changing dynamics (see Section 14.1).

A mathematical framework for this model was introduced in Part I. For that the Bayesian

model for normally (N) distributed data where the mean of the data is normally (N)

distributed and the variance of the data follows a generalized inverse Gaussian (GIG)

distribution was solved (see Chapter 4). More precisely the posterior marginal and condi-

tional distributions as well as the marginal likelihood were derived for the N-NGIG model.

It was shown that these distributions belong to the family of generalized hyperbolic (GH)

and GIG distributions. Since these distributions are well documented in literature and

available through various software implementations it makes the distributions convenient

to work with. The posterior marginal distributions and the marginal likelihood were

then used to set up the Bayesian change point (BCP) model as introduced by Barry and

Hartigan [1992, 1993] and later extended by Loschi et al. [1999, 2003] (see Chapter 5).

The difference between the model of this thesis (the BCP N-NGIG model) and the model

of Loschi et al. [2003] (the BCP N-NIG model) is that the variance is modelled through

a GIG distribution instead of an inverse gamma (IG) distribution. The IG distribution is

a special case of the GIG distribution. Therefore the BCP N-NGIG model represents a

generalisation of the BCP N-NIG model (see Chapter 6). For other applications than

the BCP model it would be of interest to find closed form solutions of the posterior

distribution and the predictive distribution as well. While those distributions have been

derived by Thabane and Safiul Haq [1999] in the context of generalized modified Bessel

distributions it might be possible to define these distributions in the context of GH

distributions. Further research steps could include to model more of the introduced

hyperparameters through distributions or to change the normal assumption of the data.

A candidate for that could be the normal inverse Gauss (NIG) distribution. Additionally
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18 Conclusion and Outlook

the model could be set up for the multivariate case in order to calculate the covariances

directly instead of using the orthogonalized Gnanadesikan–Kettenring (OGK) framework

as introduced by Maronna and Zamar [2002]. It would also be of interest to answer the

question on how robust the new method is when it is faced with many different scenarios

where the mean and/or the variance change for various parts of the data.

The second model for instabilities that was introduced is the model of shape shifts

(see Section 15.1). It assumes that during unstable times the shape of the investment

universe under consideration changes. A mathematical framework for this model was

introduced in Part II. The shape of the investment universe is generally described through

the feasible set which can be approximated through an ellipse that has the same area,

centre, orientation and eccentricity as the feasible set [Wuertz, 2010]. These figures were

called the geometric shape factors (GSF). If the feasible set is considered to be an image

then the GSF are a function of the image moments. The Hu moments [Hu, 1962] are

also functions of the image moments and invariant under certain transformations of

the feasible set. It was shown how the feasible set can be calculated through different

estimators. Two new estimators based on the BCP model as introduced in Part I were

defined. The GSF and the Hu moments for the sample estimator, the robust OGK

estimator and the new BCP estimators were compared on different investment universes

(see Chapter 11). There are many more estimators to calculate the feasible set that could

be compared to each other in means of the GSF, image moments or the Hu moments.

The GSF can be associated with a geometric meaning. It would be of special interest to

find accessible geometric meanings for the image moments or the Hu moments such that

they can be used for the design of dynamic portfolios as well.

In Chapter 14 the output of the new BCP model was used to generate hedging signals

for single indices. If the signals are calculated for multiple indices a signal portfolio

can be designed which calculates the hedge ratios for every index within the investment

universe separately. The signal portfolio which uses the BCP results to calculate the

hedging signals was denoted as the BCP-Signal-Portfolio (BSP). To calculate the BSP

the European equity universe was used as described in Appendix A. The BSP represents

an optimizationless univariate approach. Further research steps could include to consider

alternative routines to generate indicator values and signals from the BCP output. Or to

calculate indicator values and signals from other univariate statistical analyses. Generally

the question should be answered if this approach is universally applicable on any kind

of underlying investment universe and if the current indicator and signal logic could be

improved.
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In Chapter 15 the orientation of the GSF was used to calculate a dynamic Markowitz

portfolio where the distance towards the Minimum-Variance-Portfolio (MVP) is defined

through the orientation. The orientation was calculated using the BCP estimator as

defined in Eq. (9.23) (including orthogonalization). To have full control over where the

portfolio is situated within the feasible set the Lambda-2-Portfolio (L2P) was introduced.

This in contrary to the multi objective approach where it is cumbersome to situate the

portfolio precisely. To calculate the L2P the European bonds and precious metals universe

was used as described in Appendix A. The L2P represents an optimized multivariate

approach. Further research steps could include to consider alternative models where not

only the orientation is used to define the portfolio but also other GSF, image moments or

Hu moments. Also the impact of defining the objective function for various risk measures

or combinations of them could be examined in more detail. Generally the question

should be answered if this approach is universally applicable on any kind of underlying

investment universe and on whether the current process to design the portfolio through

the orientation of the GSF could be improved. Also there might be other interesting

definitions for the target portfolio than the L2P or the multi objective approach. For the

multi objective approach it would be of interest to study the impact of the lambda on

the target portfolio in more detail.

In Chapter 16 the BSP for the European equity universe and the L2P for the European

bonds and precious metals universe were combined. At any point in time the capital that

is supposed to be hedged within the BSP is moved to the L2P instead. All three actively

managed portfolios (the BSP, the L2P and the combination) offer more preferable return

and risk profiles than their passive natural benchmarks. The combined universe represents

a well diversified investment universe consisting of European equities, euro dominated

bonds and euro hedged precious metals. Therefore the currency risk is very much limited

for an euro based investor. The combined portfolio is free of any hedging or leverage

schemes. It can be implemented through buying and selling only. Since all the indices

used within the investment universe are eligible for investment through ETF’s anyone

with a bank account can in principle realise this portfolio. Further research steps could

include to design similar portfolios for investors that are based in a different currency

than the euro. Also the investment universe could be extended to even more investment

classes and/or indices. One important further research step for all the presented concepts

would certainly be to test them on a higher data frequency. For example for weekly or

daily financial returns.
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A Data

The European equity index

The European equity index (EQEU.EUR) consists of 600 company shares that represent

large, mid and small capitalized companies (200 each) across 17 European countries. These

are Austria, Belgium, the Czech Republic, Denmark, Finland, France, Germany, Ireland,

Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and

the United Kingdom. The currency of the index is in euro and the returns are net

returns (includes dividends and taxes). Note that company shares that are not denoted

in euros are converted to euros directly and are therefore not hedged (currency risk).

The reason to use this index was that there are no ETF’s available for the sector indices

(the European equity universe) where the currency risk (from the perspective of an euro

based investor) is hedged. Also the company shares denoted in euro cover more than

60% of the index which reduces the risk.

The European equity universe

The European equity universe groups the company shares of the European equity

index into 19 industry sectors. These are automobiles & parts, banks, basic resources,

chemicals, construction & materials, financial services, food & beverage, health care,

industrial goods & services, insurance, media, oil & gas, personal & household goods,

real estate, retail, technology, telecommunications, travel & leisure, and utilities. The

individual sector indices have the same properties as the full European equity index. The

currency of every index is the euro and the returns are net returns (includes dividends

and taxes). They contain some currency risk and there are no ETF’s available that hedge

out that risk. The unhedged sector indices are all eligible for investment through ETF’s.
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A Data

The European bonds and precious metals universe

The universe consists of three government bond indices, one corporate bond index

and four precious metals. The currency for all indices is the euro and the returns are

total returns. Since all bonds are denominated in euro and since the precious metals

are hedged for movements within the euro-US dollar currency there is no currency risk

involved for euro based investors. All indices are eligible for investment through ETF’s.

The government bond indices all hold euro denominated bonds of eurozone countries

(mainly Germany, Italy, France, Netherlands and Spain). The first index (GOVEU-

ROZONE13.EUR) holds bonds with maturities from 1 to 3 years. The second index

(GOVEUROZONE37.EUR) holds bonds with maturities from 3 to 7 years. The third

index (GOVEUROZONE7X.EUR) holds bonds with maturities from 7 to 10 years. The

corporate bond index (COREURO.EUR) holds globally issued euro denominated bonds

of all maturities with investment grade ratings (mainly developed markets with a strong

focus on Europe).

The base currency of precious metals is the US dollar. The used indices are hedged

against movements within the euro-US dollar currency. The indices describe therefore

the euro hedged prices for gold (GOLDH.EUR), silver (SILVERH.EUR), palladium

(PALLADIUMH.EUR) and platinum (PLATINUMH.EUR). Note that for this case the

euro hedged price is actually equivalent with the US dollar price (assuming a perfect

hedging scheme).

The global equity and bond universe

The universe consists of four equity indices, two government bond indices and two

corporate bond indices. All indices have the euro as currency. Most of them are converted

from US dollars to euro.

All equity indices are designed to cover approximately 85% of the market capitaliza-

tion of their corresponding market. The fist equity index (EQNORTHAMERICA.EUR)

measures the performance of the US and Canadian markets. The second equity in-

dex (EQEUROPE.EUR) measures the performance of the developed European market

(Austria, Belgium, Denmark, Finland, France, Germany, Ireland, Italy, the Netherlands,

Norway, Portugal, Spain, Sweden, Switzerland and the United Kingdom). The third index

(EQPACIFIC.EUR) measures the performance of the developed Pacific market (Australia,

Hong Kong, Japan, New Zealand and Singapore). The fourth index (EQEM.EUR)
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measures the performance of the emerging markets (Brazil, Chile, China, Colombia,

Czech Republic, Egypt, Greece, Hungary, India, Indonesia, Korea, Malaysia, Mexico,

Pakistan, Peru, Philippines, Poland, Russia, Qatar, South Africa, Taiwan, Thailand,

Turkey and United Arab Emirates). All equity indices are converted from US dollars to

euros and the returns are net returns (includes dividends and taxes) for all indices.

The first government bond index (GOVG7.EUR) holds bonds of all maturities issued by

the G7 countries (Canada, France, Germany, Italy, Japan, the United Kingdom and the

United States) in their local currencies. The index is converted from US dollars to euro.

The second government bond index (GOVEUROZONE.EUR) holds euro denominated

bonds of all maturities issued by eurozone countries. The currency of the index is the

euro. The first corporate bond index (CORGLOBAL.EUR) holds bonds of all maturities

with investment grade ratings issued by corporations in emerging and developed markets

in their local currencies (mainly developed markets with a strong focus on the United

States). The index is converted from US dollars to euro. The second corporate bond

index (COREURO.EUR) holds globally issued euro denominated bonds of all maturities

with investment grade ratings (mainly developed markets with a strong focus on Europe).

The currency of the index is the euro. The returns of all bond indices are total returns.

While these indices are generally eligible for investment through ETF’s the currency

risk is considerably high. Only the GOVEUROZONE.EUR and the COREURO.EUR

indices do not have any currency risk for euro based investors.

The pure bond universe

The universe consists of the government bonds of 11 of the countries that have adopted

the euro (Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy, the

Netherlands, Portugal and Spain). Additionally it contains a bond index for the United

States, the United Kingdom and the European Union as a whole. All indices hold bonds

of all maturities in their local currencies and the returns are total returns. The currency

of all indices is the euro. These indices are only partially eligible for investment through

ETF’s.
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