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A Necessary Condition for Source Broadcasting and
Asymmetric Data Transmission

Shraga I. Bross∗ Hagai Zalach∗,
∗Faculty of Engineering, Bar-Ilan University, Ramat-Gan 52900, Israel, brosss@biu.ac.il, hagzalach@gmail.com

Abstract—We consider the broadcasting of a single Gaus-
sian source over a two-user Gaussian broadcast channel with
bandwidth expansion. In addition to the source transmission the
encoder sends a message reliably to the “higher quality” user. By
following the Khezeli-Chen approach we provide an alternative
proof for the outer bound that we’ve recently obtained for this
problem. This approach provides more intuition regarding the
optimality of the choice of the auxiliary random variable by
means of which the bound is derived. 1

I. INTRODUCTION AND PROBLEM STATEMENT

Consider a communication scenario where an encoder de-
scribes a memoryless Gaussian source to a pair of users
over a time-discrete additive white Gaussian broadcast channel
(BC), and the number of channel uses per source sample
is greater than or equal to one. In addition to the source
transmission the encoder transmits a private message that
should be conveyed reliably just to the “higher quality” user.
Our goal is to characterize the set of mean-squared error
distortion pairs that are simultaneously achievable given the
private message rate. Special case is the classical joint source-
channel coding problem of a memoryless Gaussian source over
a Gaussian BC considered by Reznic-Feder-Zamir in [1] where
the requirement for the reliable transmission of private data is
removed.

Formally, the time-k outputs (Y1,k, Y2,k) of the Gaussian
BC, conditioned on the input xk, are defined by

Yi,k = xk + Zi,k i = 1, 2 (1)

where xk ∈ R are the symbols sent by the transmitter, and
Zi,k are the time-k additive noise terms at the corresponding
outputs. Here (Z1,1, . . . , Z1,n) and (Z2,1, . . . , Z2,n) are inde-
pendent memoryless vectors that are independent of {xk}nk=1

with Zi,k ∼ N (0, Ni), i = 1, 2, k = 1, . . . , n and it is
assumed throughout that N2 ≥ N1.

We denote the encoded memoryless source sequence by
S = (S1, . . . , Sm), Si ∼ N (0, σ2) and the channel input
by X = (X1, . . . , Xn), so the source blocklength is m while
the channel blocklength is n, hence the bandwidth expansion
ratio ρ ≥ 1 is defined by ρ = n

m . The message W is uniformly
distributed over the set W = {1, . . . , 2nR}, and the encoder
is defined by an encoding function ϕ(m,n) : Rm ×W 7→ Rn
so that X = ϕ(m,n)(S,W ). The channel input sequence is
average-power limited to P , i.e.

∑n
k=1 E

[
X2
k

]
≤ nP , where

E denotes the expectation operator.

1The work of S. Bross was supported by the Israel Science Foundation
under Grant 497/09.

The decoder at the first user (the “higher quality” user)
consists of two mappings. The first mapping φ

(1)
W : Yn1 →

{1, . . . , 2nR} is used to decode the message, and we denote
by Ŵ the result of applying it to the received sequence
Y 1 while the arithmetic average of the probabilities of error
associated with the different messages is denoted as P

(n)
e .

The second φ(1)S : Yn1 → Ŝm1 = (Ŝ1,1, Ŝ1,2, . . . , Ŝ1,m) is used
to reconstruct the source sequence at the “higher quality”
user, and we denote by Ŝ1 the result of applying φ

(1)
S to

Y 1. The decoder at the second user consists of the mapping
φ
(2)
S : Yn2 → Ŝm2 = (Ŝ2,1, Ŝ2,2, . . . , Ŝ2,m) that is used to

reconstruct the source sequence at the second user, and we
denote by Ŝ2 the result of applying φ(2)S to Y 2.

Definition 1: The tuple (R̃,D1, D2) is achievable if, for
every ε > 0, there exist positive integers m and n = ρm
with corresponding encoder satisfying the average-power con-
straint, whose rate exceeds R̃−ε, and decoding/reconstruction
mappings

(
φ
(1)
W , φ

(1)
S

)
and φ

(2)
S such that limn→∞ P

(n)
e = 0,

and

lim
m→∞

1

m

m∑

k=1

E
[
(Sk − Ŝν,k)2

]
≤ Dν + ε, ν = 1, 2. (2)

In [2] we derive the following outer bound on the set of
attainable distortion pairs for our model, which henceforth will
be referred as System Π.

Theorem 1: Let (D1, D2) be an achievable distortion pair
with a message rate R, let α ≥ 1 be defined by

D2

σ2
= α

( N2

P +N2
22Rd

)ρ
, Rd , 1

2
log

(
1 +

(
22R − 1

) N1

N2

)

Then

D1 ≥ sup
κ>0

σ2

f(α, κ,R)
(3)

where

f(α, κ,R) ,
{(

N2

N1

[
α+ κ2−2ρRd

(
1 +

P

N2

)ρ] 1
ρ

−
(
N2

N1
− 1

)
(κ+ 1)

1
ρ

)ρ
− 1

}
1

κ
. (4)

The proof of Theorem 1, which appears in [2], follows the
main steps of the proof of [1, Theorem 1] with the exception
that, for the evaluation of the bound when R > 0, one needs to
assess the amount of interference caused at the “lower quality”
user, by the transmission of the private message to the “higher

International Zurich Seminar on Information and Communication (IZS), February 21 – 23, 2018
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quality” user. To accomplish that we use a rate-disturbance
bound in the line of [3].

For the purpose of studying the optimality of the choice of
the auxiliary random variable in the proof of [1, Theorem 1],
Khezeli and Chen proposed in [4] an alternative approach for
proving [1, Theorem 1]. They study a model which is related
to the source broadcast model for which they prove a source-
channel separation theorem. Then, they leverage this result to
derive a necessary condition for the source broadcast problem
by means of which they obtain the Reznic-Fedef-Zamir bound
and show that the choice of the auxiliary random variable in
their proof is indeed optimal.

In this contribution we provide an alternative proof of The-
orem 1 which follows the track of the proof in [4, Section IV,
and Section VI] with the difference that for our problem we
just prove a necessary condition for System Π̃—a model that
is related to our model but with side-information at the “higher
quality” receiver. This necessary condition is then leveraged to
derive a necessary condition for our model. Since it is difficult
to optimize the latter necessary condition we relax it to an
extent which affords the optimization step which (as expected)
uses the rate-disturbance bound of [3].

II. PROOF OF THEOREM 1 VIA A NECESSARY CONDITION
FOR SYSTEM Π̃

Let pY1Y2|X be a discrete memoryless broadcast channel
(DMBC) with input alphabet X and output alphabets Yi, i =
1, 2. A length-n coding scheme for the DMBC pY1Y2|X , with
message side-information at Decoder 1, consists of

1) Two private messages W1 and W2, such that (W1,W2)
is uniformly distributed over W1 ×W2,

2) An encoding function f (n) : W1 ×W2 → Xn,
3) Two decoding functions: g(n)1 : Yn1 ×W2 →W1, which

maps (Y n1 ,W2) to Ŵ1, and g
(n)
2 : Yn2 → W2, which

maps Y n2 to Ŵ2.
Definition 2: A rate pair (R1, R2) is achievable for the

DMBC pY1Y2|X , with message W2 available at Decoder 1, if
for every ε > 0 there exists a sequence of encoding functions
f (n) : W1×W2 → Xn with 1

n log ‖Wi‖ ≥ Ri−ε, i = 1, 2, and
decoding functions g(n)1 : Yn1 ×W2 → W1 and g

(n)
2 : Yn2 →

W2 such that limn→∞ Pr{(Ŵ1, Ŵ2) 6= (W1,W2)} = 0.
The capacity region C1(pY1Y2|X) is the closure of the set of
achievable (R1, R2) pairs.

Let the region R be defined as

R =
⋃

PVXY1Y2

{
(R1, R2) : R1 ≤ I(X;Y1), R2 ≤ I(V ;Y2)

R1 +R2 ≤ I(V ;Y2) + I(X;Y1|V )
}
, (5)

where V is an auxiliary chance variable taking values in V;
the union in (5) is over all laws of the form

PV XY1Y2 = PV (v)PX|V (x|v) pY1Y2|X(y1, y2|x), (6)

and it suffices to assume that ‖V‖ ≤ ‖X‖+ 1. Further, let R̄
denote the closure of R.

In [5, Theorem 3] the authors characterize C1(pY1Y2|X) as
follows: C1(pY1Y2|X) = R̄.

Following [4] let {St}∞t=1 in System Π (the model of our
problem) be an IID vector Gaussian process, where each Sk
is an ` × 1 zero-mean Gaussian random vector with positive
definite covariance matrix ΣS .

Definition 3: Let ρ be a non-negative number, fix a non-
negative rate R, and let Di, i = 1, 2 be a non-empty
compact subset of the ` × ` positive semi-definite matrices{
D : 0 � D � ΣS

}
. We say that (ρ,R,D1,D2) is achievable

for System Π if, for every ε > 0, there exist encoding
function ϕ(m,n) : R`×m × W → Xn as well as decoding
and reconstruction functions φ(1)W : Yn1 → {1, . . . , 2nR} and
φ
(1)
S : Yn1 → R`×m at the “higher quality” receiver, and

reconstruction function φ
(2)
S : Yn2 → R`×m at the “lower

quality” receiver, such that with φ
(i)
S (Y ni ) = Ŝmi and with

‖ · ‖ denoting the 1-norm,
n

m
≤ ρ+ ε (7a)

min
Di∈Di

∥∥∥∥
1

m

m∑

t=1

E
[
(St − Ŝi,t)(St − Ŝi,t)T −Di

]∥∥∥∥ ≤ ε,

i = 1, 2 (7b)
lim
n→∞

P (n)
e = 0. (7c)

The set of achievable (ρ,R,D1,D2) tuples for System Π is
denoted by ΓG.

The system Π̃ shown in Figure 1, that we consider next, is
the same as System Π except for two differences.

1) Let S̃ ,
(
S̃T1 , S̃

T
2

)T
be an ˜̀× 1 zero-mean Gaussian

random vector with positive definite covariance matrix
ΣS̃ , where S̃i is an ˜̀

i×1 random vector with covariance
matrix ΣS̃i , i = 1, 2. The source

{
S̃t
}∞
t=1

is defined
by S̃t = (S̃T1,t, S̃

T
2,t)

T , where
{

(S̃1,t, S̃2,t)
}∞
t=1

are IID
copies of (S̃1, S̃2).

2) S̃m2 is available at Receiver 1 so that Decoder 1 is
defined by a decoding mapping φ̃

(1)
W : Yn1 × S̃m2 →

{1, . . . , 2nR} and a reconstruction mapping φ̃(1)S : Yn1 ×
S̃m2 → Ŝm1 .

Definition 4: Let ρ̃ be a non-negative number, fix a non-
negative rate R, let D̃1 be a non-empty compact subset of{
D̃1 : 0 � D̃1 � ΣS̃

}
, and let D̃2 be a non-empty compact

subset of
{
D̃2 : 0 � D̃2 � ΣS̃2

}
. We say that (ρ̃, R, D̃1, D̃2)

is achievable for System Π̃ if, for every ε > 0, there exist
encoding function ϕ̃(m,n) : R˜̀

1×m × R˜̀
2×m × W → Xn as

well as decoding and reconstruction functions φ̃
(1)
W : Yn1 ×

R˜̀
2×m → {1, . . . , 2nR} and φ̃

(1)
S : Yn1 × R

˜̀
2×m → R˜̀×m

at the “higher quality” receiver, and reconstruction function
φ̃
(2)
S : Yn2 → R˜̀

2×m at the “lower quality” receiver, such that
n

m
≤ ρ̃+ ε (8a)

min
D̃1∈D̃1

∥∥∥∥
1

m

m∑

t=1

E
[
(S̃t − Ŝ1,t)(S̃t − Ŝ1,t)

T − D̃1

]∥∥∥∥ ≤ ε (8b)
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m
2 ,W )

-

-

-Xk

-

-

φ
(1)
W (Y n

1 , S̃
m
2 )

φ
(1)
S (Y n

1 , S̃
m
2 )

φ
(2)
S (Y n

2 )

?

S̃m
2

S̃m
1 , S̃

m
2-

W-

-Ŵ : P
(n)
e → 0

-Ŝ
m
1 : E[d(S̃, Ŝ1)] ≤ D̃1

-Ŝ
m
2 : E[d(S̃2, Ŝ2)] ≤ D̃2

Fig. 1. The system Π̃.

min
D̃2∈D̃2

∥∥∥∥
1

m

m∑

t=1

E
[
(S̃2,t − Ŝ2,t)(S̃2,t − Ŝ2,t)

T − D̃2

]∥∥∥∥ ≤ ε (8c)

lim
n→∞

P (n)
e = 0. (8d)

The set of achievable (ρ̃, R, D̃1, D̃2) tuples for System Π̃ is
denoted by Γ̃G. Consequently, with ΣS̃1,S̃2

, E
[
S̃1S̃

T
2

]
and

ΣS̃2,S̃1
, E

[
S̃2S̃

T
1

]
,

ΣS̃ =

[
ΣS̃1

ΣS̃1,S̃2

ΣS̃2,S̃1
ΣS̃2

]

Furthermore, for any D̃1 ∈ D̃1 we may express D̃1 as follows

D̃1 =

[
D̃1,1 D̃1,2

D̃2,1 D̃2,2

]

where D̃i,i, i = 1, 2 is an `i × `i matrix.
Assuming that D̃2,2 is invertible, define

RS̃1|S̃2
(D̃1) = min

D̃1∈D̃1

1

2
log

( |ΣS̃1
− ΣS̃1,S̃2

Σ−1
S̃2

ΣS̃2,S̃1
|

|D̃1,1 − D̃1,2D̃
−1
2,2D̃2,1|

)

RS̃2
(D̃2) = min

D̃2∈D̃2

1

2
log

( |ΣS̃2
|

|D̃2|

)
. (9)

We start by deriving a necessary condition for System Π̃.

Proposition 1: A necessary condition for the inclusion
(ρ̃, R, D̃1, D̃2) ∈ Γ̃G is that

(
RS̃1|S̃2

(D̃1) + ρ̃R,RS̃2
(D̃2)

)
∈ ρ̃ C1(pY1Y2|X). (10)

Proof: See Section III.

Let {Zt}∞t=1 be an IID vector Gaussian process, independent
of {St}∞t=1, where each component Zt is an ` × 1 zero-
mean Gaussian random vector with positive definite covariance
matrix ΣZ . Define

S̃1,t , St, S̃2,t , St + Zt. (11)

Thus, if a tuple (ρ,R,D1,D2) ∈ ΓG the conditions (7b) imply
that there exists a sequence ε1, ε2, . . . converging to zero such
that

lim
k→∞

1

m

m∑

t=1

E
[
(St − Ŝ(εk)

i,t )(St − Ŝ(εk)
i,t )T

]
= Di

for some Di ∈ Di, i = 1, 2. Therefore, with the definitions
(11)

lim
k→∞

1

m

m∑

t=1

E
[
(S̃1,t − Ŝ(εk)

1,t )(S̃1,t − Ŝ(εk)
1,t )T

]

= lim
k→∞

1

m

m∑

t=1

E
[
(S̃1,t − Ŝ(εk)

1,t )(S̃2,t − Ŝ(εk)
1,t )T

]

= lim
k→∞

1

m

m∑

t=1

E
[
(S̃2,t − Ŝ(εk)

1,t )(S̃1,t − Ŝ(εk)
1,t )T

]

= D1,

lim
k→∞

1

m

m∑

t=1

E
[
(S̃2,t − Ŝ(εk)

1,t )(S̃2,t − Ŝ(εk)
1,t )T

]

= D1 + ΣZ ,

lim
k→∞

1

m

m∑

t=1

E
[
(S̃2,t − Ŝ(εk)

2,t )(S̃2,t − Ŝ(εk)
2,t )T

]

= D̃2 = D2 + ΣZ .

This establishes that (ρ,R, {D̃1}, {D̃2}) ∈ Γ̃G where

D̃1 =

[
D1 D1

D1 D2 + ΣZ

]
.

Consequently, by Proposition 1,
(
RS̃1|S̃2

(D̃1) + ρR,RS̃2
(D̃2)

)
∈ ρ C1(pY1Y2|X). (12)

In conclusion, for any (ρ,R,D1,D2) ∈ ΓG, there exist
Di ∈ Di, i = 1, 2 such that

RS̃1|S̃2
(D̃1) + ρR ≤ ρI(X;Y1) (13a)

RS̃2
(D̃2) ≤ ρI(V ;Y2) (13b)

RS̃1|S̃2
(D̃1) + ρR+RS̃2

(D̃2) ≤ ρ
[
I(X;Y1|V ) + I(V ;Y2)

]
,

(13c)

where the tuple (V,X, Y1, Y2) has a law of the form (6),
and using (9) the conditional rate-distortion and rate-distortion
functions are expressed by

RS̃1|S̃2
(D̃1) =

1

2
log
( |ΣS − ΣS(ΣS + ΣZ)−1ΣS |
|D1 −D1(D1 + ΣZ)−1D1|

)
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=
1

2
log
( |ΣS ||D1 + ΣZ |
|D1||ΣS + ΣZ |

)

RS̃2
(D̃2) =

1

2
log
( |ΣS + ΣZ |
|D2 + ΣZ |

)
. (14)

Since

I(X;Y1|V ) = h(Y1|V )− h(Y1|X,V ) = h(Y1|V )− h(Y1|X)

≤ h(Y1)− h(Y1|X) = I(X;Y1),

when given R < I(X;Y1), the set of attainable distortion
tuples is defined by the active constraints (13b)–(13c). Nev-
ertheless, unlike [4, Section VI, inequality (66)], it is not
clear how to maximize I(X;Y1|V ) subject to the constraint
(13b), for the scalar Gaussian BC pY1Y2|X , because the precise
coupling between V defined by (6) and W is unknown, yet it
is conceivable that the rate R imposes a restriction on the set
D̃2. We suggest the following approach. By (23)

nI(X;Y1|V ) =

n∑

k=1

I(Xk;Y1,k|Y k−11 Y n2,k+1S̃
m
2 )

=

n∑

k=1

[
H(Y1,k|Y k−11 Y n2,k+1S̃

m
2 )

−H(Y1,k|XkY
k−1
1 Y n2,k+1S̃

m
2 )
]

(a)
=

n∑

k=1

[
H(Y1,k|Y k−11 Y n2,k+1S̃

m
2 )−H(Y1,k|XnY k−11 S̃m2 )

]

≤
n∑

k=1

[
H(Y1,k|Y k−11 S̃m2 )−H(Y1,k|XnY k−11 S̃m2 )

]

= H(Y n1 |S̃m2 )−H(Y n1 |XnS̃m2 ) = I(Xn;Y n1 |S̃m2 ), (15)

were (a) follows since (Xn\k, Y n2,k+1)−◦ (Xk, Y
k−1
1 , S̃m2 )−◦ Y1,k

forms a Markov chain.
Also by (22) and (24)

mRS̃2
(D̃2) ≤ I(S̃m2 ; Ŝm2 ) ≤ I(S̃m2 ;Y n2 ) ≤ nI(V ;Y2), (16)

Letting U , S̃m2 , which according to (11) is independent of
W , the combination of (15) and (16) yields

1

2
log
( |ΣS + ΣZ |
|D2 + ΣZ |

)
= RS̃2

(D̃2) ≤ 1

m
I(U ;Y 2) ≤ ρI(V ;Y2)

(17a)
nI(X;Y1|V ) ≤ I(X;Y 1|U). (17b)

Thus, given R, we shall maximize the RHS of (17b) subject
to the constraint (17a) on I(Y 2;U), for the scalar Gaussian
BC pY1Y2|X , where now the coupling between W and U is
well defined.

Consider the identity

I(X;Y 1|U) = I(X;W |U) + I(X;Y 1|U ,W )

−I(X;W |Y 1,U)

= I(X;W |U) + h(Y 1|U ,W )− h(Z1)− h(W |U ,Y 1)

+h(W |U ,X)

= h(W |U) + h(Y 1|U ,W )− h(Z1)− h(W |U ,Y 1). (18)

Now, by Fano’s inequality

h(W |U) + h(Y 1|U ,W )− h(Z1)− h(W |U ,Y 1)

≤ h(W ) + h(Y 1|U ,W )− h(Z1) + nδ(ε)

= nR+ h(Y 1|U ,W )− n

2
log 2πeN1 + nδ(ε), (19)

where δ(ε)→ 0 as n→∞. The combination of (13b)–(13c),
(17a)–(17b), (18), and (19) suggests that, given R, the condi-
tional rate-distortion function RS̃1|S̃2

(D̃1) is upper bounded by
the maximum of 1

m [h(Y 1|U ,W )−n/2 log 2πeN1], where the
maximization is subject to the l.h.s. constraint (17a) holding
with equality for an admissible D2.

The latter maximization is done in [2], for the case ` = 1
and the choice ΣZ = κσ2, and subject to the constraint

1

m
I(U ;Y 2) ≥ 1

2
log

(1 + κ)σ2

D2 + κσ2
,

where an admissible D2 is of the form D2 =

ασ2
(

N2

P+N2
22Rd

)ρ
, for some α ≥ 1. We obtain that

h(Y 1|W,U) ≤ n

2
log

{
2πe(P +N2)2−2Rd

[
D2/σ

2 + κ

κ+ 1

] 1
ρ

−2πe(N2 −N1)

}
.

Thus,

1

2
log

D1 + κσ2

D1(1 + κ)
≤ ρ

2
log

{(P +N2

N1

)
2−2Rd

[
D2/σ

2 + κ

κ+ 1

] 1
ρ

−
(N2 −N1

N1

)}

which recovers the bound (3)–(4).

III. PROOF OF PROPOSITION 1

Consider an arbitrary tuple (ρ̃, R, D̃1, D̃2) ∈ Γ̃G. Given
ε > 0, then there exists an encoding function ϕ̃(m,n) : S̃m1 ×
S̃m2 × W → Xn as well as decoding and reconstruction
functions φ̃(1)W : Yn1 × S̃m2 → {1, . . . , 2nR} and φ̃

(1)
S : Yn1 ×

S̃m2 → Ŝm1 at the “higher quality” receiver, and reconstruction
function φ̃

(2)
S : Yn2 → Ŝm2 at the “lower quality” receiver,

such that (8b)–(8d) are satisfied. Let Q be a random variable
independent of (W, S̃m1 , S̃

m
2 , X

n, Y n1 , Y
n
2 ) and uniformly dis-

tributed over {1, . . . , n}. Define X = XQ, Yi = Yi,Q, i =
1, 2 and V = (VQ, Q) where Vk , (Y k−11 , Y n2,k+1, S̃

m
2 )

so that Vk−◦ Xk−◦ (Y1,k, Y2,k) forms a Markov chain hence
V−◦ X−◦ (Y1, Y2) is also a Markov chain. Note that, by Fano’s
inequality

n(R− ηn) ≤ I(W ;Y n1 S̃
m
2 ) = I(W ;Y n1 |S̃m2 ) (20)

where limn→∞ ηn = 0 and the last equality follows since W
is independent of S̃m2 . Thus,

I(S̃m1 ; Ŝm1 |S̃m2 ) + n(R− ηn) ≤ I(S̃m1 ; Ŝm1 |S̃m2 )

+I(W ;Y n1 |S̃m2 )
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≤ I(S̃m1 ; Ŝm1 Y
n
1 |S̃m2 ) + I(W ;Y n1 |S̃m2 )

(a)
= I(S̃m1 ;Y n1 |S̃m2 ) + I(W ;Y n1 |S̃m2 )
(b)

≤ I(S̃m1 S̃
m
2 ;Y n1 ) + I(W ;Y n1 |S̃m1 S̃m2 ) = I(WS̃m1 S̃

m
2 ;Y n1 )

(c)
= I(WS̃m1 S̃

m
2 X

n;Y n1 )
(d)
= I(Xn;Y n1 )

=

n∑

k=1

I(Xn;Y1,k|Y k−11 ) ≤
n∑

k=1

I(XnY k−11 ;Y1,k)

(e)
=

n∑

k=1

[
H(Y1,k)−H(Y1,k|Xk

]
=

n∑

k=1

I(Xk;Y1,k)

= nI(XQ;Y1,Q|Q)
(f)
= nI(Q,XQ;Y1,Q)

(f)
= nI(XQ;Y1,Q) = nI(X;Y1). (21)

Here

(a) follows since Ŝm1 is a function of (Y n1 , S̃
m
2 );

(b) follows since, conditioned on S̃m2 , W is independent
of S̃m1 , since conditioning cannot increase entropy and
because mutual-information is non-negative;

(c) follows since Xn is a function of (W, S̃m1 , S̃
m
2 );

(d) follows since (W, S̃m1 , S̃
m
2 )−◦ Xn−◦ Y n1 forms a Markov

chain;
(e) follows since Y1,k−◦ Xk−◦ (Xn\k, Y k−11 ) forms a Markov

chain; and
(f) follows since Q is independent of Y1,Q and since

Y1,Q−◦ X1,Q−◦ Q forms a Markov chain.

Next,

I(S̃m2 ; Ŝm2 ) ≤ I(S̃m2 ; Ŝm2 Y
n
2 )

(a)
= I(S̃m2 ;Y n2 )

=

n∑

k=1

I(S̃m2 ;Y2,k|Y n2,k+1) ≤
n∑

k=1

I(S̃m2 Y
n
2,k+1Y

k−1
1 ;Y2,k)

=

n∑

k=1

I(Vk;Y2,k) = nI(VQ;Y2,Q|Q) ≤ nI(Q,VQ;Y2,Q)

= nI(V ;Y2), (22)

where (a) follows since Ŝm2 is a function of Y n2 . Finally,

I(S̃m1 ; Ŝm1 |S̃m2 ) + n(R− ηn) + I(S̃m2 ; Ŝm2 )

≤ I(S̃m1 ; Ŝm1 |S̃m2 ) + I(W ;Y n1 |S̃m2 ) + I(S̃m2 ; Ŝm2 )

≤ I(S̃m1 ; Ŝm1 Y
n
1 |S̃m2 ) + I(W ;Y n1 |S̃m2 ) + I(S̃m2 ; Ŝm2 Y

n
2 )

(a)
= I(S̃m1 ;Y n1 |S̃m2 ) + I(W ;Y n1 |S̃m2 ) + I(S̃m2 ;Y n2 )
(b)

≤ I(S̃m1 ;Y n1 |S̃m2 ) + I(W ;Y n1 |S̃m1 S̃m2 ) + I(S̃m2 ;Y n2 )

= I(WS̃m1 ;Y n1 |S̃m2 ) + I(S̃m2 ;Y n2 )
(c)
= I(WS̃m1 X

n;Y n1 |S̃m2 ) + I(S̃m2 ;Y n2 )
(d)
= I(Xn;Y n1 |S̃m2 ) + I(S̃m2 ;Y n2 )

(e)
=

n∑

k=1

[
I(Xk;Y1,k|Y k−11 S̃m2 ) + I(S̃m2 ;Y2,k|Y n2,k+1)

]

≤
n∑

k=1

[
I(XkY

n
2,k+1;Y1,k|Y k−11 S̃m2 ) + I(S̃m2 Y

n
2,k+1;Y2,k)

]

=

n∑

k=1

[
I(Xk;Y1,k|Y k−11 Y n2,k+1S̃

m
2 )

+I(Y n2,k+1;Y1,k|Y k−11 S̃m2 ) + I(S̃m2 Y
n
2,k+1;Y2,k)

]

(f)
=

n∑

k=1

[
I(Xk;Y1,k|Y k−11 Y n2,k+1S̃

m
2 )

+I(Y k−11 ;Y2,k|Y n2,k+1S̃
m
2 ) + I(S̃m2 Y

n
2,k+1;Y2,k)

]

=

n∑

k=1

[
I(Xk;Y1,k|Y k−11 Y n2,k+1S̃

m
2 )

+I(Y k−11 Y n2,k+1S̃
m
2 ;Y2,k)

]

=

n∑

k=1

[
I(Xk;Y1,k|Vk) + I(Vk;Y2,k)

]

= n[I(XQ;Y1,Q|VQ, Q) + I(VQ;Y2,Q|Q)]
(g)
= n[I(XQ;Y1,Q|VQ, Q) + I(VQ, Q;Y2,Q)]

= n[I(X;Y1|V ) + I(V ;Y2)]. (23)

Here
(a) follows since Ŝm1 is a function of (Y n1 , S̃

m
2 ) and Ŝm2 is a

function of Y n2 ;
(b) follows since, conditioned on S̃m2 , W is independent of

S̃m1 , and since conditioning cannot increase entropy;
(c) follows since Xn is a function of (W, S̃m1 , S̃

m
2 );

(d) follows since (W, S̃m1 )−◦ (Xn, S̃m2 )−◦ Y n1 forms a
Markov chain;

(e) follows since Y1,k−◦ (S̃m2 , Xk, Y
k−1
1 )−◦ Xn\k forms a

Markov chain;
(f) follows by the Csiszár-Körner’s identity [6, Lemma 7];
(g) follows since Q is independent of Y2,Q.

Since [4, Section IV]

I(S̃m1 ; Ŝm1 |S̃m2 ) ≥ mI(S̃1; Ŝ
(ε)
1 |S̃2)

I(S̃m2 ; Ŝm2 ) ≥ mI(S̃2; Ŝ
(ε)
2 ), (24)

the combination of (21), (22), (23), and (24) yields that
(
I(S̃1; Ŝ

(ε)
1 |S̃2) +

n

m
R, I(S̃2; Ŝ

(ε)
2 )
)
∈ n

m
C1(pY1Y2|X). (25)

In the quadratic Gaussian setting the inclusion (25) translates
to (10).
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Abstract— This work contains two main contributions con-
cerning the expurgation of hierarchical ensembles for the asym-
metric broadcast channel. The first is an analysis of the optimal
maximum likelihood (ML) decoders for the weak and strong
user. Two different methods of code expurgation will be used,
that will provide two competing error exponents. The second is
the derivation of expurgated exponents under the generalized
stochastic likelihood decoder (GLD). We prove that the GLD
exponents are at least as tight as the maximum between the
random coding error exponents derived in an earlier work
by Averbuch and Merhav (2017) and one of our ML–based
expurgated exponents. By that, we actually prove the existence
of hierarchical codebooks that achieve the best of the random
coding exponent and the expurgated exponent simultaneously for
both users.

I. INTRODUCTION

One of the most elementary system configuation models in
multi-user information theory is the broadcast channel (BC). It
has been introduced more than four decades ago by Cover [1],
and since then, a vast amount of papers and books, analyzing
different aspects of the broadcast model, have been published.
Although the characterization of the capacity region of the
general BC is still an open problem, some special cases have
been solved. Most notably, the broadcast channel with de-
graded message sets, also known as the asymmetric broadcast
channel (ABC), was introduced and solved by Körner and
Marton [2].

While the capacity region of the ABC has been known for
many years, only little is known about its reliability functions.
The earliest work on error exponents for the general ABC is
of Körner and Sgarro [3]. Later, Kaspi and Merhav [4] have
derived tighter lower bounds to the reliability functions of both
users by analyzing random coding error exponents of their
optimal decoders. Most recently [5], the exact random coding
error exponents have been determined for both the strong user
and the weak user, under the ensemble of fixed composition
codes.

Even in the single–user case, it is known for many years that
the random coding error exponent is not tight (with respect
to the reliability function) for relatively low coding rates,
and may be improved by expurgation [6], [10]. Specifically,
improved bounds are obtained by eliminating codewords that

* This work was done while N. Weinberger was at the Technion. Currently,
he is with the School of Electrical Engineering at Tel–Aviv University.

contribute relatively highly to the error probability, and assert-
ing that some upper bound holds for all remaining codewords.

The main objective of this paper is to study expurgation
techniques for the hierarchical ensemble used over the ABC.
Expurgating a code for the ABC is not a trivial extension
of expurgation in the single-user case, because there might
be conflicting goals from the viewpoints of the two users.
Nonetheless, we were able to define expurgation procedures
that guarantee no harm to the performance of either user.
This has paved the way to derive tighter lower bounds on
the reliability functions of the ABC.

We start by analyzing the optimal maximum likelihood
(ML) decoder, and derive some expurgated bounds, that are
natural generalizations of the single–user expurgated bound
due to Csiszár, Körner and Marton (CKM) [6]. Although our
first process of code expurgation is fairly intuitive, there is at
least one specific step in our first derivation where exponential
tightness might be compromised. This point gives rise to a
possible room for improvement upon the results of our first
theorem, and indeed, such an improvement is achieved by a
second method of expurgation. Here, one starts by expurgating
cloud centers, and only afterwards, single codewords. The
intuition behind this technique is the following. When the
exponential rate of the codewords within a cloud is too high,
the weak user can still make a good estimation, merely by
relying on the set of cloud centers. The expurgated bounds
of our second method, however, are not always tighter than
those of the first method, because of other differences in their
derivations.

We then expand the scope and consider the generalized
likelihood decoder (GLD), which is a more general family
of stochastic likelihood decoders. For such decoders, the
probability of deciding on a given message is proportional
to a general exponential function of the joint empirical dis-
tribution of the cloud–center, the codeword and the received
channel output vector. The random coding error exponent of
the ordinary and the mismatched likelihood decoders for the
single–user channel have been derived by Scarlett et al. [7]. In
a more recent paper by Merhav [8], the expurgated exponent
of the GLD has been derived and compared to the classical
expurgated bound of [6], showing an explicit improvement at
relatively high coding rates. In this paper, we consider GLD’s
for both the strong and the weak users of an ABC, and derive
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expurgated exponents under these decoders. These bounds
generalize the bound of [8], and prove that they are at least as
tight as the maximum between the random coding error expo-
nents of [5] and the expurgated bounds of our first theorem,
which are based on the ML decoder. By that, we actually prove
the existence of hierarchical codebooks that attain the best
of the random coding exponent and the expurgated exponent
simultaneously for both users. The main drawback of those
error exponents is that they are not easy to calculate since they
involve minimizations over relatively cumbersome auxiliary
channels, and hence, efficient computation algorithms for the
GLD bound are left for further research. From this viewpoint,
the exponents of our first theorems are much more attractive.

Due to the space limitation, technical details and proofs are
omitted, but can be found in the full version of this paper [11].

II. NOTATION CONVENTIONS

Throughout the paper, random variables will be denoted by
capital letters, specific values they may take will be denoted by
the corresponding lower case letters, and their alphabets will
be denoted by calligraphic letters. Random vectors and their
realizations will be denoted, respectively, by capital letters and
the corresponding lower case letters, both in the bold face font.
Sources and channels will be subscripted by the names of
the relevant random variables/vectors and their conditionings,
whenever applicable, following the standard notation conven-
tions, e.g., QX , QY |X , and so on. When there is no room
for ambiguity, these subscripts will be omitted. For a generic
joint distribution QXY = {QXY (x, y), x ∈ X , y ∈ Y}, which
will often be abbreviated by Q, information measures will be
denoted in the conventional manner, but with a subscript Q,
that is, HQ(X) is the marginal entropy of X , IQ(X;Y ) is
the mutual information between X and Y , and so on. The
weighted divergence between two conditional distributions
(channels), say, QZ|X and W = {W (z|x), x ∈ X , z ∈ Z},
with weighting QX is defined as

D(QZ|X ||W |QX)

=
∑

x∈X
QX(x)

∑
z∈Z

QZ|X(z|x) log
QZ|X(z|x)

W (z|x)
, (1)

where logarithms, here and throughout the sequel, are taken
to the natural base. The probability of an event E will be
denoted by Pr{E}, and the expectation operator with respect
to a probability distribution Q will be denoted by EQ{·}. The
notation [x]+ will stand for max{0, x}.

The type class of QU , denoted by T (QU ), is the set of all
vectors u ∈ Un with P̂u = QU , where P̂u is the empirical
distribution of the sequence u. Similarly, T (QX|Y |y) denotes
the conditional type class, induced by the sequence y and the
empirical conditional distribution QX|Y .

III. DEFINITIONS AND PROBLEM FORMULATION

We consider a memoryless ABC with a finite input al-
phabet X and finite output alphabets Y and Z . Let W1 =
{W1(y|x), x ∈ X , y ∈ Y} and W2 = {W2(z|x), x ∈ X , z ∈
Z} denote the single–letter input–output transition probability

matrices, associated with the strong user and the weak user,
respectively. When these channels are fed by an input vector
x ∈ Xn, they produce the corresponding output vectors y ∈
Yn and z ∈ Zn, according to W1(y|x) =

∏n
t=1W1(yt|xt)

and W2(z|x) =
∏n
t=1W2(zt|xt). We are interested in sending

one out of Mz common messages to both users, and one out of
My private messages to the strong user, that observes y. The
two messages are chosen under the uniform distribution. Al-
though our results prove the existence of a single sequence of
deterministic hierarchical constant composition (HCC) code-
books, whose error probabilities are provably bounded, our
proof techniques use extensively the following mechanism of
random selection of an HCC code for the ABC. Let U be a
finite alphabet, let PU be a given probability distribution on
U , and let PX|U be a given matrix of conditional probabilities
of X given U , such that the type–class T (PU ) and the
conditional type–class T (PX|U |u) are non–empty. We first
select, independently at random, Mz = denRze n-vectors
(“cloud centers”), u0,u1, . . . ,uMz−1, all under the uniform
distribution over the type–class T (PU ). Next, for each m =
0, 1, . . . ,Mz−1, we select conditionally independently (given
um), My = denRye codewords, xm,0,xm,1, . . . ,xm,(My−1),
under the uniform distribution across the conditional type–
class T (PX|U |um). We denote the sub–code for each cloud by
Cm(n) = {xm,0,xm,1, . . . ,xm,(My−1)}, or just Cm in short.
Thus, the communication rate to the weak user is Rz , while
the total communication rate to the strong user is Rz + Ry .
Once selected, the entire codebook C(n) = ∪Mz−1

m=0 Cm(n),
and the collection of cloud centers, {u0,u1, . . . ,uMz−1}, are
revealed to the encoder and to both decoders. We denote by
C a sequence of HCC codes, {C(n), n = 1, 2, . . . }.

For any of the following described decoding rules, denote
by [m̂(y), î(y)] the decoded pair of the strong user, and by
m̃(z) the decoded cloud of the weak user. The ML decoder
for the strong user is given by

[m̂(y), î(y)] = arg max
0≤m≤Mz−1,0≤i≤My−1

W1(y|xmi), (2)

and the optimal ML decoder for the weak user is given by

m̃(z) = arg max
0≤m≤Mz−1

{
1

My

∑

x∈Cm
W2(z|x)

}
. (3)

The likelihood decoder is a stochastic decoder, that chooses the
decoded message according to the posterior probability mass
function, induced by the channel output (either y or z). For
the strong user, the ordinary likelihood decoder randomly se-
lects the estimated message (m̂, î) according to the following
posterior distribution

P (m, i|y) =
W1(y|xmi)∑Mz−1

m′=0

∑My−1
i′=0 W1(y|xm′i′)

.

The generalized likelihood decoder (GLD) for the strong user
is defined by the conditional probability

P (m, i|y) =
exp{ng(P̂umxmiy)}

∑Mz−1
m′=0

∑My−1
i′=0 exp{ng(P̂um′xm′i′y)}

,
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where P̂umxmiy is the empirical distribution of (um,xmi,y),
and g(·) is a given continuous, real valued functional of
this empirical distribution. In the same manner, the ordinary
likelihood decoder for the weak user randomly selects the
estimated cloud m̃ according to

P (m|z) =

∑My−1
i=0 W2(z|xmi)∑Mz−1

m′=0

∑My−1
i′=0 W2(z|xm′i′)

,

while the GLD for the weak user is defined by

P (m|z) =

∑My−1
i=0 exp{ng(P̂umxmiz)}

∑Mz−1
m′=0

∑My−1
i′=0 exp{ng(P̂um′xm′i′z)}

.

Exactly as the universal decoders derived in [5], generalized
decoders may also depend on the cloud–centers, which may be
helpful, since all of the codewords in each sub–code are highly
correlated via their cloud–center. One of the most important
properties of the GLD is the following. The union bound,
which is used in the first steps of the derivations for both
users, actually provides an exact expression for the probability
of error, unlike in the analyses of the ML decoders, where
the union bound harms the exponential tightness, at least
for relatively high rates. The generalized likelihood decoders
cover several important special cases, such as the ordinary
likelihood decoder and the mismatched likelihood decoder. For
the strong user, the deterministic ML and the maximum mutual
information decoders [9] can be obtained from the GLD by
limiting operations.

Let Y ∈ Yn and Z ∈ Zn be the random channel outputs
resulting from the transmission of xmi. For a given code C(n),
define the error probabilities as

Pe|mi(C(n)) = Pr
{

[m̂(Y ), î(Y )] 6= (m, i)
∣∣∣xmi sent

}
, (4)

and

Pe|m(C(n)) =
1

My

My−1∑

i=0

Pr {m̃(Z) 6= m|xmi sent} , (5)

where in both definitions, Pr{·} designates the probability
measure associated with the randomness of the channel outputs
given its input, and the randomness of the stochastic decoders.
Moreover, the error probabilities are defined to be zero when-
ever the blocklength is such that no code can be generated.
Our main objective is to prove the existence of sequences of
HCC codes C = {C(n)}∞n=1 and obtain the tightest possible
single–letter expressions that lower bound the following limits

Esu(C )
∆
= lim inf

n→∞

[
− 1
n log maxm,i Pe|mi(C(n))

]
, (6)

Ewu(C )
∆
= lim inf

n→∞

[
− 1
n log maxm Pe|m(C(n))

]
, (7)

both for the ML decoder and the GLD.
In a recent paper [5], exact random coding error exponents

have been derived for both users of the ABC. We may expect
to improve these error exponents, at least when one of the
coding rates is low, by code expurgation. In this paper, we
derive expurgated exponents for the ABC under ML decoding

in two different methods. In addition, we discuss the GLD,
that enables us to achieve the best between the random coding
bound and one of the ML–based expurgated bounds.

IV. MAIN RESULTS

A. Maximum Likelihood Decoding

For maximum likelihood decoding, we distinguish between
two different methods of expurgation for the HCC ensemble.
The first method is based on the following technique of
expurgation: we randomly draw a HCC codebook, and then
simultaneously expurgate both bad clouds and bad codewords
within the remaining clouds. The resulting expurgated bounds
are given in Theorem 1. In order to state our first theorem,
we start with the following definitions. We define the sets
S ∆

= {QUXX′ : QUX′ = QUX = PUX} and P ∆
=

{QUU ′XX′ : QU ′X′ = QUX = PUX}, and the averaged
Chernoff distance function by

Ds(QXX′)
∆
= −EQ log

[∑
y∈Y

W 1−s(y|X) ·W s(y|X ′)
]
.

For the weak user, define an error exponent function as

EML1
wu (Ry, Rz)

∆
= max

0≤t≤1
min

QUU′XX′∈P
IQ(UX;U ′X′)≤2Ry+Rz

[IQ(UX;U ′X ′)

+Dt(QXX′)]−Ry −Rz. (8)

Next, for the strong user we define the following error expo-
nent functions

EML1
su-1 (Ry, s)

∆
= min
{QUXX′∈S: IQ(X;X′|U)≤Ry}

[IQ(X;X ′|U)

+Ds(QXX′)]−Ry, (9)

EML1
su-2 (Ry, Rz, s)

∆
= min

QUU′XX′∈P
IQ(UX;U ′X′)≤Ry+Rz

[IQ(UX;U ′X ′)

+Ds(QXX′)]−Ry −Rz, (10)

EML1
su (Ry, Rz)

∆
= max

0≤s≤1
min {EML1

su-1 (Ry, s), E
ML1
su-2 (Ry, Rz, s)} .

Theorem 1. There exists a sequence C of HCC codes, with
a rate pair (Ry, Rz) for which both

Esu(C ) ≥ EML1
su (Ry, Rz) and Ewu(C ) ≥ EML1

wu (Ry, Rz). (11)

The second method is somewhat different, and the idea
behind it is the following. At the first step, we expurgate sub-
codes, merely according to their cloud–centers. Then, at the
second step, we fix the set of cloud–centers of the remaining
clouds from the first step, and then expurgate specific code-
words, as well as clouds, according to some collective behavior
of their codewords. The resulting expurgated bounds are given
in Theorem 2, and as can be seen below, the expressions are
more complicated than those of Theorem 1, at least for the
weak user.

In order to state our second theorem, we need a few
definitions. For a given marginal QUZ , let S(QUZ) de-
note the set of conditional distributions {QX|UZ} such
that

∑
z QUZ(u, z)QX|UZ(x|u, z) = PUX(u, x) for every
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(u, x) ∈ U × X , where PUX = PU × PX|U . We denote
t̄ = 1− t. For the weak user, define

D̂t(Ry, QUU ′)
∆
= min
QZ|UU′

min
QX|UZ∈S(QUZ)

min
QX′|U′Z∈S(QU′Z)

{t̄ ·D(QZ|UX‖WZ|X |QUX) + t̄ · IQ(Z;U ′|U)

+ t ·D(QZ|U ′X′‖WZ|X′ |QU ′X′) + t · IQ(Z;U |U ′)
+ t · [IQ(X;Z|U)−Ry]+ + t̄ · [IQ(X ′;Z|U ′)−Ry]+}.

We define the set Q ∆
= {QUU ′ : QU = QU ′ = PU} and an

error exponent function

EML2
wu (Ry, Rz)

∆
= max

0≤t≤1
min

{QUU′∈Q: IQ(U ;U ′)≤Rz}
[IQ(U ;U ′)

+ D̂t(Ry, QUU ′)]−Rz. (12)

Next, for the strong user we define the following error expo-
nent functions

EML2
su-1 (Ry, s)

∆
= min
{QUXX′∈S: IQ(X;X′|U)≤Ry}

[IQ(X;X ′|U)

+Ds(QXX′)]−Ry, (13)

EML2
su-2 (Ry, Rz, s)

∆
= min
{QUU′XX′∈P: IQ(U ;U ′)≤Rz}

[IQ(UX;U ′X ′)

+Ds(QXX′)]−Ry −Rz, (14)

EML2
su (Ry, Rz)

∆
= max

0≤s≤1
min {EML2

su-1 (Ry, s), E
ML2
su-2 (Ry, Rz, s)} .

Theorem 2. There exists a sequence C of HCC codes, with
a rate pair (Ry, Rz) for which both

Esu(C ) ≥ EML2
su (Ry, Rz) and Ewu(C ) ≥ EML2

wu (Ry, Rz). (15)

Discussion: First, all of the expressions in Theorems 1 and 2
generalize the well–known CKM expurgated bound [6]. For
example, it can be easily recovered from EML1

wu (Ry, Rz), when
degenerating the hierarchical codebook by choosing Ry = 0,
as well as PX|U (x|u) = δ(x− u) (X = U).

Concerning the strong user, each bound is given by the mini-
mum between two different expressions. The first expression is
related to error events within the cloud of the true codeword.
In fact, we have that EML1

su-1 (Ry, s) = EML2
su-1 (Ry, s), where the

difference is given by the second components, EML1
su-2 (Ry, Rz, s)

and EML2
su-2 (Ry, Rz, s), for which the expurgation method cause

a change in the final expressions. Although the objectives in
(10) and (14) are the same, the constraints are different, and
are not subsets of each other.

Concerning the weak user, the situation is much more com-
plicated, because of the structure of the optimal decoder. The
derivation in the proof of Theorem 1 contains the following
inequality that may harm the tightness of the bound:

[∑
x∈C

W2(z|x)
]1−t

·
[∑

x′∈C′
W2(z|x′)

]t

≤
∑

x∈C

∑
x′∈C′

W 1−t
2 (z|x) ·W t

2(z|x′). (16)

Because of this passage, the bound of Theorem 1 is inferior
to the bound of Theorem 2, at relatively high values of Ry .
Specifically, the expression given in Theorem 2 reaches a
plateau at high Ry , while the expression of Theorem 1 reaches

zero. In this regime, there is no loss in the exponent of the
weak user if its decoder treats the satellites codewords as noise.
In this event, the satellite-rate is immaterial, and the exponent
of the weak user only depends on Rz . One should note that the
improvement at high rates is obtained by expressions which
are more complicated to compute. However, the resulting
exponent of Theorem 1 still outperforms the result of Theorem
2, at least for relatively low Ry values (see Fig. 1).

We next provide some numerical results (Fig. 1), compar-
ing our expurgated bounds for the weak user, as given by
Theorems 1 and 2. Let W1 and W2 be two binary symmetric
channels (BSC) with crossover parameters py = 0.0005 and
pz = 0.001, respectively. Let U be binary as well and let PU
be uniformly distributed over {0, 1}. Also, let PX|U be a BSC
with crossover parameter px|u = 0.15.

Fig. 1. Expurgated bounds for the weak user (Rz = 0).

B. Generalized Stochastic Likelihood Decoding

As was already mentioned earlier, the GLD enables us
to make a tighter derivation for the probability of error,
and therefore, the resulting expurgated bounds are strictly
tighter, at least at relatively high rates. The drawback of the
expressions of Theorem 3 is that they are quite cumbersome,
at least when compared to those of Theorems 1 or 2. In order
to characterize the expurgated bounds of the GLD, we define
first a few quantities. Let

φ(Ry, QUY )
∆
= max
{QX|UY : IQ(X;Y |U)≤Ry}

[g(Q)− IQ(X;Y |U)] +Ry,

ψ(Ry, Rz, QY )
∆
= max
QUX|Y : IQ(U ;Y )≤Rz

IQ(UX;Y )≤Rz+Ry

[g(Q)− IQ(UX;Y )] +Rz +Ry.

Also, define

Υ(QUXX′ , Ry, Rz)
∆
= min
QY |UXX′

(
D(QY |UX‖WY |X |QUX)

+ IQ(X ′;Y |UX) + [max{g(QUXY ), φ(Ry, QUY ),

ψ(Ry, Rz, QY )} − g(QUX′Y )]+

)
, (17)
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Ω(QUU ′XX′ , Ry, Rz)
∆
= min
QY |UU′XX′

(
D(QY |UX‖WY |X |QUX)

+ IQ(U ′X ′;Y |UX) + [max{g(QUXY ), φ(Ry, QUY ),

ψ(Ry, Rz, QY )} − g(QU ′X′Y )]+

)
. (18)

We define the following error exponent functions. For the weak
user,

EGLD
wu (Ry, Rz)

∆
= min
QUU′XX′∈P: IQ(U ;U ′)<Rz

IQ(UX;U ′X′)<2Ry+Rz

[IQ(UX;U ′X ′)

+ Ω(Q,Ry, Rz)]−Ry −Rz, (19)

and for the strong user

EGLD
su-1 (Ry, Rz)

∆
= min
{QUXX′∈S: IQ(X;X′|U)<Ry}

[IQ(X;X ′|U)

+ Υ(Q,Ry, Rz)]−Ry, (20)

EGLD
su-2 (Ry, Rz)

∆
= min
QUU′XX′∈P: IQ(UX;U ′)<Rz

IQ(UX;U ′X′)<Ry+Rz

[IQ(UX;U ′X ′)

+ Ω(Q,Ry, Rz)]−Ry −Rz, (21)

EGLD
su (Ry, Rz)

∆
= min {EGLD

su-1 (Ry, Rz), E
GLD
su-2 (Ry, Rz)} . (22)

Theorem 3. There exists a sequence C of HCC codes, with
a rate pair (Ry, Rz) for which both

Esu(C ) ≥ EGLD
su (Ry, Rz) and Ewu(C ) ≥ EGLD

wu (Ry, Rz). (23)

Discussion
• An expurgated bound for the GLD in the single user

regime has been derived by Merhav [8]. It should be noticed
that the resulting expressions of Theorem 3, as well as
some parts of its proof (in [11, Section 7]) are nontrivial
generalizations of the single–user case.
• The expression of (19) has the same structure as (8),

except that here the functional Ω(Q,Ry, Rz) replaces the
expected Chernoff distance, and an additional constraint
(IQ(U ;U ′) < Rz) has been added. We prove in [11, Appendix
A] that at least for the choice g(Q) = EQ logW2(Z|X),
EGLD

wu (Ry, Rz) is at least as tight as EML1
wu (Ry, Rz).

• One of the main advantages of the GLD, is the fact that
the derivation of its probability of error may be exponentially
tighter than the derivations in the proofs of Theorems 1 or
2. As a consequence, we show in [11, Appendix B] that
EGLD

wu (Ry, Rz) cannot be smaller than the random coding
error exponent of the weak user at any pair of rates, by
examining the former for the suboptimal universal metric
g(Q) = IQ(UX;Z). We conclude that EGLD

wu (Ry, Rz) is at
least as tight as the maximum between EML1

wu (Ry, Rz) and the
random coding exponent, ERC

wu (Ry, Rz).
• The same can be proved for the strong user, i.e.,

that EGLD
su (Ry, Rz) is at least as tight as the maximum be-

tween EML1
su (Ry, Rz) and the random coding error exponent,

ERC
su (Ry, Rz). We conclude, that there exist a HCC codebook,

for which one user works in the “expurgated region”, while the
other user works in the “random coding region”. For example,
it may be the case when the channel to the strong user is quite
clean, while the channel to the weak user is very noisy.

• We were not able to determine whether the bound of
Theorem 3 is at least as tight as the maximum between the
bounds of the first two theorems, although we conjecture that it
is indeed the case when choosing one of the decoding metrics
g(Q) = βEQ logW2(Z|X) or g(Q) = βIQ(UX;Z), and
letting β →∞.

V. PROOF SKETCH OF THEOREM 1
We start by proving that for any s, t ∈ [0, 1]

Pe|mi(C(n)) ≤
∑

Q∈S
N IN
mi(Q, C(n)) · e−nDs(QXX′ )

+
∑

Q∈P
N OUT
mi (Q, C(n)) · e−nDs(QXX′ ), (24)

Pe|m(C(n)) ≤ 1

My

∑

Q∈P
N̂m(Q, C(n)) · e−nDt(QXX′ ), (25)

where N IN
mi(Q, C(n)), N OUT

mi (Q, C(n)) and N̂m(Q, C(n)) are
suitable type–class enumerators1. By using the method of
types and Markov’s inequality, it is proved that for every ε > 0
and all sufficiently large n, there exists a code C(n) with a
rate pair (Ry, Rz), that satisfies, for every (m, i) and every Q,

N IN
mi(Q, C(n)) ≤ N IN

ε (Q), (26a)
N OUT
mi (Q, C(n)) ≤ N OUT

ε (Q), (26b)

N̂m(Q, C(n)) ≤ N̂ε(Q). (26c)

Upon substituting these deterministic upper bounds back into
(24) and (25), we conclude the bounds given in Theorem 1.
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Abstract—In this work, we study the arbitrarily varying
broadcast channel (AVBC), when state information is available
at the transmitter in a causal manner. We establish inner and
outer bounds on both the random code capacity region and
the deterministic code capacity region with degraded message
sets. The capacity region is then determined for a class of
channels satisfying a condition on the mutual informations
between the strategy variables and the channel outputs. As an
example, we consider the arbitrarily varying binary symmetric
broadcast channel with correlated noises. We show cases where
the condition holds, hence the capacity region is determined, and
other cases where there is a gap between the bounds.

Index Terms—Arbitrarily varying channel, broadcast channel,
degraded message sets, causal state information, Shannon strate-
gies, side information, minimax theorem, deterministic code,
random code, symmetrizability.

I. INTRODUCTION

The arbitrarily varying channel (AVC) was first introduced
by Blackwell et al. [3] to describe a communication channel
with unknown statistics, that may change over time. It is often
described as communication in the presence of an adversary,
or a jammer, attempting to disrupt communication.

The arbitrarily varying broadcast channel (AVBC) without
side information (SI) was first considered by Jahn [8], who
derived an inner bound on the random code capacity region,
namely the capacity region achieved by encoder and decoders
with a random experiment, shared between the three parties.
As indicated by Jahn, the arbitrarily varying broadcast channel
inherits some of the properties of its single user counterpart. In
particular, the random code capacity region is not necessarily
achievable using deterministic codes [3]. Furthermore, Jahn
showed that the deterministic code capacity region either
coincides with the random code capacity region or else, it
has an empty interior [8]. This phenomenon is an analogue of
Ahlswede’s dichotomy property [1]. Then, in order to apply
Jahn’s inner bound, one has to verify whether the capacity
region has non-empty interior or not. As observed in [7], this
can be resolved using the results of Ericson [6] and Csiszár and
Narayan [5]. Specifically, a necessary and sufficient condition

This research was supported by the Israel Science Foundation (grant No.
1285/16).

for the capacity region to have a non-empty interior is that
both users marginal channels are non-symmetrizable.

Various models of interest involve SI available at the
encoder. In [12], the arbitrarily varying degraded broadcast
channel with non-causal SI is addressed, using Ahlswede’s
Robustification and Elimination Techniques [2]. The single
user AVC with causal SI was addressed by Csiszár and Körner
[4], while their approach is independent of Ahlswede’s work.
A straightforward application of Ahlswede’s Robustification
Technique (RT) would violate the causality requirement.

In this work, we study the AVBC with causal SI available
at the encoder. We extend Ahlswede’s Robustification and
Elimination Techniques [1, 2], originally used in the setting of
non-causal SI. In particular, we derive a modified version of
Ahlswede’s RT for the setting of causal SI. In a recent paper
by the authors [10], a similar proof technique is applied to
the arbitrarily varying degraded broadcast channel with causal
SI. Here, we generalize those results, and consider a general
broadcast channel with degraded message sets with causal SI.

We establish inner and outer bounds on the random code
and deterministic code capacity regions. Furthermore, we give
conditions on the AVBC under which the bounds coincide,
and the capacity region is determined. As an example, we
consider the arbitrarily varying binary symmetric broadcast
channel with correlated noises. We show that in some cases,
the conditions hold and the capacity region is determined.
Whereas, in other cases, there is a gap between the bounds.
A full manuscript with proofs can be found in [9].

II. DEFINITIONS AND PREVIOUS RESULTS

A. Channel Description

A state-dependent broadcast channel (BC) consists of finite
input, state and outputs alphabets X , S , and Y1×Y2, resepec-
tively, and a collection of probability functions WY1,Y2|X,S .
The channel is memoryless without feedback, and therefore

WY n1 ,Y
n
2 |Xn,Sn(yn1 , y

n
2 |xn, sn) =
n∏

i=1

WY1,Y2|X,S(y1,i, y2,i|xi, si) . (1)

The marginals WY1|X,S and WY2|X,S correspond to User 1 and
User 2 respectively. When causal SI is available, the channel
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input at time i may depend on the sequence of past and present
states si. The AVBC is a BC WY1,Y2|X,S with a state sequence
Sn ∼ q(sn), with an unknown joint probability mass function
(pmf) q(sn), not necessarily independent nor stationary. We
denote the AVBC with causal SI by B = {WY1,Y2|X,S}.

To analyze the AVBC, we consider the compound BC,
defined as a BC with a discrete memoryless state, where the
state distribution q(s) belongs to a given set Q ⊆ P(S), where
P(S) is the space of all state distributions. We denote the
compound BC with causal SI by BQ.

B. Coding

Deterministic and random codes are defined below, where
a deterministic code is also referred to simply as ‘code’.

Definition 1. A (2nR0 , 2nR1 , n) code for the AVBC B with
degraded message sets with causal SI consists of the following;
two message sets [1 : 2nR0 ] and [1 : 2nR1 ], assuming 2nR0

and 2nR1 are integers, a sequence of n encoding functions
fi : [1 : 2nR0 ] × [1 : 2nR1 ] × Si → X , i ∈ [1 : n], and two
decoding functions, g1 : Yn1 → [1 : 2nR0 ] × [1 : 2nR1 ] and
g2 : Yn2 → [1 : 2nR0 ]. At time i ∈ [1 : n], given a pair of
messages (m0,m1) ∈[1 : 2nR0 ] × [1 : 2nR1 ] and a sequence
si, the encoder sends xi = fi(m0,m1, s

i). Decoder 1 receives
yn1 , and finds an estimate for the message pair (m̂0, m̂1) =
g1(yn1 ). Decoder 2 only estimates the common message with
m̃0 = g2(yn2 ). We denote the code by C = (fn, g1, g2).

Define the conditional probability of error given sn ∈ Sn,

P
(n)
e|sn(C ) =

1

2n(R0+R1)

2nR0∑

m0=1

2nR1∑

m1=1

∑

D(m0,m1)c

WY n1 ,Y
n
2 |Xn,Sn(yn1 , y

n
2 |fn(m0,m1, s

n), sn) , (2)

where D(m0,m1) ,
{

(yn1 , y
n
2 ) : g1(yn1 ) = (m0,m1),

g2(yn2 ) = m0

}
. Now, define the average probabil-

ity of error for a distribution q(sn), by P
(n)
e (q,C ) =∑

sn∈Sn q(s
n)P

(n)
e|sn(C ). We say that C is a (2nR0 , 2nR1 , n, ε)

code if P (n)
e (q,C ) ≤ ε, for all q(sn) ∈ P(Sn) . Achievable

rate pairs and the capacity region C(B) are defined as usual.

Definition 2. A (2nR0 , 2nR1 , n) random code for the AVBC
with causal SI consists of a collection of (2nR0 , 2nR1 , n)
codes {Cγ = (fnγ , g1,γ , g2,γ)}γ∈Γ, along with a probability
distribution µ(γ) over the code collection Γ. We denote such
a code by C Γ. Similarly, a (2nR0 , 2nR1 , n, ε) random code
satisfies P (n)

e (q,C Γ) =
∑
γ∈Γ µ(γ)P

(n)
e (q,Cγ) ≤ ε, for all

q(sn) ∈ P(Sn). The random code capacity region is denoted
by C?(B), where the superscript ‘ ? ’ stands for random code
achievability. The definitions above are naturally extended to
the compound BC, by limiting the requirements to i.i.d. state
distributions in Q. The corresponding capacity regions are
denoted by C(BQ) and C?(BQ). Next, define superposition
coding using Shannon strategies [11].

Definition 3. A (2nR0 , 2nR1 , n) Shannon strategy code con-
sists of two strategy sequences, un0 : [1 : 2nR0 ]→ Un0 and un1 :
[1 : 2nR0 ] × [1 : 2nR1 ] → Un1 , an encoding function ξ : U0 ×

U1×S → X , and decoding functions g1(yn1 ) and g2(yn2 ). The
codeword is given by xn = ξn(un0 (m0), un1 (m0,m1), sn) ,[
ξ(un0,i(m0), un1,i(m0,m1), si)

]n
i=1

.

C. In the Absence of Side Information

Denote the AVBC without SI by B0, and let

R?0,in ,
⋃

p(x,u)

⋂

q(s)





(R0, R1) : R0 ≤ Iq(U ;Y2) ,
R1 ≤ Iq(X;Y1|U) ,

R0 +R1 ≤ Iq(X;Y1)





(3)

Theorem 1 (Jahn’s Inner Bound [8]). The random code capac-
ity region of an AVBC B0 with degraded message sets without
SI is inner bounded by R?0,in. That is, C?(B0) ⊇ R?0,in.

Theorem 2 (Dichotomy [8]). The capacity region of B0 either
coincides with the random code capacity region or else, its in-
terior is empty, i.e. C(B0) = C?(B0) or else, int

(
C(B0)

)
= ∅.

A necessary and sufficient condition for int
(
C(B0)

)
6= ∅ is

given in terms of the following. A DMC WY |X,S is said to
be symmetrizable if for some conditional distribution J(s|x),
∑

s∈S
WY |X,S(y|x1, s)J(s|x2) =

∑

s∈S
WY |X,S(y|x2, s)J(s|x1) , (4)

for all x1, x2 ∈ X and y ∈ Y . Then, int
(
C(B0)

)
6= ∅ if and

only if WY1|X,S and WY2|X,S are not symmetrizable [6, 5, 7].

III. MAIN RESULTS

We present our results below.

A. The Compound BC with Causal SI

Define

Rin(BQ) ,
⋃

p(u0,u1),
ξ(u0,u1,s)

⋂

q∈Q





(R0, R1) : R0 ≤ Iq(U0;Y2) ,
R1 ≤ Iq(U1;Y1|U0) ,

R0 +R1 ≤ Iq(U0, U1;Y1)





(5)

Rout(BQ) ,
⋂

q∈Q

⋃

p(u0,u1),
ξ(u0,u1,s)





(R0, R1) : R0 ≤ Iq(U0;Y2) ,
R1 ≤ Iq(U1;Y1|U0) ,

R0 +R1 ≤ Iq(U0, U1;Y1)





(6)

s.t. X = ξ(U0, U1, S), where U0 and U1 are auxiliary random
variables, independent of S, and the union is over the pmf
p(u0, u1) and the set of all functions ξ : U0 × U1 × S → X .

Lemma 3. 1) If (R0, R1) ∈ Rin(BQ), then for some
a > 0 and sufficiently large n, there exists a
(2nR0 , 2nR1 , n, e−an) Shannon strategy code over the com-
pound BC BQ with causal SI.
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2) C(BQ) = Rout(BQ) if int
(
C(BQ)

)
6= ∅.

Lemma 3 is partially proved in Section V. The full proof is
available in [9].
Remark 1. A BC Bq with random parameters, governed by
a memoryless state S ∼ q(s), for a given q ∈ P(S), is a
special case of the above. By Theorem 3, the capacity region
of Bq with degraded message sets with causal SI is given by
Rout(BQ), with Q = {q}.
B. The AVBC with Causal SI

We give inner and outer bounds, on the random code
and deterministic code capacity regions, and conditions under
which the bounds coincide. Define

R?in , Rin(BP(S)) , R?out , Rout(BP(S)). (7)

We define a condition in terms of the following.
Definition 4. We say that a function ξ(u0, u1, s) and a set
D ⊆ P(U0 × U1) achieve R?in and R?out if

R?in =

⋃

p∈D

⋂

q(s)





(R0, R1) : R0 ≤ Iq(U0;Y2) ,
R1 ≤ Iq(U1;Y1|U0) ,

R0 +R1 ≤ Iq(U0, U1;Y1)



 ,

(8a)
R?out =

⋂

q(s)

⋃

p∈D





(R0, R1) : R0 ≤ Iq(U0;Y2) ,
R1 ≤ Iq(U1;Y1|U0) ,

R0 +R1 ≤ Iq(U0, U1;Y1)



 ,

(8b)

s.t. X = ξ(U0, U1, S). That is, the unions in (5) and (6),
taking Q = P(S), can be restricted to the particular function
ξ(u0, u1, s) and set D.

Given a function ξ(u0, u1, s), if a set D achieves R?in and
R?out, then every set D′ ⊇ D achieves those regions. Yet, the
condition below may hold with D, but not D′.
Definition 5. Define the condition T ; for some ξ(u0, u1, s)
and D? that achieve R?in and R?out, there exists q∗ ∈
P(S) which minimizes Iq(U0;Y2), Iq(U1;Y1|U0), and
Iq(U0, U1;Y1), for all p(u0, u1) ∈ D? .

Intuitively, when T holds, q∗(s) is the worst jamming
strategy for both users simultaneously.
Theorem 4. 1) The random code capacity region of B with

degraded message sets with causal SI is bounded by

R?in ⊆ C?(B) ⊆ R?out . (9)

2) If Condition T holds, C?(B) = R?in = R?out.
Theorem 4 is partially proved in Section VI. The full proof

is available in [9]. We move to the deterministic code capacity
region, which demonstrates a dichotomy property.
Theorem 5. The capacity region of an AVBC B with degraded
message sets with causal SI either coincides with the random
code capacity region or else, it has an empty interior. That is,
C(B) = C?(B) or else, int

(
C(B)

)
= ∅.

Theorem 5 is proved in [9]. Theorem 4 and Theorem 5 yield
the following corollary.
Corollary 6.

C(B) ⊇ R?in , if int
(
C(B)

)
6= ∅ , (10)

C(B) ⊆ R?out . (11)

A sufficient condition for int
(
C(B)

)
6= ∅ is given by

the following. Let U = (U0, U1), hence U = U0 × U1.
For every pair of functions ξ : U × S → X and ξ′ :
U0×S → X , define V ξY1|U,S(y1|u, s) = WY1|X,S(y1|ξ(u, s), s)
and V ξ

′

Y2|U0,S
(y2|u0, s) = WY2|X,S(y2|ξ′(u0, s), s).

Corollary 7. If V ξY1|U,S and V ξ
′

Y2|U0,S
are non-symmetrizable

for some ξ : U ×S → X and ξ′ : U0×S → X , and Condition
T holds, then C(B) = R?in = R?out.

IV. EXAMPLE

Consider an arbitrarily varying binary symmetric broadcast
channel (BSBC) with correlated noises,

Y1 =X + ZS mod 2 , Y2 = X +NS mod 2 ,

where X,Y1, Y2, S, ZS , NS are binary, and

Zs ∼Bernoulli(θs) , Ns ∼ Bernoulli(εs) , for s ∈ {0, 1} ,
where S,Z0, Z1, N0, N1 are independent, with θ0 ≤ ε0 ≤ 1

2
and 1

2 ≤ ε1 ≤ θ1. Although Y2 is degraded given S = s,
we note that this channel is not degraded in the sense defined
in [10]. We have the following results. First, without SI, the
capacity region is C(B0) = {(0, 0)}. For the setting where
causal SI is available at the encoder, we consider two cases.

Case 1: Suppose that θ0 ≤ 1− θ1 ≤ ε0 ≤ 1− ε1 ≤ 1
2 , i.e.

S = 1 is a noisier channel state than S = 0, for both users.
Then, our derivation shows that Condition T holds, and the
capacity region with causal SI is given by

C(B) =
⋃

0≤β≤1

{
(R0, R1) : R0 ≤ 1− h(β ∗ ε1) ,

R1 ≤ h(β ∗ θ1)− h(θ1)

}
,

(12)

where h(·) is the binary entropy function and α ∗ β , (1 −
α)β + α(1− β). The derivation of the results is given in [9].

Figure 1 provides a graphical interpretation. Let C(Bq)
denote the capacity region of a BSBC WY1,Y2|X,S with causal
SI governed by an i.i.d. state S ∼ Bernoulli(q), for a given
0 ≤ q ≤ 1. Condition T implies that there exists 0 ≤ q∗ ≤ 1
such that C(Bq∗) ⊆ C(Bq) for all 0 ≤ q ≤ 1, hence,
C(B) = C(Bq∗). Indeed, looking at Figure 1, it appears that
the regions C(Bq), for 0 ≤ q ≤ 1, form a well ordered set,
hence C(B) = C(Bq∗) with q∗ = 1.

Case 2: Suppose that θ0 ≤ 1 − θ1 ≤ 1 − ε1 ≤ ε0 ≤ 1
2 ,

i.e. S = 1 is noisier for User 1, while S = 0 is noisier for
User 2. Figure 2(a) demonstrates the gap between the bounds
in this case. In Figure 2(b), the dashed and dotted lines depict
C(Bq=0) and C(Bq=1) respectively. The colored lines depict
C(Bq) for 0 < q < 1. It appears that the intersection R?out =⋂

0≤q≤1C(Bq) reduces to C(Bq=0) ∩ C(Bq=1).
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Fig. 1. The capacity region of the arbitrarily varying binary symmetric
broadcast channel with correlated noises, in case 1. The area below the
lowest curve is the capacity region of the AVBC B with causal SI, with
θ0 = 0.12, θ1 = 0.85, ε0 = 0.18 and ε1 = 0.78. The curves depict C(Bq)
for q = 0, 1/3, 2/3, 1. The capacity region is C(B) = C(Bq=1).

(a) Inner and outer bounds

(b) The regions C(Bq), 0 ≤ q ≤ 1

Fig. 2. The inner and outer bounds on the capacity region of the arbitrarily
varying binary symmetric broadcast channel with correlated noises, in case 2,
with θ0 = 0.12, θ1 = 0.85, ε0 = 0.22 and ε1 = 0.88.

V. PROOF OF LEMMA 3

Consider part 1. We use superposition coding with Shannon
strategies, and decode using joint typicality with respect to a
state type which is “close” to some q ∈ Q. Let δ > 0. Basic
method of types concepts, such as a δ-typical set Aδ(PX), are
defined as in [4]. Also, define a set of state types,

Q̂n =
{
P̂sn : sn ∈ Aδ1(q) , for some q ∈ Q

}
, (13)

i.e. the set of types that are δ1-close to some q(s) in Q, with
δ1 , δ

2·|S| . Now, a code for the compound BC with causal SI
is constructed as follows.

Codebook Generation: Fix PU0,U1
and ξ(u0, u1, s). Gen-

erate 2nR0 independent sequences at random, un0 (m0) ∼∏n
i=1 PU0

(u0,i) for m0 ∈ [1 : 2nR0 ]. Then, for every
m0 ∈ [1 : 2nR0 ], generate 2nR1 sequences at random,

un1 (m0,m1) ∼ ∏n
i=1 PU1|U0

(u1,i|u0,i(m0)) for m1 ∈ [1 :
2nR1 ], conditionally independent given un0 (m0).

Encoding: To send (m0,m1), transmit xi = ξ(u0,i(m0),
u1,i(m0,m1), si) at time i ∈ [1 : n].

Decoding: Let P qY1,Y2|U0,U1
(y1, y2|u0, u1) =

∑
s∈S q(s)·

WY1,Y2|X,S (y1, y2|ξ(u0, u1, s), s). Observing yn2 , decoder 2
finds a unique m̃0 ∈ [1 : 2nR0 ] such that (un0 (m̃0), yn2 ) ∈
Aδ(PU0P

q
Y2|U0

) for some q ∈ Q̂n. If there is none,
or more than one such message, declare an error. Simi-
larly, decoder 1 finds a unique pair (m̂0, m̂1) such that
(un0 (m̂0), un1 (m̂0, m̂1), yn1 ) ∈ Aδ(PU0,U1

P qY1|U0,U1
) for some

q ∈ Q̂n. If there is none, or more than one, declare an error.
Analysis of Probability of Error: Assume w.l.o.g. that the

users sent (M0,M1) = (1, 1). Let q(s) ∈ Q denote the actual
state distribution chosen by the jammer. The error event for
decoder 2 is the union of the following events.

E2,1 ={(Un0 (1), Y n2 ) /∈ Aδ(PU0
P q
′

Y2|U0
) , for all q′ ∈ Q̂n}

E2,2 ={(Un0 (m0), Y n) ∈ Aδ(PU0P
q′

Y2|U0
) ,

for some m0 6= 1, q′ ∈ Q̂n} (14)

We now claim that E2,1 implies that

(Un0 (1), Y n2 ) /∈ Aδ/2(PU0
P q
′′

Y2|U0
) , for all q′′ ∈ Q . (15)

Indeed, assume to the contrary that E2,1 holds but
(Un0 (1), Y n2 ) ∈ Aδ/2(PU0

P q
′′

Y2|U0
) for some q′′ ∈ Q. Then,

for sufficiently large n, there exists a type q′(s) such that
|q′(s) − q′′(s)| ≤ δ1. Thus, q′ ∈ Q̂n (see (13)), and
|P q

′

Y2|U0
(y2|u0)− P q

′′

Y2|U0
(y2|u0)| ≤ δ

2 . Hence, (Un0 (1), Y n2 ) ∈
Aδ(PU0P

q′

Y2|U0
), which contradicts E2,1. Thus,

Pr (E2,1) ≤ Pr
(

(Un0 (1), Y n2 ) /∈ Aδ/2(PU0
P qY2|U0

)
)
. (16)

The last expression tends to zero exponentially as n→∞ by
the law of large numbers and Chernoff’s bound. Now,

Pr (E2,2) ≤ (n+ 1)|S| · 2nR0

· sup
m0 6=1,q′∈Q̂n

Pr
{

(Un0 (m0), Y n2 ) ∈ Aδ(PU0P
q′

Y2|U0
)
}
. (17)

Since Un0 (m0) is independent of Y n2 for every m0 6= 1,

Pr
(

(Un0 (m0), Y n2 ) ∈ Aδ(PU0P
q′

Y2|U0
)
)

=
∑

un0∈Un2

PUn0 (un0 ) ·
∑

yn2 : (un0 ,y
n
2 )∈Aδ(PU0

P q
′
Y2|U0

)

P qY n2
(yn2 ) (18)

If (un0 , y
n
2 ) ∈ Aδ(PU0

P q
′

Y2|U0
), then by [4, Lemmas 2.6–2.7],

for some arbitrarily small ε1 > 0,

P qY n2
(yn2 ) ≤ 2

−nH(P̂yn2
) ≤ 2−n(Hq′ (Y2)−ε1) . (19)

Therefore, by (17)−(19) and [4, Lemma 2.13],

Pr (E2,2) ≤ (n+ 1)|S| · sup
q′∈Q

2−n[Iq′ (U0;Y2)−R0−ε2] , (20)

which tends to zero exponentially as n → ∞, provided
that R0 < infq′∈Q Iq′(U0;Y2) − ε2. It remains to bound
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the probabilty of error for User 1. Using the standard tech-
niques in conjuction with the arguements above, we find
that the probability of error decays exponentially, provided
that R1 < infq′∈Q Iq′(U1;Y1|U0) − ε3 and R0 + R1 <
infq′∈Q Iq′(U0, U1;Y1)− ε4.

Achievability for Part 2 is proved using a similar coding
scheme, with the addition of a codeword suffix. At time i =
n + 1, having completed the transmission of the messages,
the type of the state sequence sn is known to the encoder. If
int
(
C(BQ)

)
6= ∅, the type of sn can be reliably communicated

to both receivers as a suffix of negligible length. The receivers
first estimate the type, and then use joint typicality with respect
to the estimated type. We note that this does not agree with the
definition of a Shannon strategy code, since the transmission
of the type depends upon previous states. The details and the
converse proof for part 2 are omitted, due to lack of space.

VI. PROOF OF THEOREM 4

Let (R0, R1) ∈ R?in. To prove the inner bound, we begin
with Ahlswede’s RT, stated below. Let ϕ : Sn → [0, 1] be
a given function. If, for some fixed αn ∈ (0, 1), and for all
q(sn) =

∏n
i=1 q(si), with q ∈ P(S),

∑

sn∈Sn
q(sn)ϕ(sn) ≤ αn , (21)

then, 1
n!

∑
π∈Πn

ϕ(πsn) ≤ (n+ 1)|S|αn, for all sn ∈ Sn, where

Πn is the set of all n-tuple permutations π : Sn → Sn. Let
C be a Shannon strategy code (see Definition 3) as in part 1
of Lemma 3. Hence, (21) holds with ϕ(sn) = P

(n)
e|sn(C ) and

αn = e−an. Thus, by Ahlswede’s RT, for every sn ∈ Sn,

1

n!

∑

π∈Πn

P
(n)
e|πsn(C ) ≤ (n+ 1)|S|e−an ≤ e−θn (22)

for large n, with some θ > 0. On the other hand, For every π ∈
Πn, P (n)

e|πsn(C ) = 1
2n(R0+R1)

∑
m0,m1

e(m0,m1, πs
n), where

e(m0,m1, πs
n)

(a)
=

∑

(πyn1 ,πy
n
2 )/∈D
Wn(yn1 , y

n
2 |π−1ξn(un0 , u

n
1 , πs

n), sn)

(b)
=

∑

(πyn1 ,πy
n
2 )/∈D
Wn(yn1 , y

n
2 |ξn(π−1un0 , π

−1un1 , s
n), sn) (23)

where we have used the short notations Wn ≡WY n1 ,Y
n
2 |Xn,Sn ,

D ≡ D(m0,m1), un0 ≡ un0 (m0), un1 ≡ un1 (m0,m1);
in (a) we change the summation order and use the
fact the channel is memoryless, and (b) follows since
for a Shannon strategy code, xi = ξ(u0,i, u1,i, si).
Then, consider the random code C Π, specified by
fnπ (m0,m1, s

n) = ξn(π−1un0 (m0), π−1un1 (m0,m1), sn)
and gk,π(ynk ) = gk(πynk ), k = 1, 2, for π ∈ Πn, with
µ(π) = 1

n! . Such permutations can be implemented
without knowing sn, hence this coding scheme does not
violate the causality requirement. From (23), we see that
P

(n)
e|sn(C Π) =

∑
π∈Πn

µ(π)P
(n)
e|πsn(C ), for all sn ∈ Sn, hence

by (22), we have that the probability of error is bounded by
P

(n)
e (q,C Π) ≤ e−θn, for every q(sn) ∈ P(Sn).
The outer bound follows from part 2 of Lemma 3, since the

random code capacity region of the AVBC is included within
the random code capacity region of the compound BC.

The proof of part 2 of the theorem is straightforward.
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Abstract—A coding and testing scheme is presented for the
distributed hypothesis testing problem over a noisy channel. The
coding scheme combines the Shimokawa-Han-Amari hypothesis
testing scheme with Borade’s unequal error protection (UEP)
channel coding. The type-II error exponent of our scheme consists
of three competing error exponents: two of them coincide with
the exponents found by Shimokawa-Han-Amari for distributed
hypothesis testing over a noiseless link (with the rate be replaced
by the mutual information between channel input and output),
and the third includes Borade’s miss-detection exponent for UEP
over a noisy channel. Depending on the problem setup, any of the
three exponents can be active. When testing against conditional
independence, only the two Shimokawa-Han-Amari exponents
are active, and the scheme achieves the optimal type-II error
exponent found by Sreekuma and Gündüz.

I. INTRODUCTION

Consider a distributed hypothesis testing problem where a
sensor describes its collected information to a remote decision
center over a noisy channel. The decision center decides on
a binary hypothesis (H = 0 or H = 1) that determines the
joint probability distribution underlying its own observation
and the information observed at the sensor. The goal of the
communication is to maximize the type-II error (deciding Ĥ =
0 when H = 1) exponent under a constrained type-I error
(deciding Ĥ = 1 when H = 0).

The special case of this problem where communication
takes place over a noiseless link was studied in [1]–[4]. These
works present achievable type-II error exponents for general
joint probability distributions underlying the two hypotheses
and the optimal type-II error exponent for the special case
called “testing against conditional independence” [4]. Dis-
tributed hypothesis testing problems over noiseless networks
with multiple sensors or decision centers or with relays have
been considered in [4]–[8]. The work most closely related
to this paper is by Sreekumar and Gündüz [9]. It proves
that the optimal type-II error exponent for “testing against
conditional independence” over a noisy channel, coincides
with the optimal type-II error exponent of the same test over a
noiseless link of rate equal to the capacity of the noisy channel.
Their result is based on a joint hypothesis-testing and channel-
coding scheme, see also [9, Remark 6] for a discussion on this.

In this work, we propose a coding scheme for distributed hy-
pothesis testing over a noisy channel with general probability
distributions. The coding and testing scheme applies separate
hypothesis testing and channel coding by combining the
Shimokawa-Han-Amari (SHA) hypothesis-testing scheme [3]

Fig. 1. Hypothesis testing over a noisy channel

with Borade’s unequal error protection (UEP) channel coding
[12]. The idea is to reinforce the protection of the message
that the SHA scheme produces to indicate that the transmitter
decides on the alternative hypothesis H = 1. Our analysis in
general shows three competing error exponents, two of them
coincide with the two competing error exponents obtained
for testing over a noiseless link [3] when the communication
rate is replaced by the mutual information between input and
output of the channel. The third error exponent depends again
on this mutual information, and on Borade’s miss-detection
exponent [12] for channel coding with UEP. In the special
case of “testing against conditional independence”, recover the
optimal exponent by Sreekuma and Gündüz [9]. In this case,
our third error exponent is never active and the overall type-II
error exponent depends on the noisy channel only through its
capacity.

Notation: We mostly follow the notation in [10]. Moreover,
we use tp(·) to denote the joint type of a tuple. For a joint
type ⇡AB over alphabets A⇥B, we denote by I⇡AB

(A; B) the
mutual information of a pair of random variables (A, B) with
probability mass function (pmf) ⇡AB . Similarly for entropy,
conditional entropy, and conditional mutual information. When
it is unambiguous, we may abbreviate ⇡AB by ⇡. We also
abbreviate independent and identically distributed by i.i.d.

II. SYSTEM MODEL

Consider the distributed hypothesis testing problem in
Fig. 1, where a transmitter observes source sequence Xn and
a receiver source sequence Y n. Under the null hypothesis:

H = 0: (Xn, Y n) i.i.d. ⇠ PXY , (1)

and under the alternative hypothesis:

H = 1: (Xn, Y n) i.i.d. ⇠ QXY . (2)

for two given pmfs PXY and QXY . The transmitter can
communicate with the receiver over n uses of a discrete
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memory channel (W, V, PV |W ) where W denotes the finite
channel input alphabet and V the finite channel output alpha-
bet. Specifically, the transmitter feeds inputs

Wn = f (n)(Xn) (3)

to the channel, where f (n) denotes the chosen (possibly
stochastic) encoding function

f (n) : X n !Wn. (4)

Based on the sequence of channel outputs V n and the source
sequence Y n, the receiver decides on the hypothesis H. That
means, it produces the guess

Ĥ = g(n)(V n, Y n), (5)

by means of a decoding function

g(n) : Vn ⇥ Yn ! {0, 1}. (6)

Definition 1: For each ✏ 2 (0, 1), an exponent ✓ is said ✏-
achievable, if for each sufficiently large blocklength n, there
exist encoding and decoding functions (f (n), g(n)) such that
the corresponding type-I and type-II error probabilities at the
receiver

↵n
�
= Pr[Ĥ = 1|H = 0], (7)

�n
�
= Pr[Ĥ = 0|H = 1], (8)

satisfy

↵n  ✏, (9)

and

� lim
n!1

1

n
log �n � ✓. (10)

The goal is to maximize the type-II error exponent ✓.

III. CODING AND TESTING SCHEME

We describe a coding and testing scheme for the general
distributed hypothesis testing problem over a noisy channel.
The analysis of the scheme is postponed to Section V.
Preparations: Choose a large positive integer n, an auxiliary
distribution PT over W , a conditional channel input distribu-
tion PW |T , and a conditional source distribution PS|X over a
finite auxiliary alphabet S so that

I(S; X) < I(S; Y ) + I(V ; W |T ), (11)

where the mutual informations in (11) are calculated according
to the following joint distribution

PSXY WV T = PS|X · PXY · PT · PW |T · PV |W . (12)

Then choose a sufficiently small µ > 0 and nonnegative rates
(R, R0) so that

R + R0 = I(X; S) + µ (13)
R < I(V ; W |T ) (14)
R0 < I(S; Y ). (15)

Code Construction: Construct a random codebook

CS =
�
Sn(m, `) : m 2 {1, ..., b2nRc}, ` 2 {1, ..., b2nR0c}

 
,

by independently drawing all codewords i.i.d. according to
PS(s) =

P
x2X PX(x)PS|X(s|x).

Generate a sequence Tn i.i.d. according to PT . Construct a
random codebook

CW =
�
Wn(m) : m 2 {1, ..., b2nRc}

 

superpositioned on Tn where each codeword is drawn in-
dependently according to PW |T conditioned on Tn. Reveal
the realizations of the codebooks and the sequence Tn to all
terminals.
Transmitter: Given that it observes the source sequence Xn =
xn, the transmitter looks for a pair (m, `) that satisfies

(sn(m, `), xn) 2 T n
µ/2(PSX). (16)

If successful, it picks one of these pairs uniformly at random
and sends the codeword wn(m) over the channel. Otherwise
it sends the sequence of inputs tn over the channel.
Receiver: Assume that V n = vn and Y n = yn and that the
“time-sharing sequence” Tn = tn. The receiver first looks for
an index m0 2 {1, . . . , b2nRc} so that

(wn(m0), vn, tn) 2 T n
µ (PWV T ). (17)

If it is not successful, it declares Ĥ = 1. Otherwise, it
randomly picks one of the indices `0 that satisfy

Htp(sn(m0,`0),yn)(S|Y ) = min
˜̀2{1,...,b2nR0c}

Htp(sn(m0,˜̀),yn)(S|Y ),

(18)

and checks whether

(sn(m0, `0), yn) 2 T n
µ (PSY ). (19)

If successful, it declares Ĥ = 0. Otherwise, it declares Ĥ = 1.

IV. AN ACHIEVABLE ERROR EXPONENT

The coding and testing scheme described in the previous
section allows to establish the following theorem.

Theorem 1: Every error exponent ✓ � 0 that satisfies the
following condition (33) is achievable:

✓  max
PS|X ,PT W :

I(S;X|Y )I(W ;V |T )

min
�
✓1, ✓2, ✓3

 
, (20)

where

✓1 = min
P̃SXY :

P̃SX=PSX

P̃SY =PSY

D(P̃SXY ||QXY PS|X), (21)

✓2 = min
P̃SXY :

P̃SX=PSX

P̃Y =PY

H(S|Y )HP̃ (S|Y )

h
D(P̃SXY ||PS|XQXY )

+ I(V ; W |T )� I(S; X|Y )
i
,

(22)

✓3 = D(PY ||QY ) + I(V ; W |T )� I(S; X|Y )
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+
X

t2W
PT (t) · D(PV |T=t||PV |W=t),

(23)

and all expressions are calculated with respect to the joint
distribution in (12).

Proof: Based on the scheme in Section V.

Lemma 1: It suffices to consider the auxiliary random
variable S over an alphabet S that is of size |S| = |X | + 2.
For the specical case of PY = QY , it suffices to consider
|S| = |X | + 1.

Proof: Based on Carathéodory’s theorem. Omitted.

Our coding and testing scheme combines the SHA hypoth-
esis testing scheme for a noiseless link [3] with Borade’s UEP
channel coding that protects the 0-message (which indicates
that the transmitter decides on H = 1) better than the other
messages [11], [12]. In fact, since here we are only interested
in the type-II error exponent, the receiver should decide on
H = 0 only if the transmitter also shares this opinion.

The expressions in Theorem 1 show three competing error
exponents. In (21) and (22), we recognize the two competing
error exponents of the SHA scheme for the noiseless setup:
✓1 is the exponent associated to the event that the receiver
reconstructs the correct binned codeword and ✓2 is associated
to the event that either the binning or the noisy channel
introduces a decoding error. The exponent ✓3 in (23) is new
and can be associated to the event that the specially protected
0-message is wrongly decoded. We remark in particular that
✓3 contains the term

Emiss :=
X

t2W
PT (t) · D(PV |T=t||PV |W=t), (24)

which represents the largest possible miss-detection exponent
for a single specially protected message at a given rate
I(W ; V |T ) [12, Th. 34].

Which of the three exponents ✓1, ✓2, ✓3 is smallest depends
on the source and channel parameters and the choice of PS|X
and PW . Notice that the third error exponent ✓3 is inactive
for channels with large miss-detection exponent (24), such as
binary symmetric channels with small cross-over probability,
or for sources where

min
P̃SXY :

P̃SX=PSX

P̃Y =PY

D(P̃SXY ||PS|XQXY ) = D(PY ||QY ), (25)

This is the case for example when “testing against conditional
independence” [4] where both terms are 0.

Corollary 1 (Lemma 5 in [9]): Consider the “testing against
independence” setup where

Y = (Ȳ , Z), (26)

and QXȲ Z decomposes as

QXȲ Z = PXZ · PȲ |Z . (27)

Error exponent ✓ � 0 is achievable if,

✓  max
PS|X , PW :

I(S;X|Z)I(W ;V )

I(S; Ȳ |Z), (28)

where mutual informations are calculated with respect to the
joint law PXȲ ZPS|XPW PV |W .

Proof: Fix independent random variables T and W and
a random variable S so that

I(S; X|Z)  I(W ; V |T ) = I(W ; V ). (29)

Then, Theorem 1 specializes to:

✓1 = min
P̃SXȲ Z :

P̃SX=PSX

P̃SȲ Z=PSȲ Z

D(P̃SXȲ Z ||QXȲ ZPS|X)

= min
P̃SXȲ Z :

P̃SX=PSX

P̃SȲ Z=PSȲ Z

D(P̃SXȲ Z ||PXZPȲ |ZPS|X)

= D(PSȲ Z ||PZPȲ |ZPS|Z)

= I(S; Ȳ |Z).

Moreover, exponents ✓2 and ✓3 cannot be smaller than
I(S; Ȳ |Z) because of the nonnegativity of the KL-divergence
and the mutual information and because

I(V ; W )� I(S; X) + I(S; Ȳ , Z)

= I(V ; W )� I(S; X|Z) + I(S; Ȳ |Z)

� I(S; Ȳ |Z), (30)

where the inequality holds by (29).
Notice that the error exponent in Corollary 1 is optimal [9].

We now present an example and evaluate the largest type-II
error exponents attained by our scheme. We also show that
depending on the choice of the model parameters, a different
error exponent ✓1, ✓2, or ✓3 is active.

Example 1: Let under the null hypothesis

H = 0: X ⇠ Bern(p0), Y = X �N0,

N0 ⇠ Bern(q0), (31)

for N0 independent of X . Under the alternative hypothesis:

H = 1: X ⇠ Bern(p1), Y ⇠ Bern(p0 ? q0), (32)

with X and Y independent. Assume that PV |W is a binary
symmetric channel (BSC) with cross-over probability r 2
[0, 1/2].

For this example, PY = QY and Theorem 1 simplifies to:

✓  max
PS|X ,PT W :

I(S;X|Y )I(W ;V |T )

min
�
✓1, ✓2, ✓3

 
, (33)

where

✓1  D(PX ||QX) + I(S; Y ), (34)
✓2  D(PX ||QX) + I(V ; W |T ) + I(S; Y )� I(S; X), (35)
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✓3 
X

t2W
PT (t)D(PV |T=t||PV |W=t)

+ I(V ; W |T ) + I(S; Y )� I(S; X). (36)

Depending on the parameters of the setup and the choice of
the auxiliary distributions, either of the exponents ✓1, ✓2, or
✓3 is active. For example, when the cross-over probability of
the BSC is large, r � 0.4325,

D(PX ||QX) �
X

t2W
PT (t)D(PV |T=t||PV |W=t)

+ I(V ; W |T ), (37)

and irrespective of the choice of the random variables S, T, W
the exponent ✓3 is smaller than ✓1 and ✓2. It is then optimal
to choose S constant and (T, W ) so as to maximize the sumP

t2W PT (t)D(PV |T=t||PV |W=t)+I(V ; W |T ). In particular,
for a scenario with parameters p0 = 0.1, q0 = 0.25, p1 = 0.2
and r = 4

9 one obtains numerically that the optimal error
exponent achieved by our scheme is ✓ = 0.0358.

In contrast, when the cross-over probability of the BSC
is small, the miss-detection exponent (24) is large and the
exponent ✓3 is never active irrespective of the choice of the
auxiliary random variable S. The overall exponent is then
determined by the smaller of ✓1 and ✓2, and in particular by
a choice S, X, W that makes the two equal. In this case, for
a scenario with parameters p0 = 0.2, q0 = 0.3, p1 = 0.4,
and r = 0.1, the largest exponent achieved by our scheme is
✓ = 0.19.

V. PROOF OF THEOREM 1

The proof of the theorem is based on the scheme in
Section III. Before analyzing this scheme, notice that by the
functional representation lemma, there exists a function �
over appropriate domains and for each time t 2 {1, . . . , n}
a random variable �t over a finite alphabet � so that the time-
t channel input and output satisfy:

Vt = ⇠(Wt,�t). (38)

Let Pn be the set of all types over the product alphabets
Sn ⇥ Sn ⇥Wn ⇥Wn ⇥Wn ⇥ Vn ⇥ �n ⇥ X n ⇥ Yn, and
let Pn

µ be the subset of types ⇡SS0TWW 0V �XY 2 Pn that
simultaneously satisfy the following conditions:

|⇡SX � PSX |  µ/2, (39a)
|⇡S0Y � PSY |  µ, (39b)

|⇡TW 0V � PTWV |  µ, (39c)
⇡V |�TW = {V = ⇠(�, T, W )}, (39d)

H⇡S0Y (S|Y )  H⇡SY
(S|Y ). (39e)

We first analyze the type-I error probability averaged over
the random code construction. Let (M, L) be the indices of the
codeword chosen at the transmitter, if they exist, and define
the following events:

ETx : {@(m, `) : (Sn(m, `), Xn) 2 T n
µ/2(PSX)} (40)

E(1)
Rx : {(Sn(M, L), Y n) /2 T n

µ (PSY )} (41)

E(2)
Rx : {9m0 6= M : (Tn, Wn(m0), V n) 2 T n

µ (PTW PV |W )}
(42)

E(3)
Rx : {9`0 6= L :

Htp(sn(M,`0),yn)(S|Y ) = min
˜̀

Htp(sn(M,˜̀),yn)(S|Y )}.

(43)

With these definitions, we obtain for all sufficiently small
values of µ and sufficiently large blocklengths n:

↵n  Pr[ETx] + Pr[E(1)
Rx |Ec

Tx] + Pr[E(2)
Rx |Ec

Tx, E(1)c
Rx ]

+ Pr[E(3)
Rx |E(1)c

Rx , Ec
Tx] (44)

 ✏/4 + ✏/4 + ✏/4 + ✏/4 = ✏, (45)

where the first summand of (44) can be upper bounded by
means of the covering lemma [10] and the rate constraint (15);
the second by means of the Markov lemma [10]; the third by
means of the packing lemma [10] and the rate constraint (14);
and the fourth by following similar steps as in analysis of the
type-I error probability in [5, Appendix H].

Now, consider the type-II error probability. Let Pn
µ,0 be the

subset of types ⇡S0TW 0�V XY over the alphabets Sn ⇥Wn ⇥
Wn ⇥ �n ⇥ Vn ⇥ X n ⇥ Yn that satisfy (39b), (39c), and

⇡V |�T = {V = ⇠(T,�)}. (46)

Define for each pair (m, m0) 2 {1, . . . , b2nRc}2 and (`, `0) 2
{1, . . . , b2nR0c}2 the set:

A(m, m0, `, `0) :=
n

('n, xn, yn) : tp
�
Sn(m, `), Sn(m0, `0),

Wn(m), Wn(m0),'n, ⇠n(Wn(m),'n), xn, yn
�
2 Pn

µ

o
;

and for each m0 2 {1, . . . , b2nRc} and `0 2 {1, . . . , b2nR0c}
the set:

A(0, m0, `0) :=
n

('n, xn, yn) : tp
�
Sn(m0, `0), Tn,

Wn(m0),'n, ⇠n(Tn,'n), xn, yn
�
2 Pn

µ,0

o
. (47)

By ⇠n(Wn(m),'n), here we mean the component-wise ap-
plication of the function ⇠(., .) defined in (38) to the n-length
sequences Wn(m) and 'n.

Define the region ARx,n ✓ �n ⇥ X n ⇥ Yn

ARx,n
�
=

[

m,m0

[

`,`0

A(m, m0, `, `0) [
[

m0,`0

A(0, m0, `0), (48)

where m and m0 take value in {1, . . . , b2nRc} and ` and `0

in {1, . . . , b2nR0c}. Notice that ARx,n is deterministic for a
given codebook, but random in the analysis here.

Since ARx,n includes the acceptance region at the receiver,
the average (over the random codebooks) type-II error proba-
bility is upper bounded as:

EC [�n]  Pr
⇥
(�n, Xn, Y n) 2 ARx,n|H = 1

⇤
. (49)

We can then write:

EC [�n]

 Pr
h
(�n, Xn, Y n) 2
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[

m,m0

[

`,`0

A(m, m0, `, `0) [
[

m0,`0

A(0, m0, `0)|H = 1
i

 Pr
h
(�n, Xn, Y n) 2

[

(m,`)

A(m, m, `, `)|H = 1
i

+ Pr
h
(�n, Xn, Y n) 2

[

(m,`) 6=(m0,`0)

A(m, m0, `, `0)|H = 1
i

+ Pr
h
(�n, Xn, Y n) 2

[

m0,`0

A(0, m0, `0)|H = 1
i
. (50)

In a similar way as in [5], it can be shown that for sufficiently
large blocklengths n, the first probability in (50) is upper
bounded as:

Pr
h
(�n, Xn, Y n) 2

[

m

[

`

A(m, m, `, `)|H = 1
i
 2�n✓1,µ ,

(51)

where

✓1,µ := min⇡SXY 2Pn
µ
D(⇡SXY ||PS|XQXY )� �(µ) (52)

for a function �(µ) that goes to zero as µ ! 0. Moreover,
for sufficiently large n, the second probability in (50) is upper
bounded as:

Pr
h
(�n, Xn, Y n) 2

[

(m,`) 6=(m0,`0)

A(m, m0, `, `0)
i
 2�n✓2,µ ,

(53)

where

✓2,µ := min
⇡SS0W W 0V XY 2Pn

µ

D(⇡SXY ||PS|XQXY )

+ I(S; Y ) + I(V ; W |T )� I(S; X)� �0(µ), (54)

for a function �0(µ) that goes to zero as µ! 0.
The last term in (50) is upper bounded for sufficiently large

blocklength n:

Pr
h
(�n, Xn, Y n) 2

[

m0,`0

A(0, m0, `0)|H = 1
i


X

m0,`0

Pr
h
(�n, Xn, Y n) 2 A(0, m0, `0)|H = 1

i


X

m0,`0

X

⇡S0T W 0�V XY 2Pn
µ,0

Pr
h
tp
⇣
Sn(m0, `0), Tn, Wn(m0),�n, ⇠n(Tn,�n), Xn, Y n

⌘

= ⇡S0TW 0�V XY

���H = 1
i


X

m0,`0

X

⇡S0T W 0�V XY 2Pn
µ,0

2�nD
�
⇡S0T W 0�V XY

��PSPT W P�⇡V |�T QXY

�

where the last inequality holds by the way the random code-
books are generated and because given H = 1, the sources
Xn, Y n are i.i.d. ⇠ QXY . Define now

✓̃3,µ := min
⇡S0T W 0�V XY

2Pn
µ,0

D(⇡S0TW 0�V XY ||PSPTW P�⇡V |�T QXY )

�R�R0 � µ (55)

and notice that there exist functions �00(µ) that ! 0 as µ! 0
and so that the following inequalities hold:

✓̃3,µ

(a)

� min
⇡S0T W 0�V XY 2Pn

µ,0

h
D(⇡TW 0�V ||PTW P�⇡V |�T )

+ D(⇡XY ||QXY ) + E⇡XY
[D(⇡S0|XY ||PS)]

i

� I(S; X)� 2µ

(b)

� min
⇡S0T W 0V XY 2Pn

µ,0

h
D(⇡TW 0V ||PTW PV |W=T )

i

+ D(PY ||QY ) + I(S; Y )� I(S; X)� �00(µ)

(c)

� EPT W
[D(PV |W ||PV |W=T )]

+ D(PY ||QY ) + I(S; Y )� I(S; X)� �00(µ)

= D(PY ||QY ) + I(V ; W |T ) + I(S; Y )� I(S; X)

+
X

t

PT (t) · D(PV |T=t||PV |W=t)� �00(µ)

:= ✓3,µ. (56)

All three inequalities are based on the data processing inequal-
ity for KL-divergences; (a) also uses (13); and (b) and (c) also
use the continuity of KL-divergences and that all types in Pn

0,µ

satisfy (39b), (39c), and (46). Thus, for sufficiently large n:

Pr
h
(�n, Xn, Y n) 2

[

m0,`0

A(0, m0, `0)|H = 1
i
 2�n✓3,µ .(57)

Combining (50), (51), (53), and (57), taking µ ! 0 and
n!1, the proof can be established by standard arguments.
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Abstract—We investigate the coordination of autonomous de-
vices with strategic and non-aligned utility functions. The encoder
and the decoder of the point-to-point network choose their coding
strategy in order to maximize their own utility function. This
paper extends our previous results on strategic coordination
by considering state information at the decoder. We study the
connexion between Wyner-Ziv source coding and the problem of
Bayesian persuasion in the economics literature.

I. INTRODUCTION

In this paper, we investigate a point-to-point network of
autonomous devices with non-aligned utility functions, see
Fig. 1. Our study is based on notion of “Empirical Coordi-
nation” which characterizes the global behavior that can be
implemented by local policies. Coming originally from the
literature of Game Theory [1], [2], [3], [4], [5], the problem
of Coordination has attracted a lot of attention in Information
Theory [6], [7], [8], [9], [10], [11]. It consists in determining
the minimal exchange of information required by autonomous
devices in order to implement a coordinated behavior. More
precisely, a target joint distribution is achievable if there exists
a coding scheme whose empirical distribution of symbols
converges to that target distribution. Then, it is possible to
optimize any utility function - instead of the distortion - by
considering the one-shot version of the problem instead of
the problem by blocks of n-symbols. The notion of Empirical
Coordination generalizes the “Rate-Distortion Theory” as well
as “Channel coding result” and is strongly related to the joint
source-channel coding with state information at both encoder
and decoder [12], [13], [14], [15], [16], [17], [18], [19], [20],
[21], [22].

In this paper, we investigate the coordinated behavior of two
devices with non-aligned utility functions, in the spirit of [23],
[24]. Fig. 1 corresponds to the problem of Wyner-Ziv source
coding with state information at the decoder [25], with a noisy
channel. The only difference is that the encoder and decoder
are players endowed with distinct utility functions φ1(u, v)
and φ2(u, v). If these utility functions were equal φ1(u, v) =
φ2(u, v), our solution would boil down to the classical result
for noisy channel and Wyner-Ziv source.
† Tristan Tomala acknowledges financial support from the HEC foundation.
The authors would like to thank Institute Henri Poincaré (IHP) in Paris

France, for hosting their scientific discussions.

Zn

Un Xn Y n V n

Puz TP1 P2

φ1(u, v) φ2(u, v)

Fig. 1. The information source is i.i.d. Puz(u, z) and the channel T (y|x) is
memoryless. The encoder P1 and the decoder P2 are players that maximize
their own utility functions φ1(u, v) ∈ R and φ2(u, v) ∈ R.

We consider a game in which the encoder and decoder are
the players P1 and P2 that choose the encoding and decoding
strategies in order to maximize their long-run utility. The
equilibrium solution proposed by Stackelberg in [27] is more
suited than the “Nash Equilibrium” [28], since the decoder
P2 knows in advance the encoding strategy of P1, i.e. the
encoder P1 has “commitment power”. This problem is also
related to the “Strategic Transmission of Information” in the
literature of Game Theory [29], [30], [31], [32], [33], [34].
In fact, our problem is closely related to the problem of
“Bayesian Persuasion” [35], [36], in which a sender wants
to persuade a receiver to change her action. By sending some
information, the encoder is able to control the posterior beliefs
of the decoder, knowing that he will choose a best-reply action.
The problem of strategic communication was investigated in
the literature of Information Theory [37], [38], [39], [40]
for Gaussian source and channel, and the quadratic distortion
functions of [29].

II. STRATEGIC COORDINATION

A. Problem Statement

We consider the problem of strategic coordination depicted
in Fig. 1. Notations Un, Xn, Y n, Zn, V n stand for se-
quences of random variables of information source un =
(u1, . . . , un) ∈ Un, decoder’s state information zn ∈ Zn,
inputs of the channel xn ∈ X n, outputs of the channel
yn ∈ Yn and decoder’s output vn ∈ Vn, respectively. The
sets U , Z , X , Y , V have finite cardinality. The set of proba-
bility distributions over X is denoted by ∆(X ). The notation
||Q−P||1 =

∑
x∈X |Q(x)−P(x)| stands for the L1 distance
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between the probability distributions Q and P . With a slight
abuse of notation, we denote by Q(x)×Q(v|x), the product of
distributions over ∆(X ×V). Notation Y −
−X−
−U denotes the
Markov chain property corresponding to P(y|x, u) = P(y|x)
for all (u, x, y). Player P1 observes a sequence of source
symbols un ∈ Un and chooses at random a sequence of
channel inputs xn ∈ X n. Player P2 observes a sequence of
channel outputs yn ∈ Yn and state information zn ∈ Zn

before choosing at random a sequence of actions vn ∈ Vn.

Definition II.1 (Strategies of both players)
• Player P1 chooses a strategy σ and player P2 chooses a
strategy τ , defined as follows:

σ : Un −→ ∆(X n), (1)
τ : Yn × Zn −→ ∆(Vn). (2)

Both strategies (σ, τ) are stochastic.
• A pair of strategies (σ, τ) induces a joint probability
distribution Pσ,τ ∈ ∆(Un × Zn × X n × Yn × Vn) over the
n-sequences of symbols, defined by:

n∏

i=1

P
(
Ui, Zi

)
× Pσ

(
Xn

∣∣∣Un
)

×
n∏

i=1

T
(
Yi

∣∣∣Xi

)
× Pτ

(
V n

∣∣∣Y n, Zn
)
. (3)

Definition II.2 (Expected n-stage utilities) The utilities of
the n-stage game Φn

1 and Φn
2 are evaluated with respect to

the marginal distribution Pσ,τ over the sequences (Un, V n)
and the utility functions φ1(u, v) ∈ R, φ2(u, v) ∈ R.

Φn
1 (σ, τ) =Eσ,τ

[
1

n

n∑

i=1

φ1(Ui, Vi)

]

=
∑

un,vn

Pσ,τ

(
un, vn

)
·
[

1

n

n∑

i=1

φ1(ui, vi)

]
, (4)

Φn
2 (σ, τ) =

∑

un,vn

Pσ,τ

(
un, vn

)
·
[

1

n

n∑

i=1

φ2(ui, vi)

]
. (5)

Definition II.3 (Decoder’s best-replies) For any strategy σ
of P1, we define the set of n-best-reply of P2 as follows:

BR n
2 (σ) =

{
τ, s.t. Φn

2 (σ, τ) ≥ Φn
2 (σ, τ̃ ), ∀τ̃ 6= τ

}
. (6)

Definition II.4 (Characterization) We consider an auxiliary
random variable W with |W| = min

(
|V|, |U|+1

)
. We define

the set Q0 of target probability distributions by:

Q0 =

{
Puz(u, z) × Q(w|u), s.t.,

max
P(x)

I(X ; Y ) − I(U ; W ) + I(Z; W ) ≥ 0

}
. (7)

We define the set Q2

(
Q(u, z, w)

)
of decoder’s best-reply:

Q2

(
Q(u, z, w)

)
= argmaxQ(v|z,w) E Q(u,z,w)

×Q(v|z,w)

[
φ2(U, V )

]
.

(8)

The optimal utility Φ⋆
1 of P1 is given by:

Φ⋆
1 = sup

Q(u,z,w)∈Q0

min
Q(v|z,w)∈

Q2

(
Q(u,z,w)

)
E Q(u,z,w)

×Q(v|z,w)

[
φ1(U, V )

]
. (9)

We prove that the n-stage game of utility Φn
1 (σ, τ) can be

reformulated as a one-shot game in which the decoder chooses
Q(v|z, w), knowing that the encoder has chosen Q(w|u).

Theorem II.5 (Main Result) The limit utility of P1 when P2

chooses any n-best-reply τ ∈ BRn
2 (σ):

∀n ∈ N, ∀σ, min
τ∈BRn

2 (σ)
Φn

1 (σ, τ) ≤ Φ⋆
1, (10)

∀ε > 0, ∃n̄, ∀n ≥ n̄, ∃σ, min
τ∈BRn

2 (σ)
Φn

1 (σ, τ) ≥ Φ⋆
1 − ε.

(11)

The proofs of the converse (10) and achievability (11) results
are stated in Sec. IV and V.

III. EXAMPLE WITH Z-STATE INFORMATION

The binary source U has probability P(u1) = p0 with p0 ∈
[0, 1] and the state information Z is drawn through a Z-channel
with parameter δ ∈ [0, 1] as in Fig. 2. While observing the state

u2

u1

b

b

b

b

b

b

b

b

w2

w1

z2

z1

1 − α

1 − β

α

β

1 − δ

1

δ

Fig. 2. Joint distribution P(u, z) and the signaling strategy Q(w|u).

information Z , the decoder reactualizes his beliefs regarding
the source:

q1 = Q(u1|z1) =
p0 · (1 − δ)

p0 · (1 − δ)
= 1, (12)

q2 = Q(u1|z2) =
p0 · δ

1 − p0 · (1 − δ)
. (13)

We denote by (q1, q2) the belief ex-ante, i.e. before the
transmission of W .

The binary auxiliary random variable W ∈ {w1, w2} is
drawn with distribution Q(w|u) and parameters α ∈ [0, 1], β ∈
[0, 1] as in Fig. 2. After receiving the symbol W , the decoder
reactualizes his posterior beliefs denoted by (p1, p2, p3, p4):

Q(u1|w1, z1) =p1 = Q(u1|w2, z1) = p3 = 1, (14)

Q(u1|w1, z2) =
p0 · (1 − α) · δ

p0 · (1 − α) · δ + (1 − p0) · β = p2, (15)

Q(u1|w2, z2) =
p0 · α · δ

p0 · α · δ + (1 − p0) · (1 − β)
= p4. (16)

(15)-(16) reformulate into the signaling strategy Q(w|u):

α =
p4 ·

(
p2 · (1 − p0(1 − δ)) − p0 · δ

)

p0 · δ · (p2 − p4)
, (17)

β =
(1 − p2) ·

(
p0 · δ − p4 · (1 − p0(1 − δ))

)

(p2 − p4) · (1 − p0)
. (18)
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2
7

2
7

0

1

p4

1 p2

b

p ⋆
2 =

0.06

p⋆
4 = 0.6

Fig. 3. Regions of posterior beliefs (p2, p4) satisfying information constraint
C − I(U ;W ) + I(Z;W ) ≥ 0 for p0 = 0.5, C = 1 − H(0.25), δ = 0.4.
The threshold 2

7
corresponds to the beliefs ex-ante q2 given by (13), induced

by the symbol z2.

Lemma 1 A pair of posterior beliefs (p2, p4) is feasible if
and only if p2 < q2 < p4 or p4 < q2 < p2.

The proof of Lemma 1 comes from the constraints α ∈ [0, 1],
β ∈ [0, 1] in (17) and (18). The pair of posterior beliefs
(p2, p4) cannot belongs to the grey regions of Fig. 3. We

u2

u1

v1 v2

10

0

4

9

Fig. 4. Utility φ2(u, v) of P2

u2

u1

v1 v2

1

1

0

0

Fig. 5. Utility φ1(u, v) of P1

consider that the channel capacity is fixed equal to C =
maxP(x) I(X ; Y ) = 1 − H(0.25). The information constraint
of Q0 writes:

C − I(W ; U) + I(W ; Z) ≥ 0 (19)
⇐⇒H(U |W, Z) ≥ H(U |Z) − C (20)
⇐⇒P(w1, z2)H(p2) + P(w2, z2)H(p4) ≥ H(U |Z) − C

(21)

⇐⇒p0 · δ − p4 · (1 − p0(1 − δ))

p2 − p4
H(p2)

+
p2 · (1 − p0(1 − δ)) − p0 · δ

p2 − p4
H(p4) ≥ H(U |Z) − C.

(22)

The green regions of Fig. 3 represent the pairs of posterior
beliefs (p2, p4) that satisfy the information constraint. We
consider the utility functions of the encoder φ1(u, v) and of
the decoder φ2(u, v), given by Fig. 4 and 5. The player P2

holds a belief P(u1) regarding the source of information U .

0 1 P(u1)

E
xp

ec
te

d
ut

ili
ty

of
P

2 v⋆
29

4

v⋆
1 10

b

0.6

Fig. 6. The best-reply action v⋆ of P2 depends on his belief P(u) regarding
the source U : if P(u1) ∈ [0, 0.6] he plays v⋆2 and if P(u1) ∈ [0.6, 1] he
plays v⋆1 .

He chooses a best-reply action v⋆
1 or v⋆

2 depending on the
interval [0, 0.6] or [0.6, 1] in which lies the belief P(u1), see
Fig. 6. The utility of player P1 only depends on the action

E
xp

ec
te

d
ut

ili
ty

of
P

1

0

1

1

v⋆
1

v⋆
2

pp
0 =

0.5

q
1 =

1

p
1 =

p
3 =

1

q
2 =

2/7

b b
p ⋆
2 =

0.06

p ⋆
4 =

0.6

b

b Φ⋆
1

b

b b

Fig. 7. The expected utility of player P1 depending on the belief P(u1)
of player P2. The optimal posterior beliefs (p⋆2, p⋆4) satisfy the information
constraint C − I(U ; W ) + I(Z;W ) ≥ 0, for p0 = 0.5, C = 1−H(0.25),
δ = 0.4.

of player P2 and is represented by the orange line in Fig. 7.
The encoder would like to send some information in order to
modify the posterior beliefs of P2 such that p4 belongs to the
interval p4 ∈ [0.6, 1]. Then the best-reply action of P2 would
be v⋆

1 that rewards player P1. The optimal solution is to fix
p⋆
4 = 0.6 and to find p⋆

2 that satisfies the information constraint
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with equality:

C − I(W ; U) + I(W ; Z) = 0 (23)

⇐⇒p0 · δ − p⋆
4 · (1 − p0(1 − δ))

p⋆
2 − p⋆

4

H(p⋆
2)

+
p⋆
2 · (1 − p0(1 − δ)) − p0 · δ

p⋆
2 − p⋆

4

H(p⋆
4) = H(U |Z) − C.

(24)

Hence the optimal solution is p⋆
2 ≃ 0.06 and the pair (p⋆

2, p
⋆
4)

lies at the border of the green region of Fig. 3. This solution
induces the conditional entropies H(U |W, z2) ≃ 0.7146 and
H(U |W, Z) = H(U |Z)−C ≃ 0.5747. The optimal utility for
player P1 is Φ⋆

1 ≃ 0.5925.

IV. CONVERSE PROOF OF THEOREM II.5

We consider an arbitrary strategy σ of length n ∈ N. We
denote by T the uniform random variable {1, . . . , n} and we
introduce the auxiliary random variable W = (Y n, Z−T , T )
whose joint probability distribution Pσ(u, z, w) with (U, Z) is
defined by:

Pσ(u, z, w) =Pσ

(
uT , zT , yn, z−T , T

)

=P(T = i) · Pσ

(
uT , zT , yn, z−T

∣∣T = i
)

=
1

n
· Pσ

(
ui, zi, y

n, z−i
)
. (25)

This identification ensures that the Markov chain W −
−UT −
−
ZT is satisfied. We now prove that the distribution P(u, z, w)
satisfies the information constraint of the set Q0.

0 ≤I(Xn; Y n) − I(Un, Zn; Y n) (26)

≤
n∑

i=1

H(Yi) −
n∑

i=1

H(Yi|Xi) − I(Un; Y n|Zn) (27)

≤n · max
P(x)

I(X ; Y ) −
n∑

i=1

I(Ui; Y
n|Zn, U i−1) (28)

=n · max
P(x)

I(X ; Y ) −
n∑

i=1

I(Ui; Y
n, Z−i, U i−1|Zi) (29)

≤n · max
P(x)

I(X ; Y ) −
n∑

i=1

I(Ui; Y
n, Z−i|Zi) (30)

=n · max
P(x)

I(X ; Y ) − n · I(UT ; Y n, Z−T |ZT , T ) (31)

=n · max
P(x)

I(X ; Y ) − n · I(UT ; Y n, Z−T , T |ZT ) (32)

=n · max
P(x)

I(X ; Y ) − n · I(U ; W |Z) (33)

=n ·
(

max
P(x)

I(X ; Y ) − I(U ; W ) + I(Z; W )

)
. (34)

(26) comes from the Markov chain Y n −
− Xn −
− (Un, Zn).
(27) comes from the memoryless property of the channel and
from removing the positive term I(Un; Zn) ≥ 0.
(28) comes from taking the maximum P(x) and chain rule.
(29) comes from the i.i.d. property of the source (U, Z) that
implies I(Ui, Zi; Z

−i, U i−1) = I(Ui; Z
−i, U i−1|Zi) = 0.

(30) comes from removing I(Ui; U
i−1|Y n, Z−i, Zi) ≥ 0.

(31) comes from the uniform random variable T ∈ {1, . . . , n}.

(32) comes from the independence between T and the source
(U, Z), that implies I(UT , ZT ; T ) = I(UT ; T |ZT ) = 0.
(33) comes from the identification W = (Y n, Z−T , T ).
(34) comes from the Markov chain W −
− UT −
− ZT . This
proves that the distribution Pσ(u, z, w) belongs to the set Q0.

For any strategies (σ, τ), we reformulate the long-run util-
ities with the auxiliary random variable W = (Y n, Z−T , T ).

Φn
1 (σ, τ)

=
∑

un,zn,yn

Pσ(un, zn, yn)
∑

vn

Pτ (vn|yn, zn) · 1

n

n∑

i=1

φ1(ui, vi)

(35)

=

n∑

i=1

∑
ui,zi,

z−i,yn

1

n
· Pσ(ui, z

n, yn)
∑

vi

Pτ (vi|yn, zn) · φ1(ui, vi)

(36)

=
∑

ui,zi,z−i,

yn,i

Pσ(ui, zi, z
−i, yn, i)

∑

vi

Pτ (vi|yn, z−i, zi, i) · φ1(ui, vi)

(37)

=
∑

u,z,w

Pσ(u, z, w)
∑

v

Pτ (v|w, z) · φ1(u, v). (38)

(35) - (37) are reformulations valid also for φ2(u, v).
(38) comes from replacing the random variables (Y n, Z−T , T )
by W , whose distribution is stated in (25).

By replacing W = (Y n, Z−T , T ), the set of n-best-reply
BRn

2 (σ) is equal to the set Q2

(
Pσ(u, z, w)

)
:

BRn
2 (σ)

= argmaxPτ (vn|yn,zn)

∑

un,zn,
xn,yn

Pσ(un, zn, xn, yn)

×
∑

vn

Pτ (vn|yn, zn) · 1

n

n∑

i=1

φ2(ui, vi) (39)

= argmaxPτ (v|w,z)

∑

u,z,w

Pσ(u, z, w)
∑

v

Pτ (v|w, z) · φ2(u, v)

(40)

=Q2

(
Pσ(u, z, w)

)
. (41)

We conclude the proof of (10) in Theorem II.5.

min
τ∈BRn

2 (σ)
Φn

1 (σ, τ) = min
τ∈BRn

2 (σ)

∑

un,zn,yn

Pσ(un, zn, yn)

×
∑

vn

Pτ (vn|yn, zn) · 1

n

n∑

i=1

φ1(ui, vi) (42)

= min
Pτ (v|w,z)∈

Q2

(
Pσ(u,z,w)

)
∑

u,z,w

Pσ(u, z, w)
∑

v

Pτ (v|w, z) · φ1(u, v)

(43)

≤ sup
Q(u,z,w)∈Q̃0

min
Q(v|w,z)∈

Q2

(
Q(u,z,w)

)
EQ(u,z,w)×Q(v|w,z)

[
φ1(U, V )

]
= Φ⋆

1.

(44)

(42) comes from the definitions.
(43) comes from (41) that identifies the set of n-best-reply
BRn

2 (σ) with the set Q2

(
Pσ(u, z, w)

)
of definition II.4.
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(44) comes from (34) that shows the distribution Pσ(u, z, w)
belongs to the set Q̃0.

The cardinality bound |W| = min
(
|V|, |U| + 1

)
follows

from Caratheodory’s Lemma and Markov chain Z −
−U −
−W .

V. SKETCH OF ACHIEVABILITY OF THEOREM II.5

We denote by Q(u, z, w) ∈ Q0 the distribution that is
optimal for (9). We consider the concatenation of Wyner-Ziv
source coding [25] with a channel code [26]. Empirical Co-
ordination results [14] ensures that the sequences of symbols
(Un, Zn, Wn) are jointly typical for Q(u, z, w) with large
probability. Following the same lines as in [23], [24], we prove
that the beliefs Pσ(ui|yn, zn) induced by the strategy σ are
close to the target belief Q(u|z, w):

Eσ

[
1

n

n∑

i=1

D

(
Pσ(Ui|Y n, Zn)

∣∣∣∣
∣∣∣∣Q(Ui|Wi, Zi)

)]
≤ ε. (45)

This provides a lower bound on the utility of P1:

min
τ∈BRn

2 (σ)
Φn

1 (σ, τ) ≥ Φ⋆
1 − ε. (46)

The full version of the proof is in [41].
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Abstract—We study the problem of distributed information
bottleneck, in which multiple encoders separately compress their
observations in a manner such that, collectively, the compressed
signals preserve as much information as possible about another
signal. The model generalizes Tishby’s centralized information
bottleneck method to the setting of multiple distributed encoders.
We establish single-letter characterizations of the information-
rate region of this problem for both i) a class of discrete
memoryless sources and ii) memoryless vector Gaussian sources.
Furthermore, assuming a sum constraint on rate or complexity,
for both models we develop Blahut-Arimoto type iterative algo-
rithms that allow to compute optimal information-rate trade-offs,
by iterating over a set of self-consistent equations.

I. INTRODUCTION

The information bottleneck (IB) method was introduced by
Tishby [1] (see [2] for an earlier equivalent formulation of the
IB problem) as an information-theoretic principle for extract-
ing the relevant information that some signal Y ∈ Y provides
about another one, X ∈ X , that is of interest. The approach
has found remarkable applications in supervised and unsuper-
vised learning problems such as classification, clustering and
prediction, wherein one is interested in extracting the relevant
features, i.e., X , of the available data Y [3], [4]. Perhaps
key to the analysis, and development, of the IB method is its
elegant connection with information-theoretic rate-distortion
problems. Recent works show that this connection turns out
to be useful also for a better understanding of deep neural
networks [5]. Other connections, that are more intriguing, exist
also with seemingly unrelated problems such as hypothesis
testing [6] or systems with privacy constraints [7].

Motivated by applications of the IB method to settings
in which the relevant features about X are to be extracted
from separately encoded signals, we study the model shown
in Figure 1. Here, X is the signal to be predicted and
(Y1, . . . , YK) are correlated signals that could each be relevant
to extract one or more features of X . The features could be
distinct or redundant. We make the assumption that the signals
(Y1, . . . , YK) are independent given X . This assumption holds
in many practical scenarios. For example, the reader may think
of (Y1, ..., YK) as being the results of K clinical tests that are
performed independently at different clinics and are used to
diagnose a disease X . A third party (decoder or detector) has
to decide without access to the original data. In general, at
every encoder k there is a tension among the complexity of the
encoding, measured by the minimum description length or rate
Rk at which the observation is compressed, and the informa-
tion that the produced description, say Uk, provides about the
signal X . The relevance of (U1, . . . , UK) is measured in terms
of the information that the descriptions collectively preserve
about X; and is captured by Shannon’s mutual information
I(U1, . . . , UK ;X). Thus, the performance of the entire system

Fig. 1. A model for distributed information bottleneck (D-IB).

can be evaluated in terms of the tradeoff between the vector
(R1, . . . , RK) of minimum description lengths and the mutual
information I(U1, . . . , UK ;X).

In this paper, we study the aforementioned tradeoff among
relevant information and complexity for the model shown in
Figure 1. First, we establish a single-letter characterization
of the information-rate region of this model for discrete
memoryless sources. In doing so, we exploit its connection
with the distributed Chief Executive Officer (CEO) source
coding problem under logarithmic-loss distortion measure
studied in [8]. Next, we extend this result to memoryless
vector Gaussian sources. Here, we prove that Gaussian test
channels are optimal, thereby generalizing a similar result
of [9] and [10] for the case of a single encoder IB setup.

In a second part of this paper, assuming a sum constraint
on rate or complexity, we develop Blahut-Arimoto [11] type
iterative algorithms that allow to compute optimal tradeoffs
between information and rate, for both discrete and vector
Gaussian models. We do so through a variational formulation
that allows the determination of the set of self-consistent
equations satisfied by the stationary solutions. In the Gaussian
case, the algorithm reduces to an appropriate updating of
the parameters of noisy linear projections. Here as well, our
algorithms can be seen as generalizations of those developed
for the single-encoder IB method, for discrete sources in [1]
and for Gaussian sources in [10]; as well as a generalization of
the Blahut-Arimoto algorithm proposed in [12] for the CEO
source coding problem for K = 2 and discrete sources, to
K ≥ 2 encoders and for both discrete and Gaussian sources.

Notation: Upper case letters denote random variables, e.g.,
X; lower case letters denote realizations of random variables,
e.g., x; and calligraphic letters denote sets, e.g., X . The cardi-
nality of a set is denoted by |X |. For a random variable X with
probability mass function (pmf) PX , we use PX(x) = p(x),
x ∈ X for short. Boldface upper case letters denote vectors or
matrices, e.g., X, where context makes the distinction clear.
For an integer n ∈ N, we denote the set [1, n] := {1, 2, . . . , n}.
We denote by DKL(P,Q) the Kullback-Leibler divergence
between the pmfs P and Q. For a set of integers K ⊆ N, XK
denotes the set XK = {Xk : k ∈ K}. For a zero-mean vector
X we define the matrices Σx := E[XXH ]; Σx,y := E[XYH ],
and Σx|y := Σx −Σx,yΣ−1y Σy,x.
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II. SYSTEM MODEL

Consider the discrete memoryless D-IB model shown in
Figure 1. Let {Xi, Y1,i, . . . , YK,i}ni=1 = (Xn, Y n1 , . . . , Y

n
K)

be a sequence of n independent, identically distributed (i.i.d.)
random variables with finite alphabets X ,Yk, k ∈ K :=
{1, . . . ,K} and joint pmf PX,Y1,...,YK

. Throughout this paper,
we make the assumption that the observations at the encoders
are independent conditionally on X , i.e.,

Yk,i −
−Xi −
− YK/k,i for k ∈ K and i ∈ [1, n]. (1)

Encoder k ∈ K maps the observed sequence Y nk to an index
Jk := φk(Y nk ), where φk : Ynk → Mk is a given map
and Mk := [1,M

(n)
k ]. The index Jk is sent error-free to the

decoder. The decoder collects all indices JK := (J1, . . . , JK)
and then estimates the source Xn as X̂n = g(n)(JJ ), where
g(n) :M1 × · · · ×ML → X̂n is some decoder map and X̂n
is the reconstruction alphabet of the source.

The quality of the reconstruction is measured in terms of the
n-letter relevant information between the unobserved source
Xn and its reconstruction at the decoder X̂n, given by

∆(n) :=
1

n
I(Xn; g(n)(φ

(n)
1 (Y n1 ), . . . , φ

(n)
K (Y nK))). (2)

Definition 1. A tuple (∆, R1, . . . , RK) is said to be achievable
for the D-IB model if there exists a blocklength n, encoder
maps φ(n)k for k ∈ K, and a decoder map g(n), such that

Rk ≥
1

n
logM

(n)
k , k ∈ K, and ∆ ≤ 1

n
I(Xn; X̂n). (3)

where X̂n = g(n)(φ
(n)
1 (Y n1 ), . . . , φ

(n)
K (Y nK)). The information-

rate region RIB is given by the closure of all achievable rates
tuples (∆, R1, . . . , RK).

We are interested in characterizing the region RIB. Due to
space limitations, some results are only outlined or provided
without proof. We refer to [13] for a detailed version.

III. INFORMATION-RATE REGION CHARACTERIZATION

In this section we characterize the information-rate region
RIB for a discrete memoryless D-IB model. It is well known
that the IB problem is essentially a source-coding problem
where the distortion measure is of logarithmic loss type [14].
Likewise, the D-IB model of Figure 1 is essentially a K-
encoder CEO source coding problem under logarithmic loss
(log-loss) distortion measure. The log-loss distortion between
sequences is defined as

dLL(xn, x̂n) := − 1

n
log

(
1

x̂n(xn)

)
, (4)

where x̂n = s(xn|jK) and s is a pmf on Xn.
The rate-distortion region of the K-encoder CEO source

coding problem under log-loss, with K ≥ 2 which we denote
hereafter as RDCEO, has been established recently in [8,
Theorem 10] for the case in which the Markov chain (1) holds.

We first state the following proposition, the proof of which
is easy and omitted for brevity.

Proposition 1. A tuple (∆, R1, . . . , RK) ∈ RIB if and only
if (H(X)−∆, R1, . . . , RK) ∈ RDCEO.

Proposition 1 implies that [8, Theorem 10] can be applied
to characterize the information-rate region RIB as given next.

Theorem 1. In the case in which the Markov chain (1) holds,
the rate-information region RIB of the D-IB model is given by
the set of all tuples (∆, R1, . . . , RK) which satisfy for S ⊆ K

∆ ≤
∑

k∈S
[Rk−I(Yk;Uk|X,Q)] + I(X;USc |Q), (5)

for some joint pmf p(q)p(x)
∏K
k=1 p(yk|x)

∏K
k=1 p(uk|yk, q).

A. Memoryless Vector Gaussian D-IB
Consider now the following memoryless vector Gaussian

D-IB problem. In this model, the source vector X ∈ CN

is Gaussian and has zero mean and covariance matrix Σx,
i.e., X ∼ CN (0,Σx). Encoder k, k ∈ K, observes a noisy
observation Yk ∈ CMk , that is given by

Yk = HkX + Nk, (6)

where Hk ∈ CMk×N is the channel connecting the source
to encoder k, and Nk ∈ CMk , k ∈ K, is the noise vector
at encoder k, assumed to be Gaussian, with zero-mean and
covariance matrix Σnk

, and independent from all other noises
and the source vector X.

The studied Gaussian model satisfies the Markov chain (1);
and thus, the result of Theorem 1, which can be extended
to continuous sources using standard techniques, characterizes
the information-rate region of this model, denoted by RG

IB.
Next theorem characterizes RG

IB, shows that the optimal test
channels PUk|Yk

, k ∈ K, are Gaussian and that there is not
need for time-sharing, i.e., Q = ∅.
Theorem 2. If (X,Y1, . . . ,YK) are jointly Gaussian as in
(6), the information-rate region RG

IB is given by the set of all
tuples (∆, R1, . . . , RL) satisfying that for all S ⊆ K

∆ ≤
∑

k∈S
[Rk + log |I−Bk|] + log

∣∣∣∣∣
∑

k∈Sc

H̄H
k BkH̄k + I

∣∣∣∣∣ ,

for some 0 � Bk � I and where H̄k = Σ
−1/2
nk HkΣ

1/2
x . In

addition, the information-rate tuples in RG
IB are achievable

with Q = ∅ and p∗(uk|yk, q) = CN (yk,Σ
1/2
nk (Bk − I)Σ

1/2
nk ).

Proof. An outline of the proof is given in Appendix A.

IV. COMPUTATION OF THE INFORMATION RATE REGION
UNDER SUM-RATE CONSTRAINT

In this section, we describe an iterative Blahut-Arimoto
(BA)-type algorithm to compute the pmfs PUk|Yk

, k ∈ K,
that maximize information ∆ under sum-rate constraint, i.e.,
Rsum :=

∑K
k=1Rk, for tuples (∆, R1, . . . , RK) in RIB. From

Theorem 1 we have:

Rsum := convex-hull{(∆, Rsum) : ∆ ≤ ∆sum(Rsum)}, (7)

where we define the information-rate function

∆sum(R) :=max
P

min

{
I(X;UK), R−

K∑

k=1

I(Yk;Uk|X)

}
,

and where the optimization is over the set of K conditional
pmfs PUk|Yk

, k ∈ K, which, for short, we define as

P := {PU1|Y1
, . . . , PUK |YK

}. (8)

Next proposition provides a characterization of the pairs
(∆, Rsum) ∈ Rsum in terms of a parameter s ≥ 0.
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Proposition 2. Each tuple (∆, Rsum) on the information rate
curve ∆ = ∆sum(Rsum), can be obtained for some s ≥ 0, as
(∆s, Rs), parametrically defined by

(1 + s)∆s = (1 + sK)H(X) + sRs −min
P

Fs(P), (9)

Rs = I(YK;U∗K) +
K∑

k=1

[I(Yk;U∗k )− I(X;U∗k )], (10)

where P∗ are the pmfs yielding the minimum in (9) and

Fs(P) := H(X|UK) + s
K∑

k=1

[I(Yk;Uk) +H(X|Uk)]. (11)

Proof. The proof of Proposition 2 follows along the lines of
[12, Theorem 2] and is omitted for brevity. Note that the rate
expression in Theorem 1 is different to that in [12].

From Proposition 2, the information-rate function can be
computed by solving (9) and evaluating (10) for all s ≥ 0. In-
spired by the standard Blahut-Arimoto (BA) method [11], and
following similar steps as for the BA-type algorithm proposed
in [12] for the CEO problem with K = 2 encoders, we show
that problem (9) can be solved with an alternate optimization
procedure, with respect to P and some appropriate auxiliary
pmfs QUk

, QX|Uk
, k ∈ K and QX|U1,...,UK

, denoted as

Q := {QU1 , . . . , QUK
, QX|U1

, . . . , QX|UK
, QX|U1,...,UK

}.
To this end, we define the function F̄s(·) and write (9) as a
minimization over the pmfs P and pmfs Q, where

F̄s(P,Q) := − s
K∑

k=1

H(Uk|Yk)− s
K∑

k=1

EUk
[log q(Uk)]

− s
K∑

k=1

EX,Uk
[log q(X|Uk)]− EX,UK [log q(X|UK)]. (12)

Lemma 1. We have
F ∗ := min

P
Fs(P) = min

P
min
Q

F̄s(P,Q). (13)

Algorithm 1 describes the steps to successively minimize
F̄s(P,Q) by optimizing a convex problem over P and over
Q at each iteration. The proof of Lemma 1 and the steps of the
proposed algorithm are justified with the following lemmas,
whose proofs are along the lines of Lemma 1, Lemma 2,
Lemma 3 in [12], and are omitted due to space limitations.

Lemma 2. F̄s(P,Q) is convex in P and convex in Q.

Lemma 3. For fixed pmfs P, F̄s(P,Q) ≥ Fs(P) for all pmfs
Q, and there exists a unique Q that achieves the minimum
minQ F̄s(P,Q) = Fs(P), given by

Q∗Uk
= PUk

, Q∗X|Uk
= PX|Uk

, k ∈ K, (14)

Q∗X|U1,...,Uk
= PX|U1,...,UK

, (15)

where PUk
, PX|Uk

and PX|U1,...,UK
are computed from P.

Lemma 4. For fixed Q, there exists a P that achieves the
minimum minP F̄s(P,Q), where PUk|Yk

is given by

p∗(uk|yk) = q(uk)
exp (−ψs(uk, yk))∑

uk∈Uk q(uk) exp(−ψs(uk, yk))
, (16)

for uk ∈ Uk and yk ∈ Yk, k ∈ K, and where we define

ψs(uk, yk) :=DKL(PX|yk ||QX|uk
) (17)

+
1

s
EUK\k|yk [DKL(PX|UK\k,yk ||QX|UK\k,uk

))].

Algorithm 1 BA-type algorithm for the Discrete D-IB

1: input: pmf PX,Y1,...,Yk
, parameter s ≥ 0.

2: output: optimal P ∗Uk|Yk
, pair (∆s, Rs).

3: initialization Set t = 0 and set P(0) with p(uk|yk) = 1
|Uk|

for uk ∈ Uk, yk ∈ Yk, k = 1, . . . ,K.
4: repeat
5: Compute Q(t+1) as (14) and (15) from P(t).
6: Compute P(t+1) as (16) from Q(t+1) and P(t).
7: t← t+ 1.
8: until convergence.

Algorithm 1 essentially falls in the Successive Upper-Bound
Minimization (SUM) framework [15] in which F̄s(P,Q) acts
as a globally tight upper bound on Fs(P). Algorithm 1
provides a sequence P(t) for each iteration t, which converges
to a stationary point of the optimization problem (13).
Proposition 3. Every limit point of the sequence P(t) gener-
ated by Algorithm 1 converges to a stationary point of (13).
Proof. Let Q∗(P) := arg minQ F̄s(P,Q). From Lemma 3,
F̄s(P,Q

∗(P′)) ≥ F̄s(P,Q∗(P)) = Fs(P) for P′ 6= P. It fol-
lows that Fs(P) and F̄s(P,Q∗(P′)) satisfy [15, Proposition 1]
and thus F̄s(P,Q∗(P′)) satisfies A1-A4 in [15]. Convergence
to a stationary point of (13) follows from [15, Theorem 1].
Remark 1. The resulting set of self consistent equations (14),
(15) and (17) satisfied by any stationary point of the D-IB
problem, remind that of the original IB problem [9]. Note the
additional divergence term in (17) for encoder k averaged
over the descriptions at the other K \ k encoders.

V. COMPUTATION OF THE INFORMATION RATE REGION
FOR THE VECTOR GAUSSIAN D-IB

Computing the maximum information under sum-rate con-
straint from Theorem 2 is a convex optimization problem on
Bk, which can be efficiently solved with generic tools. Alter-
natively, next we extend Algorithm 1 for Gaussian sources.

For finite alphabet sources the updates of Q(t+1) and
P(t+1) in Algorithm 1 are simple, but become unfeasible for
continuous alphabet sources. We leverage on the optimality
of Gaussian descriptions, shown in Theorem 2, to restrict the
optimization of P to Gaussian distributions, which are easily
represented by a finite set of parameters, namely its mean
and covariance. We show that if P(t) are Gaussian pmfs, then
P(t+1) are also Gaussian pmfs, which can be computed with
an efficient update algorithm of its representing parameters. In
particular, if at time t, the k-th pmf P (t)

Uk|Yk
is given by

Ut
k = At

kYk + Ztk, (18)

where Ztk ∼ CN (0,Σzt
k
); we show that for P(t+1) updated

as in (16), P (t+1)
Uk|Yk

corresponds to Ut+1
k = At+1

k Yk + Zt+1
k ,

where Zt+1
k ∼ CN (0,Σzt+1

k
) and At+1

k ,Σzt+1
k

are updated as

Σzt+1
k

=

((
1 +

1

s

)
Σ−1

ut
k|x
− 1

s
Σ−1

ut
k|ut
K\k

)−1
, (19)

At+1
k =Σ−1

zt+1
k

((
1 +

1

s

)
Σ−1

ut
k|x

At
k(I−Σyk|xΣ−1yk

)

−1

s
Σ−1

ut
k|ut
K\k

At
k(I−Σyk|ut

K\k
Σ−1yk

)

)
. (20)

The detailed update procedure is given in Algorithm 2.
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Remark 2. Algorithm 2 generalizes the iterative algorithm
for single encoder Gaussian D-IB in [10] to the Gaussian D-
IB with K encoders and sum-rate constraint. Similarly to the
solution in [10], the optimal description at each encoder is
given by a noisy linear projection of the observation, whose
dimensionality is determined by the parameter s and the
second order moments between the observed data and the
source of interest, as well as a term depending on the observed
data with respect to the descriptions at the other encoders.

A. Derivation of Algorithm 2
In this section, we derive the update rules in Algorithm 2

and show that the Gaussian distribution is invariant to the
update rules in Algorithm 1, in line with Theorem 2.

First, we recall that if (X1,X2) are jointly Gaussian, then

PX2|X1=x1
= CN (µx2|x1

,Σx2|x1
), (21)

where µx2|x1
:= Kx2|x1

x1, with Kx2|x1
:= Σx2,x1

Σ−1x1
.

Then, for Q(t+1) computed as in (14) and (15) from P(t),
which is a set of Gaussian distributions, we have

Q
(t+1)
X|uk

= CN (µx|ut
k
,Σx|ut

k
), Q

(t+1)
X|uK = CN (µx|ut

K
,Σx|ut

K
).

Next, we look at the update P(t+1) as in (16) from given
Q(t+1). First, we have that p(utk) is the marginal of Ut

k, given
by Ut

k ∼ CN (0,Σut
k
) where Σut

k
= At

kΣyk
At,H
k + Σzt

k
.

Then, to compute ψs(utk,yk), first, we note that

EUK\k|yk [DKL(PX|UK\k,yk ||QX|UK\k,uk
)] (22)

=DKL(PX,UK\k|yk ||QX,UK\k|uk
)−DKL(PUK\k|yk ||QUK\k|uk

),

and that for two generic multivariate Gaussian distributions
P1 ∼ CN (µ1,Σ1) and P2 ∼ CN (µ2,Σ2) in CN ,

DKL(P1, P2) =(µ1 − µ2)HΣ−12 (µ1 − µ2)

+ log |Σ2Σ
−1
1 | −N + tr{Σ−12 Σ1}. (23)

Applying (22) and (23) in (17) and noting that all involved
distributions are Gaussian, it follows that ψs(utk,yk) is a
quadratic form. Then, since p(utk) is Gaussian, the product
log(p(utk) exp(−ψs(utk,yk))) is also a quadratic form, and
identifying constant, first and second order terms, we can write

log p(t+1)(uk|yk) =Z(yk) + (uk − µut+1
k |yk

)HΣ−1
zt+1
k

· (uk − µut+1
k |yk

), (24)

where Z(yk) is a normalization term independent of uk, and

Σ−1
zt+1
k

=Σ−1
ut

k
+ KH

x|ut
k
Σ−1

x|ut
k
Kx|ut

k

+
1

s
KH

xut
K\k|ut

k
Σ−1

xut
K\k|ut

k
Kxut

K\k|ut
k

− 1

s
KH

ut
K\k|ut

k
Σ−1

ut
K\k|ut

k
Kut

K\k|ut
k
, (25)

µut+1
k |yk

=Σzt+1
k

(
KH

x|ut
k
Σ−1

x|ut
k
µx|yk

+
1

s
Kx,ut

K\k|ut
k
Σ−1

x,ut
K\k|ut

k
µx,ut

K\k|yk

−1

s
Kut

K\k|ut
k
Σ−1

ut
K\k|ut

k
µut
K\k|yk

)
. (26)

This shows that p(t+1)(uk|yk) is a Gaussian distribution and
that Ut+1

k |{Yk = yk} is distributed as CN (µut+1
k |yk

,Σzt+1
k

).

Algorithm 2 BA-type algorithm for the Gaussin Vector D-IB

1: input: covariance Σx,y1,...,yk
, parameter s ≥ 0.

2: output: optimal pairs (A∗k,Σz∗k), k = 1, . . . ,K.
3: initialization Set randomly A0

k and Σz0
k
� 0, k ∈ K.

4: repeat
5: Compute Σyk|ut

K\k
and update for k ∈ K

Σut
k|x = At

kΣyk|xAt,H
k + Σzt

k
(27)

Σut
k|ut
K\k

= At
kΣyk|ut

K\k
At,H
k + Σzt

k
, (28)

6: Compute Σzt+1
k

as in (19) for k ∈ K.
7: Compute At+1

k as (20), k ∈ K.
8: t← t+ 1.
9: until convergence.

Next, we simplify (25) and (26) to obtain the update rules
(19) and (20). From the matrix inversion lemma, similarly to
[10], for (X1,X2) jointly Gaussian we have

Σ−1x2|x1
= Σ−1x2

+ KH
x1|x2

Σ−1x1|x2
Kx1|x2

. (29)

Applying (29), in (25) we have

Σ−1
zt+1
k

= Σ−1
ut

k|x
+

1

s
Σ−1

ut
k|xut

K\k
− 1

s
Σ−1

ut
k|ut
K\k

, (30)

=

(
1 +

1

s

)
Σ−1

ut
k|x
− 1

s
Σ−1

ut
k|ut
K\k

, (31)

where (31) is due to the Markov chain Uk −
−X−
−UK\k.
Then, also from the matrix inversion lemma, we have for

jointly Gaussian (X1,X2),

Σ−1x2|x1
Σx1,x2Σ

−1
x1

= Σ−1x2
Σx1,x2Σ

−1
x1|x2

. (32)

Applying (32) in (26), for the first term, we have

KH
x|ut

k
Σ−1

x|ut
k
µx|yk

=Σ−1
ut

k|x
Σx,ut

k
Σ−1x µx|yk

(33)

=Σ−1
ut

k|x
At
kΣyk,xΣ−1x Σx,yk

Σ−1yk
yk

=Σ−1
ut

k|x
At
k(I−Σyk|xΣ−1yk

)yk, (34)

where Σx,ut
k

= At
kΣyk,x; and (34) is due to the definition of

Σyk|x. Similarly, for the second term, we have

Kxut
K\k|ut

k
Σ−1

xut
K\k|ut

k
µx,ut

K\k|yk

=Σ−1
ut

k|xut
K\k

At
k(I−Σyk|xut

K\k
Σ−1yk

)yk, (35)

=Σ−1
ut

k|x
At
k(I−Σyk|xΣ−1yk

)yk, (36)

where we use Σut
k,xu

t
K\k

= At
kΣyk,xut

K\k
; and (36) is due to

the Markov chain Uk −
−X−
−UK\k. For the third term,

Kut
K\k|ut

k
Σ−1

ut
K\k|ut

k
µut
K\k|yk

=Σ−1
ut

k|ut
K\k

At
k(I−Σyk|ut

K\k
Σ−1yk

)yk. (37)

Equation (20) follows by noting that µut+1
k |yk

= At+1
k yk,

and that from (26) At+1
k can be identified as given in (20).

Finally, we note that due to (18), Σut
k|x and Σut

k|ut
K\k

are
given as in (27) and (28), where Σyk|x = Σnk

and Σyk|ut
K\k

can be computed from its definition.
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VI. NUMERICAL RESULTS

In this section, we consider the numerical evaluation of
Algorithm 2, and compare the resulting relevant information
to two upper bounds on the performance for the D-IB: i)
the information-rate pairs achievable under centralized IB
encoding, i.e., if (Y1, . . . , YK) are encoded jointly at a rate
equal to the total rate Rsum = R1+ · · ·+RK , characterized in
[10]; ii) the information-rate pairs achievable under centralized
IB encoding when Rsum →∞, i.e., ∆ = I(X;Y1, . . . , YK).

Figure 2 shows the resulting (∆, Rsum) tuples for a Gaus-
sian vector model with K = 2 encoders, source dimension
N=4, and observations dimension M1 =M2 =2 for different
values of s calculated as in Proposition 2 using Algorithm 2,
and its upper convex envelope. As it can be seen, the dis-
tributed IB encoding of sources performs close to the Tishby’s
centralized IB method, particularly for low Rsum values.

APPENDIX A
Let (X,U) be two complex random vectors. The con-

ditional Fischer information is defined as J(X|U) :=
E[∇ log p(X|U)∇ log p(X|U)H ], and the MMSE is given by
mmse(X|U) := E[(X−E[X|U])(X−E[X|U])H ]. Then [16]

log |(πe)J−1(X|U)|≤h(X|U)≤ log |(πe)mmse(X|U)|. (38)

We outer bound the information-rate region in Theorem 1
for (X,YK) as in (6). For q ∈ Q and fixed

∏K
k=1 p(uk|yk, q),

choose Bk,q , k ∈ K satisfying 0 � Bk,q � Σ−1nk
such that

mmse(Yk|X,Uk,q, q) = Σnk
−Σnk

Bk,qΣnk
. (39)

Such Bk,q always exists since 0 � mmse(Yk|X,Uk,q, q) �
Σ−1nk

, for all q ∈ Q, and k ∈ K. We have from (5),

I(Yk; Uk|X, q) ≥ log |Σnk
| − log |mmse(Yk|X,Uk,q, q)|

= − log |I−Σ1/2
nk

Bk,qΣ
1/2
nk
|, (40)

where the inequality is due to (38), and (40) is due to (39).
Let B̄k :=

∑
q∈Q p(q)Bk,q . Then, we have from (40)

I(Yk; Uk|X, Q) ≥ −
∑

q∈Q
p(q) log |I−Σ1/2

nk
Bk,qΣ

1/2
nk
|

≥ − log |I−Σ1/2
nk

B̄kΣ
1/2
nk
|, (41)

where (41) follows from the concavity of the log-det function
and Jensen’s inequality. On the other hand, we have

I(X; USc,q|q) ≤ log |Σx| − log |J−1(X|USc,q, q)| (42)

= log

∣∣∣∣∣
∑

k∈Sc

Σ1/2
x HH

k Bk,qHkΣ
1/2
x +I

∣∣∣∣∣ , (43)

where (42) is due to (38); and (43) is due to to the following
equality connecting the MMSE matrix (39) and the Fisher
information as in [16]–[19] (We refer to [13] for details):

J(X|USc,q, q) =
∑

k∈Sc

HH
k Bk,qHk + Σ−1x . (44)

Similarly to (41), from (43) and Jensen’s Inequality we have

I(X; USc |Q) ≤ log

∣∣∣∣∣
∑

k∈Sc

Σ1/2
x HH

k B̄kHkΣ
1/2
x + I

∣∣∣∣∣ . (45)

Substituting (41) and (45) in (5) and letting Bk :=

Σ
−1/2
nk B̄kΣ

−1/2
nk gives the outer bound. The proof is com-

pleted by noting that the outer bound is achieved with Q = ∅
and p∗(uk|yk, q) = CN (yk,Σ

1/2
nk (Bk − I)Σ

1/2
nk ).
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Fig. 2. Information vs. sum-rate for vector Gaussian D-IB with K = 2 en-
coders, source dimension N = 4, and observation dimension M1 =M2 = 2.
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Abstract—A novel and efficient neural decoder algorithm
is proposed. The proposed decoder is based on the neural
Belief Propagation algorithm and the Automorphism Group. By
combining neural belief propagation with permutations from
the Automorphism Group we achieve near maximum likelihood
performance for High Density Parity Check codes. Moreover, the
proposed decoder significantly improves the decoding complexity,
compared to our earlier work on the topic. We also investigate the
training process and show how it can be accelerated. Simulations
of the hessian and the condition number show why the learning
process is accelerated. We demonstrate the decoding algorithm
for various linear block codes of length up to 63 bits.

I. INTRODUCTION

In the last few years Deep Learning methods were applied to
communication systems, for example in [1]–[8]. Furthermore,
Deep Neural decoders is a new approach for decoding linear
block codes. In [9]–[12] it has been shown that deep neural
decoders can improve the existing belief propagation methods
for decoding high density parity check codes (HDPCs). Other
methods for using deep learning to decode error correcting
codes were proposed in [13]–[15]. In this work we combine
the deep recurrent neural decoder of [10] with permutations
from the Automorphism Group as defined in [16]. The com-
bined architecture is defined by Ipermutations blocks, each of
which contains IBP iterations of neural belief propagation fol-
lowed by permutation. We show that this architecture achieves
near maximum-likelihood performance for various BCH codes
of up to 63 bits long with significantly lower complexity then
the corresponding mRRD decoder [17]. We also investigate
the training process of the deep neural decoder and show how
the learning can be accelerated by adding penalties to the loss
function. We argue that this penalties transform the manifold
of the loss function into an isotropic manifold which is easy
to optimize. Simulations of the Hessian matrix of the loss
function support this claim.

II. THE NEURAL BELIEF PROPAGATION
ALGORITHM

We start with a brief description of the deep neural network
proposed in [9], [10]. The deep neural decoder is a message
passing algorithm parameterized as a deep neural network.
The input to the neural network is the set of LLR values,
v = 1, 2, . . . , N ,

lv = log
Pr (Cv = 1|yv)
Pr (Cv = 0|yv)

where N is the block length of the code, yv is the channel
output corresponding to the vth codebit. The neural decoder
consists of pairs of odd and even layers. For odd i layer,

xi,e=(v,c) =

= tanh

(
1

2

(
lv +

∑

e′=(c′,v), c′ 6=c
we,e′xi−1,e′

))
(1)

for even i layer,

xi,e=(c,v) = 2 tanh−1


 ∏

e′=(v′,c), v′ 6=v
xi−1,e′


 (2)

and for output layer,

ov = σ


lv +

∑

e′=(c′,v)

w̃v,e′x2L,e′


 (3)

where σ(x) ≡ (1 + e−x)
−1 is a sigmoid function. Please note

that equations (1),(2) define recurrent neural network, as the
learnable weights we,e′ , w̃v,e′ are tied.

III. THE PROPOSED DEEP NEURAL NETWORK
DECODER

A. Architecture

The proposed neural network is composed of Ipermutations
blocks. Each block contains IBP layers of neural belief
propagation, which are described below. Between each two
successive blocks, we apply a permutation from the auto-
morphism group. Lastly, we apply the corresponding inverse
permutation, to obtain the decoded codeword. The proposed
architecture is illustrated in Figure 1.

We re-parameterized the deep neural network decoder from
section II. In the j-th block, IBP iterations of neural belief-
propagation are performed as follows:

For each variable node in the i-th layer,

xji,e=(v,c) = tanh

(
1

2
(oji−1,v − xji−1,e=(c,v))

)
(4)

For each check node in the i-th layer,

xji,e=(c,v) = 2 tanh−1


 ∏

e′=(v′,c), v′ 6=v
xji−1,e′


 (5)
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For mid-output node in the i-th layer,

oji,v = oj0,v +
∑

e′=(c′,v)

we′x
j
i,e′ (6)

The output of the j-th block:

cjv = πj(o
j
i=IBP ,v

) (7)

The initialization:

oj0,v =

{
lv , j = 0
cj−1v , j > 0

(8)

xj0,e = 0 (9)

After each BP block, an appropriate inverse permutation is
applied:

djv = (π−11 · π−12 · ... · π−1j )cjv (10)

Note that the neural weights we′ are tied along the neural
network graph. Also note, that the new parametrization of the
neural belief propagation decoder was easier to optimize, and
converged faster to a better performance.

As in [9]–[12] the proposed architecture preserves the sym-
metry conditions, therefore we can train the neural network
with noisy versions of a single codeword.

Also note, that in order to be consistent with the BP
algorithm, one needs to multiply xji−1,e=(c,v) in (4) by we.
However, this multiplication did not have any significant
influence on the results obtained.

B. Loss function

The loss of the neural network is composed of three
constituents:
• A multi-loss cross-entropy between d̃jv ≡ σ(djv) and the

correct codeword yv . This is a loss term concerned with
the output of the BP blocks:

Lj1 = − 1

N

N∑

v=1

yv log(d̃
j
v) + (1− yv) log(1− d̃jv) (11)

• A sub multi-loss cross-entropy between õji,v ≡ σ(oji,v)
and the correct codeword yv . This term involves inner-
BP marginalizations:

Lj,i2 = − 1

N

N∑

v=1

yv log(o
j
i,v)+(1−yv) log(1−oji,v) (12)

• l2-norm of the weights wv , wv,e′ :

L3 =
∑

v

‖wv‖2 +
∑

v,e

‖wv,e‖2 (13)

The total loss is:

L =
∑

j

(Lj1 + λ · L3) +
∑

j,i

Lj,i2 (14)

IV. EXPERIMENTS

A. Neural Network Training and Dataset

We implemented the proposed neural network in Tensor-
Flow framework. The neural network was optimized with
RMSPROP [18]. As in [9]–[12], the dataset consisted of the
zero codeword and an AWGN channel. We used the cycle
reduced parity check matrix from [19]. Due to large number
of layers in our network, and the fact that the network is
a recurrent neural network, gradient clipping was applied
to avoid gradient exploding throughout the learning process.
Clipping threshold of cgrad = 0.1 was used. The l2-Loss
term was added with a factor of λ. Note that we use the
three terms L1, L2, L3 of the loss for training. The weights
were constrained to have non-negative values. In all of our
experiments no overfitting was observed.

The architecture was tested on BCH codes. Their automor-
phism group is described in detail in [20]. The permutations
were chosen randomly using the product-replacement algo-
rithm [19], which has the Npr and Kpr parameters. Npr is
the size of the group of permutations the algorithm builds,
and Kpr is the initial number of iterations, used to build this
permutations-reservoir. In Table I we provide details about the
parameters configurations of the network.

B. BCH(63,45)

Batch size was set to 160, with 20 examples per SNR. The
SNR varied from 1dB to 8dB in the training process, and from
1dB to 5dB in the validation process. The neural network
comprises Ipermutations = 50 permutations, and each block
contains IBP = 2 BP iterations. A total of 100 BP iterations
correspond to a deep neural network with 200 layers.

C. BCH(63,36)

Batch size was set to 120, with 30 examples per SNR. The
SNR varied from 1dB to 6dB in the training process, and
from 3dB to 4.5dB in the validation process. The neural
network comprised Ipermutations = 300 permutation, and
each block contains IBP = 2 belief propagation iteration.
This configuration represents 600 Belief Propagation iterations
which correspond to deep neural network with 1200 layers.

Parameter BCH(63,45) BCH(63,36)

B
P IBP 2 2

llr clip 15 15

R
R

D IPermutatoins 50 300
Npr 20 1000
Kpr 60 4000

N
eu

ra
l

N
et

w
or

k

learning rate 1e-3 1e-3
batch size 160 120

batch size / snr 20 30
SNR range 1-8dB 1-6dB

λ 100 1012

gradient clipping 0.1 0.1
network depth 200 1200

TABLE I: Parameter Configuration of the Model
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Fig. 1: Deep Neural Network Architecture For BCH(15,11) with 3 permutations and 2 belief propagation iterations for each
permutation. The permutations have bold lines. The self message oji,v was removed from the diagram for a cleaner view.

D. Results

In the following figures, "Perm-RNN-i-j-k" denotes our pro-
posed decoder, with i parallel branches, j permutations and k
BP iterations between two consecutive permutations; "mRRD-
i" denotes the classical mRRD decoder with i branches; and
"mRRD-RNN-i-j-k" denotes the mRRD-RNN decoder with i
branches, j blocks of BP, each with k iterations.

In Figure 2 we provide the bit-error-rate for BCH(63, 45)
code for our proposed decoder. The maximum-likelihood
estimate was obtained by the OSD algorithm [21]. We observe
near maximum likelihood performance with our proposed
decoder, with a gap of up to 0.2dB to ML. The runtime
of the proposed neural decoder is lower than OSD’s when
SNR is bigger than 3.8dB, as shown in figure 4. In Figures 5
and 6 we provide the bit-error-rate and the running time for
BCH(63, 36) code for our proposed decoder. The maximum-
likelihood estimate was obtained by the 2nd order OSD
algorithm [21], and the mRRD performance was obtained
using 10-parallel mRRD decoder [17]. We have a gap of 0.25-
0.5dB to achieve maximum likelihood performance with our
proposed decoder.

Note, that the overall decoding time of our decoder is
substantially smaller than the mRRD’s decoding time for the
(63,36) code, with a factor of up to 3.5. In addition, only
one neural decoder was needed to match the performance 10-
parallel mRRD decoder. Also note, that OSD’s main disad-
vantage of parallel implementation is not encountered in the
neural decoder.

In Figure 3 we provide the learning curve for BCH(63, 45)

code. The learning rate was constant during the training
process, yet the loss significantly drops at some stage of the
training. For training without l2-norm, the drop occurs in
epoch 265, and most of the improvement occurs at the same
time. Training with l2-norm accelerated the learning process:
the loss dropped at epoch 8, as if the training process was
accelerated by factor 33. We will investigate and discuss the
dropping phenomenon and the l2-acceleration at section V.

Fig. 2: BER results for BCH(63,45) code
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Fig. 3: Learning Curve for BCH(63,45) code

Fig. 4: Running time comparison for BCH(63,45) code

V. TRAINING ACCELERATION

As introduced in the previous section, during the training the
loss drops significantly. This phenomenon usually occurs while
training very deep neural networks. Note that our proposed
network for BCH(63, 45) contained 200 layers. As shown in
[22], this phenomenon can be explained by the existence of
saddle points in the loss-surface of the network.

A. Hessian simulation

To further investigate the phenomenon of the significant
loss-drop and the l2 acceleration, we computed the Hessian
matrix of the deep neural decoder. Since the Hessian calcula-
tion demands high resources, we investigated the training pro-
cess of a similar and smaller code, BCH(31, 16). As shown

Fig. 5: BER results for BCH(63,36) code

Fig. 6: Running time comparison for BCH(63,36) code

in Figures 7 and 8, the training process of the BCH(31, 16)
behaves in the same manner as the BCH(63, 45) code.

The Hessian matrix was evaluated during the training pro-
cess. We calculated the condition number and the distribution
of the eigenvalues of the Hessian matrix. The setting for the
BCH(31, 16) code was: Ipermutations = 10 permutations,
IBP = 2 BP-iterations, cgrad = 0.1, λ = 100.

Figures 7 and 9 demonstrate the significant loss-drop prop-
erties. Whereas in epochs 1-20 the loss and the BER do not
improve significantly and the positive eigenvalues ratio is low,
epoch 20-40 serves as a turning point: the loss and the BER
decrease rapidly and the positive eigenvalues ratio increases
at the same time.

Figures 8 and 9 further stress this matter: the positive eigen-
values ratio is high right from the beginning, and accordingly
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the loss presents no initial-plateau to begin with. Put in other
words, the Hessian rapidly becomes similar to a scaled identity
matrix. The equivalent loss-surface is isotropic, which results
in an accelerated learning process.

It is of no surprise that adding an l2 term to the loss brings
the Hessian closer to an identity matrix. Yet, the notable
training acceleration and the performance improvement are
a result of a gentle setting of parameters and the specific
optimization problem discussed.

Fig. 7: Learning Curve and Positive Eigenvalues Ratio of the
Hessian Matrix for BCH(31,16) For Training without l2-norm

Fig. 8: Learning Curve and Positive Eigenvalues Ratio of the
Hessian Matrix for BCH(31,16) For Training with l2-norm
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Detection Over Unknown Channels
via Machine Learning

Nariman Farsad and Andrea Goldsmith
Electrical Engineering, Stanford University

I. INTRODUCTION

One of the important modules in reliable recovery of data
sent over a communication channel is the detection algorithm,
where the transmitted signal is estimated from a noisy and
corrupted version observed at the receiver. The design and
analysis of this module has traditionally relied on mathe-
matical models that describe the transmission process, signal
propagation, receiver noise, and many other components of
the system that affect the end-to-end signal transmission and
reception. However, there are cases where tractable mathe-
matical descriptions of the channel are elusive, either because
the EM signal propagation is very complicated or when it is
poorly understood. Even when the underlying channel models
are known, since the channel conditions may change with
time, many model-based detection algorithms rely on the
estimation of the instantaneous channel state information (CSI)
(i.e., channel model parameters) for detection. This estimation
process typically entails overhead that decreases the data
transmission rate. Moreover, the accuracy of the estimation
effects the performance of the detection algorithm.

We demonstrate that, using known neural network (NN)
architectures such as a recurrent neural network (RNN) [1],
it is possible to train a detector without any knowledge of
the underlying system model. In this scheme, the receiver
goes through a training phase where a NN detector is trained
using known transmission signals. We also propose a real-time
sequence detector, which we call the sliding bidirectional RNN
(SBRNN) detector, that detects the symbols corresponding to
a data stream, as they arrive at the destination. This technique
could be extended to any type of real-time estimation of
data streams. We demonstrate that training the SBRNN on
a diverse dataset that contains transmission sequences in
different channel conditions yields a detector that is resilient
to changing channel conditions and outperforms the Viterbi
detector (VD) with CSI estimation error.

II. SLIDING BRNN DETECTOR PERFORMANCE

Let L be the maximum length of the BRNN. For this
maximum length, during training, blocks of `  L consecutive
transmissions are used for training. Note that sequences of
different length could be used during training as long as all
sequence lengths are smaller than or equal to L. Inspired
by some of the techniques used in speech recognition, we
propose a dynamic programing scheme we call the sliding
BRNN (SBRNN) detector. The first `  L symbols are detected
using the BRNN. Then as each new symbol arrives at the

Fig. 1. The BER for different values of noise rates ⌘.

destination, the position of the BRNN slides ahead by one
symbol. Let the set Jk = {j | j  k ^ j +L > k} be the set
of all valid starting positions for a BRNN detector of length
L, such that the detector overlaps with the kth symbol. For
example, if L = 3 and k = 4, then j = 1 is not in the set Jk

since the BRNN detector overlaps with symbol positions 1, 2,
and 3, and not the symbol position 4. Let p̂(j)

k be the estimated
PMF for the kth symbol, when the start of the sliding BRNN
is on j 2 Jk. The final PMF corresponding to the kth symbol
is given by the weighted sum of the estimated PMFs for each
of the relevant windows: p̂k = 1

|Jk|
P

j2Jk
p̂

(j)
k . One of the

main benefits of this approach is that, after the first L symbols
are received and detected, as the signal corresponding to a
new symbol arrives at the destination, the detector immediately
estimates that symbol. The detector also updates its estimate
for the previous L � 1 symbols dynamically. Therefore, this
algorithm is similar to a dynamic programming algorithm.

To evaluate the performance of the SBRNN we consider the
Poisson channel, which is used to model optical and molecular
communication systems. Figure 1 compares the performance
of the SBRNN to the VD with perfect CSI (i.e., the maximum-
likelihood detector), as well as to the VDs with 2.5 and 5
percent error in CSI estimation. We see that the SBRNN
outperforms VD with estimation error and comes close to the
performance of the VD with perfect CSI estimation. More
details can be found in [2].
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Learning to Optimize: Training Deep Neural
Networks for Interference Management

Haoran Sun∗, Xiangyi Chen∗, Qingjiang Shi, Mingyi Hong, Xiao Fu, and Nicholas D. Sidiropoulos

I. INTRODUCTION

We consider an interference management problem for an in-
terference channel consisting of K single-antenna transceiver
pairs. Let hkk ∈ C denote the direct channel between trans-
mitter k and receiver k, and hkj ∈ C denote the interference
channel from transmitter j to receiver k. Furthermore, we
assume that the transmitted symbol of each transmitter k is
an independent Gaussian random variable with zero mean and
variance pk (which is also referred to as the transmission
power of transmitter k). Then the signal to interference-plus-
noise ratio (SINR) for each receiver k is given by

sinrk , |hkk|2pk∑
j 6=k |hkj |2pj + σ2

k

,

where σ2
k denotes the noise power at receiver k.

To optimally allocate power for each transmitter so that the
weighted system throughput is maximized, the problem can
be formulated as the following nonconvex problem

max
p:={p1,...,pK}

K∑

k=1

αk log

(
1 +

|hkk|2pk∑
j 6=k |hkj |2pj + σ2

k

)

s.t. 0 ≤ pk ≤ Pmax, ∀ k = 1, 2, . . . ,K,

(1)

where Pmax denotes the power budget of each transmitter and
αk denotes the nonnegative weight. Problem (1) is known to be
NP-hard [1]. To obtain a good solution for problem (1), many
transceiver design algorithms developed in the literature, such
as WMMSE [2], SCALE [3], and the pricing algorithm [4]. A
particular version of the WMMSE [5, Figure 1] also applied
to solve the power control problem (1). However, optimization
algorithms often entail considerable complexity, which creates
a serious gap between theoretical design/analysis and real-time
processing.

II. THE LEARNING TO OPTIMIZE APPROACH

To resolve the computational issues arisen on the above
interference management problem with stringent real-time
requirements, we design a new ‘learning to optimize’ based
framework as shown in Figure 1. The main idea is to treat
a given algorithm as a “black box”, and try to learn its
input/output relation by using a deep neural network (DNN)
[6]. If the nonlinear mapping can be learned accurately by
a DNN of moderate size, then the interference management
tasks can be performed in almost real time – since passing
the input through a DNN only requires a small number of
simple operations.

minimize error by tuning θ

Algorithm

Problem

Instance

Optimized

Solution

Error

τ (·; θ)

(a) Training Stage

Problem

Instance

Desired

Solution

τ (·; θ)

(b) Testing Stage

Fig. 1: The Proposed Method. The key idea is to treat the input and
output of an algorithm as an unknown nonlinear mapping and use a DNN
to approximate it. In the figure τ(·, θ) represent a DNN parameterized by θ.

Unlike all existing works on approximating optimization
algorithms such as those using unfolding [7]–[10] , our ap-
proach is justified by rigorous theoretical analysis. We show
that there are conditions under which an algorithm is learnable
by a DNN [5], and indicate that it is possible to learn a well-
defined optimization algorithm very well by using finite-sized
deep neural networks. To concisely state the result, let us
make the following definitions. Given an input channel vector
h := {hij} ∈ RK

2

, let us use v(h)ti to denote the variable
vi at tth iteration generated by WMMSE [5] (which basically
represents

√
pi at tth iteration). Also let Hmin, Hmax > 0

denote the minimum and maximum channel strength and
let Vmin > 0 be a given positive number. Let NET (x, z)
represent a neural network with (x, z) as input.

Theorem 1 Suppose that WMMSE is randomly initialized
with (v0k)

2 ≤ Pmax,
∑K
i=1 v(h)

0
i ≥ Vmin, and it is executed

for T iterations. Define the following set of ‘admissible’
channel realizations

H :=

{
h | Hmin ≤ |hjk| ≤ Hmax,∀j, k,

K∑

i=1

v(h)ti ≥ Vmin,∀t
}
.

Given ε > 0, there exists a neural network with h ∈ RK2

and
v0 ∈ RK+ as input and NET (h, v0) ∈ RK+ as output, with the
following number of layers

O

(
T 2 log

(
max

(
K,Pmax, Hmax,

1

σ
,

1

Hmin
,

1

Pmin

))
+ T log

(
1

ε

))

and the following number of ReLUs and binary units

O

(
T 2K2 log

(
max

(
K,Pmax, Hmax,

1

σ
,

1

Hmin
,

1

Pmin

))

+TK2 log

(
1

ε

))
,
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TABLE I: Sum-Rate and Computational Performance for IMAC
# of base stations average sum-rate (bit/sec.) total CPU time (sec.)
and users (N,K) DNN WMMSE DNN/WMMSE DNN WMMSE (MATLAB) WMMSE(C) DNN/WMMSE (C)

(3, 12) 17.722 18.028 98.30% 0.021 22.33 0.27 7.78%
(3, 18) 20.080 20.606 97.45% 0.022 42.77 0.48 4.58%
(3, 24) 21.928 22.648 96.82% 0.025 67.59 0.89 2.81%
(7, 28) 33.513 35.453 94.53% 0.038 140.44 2.41 1.58%
(20, 80) 79.357 87.820 90.36% 0.141 890.19 23.0 0.61%

such that the relation below holds true

max
h∈H

max
i
|(v(h)Ti )2 −NET (h, v0)i| ≤ ε (2)

Remark 1 The bounds in Theorem 1 provide an intuitive
understanding of how the size of the network should be
dependent on various system parameters. A key observation is
that having a neural network with multiple layers is essential
in achieving our rate bounds. Another observation is that the
effect of the approximation error on the size of the network is
rather minor [the dependency is in the order of O(log(1/ε))].
However, we do want to point out that the numbers predicted
by Theorem 1 represent some upper bounds on the size of the
network. In practice, much smaller networks are often used
to achieve the best tradeoff between computational speed and
solution accuracy.

III. NUMERICAL RESULTS

To demonstrate the achievable performance of the proposed
approach, a multi-cell interfering multiple Access Channel
(IMAC) model is considered with a total of N cells and K
users. In each cell, one BS is placed at the center of the cell
and the users are randomly and uniformly distributed in the
area; The channel between each user and each BS is randomly
generated according to a Rayleigh fading distribution; see [5]
for more detail. We perform the training and testing following
the procedures outlined in Figure 1 and summarize the testing
results in TABLE I. It can be seen that the proposed DNN
approach can be trained to well-approximate the behavior of
the state-of-the-art algorithm WMMSE [2], and achieve rela-
tively high sum-rate performance. It is also shown that DNNs
can achieve orders of magnitude speedup in computational
time compared to state-of-the-art power allocation algorithms
based on optimization.

Note that in the table, WMMSE (C)/(MATLAB) represents
the WMMSE algorithm implemented using either C or MAT-
LAB. The proposed DNN approach is implemented in Python
3.6.0 with TensorFlow 1.0.0 on one computer node with two
8-core Intel Haswell processors, two Nvidia K20 Graphical
Processing Units (GPUs), and 128 GB of memory. The GPUs
are used in the training stage to reduce the training time, but
are not used in the testing stage.
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Communication Algorithms via Deep Learning
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Reliable digital communication, both wireline (ethernet, cable and DSL modems) and wireless (cellular, satellite,
deep space), is a primary workhorse of the modern information age. A critical aspect of reliable communication
involves the design of codes that allow transmissions to be robustly (and computationally efficiently) decoded under
noisy conditions. This is the discipline of coding theory; over the past century and especially the past 70 years (since
the birth of information theory [1]) much progress has been made in the design of near optimal codes. Landmark
codes include convolutional codes, turbo codes, low density parity check (LDPC) codes and, recently, polar codes.
The impact on humanity is enormous – every cellular phone designed uses one of these codes, which feature in global
cellular standards ranging from the 2nd generation to the 5th generation respectively, and are text book material [2].

The canonical setting is one of point-to-point reliable communication over the additive white Gaussian noise
(AWGN) channel and performance of a code in this setting is its gold standard. The AWGN channel fits much of
wireline and wireless communications although the front end of the receiver may have to be specifically designed
before being processed by the decoder (example: intersymbol equalization in cable modems, beamforming and sphere
decoding in multiple antenna wireless systems); again this is text book material [3]. There are two long term goals
in coding theory: (a) design of new, computationally efficient, codes that improve the state of the art (probability of
correct reception) over the AWGN setting. Since the current codes already operate close to the information theoretic
“Shannon limit", the emphasis is on robustness and adaptability to deviations from the AWGN settings (a list of
channel models motivated by practical settings, (such as urban, pedestrian, vehicular) in the recent 5th generation
cellular standard is available in Annex B of 3GPP TS 36.101. (b) design of new codes for multi-terminal (i.e., beyond
point-to-point) settings – examples include the feedback channel, the relay channel and the interference channel.

Progress over these long term goals has generally been driven by individual human ingenuity and, befittingly,
is sporadic. For instance, the time duration between convolutional codes (2nd generation cellular standards) to polar
codes (5th generation cellular standards) is over 4 decades. Deep learning is fast emerging as capable of learning
sophisticated algorithms from observed data (input, action, output) alone and has been remarkably successful in a
large variety of human endeavors (ranging from language [4] to vision [5] to playing Go [6]). Motivated by these
successes, we posit that deep learning methods can play a crucial role in solving both the aforementioned goals of
coding theory and show that we can make significant progress on both these goals in this work.

While the learning framework is clear and there is virtually unlimited training data available, there are two main
challenges: (a) The space of codes is very vast and the sizes astronomical; for instance a rate 1/2 code over 100
information bits involves designing 2100 codewords in a 200 dimensional space. Computationally efficient encoding
and decoding procedures are a must, apart from high reliability over the AWGN channel. (b) Generalization is highly
desirable across block lengths and data rate that each work very well over a wide range of channel signal to noise
ratios (SNR). In other words, one is looking to design a family of codes (parametrized by data rate and number of
information bits) and their performance is evaluated over a range of channel SNRs.

In part due to these challenges, recent deep learing works on coding theory focus on decoding known codes using
data-driven neural decoders for short block lengths [7, 8, 9]. The main challenge is to restrict oneself to a class of
codes that neural networks can naturally encode and decode. In this work, we restrict ourselves to a class of sequential
encoding and decoding schemes, of which convolutional and turbo codes are part of. These sequential coding schemes
naturally meld with the family of recurrent neural network (RNN) architectures, which have recently seen large success
∗H. Kim, R. Rana and P. Viswanath are with Coordinated Science Lab and Department of Electrical Engineering at University of Illinois
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in a wide variety of time-series tasks. The ancillary advantage of sequential schemes is that arbitrarily long information
bits can be encoded and also at a large variety of coding rates. Working within sequential codes parametrized by RNN
architectures, we make the following contributions.

(1) Focusing on convolutional codes we aim to decode them on the AWGN channel using RNN architectures.
Efficient optimal decoding of convolutional codes has represented historically fundamental progress in the broad
arena of algorithms; optimal bit error decoding is achieved by the ‘Viterbi decoder’ [10] which is simply dynamic
programming or Dijkstra’s algorithm on a specific graph (the ‘trellis’) induced by the convolutional code. Optimal
block error decoding is the BCJR decoder [11] which is part of a family of forward-backward algorithms. While early
work had shown that vanilla-RNNs are capable in principle of emulating both Viterbi and BCJR decoders [12, 13] we
show empirically, through a careful construction of RNN architectures and training methodology, that neural network
decoding is possible at very near optimal performances (both bit error rate (BER) and block error rate (BLER)). The
key point is that we train a RNN decoder at a specific SNR and over short information bit lengths (100 bits) and show
strong generalization capabilities by testing over a wide range of SNR and block lengths (up to 10,000 bits). The
specific training SNR is closely related to the Shannon limit of the AWGN channel at the rate of the code and provides
strong information theoretic collateral to our empirical results.

(2) Turbo codes are naturally built on top of convolutional codes, both in terms of encoding and decoding. A
natural generalization of our RNN convolutional decoders allow us to decode turbo codes at BER comparable to, and
at certain regimes, even better than state of the art turbo decoders on the AWGN channel. That data driven, SGD-learnt,
RNN architectures can decode comparably is fairly remarkable since turbo codes already operate near the Shannon
limit of reliable communication over the AWGN channel.

(3) We show the afore-described neural network decoders for both convolutional and turbo codes are robust to
variations to the AWGN channel model. We consider a problem of contemporary interest: communication over a
“bursty" AWGN channel (where a small fraction of noise has much higher variance than usual) which models inter-
cell interference in OFDM cellular systems (used in 4G and 5G cellular standards) or co-channel radar interference.
We demonstrate empirically the neural network architectures can adapt to such variations and beat state of the art
heuristics comfortably (despite evidence elsewhere that neural network are sensitive to models they are trained on
[14]). Via an innovative local perturbation analysis (akin to [15]), we demonstrate the neural network to have learnt
sophisticated preprocessing heuristics in engineering of real world systems [16].

(4) We demonstrate new RNN-driven encoders (with matching decoders) that operate significantly better than
state of the art on the AWGN channel with (noisy) output feedback. While feedback does not improve the Shannon
capacity of the AWGN channel [17], it is known to provide better reliability at finite block lengths [18], although
very sensitive to even tiny amounts of noise in the output feedback; more generally any linear code incorporating
the noisy output feedback cannot achieve a non-zero reliable rate of communication [19] – this is very troubling
since all practical codes are linear and linear codes are known to achieve capacity (without feedback) [20]. Our
RNN parameterized encoders are inherently nonlinear and map information bits directly to real-valued transmissions.
Their performance vastly improves the state of the art on the long standing open problem in information theory on
communicating over the AWGN channel with noisy output feedback.
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I. INTRODUCTION

Since Shannon’s groundbreaking work on the fundamental
limits of communications [1], engineers have been seeking to
solve the task of “reproducing at one point either exactly or
approximately a message selected at another point” [1] or, in
other words, reliably transmitting a message from a source to
a destination over a channel by the use of a transmitter and a
receiver as illustrated in Fig. 1. “Classical” block-based signal
processing has shown to be close to optimal while each sub-
block can be optimized individually for a specific task such
as equalization, modulation or channel coding.

At first glance, machine learning techniques do not appear
to be a good match to communications on the physical
layer, with 50 years of tremendous progress based on clas-
sic signal processing, communication and information the-
ory, approaching close-to-optimal Shannon limit performance
on many channels. However, several open problems remain,
e.g., pertaining adaptivity and complexity of joint processing,
where first results using machine learning-based approaches
are promising (see [2], [3] and references therein).

Recently, the idea of deep learning (DL)-based communi-
cation was proposed in the literature [3], [4] based on the au-
toencoder concept ([5, Ch. 14]). In contrast to component-wise
optimizations, the autoencoder approach now enables end-to-
end training over any type of channel without the need for
detailed prior mathematical abstraction of the channel model,
breaking up restrictions commonplace in conventional block-
based signal processing by moving away from handcrafted,
carefully optimized sub-blocks towards adaptive and flexible
(artificial) neural networks, leading to many attractive research
questions. The benefits of machine learning approaches may
include more flexible hardware, highly adaptive systems and
less overall complexity. We thus pose the seemingly naive, yet,
in fact, rather complicated and attractive research question:
Can we learn to communicate?

We demonstrate the practical potential and viability of
such a system by extending the idea of end-to-end learning
of communications systems through deep neural network-
based autoencoders to orthogonal frequency division multiplex
(OFDM) with cyclic prefix (CP). This allows learning of
transmitter and receiver implementations—without any prior
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Fig. 1: Illustration of a simple communications system.

knowledge—that are optimized for an arbitrary differentiable
end-to-end performance metric, e.g., block error rate (BLER).
Our implementation shares the same benefits as a conventional
OFDM system, namely single-tap equalization and robustness
against sampling synchronization errors, which turned out to
be one of the major challenges in prior single-carrier imple-
mentations [6]. We show that the proposed scheme can be
realized with state-of-the-art deep learning software libraries,
since transmitter and receiver solely consist of differentiable
layers required for gradient-based training.

II. AUTOENCODER-BASED COMMUNICATION

As described in [3], a communications system can be
interpreted as an autoencoder [5]. This is schematically shown
in Fig. 2. An autoencoder describes a deep neural network
consisting of various hidden layers that is trained to reconstruct
the input (a so-called one-hot encoded vector representing one
of the m possible messages) at the output. As the information
must pass each layer, the network needs to find a robust rep-
resentation of the input message at every layer. In particular,
the transmitter output (a real vector of dimension n) must be
robust with respect to various channel impairments. Note that
the channel is also represented by network layers (without
trainable weights) that carry out stochastic transformations of
the input data. It is crucial to have a good model that accurately
reflects the real channel. The autoencoder is trained end-to-end
using stochastic gradient descent (SGD). After training, the
transmitter and receiver are fully described by their respective
layer dimensions and weights and can operate in standalone
mode to generate/process radio signals, e.g., on a software-
defined radio (SDR) platform as shown in [6].

During training, the encoder part of the autoencoder has
learned robust symbol sequence representations of all mes-
sages. Fig. 3 shows constellation diagrams of the IQ-symbols
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bŝM−1
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of all of the m = 256 possible messages of the single-
carrier system, i.e., per subcarrier of the multi-carrier system.
Each diagram shows all symbols at the same symbol position
within a message, as each message consists of 1

2 log2(m) = 4
complex-valued IQ-symbols (we assume n = 8 and consider
the first half of the transmitter output as the real and the second
half as the imaginary part). Interestingly, we can observe
that the autoencoder has learned some form of superimposed
piloting since the center of the constellations is shifted away
from the origin. For further details we refer to [6].

−2−1 0 1 2

−2
−1
0

1

2
Symbol 1

−2−1 0 1 2

−2
−1
0

1

2
Symbol 2

−2−1 0 1 2

−2
−1
0

1

2
Symbol 3

−2−1 0 1 2

−2
−1
0

1

2
Symbol 4

Fig. 3: Scatter plot of the learned constellations for all
M = 256 messages using average power normalization
‖x‖2 ≤ n. The symbols of four individual messages are high-
lighted by different color markers.

III. OFDM EXTENSIONS

We extend our work of [6] from single-carrier to multi-
carrier, i.e., OFDM with CP as shown in Fig. 4. Note
that a single autoencoder message x is represented by n

2
complex-valued IQ-symbols. Instead of directly transmitting
the encoder’s output x, an inverse discrete Fourier-transform
(DFT) of width wFFT is applied on a set of wFFT independent
autoencoder messages, i.e., wFFT equivalent independent sub-
channels are created, where independent autoencoder mes-
sages are assigned to each subcarrier.1 As each autoencoder
still requires n

2 channel uses, we generate n
2 complex-valued

OFDM symbols xOFDM, each of length wFFT. For additional
robustness against sampling synchronization errors and to
avoid inter-symbol interference (ISI) , we further add a CP of
length `CP, i.e., wFFT independent autoencoder symbols form
one single OFDM symbol xOFDM,CP of total length wFFT+`CP.
Thus, a sequence of n

2 (wFFT + `CP) complex-valued symbols
is subsequently transmitted over the (mutlipath) channel.

1Remark: as no additional piloting is assumed, we cannot simply distribute
the n

2
symbols of a message within the same OFDM symbol. Otherwise the

unknown phase rotation per subcarrier would destroy the message.

At the receiver side, the CP can be used for frame syn-
chronization through autocorrelation with peak detection; syn-
chronization turned out to be a challenging step in singe-
carrier autoencoder-based communication [6]. Finally, a DFT
recovers the inputs for the wFFT independent autoencoder
receivers.
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Fig. 4: OFDM extension to the autoencoder system.

At first glance it may appear counterintuitive that the
autoencoder system benefits from such an explicit structure
as it could also learn to compensate for these effects with
a single (large) neural network. However, we observe for a
single neural network that training complexity tremendously
increases and practically limits the system performance (see
[7]). Thus, the benefits of the proposed system are:

1) robustness against sampling synchronization errors
2) single-tap equalization2

3) moderate training complexity due to independent and
short length sub-carrier messages (i.e., small n)

This enables reliable communication over multipath channels
and makes the communication scheme suitable for commodity
hardware with imprecise oscillators.
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Abstract—In this review paper, we analyze the downlink of a
massive multiuser multiple-input multiple-output system in which
the base station is equipped with low-resolution digital-to-analog
converters (DACs). Using Bussgang’s theorem, we characterize the
sum-rate achievable with a Gaussian codebook and scaled nearest-
neighbor decoding at the user equipments (UE). For the case of 1-
bit DACs, we show how to evaluate the sum-rate using Van Vleck’s
arcsine law. For the case of multi-bit DACs, for which the sum-rate
cannot be expressed in closed-form, we present two approxima-
tions. The first one, which is obtained by ignoring the overload (or
clipping) distortion caused by the DACs, turns out to be accurate
provided that one can adapt the dynamic range of the quantizer
to the received-signal strength so as to avoid clipping. The sec-
ond approximation, which is obtained by modeling the distortion
noise as a white process, both in time and space, is accurate when-
ever the resolution of the DACs is sufficiently high and when the
oversampling ratio is small. We conclude the paper by discussing
extensions to orthogonal frequency-division multiplexing systems;
we also touch upon the problem of out-of-band emissions in low-
precision-DAC architectures.

I. INTRODUCTION

Nontrivial fronthaul connectivity challenges must be solved
if one wants to enable massive multiple-input multiple-output
(MIMO) operation over the relatively large bandwidth available
in the higher portion of the frequency spectrum assigned to 5G
systems. Consider, for example, a base station (BS) equipped
with 100 antennas, each one connected to two high-precision
(e.g., 10-bit resolution) digital-to-analog converters (DACs) and
analog-to-digital converters (ADCs) operating at 1 GS/s. In such
a system, 2 Tbit/s of data would need to be transferred to and
from the radio unit (typically co-located with the antenna array)
to the baseband-processing unit (typically located at the base of
the tower hosting the BS). This exceeds by far the rate supported
by the common public radio interface (CPRI) used over today’s
fiber-optical fronthaul links [1].

One promising approach to reduce this fronthaul bottleneck
is to lower the resolution of the data converters. Several as-
pects of massive MIMO systems equipped with low-precision

The work of SJ and GD was supported in part by the Swedish Foundation for
Strategic Research under grant ID14-0022, and by the Swedish Governmental
Agency for Innovation Systems (VINNOVA) within the competence center
ChaseOn. The work of CS was supported in part by Xilinx, Inc. and by the
US National Science Foundation (NSF) under grants ECCS-1408006, CCF-
1535897, CAREER CCF-1652065, and CNS-1717559.
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Fig. 1. Block diagram of the basic components of a DAC [17, Fig. 1.1].

converters have been recently investigated in the literature, in-
cluding achievable rates [2]–[7], channel-estimation and data-
detection algorithms [8], [9], precoding design [10]–[14], energy
efficiency [15], and out-of-band spectral emissions [16]. In this
review paper, we provide an overview of some of the most recent
results. Our focus will be exclusively on the downlink of a multi-
user (MU) massive MIMO system in which a BS serves multiple
user equipments (UEs) concurrently in the same frequency band.

II. SYSTEM MODEL AND DIGITAL-TO-ANALOG
CONVERTERS

We consider a massive-MIMO BS equipped with B antennas
and serving U UEs. Each BS antenna is fed by two DACs, which
generate the in-phase and the quadrature components of the
transmitted signal. A DAC performs two basic operations: (i) it
transforms the digital input sequence into its analog represen-
tation (transcoder stage) and (ii) it maps the transcoder output
to a continuous-time waveform (reconstruction stage, typically
consisting of a zero-order hold followed by a low-pass filter [17];
see Fig. 1 for an illustration).

Under the simplifying assumption that the digital input to
the DAC has infinite precision, we can view the transcoding
step of the two DACs as a quantizer, i.e., a nonlinear func-
tion Q(·) that maps a sample in C to a finite-cardinality set
X = {q0, . . . , q2Q−1}×{q0, . . . , q2Q−1}. Here,Q is the number
of DAC bits. Throughout the paper, we shall consider only
symmetric, uniform quantizers and denote their step size by ∆
and the number of levels by L = 2Q. Furthermore, we shall
assume that the output of the DACs is scaled by a factor α so as
to satisfy an average transmit-power constraint.

III. ACHIEVABLE RATES VIA BUSSGANG’S
DECOMPOSITION

To begin with, we focus, for simplicity, on the case of trans-
mission over flat-fading channels. We also assume that the
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DACs operate at symbol time and that their reconstruction
stage involve an ideal rectangular low-pass filter (see [16] for
details). Generalizations to more realistic setups are discussed
in Section V. Under these assumptions, the input-output relation
of the downlink channel can be modeled as

y = Hx + n. (1)

Here, the vector y ∈ CU contains the signal received at the U
UEs; H ∈ CU×B is the fading channel, which is assumed to
be perfectly known at the BS. The vector n ∼ CN (0, N0IU )
models the additive noise. Finally x ∈ XB is the output of the
transcoder stage of the DACs.

We assume that
x = Q(Ps) (2)

where s ∈ CU contains the data symbols intended for the U UEs
and P ∈ CB×U is the precoding matrix, which is a function of
the fading channel H. The precoding structure in (2) is referred
to in [12] as linear-quantized precoding, to distinguish from
more general nonlinear precoder structures, which offer superior
performance at the cost of additional computational complexity.

By substituting (2) into (1), we see that the presence of the
quantizerQ(·) makes the channel output y depend on the symbol
vector s in a nonlinear way. We next use Bussgang’s theorem [18],
a special case of Price’s theorem [19], to linearize the input-
output relation and to enable a theoretical analysis [20]. Then,
we will use the generalized mutual information (GMI) [21]
to estimate the rate achievable at each UE by scaled nearest-
neighbor decoding [22] and a Gaussian codebook ensemble.

Theorem 1 below follows from a simple adaptation of Buss-
gang’s theorem to the quantizer output Q(Ps).

Theorem 1: Assume that s ∼ CN (0, IU ). Then for a fixed
precoding matrix P, we have that

E
[
Q(Ps)(Ps)H

]
= GPPH (3)

where G is the following real-valued diagonal matrix:1

G =
α∆√
π

diag
(
PPH

)−1/2

×
L−1∑

i=1

exp

(
−∆2

(
i− L

2

)2

diag
(
PPH

)−1
)
. (4)

It follows from (3) that, under the assumption that s is Gaus-
sian, we can rewrite (2) in the linearized form

x = GPs + d (5)

where d is the zero-mean quantization-noise vector, which is
uncorrelated with s. Note that GPs is the linear minimum-
mean-square estimate of x given Ps, and d is the corresponding
estimation error.

Substituting (5) into (1), we obtain a linear input-output
relation, with non-Gaussian additive noise Hd+n. The ergodic

1In (4), the operator diag(·) returns a diagonal matrix whose main diagonal
coincides with that of the matrix it is applied to; furthermore, the exponential
function is applied elementwise to the diagonal entries of diag

(
PPH

)−1/2.

rate2 achievable over this channel using a Gaussian codebook
and scaled nearest-neighbor decoding at the receiver can be
established from a GMI analysis similar to the one reported
in [22], [24]. Specifically, we have the following result.

Theorem 2: Assume that UE u has knowledge of the channel
gain3 hTuGpu, where hTu is the uth row of the channel matrix H
and pu is the uth column of the precoding matrix P. Then
the GMI Ru achievable with a Gaussian codebook and scaled
nearest-neighbor decoding at the uth UE is

Ru = E[log(1 + γu)] (6)

where the signal-to-interference-noise-and-distortion ratio
(SINDR) γu is given by

γu =

∣∣hTuGpu
∣∣2

∑
v 6=u |hTuGpv|2 + hTu E[ddH ]h∗u +N0

. (7)

IV. STATISTICS OF THE QUANTIZATION NOISE

Evaluating (7) requires knowledge of the correlation matrix
E
[
ddH

]
of the zero-mean quantization noise d. It follows

from (5) that

E
[
ddH

]
= E

[
xxH

]
−GPPHG. (8)

For the caseL = 2 (1-bit DACs), the covariance matrixE
[
xxH

]

of the quantizer output admits a well-known closed-form expres-
sion, commonly referred to as the arcsine law and reported first
by Van Vleck [25]:

E
[
xxH

]

=
2P

πB

(
sin−1

(
diag(PPH)−

1
2<{PPH} diag(PPH)−

1
2

)

+ j sin−1
(

diag(PPH)−
1
2={PPH} diag(PPH)−

1
2

))
. (9)

Here, P denotes the power constraint. However, for any finite L
larger than 2, no closed-form expression is available forE

[
xxH

]

and this matrix needs to be evaluated numerically (see [26], [7]).
Alternatively, one can seek closed-form approximations to

E
[
ddH

]
. Two such approximations are discussed in [26]. The

first one, referred to as diagonal approximation, involves neglect-
ing spatial correlation, i.e., assuming that E

[
ddH

]
is a diagonal

matrix. Then, one exploits that the entries on the main diagonal
of E

[
ddH

]
can be computed in closed form even when L > 2.

This approximation is accurate only for DACs with medium-to-
high resolution (i.e., when L ≥ 4).

The second one, referred to as rounding approximation, in-
volves replacing each DAC by a one-dimensional midrise lattice
quantizer (which implies L =∞) with step size ∆, for which
the covariance matrix of the quantization error is known in
closed form [27]. This approximation is accurate also for low-
precision DACs, provided that the step size ∆ is chosen so that
the distortion due to clipping/saturation is negligible compared
to the granular quantization distortion. This requires adapting ∆
to the signal strength.

2We assume that coding can be performed over sufficiently many independent
realization of the channel matrix H. See [23] for an analysis of the impact of
imperfect channel-state information on the system performance.

3This is the scaling factor in the scaled nearest-neighbor decoding rule.
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V. EXTENSIONS

Extensions of the analysis described above to the frequency-
selective case and to the use of orthognal-frequency-division
multiplexing (OFDM) and oversampling DACs are discussed
in [26], [28], [16]. In the oversampling case, the diagonal ap-
proximation involves neglecting also temporal correlation, and it
turns out to be accurate only when the oversampling ratio is small
(e.g., less than four for L = 4). The rounding approximation
does not suffer from this limitation.

The use of low-precision DACs in the massive MIMO down-
link causes unwanted out-of-band (OOB) emissions, which
may be incompatible with the spectral requirements imposed
by regulatory bodies. An extension of the Bussgang’s decom-
position (3) to OFDM systems with nonideal analog filters is
used in [16] to study such OOB emissions. There, it is shown
that by an appropriate design of the DACs’ low-pass filter and
by employing simple digital pre-equalization techniques, one
can significantly reduce OOB emissions, at the cost of a small
decrease in the SINDR (7) and of a small increase in the peak-
to-average power ratio of the transmitted signal.
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Abstract—The authors have recently defined the Rényi infor-
mation dimension rate d({Xt}) of a stationary stochastic process
{Xt, t ∈ Z} as the entropy rate of the uniformly-quantized
process divided by minus the logarithm of the quantizer step
size 1/m in the limit as m → ∞ (B. Geiger and T. Koch,
“On the information dimension rate of stochastic processes,” in
Proc. IEEE Int. Symp. Inf. Theory (ISIT), Aachen, Germany, June
2017). For Gaussian processes with a given spectral distribution
function FX , they showed that the information dimension rate
is given by the Lebesgue measure of the set of harmonics
where the derivative of FX is positive. This paper extends this
result to multivariate Gaussian processes with a given matrix-
valued spectral distribution function FX. It is demonstrated that
the information dimension rate equals the average rank of the
derivative of FX. As side results, it is shown that the scale and
translation invariance of information dimension carries over from
random variables to stochastic processes.

I. INTRODUCTION

In 1959, Rényi [1] proposed the information dimension
and the d-dimensional entropy to measure the information
content of general random variables (RVs). In recent years,
it was shown that the information dimension is of relevance
in various areas of information theory, including rate-distortion
theory, almost lossless analog compression, or the analysis of
interference channels. For example, Kawabata and Dembo [2]
showed that the information dimension of a RV is equal to its
rate-distortion dimension, defined as twice the rate-distortion
function R(D) divided by − log(D) in the limit as D ↓ 0.
Koch [3] demonstrated that the rate-distortion function of a
source with infinite information dimension is infinite, and
that for any source with finite information dimension and
finite differential entropy the Shannon lower bound on the
rate-distortion function is asymptotically tight. Wu and Verdú
[4] analyzed both linear encoding and Lipschitz decoding of
discrete-time, independent and identically distributed (i.i.d.),
stochastic processes and showed that the information dimen-
sion plays a fundamental role in achievability and converse

The work of Bernhard C. Geiger has been funded by the Erwin Schrödinger
Fellowship J 3765 of the Austrian Science Fund. The work of Tobias Koch
has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme
(grant agreement number 714161), from the Spanish Ministerio de Economı́a
y Competitividad under Grants TEC2013-41718-R, RYC-2014-16332 and
TEC2016-78434-C3-3-R (AEI/FEDER, EU), and from the Comunidad de
Madrid under Grant S2103/ICE-2845.

results. Wu et al. [5] showed that the degrees of freedom of
the K-user Gaussian interference channel can be characterized
through the sum of information dimensions. Stotz and Bölcskei
[6] later generalized this result to vector interference channels.

In [7], [8], we proposed the information dimension rate as a
generalization of information dimension from RVs to univari-
ate (real-valued) stochastic processes. Specifically, consider
the stationary process {Xt, t ∈ Z}, and let {[Xt]m, t ∈ Z}
be the process obtained by uniformly quantizing {Xt} with
step size 1/m. We defined the information dimension rate
d({Xt}) of {Xt} as the entropy rate of {[Xt]m} divided by
logm in the limit as m→∞ [8, Def. 2]. We then showed that,
for any stochastic process, d({Xt}) coincides with the rate-
distortion dimension of {Xt} [8, Th. 5]. We further showed
that for stationary Gaussian processes with spectral distribution
function FX , the information dimension rate d({Xt}) equals
the Lebesgue measure of the set of harmonics on [−1/2, 1/2]
where the derivative of FX is positive [8, Th. 7]. This implies
an intuitively appealing connection between the information
dimension rate of a stochastic process and its bandwidth.

In this work, we generalize our definition of d({Xt}) to
multivariate processes. Consider the L-variate (real-valued)
stationary process {Xt}, and let {[Xt]m} be the process
obtained by quantizing every component process of {Xt}
uniformly with step size 1/m. As in the univariate case, the
information dimension rate d({Xt}) of {Xt} is defined as
the entropy rate of {[Xt]m} divided by logm in the limit as
m → ∞. Our main result is an evaluation of d({Xt}) for
L-variate Gaussian processes with spectral distribution matrix
FX. We demonstrate that for such processes d({Xt}) equals
the Lebesgue integral of the rank of the derivative of FX. As
a corollary, we show that the information dimension rate of
univariate complex-valued Gaussian processes is maximized
if the process is proper, in which case it is equal to twice the
Lebesue measure of the set of harmonics where the derivative
of its spectral distribution function FX is positive.

As side results, we show that d({Xt}) is scale and transla-
tion invariant. These properties are known for the information
dimension of RVs (cf. [9, Lemma 3]), but they do not directly
carry over to our definition of d({Xt}), which is why we state
them explicitly in this paper.

Due to space limitations, some of the proofs are only
sketched or omitted altogether. The full proofs appear in [10].
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II. NOTATION AND PRELIMINARIES

We denote by R, C, and Z the set of real numbers, the set
of complex numbers, and the set of integers, respectively. We
use a calligraphic font, such as F , to denote other sets, and
we denote complements as F c.

We denote RVs by upper case letters, e.g., X . For a finite
or countably infinite collection of RVs we abbreviate Xk

` ,
(X`, . . . , Xk−1, Xk), X∞` , (X`, X`+1, . . . ), and Xk

−∞ ,
(. . . , Xk−1, Xk). Univariate discete-time stochastic processes
are denoted as {Xt, t ∈ Z} or, in short, as {Xt}. For L-
variate stochastic processes we use the same notation but with
Xt replaced by Xt , (X1,t, . . . , XL,t). We call {Xi,t, t ∈ Z}
a component process.

We define the quantization of X with precision m as

[X]m , bmXc
m

(1)

where bac is the largest integer less than or equal to a.
Likewise, dae denotes the smallest integer greater than or
equal to a. We denote by [Xk

` ]m = ([X`]m, . . . , [Xk]m) the
component-wise quantization of Xk

` (and similarly for other
collections of RVs or random vectors). Likewise, for complex
RVs Z with real part R and imaginary part I , the quantization
[Z]m is equal to [R]m + ı[I]m where ı ,

√
−1.

Let H(·), h(·), and D(·‖·) denote entropy, differential
entropy, and relative entropy, respectively, and let I(·; ·) denote
the mutual information [11]. We take logarithms to base e ≈
2.718, so mutual informations and entropies have dimension
nats. The entropy rate of a discrete-valued, stationary, L-
variate stochastic process {Xt} is [11, Th. 4.2.1]

H ′({Xt}) , lim
k→∞

H(Xk
1)

k
. (2)

Rényi defined the information dimension of a collection of
RVs Xk

` as [1]

d(Xk
` ) , lim

m→∞
H([Xk

` ]m)

logm
(3)

provided the limit exists. If the limit does not exist, one
can define the upper and lower information dimension d(Xk

` )
and d(Xk

` ) by replacing the limit with the limit superior and
limit inferior, respectively. If a result holds for both the limit
superior and the limit inferior but it is unclear whether the
limit exists, then we shall write d(Xk

` ). We shall follow this
notation throughout this document: an overline (·) indicates
that the quantity in the brackets has been computed using the
limit superior over m, an underline (·) indicates that it has
been computed using the limit inferior, both an overline and
an underline (·) indicates that a result holds irrespective of
whether the limit superior or limit inferior over m is taken.

If H([Xk
` ]1) <∞, then [1, Eq. 7], [4, Prop. 1]

0 ≤ d(Xk
` ) ≤ d(Xk

` ) ≤ k − `+ 1. (4)

If H([Xk
` ]1) = ∞, then d(Xk

` ) = ∞. As shown in [9,
Lemma 3], information dimension is invariant under scaling
and translation, i.e., d(a · Xk

` ) = d(Xk
` ) and d(Xk

` + c) =
d(Xk

` ) for every a 6= 0 and c ∈ Rk−`+1.

III. INFORMATION DIMENSION
OF UNIVARIATE PROCESSES

In [7], [8], we generalized (3) by defining the information
dimension rate of a univariate stationary process {Xt} as

d({Xt}) , lim
m→∞

H ′({[Xt]m})
logm

= lim
m→∞

lim
k→∞

H([Xk
1 ]m)

k logm
(5)

provided the limit exists. (The limit over k exists by station-
arity.)

If H([X1]1) <∞, then [8, Lemma 4]

0 ≤ d({Xt}) ≤ d({Xt}) ≤ 1. (6)

If H([X1]1) = ∞, then d({Xt}) = ∞. Moreover, the
information dimension rate of the process cannot exceed the
information dimension of the marginal RV, i.e.,

d({Xt}) ≤ d(X1). (7)

Kawabata and Dembo [2, Lemma 3.2] showed that the
information dimension of a RV equals its rate-distortion di-
mension. By emulating the proof of [2, Lemma 3.2], we
generalized this result to stationary processes by demonstrating
that the information dimension rate is equal to the rate-
distortion dimension. Specifically, let R(Xk

1 , D) denote the
rate-distortion function of the k-dimensional source Xk

1 , i.e.,

R(Xk
1 , D) , inf

E[‖X̂k
1−Xk

1 ‖2]≤D
I(Xk

1 ; X̂
k
1 ) (8)

where the infimum is over all conditional distributions of X̂k
1

given Xk
1 such that E[‖X̂k

1 −Xk
1 ‖2] ≤ D (where ‖ · ‖ denotes

the Euclidean norm). The rate-distortion dimension of the
stationary process {Xt} is defined as

dimR({Xt}) , 2 lim
D↓0

lim
k→∞

R(Xk
1 , kD)

−k logD (9)

provided the limit as D ↓ 0 exists. By stationarity, the limit
over k always exists [12, Th. 9.8.1]. We showed that [8, Th. 5]

dimR({Xt}) = d({Xt}). (10)

This result directly generalizes to non-stationary process (pos-
sibly with the limit over k replaced by the limit superior or
limit inferior).

IV. INFORMATION DIMENSION
OF MULTIVARIATE PROCESSES

In this section, we generalize the definition of the informa-
tion dimension rate (5) to multivariate (real-valued) processes
and study its properties.

Definition 1 (Information Dimension Rate): The information
dimension rate of the stationary, L-variate process {Xt} is

d({Xt}) , lim
m→∞

H ′({[Xt]m})
logm

= lim
m→∞

lim
k→∞

H([Xk
1,1]m, . . . , [X

k
L,1]m)

k logm
(11)

provided the limit over m exists.
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We next summarize some basic properties of the information
dimension rate.

Lemma 1 (Finiteness and Bounds): Let {Xt} be a stationary,
L-variate process. If H([X1]1) <∞, then

0 ≤ d({Xt}) ≤ d(X1) ≤ L. (12)

If H([X1]1) =∞, then d({Xt}) =∞.
Proof: Suppose first that H([X1]1) < ∞. Then, the

rightmost inequality in (12) follows from (4). The leftmost
inequality follows from the nonnegativity of entropy. Finally,
the center inequality follows since conditioning reduces en-
tropy, hence H ′({[Xt]m}) ≤ H([X1]m).

Now suppose that H([X1]1) =∞. By stationarity and since
[X1]1 is a function of [Xk

1 ]m for every m and every k, we have

H([X1]1) ≤ H([Xk
1 ]m). (13)

This implies that H ′({[Xt]m}) =∞ and the claim d({Xt}) =
∞ follows from Definition 1.

It was shown in [9, Lemma 3] that information dimension
is invariant under scaling and translation. The same properties
hold for the information dimension rate.

Lemma 2 (Scale Invariance): Let {Xt} be a stationary, L-
variate process and let ai > 0, i = 1, . . . , L. Further let Yi,t ,
aiXi,t, i = 1, . . . , L, t ∈ Z. Then, d({Yt}) = d({Xt}).

Proof: The proof is based on [4, Lemma 16] and appears
in [10]. For brevity, let us focus on the case L = 2. The case
L > 2 follows analogously. For L = 2, we have

H([a1X
k
1,1]m, [a2X

k
2,1]m)

≤ H([Xk
1,1]m, [X

k
2,1]m) +H([a1X

k
1,1]m|[Xk

1,1]m)

+H([a2X
k
2,1]m|[Xk

2,1]m)

≤ H([Xk
1,1]m, [X

k
2,1]m)

+ k log(da1e+ 1) + k log(da2e+ 1) (14)

where the second step follows because, given [Xk
i,1]m,

[aiX
k
i,1]m can have at most daie + 1 possible values. By

following the same steps with ai replaced by 1/ai, we obtain
the reverse inequality

H([a1X
k
1,1]m, [a2X

k
2,1]m) ≥ H([Xk

1,1]m, [X
k
2,1]m)

− k log(d1/a1e+ 1)− k log(d1/a2e+ 1). (15)

The lemma then follows by dividing (14) and (15) by k logm
and by letting k and m tend to infinity.

Lemma 3 (Translation Invariance): Let {Xt} be a station-
ary, L-variate process and let {ct}, t ∈ Z be a sequence of
L-dimensional vectors. Then, d({Xt + ct}) = d({Xt}).

Proof: The lemma follows from [9, Lemma 30], which
states that

|H(UkL1 )−H(V kL1 )| ≤
kL∑

i=1

log(1 +Ai +Bi) (16)

for any collection of integer-valued RVs UkL1 and V kL1 satis-
fying almost surely −Bi ≤ Ui − Vi ≤ Ai, i = 1, . . . , kL.
Applying this result with U`L+j = bmX`,j + mc`,jc and

V`L+j = bmX`,jc+ bmc`,jc gives the desired result. Indeed,
we have that −1 ≤ U`L+j − V`L+j ≤ 2, so (16) yields

∣∣∣H([Xk
1 ]m)−H([Xk

1 + ck1 ]m)
∣∣∣ ≤ kL log(4). (17)

We thus obtain |d({Xt}) − d({Xt + ct})| = 0 by dividing
(17) by k logm and by letting k and m tend to infinity.

We finally observe that the information dimension rate of a
stationary stochastic process equals its rate-distortion dimen-
sion. This generalizes [8, Th. 5] to multivariate processes.

Theorem 1: Let {Xt} be a stationary, L-variate process.
Then,

d({Xt}) = dimR{Xt} (18)

where dimR{Xt} is defined as in (9) but with {Xt} replaced
by {Xt}.

Proof: The proof is analog to that of [2, Lemma 3.2] and
[8, Th. 5] and is therefore omitted.

V. INFORMATION DIMENSION
OF GAUSSIAN PROCESSES

Let {Xt} be a stationary, L-variate, real-valued Gaussian
process with mean vector µ and (matrix-valued) spectral
distribution function (SDF) θ 7→ FX(θ). Thus, FX is bounded,
non-decreasing, and right-continuous on [−1/2, 1/2], and it
satisfies [13, (7.3), p. 141]

KX(τ) =

∫ 1/2

−1/2
e−ı2πτθdFX(θ), τ ∈ Z (19)

where KX(τ) , E [(Xt+τ − µ)(Xt − µ)T] denotes the auto-
covariance function and (·)T denotes the transpose. It can be
shown that θ 7→ FX(θ) has a derivative almost everywhere,
which has positive semi-definite, Hermitian values [13, (7.4),
p. 141]. We shall denote the derivative of FX by F ′X.

For univariate stationary Gaussian processes with SDF FX ,
we have shown that the information dimension rate is equal to
the Lebesgue measure of the set of harmonics on [−1/2, 1/2]
where the derivative of FX is is positive [8, Th. 7], i.e.,

d({Xt}) = λ({θ: F ′X(θ) > 0}) (20)

where λ(·) denotes the Lebesgue measure on [−1/2, 1/2].
This result can be directly generalized to the multivariate
case where the component processes are independent. Indeed,
suppose that {Xt} is a collection of L independent Gaussian
processes {Xi,t, t ∈ Z} with SDFs FXi

. This corresponds
to the case where the (matrix-valued) SDF is a diagonal
matrix with the SDFs of the individual processes on the main
diagonal. For independent processes, the joint entropy rate can
be written as the sum of the entropy rates of the component
processes. It follows that

d({Xt}) =
L∑

i=1

d({Xi,t}) =
L∑

i=1

λ({θ : F ′Xi
(θ) > 0}). (21)

The expression on the right-hand side (RHS) of (21) can
alternatively be written as
∫ 1/2

−1/2

L∑

i=1

1{F ′Xi
(θ) > 0}dθ =

∫ 1/2

−1/2
rank(F ′X(θ))dθ (22)
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where 1{·} is the indicator function. Observe that it is imma-
terial at which frequencies the component processes contain
signal power. For example, the information dimension rate
of two independent Gaussian processes with bandwidth 1/4
equals 1 regardless of where the derivatives of their SDFs have
their support. The following theorem shows that this result
continuous to hold for general L-variate Gaussian processes.

Theorem 2: Let {Xt} be a stationary, L-variate Gaussian
process with mean vector µ and SDF FX. Then,

d({Xt}) =
∫ 1/2

−1/2
rank(F ′X(θ))dθ. (23)

Proof: Due to space limitations, we only provide a proof
outline. The full proof can be found in [10].

We first note that we can assume, without loss of optimality,
that {Xt} has zero mean and that every component process of
{Xt} has unit variance. Indeed, by Lemma 3, the information
dimension rate of {Xt} is translation invariant, so we can
subtract the mean without affecting the information dimension
rate. Likewise, by Lemma 2, the information dimension rate
of {Xt} is scale invariant, so any component process with
positive variance can be normalized to a unit-variance process
without affecting the information dimension rate. Furthermore,
zero-variance component processes can be omitted without
affecting neither the left-hand side (LHS) nor the RHS of (23).

We next write the entropy of [Xk
1 ]m as

H([Xk
1 ]m) = h(Wk

1) + kL logm (24)

where Wt , [Xt]m + Ut, t ∈ Z and {Ut} is a sequence
of i.i.d. random vectors that are uniformly distributed on the
L-dimensional hypercube [0, 1/m)L. Denoting by (Wk

1)G a
Gaussian vector with the same mean and covariance matrix
as Wk

1 , and denoting by fWk
1

and gWk
1

the probability
density functions of Wk

1 and (Wk
1)G, respectively, this can

be expressed as

H([Xk
1 ]m) = h

(
(Wk

1)G
)
+D(fWk

1
‖gWk

1
)+ kL logm. (25)

The entropy rate of a stationary, multivariate, Gaussian
process is given by [13, Th. 7.10]

lim
k→∞

h((Wk
1)G)

k
=

1

2

∫ 1/2

−1/2
log
(
2πedetF ′W(θ)

)
dθ. (26)

Furthermore, the relative entropy D(fWk
1
‖gWk

1
) is bounded

by [10, Lemma 6]

D(fWk
1
‖gWk

1
)

k
≤ L

(
log
(
2π(1 + 1

12 )
)

2
+

75

2
+

24

π

)
. (27)

Thus, dividing (25) by k logm, and letting first k and then m
tend to infinity yields

d({Xt}) = L+ lim
m→∞

∫ 1/2

−1/2

log detF ′W(θ)

2 logm
dθ. (28)

It remains to show that the RHS of (28) is equal to the RHS
of (23). To this end, we use that for zero-mean processes {Xt}

with unit-variance component processes the SDF of {[Xt]m}
can be expressed as [10, Lemma 4]

F[X]m(θ) = (2a− 1)FX(θ) + FN(θ) (29)

where a , E [X1,1[X1,1]m] and the diagonal elements of
FN(θ) satisfy ∫ 1/2

−1/2
dFNi

(θ) ≤ 1

m2
. (30)

We can thus express the derivative of the SDF of {Wt} as

F ′W(θ) = (2a− 1)F ′X(θ) + F ′N(θ) +
1

12m2
IL (31)

where IL denotes the L×L identity matrix. By performing an
analysis similar to that in [8, App. C-A], one can show that

lim
m→∞

∫ 1/2

−1/2

log detF ′W(θ)

2 logm
dθ = −

L∑

i=1

λ({θ : µi(θ) = 0})

(32)
where µi(θ) denotes the i-th eigenvalue of F ′X(θ). (For the
details, see [10, App. A].). Combining (32) with (28) gives

d({Xt}) =
L∑

i=1

[
1− λ({θ : µi(θ) = 0})

]

=

L∑

i=1

λ({θ : µi(θ) > 0}) (33)

which as in (21) and (22) can be shown to be equal to the
RHS of (23).

VI. INFORMATION DIMENSION
OF COMPLEX GAUSSIAN PROCESSES

Theorem 2 allows us to study the information dimension
of stationary, univariate, complex-valued Gaussian processes
by treating them as bivariate, real-valued processes. Let {Zt}
be a stationary, univariate, complex-valued, Gaussian process
with mean µ and SDF FZ , i.e.,

KZ(τ) =

∫ 1/2

−1/2
e−ı2πτθdFZ(θ), τ ∈ Z (34)

where KZ(τ) , E [(Zt+τ − µ)(Zt − µ)∗] is the autocovari-
ance function, and (·)∗ denotes complex conjugation.

Alternatively, {Zt} can be expressed in terms of its real
and imaginary part. Indeed, let Zt = Rt + ıIt, t ∈ Z. The
stationary, bivariate, real-valued process {(Rt, It), t ∈ Z} is
jointly Gaussian and has SDF

F(R,I)(θ) =

(
FR(θ) FRI(θ)
FIR(θ) FI(θ)

)
, −1

2
≤ θ ≤ 1

2
(35)

where FR and FI are the SDFs of {Rt} and {It}, respectively,
and FRI and FIR are the cross SDFs between {Rt} and {It}.
The derivatives of FZ and F(R,I) are connected as follows:

F ′Z(θ) = F ′R(θ) + F ′I(θ) + ı
(
F ′IR(θ)− F ′RI(θ)

)

= F ′R(θ) + F ′I(θ) + 2Im
(
F ′RI(θ)

)
(36)
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where the last equality follows because F ′(R,I) is Hermitian.
Here we use Im(·) to denote the imaginary part. It can be
further shown that θ 7→ F ′R(θ) and θ 7→ F ′I(θ) are real-valued
and symmetric, and that θ 7→ Im

(
F ′RI(θ)

)
is anti-symmetric.

A stationary, complex-valued process {Zt} is said to be
proper if its mean µ and its pseudo-autocovariance function

KZ(τ) , E [(Zt+τ − µ)(Zt − µ)] , τ ∈ Z
are both zero [14, Def. 17.5.4]. Since, by Lemma 3, the
information dimension rate is independent of µ, we shall
slightly abuse notation and say that a stationary, complex-
valued process is proper if its pseudo-autocovariance function
is identically zero, irrespective of its mean. Properness implies
that, for all θ, FR(θ) = FI(θ) and FRI(θ) = −FIR(θ). Since
θ 7→ F ′(R,I)(θ) is Hermitian, this implies that for a proper
process the function θ 7→ F ′RI(θ) is purely imaginary.

The following corollary to Theorem 2 shows that proper
Gaussian processes maximize information dimension. This
parallels the result that proper Gaussian vectors maximize
differential entropy [15, Th. 2].

Corollary 1: Let {Zt} be a stationary, complex-valued
Gaussian process with mean µ and SDF FZ . Then

d({Zt}) ≤ 2 · λ({θ: F ′Z(θ) > 0}) (37)

with equality if {Zt} is proper.
Proof: We know from Theorem 2 that

d({Zt}) =
∫ 1/2

−1/2
rank(F ′(R,I)(θ))dθ. (38)

For a given θ, the eigenvalues of F ′(R,I)(θ) are given by

F ′R(θ) + F ′I(θ)
2

±
√

(F ′R(θ)− F ′I(θ))2
4

+ |F ′RI(θ)|2. (39)

Since F ′(R,I)(θ) is positive semi-definite, these eigenvalues are
nonnegative and

F ′R(θ)F
′
I(θ) ≥ |F ′RI(θ)|2. (40)

The larger of these eigenvalues, say µ1(θ), is zero on

F1 , {θ : F ′R(θ) = F ′I(θ) = 0}. (41)

The smaller eigenvalue, µ2(θ), is zero on

F2 ,
{
θ : F ′R(θ)F

′
I(θ) = |F ′RI(θ)|2

}
. (42)

Clearly, F1 ⊆ F2. By (38), we have that

d({Zt}) = λ({θ: µ1(θ) > 0}) + λ({θ: µ2(θ) > 0})
= 1− λ(F1) + 1− λ(F1)− λ(F c

1 ∩ F2). (43)

We next note that, by (36) and (40), the derivative F ′Z(θ) is
zero if either F ′R(θ) = F ′I(θ) = 0 or if F ′R(θ) + F ′I(θ) > 0
and F ′R(θ) + F ′I(θ) = −2Im(F ′RI(θ)). Since θ 7→ F ′R(θ)
and θ 7→ F ′I(θ) are symmetric and θ 7→ Im(F ′RI(θ)) is anti-
symmetric, it follows that for any θ ∈ Fc1 satisfying F ′R(θ) +
F ′I(θ) = −2Im(F ′RI(θ)) we have that F ′R(−θ) + F ′I(−θ) =
2Im(F ′RI(−θ)). Thus, defining

F3 ,
{
θ : F ′R(θ) + F ′I(θ) = 2|Im(F ′RI(θ))|

}
(44)

we can express the Lebesgue measure of the set of harmonics
where F ′Z(θ) = 0 as

λ({θ: F ′Z(θ) = 0}) = λ(F1) +
1

2
λ(F c

1 ∩ F3). (45)

Combining (43) and (45), we obtain

d({Zt}) = 2λ({θ : F ′Z(θ) > 0})
+ λ(F c

1 ∩ F3)− λ(F c
1 ∩ F2). (46)

Since the arithmetic mean is greater than or equal to the
geometric mean, and with (40), we have that

(F ′R(θ) + F ′I(θ))
2 ≥ 4F ′R(θ)F

′
I(θ)

≥ 4|F ′RI(θ)|2 ≥ 4Im(F ′RI(θ))
2. (47)

Hence, F3 ⊆ F2 and the second line in (46) is less than or
equal to zero. This proves (37).

If {Zt} is proper, then we have F ′R(θ) = F ′I(θ) and
|F ′RI(θ)| = |Im(F ′RI(θ))|. In this case, F ′R(θ)F

′
I(θ) =

|F ′RI(θ)|2 implies F ′R(θ) + F ′I(θ) = 2|Im(F ′RI(θ))|, so
F2 ⊆ F3. It follows that F2 = F3 and the second line in
(46) is zero. Hence, (37) holds with equality.

Remark 1: There are also non-proper processes for which
(37) holds with equality. For example, this is the case for any
stationary Gaussian process for which real and imaginary parts
are independent and F ′R and F ′I have matching support but are
different otherwise.
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Abstract—We consider the problem of recovering a hidden
community of size K from a graph where edges between members
of the community have label drawn independently and identically
distributed (i.i.d.) according to P and all other edges have labels
drawn i.i.d. according to Q. The information limits for this
problem were characterized by Hajek-Wu-Xu in 2016 in terms
of the Kullback-Leibler (KL) divergence between P and Q. We
complement their work by showing that for a broad class of
distributions P and Q one may reduce to the case P = Bern(p)
and Q = Bern(q). Specifically, given X ∼ P and Y ∼ Q, we
show that there exists some map (or, qunatizer) Φ : R→ {0, 1},
preserving the KL-divergence, i.e., dKL(pΦ||qΦ) ≥ C ·DKL(P ||Q),
where pΦ and qΦ are the probability laws of the random variables
Φ(X) and Φ(Y ), respectively, and C is some universal constant.

I. INTRODUCTION

Many networks of interest display community structure, i.e.,
their vertices (denoting the objects) are organized into groups,
called communities, and edges capturing their pairwise depen-
dencies. For example, in social network analysis, these groups
can be seen as communities with higher edge dependencies
than the rest of the network. Generally speaking, the main goal
in community detection is to identify these communities. We
consider the following probabilistic definition of the hidden
community model [1].

Definition 1 (Hidden Community Model). Let C∗ be drawn
uniformly at random from all subsets of {1, 2, . . . , n} of
cardinality K. Given probability measures P and Q on a
common measurable space, let A be an n×n symmetric matrix
with zero diagonal where for all 1 ≤ i < j ≤ n, Aij are
mutually independent, Aij ∼ P if i, j ∈ C∗, and Aij ∼ Q
otherwise.

Observing A, the main task is to accurately (or approxi-
mately) recover the underlying community C∗. The distribu-
tions P and Q as well as the community size K depend on
n. It is then reasonable that, for a fixed network size n, as the
community size K decreases, or the distributions P and Q get
closer (in some sense), the recovery problem becomes harder.

The community detection problem was extensively stud-
ied in the literature (see, e.g., [1-14], and many references
therein). The information theoretic limits for exact recovery
have become increasingly well-understood in the literature.
For example, in the Bernoulli case, it was shown [8] that if
K ·dKL(q||p)−c·logK →∞ and K ·dKL(q||p) ≥ c·log n, for
some large constant c > 0, then exact recovery is achievable
via the maximum likelihood estimator (MLE), otherwise, exact
recovery is impossible for any algorithms. Similar results were
proved in the Gaussian case [7].

II. RECENT RESULTS

Recently, [9] derived the information limits with sharp
constants for a broad class of distributions P and Q. In
a recent work [14], among other things, we complement
[9] by showing that for the same class of distributions P
and Q one may reduce to the case P = Bernoulli(p) and
Q = Bernoulli(q). In other words, we show that there exists
a map (or, quantizer) which takes as an input the matrix
A in Definition 1, and outputs a (p, q)-binary matrix in a
way which “preserves the information”. Specifically, given
X ∼ P and Y ∼ Q, we show that there exists some map (or,
qunatizer) Φ : R → {0, 1}, preserving the KL-divergence,
i.e., dKL(pΦ||qΦ) ≥ C · DKL(P ||Q), where pΦ and qΦ are
the probability laws of the random variables Φ(X) and Φ(Y ),
respectively, and C is some universal constant. This result,
together with [8] provides an alternative and constructive proof
of the achievability part in [9] for general P and Q.
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Let X and Y be a pair of random variables with a given
distribution PXY . This work deals with the problem of quan-
tizing Y into M values, under the objective of maximizing
the mutual information between the quantizer’s output and X .
We denote the value of the mutual information attained by the
optimal M -ary quantizer by

I(X; [Y ]M ) , sup
Ỹ ∈[Y ]M

I(X; Ỹ ). (1)

where [Y ]M is the set of all (deterministic) M -ary quantiza-
tions of Y ,

[Y ]M , {f(Y ) : f : Y → [M ]}.

When X and Y are thought of as the input and output of
a channel, respectively, the problem boils down to designing
the M -level quantizer that maximizes the information rate,
whereas (1) is the highest information rate attainable. It is
therefore not surprising that this problem has received con-
siderable attention [1]–[5]. For example, it is well known [6,
Section 2.11] that when X is a BPSK input to an AWGN
channel with output Y it holds that I(X; [Y ]2) ≥ 2I(X;Y )/π
and this is achieved by taking f(·) to be the maximum a
posteriori (MAP) estimator of X from Y .

Our focus is studying the fundamental properties of the
function I(X; [Y ]M ), and in particular, identifying the joint
distributions PXY that are the most difficult to quantize, and
characterizing the behavior of I(X; [Y ]M ) for these cases.
Special attention is given to the symmetric binary case where
X ∼ Bernoulli(1/2). In this setting, it may seem that the
optimal binary quantizer should always retain a significant
fraction of I(X;Y ), and that the MAP quantizer should be
sufficient to this end. For large I(X;Y ), it is not difficult to
see that this is indeed the case [7, Proposition 5]. However, if
Y ∈ {0, 1, ?} is the output of a binary erasure channel with
input X , for large erasure probabilities the MAP quantizer may
be arbitrarily inferior to the asymmetric quantizer f(0) = 0,
f(1) = f(?) = 1 [7, Section III.c].

Furthermore, in certain cases, no binary quantizer can retain
a significant fraction of I(X;Y ). Our main result is the
following [7, Theorem 1]. Logarithms are taken w.r.t. base
2, with the exception of the ln function that is taken w.r.t.
base e.

Theorem 1: If X ∼ Bernoulli(1/2) and I(X;Y ) = β > 0,
we have for binary quantization

I(X; [Y ]2) ≥ 1

3e

β

1 + ln
(

1
β

) . (2)

Furthermore, for any η ∈ (0, 1) and any natural M <
12max

{
log
(

1
β

)
,1
}

(1−η)2

I(X; [Y ]M ) ≥ (M − 1)
β

max{log
(
1
β

)
, 1}

η(1− η)2

12
. (3)

Finally, for any 0 < β ≤ 1, there exist distributions PXY with
X ∼ Bernoulli(1/2) and I(X;Y ) = β, for which

I(X; [Y ]M ) ≤ 2M
β

ln
(
e log(e)

2β

) , (4)

for every natural M .
Note that this is in stark contrast to the intuition from the

binary AWGN channel. While for the former, two quantization
levels suffice for retaining a 2/π fraction of I(X;Y ), Theo-
rem 1 shows that there exist distributions for which at least
Ω(log(1/I(X;Y ))) quantization levels are needed in order to
retain a fixed fraction of I(X;Y ).
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Abstract—Analog coding is a low-complexity method to combat
erasures, based on linear redundancy in the signal space domain.
Previous work examined ”bandlimited discrete Fourier transform
(DFT)” codes for Gaussian channels with erasures or impulses.
We extend this concept to source coding with ”erasure side-
information” at the encoder. Furthermore, we show that the
performance of bandlimited DFT can be significantly improved
using irregular spectrum, and more generally, using equiangular
tight frames.

Key words: Distortion side information, erasures, equian-
gular tight frames, Welch bound, random matrix theory.

I. DISTORTION SIDE INFORMATION AT THE ENCODER

Consider encoding a source X under a side-information
dependent distortion measure d(x, x̂, s), where the side infor-
mation S is statistically independent of the source X and is
available at the encoder. It is shown in [5] that if an optimal
conditional distribution p(x̂|x, s) satisfies I(S; X̂) = 0, then
the rate-distortion performance is the same as if S was
available also at the decoder. Specifically, this condition holds
for the case of an “erasure distortion measure” d(x, x̂, s) =
s·d(x, x̂), for s ∈ {0, 1}, where only source samples for which
S = 1 are “important”.

II. ANALOG CODING OF A SOURCE WITH ERASURES

Analog coding decouples the tasks of protecting against
erasures and noise [7]. For erasure correction, it creates an
analog redundancy by means of band-limited discrete Fourier
transform (DFT) interpolation, or more generally, by an over-
complete expansion based on a frame. In [2] we examine the
analog coding paradigm for the dual setup of a source with
erasure side-information (SI) at the encoder [5]. The excess
rate of analog coding above the rate-distortion function (RDF)
is associated with the energy of the inverse of submatrices
of the frame, where each submatrix corresponds to a possible
erasure pattern. We show that by selecting the DFT frequencies
from a difference set, or more generally, by using equiangular
tight frames (ETF), we minimize the excess rate over all
possible frames (although do not achieve the RDF); see
Section III below.

III. RANDOM SUBSETS OF DETERMINISTIC FRAMES

Suppose we draw a random subset of k rows from a frame
with n rows (vectors) and m columns (dimensions), where
k and m are proportional to n. Consider the distribution
of singular values of the k-subset matrix. For a variety of
important ETFs and tight non-ETFs, we observe in [3] that,

for large n, the singular values can be precisely described
by a known probability distribution: Wachter’s MANOVA
(multivariate ANOVA) spectral distribution, a phenomenon
that was previously known only for two types of random
frames [1]. In terms of convergence to this limit, the k-subset
matrix from all of these frames is shown to be empirically in-
distinguishable from the classical MANOVA (Jacobi) random
matrix ensemble. Thus, empirically, the MANOVA ensemble
offers a universal description of the spectra of randomly
selected k subframes, even those taken from deterministic
frames.

IV. WELCH BOUNDS WITH ERASURES

The Welch Bound [6] is a lower bound on the root
mean square cross correlation between n unit-norm vectors
f1, . . . , fn in the m dimensional space (Rm or Cm), for
n > m. Letting F = [f1| . . . |fn] denote the m-by-n matrix
(frame) composed of the n vectors, the Welch bound can
be viewed as a lower bound on the second moment of F ,
namely on the trace of the squared Gram matrix (F ′F )2.
In [4] we extend the Welch Bound to a random selection
of a subset from F , as well as to higher order moments
of F . The extended lower bound holds with equality if and
only if F is an ETF. Thus, it provides an analytical support
for the results in [2], and sheds light on the superiority of
ETFs for a variety of applications, such as spread spectrum
communications, compressed sensing and analog coding [2].
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Abstract—A framework of analogy between wiretap channels
(WTCs) and state-dependent point-to-point channels with non-
causal encoder channel state information (referred to as Gelfand-
Pinker channels (GPCs)) is proposed. A good (reliable and secure)
sequence of wiretap codes is shown to induce a good (reliable)
sequence of codes for a corresponding GPC. Consequently, the
framework enables exploiting existing results for GPCs to pro-
duce converse proofs for their wiretap analogs. The fundamental
limits of communication of two analogous wiretap and GP models
are characterized by the same rate bounds; the optimization
domains may differ. The analogy readily extends to multiuser
broadcasting scenarios, encompassing broadcast channels (BCs)
with deterministic components, degradation ordering between
users, and BCs with cooperative receivers. Given a wiretap BC
(WTBC) with two receivers and one eavesdropper, an analogous
Gelfand-Pinsker BC (GPBC) is constructed by converting the
eavesdropper’s observation sequence to a state sequence with
an appropriate product distribution, and non-causally revealing
the states to the encoder. The transition matrix of the (state-
dependent) GPBC is the appropriate conditional marginal of
the WTBC’s transition law, with the eavesdropper’s output
playing the role of the channel state. The analogy is exploited to
characterize the secrecy-capacity regions of the SD-WTBC, which
was an open problem until this work, based on the corresponding
solution of the SD-GPBC.

I. INTRODUCTION

Two fundamental, but seemingly unrelated, information-
theoretic models are that of the wiretap channel (WTC) and
the state-dependent point-to-point channel with non-causal
encoder channel state information (CSI). The discrete and
memoryless (DM) WTC (Fig. 1(a)) was introduced by Wyner
in his celebrated 1975 paper [1] that initiated the study of
physical layer security. Csiszár and Körner characterized the
secrecy-capacity of the WTC as

CWT(pY,Z|X) = max
pU,X

[
I(U ;Y ) − I(U ;Z)

]
, (1)

where pY,Z|X is the WTC’s transition matrix and the under-
lying distribution is pU,XpY,Z|X . The state-dependent channel
with non-causal encoder CSI is due to Gelfand and Pinsker
(GP) [2], and is henceforth referred to as the GP channel
(GPC). A single-letter capacity formula for any GPC qY |X,Z
with state distribution qZ was derived in [2]:

CGP(qZ , qY |X,Z) = max
qU,X|Z

[
I(U ;Y ) − I(U ;Z)

]
, (2)

where the joint distribution is qZqU,X|ZqY |X,Z . An interesting
question is whether the resemblance of (1) and (2) is coinci-
dental or is there an inherent relation between these problems.

This paper shows that an inherent relation is indeed the
case, by proposing a rigorous framework that links the WTC

M E X pnY,Z|X
Y D M̂

Z

(a)

M E X qnY |X,Z
Y D M̂

qnZ

Z

(b)

Fig. 1: (a) The WTC with transition probability pY,Z|X , where X is
the channel input and Y and Z are the channel outputs observed
by the legitimate receiver and the eavesdropper, respectively; (b)
The GPC with state distribution Z ∼ qZ , and channel transition
probability qY |X,Z , where X is the input and Y is the output.

and the GPC, establishing these two problems as analogous to
one another. Specifically, we prove that any good (reliable and
secure) sequence of codes for the WTC induces a good (reli-
able) sequence of codes of the same rate for a corresponding
GPC. This observation enables exploiting known outer bounds
on the GPC capacity to outer bound the secrecy-capacity of
an analogous WTC. While the solutions to the base cases
from Fig. 1 have been known for decades, many multiuser
extensions of these models remain open problems. Through the
analogy we derive a converse proof for the semi-deterministic
(SD) wiretap broadcast channel (WTBC), an open problem
until this work, thus characterizing its secrecy-capacity region.

To this end we extend the wiretap-GP analogy to multiuser
broadcasting scenarios. Given a WTBC pY1,Y2,Z|X (Fig. 2(a)),
with two legitimate receivers observing Y1 and Y2 and one
eavesdropper that intercepts Z, an analogous GP broadcast
channel (GPBC), shown in Fig. 2(b), is constructed as follows:

1) Converting the eavesdropper’s observation sequence Zn

to an independently and identically distributed (i.i.d.)
state sequence with some appropriate distribution;

2) Revealing the state sequence in a non-causal manner to
the encoder;

3) Setting the state-dependent BC pY1,Y2|X,Z (the condi-
tional marginal of the WTBC’s transition probability)
with Z in the role of the state.

The aforementioned relation between good sequences of codes
for analogous WTBCs and GPBCs remains valid, which
allows capitalizing on known GPBC capacity results to derive
converse proofs for their analogous WTBC.

The GPBC has been widely studied in the literature and
the capacity region is known for various cases [3]–[5]. Of
particular interest is the capacity derivation of the SD-GPBC
from [4]. WTBC also received considerable attention in the
literature [6]–[8]; however, solutions are known only for some
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M E X WTBC

Y1

Y2

D1

D2

M̂1

M̂2

Z

(a)

M E X GPBC

Y1

Y2

D1

D2

M̂1

M̂2

qnZ

Z

(b)

Fig. 2: (a) The WTBC with transition probability pY1,Y2,Z|X , where
X is the channel input and Y1, Y2 and Z are the channel outputs
observed by the legitimate receivers and the eavesdropper, respec-
tively; (b) An analogous GPBC is obtained from the WTBC by
replacing the eavesdropper’s observation with a state random variable
Z ∼ qZ , revealing Z in a non-causal manner to the encoder and
setting the state-dependent BC pY1,Y2|X,Z as the conditional marginal
distribution of the WTBC’s transition probability pY1,Y2,Z|X .

special cases. To the best of our knowledge, the widest frame-
work of DM WTBCs for which tight secrecy-capacity results
are available is due to [8], where, in particular, the region for
the SD-WTBC was derived under a further assumption that
the eavesdropper is less noisy than the stochastic receiver. The
coding scheme therein remains feasible without this less-noisy
property; the converse proofs, however, relies on it. Since
no corresponding assumption was imposed while deriving the
SD-GPBC result from [4], our analogy-based proof method
characterizes the SD-WTBC secrecy-capacity regions without
assuming this ordering between the sub-channels. As a natural
extension to the analogy for the base case (WTCs versus
GPCs), the obtained secrecy-capacity regions are described by
the same rate bounds as their GPBC counterparts.

An important ingredient in proving the analogy is to adopt
the definition of WTC achievability from, e.g., [7], [9], [10],
that merges the reliability and security requirements into a
single demand on the joint distribution induced by a wiretap
code. Specifically, we require that a good sequence of wiretap
codes induces a sequence of joint distributions (on the mes-
sage, its estimate and the eavesdropper’s observation) that is
asymptotically indistinguishable in total variation from a target
measure under which:

1) The message M and its estimate M̂ are almost surely
equal (a reliability requirement);

2) The eavesdropper’s observation is independent of the
message and is distributed according to some product
measure, say qZ (a security requirement).

Denoting by P
(cn)

M,M̂,Z
the joint distribution of M , M̂ and Z

induced by a wiretap code cn, the above requirements mean
that for large block lengths P

(cn)

M,M̂,Z
≈ P

(cn)
M 1{M̂=M}q

n
Z ,

where the approximation is in total variation.
With that notion of achievability, we then use distribution

approximation arguments to show that such a sequence of
wiretap codes induces a sequence of reliable codes for the
analogous GPC. The GP encoder and decoder(s) are distilled
from the joint distribution induced by the wiretap code by
appropriately inverting it. Under this inversion, the asymp-
totic i.i.d. distribution of the eavesdropper’s observation Z

becomes the state distribution in the corresponding GPC. The
asymptotic independence of Z and the message(s) in the
WTC’s target distribution corresponds to the independence of
the message(s) and the state in a GP coding scenario. The
performance metric described above strongly related to the
more standard notion of achievability used in [11], where
performance of a wiretap code was measured via the error
probability and the effective secrecy metric. We show that
under mild conditions (namely, a super-linear decay of the
involved quantities), our definition of achievability and the one
from [11] are equivalent.

II. PRELIMINARY DEFINITIONS

We set up the problem of a WTBC, which is used in the next
section for developing the analogy paradigm. The notations
we use are from [12, Section II]. Let X , Y1, Y2 and Z be
finite sets (all alphabets throughout this work are assumed to
be finite) and let pY1,Y2,Z|X : X → P(Y1 × Y2 × Z) be a
transition probability distribution from X to Y1 × Y2 × Z .
The

(
X ,Y1,Y2,Z, pY1,Y2,Z|X

)
DM-WTBC is illustrated in

Fig. 2(a). The sender chooses a pair of messages (m1,m2)
uniformly at random from product set

[
1 : 2nR1

]
×

[
1 : 2nR2

]

and maps it onto a sequence x ∈ Xn (the mapping may be
random). The sequence x is transmitted over the DM-WTBC
with transition probability pY1,Y2,Z|X . The output sequences
y1 ∈ Yn

1 , y2 ∈ Yn
2 and z ∈ Zn are observed by Receiver

1, Receiver 2 and the eavesdropper, respectively. Based on
yj , j = 1, 2, Receiver j produces an estimate m̂j of mj .
The eavesdropper tries to glean whatever it can about the
transmitted messages (m1,m2) from z.

Definition 1 (WTBC Code) An (n,R1, R2)-code cn for the
WTBC with a product message set M(n)

1 × M(n)
2 , where for

j = 1, 2 we set M(n)
1 , [1 : 2nRj ], is a triple of functions(

fn, φ
(n)
1 , φ

(n)
2

)
such that fn : M(n)

1 × M(n)
2 → P(Xn) is

a stochastic encoder, and φ(n)
j : Yn

j → M(n)
j is the decoding

function for Receiver j, for j = 1, 2.

For any (n,R1, R2)-code cn =
(
fn, φ

(n)
1 , φ

(n)
2

)
, the in-

duced joint distribution is:

P (cn)(m[1:2],x,y[1:2], z, m̂[1:2]) =
1∣∣M(n)

1

∣∣∣∣M(n)
2

∣∣fn(x|m[1:2])

× pnY1,Y2,Z|X(y1,y2, z|x)1 ⋂
j=1,2

{
m̂j=φ

(n)
j (yj)

}, (3)

where m[1:2] , (m1,m2) and similarly for y[1:2] and m̂[1:2].
Our analogy relies on developing a unified perspective on

two different problems. We arrive at the desired unification
by defining achievability in a manner that is slightly dif-
ferent from typical definitions. Adopting the definition of
achievability from [7], [9], [10], we merge the reliability and
security requirements into a single requirement on the induced
distribution from (3) phrased in terms of total variation.

Definition 2 (WTBC Achievability) A pair of non-negative
real numbers (R1, R2) ∈ R2

+ is called achievable if there
exists a γ > 0, a probability distribution qZ ∈ P(Z) and
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a sequence of (n,R1, R2)-codes {cn}n∈N such that for any
sufficiently large n
∣∣∣
∣∣∣P (cn)

M[1:2],M̂[1:2],Zn
−p(U)

M(n)
1 ×M(n)

2

1{
M̂[1:2]=M[1:2]

}qnZ
∣∣∣
∣∣∣
TV

≤ e−nγ,

(4)
where p(U)

A is the uniform distribution over a finite set A.

Remark 1 (Rate of Convergence) The exponential rate of
convergence in (4) is not necessary. Any super-linear con-
vergence rate is sufficient for the purposes of this work.

Remark 2 (Equivalence to Standard Definitions) The
achievability definition in this work is equivalent to the
more standard notion of achievability used in [11]. Therein,
achievability was defined in terms of a vanishing average
error probability and the effective secrecy metric that requires

D
(
P

(cn)
M1,M2,Zn

∣∣∣
∣∣∣p(U)

M(n)
1 ×M(n)

2

qnZ

)

= IP (cn)(M1,M2;Z
n)︸ ︷︷ ︸

Strong secrecy measure

+ D
(
P

(cn)
Zn

∣∣∣
∣∣∣qnZ

)

︸ ︷︷ ︸
Stealth measure

(5)

is made arbitrarily small. See [12, Section III-B] for details.

Remark 3 (Target i.i.d. Distribution) The exact identity
of target i.i.d. distribution qnZ that approximates the
P

(cn)

Zn|M[1:2],M̂[1:2]
in (4) and (5) cannot always be a priori

determined solely based on the WTBC’s transition kernel
pY1,Y2,Z|X . The structure of qZ depends on the sequence of
codes {cn}n∈N, and, typically, it can be understood from
the proof of achievability.1 Accordingly, the definition of
achievability (Definition 2) does not shoot for a specific qZ;
rather, it just requires the existence of any qZ satisfying (4).

As usual, the secrecy-capacity region CWT(pY1,Y2,Z|X) is
the convex closure of the set of achievable rate pairs.

III. WIRETAP AND GELFAND-PINSKER ANALOGY

We describe the analogy principle for the base case of the
classic wiretap and GP channels. As a first simple example,
the analogy is used to derive a converse proof for the WTC’s
secrecy-capacity theorem. Then, we outline extensions of this
idea to multiuser (namely, broadcasting) scenarios. These
extension are subsequently used to prove the main secrecy-
capacity results of this work that are stated in Section IV.

A. The Base Case - A Unified Perspective

For simplicity of presentation consider the classic wiretap
and GPCs. These problems are related through the fact that
their target joint distributions share the same structure. To
see this, consider the pY,Z|X WTC, for which achievability is
defined similarly to Definition 2, and the point-to-point GPC

1For instance, for the degraded binary symmetric WTBC with crossover
probabilities pL and pE for the legitimate and eavesdropper channels, respec-
tively, where pL < pB , one may verify that qZ may be chosen as a product
Ber

(
1
2

)
measure. This is a consequence of the optimal input distribution that

attains that secrecy-capacity h(pE) − h(pL) being
(
Ber

(
1
2

))n.

with state distribution qZ and channel transition probability
qY |X,Z .2 The joint distribution induced by an (n,R)-code
cn = (fn, φn) for the wiretap channel is (see (3))

P̃ (cn)(m,x,y,z,m̂)=
1

|Mn|
fn(x|m)pnY,Z|X(y,z|x)1{

m̂=φn(y)
}

(6)
while the induced distribution for the GPC with respect to an
(n,R)-code bn = (gn, ψn), where gn : Mn × Z → P(X ) is
a stochastic encoder and φn : Yn → Mn is the decoder, is

Q̃(bn)(z,m,x,y, m̂) = qnZ(z)
1

|Mn|
gn(x|z,m)qnY |X,Z(y|x, z)

× 1{
m̂=ψn(y)

}. (7)

With respect to Definition 2, a non-negative real number R
is achievable for the WTC if there exist a distribution qZ ∈
P(Z) and a sequence of (n,R)-codes {cn}n∈N, such that

∣∣∣
∣∣∣P̃ (cn)

M,M̂,Zn
− p

(U)
Mn

1{M̂=M}q
n
Z

∣∣∣
∣∣∣
TV

−−−−→
n→∞

0. (8)

For the GPC, it can be shown that under mild conditions,3 a
vanishing error probability is equivalent to

∣∣∣
∣∣∣Q̃(cn)

M,M̂,Zn
− p

(U)
Mn

1{M̂=M}q
n
Z

∣∣∣
∣∣∣
TV

−−−−→
n→∞

0. (9)

For details, see [12, Section IV-A-1].
Having (8) and (9), it is evident that while each problem

has its own induced joint distribution, their target measures
share the same structure. In both problems, a “good” sequence
of codes induces a sequence of distributions (

{
P̃ (cn)

}
n∈N

or
{
Q̃(bn)

}
n∈N for the WTC or the GPC, respectively) that

approximates a target distribution where: (i) M = M̂ almost
surely; (ii) Z is independent of M . The first item is a
consequence of the reliability requirement in both problems.
For the second item, note that, while the independence of Z
and M is the security requirement in the WTC scenario, it
is actually part of the problem definition for the GPC. The
above described correspondence between the WTC and the
GPC stands at the heart of the analogy between them.

B. Analogy Between Multiuser Setups

As a natural extension to the ideas from Section III-A,
we now describe the analogy between WTBCs and GPBCs.
Consider a WTBC

(
X ,Y1,Y2,Z, pY1,Y2,Z|X

)
as defined in

Section II. An analogous GPBC is constructed in three steps
(see Fig. 2):

1) Replace the eavesdropper of the WTBC with a state
sequence Z ∼ qnZ , where qnZ is the target product
measure from the definition of WTBC achievability (see
Definition 2);

2) Non-causally reveal Z to the encoder;
3) Set the GPBC’s transition probability as the conditional

marginal distribution pY1,Y2|X,Z .
The produced analogous

(
Z,X ,Y1,Y2, qZ , pY1,Y2|X,Z

)

GPBC inherits the properties the WTBC possesses (e.g.,

2We adhere to the standard definitions for GPCs, see, e.g., [13, Setion 7.6].
3namely, a super-linear decay of the error probability
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deterministic components, order of degradeness, etc). For ex-
ample, if the WTBC is SD pY1,Y2,Z|X = 1{Y1=y1(X)}pY2,Z|X ,
then so is the GPBC since pY1,Y2|X,Z = 1{Y1=y1(X)}pY2|X,Z .
If one of the observed signals of the legitimate receivers is a
degraded version of the other, then the same ordering applies
for the signal intercepted by the receivers of the GPBC. The
analogy also accounts for WTBC settings with cooperative
components. Namely, if the receivers of the WTBC are
connected by, e.g., a finite-capacity bit-pipe, then the same
applies for the receivers of the analogous GPBC.

As for the base case, the capacity regions of two analogous
wiretap and GP BCs are described by rate bounds of the same
structure. The underlying distribution and the part thereof over
which we take the union is, however, different. This relation
between the regions is emphasized in Section IV.

Since GPBCs have been extensively treated in the literature
and capacity results are available for numerous cases [3]–[5],
the analogy allows leveraging these results to study corre-
sponding WTBCs. This is done by relating the performance
of two analogous models as follows. Due to lack of space, the
proof of the proposition is omitted; the reader is referred to
[12] for details.
Proposition 1 (Good Wiretap Codes and Good GP Codes)
Consider a

(
X ,Y1,Y2,Z, pY1,Y2,Z|X

)
WTBC. Let

(R1, R2) ∈ R2
+ be an achievable rate pair for the WTBC,

with a corresponding sequence of (n,R1, R2)-codes {cn}n∈N,
where cn =

(
fn, φ

(n)
1 , φ

(n)
2

)
, for each n ∈ N. For every

n ∈ N, define gn , P
(cn)
X|Z,M[1:2]

and ψ(n)
j , φ

(n)
j , for j = 1, 2,

where P (cn)
X|Z,M[1:2]

is the conditional marginal distribution of
X given (Z,M1,M2) with respect to P (cn) from (3) induced
by the n-th wiretap code cn. Then:

1) bn ,
(
gn, ψ

(n)
1 , ψ

(n)
2

)
is an (n,R1, R2)-code for the(

Z,X ,Y1,Y2, qZ , pY1,Y2|X,Z
)

GPBC.

2) The distribution Q
(bn)

Z,M[1:2],X,Y[1:2],M̂[1:2]
induced by bn

(analogous to Q̃(bn) from (7) with M[1:2], Y[1:2] and M̂[1:2]

in the roles of M , Y and M̂ therein, respectively) satisfies∣∣∣∣P (cn) −Q(bn)
∣∣∣∣
TV

≤ e−nγ , for any n large enough.

3) The sequence of codes {bn}n∈N attains Pe(bn) −−−−→
n→∞

0,
and consequently, (R1, R2) is an achievable rate pair for the
aforementioned GPBC.

Proof: For simplicity of notation, throughout the proof
we denote M12 , M[1:2], m12 , m[1:2], M̂12 , M̂[1:2],
m̂12 , m̂[1:2] and M12 , M(n)

1 × M(n)
2 . The first claim

is straightforward as for each n ∈ N, P (cn)
X|Z,M12

and ψ(n)
j , for

j = 1, 2, are valid (stochastic) encoder and decoders for the
GPBC. For (2), fix n ∈ N, and first observe

P
(cn)

M12,X,Y[1:2],Z,M̂12

(a)
= P

(cn)
M12,Z

· gn · pnY1,Y2|X,Z · 1⋂
j=1,2

{
M̂j=ψ

(n)
j (Yj)

}

(b)
= P

(cn)
M12,Z

·Q(bn)

X,Y[1:2],M̂12|M12,Z
(10)

where (a) follows by the factorization of P (cn) from (3), while
(b) is because bn =

(
gn, ψ

(n)
1 , ψ

(n)
2

)
and due to the structure

of Q(bn). Recalling that Q(cn)
Z,M12

= qnZ · p(U)
M12

, we have
∣∣∣∣P (cn) −Q(bn)

∣∣∣∣
TV

=
∣∣∣
∣∣∣P (cn)
M12,Z

− p
(U)
M12

· qnZ
∣∣∣
∣∣∣
TV

−−−−→
n→∞

0.

(11)
Claim (3) follows because Pe(bn) is upper bounded as

Pe(bn) =
∑

m12,m̂12:
m12 6=m̂12

[
Q(cn)(m12, m̂12)−p(U)

M12
(m12)1{

m̂12=m12

}
]

(a)
=

∣∣∣
∣∣∣Q(cn)

M12,M̂12
− p

(U)

M(n)
1 ×M(n)

2

1{
M̂12=M12

}
∣∣∣
∣∣∣
TV

(b)

≤
∣∣∣
∣∣∣Q(bn)

M12,M̂12
− P

(cn)

M12,M̂12

∣∣∣
∣∣∣
TV

+
∣∣∣
∣∣∣P (cn)

M12,M̂12
− p

(U)
M12

1{M̂12=M12}

∣∣∣
∣∣∣
TV

(c)

≤
∣∣∣
∣∣∣Q(bn)−P (cn)

∣∣∣
∣∣∣
TV

+
∣∣∣
∣∣∣P (cn)

M12,M̂12,Z
−p(U)

M12
1{M̂12=M12}q

n
Z

∣∣∣
∣∣∣
TV

where (a) is because ||p−q||TV =
∑
x: p(x)>q(x)

[
p(x)−q(x)

]

and since m12 6= m̂12 if and only if Q(cn)(m12, m̂12) ≥
p
(U)
M12

(m12)1{
m̂12=m12

}; (b) is the triangle inequality; (c)

uses Property (3-a) from [12, Lemma 1]. Finally, the RHS
above vanishes to 0 as n → ∞ by (11) and our hypothesis.

IV. THE SECRECY-CAPACITY REGION OF THE SD-WTBC

We give a single-letter characterization of the secrecy-
capacity region of the SD-WTBC. A WTBC is SD if
pY1,Y2,Z|X = 1{Y1=y1(X)}pY2,Z|X , where y1 : X × Z → Y1

and pY2,Z|X : X → P(Y2 × Z). Until now, the secrecy-
capacity region of this setup was known only under the
assumption that the stochastic channel is less noisy than the
channel to the eavesdropper [8, Theorem 5]. Our analogy-
based converse proof makes this assumption unnecessary.

Theorem 1 (Secrecy-Capacity) The secrecy-capacity region
of the

(
X ,Y1,Y2,Z,1{Y1=y1(X)}pY2,Z|X

)
SD-WTBC is given

by the union of rate pairs (R1, R2) ∈ R2
+ satisfying:

R1 ≤ H(Y1|Z), (12a)
R2 ≤ I(U ;Y2) − I(U ;Z), (12b)

R1 +R2 ≤ H(Y1|Z) + I(U ;Y2) − I(U ;Y1, Z) (12c)
where the union is over all pU,X ∈ P(U×X ), each inducing a
joint distribution pU,X1{Y1=y1(X)}pY2,Z|X . Furthermore, one
may restrict the auxiliary random variable U to take values
in a set U whose cardinality is bounded by |U| ≤ |X | + 1.

The direct part of Theorem 1 relies on a specialization of
the inner bound on the secrecy-capacity region of the WTBC
derived in [7, Theorem 3]. As the performance criterion in that
work corresponds to the definition of achievability used herein
(Definition 2), the result from [7] applies for our setup. Setting
Q = U0 = 0, U1 = Y1 and recasting U2 as U reduces the rate
bounds from [7, Theorem 3] to those from (12). Since Y1 =
y1(X), this choice of the auxiliaries

(
Q,U[0:2]

)
is feasible.

The analogy-based converse proof is given next.
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Converse Proof: Let (R1, R2) ∈ R2
+ be an achievable rate

pair for the SD-WTBC and {cn}n∈N be the corresponding
sequence of (n,R1, R2)-codes satisfying (4) for some γ > 0
and qZ ∈ P(Z), and any n large enough. By Proposi-
tion 1, {cn}n∈N gives rise to a sequence of (n,R1, R2)-codes
{bn}n∈N for the

(
Z,X ,Y1,Y2, qZ , pY1,Y2|X,Z

)
GPBC, each

inducing a joint distribution Q(bn), such that:
1)

∣∣∣∣P (cn) − Q(bn)
∣∣∣∣
TV

≤ e−nγ , for any large enough n,
where P (cn) is the distribution from (3) induced by cn.

2) Pe(bn) −−−−→
n→∞

0.

Furthermore, note that since the WTBC is SD, i.e., its transi-
tion probability factors as pY1,Y2,Z|X = 1{Y1=y1(X)}pY2,Z|X ,
the obtained GPBC is also SD. Namely, the GPBC’s transition
probability decomposes as pY1,Y2|X,Z = 1{Y1=y1(X)}pY2|X,Z ,
which falls under the framework of [4, Theorem 1].

The converse proof of [4, Theorem 1] for the SD-GPBC
shows that if {bn}n∈N is a sequence of (n,R1, R2)-codes with
a vanishing error probability, then

R1 ≤ 1

n

n∑

i=1

HQ(Y1,i|Zi) + ǫn (13a)

R2 ≤ 1

n

n∑

i=1

[
IQ

(
M2, Y

i−1
2 , Zni+1;Y2,i

)

− IQ
(
M2, Y

i−1
2 , Zni+1;Zi

)]
+ ǫn (13b)

R1 +R2 ≤ 1

n

n∑

i=1

[
IQ

(
M2, Y

i−1
2 , Zni+1, Y

n
1,i+1;Y2,i

)

+HQ(Y1,i|Zi)−IQ
(
M2, Y

i−1
2 , Zni+1, Y

n
1,i+1;Zi, Y2,i

)]
+ǫn,

(13c)
where the subscript Q indicates that the underlying distribution
is Q(bn) and ǫn , 2

n + Pe(bn)
∑
j=1,2Rj . Since the total

variation of two distribution upper bounds the total variation
between their marginals [12, Property (3-a), Lemma 1]),

∣∣∣
∣∣∣P (cn)
M2,Y i,Zn

i
−Q

(bn)
M2,Y i,Zn

i

∣∣∣
∣∣∣
TV

≤ e−nγ (14)

for large n, uniformly in i ∈ [1 : n]. Recall that over finite
probability spaces an exponentially decaying total variation
dominates the difference between two corresponding mutual
information terms (see [12, Lemma 3]). Combining this ob-
servation with (14), we may replace the information measures
from the RHS of (13) that are taken with respect to Q(bn)

with the same terms, but with an underlying distribution P (cn)

(which we denote by a subscript P ) plus a vanishing term.
Namely, there exists a δ > 0, such that for n large enough

R1 ≤ 1

n

n∑

i=1

HP (Y1,i|Zi) + ǫn + e−nδ (15a)

R2 ≤ 1

n

n∑

i=1

[
IP (Vi;Y2,i)−IP (Vi;Zi)

]
+ ǫn + 2e−nδ (15b)

R1 +R2 ≤ 1

n

n∑

i=1

[
HP (Y1,i|Zi) + IP (Vi, Ti;Y2,i)

− IP (Vi, Ti;Y1,i, Zi)
]

+ ǫn + 3e−nδ (15c)

where, for every i ∈ [1 : n], we have defined Vi ,(
M2, Y

i−1
2 , Zni+1

)
P

and Ti ,
(
Y n1,i+1

)
P

, with the subscript
P indicating that the underlying distribution is P (cn).

Letting n tend to infinity in (15), we see that any achievable
rate pair (R1, R2) must be contained in the convex closure of
the union of rate pairs satisfying:

R1 ≤ Hp(Y1|Z) (16a)
R2 ≤ Ip(V ;Y2) − Ip(V ;Z) (16b)
R1 +R2 ≤ Hp(Y1|Z)+Ip(V, T ;Y2)−Ip(V, T ;Y1, Z) (16c)

where the union is over all pV,T,X ∈ P(V × T × X ),
each inducing a joint distribution p , pV,T,XpY1,Y2,Z|X ,
i.e., (Y1, Y2, Z)−
−X−
− (V, T ) forms a Markov chain. This
Markov relation follows because (Y1,i, Y2,i, Zi) −
−Xi −
−(
M2, Y

n
1,i+1, Y

i−1
2 , Zni+1

)
, for all i ∈ [1 : n], under P (cn).

To conclude the proof it remains to show that there exists
an auxiliary random variable U , such that for any (V, T ):

Ip(V ;Y2) − Ip(V ;Z) ≤ Ip(U ;Y2) − Ip(U ;Z) (17a)
Hp(Y1|Z) + Ip(V, T ;Y2) − Ip(V, T ;Y1, Z)

≤ Hp(Y1|Z) + Ip(U ;Y2) − Ip(U ;Y1, Z). (17b)

This is established by closely following the arguments from
the end of the converse proof of the analogous SD-GPBC [4,
Section III], as outlined next. Setting U = V if p is such
that Ip(T ;Y2|V ) − Ip(T ;Y1, Z|V ) ≤ 0, and U = (V, T )
if Ip(T ;Y2|V ) − Ip(T ;Z|V ) ≥ 0 suffices. Finally, noting
that every distribution p must satisfy at least one of these
information inequalities concludes the converse.

REFERENCES

[1] A. D. Wyner. The wire-tap channel. Bell Sys. Techn., 54(8):1355–1387,
Oct. 1975.

[2] S. I. Gelfand and M. S. Pinsker. Coding for channel with random
parameters. Problemy Pered. Inform. (Problems of Inf. Trans.), 9(1):19–
31, 1980.

[3] Y. Steinberg. Coding for the degraded broadcast channel with random
parameters, with causal and noncausal side information. IEEE Trans.
Inf. Theory, 51(8):2867–2877, Aug. 2005.

[4] A. Lapidoth and L. Wang. The state-dependent semideterministic
broadcast channel. IEEE Trans. Inf. Theory, 59(4):2242–2251, 2013.

[5] L. Dikstein, H. H. Permuter, and Y. Steinberg. On state-dependent broad-
cast channels with cooperation. IEEE Trans. Inf. Theory, 62(5):2308–
2323, May 2016.

[6] E. Ekrem and S. Ulukus. Multi-receiver wiretap channel with public
and confidential messages. IEEE Trans. Inf. Theory, 59(4):2165–2177,
Apr. 2013.

[7] M. H. Yassaee, M. R. Aref, and A. Gohari. Achievability proof
via output statistics of random binning. IEEE Trans. Inf. Theory,
60(11):6760–6786, Nov. 2014.

[8] M. Benammar and P. Piantanida. Secrecy capacity region of some
classes of wiretap broadcast channels. IEEE Trans Inf. Theory,
61(10):5564–5582, Oct. 2015.

[9] H. Tyagi and S. Watanabe. Converses for secret key agreement and
secure computing. IEEE Trans. Inf. Theory, 61(9):4809–4827, 2015.

[10] M. H. Yassaee. One-shot achievability via fidelity. In Proc. Int. Symp.
Inf. Theory (ISIT-2015), pages 301–305, Hong Kong, China, Jun. 2015.

[11] J. Hou and G. Kramer. Effective secrecy: Reliability, confusion and
stelth. In IEEE Int. Symp. Inf. Theory (ISIT-2014), Honolulu, HI, USA,
Jun.-Jul. 2014.

[12] Z. Goldfeld, , and H. H. Permuter. Wiretap and gelfand-pinsker channels
analogy and its applications. Submitted for publication to IEEE Trans.
Inf. Theory, 2017.

[13] A. El Gamal and Y.-H. Kim. Network Information Theory. Cambridge
University Press, 2011.

International Zurich Seminar on Information and Communication (IZS), February 21 – 23, 2018

68



Optical Wiretap Channel with Input-Dependent
Gaussian Noise Under Peak Intensity Constraint

Morteza Soltani and Zouheir Rezki
University of Idaho

Department of Electrical and Computer Engineering
83844 Moscow, Idaho

Email: solt8821@vandals.uidaho.edu, zrezki@uidaho.edu

Abstract—This paper studies the optical wiretap channel with
input-dependent Gaussian noise, in which the main distortion is
caused by an additive Gaussian noise whose variance depends
on the current signal strength. Subject to non-negativity and
peak-intensity constraints on the channel input, we first evaluate
the conditions under which this wiretap channel is stochastically
degraded. We then study the secrecy-capacity-achieving input
distribution of this wiretap channel and prove it to be discrete
with a finite number of mass points. Moreover, we show that the
entire rate-equivocation region of this wiretap channel is also
obtained by discrete input distributions with a finite support.
Similar to the case for the Gaussian wiretap channel under a
peak-power constraint, here too, we observe that under non-
negativity and peak-intensity constraints, there is a tradeoff
between the secrecy capacity and the capacity in the sense that
both may not be achieved simultaneously.

I. INTRODUCTION

Exchanging confidential information over a communication
medium (wired, wireless or optical) in the presence of unau-
thorized eavesdroppers has been always a challenging problem
for system designers. This problem has been conventionally
addressed by cryptographic encryption [1] without considering
the imperfections introduced by the communication channel.
In this model, using secret keys are the main approach for
having secure communications. Wyner [2], on the other hand,
proved the possibility of secure communications without rely-
ing on encryption by introducing the notion of a stochastically
degraded wiretap channel.

For the class of degraded wiretap channels, it has been es-
tablished in [2] that there exists a single-letter characterization
for the rate-equivocation region. Authors in [3] studied the
Gaussian wiretap channel under an average power constraint
and obtained a single-letter expression for the entire rate-
equivocation region. Particularly, they showed that under an
average power constraint, the Gaussian distribution is the
optimal input distribution for attaining both the capacity and
secrecy capacity with no compromise between the commu-
nication rate and the equivocation rate at the eavesdropper.
On the other hand, under a peak-power constraint, the work
in [4] proved that the entire rate-equivocation region of the

This work has been supported by King Abdullah University of Science and
Technology (KAUST), under a competitive research grant (CRG) OSR-2016-
CRG5-2958-01.

Gaussian wiretap channel is achieved by discrete input dis-
tributions with finite support. More specifically, the secrecy-
capacity achieving input distribution may not be identical to
the capacity-achieving counterpart in general, resulting in a
tradeoff between the rate and its equivocation.

This work considers an optical wiretap channel based on
intensity modulation with input-dependent Gaussian noise
which consists of a transmitter, a legitimate user and an
eavesdropper. We first evaluate the conditions under which the
optical wiretap channel with input-dependent Gaussian noise
is stochastically degraded. We then use the results in [2] to
conclude that there exists a single-letter expression for the en-
tire rate-equivocation region. Next, we employ the functional
optimization problem addressed in [5] to obtain necessary
and sufficient conditions, also known as Karush-Kuhn-Tucker
(KKT) conditions, for the optimal input distribution. Finally,
we prove by contradiction that the secrecy capacity as well as
the entire rate-equivocation region of this wiretap channel, are
obtained by discrete input distributions with a finite number of
mass points. We provide numerical results which demonstrate
that similar to the case of the Gaussian wiretap channel under
a peak-power constraint, here too, the secrecy capacity and the
capacity are not achieved by the same distribution in general.
This, in turn, implies that for this wiretap channel, there is a
tradeoff between the rate and its equivocation.

Due to the existence of input-dependent noise components,
our technical proofs differ from those of [4]. Our analysis for
showing the analyticity of the mutual information densities is
more challenging. Additionally, our contradiction statements
for proving the discreteness of the optimal input distribution
are different.

II. SYSTEM MODEL

In the considered optical wiretap channel, the channel input
X is a nonnegative random variable representing the intensity
of the optical signal. Since intensity is constrained due to
practical and safety restrictions by a peak constraint in general,
the input has to satisfy X ≤ A [6]. Therefore, the channel input
is constrained as

0 ≤ X ≤ A. (1)
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In this setup, each link is a memoryless channel and is defined
by [7]

Y = X +
√

XNB,1 + NB,0, (2)

Z = X +
√

XNE,1 + NE,0, (3)

where Y and Z denote the legitimate user’s and the eaves-
dropper’s observations, respectively. NB,0 and NE,0 are in-
dependent identically distributed (i.i.d.) zero-mean Gaussian
random variables with variances σ2

B and σ2
E , describing the

input-independent noise components at the legitimate user and
the eavesdropper, respectively. NB,1 and NE,1 are i.i.d. zero-
mean Gaussian random variables with variances η2

Bσ
2
B and

η2
Eσ

2
E , describing the input-dependent noise components at the

legitimate user and the eavesdropper, respectively, where η2
B

and η2
E are the ratios of the input-dependent noise variances to

the input-independent noise variances of the legitimate user’s
and the eavesdropper’s channels, respectively. Furthermore,
NB,0 and NB,1 are assumed to be independent and so are NE,0
and NE,1.

In this optical wiretap channel, since the input-dependent
distortion is caused by the laser diode at the transmitter
side [7], we consider the input-dependent noise components in
both legitimate user’s and wiretap channels to be statistically
equivalent, i.e., σ2

Bη
2
B = σ

2
Eη

2
E . However, the variance of the

input-independent noise of the wiretap channel is assumed to
be strictly greater than that of the legitimate user’s channel,
i.e., σ2

E > σ2
B (otherwise the secrecy capacity defined later

in this Section is zero). Therefore, under the conditions
σ2
Bη

2
B = σ

2
Eη

2
E and σ2

E > σ2
B, the random variables X,Y and

Z form a Markov chain X → Y → Z and consequently the
optical wiretap channel becomes stochastically degraded. As a
result, the rate-equivocation region of such an optical wiretap
channel can be expressed in a single-letter form due to [2].

An (n, 2nR) code for the peak intensity-constrained optical
wiretap channel with input-dependent Gaussian noise consists
of the random variable W (message set) uniformly distributed
over the setW = {1, 2, · · · , 2nR}, an encoder at the transmitter
fn : W → [0, A]n satisfying the non-negativity and peak-
intensity constraints, and a decoder at the legitimate user
gn : Rn → W. Equivocation of a code is measured by the
normalized conditional entropy 1

n H(W |Zn). The probability
of error for such a code is defined as Pn

e = Pr
{
gn(Yn) , W

}
.

A rate-equivocation pair (R, Re) is said to be achievable if
there exists an (n, 2nR) code satisfying

lim
n→∞ Pn

e = 0, (4)

Re ≤ lim
n→∞

1
n

H(W |Zn). (5)

The rate-equivocation region consists of all achievable rate-
equivocation pairs, and is denoted by E. A rate R is said
to be perfectly secure if we have Re = R, i.e., if there
exists an (n, 2nR) code satisfying limn→∞ 1

n I(W ; Zn) = 0. The
supremum of such rates is defined to be the secrecy capacity
and denoted by CS .

The entire rate-equivocation region of the optical wiretap
channel is given by the union of the rate-equivocation pairs
(R, Re) such that [2]

R ≤ I(X;Y ), (6)
Re ≤ I(X;Y ) − I(X; Z), (7)

for some input distribution FX ∈ A+, where I(X;Y ) and
I(X; Z) are the mutual information of the legitimate user’s
and the eavesdropper’s channels, respectively, and the feasible
set A+ is given by

A+ 4=
{
FX :

∫ A

0
dFX (x) = 1

}
. (8)

III. MAIN RESULTS

This section presents the main results about the optical
wiretap channel with input-dependent Gaussian noise when
non-negativity and peak-intensity constraints are imposed on
the channel input.

A. Results on the Secrecy Capacity

The secrecy capacity of the optical wiretap channel with
input-dependent Gaussian noise under non-negativity and
peak-intensity constraints is given by the solution of the
following optimization problem

max
FX ∈A+

g0(FX ), (9)

where g0(FX ) = I(X;Y ) − I(X; Z) is the objective function of
the optimization problem.

Under the constraints (1), the solution of (9) is discrete with
a finite support as stated by Theorem 1.

Theorem 1. There exists a unique input distribution that
attains the secrecy capacity of the optical wiretap channel
with input-dependent Gaussian noise under non-negativity and
peak-intensity constraints. Furthermore, the support set of this
optimal input distribution is a finite set.

Proof. The proof is provided in Section IV. �

B. Results on the Rate-Equivocation Region

By a time-sharing argument, the rate-equivocation region
of the optical wiretap channel with input-dependent Gaussian
noise is convex. Therefore, the region can be characterized by
finding tangent lines to E, which are given by the solutions of

max
FX ∈A+

gλ(FX ), (10)

where gλ(FX ) = λI(X;Y ) + (1 − λ) [I(X;Y ) − I(X; Z)] for all
λ ∈ [0, 1]. Next, we establish that the entire rate-equivocation
region of the optical wiretap channel with input-dependent
Gaussian noise under constraints(1) is also obtained by dis-
crete input distributions with finite supports.

Theorem 2. There exists a unique input distribution that
achieves the boundary of the rate-equivocation region of
the optical wiretap channel with input-dependent Gaussian
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noise under non-negativity and peak-intensity constraints. This
optimal input distribution is discrete with a finite support.

Proof. Due to length constraint, the proof is given in [8,
Section IV-D]. �

It is worth mentioning that for the case when η2
B and η2

E
are 0 (i.e., the optical wiretap channel with input-independent
Gaussian noise), similar approaches to those presented in [4]
can be used to prove the discreteness of the optimal solutions
of (9) and (10). An interesting observation is that our approach
for proving the discreteness of the optimal solutions of (9)
and (10) when η2

B, η
2
E , 0 cannot be generalized to the case

when η2
B = η

2
E = 0. This can also be observed in [9].

IV. PROOF OF THE MAIN RESULTS

A. Preliminaries and Notation

Since both channels are AWGN with input-dependent noise,
the output densities for Y and Z exist for any input distribution
FX , and are given by

PY (y; FX ) =
∫ A

0
p(y |x) dFX (x), y ∈ R (11)

PZ (z; FX ) =
∫ A

0
p(z |x) dFX (x), z ∈ R (12)

where p(y |x) and p(z |x) are given by [7]

p(y |x) = 1√
2π σ2

B,X (x)
exp

(
− (y − x)2

2σ2
B,X (x)

)
, (13)

p(z |x) = 1√
2π σ2

E,X (x)
exp

(
− (z − x)2

2σ2
E,X (x)

)
, (14)

where σ2
B,X (x) = σ2

B(1 + η2
Bx) and σ2

E,X (x) = σ2
E (1 + η2

E x).
We define the rate-equivocation density re(x; FX ) as

re(x; FX ) = iB(x; FX ) − iE (x; FX ), (15)

where iB(x; FX ) and iE (x; FX ) are the mutual information
densities for the legitimate user’s and eavesdropper’s channel,
respectively and are given by

iB(x; FX ) = −
∫
R

p(y |x) log (PY (y; FX )) dy

− 1
2

log
(
2πeσ2

B,X (x)
)
, (16)

iE (x; FX ) = −
∫
R

p(z |x) log (PZ (z; FX )) dz

− 1
2

log
(
2πeσ2

E,X (x)
)
. (17)

The mutual information and the mutual information density
are related through

I(X;Y ) =
∫ A

0
iB(x; FX ) dFX (x), (18)

I(X; Z) =
∫ A

0
iE (x; FX ) dFX (x). (19)

One can show that the conditional densities in (13) and (14)
are bounded as [9, Lemma 3]

exp(−α − β′y2) ≤ p(y |x) ≤ exp(α − βy2), (20)

exp(−µ − ξ ′z2) ≤ p(z |x) ≤ exp(µ − ξz2), (21)

for all x ∈ [0, A], y ∈ R, where α, β, β′, µ, ξ and ξ ′ are positive
constants. Hence, for all FX ∈ A+

exp(−α − β′y2) ≤ PY (y; FX ) ≤ exp(α − βy2), (22)

exp(−µ − ξ ′z2) ≤ PZ (z; FX ) ≤ exp(µ − ξz2). (23)

Thus, we can write

|log (PY (y; FX ))| ≤ α + β′y2, (24)

|log (PZ (z; FX ))| ≤ µ + ξ ′z2. (25)

Next, we prove Theorem 1 using the preliminaries provided
in this section.

B. Proof of Theorem 1
To prove Theorem 1, we first prove that the set of input

distributions A+ satisfying (8), is compact and convex. We
then show that the objective function in (9) is continuous,
strictly concave and weakly differentiable in the input dis-
tribution FX and hence we conclude that the solution to the
optimization problem (9) exists and is unique. We continue the
proof by deriving the necessary and sufficient conditions (KKT
conditions) for the optimality of the optimal input distribution
F∗X and finally by means of contradiction we show that this
optimal input distribution is discrete with a finite number of
mass points.

Throughout the paper, we occasionally refer the reader to
the technical report [8] where we have presented details that
we can not provide here due to length constraint.

1) The feasible set A+ is compact and convex: The proof
follows along similar lines as in [10, Appendix A.1].

2) g0(FX ) is continuous in input distribution FX : It is
established in [8, Section IV-B-2] that g0(FX ) is continuous
in FX .

3) g0(FX ) is strictly concave in FX : The proof is given
in [8, Section IV-B-Lemma 1].

4) g0(FX ) is weakly differentiable: We provide the proof
in [8, Section IV-B-4].

Since the feasible set A+ is compact and convex and the
objective function g0(FX ) is continuous, strictly concave and
weakly differentiable, steps analogous to [5, Corollary 1]
yield the following necessary and sufficient conditions for the
optimality of the distribution F∗X

re(x; F∗X ) ≤ CS, ∀x ∈ [0, A] (26)
re(x; F∗X ) = CS, ∀x ∈ SF∗X (27)

where SF∗X is the support set of F∗X and the secrecy capacity
CS is expressed as

CS = IB(F∗X ) − IE (F∗X ) =

hY (F∗X ) − hZ (F∗X ) +
1
2
EF∗X

[
log

(
σ2
E,X (x)

σ2
B,X (x)

)]
, (28)
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where IB(F∗X ) and IE (F∗X ) are the mutual information for
Bob and Eve, respectively, generated by the optimal input
distribution F∗X . Similarly, hY (F∗X ) and hZ (F∗X ) are the dif-
ferential entropies of Y and Z , respectively, generated by the
input distribution F∗X . Moreover, EF∗X denotes the expectation
operator with respect to optimal distribution F∗X .

We now prove by contradiction that the secrecy-capacity-
achieving input distribution F∗X has a finite number of mass
points. To reach a contradiction, we use the KKT conditions
in (26) and (27). To this end, we first show that both iB(x; FX )
and iE (x; FX ) have analytic extensions over some open con-
nected set D = {

w : <(w) > −1/η2
B

}
in the complex plane C

that includes the positive real line R+0 , where <(·) denote the
real part of a complex variable.

5) The rate-equivocation density re(x; FX ) is an analytic
function on D: Due to space limitations, we present the proof
in [8, Section IV-B-5].

6) The secrecy-capacity-achieving input distribution is dis-
crete: To prove the discreteness of the optimal input distribu-
tion F∗X , we use a contradiction approach. To this end, let us
assume that SF∗X has an infinite number of elements. In view
of the optimality condition (27), analyticity of re(w; FX ) over
the open connected set D and the identity theorem of complex
analysis along with the Bolzano-Weierstrass Theorem, if SF∗X
has an infinite number of mass points, we get re(w; F∗X ) = CS

for all w ∈ D, which results in

re(x; F∗X ) = CS, ∀x ∈
(
−1/η2

B, +∞
)
. (29)

Next, we show that (29) results in a contradiction. By
observing the bounds given in (20)–(25), one can easily show
that∫

R
exp

(
−α−β′y2

) [−α−β′y2] dy ≤
∫
R

p(y |x)×

log
(
PY (y; F∗X )

)
dy ≤

∫
R

exp
(
α−βy2

) [
α+β′y2] dy, (30)

for all x ∈ (−1/η2
B, A

) ⊂ (−1/η2
B, +∞

)
. Similarly,∫

R
exp

(
−µ−ξ ′z2

) [−µ−ξ ′z2] dz ≤
∫
R

p(z |x)×

log
(
PZ (z; F∗X )

)
dz ≤

∫
R

exp
(
µ−ξz2

) [
µ+ξ ′y2] dz, (31)

for all x ∈ (−1/η2
B, A

)
. Therefore, we can write

LB ≤ −
∫
R

p(y |x) log
(
PY (y; F∗X )

)
dy +

∫
R

p(z |x)×
log

(
PZ (y; F∗X )

)
dz ≤ UB, (32)

where the lower bound LB and the upper bound UB are given
respectively as

LB =

∫
R

[−µ−ξ ′z2] exp
(
−µ−ξ ′z2

)
dz

+

∫
R

[−α−β′y2] exp
(
α−βy2

)
dy, (33)

UB =

∫
R

[
µ+ξ ′z2] exp

(
µ−ξz2

)
dz

x
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Fig. 1. Illustration of CS−re (x;FX ) yielded by the optimal input distribution
when σ2

B = 1, σ2
E = 2, η2

B = 0.25, η2
E = 0.125 and A = 4.

+

∫
R

[
α+β′y2] exp

(
−α−β′y2

)
dy. (34)

We note that since the constants β, β′, ξ and ξ ′ are all positive,
LB and UB are finite values. Substituting (16) and (17) into
(29) and using the bounds in (32), we can write

LB ≤ CS +
1
2

log

(
σ2
B,X (x)

σ2
E,X (x)

)
≤ UB . (35)

Now, let
{

x(n)
}∞
n=1 be a convergent sequence in S 4

=(−1/η2
B, A

)
with a limit point x(0) = −1/η2

B. It is clear that
1) x(n) and σ2

B,X

(
x(n)

)
are real for all positive integers n,

and 2) limn→∞ σ2
B,X

(
x(n)

)
= 0. Following the results in [9,

Theorem 3] and using (35) we can write

lim
n→∞(LB − CS) ≤ lim

n→∞
1
2

log

(
σ2
B,X (x(n))

σ2
E,X (x(n))

)
≤ lim

n→∞(UB − CS).
(36)

Since limn→∞ 1
2 log

(
σ2

B,X (x(n))
σ2

E,X (x(n))

)
= −∞ (due to the fact that

σ2
E,X (x(0)) is a finite value) and the limn→∞(LB − CS) is a

finite value, thus a contradiction occurs. This, in turn, implies
that the support set SF∗X cannot have an infinite number of
elements and therefore the optimal input distribution F∗X is
discrete with a finite number of mass points.

V. NUMERICAL RESULTS

Fig. 1 provides a plot of the equivocation density for an
optimal input distribution for A = 4, σ2

B = 1, σ2
E = 2, η2

B =

0.25, and η2
E = 0.125. We numerically found that for these

parameters, the optimal input distribution is ternary with mass
points located at x = 0, 2.025 and 4 with probability masses
0.2862, 0.3045 and 0.4093, respectively. We observe that CS−
re(x; FX ) is generally nonnegative and is equal to zero at the
optimal mass points; verifying the optimality conditions in
(26) and (27).

Fig 2 illustrates the secrecy capacity CS and the difference
CB −CE versus the peak-intensity constraint A, where CB and
CE are the legitimate user’s and the eavesdropper’s capacities,
respectively. We observe that this difference is in general a
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Fig. 2. The secrecy capacity for σ2
B = 1, σ2

E = 2, η2
B = 0.25 and η2

E =
0.125 versus the peak-intensity constraint A.

lower bound for the secrecy capacity CS which can be easily
proven. We also observe that, for small values of A, CB −CE

and CS are identical. However, as A increases, CB − CE and
CS become different. Similar to the secrecy capacity results of
the Gaussian wiretap channel under a peak-power constraint
provided in [4], here too, I(X;Y ) and I(X; Z) are maximized
by the same discrete distribution, however, I(X;Y )− I(X; Z) is
maximized by a different distribution. As a specific example,
when A = 4, while both I(X;Y ) and I(X; Z) are maximized
by the same binary distribution with mass points at x = 0 and
4 with probability masses 0.5088 and 0.4912, respectively,
I(X;Y ) − I(X; Z) is maximized by a ternary distribution with
mass points at x = 0, 2.025 and 4 with probability masses
0.2862, 0.3045 and 0.4093, respectively. This explains the
difference between CS and CB − CE at A = 4 in this figure.

Fig. 3 depicts the entire rate-equivocation region of the
optical wiretap channel with input-dependent Gaussian noise
under non-negativity and peak-intensity constraints when
σ2
B = 1, σ2

E = 2, η2
B = 0.25, and η2

E = 0.125 for two
different values of A. When A = 2.8, it is clear from
the figure that both the secrecy capacity and the capacity
can be attained simultaneously (Point “M” in the figure). In
particular, for A = 2.8, the binary input distribution with
mass points located at x = 0 and 2.8 with probabilities
0.5183 and 0.4817, respectively, achieves both the capacity
and the secrecy capacity. This implies that, when A = 2.8,
the transmitter can communicate with the legitimate user at
the capacity while achieving the maximum equivocation at
the eavesdropper. On the other hand, when A = 4, the secrecy
capacity and the capacity cannot be achieved simultaneously
(notice the curved shape in the figure). More specifically, for
A = 4, the binary input distribution with mass points located at
x = 0 and 4 with probabilities 0.5088 and 0.4912 achieves the
capacity, while a ternary distribution with mass points located
at x = 0, 2.025, 4 with probability masses 0.2862, 0.3045
and 0.4093, respectively, achieves the secrecy capacity, i.e.,
the optimal input distributions for the secrecy capacity and
the capacity are different. In other words, there is a tradeoff
between the rate and its equivocation.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.05

0.1

0.15

0.2

Fig. 3. The rate-equivocation region for σ2
B = 1, σ2

E = 2, η2
B = 0.25,

and η2
E = 0.125 under peak-intensity constraints A = 2.8 and A = 4.

Point M refers to the case when secrecy capacity and capacity are achieved
simultaneously.

VI. CONCLUSIONS

This paper studies the optical wiretap channel with input-
dependent Gaussian noise under non-negativity and peak-
intensity constraints. It is shown that the secrecy capacity
and the boundary of the entire rate-equivocation region is
achieved by discrete input distributions with a finite support.
An interesting result that this paper reveals is that under such
constraints, the secrecy capacity and the capacity of this optical
wiretap channel cannot be obtained simultaneously in general,
i.e., there is a tradeoff between the rate and its equivocation in
the sense that, to increase the communication rate, one must
compromise from the equivocation, and conversely to increase
the achieved equivocation, one must compromise from the
communication rate.

REFERENCES

[1] C. E. Shannon, “Communication theory of secrecy systems,” j-BELL-
SYST-TECH-J, vol. 28, no. 4, pp. 656–715, 1949.

[2] A. D. Wyner, “The Wire-tap Channel,” Bell Systems Technical Journal,
vol. 54, no. 8, pp. 1355–1387, Jan. 1975.

[3] S. Leung-Yan-Cheong and M. Hellman, “The Gaussian wire-tap chan-
nel,” IEEE Transactions on Information Theory, vol. 24, no. 4, pp. 451–
456, Jul 1978.

[4] O. Ozel, E. Ekrem, and S. Ulukus, “Gaussian Wiretap Channel With
Amplitude and Variance Constraints,” IEEE Transactions on Information
Theory, vol. 61, no. 10, pp. 5553–5563, Oct 2015.

[5] J. G. Smith, “The Information Capacity of Amplitude- and Variance-
Constrained Scalar Gaussian Channels,” Information and Control,
vol. 18, no. 3, pp. 203–219, April 1971.

[6] S. Arnon, J. Barry, G. Karagiannidis, R. Schober, and M. Uysal,
Advanced Optical Wireless Communication Systems, 1st ed. New York,
NY, USA: Cambridge University Press, 2012.

[7] S. M. Moser, “Capacity Results of an Optical Intensity Channel With
Input-Dependent Gaussian Noise,” IEEE Transactions on Information
Theory, vol. 58, no. 1, pp. 207–223, Jan 2012.

[8] M. Soltani and Z. Rezki, “Optical Wiretap Channel with Input-
Dependent Gaussian Noise Under Peak and Average Intensity
Constraints,” Technical Report, Apr. 2017. [Online]. Available:
https://sites.google.com/site/zouheirrezki/publications

[9] T. H. Chan, S. Hranilovic, and F. R. Kschischang, “Capacity-Achieving
Probability Measure for Conditionally Gaussian Channels with Bounded
Inputs,” IEEE Transactions on Information Theory, vol. 51, no. 6, pp.
2073–2088, June 2005.

[10] C. Luo., Communication for Wideband Fading Channels: On Theory
and Practice. PhD Thesis, Massachusetts Institute of Technology, Feb.
2006.

International Zurich Seminar on Information and Communication (IZS), February 21 – 23, 2018

73



State-Dependent Parallel Gaussian Channels With a
State-Cognitive Helper

Michael Dikshtein∗, Ruchen Duan†, Yingbin Liang ‡, and Shlomo Shamai (Shitz)§
∗Department of EE, Technion, Haifa 32000, Israel, michaeldic@campus.technion.ac.il
†Samsung Semiconductor Inc, San Diego, CA 92121 USA, r.duan@samsung.com

‡Department of ECE, The Ohio State University, Columbus, OH 43210 USA, liang.889@osu.edu
§Department of EE, Technion, Haifa 32000, Israel, sshlomo@ee.technion.ac.il

Abstract—The state-dependent parallel channel with differ-
ently scaled states and a common state-cognitive helper is studied,
in which two transmitters wish to send two messages to their
corresponding receivers respectively over two parallel Gaussian
subchannels. The two Gaussian channels are corrupted by the
same but differently scaled states. The state is not known to
the transmitters nor to the receivers, but known to a helper non-
causally, which assists the receivers to cancel the state. Differently
from previous studies that characterized the capacity region only
in the infinite state power regime and under independent state
corruption at the two receivers, this paper investigates the case
under arbitrary state power and with the same but differently
scaled states. An inner bound on the capacity region is derived
and is compared to an outer bound. Then the channel parameters
are partitioned into various cases, and segments on the capacity
region boundary are characterized for each case.

Index Terms—Dirty paper coding, , Gelf’and-Pinsker scheme,
noncausal channel state information, parallel channel.

I. INTRODUCTION

With the development of cellular systems, to support more
users and higher transmission rates, non-orthogonal multi-user
access (NOMA) has been intensively investigated, where in-
terference cancellation is the key issue for the non-orthogonal
transmission. In this paper, we investigate a type of state-
dependent channels with helper, in which the state is not
known to either transmitters or receivers, but is noncausally
known to a state-cognitive helper. This model captures interfer-
ence cancelation in various practical scenarios. For example,
users in a multi-cell systems may be interfered by a base
station located in other cells. Such a base station, being as the
source that causes the interference, clearly knows the infor-
mation of the interference (modeled by state) and can serve
as a helper to help to cancel the interference. Alternatively,
that base station can also convey the interference information
to other base stations via the back haul network so that other
base stations can serve as helpers to cancel the interference.
As a comparison, this type of state-dependent models differ
from the original state-dependent channels studied in e.g., [1]
and [2], in that the state-cognitive helper is not informed of
the transmitters’ messages, and hence its state cancellation
strategies are necessarily independent from message encoding
at the transmitters.

The basic state-dependent Gaussian channel with a helper
was introduced by [3], in which the capacity in the infi-
nite power regime was characterized and was shown to be

achievable by lattice coding. The capacity under arbitrary state
power was established for some special cases in [4]. As more
models, some state-dependent MACs also fall into the type
of state-dependent models with state-cognitive helpers. The
state-dependent asymmetric multiple access channel (MAC)
was studied in [5], in which an inner bound was derived
using Gelfand-Pinsker coding for the state-cognitive user, and
using the regular MAC scheme for the uninformed user. In
[6], the MAC with two states and with each state is known
at one transmitter was studied, and the lattice coding was
used to derive achievable regions. In [7], this channel was
further studied with an additional common message shared
between the informed and the uninformed user. New lower
and upper bounds were derived. In a recent work [8] on
the state-dependent MAC, a new outer bound was derived
which is tighter than the previous bounds. In [4], the state-
dependent MAC with an additional helper was studied, and
the partial/full capacity region was characterized under various
channel parameters. In [9], the state-dependent multicast chan-
nel was introduced and capacity bounds were derived for the
independent and differently scaled states scenarios. Moreover,
some state-dependent relay channel models can also be viewed
as an extension of the state-dependent channel with a helper,
where the relay serves the role of the helper by knowing the
state information. In [10], the state-dependent relay channel
with state non-causally available at the relay is considered. An
achievable rate was derived using a combination of decode-
and-forward, Gelfand-Pinsker binning and codeword splitting.
And in [11], additional noiseless cooperation links with finite
capacity were assumed between the transmitter and the relay,
and various coding techniques were explored.

The most relevant work to this paper is [12], in which the
state-dependent parallel channel with a helper was studied, for
the regime with infinite state power and with two receivers
being corrupted by two independent states. A time-sharing
scheme was proved to be capacity achieving under certain
channel parameters. In contrast, in this paper, the two receivers
of the parallel channel are corrupted by the same but differ-
ently scaled states, and the state can take arbitrary power. In
this case, the time-sharing scheme is no longer optimal.

Thus, in this paper, we derive an inner bound on the
capacity region using an achievability scheme that integrates
single-bin dirty paper coding and direct state subtraction. We
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Fig. 1: The state-dependent parallel channel with a helper.

then compare such an inner bound with an outer bound that
consists of the capacity of point-to-point channel without state
and an outer bound developed in [3] for the point-to-point
state-dependent channel with a helper. The comparison yields
the capacity region for certain ranges of channel parameters.
More specifically, when the helper’s power is above a certain
threshold (which is less than the state power and hence direct
state cancellation cannot be applied) and the helper’s signal is
scaled the same as the state, we show that the state interference
can be fully cancelled for both channels, and thus the capacity
region is the same as that of the corresponding channel without
state.

II. CHANNEL MODEL

In this paper, we study the state-dependent parallel net-
work with a state-cognitive helper, in which two transmitters
communicate with two corresponding receivers over a state-
dependent parallel channel. The two receivers are corrupted
by two differently scaled states, respectively. The state infor-
mation is not know to either the transmitters or the receivers,
but to a helper noncausally. Hence, the helper assists these
receivers to cancel the state interference (see Figure 1).

More specifically, the encoder at transmitter i, fi : Mi →
Xni , maps a message mi ∈

{
1, . . . , 2nRi

}
to a codeword xni ,

for i = 1, 2. The inputs xn1 and xn2 are sent respectively
over the two subchannels of the parallel channel. The two
receivers are corrupted by an independent and identically
distributed (i.i.d.) state sequence sn ∈ Sn, which is known
to a common helper noncausally. Hence, the encoder at the
helper, f0 : Sn → Xn0 , maps the state sequence sn ∈ Sn
into a codeword xn0 ∈ Xn0 . The channel transition probability
is given by PY1|X0X1S ·PY2|X0X2S . The decoder at receiver i,
gi : Yni →Mi, maps a received sequence yni into a message
m̂i ∈ Mi, for i = 1, 2. We assume that the messages are
uniformly distributed over the sets M1 and M2. We define
the average probability of error for a length-n code as follows:

Pe =
1

|M1||M2|

M1∑

m1=1

M2∑

m2=1

P {m̂1 6= m1, m̂2 6= m2} . (1)

Definition 1. A rate pair (R1, R2) is said to be achievable
if there exist a sequence of message sets M(n)

1 and M(n)
2

with
∣∣∣M(n)

1

∣∣∣ = 2nR1 and
∣∣∣M(n)

2

∣∣∣ = 2nR2 , and encoder-

decoder tuples
(
f
(n)
0 , f

(n)
1 , f

(n)
2 , g

(n)
1 , g

(n)
2

)
such that the av-

erage probability of error P (n)
e → 0 as n→∞.

Definition 2. We define the capacity region of the channel as
the closure of the set of all achievable rate pairs (R1, R2).

In this paper, we focus on the Gaussian channel, with the
outputs at the two receivers for one channel use given by

Y1 = X0 +X1 + S + Z1 (2a)

Y2 = bX0 +X2 + aS + Z2 (2b)

where Z1 and Z2 are noise variables with Gaussian distribu-
tions Z1 ∼ N (0, 1) and Z2 ∼ N (0, 1), and S is the state
variable with Gaussian distribution S ∼ N (0, Q). Both the
noise variables and the state variable are i.i.d. over channel
uses. The channel inputs X0, X1, and X2 are subject to the av-
erage power constraints 1

n

∑n
i=1X

2
ki ≤ Pk, k ∈ {0, 1, 2}. The

constant a represents the channel gain of the state sequence
in the second subchannel compared to the first subchannel.
Similarly, the constant b is the gain of the helper signal in the
second subchannel compared to that in the first subchannel.
Thus our model presents a general scenario, where the helper’s
power and the state power can be arbitrary.

Our goal is to characterize the capacity region of
the Gaussian channel under various channel parameters
(a, b, P0, P1, P2, Q).

III. MAIN RESULTS

In this section, we first derive inner and outer bounds on
the capacity region for the state-dependent parallel channel
with a helper. Then by comparing the inner and outer bounds,
we characterize the segments on the capacity region boundary
under various different channel parameters. Some proofs are
omitted due to space limitations.

A. Inner and Outer Bounds

We start by deriving an inner bound on the capacity region
for the discrete memoryless channel based on single bin
Gel’fand-Pinsker binning scheme.

Proposition 1. For the discrete memoryless state-dependent
parallel channel with a helper under the same but differently
scaled states at the two receivers, an inner bound on the
capacity region consists of rate pairs (R1, R2) satisfying:

R1 ≤ min {I(U,X1;Y1)− I(U ;S), I(X1;Y1|U)} (3a)

R2 ≤ min {I(U,X2;Y2)− I(U ;S), I(X2;Y2|U)} (3b)

for some distribution PU |SPX0|USPX1PX2 .

Proof: Fix the conditional pmf PX0U |SPX1
PX2

. Generate
2nR̃ sequences un(v) based on PU and 2nRk codewords
xnk (wk) based on PXk

, where k ∈ {1, 2}
Given sn, the encoder at the helper finds ṽ, such that

(un(ṽ), sn) ∈ Tnε′ . It can be shown that for large n, such
ṽ exists with high probability if R̃ ≥ I(U ;S). Then given
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(un(ṽ), sn), generate xn0 with i.i.d. components based on
PX0|SU for transmission.

Given wk, the encoder at transmitter k transmits xnk (wk).
Given ynk , the decoder at receiver k finds (v̂, ŵk) such that

(un(v̂), xnk (wk), ynk ) ∈ Tnε . If no or more than one ŵk can be
found, error is declared.

It can be shown that for sufficiently large n, decoding is
correct with high probability if

Rk ≤ I(Xk;Yk|U)

R̃+Rk ≤ I(U,Xk;Yk)

This completes the proof.
Based on the above inner bound for the discrete memoryless

case, we derive the following inner bound for the Gaussian
channel.

Proposition 2. An inner bound on the capacity region for the
state-dependent parallel Gaussian channel with a helper and
under the same but differently scaled state consists of rate
pairs (R1, R2) satisfying:

R1 ≤ min {f1,1(α, β, P1), g1,1(α, β, P1)} (4a)

R2 ≤ min {fa,b(α, β, P2), ga,b(α, β, P2)} (4b)

where, α and β are real constants satisfying |β| ≤
√
P0/Q,

and

fa,b(α, β, P ) =
1

2
log

P ′0
(
b2P ′0 + (a+ bβ)2Q+ P + 1

)

P ′0Q(bα− a− bβ)2 + P ′0 + α2Q
,

(5a)

ga,b(α, β, P ) =

1

2
log

(
1 +

P
(
P ′0 + α2Q

)

P ′0Q(bα− a− bβ)2 + P ′0 + α2Q

)
, (5b)

where P ′0 = P0 − β2Q.

Proof: The proof follows from Proposition 1 by choos-
ing the following joint Gaussian distribution for the random
variables:

X0 = X ′0 + βS, U = X ′0 + αS

X ′0 ∼ N (0, P ′0), X1 ∼ N (0, P1) X2 ∼ N (0, P2)

where X ′0, S,X1, X2 are independent. P ′0 is chosen such that
the power constraint on X0 is satisfied with equality

P0 ≥EX2
0 = P ′0 + β2Q.

We note that the above choice of the helper’s signal in-
corporates two parts with X ′0 designed using single-bin dirty
paper coding, and βS acting as direct state subtraction.

We next present an outer bound which applies the point-
to-point channel capacity and the upper bound derived for the
point-to-point channel with a helper in [3].

Lemma 1. An outer bound on the capacity region of the
states-dependent parallel Gaussian channel with a helper
consists of rate pairs (R1, R2) satisfying:

R1 ≤ min

{
1

2
log

(
1 +

P1

P0 + 2ρ0S
√
P0Q+Q+ 1

)

+
1

2
log
(
(1− ρ20S)P0 + 1

)
,

1

2
log (1 + P1)

} (6a)

R2 ≤ min

{
1

2
log

(
1 +

P2

b2P0 + 2abρ0S
√
P0Q+ a2Q+ 1

)

+
1

2
log
(
(1− ρ20S)b2P0 + 1

)
,

1

2
log (1 + P2)

}

(6b)

for some ρ0S that satisfies −1 ≤ ρ0S ≤ 1.

B. Capacity Region Characterization

In this section, we optimize α and β in Proposition 2, and
compare the rate bounds with the outer bounds in Lemma 1
to characterize the points or segments on the capacity region
boundary.

We first define φa,b(ρ0S , P ) and θa,b(ρ0S , P ) as in (7) for
notational convenience.

Since the inner bound in Proposition 2 is not convex, it
is difficult to provide a close form for the jointly optimized
bounds. Therefore, we first optimize the bounds for R1 and R2

respectively, and then provide conditions on channel param-
eters such that these bounds match the outer bound. Based
on the conditions, we partition the channel parameters into
the sets, in which different segments of the capacity region
boundary can be obtained.

We first consider the rate bound for R1 in (4a). By setting

α1 , (1 + β1)P ′0
P ′0 + 1

, β1 , ρ∗0S

√
P0

Q

f1,1(α, β, P1) and g1,1(α, β, P1) take the following form

f1,1(α1, β1, P1) = φ1,1(ρ∗0S , P1)

g1,1(α1, β1, P1) = θ1,1(ρ∗0S , P1)

where ρ∗0S ∈ [−1, 1] maximizes φ1,1(ρ0S , P1). In fact, α1

maximizes f1,1(α, β, P1) for fixed β, and β1 maximizes the
function with α = α1.

If φ1,1(ρ∗0S , P1) ≤ θ1,1(ρ∗0S , P1), R1 = φ1,1(ρ∗0S , P1) is
achievable, and this matches the upper bound in (6a). Thus,
one segment of the capacity region is specified by

R1 = φ1,1(ρ∗0S , P1) (8a)
R2 ≤ min{fa,b(α1, β1, P2), ga,b(α1, β1, P2)} (8b)

We further observe that the second term g1.1(α, β, P1) in
(4a) is optimized by setting α = 1 + β, and hence

g1,1(α, α− 1, P1) = 0.5 log(1 + P1).

If g1,1(α, α− 1, P1) ≤ f1,1(α, α− 1, P1), i.e.,

P ′20 ≥ α2Q(P1 + 1− P ′0), (9)
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φa,b(ρ0S , P ) =
1

2
log

(
1 +

P

b2P0 + 2abρ0S
√
P0Q+ a2Q+ 1

)
+

1

2
log
(
(1− ρ20S)b2P0 + 1

)
(7a)

θa,b(ρ0S , P ) =
1

2
log

(
1 +

P
(
(1 + b2P0(1− ρ20S))2 + (1− ρ20S)b2P0(a

√
Q+ bρ0S

√
P0)2

)
(
a2Q+ 2abρ0S

√
P0Q+ b2P0 + 1

)
(b2(1− ρ20S)P0 + ‘1)

)
(7b)

then the inner bound for R1 becomes R1 = 0.5 log(1 + P1),
which is the capacity of the point-to-point channel without
state and matches the outer bound in (6a). Thus one segment
of the capacity is specified by

R1 = 0.5 log(1 + P1) (10a)
R2 ≤ min{fa,b(α, α− 1, P2), ga,b(α, α− 1, P2)}. (10b)

We then consider the rate bound for R2. Similarly, the fol-
lowing segments on the capacity boundary can be obtained.
If φa,b(ρ∗∗0S , P2) ≤ θa,b(ρ∗∗0S , P2), one segment of the capacity
region boundary is specified by

R1 ≤ min{f1,1(α2, β2, P1), g1,1(α2, β2, P1)} (11a)
R2 = φa,b(ρ

∗∗
0S , P2) (11b)

where

α2 , (a+ bβ2)bP ′0
b2P ′0 + 1

, β2 , ρ∗∗0S

√
P0

Q

and ρ∗∗0S ∈ [−1, 1] maximizes φa,b(ρ0S , P2).
Furthermore, if ga,b(α, α−a/b, P2) ≤ fa,b(α, α−a/b, P2),

one segment of the capacity region boundary is specified by

R1 ≤ min
{
f1,1

(
α, α− a

b
, P1

)
, g1,1

(
α, α− a

b
, P1

)}

(12a)
R2 = 0.5 log(1 + P2). (12b)

Summarizing the above analysis, we obtain the following
characterization of segments of the capacity region boundary.

Theorem 1. The channel parameters (a, b, P0, P1, P2, Q) can
be partitioned into the sets A1,B1, C1, where

A1 = {(a, b, P0, P1, P2, Q) : φ1,1(ρ∗0S , P1) ≤ θ1,1(ρ∗0S , P1)}
C1 = {(a, b, P0, P1, P2, Q) : P ′20 ≥ α2Q(P1 + 1− P ′0)

where P ′0 = P0 − (α− 1)2Q, for some α ∈ Ωα}
B1 = (A1 ∪ C1)c.

If (a, b, P0, P1, P2, Q) ∈ A1, then (8a) − (8b) captures one
segment of the capacity region boundary, where the state can-
not be fully cancelled. If (a, b, P0, P1, P2, Q) ∈ C1, then (10a)
− (10b) captures one segment of the capacity region boundary
where the state is fully cancelled. If (a, b, P0, P1, P2, Q) ∈ B1,
then the R1 segment of the capacity region boundary is not
characterized.

The channel parameters (a, b, P0, P1, P2, Q) can also be
partitioned into the sets A2,B2, C2, where

A2 = {(a, b, P0, P1, P2, Q) : φa,b(ρ
∗∗
0S , P2) ≤ θa,b(ρ∗∗0S , P2)}

C2 = {(a, b, P0, P1, P2, Q) : b2P ′20 ≥ α2Q(P2 + 1− b2P ′0)

where P ′0 = P0 − (α− a/b)2Q, for some α ∈ Ωα}
B2 = (A2 ∪ C2)c.

If (a, b, P0, P1, P2, Q) ∈ A2, then (11a) − (11b) captures
one segment of the capacity region boundary, where the state
cannot be fully cancelled. If (a, b, P0, P1, P2, Q) ∈ C2, then
(12a) − (12b) captures one segment of the capacity boundary
where the state is fully cancelled. If (a, b, P0, P1, P2, Q) ∈ B2,
then the R2 segment of the capacity region boundary is not
characterized.

The above theorem describes two partitions of the channel
parameters, respectively under which segments on the capacity
region boundary corresponding to R1 and R2 can be char-
acterized. Intersection of two sets, each from one partition,
collectively characterizes the entire segments on the capacity
region boundary.

Figure 2 lists all possible intersection of sets that the channel
parameters can belong to. For each case in Figure 2, we use red
solid line to represent the segments on the capacity region that
are characterized in Theorem 1, and we also mark the value of
the capacity that each segment corresponds to as characterized
in Theorem 1.

One interesting example in Theorem 1 is the case with
a = b, in which R1 and R2 are optimized with the same set
of coefficients α and β when P ′20 ≥ α2Q(P1 + 1 − P ′0) and
a2P ′20 ≥ α2Q(P2+1−a2P ′0). Thus, the point-to-point channel
capacity is obtained for both R1 and R2, with state being fully
cancelled. We state this result in the following theorem.

Theorem 2. If a = b, P ′20 ≥ α2Q(P1 + 1 − P ′0) and
a2P ′20 ≥ α2Q(P2+1−a2P ′0) where P ′0 = P0−(α−1)2Q, for
some α ∈ Ωα then the capacity region of the state-dependent
parallel Gaussian channel with a helper and under the same
but differently scaled states contains (R1, R2) satisfying

R1 ≤ 0.5 log(1 + P1)

R2 ≤ 0.5 log(1 + P2).

C. Numerical Example

We now examine our results via simulations. We set P0 = 6,
P1 = P2 = 5, Q = 12, and b = 0.8, and plot the inner
and outer bounds for the capacity region (R1, R2) for two
values of a. It can be observed from Figure 3 that the upper
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Fig. 2: Segments of the capacity region for all cases of channel parameters.
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Fig. 3: Capacity bounds for channel parameters P0 = 6, P1 =
P2 = 5, Q = 12, b = 0.8 and various state gain a.

bound is defined by the rectangular region of channel without
state. The inner bound, in the contrary, is susceptible to the
value of a, such that in the case where a = b, our inner
and outer bounds coincide everywhere, while in the case a 6=
b they coincide only on some segments. Both observations
corroborate the characterization of the capacity in Theorem 1.

IV. CONCLUSION

In this paper, we have studied the parallel state-dependent
Gaussian channel with a state-cognitive helper and with the
same but differently scaled states. An inner bound was derived
and was compared to an upper bound, and the segments of
the capacity region boundary were characterized for various
channel parameters. Furthermore, if the helper’s signal and the
state are equally scaled, the full rectangular capacity region of
the two point-to-point channels without state can be achieved.
As future work, we will analyze the case with channels being
corrupted by independent states, and characterize the capacity
region for various channel parameters.
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Abstract—We investigate the capacity of an SRAM-PUF based
secrecy system that produces two secret keys during two consec-
utive enrollments. We determined the region of secret-key rates
that are achievable and show that the total secret-key capacity is
larger than for a single enrollment system. In our achievability
proofs we focussed on linear codes.

I. INTRODUCTION

An SRAM-PUF has a binary response that is unpredictable
but reliable, and that is unique to the specific SRAM. There-
fore, SRAM-PUF observation vectors are considered as a
digital fingerprint, and may be used to generate and reconstruct
secret keys [1]. Such secret keys can be used to authenticate
a device or to secure data. It is important that the secret key
is hard to guess by an attacker, and at the same time perfectly
reconstructable by the user who can observe the SRAM-PUF.

The problem of (re-)generating a secret key from SRAM-
PUF observations can be directly mapped to the problem
of secret-key agreement [2]. In this case, an encoder and a
decoder observe dependent sequences with some known joint
distribution and need to agree on a secret key. It is known that
the maximum achievable secret-key rate for this scenario is
equal to the mutual information between the observed random
variables by the encoder and decoder respectively [3], [4]. This
rate can be achieved by one-way communication between the
encoder and the decoder. The encoder generates a secret key
and corresponding helper message, based on its input. We refer
to this process as enrollment. The helper message is send over
a public channel to the decoder. The decoder uses the helper
message and his own observation to reconstruct the same key.

Clearly, the mutual information and thus the achievable
secret-key rate may increase when more observations are
considered. However, can we also increase the secret-key
rate when additional input is observed by the encoder after
an enrollment has already been completed? In [5], we have
studied the case when enrollment of the same SRAM-PUF is
repeated multiple times. The encoder regenerates the secret
key and a corresponding helper message after observing an
additional input from the SRAM-PUF. We have shown that
given certain symmetry properties of the SRAM-PUF no
leakage results from the additional helper messages. However,
all previous keys are considered invalid and the secret-key rate
remains the same. In the current work, we allow the encoder
to generate a second key and corresponding helper message

This work was funded by the Eurostars-2 joint programme with co-funding
from the EU Horizon 2020 programme under the E! 9629 PATRIOT project.

after observing an additional response from the SRAM-PUF.
We show that the secret-key rate can be sequentially increased
in this case while ensuring no leakage about any of the keys.

In the following, we first introduce the SRAM-PUF model
and the notation that is used in the paper. Then, we analyze the
1-enrollment scheme, where a single key and helper message
are generated by the encoder. We give the converse and show
achievability of the secret-key rates with linear codes for the
1-enrollment scheme. Then, we continue to the 2-enrollment
scheme, where a second key and helper message are generated,
and we derive the achievable rates for this scheme.

II. NOTATION AND SRAM-PUF STATISTICAL MODEL

We use capitals to refer to random variables and lowercase
symbols for realizations of random variables. All vectors in
this paper are printed in bold and are binary. The SRAM-
PUF observation vector has lenght n and corresponds to the
values of the n cells in an SRAM cell array. We assume that
the values of the SRAM-PUF cells are independent of each
other and identically distributed. Moreover the observations
of an SRAM cell are permutation invariant, hence for three
consecutive observations x, y, and z of an SRAM cell,
p(x, y, z) = p(x, z, y) = · · · = p(z, y, x). This leads to
H(X) = H(Y ) = H(Z) and H(XY ) = H(Y Z) = H(ZX).
We focus here on three subsequent observation vectors x, y,
and z, of the same SRAM-PUF. Then e.g. H(X) = nH(X)
etc. by the fact that observation vectors are i.i.d. . Given that
the SRAM-PUF is permutation invariant we obtain

H(X) = H(Y ) = H(Z),

H(XY ) = H(XZ) = H(Y Z).

III. 1-ENROLLMENT SETTING

In the 1-enrollment setting shown in Figure 1, an encoder
constructs a secret key k and helper message m after observing
observation vector x. A decoder observing observation vector
z, should be able to reconstruct k when given helper message
m. Furthermore, the helper message m should not reveal any
information about k to an attacker who can not observe x nor
z. The secret key assumes values in {1, 2, · · · , |K|} where
|K| ≤ 2n since x ∈ {0, 1}n.

Definition 1: A secret-key rate R is called achievable in
the 1-enrollment setting, if for all δ > 0 and for all n large
enough, there exist encoders and decoders such that

Pr(K̂ 6= K) ≤ δ,
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Fig. 1: Single enrollment scenario.

1

n
H(K) + δ ≥ 1

n
log2 |K| ≥ R− δ,

1

n
I(K;M) < δ.

The secret-key capacity is defined as the maximum achievable
rate C ∆

= maxR.
Theorem 1: Achievable secret-key rates for the 1-enrollment

setting satisfy

R ≤ I(X;Z),

and the secret-key capacity C = I(X;Z).
The 1-enrollment setting is the same as the secret-key

generation scenario studied by Ahlswede and Csiszar [4] and
Maurer [3].

A proof of achievability and the converse of Theorem 1 can
be found e.g. in [6]. There, a random coding argument was
used to show that codes exist that can achieve the secret-key
capacity C. Here, we will extend their argument by showing
that the secret-key capacity can be achieved using linear codes.

A. Converse

First, we derive an upper bound for the achievable secret-
key rate. We use Fano’s inequality to obtain

H(K|ZM) = H(K|ZMK̂ )

≤ H(K|K̂ )

≤ 1 + Pek log2 |K| ≤ 1 + nPek,

where Pek = Pr(K̂ 6= K). For achievable rates we get

H(K) = I(K;ZM) +H(K|ZM)

≤ I(K;M) + I(K;Z|M) + 1 + nPek

≤ I(K;M) +H(Z)−H(Z|MKX) + 1 + nPek

= I(K;M) +H(Z)−H(Z|X) + 1 + nPek

≤ nδ + nI(X;Z) + 1 + nδ.

This leads to

R− δ ≤ 1

n
H(K) + δ ≤ I(X;Z) + 3δ +

1

n
.

For n → ∞ and δ ↓ 0 we obtain that achievable rates R
must satisfy R ≤ I(X;Z).

B. Linear codes for secret-key capacity

Next, we show that linear codes exist that achieve the secret-
key capacity I(X;Z) for the 1-enrollment scheme.

Fix an ε > 0. Now A(n)
ε (X) and A(n)

ε (XZ) are the sets of
typical and jointly typical sequences as defined in Cover and
Thomas [7], based on the joint distribution of the XZ-source.

A linear coding strategy Sn is specified by the parity-
matrices Hm and Hk, with dimensions (nρm × n) and
(nρk × n) respectively. The encoder observes a sequence x
of length n and generates a helper message m = HmxT and
secret key k = Hkx

T and sends the helper message over
a public channel to the decoder. The secret key is a binary
vector of length nρk, and |K| = 2nρk . The decoder observes a
sequence z and reconstructs the unique sequence x̂ such that
Hmx̂T = m and (x̂, z) ∈ A(n)

ε (XZ). If the reconstruction
of x is successful the decoder can also reconstruct the secret
k̂ = Hkx̂

T .
Finally, we introduce a virtual decoder that observes both

the secret k and the helper message m and reconstructs x̃

such that Hmx̃T = m and Hkx̃
T = k and x̃ ∈ A(n)

ε (X).
We measure the reliability of a linear coding strategy Sn in

terms of the error probability

Pe(Sn) = Pr(X̂ 6= X or X̃ 6= X|Sn).
Next we assume that all matrix elements are chosen uni-

formly from {0, 1} and we bound the error probability aver-
aged over all randomly generated linear codes Hm, Hk as
E[Pe(Sn)] ≤ Pr(E0) + Pr(E1) + Pr(E2), with

E0 = {(X,Z) /∈ A(n)
ε (XZ)},

E1 = {∃x̂ 6= X : Hmx̂T = HmXT and

(x̂,Z) ∈ A(n)
ε (XZ)},

E2 = {∃x̃ 6= X : Hmx̃T = HmXT and

Hkx̃
T = HkX

T and x̃ ∈ A(n)
ε (X)}.

By the properties of typical sequences Pr(E0) < ε.

Pr(E1) =
∑

x,z

p(x, z) Pr(∃x̂ 6= x : Hmx̂T = HmxT and

(x̂, z) ∈ A(n)
ε (XZ))

≤
∑

x,z

p(x, z)
∑

x̂∈A(n)
ε (X|z),x̂ 6=x

Pr(Hm(x̂⊕ x)T = 0)

≤
∑

x,z

p(x, z)|A(n)
ε (X|z)|2−nρm

≤ 2n(H(X|Z)+2ε)2−nρm .

Note that vector e = x̂ ⊕ x has at least one non-zero
component (since x 6= x̂), say at position j. Then for a
randomly generated Hm of dimension (nρm × n)

Pr(HmeT = 0) = Pr

( n∑

i=1

Hm(:, i)e(i) = 0

)

= Pr

( n∑

i=1,i6=j
Hm(:, i)e(i) = Hm(:, j)

)

= Pr(Hm(:, j) = c) = 2−nρm ,

where H(:, i) corresponds to the ith column of the matrix and
e(i) corresponds to the value at the ith position of vector e
and c corresponds to some column vector. Next

Pr(E2) =
∑

x

p(x) Pr(∃x̃ 6= x : Hmx̃T = HmxT and
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Hkx̃
T = Hkx

T and x̃ ∈ A(n)
ε (X))

≤
∑

x

p(x)
∑

x̃∈A(n)
ε (X),x̃6=x

Pr(Hm(x̃⊕ x)T = 0,Hk(x̃⊕ x)T = 0)

≤
∑

x

p(x)|A(n)
ε (X)|2−n(ρm+ρk)

≤ 2n(H(X)+ε)2−n(ρm+ρk).

We conclude that E[Pe(Sn)] ≤ 3ε as long as

ρm > H(X|Z) + 2ε,

ρm + ρk > H(X) + ε.

From this it follows that linear codes exist with ρm =
H(X|Z)+3ε and ρk = I(X;Z)−ε, such that decoding (both
for the helper message decoder and the virtual decoder) has
an acceptable error probability, as long as n is large enough.

C. Leakage, Uniformity of the keys, and Rate

Now, we investigate for the linear codes found before,
having dimensions nρm and nρk, the resulting leakage about
secret K from syndrome m.

I(K;M) = H(K) +H(M)−H(MK)

≤ H(K) +H(M)−H(XMK) +H(X|MK)

≤ nI(X;Z)− nε+ n(H(X|Z) + 3ε)− nH(X)+

1 + nE[Pe(Sn)])

≤ 2nε+ 1 + nE[Pe(Sn)] ≤ 5nε+ 1,

thus for n large enough and some appropriate choice for ε we
conclude that 1

nI(K;M) ≤ δ for any δ > 0, and the leakage
requirement is satisfied.

Next we find that

H(X) = H(XMK)

≤ H(K) +H(M) +H(X|MK)

≤ H(K) + n(H(X|Z) + 3ε)+

1 + nE[Pe(Sn)], and thus
1

n
H(K) ≥ I(X;Z)− 6ε− 1

n
.

Therefore, for any δ > 0 we obtain that 1
nH(K) + δ ≥

I(X;Z)− ε = 1
n log2 |K| ≥ R− δ = I(X;Z)− δ by suitable

choice of ε and large enough n. Now the uniformity/rate
condition of Definition 1 is satisfied. It follows that rate
R = I(X;Z) is achievable, and that the secret-key capacity
is I(X;Z). This concludes the proof.

IV. 2-ENROLLMENT SETTING

In the 2-enrollment setting shown in Figure 2, we assume
that a first enrollment is performed by encoder 1. A secret key
k1 and helper message m1 are generated based on observation
of x. A decoder that observes z and m1 has sufficient
information to form an estimate k̂1 of secret k1.

Encoder 2 observes observation vector y and performs a
second enrollment, generating a secret key k2 and correspond-
ing helper message m2. A decoder that observes both helper

x E1 D

k̂1k1

z
m1

y E2 D

k̂1k2k2

zm2

Fig. 2: Two enrollments scenario.

messages m1 and m2, and an observation vector z should
be able to form the estimate k̂1k2. Furthermore, both helper
messages should not reveal any information about the secret
keys to an attacker who can not observe any observation
vector x, y or z. Finally the secret keys k1 and k2 should
be uniformly distributed and independent of each other.

Definition 2: A secret-key rate pair (R1, R2) is called
achievable in the 2-enrollment setting, if for all δ > 0 and
for all n large enough, there exist encoders and decoders such
that

Pr(K̂1 6= K1 ∨ K̂1K2 6= K1K2) ≤ δ,
1

n
H(K1K2) + δ ≥ 1

n
log2 |K1||K2|,

1

n
log2 |K1| ≥ R1 − δ,

1

n
log2 |K2| ≥ R2 − δ,

1

n
I(K1K2;M1M2) ≤ δ.

The secret-key capacity is the maximum achievable total rate
C = R1 +R2.

Theorem 2: The secret-key capacity C = I(XY ;Z) and the
achievable secret-key rate pairs (R1, R2) satisfy

R1 ≤ I(X;Z)

R1 +R2 ≤ I(XY ;Z).

In the following, we first show the converse of Theorem 2,
that is no secret-key rate pairs (R1, R2) exist for which R1 >
I(X;Z) or R1 +R2 > I(XY ;Z).

A. Converse for 2-enrollment secret-key capacity

The upper bound to the achievable rate for the first key
R1 follows from our results for the 1-enrollment scheme. We
continue with

H(K1K2|ZM1M2) = H(K1K2|ZM1M2K̂1K2)

≤ H(K1K2|K̂1K2)

≤ 1 + Pek log2 |K1||K2| ≤ 1 + 2nPek,

with Pek = Pr(K̂1K2 6= K1K2). For achievable rates

H(K1K2) = I(K1K2;ZM1M2) +H(K1K2|ZM1M2)
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≤ I(K1K2;M1M2) + I(K1K2;Z|M1M2) + 1 + 2nPek

≤ I(K1K2;M1M2) +H(Z)−
H(Z|M1M2K1K2XY ) + 1 + 2nPek

= I(K1K2;M1M2) +H(Z)−
H(Z|XY ) + 1 + 2nPek

≤ nδ + nI(XY ;Z) + 1 + 2nδ.

This results in

R1 − δ +R2 − δ ≤
1

n
H(K1K2) + δ

≤ 3δ + I(XY ;Z) +
1

n
+ δ.

Now with δ ↓ 0 and n→∞ we obtain the bound R1 +R2 ≤
I(XY ;Z) for achievable rate pairs.

B. Linear codes for 2-enrollment setting

Next, we demonstrate that linear codes exist that achieve the
rates specified in Theorem 2, for the 2-enrollment scheme.

Fix an ε > 0. Now A(n)
ε (XY Z) is the set of jointly typical

sequences as defined in Cover and Thomas [7], based on the
joint distribution of the XY Z-source.

We specify a linear coding strategy Sn by four parity check
matrices. Two parity-check matrices Hm1 and Hk1 for the
first encoder, with dimensions (nρm1 × n) and (nρk1 × n)
respectively, and two further parity-check matrices Hm2 and
Hk2 for the second encoder, with dimensions (nρm2×n) and
(nρk2 × n) respectively.

Encoder 1 observes a sequence x of length n, generates
a helper message m1 = Hm1x

T of length nρm1 and a
secret key k1 = Hk1x

T of length nρk1, and sends this
helper message over a public channel to the decoders. A
one-step decoder that has received m1 and did observe a
sequence z, reconstructs the unique sequence x̂ such that
m1 = Hm1x̂

T and (x̂, z) ∈ A(n)
ε (XZ). If the reconstruction

of x is successful, this one-step decoder can reconstruct the
secret k̂ = Hk1x̂

T .
Encoder 2 observes a sequence y of length n, generates

a helper message m2 = Hm2y
T of length nρm2 and a

secret key k2 = Hk2y
T of length nρk2, and sends the helper

message m2 over a public channel to the two-step decoder.
This decoder has already processed the first step, see above.
In addition, since it has obtained m2 this two-step decoder
reconstructs the unique ŷ such that m2 = Hm2ŷ

T and
(x̂, ŷ, z) ∈ A(n)

ε (XY Z), where x̂ was determined in the first
step. Note that the secrets are binary vectors with |K1| = 2nρk1

and |K2| = 2nρk2 .
Finally, we define a virtual decoder that observes both se-

crets k1,k2 and the helper messages m1,m2 and reconstructs
x̃ and ỹ such that k1 = Hk1x̃

T , m1 = Hm1x̃
T and

k2 = Hk2ỹ
T and m2 = Hm2ỹ

T and (x̃, ỹ) ∈ A(n)
ε (XY ).

We measure the reliability of a linear coding strategy Sn in
terms of the average error probability

Pe(Sn) = Pr(X̂ 6= X or Ŷ 6= Y or X̃Ỹ 6= XY |Sn).

Matrix elements are chosen uniformly. We now bound the
error probability averaged over all possible (randomly gen-
erated) linear codes Hm1, Hk1, Hm2, Hk2 as E[Pe(Sn)] ≤
Pr(E0) + Pr(E1) + Pr(E2) + Pr(E3) + Pr(E4) + Pr(E5),
with

E0 = {(X,Y ,Z) /∈ A(n)
ε (XY Z)},

E1 = {∃x̂ 6= X : Hm1x̂
T = Hm1X

T and

(x̂,Z) ∈ A(n)
ε (XZ)},

E2 = {∃ŷ 6= Y : Hm2ŷ
T = Hm2Y

T and

(X, ŷ,Z) ∈ A(n)
ε (XY Z)},

E3 = {∃x̃ 6= X : Hk1x̃
T = Hk1X

T and

Hm1x̃
T = Hm1X

T and (x̃,Y ) ∈ A(n)
ε (XY )},

E4 = {∃ỹ 6= Y : Hk2ỹ
T = Hk2Y

T and

Hm2ỹ
T = Hm2Y

T and (X, ỹ) ∈ A(n)
ε (XY )},

E5 = {∃(x̃, ỹ) 6= (X,Y ) : Hk1x̃
T = Hk1X

T and

Hm1x̃
T = Hm1X

T and Hk2ỹ
T = Hk2Y

T and

Hm2ỹ
T = Hm2Y

T and (x̃, ỹ) ∈ A(n)
ε (XY )}.

By the properties of typical sequences Pr(E0) < ε.

Pr(E1) =
∑

x,z

p(x, z) Pr(∃x̂ 6= x :

Hm1x̂
T = Hm1x

T and (x̂, z) ∈ A(n)
ε (XZ))

≤
∑

x,z

p(x, z)
∑

x̂∈A(n)
ε (X|z),x̂ 6=x

Pr(Hm1(x̂⊕ x)T = 0)

≤
∑

x,z

p(x, z)|A(n)
ε (X|z)|2−nρm1

≤ 2n(H(X|Z)+2ε)2−nρm1 .

Pr(E2) =
∑

x,y,z

p(x,y, z) Pr(∃ŷ 6= y :

Hm2ŷ
T = Hm2y

T and (x, ŷ, z) ∈ A(n)
ε (XY Z))

≤
∑

x,y,z

p(x,y, z)
∑

ŷ∈A(n)
ε (Y |xz),ŷ 6=y

Pr(Hm2(ŷ ⊕ y)T = 0)

≤
∑

x,y,z

p(x,y, z)|A(n)
ε (Y |xz)|2−nρm2

≤ 2n(H(Y |XZ)+2ε)2−nρm2 .

Pr(E3) =
∑

x,y

p(x,y) Pr(∃x̃ 6= x : Hk1x̃
T = Hk1x

T and

Hm1x̃
T = Hm1x

T and (x̃,y) ∈ A(n)
ε (XY ))

≤
∑

x,y

p(x,y)
∑

(x̃,y)∈A(n)
ε (XY ),x̃6=x

Pr(Hk1(x̃⊕ x)T = 0,

Hm1(x̃⊕ x)T = 0)

≤
∑

x,y

p(x,y)|A(n)
ε (X|y)|2−n(ρm1+ρk1)
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≤ 2n(H(X|Y )+2ε)2−n(ρm1+ρk1).

Pr(E4) =
∑

x,y

p(x,y) Pr(∃ỹ 6= y : Hk2ỹ
T = Hk2y

T and

Hm2ỹ
T = Hm2y

T and (x, ỹ) ∈ A(n)
ε (XY ))

≤
∑

x,y

p(x,y)
∑

(x,ỹ)∈A(n)
ε (Y |x),ỹ 6=y

Pr(Hk2(ỹ ⊕ y)T = 0,

Hm2(ỹ ⊕ y)T = 0)

≤
∑

x,y

p(x,y)|A(n)
ε (Y |x)|2−n(ρm2+ρk2)

≤ 2n(H(Y |X)+2ε)2−n(ρm2+ρk2).

Pr(E5) =
∑

x,y

p(x,y) Pr(∃(x̃, ỹ) 6= (x,y) :

Hk1x̃
T = Hk1x

T and Hm1x̃
T = Hm1x

T and

Hk2ỹ
T = Hk2y

T and Hm2ỹ
T = Hm2y

T and

(x̃, ỹ) ∈ A(n)
ε (XY ))

≤
∑

x,y

p(x,y)
∑

(x̃,ỹ)∈A(n)
ε (XY ),ỹ 6=y

Pr(Hk1(x̃⊕ x)T = 0,

Hm1(x̃⊕ x)T = 0,Hk2(ỹ ⊕ y)T = 0,

Hm2(ỹ ⊕ y)T = 0)

≤
∑

x,y

p(x,y)|A(n)
ε (XY )|2−n(ρm1+ρk1+ρm2+ρk2)

≤ 2n(H(XY )+ε)2−n(ρm1+ρk1+ρm2+ρk2).

We conclude that for n large enough E(Pe(Sn)) ≤ 6ε as long
as

ρm1 > H(X|Z) + 2ε

ρm2 > H(Y |XZ) + 2ε

ρk1 + ρm1 > H(X|Y ) + 2ε

ρk2 + ρm2 > H(Y |X) + 2ε

ρk1 + ρm1 + ρk2 + ρm2 > H(XY ) + ε.

Therefore, we have shown that linear codes exist that have
ρm1 = H(X|Z) + 3ε and ρm2 = H(Y |XZ) + 3ε, such that
the decoders can successfully decode the secrets as long as n
is large enough. Furthermore, we choose ρk1 = α and ρk2 =
I(XY ;Z) − α with 0 ≤ α ≤ I(X;Z). Note that this choice
for the matrix dimensions satisfies the above inequalities for
SRAM-PUF’s, since H(X|Z) = H(X|Y ) in this case.

C. Zero-leakage and uniformity of the keys

Now, we focus on the linear codes with dimensions ρm1,
ρk1, ρm2, and ρk2 that we have found before. The resulting
leakage about the secrets from syndrome m1 and m2 is

I(K1K2;M1M2)

= H(K1K2) +H(M1M2)−H(M1M2K1K2)

≤ H(K1K2) +H(M1M2)−

H(XY M1M2K1K2) +H(XY |M1M2K1K2)

≤ H(K1K2) + n(H(X|Z) +H(Y |XZ) + 6ε)−
H(XY ) + 1 + 2nE[Pe(Sn)]

≤ 6nε+ 1 + 2nE[Pe(Sn)] < 6nε+ 1 + 12nε.

Now for n large enough and an appropriate choice for ε we
conclude that 1

nI(K1K2;M1M2) ≤ δ for any δ > 0, which
satisfies the leakage requirement.

Next we find, from Fano’s inequality for the virtual decoder,
that

H(XY ) = H(XY K1M1K2M2)

≤ H(K1K2) +H(M1) +H(M2)+

H(XY |K1M1K2M2)

≤ H(K1K2) + n(H(X|Z) +H(Y |XZ) + 6ε)+

1 + 2nE[Pe(Sn)], and thus
1

n
H(K1K2) ≥ I(XY ;Z)− 18ε− 1

n
.

Therefore, for any δ > 0 we obtain that 1
nH(K1K2) +

δ ≥ I(XY ;Z) = 1
n log2 |K1||K2| ≥ R1 − δ + R2 − δ =

I(XY ;Z) − δ, by suitable choice of ε and large enough n.
Thus the uniformity and independence conditions of the secret
keys in Definition 2 hold. We conclude that the achievable
secret-key rates are

R1 ≤ I(X;Z), R1 +R2 ≤ I(XY ;Z).

V. CONCLUSION

We have shown that an encoder can generate a second
key after observing additional input, while ensuring that both
helper messages do not reveal information about the keys. The
total achievable secret-key rate increases from I(X;Z) for the
first key, to I(XY ;Z) for both keys. Therefore, the same rate
can be achieved sequentially by the 2-enrollment scheme, as
would be achievable when the encoder would generate a single
key and helper message based on two observations. Finally, we
note that the encoder does not require any information about
the first enrollment in order to realize the second enrollment.
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The Decentralized Structures of Capacity Achieving Distributions of
Channels with Memory and Feedback

Charalambos D. Charalambous, Christos K. Kourtellaris, Ioannis Tzortzis and Sergey Loyka

Abstract— We consider extremum problems of feedback
capacity for models with memory, subject to average cost
constraints. We show the optimal input process that maximizes
directed information consists of two parts, one responsible to
control the output process, and one responsible to transmit
new information that interact. Unlike [1], the decentralized
structure of the optimal input process is demonstrated for
Gaussian models with memory on past inputs and outputs. A
semi-separation principle is shown that states, the optimal input
process is generated from multiple strategies of a decentralized
optimization problem, of control and information transmission.
Further, it is shown that the derivation of directed information
stability is semi-separable, in the sense that it separates into a
statement about the ergodic properties of the stochastic optimal
control problem with partial information, and a statement
related to an information transmission problem.

I. INTRODUCTION

Recently, it is shown that Shannon’s coding capacity ex-
tends to unstable dynamic systems, irrespectively of whether
these are communication channels or control systems [2]
(see also [1], [3] for extensive analysis). Shannon’s coding
capacity is called control-coding capacity to emphasize the
interaction of control and information transmission parts of
the optimal input process, that achieves capacity.
MIMO G-RM. This paper utilizes some of the results
found in the above references, to investigate Multiple-Input
Multiple-Output (MIMO) Gaussian Recursive Models (G-
RMs), with input process An

4
= {A0, A1, . . . , An} and

output process Y n
4
= {Y0, Y1, . . . , Yn}, described by

Yi = Ci−1 Y i−1 +Di,i Ai +Di,i−1Ai−1 + Vi, (1)

S
4
= (Y −1, A−1) = (y−1, a−1) ≡ s,

PVi|V i−1,Ai,S = PVi
, Vi ∼ N(0,KVi

),KVi
� 0, (2)

(Y −1, A−1) ∼ N(0,KY −1,A−1
), KY −1,A−1

� 0, (3)

1

n+ 1
E
{ n∑

i=0

〈Ai, RiAi〉+ 〈Yi−1, Qi,i−1Yi−1〉
}
≤ κ, (4)

(Di,i, Di,i−1) ∈ Rp×q × Rp×q, (5)

Ri ∈ Sq×q++ , Qi,i−1 ∈ Sp×p+ , i = 0, . . . , n. (6)

Here S is the initial data, Vi ∼ N(0,KVi), i = 0, 1, . . . , n
denotes zero mean Gaussian process, 〈·, ·〉 denotes inner
product of elements of linear spaces, Sq×q+ denotes the set

C. D. Charalambous, C. K. Kourtellaris and I. Tzortzis are with the De-
partment of Electrical Engineering, University of Cyprus, Nicosia, Cyprus.
E-mails: {chadcha,kourtellaris.christos,tzortzis.ioannis}@ucy.ac.cy.

S. Loyka is with the School of Electrical Engineering and Com-
puter Science, University of Ottawa, Ottawa, ON, Canada. E-mail:
sergey.loyka@ieee.org.

of symmetric positive semi-definite q × q matrices, Sq×q++ its
subset of positive definite matrices, and κ is the power. The
initial state S = s is known to the encoder and the decoder.
Main Results. For the extremum problem of maximizing
directed information from An to Bn given the initial state
S = s, denoted by I(An → Bn|s), over conditional
distributions PAi|Ai−1,Bi−1,S , i = 0, . . . , n, that satisfy the
average cost constraint, it is shown that a semi-separation
principle holds with the following consequences.

(a) Part of the optimal input process An is characterized
by the solution of a stochastic optimal control problem with
partial information,

(b) the rest is characterized by the solution of an infor-
mation transmission problem that interacts with that of the
stochastic control part, and

(c) their computation is directly related to the notion
of Person-by-Person (PbP) optimality, and team or global
optimality in problems of optimal control and games, where
two or more strategies do not share the same information,
and aim at optimizing a single pay-off.

(d) The derivation of directed information stability is semi-
separable, into a statement related to the ergodic properties
of the stochastic optimal control problem, and a statement
related to an information transmission problem, that interact
in a specific order.

The semi-separation principle and its consequences (a)-(d)
are attributed to the property that a Gaussian input process
{Ai = Agi : i = 0, . . . , n} with corresponding Gaussian
ouput process {Yi = Y gi : i = 0, . . . , n}, maximizes directed
information I(An → Y n|s) (subject to the average cost
constraint), and that such an optimal process is given by
the following orthogonal decomposition.

Agi =ei(Y
g,i−1, Agi−1, Z

g
i ), i = 0, . . . , n, S = s, (7)

=Ugi + Λi,i−1A
g
i−1 + Zgi , Ugi

4
= Γi−1Y g,i−1, (8)

≡ei(Y g,i−1) + Λi,i−1A
g
i−1 + Zgi (9)

where

ei(y
i−1)

4
= Γi−1yi−1 is the control strategy, (10)

Zgi is independent of
(
Ag,i−1, Y g,i−1

)
,

Zg,i is independent of V i, i = 0, . . . , n, (11)
Zgi ∼ N(0,KZi

) : i = 0, 1, . . . , n is an independent
Gaussian process (12)

for some deterministic matrices {(Γi−1,Λi,i−1) : i =
0, . . . , n} of appropriate dimensions.
Indeed, the following properties hold.
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(P1) The optimal strategies (e∗i (·),Λ∗i,i−1,K
∗
Zi

) : i =
0, . . . , n} are characterized by the solution of a decentral-
ized optimization problem, where e∗i (·), i = 0, . . . , n is
the solution of a stochastic optimal control problem, for
a fixed (Λi,i−1,KZi

) : i = 0, . . . , n}, while the optimal
(Λ∗i,i−1,K

∗
Zi

) : i = 0, . . . , n} is the solution of an informa-
tion transmission problem, with ei(·) = e∗i (·), i = 0, . . . , n.

(P2) The following holds.

If KZi
= 0, i = 0, . . . , n then I(Ag,n → Y g,n|s) = 0.

(P2) is expected and easily verified, because the initial state
S = s is known to the encoder.
(P1) is an application of problems of optimal control and
games, where two or more strategies do not share the same
information, and aim at optimizing a single pay-off [4].
Special Cases of MIMO G-RM. Before we illustrate
that the MIMO G-RM is fundamentally different from past
investigations by other authors, we should mention that the
MIMO G-RM is an infinite impulse response (IIR) model,
and includes the following degenerate cases.

(1) Finite Impulse Response Model. If Ci−1 = 0, i =
0, . . . , n then the MIMO G-RM reduces to a finite impulse
response (FIR) model.

(2) No Dependence on Past Channel Inputs. If Di,i−1 =
0, i = 0, . . . , n then the MIMO G-RM reduces to the IIR
model investigated in [1], [3].

A. Literature on Gaussian Channels with Memory & Feed-
back

For scalar-valued, Additive Gaussian Noise (AGN) chan-
nels with nonstationary and nonergodic noise, described by
Yi = Ai + Vi,

1
n+1E

{∑n
i=0 |Ai|2

}
≤ κ, PVi|V i−1,Ai =

PVi|V i−1 , i = 0, . . . , n, V n ∼ N(0,KV n), then the feedback
capacity is characterized by Cover and Pombra [5], via

CCP0,n (κ)
4
=

1

2n
max

(Γn,KZn )
log
|
(
Γn + I

)
KV n

(
Γn + I

)T
+KZn |

|KV n |
(13)

subject to
1

n+ 1
tr
(

ΓnKV n(Γn)T +KZn

)
≤ κ (14)

where Zn is a Gaussian process N(0,KZn), orthogonal
to V n, and Γn is lower diagonal time-varying matrix with
deterministic entries. Note that although, Zn is called an “in-
novations process” in [5], this is not an orthogonal process.
Note also that if KZn = 0, since Γn is lower diagonal, then
CCP0,n (κ) = 0, as expected. The closed form solution to (13)
remains to this date an open problem.
The per unit time limit CCP (κ)

4
= limn−→∞ 1

n+1C
CP
0,n (κ),

for the special case of stationary ergodic noise with finite
memory, described by a power spectral density SV (ω) =
|H(ejω)|2, where the filter H(·) is rational with stable poles
and marginally stable zeros, is analyzed in [6] and in [7].
Theorem 7 and Corollary 7.1 in [7] state that capacity is
achieved, when the innovations part of the input processes
is zero (i.e., eqn(125) in [7] with et = 0, t = 0, . . . ,).

We should mention that Theorem 3.1 (of our paper) cannot
be obtained from [6]–[8], and that the methods applied in
[6], [7] are not applicable. Our results are based on a semi-
separation principle and its consequences (a)-(d).

II. FEEDBACK CAPACITY AND DECENTRALIZED
STRATEGIES

In this section we introduce a general channel or control
model (CM), and we recall the decentralized structure of the
input process, and its control and communication aspects.

Consider a CM model with input process An
4
= {Ai : i =

0, 1, . . . , n}, taking values in arbitrary alphabet spaces An 4=
×ni=0Ai, an output process Y n

4
= {Yi : i = 0, 1, . . . , n}

taking values in arbitrary alphabet spaces, Yn 4= ×ni=0Yi.
The initial data is S

4
= (A−1, Y −1) = s ∈ S 4= A−1 × Y−1.

The channel or control model (CM) is a sequence of
conditional distributions

PYi|Y i−1,Ai,S ≡ Qi(dyi|yi−1, ai, s), i = 0, . . . , n. (15)

The conditional distributions of the input process are
chosen from the set

P[0,n]
4
=
{
Pi(dai|ai−1, yi−1, s) : i = 0, . . . , n

}
.

The above definition means, the encoder (or controller-
encoder to be precise) knows the initial data s = (y−1, a−1),
and applies noiseless feedback. The conditional distributions
of the input process are subject to a cost constraint1

P[0,n](κ)
4
=
{
Pi(dai|ai−1, yi−1, s), i = 0, . . . , n : (16)

1

n+ 1
EPs

(
`0,n(An, Y n)

)
≤ κ

}
⊂ P[0,n] (17)

where `0,n(·, ·) : An × Yn 7−→ (−∞,∞] is a measurable
function, κ ∈ [0,∞] is the total power.
The pay-off is the directed information from An

4
=

{A0, . . . , An} to Y n
4
= {Y0, . . . , Yn}, conditioned on the

initial data S = s, and defined by [9], [10]

I(An→Y n|s) 4=
n∑

i=0

I(Ai;Yi|Y i−1, s)

To connect directed information to the feedback capacity of
the CM we introduce the following assumption [10].

Assumption 2.1: (i) If the information process to be en-
coded is {Xi : i = 0, . . . , k}, then the following holds.

PYi|Y i−1,Ai,S,Xk = PYi|Y i−1,Ai,S ,∀k, i = 0, . . . , n (18)

(ii) The initial data S = s is known to the encoder and
decoder.

The finite-time horizon (FTH) information capacity (un-
der Assumptions 2.1) is defined by

JAn→Y n|s(P
∗, κ)

4
= sup
P[0,n](κ)

I(An → Y n|s). (19)

1The notation EP
s indicates the dependence of the joint distribution on

elements of P[0,n] and the initial state S = s.
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Throughout we assume existence of a maximizing distribu-
tion (such conditions are extracted from [11]).
The information capacity is defined by

C(κ)
4
= lim
n−→∞

1

n+ 1
JAn→Y n|s(P

∗, κ) (20)

provided the limit exists and it is finite.
Coding Theorems. Recall [12], Appendix A (code definition
and achievable rate). By the converse coding theorem [13], a
tight upper bound on any achievable rate is C(κ). Moreover,
if the optimal joint process {(Ai, Yi) : i = 0, . . . , n} is
either asymptotically stationary and ergodic [14], [15], or
it induces information stability of the directed information
density (see [12], Appendix A), then any code rate below
C(κ) is achievable. In general, the rate may depend on the
initial data S = s, i.e., C(κ) = Cs(κ).
Dualities of Capacity and Stochastic Optimal Control. Let
PD[0,n] denote the restriction of randomized strategies P[0,n]

to the set of deterministic strategies

PD[0,n] ,
{
a0 = g0(s), . . . , an = gn(s, an−1, yn−1)

}
. (21)

By [11], for any finite n, it can be shown that C0,n(κ)
4
=

JAn→Y n|s(P ∗, κ), κ ∈ (κmin,∞) ⊂ [0,∞) is a concave
strictly increasing in κ ∈ (κmin,∞), and the inverse function
of C0,n(κ) denoted by κ0,n(C) is a convex non-decreasing
in C ∈ [0,∞). This implies the following duality.
Dual Extremum Problem.

κ0,n(C) , inf
1

n+1 I(A
n→Y n|s)≥C

EPs

{
`0,n(An, Y n)

}
(22)

≥ JSC0,n (P ∗)
4
= inf
P[0,n]

EPs

{
`0,n(An, Y n)

}
≡ κ0,n(0) (23)

= inf
PD

[0,n]

Egs

{
`0,n(An, Y n)

}
≡ JSC0,n (g∗). (24)

Here (24) follows from classical stochastic optimal control
theory, which states that minimizing EPs

{
`0,n(An, Y n)

}

over P[0,n] does not incur a better performance than maxi-
mizing it over PD[0,n] [16]. The minimum cost of control is
JSC0,n (P ∗), and for C ≥ 0, the cost of communication is

κ(C)− κ(0)
4
= lim
n−→∞

1

n+ 1
κ0,n(C)− lim

n−→∞
1

n+ 1
κ0,n(0)

provided the limits exists and they are finite. Hence, for
rate C > 0, it is necessary that the total cost of the
communication system exceeds the critical value is κmin(n+
1) = JSC0,n (P ∗) ≡ κ0,n(0) = JSC0,n (g∗). This is precisely the
minimum cost of control, when no communication occurs,
i.e., κ(C) ≥ κmin, so power is allocated to the control
process. For examples of the threshold effect see [1], [3].

Suppose the randomized strategies P[0,n] are restricted
to deterministic strategies, PD[0,n], then by recursive sub-
stitution, gj(s, y

j−1, aj−1) ≡ gj(s, y
j−1), we have

PP (dyi|yi−1, s)
∣∣∣
P∈PD

[0,n]

=Qi(dyi|yi−1, {g0(s), . . . ,

gi(s, y
j−1)}ij=0, s). Hence,

JAn→Y n(P ∗, κ)
∣∣∣{
P∗i (·|·):i=0,...,n

}
∈PD

[0,n]

= 0. (25)

By (22), then κ0,n(C)
∣∣∣
P[0,n]=PD

[0,n]

= κ0,n(0), and any

optimal input process consists of a control process, which
controls the output process, and a process which is respon-
sible for information transmission.

III. GAUSSIAN RECURSIVE MODEL

Consider the G-RM (1)-(6), with S = (Y −1, A−1) known
to encoder/decoder. By [17], the optimal distribution of the
input is of the form P0(da0|s), Pi(dai|ai−1, y

i−1, s), i =

1, . . . , n. The directed information from An
4
= {A0, . . . , An}

to Y n
4
= {Y0, . . . , Yn} conditioned on S = s is

I(An → Y n|s) =
n∑

i=0

{
H(Yi|Y i−1, s)−H(Vi)

}
. (26)

Let {(Agi , Y gi , Zgi ) : i = 0, . . . , n} denote a jointly Gaussian
process, given S = s. By the maximum entropy property
of Gaussian distributions it follows that the process given by
(7)-(12), and satisfies the average constraint is optimal. Now,
we prepare to compute directed information using (7)-(12).
We need the following definitions2.

Ŷi|i−1
4
= Es

{
Y gi

∣∣∣Y g,i−1
}
, Âi|i

4
= Es

{
Agi

∣∣∣Y g,i
}
,

KYi|Y i−1
4
= Es

{(
Y gi − Ŷi|i−1

)(
Y gi − Ŷi|i−1

)T ∣∣∣Y g,i−1
}

Pi|i = Es

(
Agi − Âi|i

)(
Agi − Âi|i

)T
, i = 0, . . . , n.

From [18], and using the independent properties of the noise
process, i.e., (2), (8)-(12) then

Âi|i = Λi,i−1Âi−1|i−1+Ugi + ∆i|i−1

(
Y gi −Ŷi|i−1

)
, (27)

Ŷi|i−1 = Ci−1Y g,i−1 +Di,iU
g
i + Λi,i−1Âi−1|i−1, (28)

KYi|Y i−1 = Λi,i−1Pi−1|i−1Λ
T

i,i−1 +Di,iKZi
DT
i,i (29)

+KVi
, i = 0, . . . , n, Ŷ0|−1 = Es{Y g0 }, Â−1|−1 = Es{Ag−1}

where

Λi,i−1
4
= Di,iΛi,i−1 +Di,i−1, i = 0, . . . , n,

Pi|i = Λi,i−1Pi−1|i−1ΛTi,i−1 +KZi

−
(
KZiD

T
i,i + Λi,i−1Pi−1|i−1Λ

T

i,i−1

)

Φi|i−1

(
KZiD

T
i,i + Λi,i−1Pi−1|i−1Λ

T

i,i−1

)T
,

Φi|i−1
4
=
[
Di,iKZi

DT
i,i +KVi

+ Λi,i−1Pi−1|i−1Λ
T

i,i−1

]−1

,

∆i|i−1
4
=
(
KZiD

T
i,i + Λi,i−1Pi−1|i−1Λ

T

i,i−1

)
Φi|i−1

The innovations process denoted by
{
νe : i = 0, . . . , n} is

an orthogonal process, independent of {ei(·) : i = 0, . . . , n},
and satisfies the following identities.

νei
4
= Y gi −Ŷi|i−1 = Λi,i−1

(
Agi−1−Âi−1|i−1

)
+Di,iZ

g
i +Vi

= νei

∣∣∣
e=0
≡ ν0

i , ν
0
i ∼ N(0,KYi|Y i−1), i = 0, . . . , n (30)

2Es means conditional expectations are for fixed S = s.
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where
{
ν0
i : i = 0, . . . , n

}
indicates that the innovations

process is independent of the strategy
{
ei(·) : i = 0, . . . , n}.

Then we obtain

I(Ag,n → Y g,n|s) =
1

2

n∑

i=0

log
|KYi|Y i−1 |
|KVi
| . (31)

Next, we give the decentralized semi-separation principle.

Theorem 3.1: (Decentralized semi-separation of control &
information transmission) Consider the G-RM (1)-(6) with
S = (Y −1, A−1) = s, fixed, and for simplicity assume
Ci−1Y i−1 in (1) is replaced by unit memory Ci,i−1Yi−1.
Then the following hold.
(a) Equivalent Extremum Problem. The process given by (7)-
(12) is optimal, and the following hold.

Y gi = Ci,i−1Y
g
i−1 + Λi,i−1A

g
i−1 +Di,iU

g
i +Di,iZ

g
i

+Vi, i = 0, . . . , n, S
4
= (Y−1, A−1) = s. (32)

Eēs

{
γi(A

g
i , Y

g
i−1)

}

= Eēs

{
〈Ugi , RiUgi 〉+ 2〈Λi,i−1Âi−1|i−1, RiU

g
i 〉

+〈Λi,i−1Âi−1|i−1, RiΛi,i−1Âi−1|i−1〉+ tr
(
KZi

Ri

)

+tr
(

ΛTi,i−1RiΛi,i−1Pi−1|i−1

)
+ 〈Y gi−1, QiY

g
i−1〉

}
. (33)

The FTH information capacity for fixed S = s is given by

JAn→Y n|s(ē
∗, κ, s) = sup

P1
[0,n](κ)

1

2

n∑

i=0

log
|KYi|Y i−1 |
|KVi
| (34)

P [0,n](κ)
4
=
{
ēi(·) 4=

(
ei(·),Λi,i−1,KZi

)
, i = 0, . . . , n :

1

n+ 1

n∑

i=0

Eēs

(
γi(A

g
i , Y

g,i−1)
)
≤ κ

}
. (35)

(b) Decentralized Separation of Controller and Encoder
Strategies. The optimal strategy denoted by {ē∗(·) ≡
(e∗i (·),Λ∗i,i−1,K

∗
Zi

) : i = 0, . . . , n} is the solution of the
dual optimization problem

κ0,n(C, s)
4
= inf(

ei(·),Λi,i−1,KZi

)
,i=0,...,n: 12

∑n
i=0 log

|K
Yi|Y i−1 |
|KVi

| ≥(n+1)C

Ees

{ n∑

i=0

γi(A
g
i , Y

g
i−1)

}
. (36)

Moreover, the following decentralized separation holds.
(i) The optimal strategy {e∗i (·) : i = 0, . . . , n} is the
solution of the stochastic optimal control problem with
partial information given by

inf
ei(·):i=0,...,n

Ees

{ n∑

i=0

γi(A
g
i , Y

g
i−1)

}
(37)

for a fixed {Λi,i−1,KZi
: i = 0, . . . , n}.

(ii) The optimal strategy {Λ∗i,i−1,K
∗
Zi

: i = 0, . . . , n} is the
solution of (36) for {ei(·) = e∗i (·) : i = 0, . . . , n}.

(c) Optimal Strategies. Any candidate of the control strategy
{ei(Y g,i−1) : i = 0, . . . , n} is of the form

ei(Y
g,i−1)

4
= Γ1

i,i−1Y
g
i−1 + Γ2

i,i−1Âi−1|i−1, (38)

≡ Γi,i−1Y
g

i−1, Y
g

i−1
4
=

[
Y gi−1

Âi−1|i−1

]
, i = 0, . . . , n.

Define the augmented system

Y
g

i =F i,i−1Y
g

i−1 +Bi,i−1U
g
i +Gi,i−1ν

e
i , (39)

F i,i−1
4
=

[
Ci,i−1 Λi,i−1

0 Λi,i−1

]
, Bi,i−1

4
=

[
Di,i

I

]
,

Gi,i−1
4
=

[
I

∆i|i−1

]
, i = 0, . . . , n

and average cost

Ees

{ n∑

i=0

γi(A
g
i , Y

g
i−1)

}
≡ Ees

{ n∑

i=0

γi(U
g
i , Y

g

i−1)
}

4
= Ees

{ n∑

i=0

([
Y
g

i−1

Ugi

]T [
M i,i−1 Li,i−1

L
T

i,i−1 N i,i−1

] [
Y
g

i−1

Ugi

]

+tr
(
KZi

Ri
)

+ tr
(
ΛTi,i−1RiΛi,i−1Pi−1|i−1

))}
,

M i,i−1
4
=

[
Qi,i−1 0

0 ΛTi,i−1RiΛi,i−1

]
,

Li,i−1
4
=

[
0

ΛTi,i−1Ri

]
, N i,i−1

4
= Ri.

Then the following hold.
(1) For a fixed {Λi,i−1,KZi

: i = 0, . . . , n} the optimal
strategy {Ug,∗i = e∗i (Y

g,i−1
) : i = 0, . . . , n} is the solution

of the stochastic optimal control problem

J0,n(e∗(·),Λ,KZ , κ, s)
4
= inf
ei(·):i=0,...,n

Ees

{ n∑

i=0

γi(U
g
i , Y

g

i−1)
}

where {Y gi : i = 0, . . . , n} satisfy recursion (39). Moreover,
the optimal strategy {Ug,∗i = e∗i (Y

g,i−1
) : i = 0, . . . , n} is

given by the following equations.

e∗i (y
i−1) = Γi,i−1yi−1, (40)

Γi,i−1=−
(
N i,i−1+B

T

i,i−1Σ(i+1)Bi,i−1

)−1

.
(
L
T

i,i−1 +B
T

i,i−1Σ(i+1)F i,i−1

)
, i = 0, . . . , n− 1(41)

e∗n(yn−1) = −N−1

n,n−1L
T

n,n−1yn−1, where the symmetric
positive semidefinite matrix {Σ(i) : i = 0, . . . , n} satisfies a
matrix difference Riccati equation, for i = 0, . . . , n− 1,

Σ(i)=F
T

i,i−1Σ(i+1)F i,i−1−(F
T

i,i−1Σ(i+1)Bi,i−1+Li,i−1)

.
(
N i,i−1 +B

T

i,i−1Σ(i+ 1)Bi,i−1

)−1(
B
T

i,i−1Σi,i−1F i,i−1

+L
T

i,i−1

)
+M i,i−1, Σ(n)=diag{Qn,n−1, 0}
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and the optimal pay-off is given by

J0,n(e∗(·),Λ,KZ , κ, s) =
n∑

j=0

{
tr
(
KZj

Rj
)

+tr
(
ΛTj,j−1RjΛj,j−1Pj−1|j−1

)}
+

n−1∑

j=0

tr
(
KYj |Y j−1G

T

j,j−1

.Σ(j + 1)Gj,j−1

)
+ E〈Y −1|−1,Σ(0)Y −1|−1〉

(2) The optimal strategies {(Λ∗i,i−1,K
∗
Zi

) : i = 0, . . . , n} are
the solutions of the optimization problem

κ0,n(C, s)
4
= inf(

Λi,i−1,KZi

)
,i=0,...,n: 12

∑n
i=0 log

|K
Yi|Y i−1 |
|KVi

| ≥(n+1)C

{

J0,n(e∗(·),Λ,KZ , κ)
}
.

Proof: (a) This follows from (4) and (9). (33) is obtained
using the reconditioning property of expectation. (b) (36)
follows from the dual relation (22). (i), (ii) follow from
the observation that the constraint in (36) depends only on
{Λ,KZ} and not on {ei(·) : i = 0, . . . , n}. (c), (i). (38)
follows from (27), (30), because {Yi, Âi|i : i = 0, . . . , n}
is a sufficient statistics for the control process. The rest of
the equations follows directly from the solution of partially
observable stochastic optimal control problems [19].

Theorem 3.1, (1) and (2) are Person-by-Person Optimality
statements of {ei(·) : i = 0, . . . , } and {Λi,i−1,KZi

: i =
0, . . . , n}.

Theorem 3.1, (c) states that the optimal input process
consists of 4 strategies, follows.

Agi = Γ1
i,i−1Y

g
i−1 + Γ2

i,i−1Âi−1|i−1 + Λi,i−1A
g
i−1 + Zgi . (42)

Remark 3.2: By Theorem 3.1, if Ci,i−1 = 0, Qi,i−1 =

0, i = 0, . . . , n then e∗i (y
i−1) = −Λi,i−1Âi−1|i−1, i =

0, . . . , n, and hence

Agi = Λi,i−1

(
Agi−1 − Âi−1|i−1

)
+ Zgi , i = 0, . . . , n. (43)

That is, Âi−1|i−1, i = 0, . . . , n is a sufficient statistic for the
strategy ei(Y g,i−1), i = 0, . . . , n, as expected.

Next, we discuss item Section I, (d).

Theorem 3.3: (Decentralized coding theorem)
Consider the G-RM of Theorem 3.1.

(a) If Di,i−1 = 0, i = 0, . . . , n, then [2], Theorem IV.1
holds that states, directed information stability holds and
separates into (i) a statement related to the ergodic prop-
erties of a stochastic optimal control problem with complete
information, and (ii) a statement related to an information
transmission problem.
(b) For the general G-RMs of Theorem 3.1 with Di,i−1 6=
0, i = 0, . . . , n, then (a) holds as in [2], Theorem IV.1, with
some variations.

Proof: (b) This is done similar to [2], Theorem IV.1.

IV. CONCLUSIONS

The decentralized features of extremum problems of ca-
pacity of models with memory and feedback are illustrated.
For Gaussian recursive models with past dependence on
inputs and outputs it is illustrated that a semi-separation
principle holds, that makes calculations and the derivation
of directed information stability simpler.
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The Operational Capacity of Compound
Uniformly-Ergodic Fading Channels

Sergey Loyka, Charalambos D. Charalambous

Abstract—The impact of distribution uncertainty on the per-
formance of compound fading channels is studied. To this end,
a new class of fading channels, termed ”uniformly-ergodic”, is
introduced and several of its equivalent (easy-to-use) characteri-
zations and examples are presented. A single-letter expression for
the operational capacity of this class of channels is obtained under
the full Rx CSI using the recent general formula for compound
channel capacity and the information spectrum approach. The
saddle-point property is established, whereby the compound
channel capacity is the same as the worst-case capacity so that
the full knowledge of the fading distribution at the transmitter
does not increase the capacity of this class of channels.

I. I NTRODUCTION

The impact of channel uncertainty on its capacity and
system design has been extensively studied since late 1950s,
see [1] for an extensive literature review up to late 1990s
and [2] for a more recent albeit brief review. A widely-
accepted approach to the channel uncertainty problem is via
the compound channel model, where the channel is assumed to
be unknown but is known to belong to a certain class (set) of
channels [1]. Since channel estimation is done at the receiver
(Rx) and then send back to the transmitter (Tx) via a limited
feedback link, many studies concentrate on limited channel
state information (CSI) available at the Tx end and assume
full CSI at the Rx end.

Fading represents one of the most significant obstacles
to reliable wireless communications and respective system
design, affecting its performance in a dramatic way [3]. It
also makes channel estimation a challenging problem, due
to significant channel dynamics, low SNR, limitations of a
feedback link etc. In this context, incomplete CSI can also
be modelled by assuming that the channel is not known but
its distribution is known, the so-called channel distribution
information (CDI) [3]. However, complete knowledge of the
CDI, which is essential for capacity evaluation and system
design, can be questioned on the same grounds as complete
CSI: when only a limited sample set is available (always a
practicality), the CDI can be obtained with limited accuracy
only (especially at the distribution tails); limited feedback link
dictates quantization of the estimated CDI before transmission,
thus introducing the quantization noise; presence of noiseand
channel dynamics makes any estimate inaccurate to a certain
degree. This motivates us to study the impact of inaccurate
CDI on system performance and design.

For quasi-static (and hence non-ergodic) fading channels,
the key performance metrics are outage probability/capacity

S. Loyka is with the School of EECS, University of Ottawa, Canada,
sergey.loyka@ieee.org

C.D. Charalambous is with the ECE Department, University ofCyprus,
Cyprus, chadcha@ucy.ac.cy

[3]. The impact of CDI uncertainty on these metrics was
studied in [5]. In particular, it was shown that the CDI
uncertainty induces an error floor effect: increasing the SNR
over a certain threshold does not reduce the outage probability
and the error floor is determined by the size of the uncertainty
set.

For ergodic-fading channels (where the fading process is
allowed to have memory provided it is still ergodic), a single-
letter capacity expression has been established in [4] under
complete CDI at the Tx end and full CSI at the Rx end.
However, the standard results on ergodic capacity [3][4] donot
apply when only incomplete CDI is available and hence certain
performance has to be demonstrated for the whole class of
fading distributions, not just for a single one, and, in addition,
the Tx does not know the true fading distribution and hence
cannot design a codebook using this knowledge (as was done
in [3][4]).

The information capacity of ergodic-fading channels under
CDI uncertainty, formally defined via the standard max-min
expression (of ergodic mutual information), has been stud-
ied in [6]. However, its operational meaning as the largest
achievable rate subject to the reliability criterion has not been
established so it is not clear whether this quantity has practical
relevance (while the max-min MI is often the compound
channel capacity, it is not always the case [1]). The main
difficulty was the lack of general-enough tools for compound
channels that would allow one to incorporate CDI uncertainty.
Such tools have been recently presented in [7], which are
based on the information spectrum approach of Verdu and
Han [8][9]. Using these tools, we prove here that the above
”max-min” information capacity has the operational meaning
of maximum achievable rate under the CDI uncertainty. This
is accomplished by introducing a new concept of ”uniformly-
ergodic compound channel” and applying the general formula
for compound channel capacity in [7] to such channel, which
results in a compact single-letter expression for the capacity
of uniformly-ergodic compound channels, subject to the sets
of feasible input and fading distributions being convex but
otherwise arbitrary. To facilitate applications, we develop sev-
eral equivalent and easy-to-use criteria for compound channels
to be uniformly-ergodic and give some practically-relevant
examples. Apart from the single-letter capacity expression, the
key contribution of this paper is the recognition of importance
of uniform ergodicity for compound fading channels.

II. CHANNEL MODEL

To isolate and study the impact of CDI uncertainty, we adopt
the conditionally-memoryless channel model of [4], where the
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channel is memoryless conditioned on its state sequencesn:

p(yn|xn, sn) =

n∏

i=1

p(yi|xi, si) (1)

wherex, y, s are the input, output and state;n is the block-
length, xn = {x1, .., xn} and likewise foryn, sn; capitals
denote random variables while lower-case letters - their re-
alizations or arguments. The random state sequenceSn =
{S1, .., Sn} represents the fading process and is assumed to
be stationary and ergodic but not necessarily memoryless -
it can have memory provided that the ergodicity assumption
still holds, so that a correlated fading process is allowed (see
Section III for details). Assuming that the receiver has the
full CSI, i.e. the state sequencesn, but the Tx knows only
the fading distribution (i.e. the full Tx CDI, see e.g. [3] for a
detailed motivation of this assumption), a single-letter ergodic
capacity C[f ] was obtained in [4] for this ergodic-fading
channel:

C[f ] = sup
p(x)

I(X ; Y |f) (2)

where I(X ; Y |f) is the ergodic mutual information under
fading distributionf(s) and i.i.d. input:

I(X ; Y |f) =
∑

s

f(s)I(X ; Y |s) (3)

andI(X ; Y |s) is the MI under channel states, and where all
alphabets are assumed to be discrete and finite; under some
regularity assumptions, this can also be extended to infinite
and continuous alphabets. The optimal input is i.i.d. [4]. The
maximization over the input distributionp(x) is subject to a
suitable constraint, e.g. maximum or average power, and is
independent of channel states (due to no Tx CSI) but may
depend on the fading distributionf . We emphasize, for future
use, that the ergodic MII(X ; Y |f) as well as the capacity
C[f ] also depend on the fading distribution. Note that even
though the fading process is allowed to have memory (i.e. does
not have to be i.i.d.), the ergodic MI as well as the capacity
depend only on the marginal fading distributionf(s), not on
the joint one (which is ultimately due to the conditionally-
memoryless nature of the channel). This makes the analysis
much simpler.

Ergodic channel model is suitable in scenarios with sig-
nificant channel dynamics so that a single codeword spans
many different channel realizations and an encoder can take
advantage of it [3]. However, in many practical scenarios,
complete knowledge off(s) may be not available at the
transmitter, due to e.g.

• inaccuracy in estimatingf(s) at the receiver (due to finite
sample size or estimation noise);

• limited/quantized feedback link (quantization noise);
• outdated estimate,

so that the true fading distributionf differs from its esti-
mate f0 available at the transmitter. To model this fading
distribution uncertainty (inaccuracy), we consider the scenario
where the transmitter has only partial CDI. Namely, it knows
that f ∈ F1, where F1 is the uncertainty set known to
the Tx, which is further assumed to be convex; the state

sequenceSn is not available to the Tx, while the Rx has
the full CSI, i.e. the sequenceSn. This forms a compound
channel model where the fading distributionf is a (meta)
state. Its respective compound channel capacity is defined in
the standard way as the maximum achievable rate subject to
the reliability criterion, where the error probability converges
to zero uniformly over the whole uncertainty set and where
the codebooks are independent of the actual channel states
or its fading distributionf (see e.g. [1] for more details and
formal definitions).

The following section presents key definitions and proper-
ties of ergodic-fading channels in the compound setting, i.e.
when the fading distribution is not known exactly.

III. C OMPOUND ERGODIC-FADING CHANNELS

In order to simplify notations, we usef to refer to marginal
f(s) as well as joint distributionf(sn), which should be clear
from the context. If{s1, s2, ...} is an ergodic process, we call
the joint distributionf(sn) ergodic as well, with understanding
that ergodicity reveals itself asn → ∞. F denotes a set of
joint distributions whileF1 – a set of respective marginal
distributions. Since the joint fading distribution completely
characterises fading channel (in combination with (1)), wewill
refer toF as ”channels” as well.E{·} denotes expectation over
relevant random variables.

We begin with a standard definition of an ergodic (discrete-
time) random process [11]-[14].

Definition 1. A stationary random process{S1, S2, ...} is
(mean-) ergodic if, for anyg(s) such thatE{|g(S)|} < ∞,

1

n

n∑

i=1

g(Si) → E{g(S)} (4)

as n → ∞, where the convergence is either in mean-square,
or in probability, or with probability 1.

A few modifications to this definition are in order to
accommodate the compound channel setting here: (i) we need
to consider a class of distributionsF rather than a single
distribution f , (ii) there is no need to consider all absolute-
integrable/summable functionsg(s); instead, we need to con-
sider only the mutual informationI(X ; Y |s) under channel
states and i.i.d. input as a function of interest; (iii) we will
use convergence in the mean-square sense (since it is needed
in the proof of coding theorem); this implies convergence in
probability but the converse is not true in general; however,
whenI(X ; Y |s) is uniformly bounded (e.g. when either input
or output alphabet is of finite cardinality), they are equivalent.

The following definition extends the standard definition of
ergodic channels to the compound setting.

Definition 2. A class of stationary fading channelsF is
uniformly (mean-) ergodic if it is ergodic for eachf ∈ F
under i.i.d. input, i.e. asn → ∞,

1

n

n∑

i=1

I(X ; Y |Si) → I(X ; Y |f) (5)
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where the convergence is in the mean-square sense, and, in
addition, it is uniform over the whole classF , i.e. ∀δ > 0
∃n0(δ) such that∀n > n0(δ)

σ2
nf , E





(
1

n

n∑

i=1

I(X ; Y |Si) − I(X ; Y |f)

)2


 < δ (6)

wheren0 depends onδ but notf ; δ is also independent off .

It is straightforward to verify that (6) is equivalent to

lim
n→∞

sup
f∈F

σ2
nf = 0 (7)

(note that lim and sup cannot be swapped). It should be
emphasized that the uniform ergodicity property in (5), (6)
as well as the ergodicity property in (4) depend on the joint
distribution f(sn), not just marginalf(s), even though the
limits depend only on the marginal.

To facilitate applications, we give equivalent criteria ofthe
uniform ergodicity and provide several examples. To simplify
notations, letIsi = I(X ; Y |Si) andIf = I(X ; Y |f) (all under
i.i.d. inputs) and letcijf be the covariance ofIsi andIsj under
fading distributionf ,

cijf , E{(Isi − If )(Isj − If )} (8)

Since the channel is stationary,cijf depends only oni − j:
cijf = c(i−j)f . We assume below that the variance is uni-
formly bounded:

c0f ≤ A < ∞ ∀f ∈ F (9)

(note thatA is independent off ), which is equivalent to
supf∈F c0f < ∞. This is the case when e.g. the alphabets
are discrete (see e.g. [9]) and also holds in many cases for
continuous alphabets as well (e.g. Gaussian).

The following proposition is an extension of Slutsky’s
Theorem (see e.g. [11][13][14]) to the compound setting here.

Proposition 1. A compound stationary-fading channel is uni-
formly mean-ergodic iff

lim
n→∞

sup
f∈F

1

n

n−1∑

l=0

(
1 − l

n

)
clf = 0 (10)

Equivalently,

lim
n→∞

sup
f∈F

∣∣∣∣∣
1

n

n−1∑

l=0

clf

∣∣∣∣∣ = 0 (11)

Proof. See Appendix.

The following condition, which follows from (11), is easier
to verify in many cases.

Corollary 1.1. The condition in(11)holds ifclf → 0 for each
f as l → ∞ and the convergence is uniform over the setF :

lim
l→∞

sup
f∈F

|clf | = 0 (12)

This condition essentially means that the channel is asymp-
totically uncorrelated for any possible fading distribution and
also uniformly so over the uncertainty setF .

Many special cases can be derived from (12).

1. Assume that the fading process is i.i.d. for eachf , in
which caseclf = 0 for any l 6= 0 so that (12) holds if the
variance is uniformly bounded:c0f ≤ A < ∞ ∀f ∈ F . The
condition of i.i.d. process is trivially extended to a broader
condition of uncorrelated fading process.

2. An extension of the previous case is a finite-memory
process:clf = 0 for any |l| > Lf , whereLf is the memory
under fading distributionf , which is uniformly bounded:Lf ≤
L < ∞ for any f ∈ F .

3. Infinite-memory processes are also allowed provided
that the correlation decays to zero asymptotically, e.g. an
exponential correlation model:clf = c0fr

|l|
f , whererf is the

correlation coefficient under distributionf and0 ≤ rf ≤ B <
1 for eachf ∈ F (i.e. uniformly bounded away from unity),
in addition to the standard requirementc0f ≤ A < ∞.

4. Condition (12) is satisfied if the fading process is uni-
formly, asymptotically independent:

lim
l→∞

sup
f∈F

sup
s1,sl

∣∣∣∣
f(s1, sl)

f(s1)f(sl)
− 1

∣∣∣∣ = 0 (13)

i.e. f(s1, sl) → f(s1)f(sl) uniformly over s1, sl, f ∈ F ,
which is equivalent tof(sl|s1) → f(sl) so that the process
forgets its past asymptotically (and uniformly).

5. Cases whenclf does not decay to zero can be included
too, e.g.clf = (−1)l.

6. Any compound fading channel where eachf ∈ F
is ergodic andF is of finite cardinality is automatically
uniformly-ergodic.

One can also construct examples whereby the channel is
not uniformly ergodic while being ergodic for eachf ∈ F .
Let 1 ≤ k < ∞ be an integer index specifying an ergodic
distributionf from the uncertainty setF and consider example
2 with Lf = k andclf = c0f > 0 for any|l| ≤ Lf , or example
3 with rf = 1 − 1/k. In both cases, the uniform convergence
condition is broken and the corresponding compound channels
are not uniformly ergodic while being ergodic for eachf ∈ F .

IV. T HE CAPACITY OF UNIFORMLY-ERGODIC CHANNELS

Let C be the information capacity of the compound ergodic-
fading channel above:

C , sup
p(x)

inf
f∈F1

I(X ; Y |f) (14)

Note that suchsup − inf expression appears often in the theory
of compound channels and is, in many cases, the operational
capacity. However, this is not the case in general [1]. It
is the purpose of this section to show that this is indeed
the case for the uniformly-ergodic compound channel above.
First, we establish the following saddle-point property ofthe
information capacity.

Proposition 2. Consider the compound ergodic-fading chan-
nel in (1)–(3), wheref ∈ F1. Assume that the set of feasible
input distributionsp(x) is convex (e.g. average or maximum
power constraint) and thatF1 is convex. The information
capacityC of this compound ergodic-fading channel satisfies
the saddle-point property,

C = sup
p(x)

inf
f∈F1

I(X ; Y |f) = inf
f∈F1

sup
p(x)

I(X ; Y |f) = Cw (15)
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whereCw is the capacity of worst-case channel in the uncer-
tainty set, i.e. the information capacity equals to the worst-case
channel capacityCw. If the inf and sup are achieved, then
the following saddle-point inequalities holds for any feasible
p(x) and f(s),

I(X ; Y |f∗) ≤ C = I(X∗; Y |f∗) ≤ I(X∗; Y |f) (16)

where X∗ denotes the input under its optimal distribution
p∗(x) and (p∗, f∗) is a saddle point.

Proof. The saddle point property follows from the fact that
I(X ; Y |f) is concave inp(x) and linear (and thus convex)
in f ; since the sets of feasiblef and p(x) are convex, von
Neumann mini-max Theorem [10] guarantees the existence of
a saddle point. The saddle-point inequalities in (16) follow
from 2nd equality in (15).

The inequalities in (16) have a well-known game-theoretic
interpretation: the Tx choosesp∗(x) and the adversary (nature)
choosesf∗; neither player can deviate from this optimal
strategy without incurring a penalty.

In the rest of this section, we demonstrate that the informa-
tion capacityC of the compound ergodic-fading channel has
the operational meaning of a maximum achievable rate i.e.
the compound channel capacityCc for the class of uniformly-
ergodic fading channels defined above.

Our approach applies to any convex uncertainty setF1 and
also to any convex set of possible input distributions (which
may also include a power constraint).

Theorem 1. Consider a compound uniformly-ergodic fading
channel. LetF1 be a convex set of its marginal fading
distributions andF be a set of its joint fading distributions.
Assume that the Rx has the full CSI (i.e. the state sequence
sn) while the Tx has only partial CDI: it knowsF and hence
F1 but neithersn nor its fading distributionf . Let the set of
feasible input distributionsp(x) be convex. The operational
capacityCc of this compound channel is

Cc = sup
p(x)

inf
f∈F1

I(X ; Y |f) = C = Cw (17)

i.e. the same as the worst-case channel capacityCw in (15).

Proof. See Appendix.

Note that, from this Theorem, (i) full knowledge of the
fading distribution at the Tx does not increase the capacity,
and (ii) a code designed for the worst-case fading distribution
also works for the whole class of distributions (and hence
much smaller amount of feedback is needed).

We remark that this result cannot be established using Theo-
rem 3.3.5 in [9] and considering fading distribution as a meta-
state since there are uncountably many possible distributions
in F1 (since this set is continuous) while Theorem 3.3.5
requires the number of states to be finite - see [7] for details.
It should also be noted that while the definition of uniform
ergodic channels and the respective uncertainty setF as well
as the error probability depend on the joint fading distribution
f(sn), the capacity depends only on the marginal distribution
f(s) and its uncertainty setF1. This fact, which results in

the single-letter capacity expression, cannot be inferredfrom
Theorem 3.3.5 either. In the proof, we make use of the general
formula for compound channel capacity in [7], which does not
have the restrictions of Theorem 3.3.5, by applying it to the
ergodic scenario of the present paper.

It can be further shown, using Fano’s inequality, that the
first two equalities in (17) do hold even ifF1 is not convex
[15]1. However, the saddle point property and hence the last
equality do not need to hold in this case.

V. A PPENDIX

Proof of Proposition 1: It is straightforward to verify (by
direct computations) that

σ2
nf =

1

n

n−1∑

l=1−n

(
1 − |l|

n

)
clf =

2

n

n−1∑

l=0

(
1 − l

n

)
clf − 1

n
c0f

(sincec(−l)f = clf ) and thatlimn→∞ supf∈F σ2
nf = 0 if and

only if (10) holds provided thatc0f is uniformly bounded:
c0f ≤ A < ∞ ∀f ∈ F .

To establish (11), observe that
∣∣∣∣∣
1

n

n−1∑

l=0

clf

∣∣∣∣∣ =

∣∣∣∣∣E
{(

1

n

n∑

l=1

Isl
− If

)
(Is1 − If )

}∣∣∣∣∣
≤ σnf

√
c0f (18)

where the inequality follows from Cauchy-Schwartz inequal-
ity, so that (11) follows provided thatc0f is uniformly
bounded. This establishes the ”only if” part.

To establish the ”if” part of (11), let

znf =
1

n

n−1∑

l=0

(
1 − l

n

)
clf =

1

n2

n−1∑

l=0

n−l∑

i=1

clf =
1

n2

n∑

i=1

n−i∑

l=0

clf

Observe that (11) implies that for anyδ > 0 there exists such
n0(δ) that for anyn ≥ n0(δ)∣∣∣∣∣

1

n

n−1∑

l=0

clf

∣∣∣∣∣ ≤ δ ∀f ∈ F (19)

Setn ≥ n2
0(δ) and letLn = n−√

n (round off if not integer)
so that

znf =
1

n2

Ln∑

i=1

n−i∑

l=0

clf +
1

n2

n∑

i=Ln+1

n−i∑

l=0

clf

≤ 1

n

Ln∑

i=1

∣∣∣∣∣
1

n − i

n−i∑

l=0

clf

∣∣∣∣∣+
1

n2

n∑

i=Ln+1

n−i∑

l=0

c0f (20)

≤ 1

n

Ln∑

i=1

δ +
(n − Ln)2

n2
c0f ≤ δ +

c0f

n

where 1st inequality is fromclf ≤ c0f and 2nd one is from
n − i ≥ n − Ln ≥ n0(δ). Sinceδ > 0 is arbitrary,znf ≥ 0
andc0f is uniformly bounded, the ”if” part follows by taking
limn→∞ supf∈F :

0 ≤ lim
n→∞

sup
f∈F

znf ≤ δ ∀δ > 0 (21)

1The authors greatly appreciate the very insightful comments by an anony-
mous reviewer.
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Proof of Theorem 1: Let Xn = {X1...Xn}, X = {Xn}∞
n=1

and likewise forY . Following Theorem 5 in [7], the ca-
pacity of general compound channels (e.g. not necessarily
information-stable and where the uncertainty set can be ar-
bitrary) with full Rx CSI but no Tx CSI is given by

Cc = sup
X

I(X;Y ) (22)

where the supremum is over all sequences of finite-
dimensional input distributions andI(X;Y ) is the compound
inf-information rate,

I(X ;Y ) = sup
R

{
R : lim

n→∞
sup
s∈S

Pr {Zns ≤ R} = 0

}
(23)

whereZns = n−1i(Xn; Y n|s) is the normalized information
density under channel states; S is the (arbitrary) uncertainty
set.

To prove (17), first observe thatCc ≤ Cw holds in full
generality2 and, using (15),

Cc ≤ Cw = C = sup
p(x)

inf
f∈F1

I(X ; Y |f) (24)

It remains to show that the inequality is actually equality.To
this end, apply the general formula in (22) by considering
the fading distributionf as a (meta) states, and restrict the
optimization to i.i.d. inputsX̃ to obtain a lower bound

Cc ≥ sup
X̃

I(X̃; Ỹ ) (25)

where Ỹ is the output under i.i.d. input̃X. The following
propositions evaluateI(X̃ ; Ỹ ).

Proposition 3. The compound inf-information rateI(X̃ ; Ỹ )
can be upper bounded as follows:

I(X̃ , Ỹ ) ≤ inf
f∈F1

I(X ; Y |f) (26)

whereX has the same distribution as the marginals ofX̃ .

Proof. Let If = I(X ; Y |f), ik = i(Xk; Yk|Sk), Isk
=

EX,Y {ik}, zn = n−1
∑n

k=1 ik. From Proposition 1 in [7],

I(X̃ , Ỹ ) ≤ inf
f∈F

I(X̃, Ỹ |f) (27)

whereI(X̃, Ỹ |f) is the inf-information rate under (meta) state
f :

I(X̃; Ỹ |f) = sup
R

{
R : lim

n→∞
Pr {zn ≤ R} = 0

}
(28)

Note thatE {ik} = If and

E
{

|zn − If |2
}

=
1

n2

∑

k,l

E{(Isk
− If )(Isl

− If )} = σ2
nf

where 1st equality follows from the fact that(Xi, Yi) and
(Xj , Yj) are independent of each other (i 6= j) given the state
sequence{s1, s2, ...}, so that, from Chebychev inequality,

Pr {|zn − If | ≥ δ} ≤ σ2
nf/δ2 → 0 ∀ f ∈ F (29)

2the compound capacity never exceeds the worst-case one since a code
that works for the whole uncertainty set has also to work on the worst-case
channel in the set [1].

for any δ > 0 as n → ∞ since, due to (7),limn→∞ σnf =
0. Therefore,zn = n−1

∑n
k=1 ik → If in probability, from

which it follows that

I(X̃ , Ỹ |f) = I(X ; Y |f) (30)

Combining this with (27), one obtains (26).

Proposition 4. The compound inf-information rateI(X̃ ; Ỹ )
can be lower bounded as follows:

I(X̃, Ỹ ) ≥ inf
f∈F1

I(X ; Y |f) (31)

Proof. Observe that, for eachδ > 0,

Pr

{
zn ≤ inf

f∈F1

If − δ

}
≤ Pr {|zn − If | ≥ δ} ≤

σ2
nf

δ2

Applying lim − sup and using (7), one obtains

lim
n→∞

sup
f∈F

Pr

{
zn ≤ inf

f∈F1

If − δ

}
= 0 (32)

i.e. I(X̃, Ỹ ) ≥ inff∈F1 If −δ. Since this holds for anyδ > 0,
(31) follows.

Combining Propositions 3 and 4,

I(X̃, Ỹ ) = inf
f∈F1

I(X ; Y |f) (33)

for any i.i.d. input. ApplyingsupX̃ to this equality in combi-
nation with (24) and (25), one obtains the desired result.
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Abstract

In statistical inference problems, we wish to obtain lower bounds on the minimax
risk, that is to bound the performance of any possible estimator. A standard technique to
obtain risk lower bounds involves the use of Fano’s inequality. In an information-theoretic
setting, it is known that Fano’s inequality typically does not give a sharp converse result
(error lower bound) for channel coding problems. Moreover, recent work has shown that an
argument based on binary hypothesis testing gives tighter results. We adapt this technique
to the statistical setting, and argue that Fano’s inequality can always be replaced by this
approach to obtain tighter lower bounds that can be easily computed and are asymptotically
sharp. We illustrate our technique in three applications: density estimation, active learning
of a binary classifier, and compressed sensing, obtaining tighter risk lower bounds in each
case.
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Abstract

In the minimum description length (MDL) approach to prediction, one may use the
conditional normalized maximum-likelihood predictor to predict the future given the past.
This strategy is, however, computationally involved and in general, depending on how
many future symbols one wants to predict. For special exponential family models, the
conditional normalized maximum-likelihood predictor does not depend on the number of
symbols that one wants to predict. In this case, the prediction strategy equals a Bayesian
strategy based on Jeffreys’ prior. These special exponential families can be characterized
as those for which the conjugated exponential family has a saddle-point approximation that
is exact after renormalization. For 1-dimensional exponential families, the only families
with exact renormalized saddle-point approximations are the Gaussian location family,
the Gamma family, and the inverse Gaussian family. They are conjugated families of the
Gaussian location family, the Gamma family and a less familiar family that we will call
the Poisson-exponential family. This approach can be also used to construct exponential
families with horizont independent MDL in higher dimensions.
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Abstract

Universal learning with log-loss discussed in this talk follows information theoretical
concepts of universal prediction and universal compression. However, the fact that in
learning problems data features are given and the goal is to predict the outcome, requires
an extension of the theory. In previous work we analyzed on-learning, so in this talk
we focus on universal batch learning. In the stochastic setting we propose a minimax
universal learning solution that minimizes the worst case log-loss regret. The resulting
universal learning solution is a mixture over the models in the considered class. Utilizing
the minimax theorem and information-theoretical tools, we also come up with a redundancy
capacity theorem and an upper bound on the performance of the optimal solution. This
performance bound on the generalization error decays as O(logN/N), where N is the
sample size, instead of O

(√
logN/N

)
that I attained in statistical learning theory. Finally,

we propose a setting for universal batch learning in the individual setting, based on
the leaving-one-out (LOO) principle, and show its performance in some batch learning
examples.
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Abstract

This talk presents upper and lower bounds on the minimum error probability of
Bayesian M -ary hypothesis testing in terms of the Arimoto-Rényi conditional entropy
of an arbitrary order α. The improved tightness of these bounds over their specialized
versions with the Shannon conditional entropy (α = 1) is explained. In particular, in the
case where M is finite, we generalize Fano’s inequality under both the conventional and
list-decision settings. As a counterpart to the generalized Fano’s inequality, allowing M
to be infinite, a lower bound on the Arimoto-Rényi conditional entropy is derived as a
function of the minimum error probability. We further provide upper and lower bounds on
the optimal guessing moments of a random variable taking values on a finite set when side
information may be available. These moments quantify the number of guesses required
for correctly identifying the unknown object and, similarly to Arıkan’s bounds, they are
expressed in terms of the Arimoto-Rényi conditional entropy. Although Arıkan’s bounds
are asymptotically tight, the improvement of the bounds in this paper is significant in the
non-asymptotic regime. Relationships between moments of the optimal guessing function
and the MAP error probability are also presented, characterizing the exact locus of their
attainable values.
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Rates of linear codes based on bipartite graphs with
low decoding error probability
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Abstract—Consider binary linear codes obtained from bipar-
tite graphs as follows. There arek ≥ 1 left nodes each repre-
senting a message bit and there arem = m(k) right nodes each
representing a parity bit, generated from the corresponding set
of message node neighbours. Both the message and the parity bits
are sent through a memoryless binary input channel that either
retains, flips or erases each transmitted bit, independently. Based
on the received set of symbols, the decoder at the receiver obtains
an estimate of the original message sent. If the decoding error
probability Pk −→ 0 and the average degree per parity node
remains bounded ask → ∞, then the rate of the code k

k+m
−→ 0

as k → ∞.

Key words: Linear codes, low decoding error probability, asymp-
totic rates.

AMS 2000 Subject Classification: Primary: 60J10, 60K35; Sec-
ondary: 60C05, 62E10, 90B15, 91D30.

I. I NTRODUCTION

Parity check codes are used extensively in today’s com-
munication systems particularly in the form of Low Density
Parity Check (LDPC) Codes (see [3] for an introduction).
One of the main challenges here is to achieve low decoding
error probability. There exists extensive literature on LDPC
codes and previous literature mainly focus on developing
decoding schemes that achieve low error probability (see for
example [2], [7] and references therein). The emphasis there
is to design schemes that achieve low error probability but
possibly at the cost of increased overhead.

Performance tradeoffs with regards to density of LDPC
codes for a fixed rate have been studied in [4] and [6]. In
this paper, we study the rate versus decoding error probability
tradeoff and show that low decoding error probability nec-
essarily requires a low rate or equivalently a large number of
parity bits to be appended to the message. In other words, if the
decoder is such that the asymptotic decoding error probability
converges to zero as the number of message bitsk → ∞, then
the asymptotic encoded rate also converges to zero ask → ∞.

Model description

We are interested in sending a random message through a
communication channel reliably. We describe the underlying
communication system below.

Messages: Messages arek−bit vectors satisfying the fol-
lowing condition:
(A1) A random messageX = (X1, . . . , Xk) has independent
and identically distributed (i.i.d.) bitsXi ∈ {0, 1} with

P(Xi = 0) = px = 1 − P(Xi = 1). (1)

In particular, this implies that theraw rate defined as

Rraw :=
H(X)

k
= H(px) > 0, (2)

whereH(px) = −px log px − (1 − px) log(1 − px) and

H(X) := −
∑

w

p(w) log p(w) (3)

is the entropy of the vectorX (see Chapter1, Section1.1
of [5]). In (3), p(.) is the probability mass function ofX
and the summation is over all possiblek−bit vectors. All
logarithms are to the base2 and for simplicity we assume
throughout thatpx = 1

2 so thatH(px) = 1.

Encoder: We consider binary linear codes obtained from
bipartite graphs as follows. There arek ≥ 1 left nodes called
message nodes and there arem = m(k) right nodes called
parity nodes. For parity node1 ≤ j ≤ m, let Rk(j) be the
message nodes adjacent toj. Thejth parity bit Zj is obtained
as

Zj = ⊕w∈Rk(j)Xw, (4)

where⊕ is XOR operation, i.e., addition modulo2. The vector

(X, Z1, . . . , Zm) = (X1, . . . , Xk, Z1, . . . , Zm)

is the codeword associated with the messageX and the
encoded rate is defined as

Renc :=
H(X)

k + m
=

k

k + m
, (5)

by (2). We make the following assumption regarding the
encoder:
(A2) For 1 ≤ j ≤ m, let #Rk(j) be the degree of the parity
nodej and suppose that the average degree per parity node
remains bounded ask → ∞; i.e.,

lim sup
k

1

m

m∑

j=1

#Rk(j) < ∞. (6)
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Channel: The codeword(X, Z1, . . . , Zm) is sent through a
binary input channel which introduces noise that either retains,
flips or erases the transmitted bit. Formally, we assume that the
noise alphabet is{α0, α1, αer} and theith received message
symbol is

X̃i = 11(Nx(i) = αer)αer + 11(Nx(i) = α0)Xi

+ 11(Nx(i) = α1)(1 − Xi) (7)

Hereαer is the erasure symbol and̃Nx(i) is the noise symbol.
Similarly, thejth received parity symbol is

Z̃j = αer11(Nz(j) = αer) + 11(Nz(j) = α0)Zj

+ 11(Nz(j) = α1)(1 − Zj). (8)

The overall received codeword is

Y = (X̃1, . . . , X̃k, Z̃1, . . . , Z̃m). (9)

(A3) We assume that the noise random variables{Nx(i)}
and{Nz(j)} are independent and identically distributed (i.i.d.)
with

P(Nx(i) = αer) = per, P(Nx(i) = α1) = p1

andP(Nx(i) = α0) = 1 − p1 − per. (10)

The term0 < per + p1 < 1 is the probability that a channel
error occurs; i.e., the noise in the channel corrupts (either
erases or flips) a transmitted bit. We also assume that the noise
is independent of the transmitted bits{Xi} and{Zj}.

The above channel model is general and with particular
choices ofα0, α1 and αer , we realize various channels. For
example if α0 = 0, α1 = 1 and p0 = p = 1 − p1, then
we obtain the binary symmetric channel (BSC). Similarly
if p0 = p = 1 − per, we obtain the binary erasure channel
(BEC).

Decoder: At the receiver, a pre installed decoder uses the
received wordY to obtain an estimatêX of the message sent
and let

Pk = P(X 6= X̂) (11)

be the decoding error probability. The following is the main
result of this paper.

Theorem 1. Suppose assumptions (A1) − (A3) hold. If the
decoding error probability Pk −→ 0 as k → ∞, then the
encoded rate Renc = k

k+m −→ 0 as k → ∞.

In other words, search for codes with positive rate and low
decoding error probability must be outside the set of linear
bounded degree codes as described above. Equivalently, linear
bounded degree codes having low decoding error probability
must necessarily contain a lot of parity bits. One example of
such a code is ther−repetition code, where each message
bit is simply repeatedr times. Recall that for a fixedr,
an r−repetition code has an encoded rate of1

r+1 and using
majority decision rule, it is possible to correct up tor−1

2
channel errors, irrespective of the number of bitsk in the
message (for more on repetition codes see [1]). If however,

we allow r = r(k) to depend onk, we can correct all errors
in the message with high probability.

Proposition 1. Suppose 2p1 + per < 1 and r = r(k) =
M log k. There are constants M0 = M0(p1, per) ≥ 1
and K0 = K0(p1, per) ≥ 1 so that the following holds for
all M ≥ M0 and k ≥ K0 : For an r−repetition code, the
decoding error probability with the majority decision rule is
bounded above by Pk ≤ 1

k .

The paper is organized as follows. In Section I, we prove
Theorem 1 and Proposition 1.

PROOF OFTHEOREM 1 AND PROPOSITION1

Recall thatX is the message andY as defined in (9) is the
received codeword. Define

H(X |Y ) := −
∑

p(x, y) log p(x|y) (12)

to be the uncertainty inX given the random vectorY,
where p(x, y) and p(x|y) respectively, refer to probability
mass functions of the joint distribution of(X, Y ) and the
conditional distribution ofX given Y (see Chapter1, [5]).
Since the total number of messages is2k, we have from Fano’s
inequality (Theorem2.10.1, [5]) that

H(X |Y ) ≤ H(X |X̂) ≤ H(Pk) + Pk log
(
2k − 1

)
≤ 1 + kPk

and so
1

k
H(X |Y ) ≤ 1

k
+ Pk −→ 0 (13)

ask → ∞.
To evaluateH(X |Y ), let X0 = 0 and write

H(X |Y ) =

k∑

i=1

H(Xi|Y, X1, . . . , Xi−1)

≥
k∑

i=1

H(Xi|X̃i, {Z̃j}, {Xw}w 6=i). (14)

The first equality in (14) follows by chain rule for entropy
(Theorem2.5.1, [5]) and the inequality in (14) follows from
the data processing inequality (Theorem2.8.1, [5]).

We evaluate each term in the summation in (14) separately.
First, we use the received parity symbolsZ̃1, . . . , Z̃m to obtain
estimates for theith transmitted bitXi. Formally, for 1 ≤
i ≤ k let Tk(i) denote the set of parity nodes adjacent to the
message nodei. Recall that foru ∈ Tk(i), the termRk(u)
denotes the set of message nodes adjacent to the parity nodeu
and by definitioni ∈ Rk(u). For 1 ≤ i ≤ k, define

X̂i(u) := αer11(Z̃u = αer)

+ 11(Z̃u 6= αer)Z̃u ⊕w∈Rk(u)\{i} Xw

= αer11(Nz(u) = αer) + 11(Nz(u) = α0)Xi

+ 11(Nz(u) = α1)(1 − Xi). (15)

Equation (15) follows from the expression for̃Zu in (8) and
the fact that ifZu = Xi ⊕w∈Rk(u)\{i} Xw, then

1 − Zu = (1 − Xi) ⊕w∈Rk(u)\{i} Xw.
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The map
(
X̃i, {Z̃j}, {Xw}w 6=i

)
:−→

(
X̃i, {X̂i(u)}u∈Tk(i), {Z̃j}j /∈Tk(i), {Xw}w 6=i

)

is one to one and invertible and so theith term in the final
summation in (14) is

H(Xi|X̃i, {Z̃j}, {Xw}w 6=i) =

H
(
Xi|X̃i, {X̂i(u)}u∈Tk(i), {Z̃j}j /∈Tk(i), {Xw}w 6=i

)
.

(16)

The set of random variables({Z̃j}j /∈Tk(i), {Xw}w 6=i)
are independent of the rest of random vari-
ables (X̃i, {X̂i(u)}u∈Tk(i)) and are also independent
of Xi. Thus the final term in (16) is

H
(
Xi|X̃i, {X̂i(u)}u∈Tk(i), {Z̃j}j /∈Tk(i), {Xw}w 6=i

)

= H
(
Xi|X̃i, {X̂i(u)}u∈Tk(i)

)
(17)

and substituting this into (14) gives

H(X |Y ) ≥
k∑

i=1

G(dk(i)) (18)

wheredk(i) := #Tk(i) is the degree of the message nodei
and

G(dk(i)) := H
(
Xi|X̃i, {X̂i(u)}u∈Tk(i)

)
> 0

is the uncertainty in the bitXi givendk(i) + 1 independently
noise corrupted copies.

We have the following properties regardingG(.).
(g1) Using the fact that conditioning reduces entropy, we
obtain thatG(d) is a decreasing function ofd.
(g2) Using (18) and (13) we get that

1

k

k∑

i=1

G(dk(i)) −→ 0 (19)

ask → ∞.
We use properties(g1)−(g2) to get the following properties.

(g3) The average degree per message node

1

k

k∑

i=1

dk(i) −→ ∞ (20)

ask → ∞.
(g4) The encoded rate k

k+m −→ 0 ask → ∞.
This proves Theorem 1.

Proof of (g3)−(g4): We prove(g3) first. For integerq ≥ 1,
let

Sk(q) = {i : dk(i) ≤ q} (21)

be the set of message nodes whose degree is at mostq. For a
fixed q, it is true that

#Sk(q)

k
−→ 0 (22)

as k → ∞. If (22) is not true, then there existsǫ0 > 0 and
a subsequence{kr} such that#Skr (q)

kr
≥ ǫ0 for all larger.

Using property(g1) that G(.) is decreasing, we get that

1

kr

kr∑

i=1

G(dkr (i)) ≥ 1

kr

∑

i∈Skr (q)

G(dkr (i))

≥ G(q)
#Skr (q)

kr

≥ ǫ0G(q) (23)

for all large r. The final term in (23) is positive, contradict-
ing (19) in property(g2).

From the above paragraph, we obtain that (22) is true and
so for any integerq ≥ 1, we get that

1

k

k∑

i=1

dk(i) ≥ 1

k

∑

i/∈Sk(q)

dk(i) ≥ q

(
k − Sk(q)

k

)
≥ q

2

for all largek. Sinceq ≥ 1 is arbitrary, we get (20).
To prove(g4), we use the fact that the number of edges in

the graph is
k∑

i=1

dk(i) =

m∑

j=1

fk(j)

where fk(j) = #Rk(j) is the degree of the parity nodej.
Using (g3), we therefore get

1

k

m∑

j=1

fk(j) =
m

k

1

m

m∑

j=1

fk(j) −→ ∞ (24)

ask → ∞. Since by assumption, the average degree per parity
node is bounded (see (6)) we get from (24) thatm

k −→ ∞
and so k

k+m −→ 0 ask → ∞.

Proof of Proposition 1: Let X = (X1, . . . , Xk) be the
message bits. For1 ≤ i ≤ k and1 ≤ j ≤ r, defineZi(j) = Xi

be the parity bits for the message bitXi. Thus each message
bit is repeatedr times and for convenience defineZi(0) = Xi

to be the message bit to be transmitted. Let{Z̃j(i)} be
corresponding received symbols as defined in (8).

The decoding is majority based as follows. For each1 ≤
i ≤ k and l ∈ {0, 1}, let Wl(i) ⊆ {0, 1, 2, . . . , r} be the
random set of all indices for which the received symbol isl;
i.e.,

Z̃i(j) = 0 for all j ∈ W0(i) and Z̃i(j) = 1 for all j ∈ W1(i).

If #W1(i) ≥ #W0(i), set X̂i = 1; else setX̂i = 0. The
estimated message iŝX = (X̂1, . . . , X̂k).

A decoding error occurs if̂Xi 6= Xi for some1 ≤ i ≤ r.
For a fixed1 ≤ i ≤ k and0 ≤ j ≤ r, let Nz(i, j) ∈ {0, 1, α}
be the noise random variable affecting the bitZi(j) as in (8).
If message biti is decoded wrongly then necessarily

r∑

j=0

11(Nz(i, j) = 1) ≥
r∑

j=0

11(Nz(i, j) = 0).
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Defining

L(i, j) = 11(Nz(i, j) = 1) − 11(Nz(i, j) = 0) ∈ {−1, 1}
we have that

EL(i, j) = p1 − (1 − p1 − per) = 2p1 + per − 1 < 0,

by the assumption in the statement of the Proposition.
For a fixed1 ≤ i ≤ k, the random variables{L(i, j)}0≤j≤r

are i.i.d and so using the Chernoff bound, we have fors > 0
andc ≥ 0 that

P




r∑

j=0

L(i, j) ≥ c


 ≤ e−sc

r∏

j=0

EesL(i,j)

= e−sc
(
esp1 + e−s(1 − p1 − pα)

)r+1
.

(25)

Writing es = 1 + s + R1(s) and e−s = 1 − s + R2(s), we
have

p1e
s + e−s(1 − p1 − per) = 1 − (1 − 2p1 − per)s + T (s),

whereT (s) = R1(s)p1+R2(s)(1−p1−per). Choosings > 0
small, we have|T (s)| ≤ s2 and1−(1−2p1−per)s+T (s) ≤ δ
for some constantδ < 1. Substituting into (25) and settingc =
0 gives

P


∑

j

L(i, j) ≥ 0


 ≤ δr+1 ≤ 1

k2

if r = 2
δ log k. But

∑
j L(i, j) ≥ 0 only if the bit Xi is

decoded wrongly i.e.,̂Xi 6= Xi and soP(X̂i 6= Xi) ≤ 1
k2 and

so the overall decoding error probability is at most1
k −→ 0

ask → ∞.
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We consider transmission over a discrete memoryless chan-
nel (DMC) W (y|x) with finite alphabets X and Y . We
consider an (n,Mn)-codebook Mn = {x1, . . . ,xMn} with
rate Rn = 1

n logMn. The type-dependent maximum-metric
decoder estimates the transmitted message as

m̂ = arg max
xi∈Mn

q(P̂xi,y), (1)

where P̂x,y is the joint empirical distribution [1, Ch. 2] of the
pair (x,y) and the metric q : P(X × Y)→ R is continuous.
Maximum-likelihood (ML) decoding is a special case of (1),
but the decoder may in general be mismatched [2], [3].

We construct the code Mn such that any two distinct
codewords x,x′ ∈ Mn satisfy d(x,x′) > ∆ for a given
distance function d(·, ·) and ∆ ∈ R. This guarantees that
the minimum distance of the codebook exceeds ∆. Similar
constructions are used to prove the Gilbert-Varshamov bound
in Hamming spaces [4], [5]. Our construction depends on
an input distribution P ∈ P(X ), and we let Pn denote an
arbitrary type [1, Ch. 2] whose entries are 1

n -close to P . The
set of sequences with type Pn is denoted by T (Pn).

Fixing n,Mn, an input distribution P ∈ P(X ), a distance
function d(·, ·), and constants δ > 0,∆ ∈ R, the construction
is described by the following steps:

1) The first codeword, x1, is drawn uniformly over T1(Pn),
given by T1(Pn) = T (Pn);

2) The second codeword x2 is uniformly drawn from

T2(Pn,x1) = {x̄ ∈ T (Pn) : d(x̄,x1) > ∆} (2)

the set of sequences of composition Pn whose distance
to x1 exceeds ∆;

3) The i-th codeword xi is drawn uniformly from

Ti(Pn,x1, . . . ,xi−1)

= {x̄ ∈ T (Pn) : d(x̄,xj) > ∆, j = 1 . . . , i− 1} (3)

In order to ensure that the above procedure generates the
desired number of codewords Mn = enRn (i.e., the sets Ti are
non-empty for i = 1, . . . ,Mn), set ∆ and δ such that

en(Rn+δ)volx(∆) ≤ |T (Pn)| (4)

This work was supported in part by the European Research Council under
Grant 725411, and the Spanish Ministry of Economy and Competitiveness
under Grant TEC2016-78434-C3-1-R.

where volx(∆) = |{x̄ ∈ T (Pn) : d(x̄,x) ≤ ∆}| is the
volume of a ball of radius ∆ according to distance d(·, ·)
centered at x ∈ T (Pn). If the distance d is symmetric and
type-dependent, volx(∆) does not depend on x ∈ T (Pn).

Our main result is as follows, namely, a single-letter lower
bound for the error exponent of the RGV construction.

Theorem 1. For any P ∈ P(X ), δ > 0, ∆ ∈ R, type-
dependent distance function d, and R > 0 satisfying

R ≤ min
P

XX̃
: d(P

XX̃
)≤∆, PX=P

X̃
=P

I(X; X̃)− 3δ, (5)

the RGV construction with parameters (n,R, P, d,∆, δ) and
decoding metric q(·) over the DMC W achieves the following
error exponent

ERGV(R,P,W, q, d,∆) =

min
V ∈Td,q,P (∆)

D(VY |X‖W |P ) +
∣∣I(X̃;Y,X)−R

∣∣
+
, (6)

and

Td,q,P (∆) ,
{
VXX̃Y ∈ P(X × X × Y) : VX = VX̃ = P,

q(VX̃Y ) ≥ q(VXY ), d(PXX̃) ≥ ∆
}
. (7)

The following corollary shows that when the distance func-
tion d(·, ·) is optimized, and ∆ is chosen appropriately, the
exponent in Theorem 1 recovers the exponent of [6], denoted
by Eq(R,P,W ), known to be at least as large as the maximum
of the random-coding and expurgated exponents.

Corollary 1. Setting d(PXX̃) = −I(X; X̃), ∆ = −(R+ 3δ)
gives that for sufficiently small δ > 0 and ε > 0

ERGV(R,P,W, q, d,∆) ≥ Eq(R,P,W )− ε. (8)
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Abstract—Recently, locally repairable codes have gained sig-
nificant interest for their potential applications in distributed
storage systems. However, most constructions in existence are
over fields with size that grows with the number of servers, which
makes the systems computationally expensive and difficult to
maintain. Here, we study linear locally repairable codes over the
binary field, tolerating multiple local erasures. We derive bounds
on the minimum distance on such codes, and give examples of
LRCs achieving these bounds. Our main technical tools come
from matroid theory, and as a byproduct of our proofs, we show
that the lattice of cyclic flats of a simple binary matroid is atomic.

I. INTRODUCTION

In modern distributed storage systems (DSSs) failures hap-
pen frequently, whence decreasing the number of connec-
tions required for node repair is crucial. Removing even
one connection locally can easily imply huge gains in the
overall system functionality, thanks to shortened queues and
improved data availability. Consequently, locally repairable
codes (LRCs) have gained a lot of interest in the past few
years [1]–[3]. Namely, LRCs allow to repair a small number
of failures locally, i.e., by only contacting few close-by nodes
and hence avoiding congesting the system. Related Singleton-
type bounds have been derived for various cases, see [4], [5].
The first bound on the minimum distance for fixed field size
was obtained by Cadambe and Mazumdar in [6]. Recently,
this bound was improved and generalized, via the observation
that any log-convex bound on the “local rank” of a code
can be blown up to obtain a bound on the global rank [7].
Interestingly, the bounds in [7] do not depend on the linearity
of the code. However, all the bounds in [6], [7] are implicit,
except for special classes of codes. For more details and
tentative comparison, see the last section of this paper.

In this paper, we consider binary codes motivated by the
fact that the computational complexity when retrieving a file
or repairing a node grows with the field size. We derive new,
improved Singleton-type bounds for this special case alongside
with sporadic examples, in particular when the local repair sets
can tolerate multiple failures. In contrast to the bounds in [6],
[7], our bounds are explicit, and do not depend on any prior
bounds on binary codes of shorter length.

As our main contribution, in Theorem 5, we obtain a closed-
form bound on the minimum distance d of a binary (n, k)-
code of length n and dimension k and with all-symbol (r, δ)-
locality, where the local distance δ > 2. Such bounds were
previously only known when δ = 2. The bound is in terms

of the rank ` of the repair sets, but can easily be transformed
to bounds in terms of the size r + δ − 1. Interestingly, while
the two parameters r and ` can be assumed to agree when
δ = 2, as well as when the field size is unbounded, this is
no longer the case over the binary field with δ > 2. While
both parameters are of independent interest in applications,
we have chosen to focus on the number of nodes ` that need
to be contacted for local repair, rather than on the size of the
local clouds

In addition, in Section III we prove that every element
of a non-degenerate binary locally repairable code without
replication is contained in an atomic cyclic flat, and hence that
the lattice of cyclic flats is atomic. From a practical point of
view, this implies a hierarchy of failure tolerance, as explained
in the end of Section III. In particular, whenever a symbol e
fails, we can start by downloading nodes in an atomic cyclic
flat in order to repair e. If it turns out that some other nodes
in this local set have failed as well, we can repair them while
still keeping the part that we already downloaded, and simply
contact some more nodes in the corresponding repair set to
repair all the failed symbols. Thus, we do not have to restart
from the beginning if we find out during the repair process
that a small amount of other nodes have failed as well.

Several constructions are known for optimal LRCs over the
binary field, for specified ranges of parameters, and almost
exclusively in the case δ = 2. The first such construction,
for codes with exponentially low rate and locality r = 2, 3,
was obtained by deleting carefully chosen columns from the
simplex code [8]. These constructions are also optimal when
taking the availability t, i.e., the number of disjoint sets that
can recover a given symbol, into consideration. A slightly
more flexible family of codes, allowing for higher rate, was
given in [9], [10], where also a slight improvement over the
Cadambe–Mazumdar bound was given for linear codes. In
the realm of multiple erasures, i.e., when δ > 2, rate-optimal
codes were studied in [11]. There, rate-optimal codes for short
length codes were characterized when δ = 3, and analogous
constructions without optimality proof were given for δ > 3.
However, to the best of our knowledge, no previous work
has studied bounds on the global minimum distance in the
regime δ > 2.

In the interest of space, we have relegated proofs to an
extended version of this paper available on arXiv [12].
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II. PRELIMINARIES OF LRCS AND MATROIDS

As is common practice, we say that C is an (n, k, d)-code if
it has length n, dimension k, and minimum Hamming distance
d. A linear (n, k, d)-code C over a finite field F is a non-
degenerate storage code if d ≥ 2 and there is no zero column
in a generator matrix of C. For a fixed code C, we denote
by dY the minimum Hamming distance of the punctured code
C|Y , where Y ⊆ [n] is a set of coordinates of the code C.

Definition 1. Let C be an (n, k, d)-code over Fn. A symbol
x ∈ [n] has locality (r, δ) if there exists a subset R of [n],
called repair set of x, such that x ∈ R, |R| ≤ r + δ − 1, and
dR ≥ δ.

Definition 2. A linear (n, k, d, r, δ)-LRC over a finite field Fn
is a non-degenerate linear (n, k, d)-code C over Fn such that
every coordinate x ∈ [n] has locality (r, δ). In the literature,
this is specifically called all-symbol locality.

The parameters (n, k, d, r, δ) can immediately be defined
and studied for matroids in general, as in [2], [5], [13].

a) Matroid fundamentals: Matroids have many equiva-
lent definitions in the literature. Here, we choose to present
matroids via their rank functions.

Definition 3. A (finite) matroid M = (E, ρ) is a finite set E
together with a rank function ρ : 2E → Z such that for all
subsets X,Y ⊆ E:

(R.1) 0 ≤ ρ(X) ≤ |X|,
(R.2) X ⊆ Y ⇒ ρ(X) ≤ ρ(Y ),
(R.3) ρ(X) + ρ(Y ) ≥ ρ(X ∪ Y ) + ρ(X ∩ Y ).

A subset X ⊆ E is called independent if ρ(X) = |X|. If
X is independent and ρ(X) = ρ(E), then X is called a basis.
A subset that is not independent is called dependent. A circuit
is a minimal dependent subset of E, that is, a dependent set
whose proper subsets are all independent. Strongly related to
the rank function is the nullity function η : 2E → Z, defined
by η(X) = |X| − ρ(X) for X ⊆ E.

There is a straightforward connection between linear codes
and matroids. Indeed, any linear code C over a field F
generates a matroid MC = (E, ρC), where E is the set
of coordinates of C, and ρC(X) is the dimension of the
punctured code C|X . For a given set X ⊆ E, we define the
restriction of M to X to be the matroid M |X = (X, ρ|X) by
ρ|X(Y ) = ρ(Y ) for all subsets Y ⊆ X .

Two matroids M1 = (E1, ρ1) and M2 = (E2, ρ2) are
isomorphic if there exists a bijection ψ : E1 → E2 such that
ρ2(ψ(X)) = ρ1(X) for all subsets X ⊆ E1.

Definition 4. A matroid that is isomorphic to MC for some
code C over F is said to be representable over F. We also say
that such a matroid is F-representable. A binary matroid is a
matroid that is F2-representable.

Definition 5. A matroid is called simple if if has no circuits
consisting of 1 or 2 elements. A element e ∈ E is called a
co-loop if ρ(E − e) < ρ(E).

b) Fundamentals on cyclic flats: The main tool from
matroid theory in this paper are the cyclic flats. We will define
them using the closure and cyclic operators.

Let M = (E, ρ) be a matroid. The closure operator cl :
2E → 2E and cyclic operator cyc : 2E → 2E are defined by

(i) cl(X) = X ∪ {e ∈ E −X : ρ(X ∪ e) = ρ(X)},
(ii) cyc(X) = {e ∈ X : ρ(X − e) = ρ(X)}.

A subset X ⊆ E is a flat if cl(X) = X and a cyclic set if
cyc(X) = X . Therefore, X is a cyclic flat if

ρ(X ∪ y) > ρ(X) and ρ(X − x) = ρ(X)

for all y ∈ E −X and x ∈ X . The collection of flats, cyclic
sets, and cyclic flats of M are denoted by F(M), U(M),
and Z(M), respectively. Some more fundamental properties
of flats, cyclic sets, and cyclic flats are given in [14].

If C ⊆ FE is a linear code, then the cyclic flats of MC can
be described as sets X ⊆ E such that

|C|(X ∪ y)| > |C|X| and |C|(X − x)| = |C|X|
for all y ∈ E −X and x ∈ X .

Before going deeper in the study of Z(M), we need a
minimum background on poset and lattice theory. We will
use the standard notation of ∧ and ∨ for the meet and join
operator, we will denote by 0L and 1L the bottom and top
element of a lattice L, and we will denote by l the covering
relation, i.e., for X,Y ∈ (L,≤), we say that XlY if X < Y
and there is no Z ∈ L with X < Z < Y .

The atoms and coatoms of a lattice (L,⊆) are defined as

AL = {X ∈ L : 0L lX} and coAL = {X ∈ L : X l 1L},
respectively. A lattice L is said to be atomic if every element

of L is the join of atoms.
We can now give a crucial property of the set of cyclic flats.

Proposition 1 (See [14]). Let M = (E, ρ) be a matroid. Then
1) (Z(M),⊆) is a lattice with X ∨ Y = cl(X ∪ Y ) and

X ∧ Y = cyc(X ∩ Y ).
2) 1Z = cyc(E) and 0Z = cl(∅).

c) Relation between LRCs and the lattice of cyclic flats:
Recently, some work has been done to emphasise the relation
between cyclic flats and linear codes over finite fields. In [5],
the authors proved that the minimum distance can be expressed
in terms of the nullity of certain cyclic flats:

Proposition 2. Let C be a non-degenerate (n, k, d)-code and
M = (E, ρ) the matroid associated to C. Then,

d = η(E) + 1−max{η(Z) : Z ∈ Z(M)− {E}}.
Moreover, [15] gives us necessary conditions on the struc-

ture of the lattice of cyclic flats when the code and hence
the matroid are binary. The key results from [15] are the
following proposition and theorem that constrain the edges
of the associated Hasse diagram.

Proposition 3 ( [15]). Let M = (E, ρ) be a binary matroid.
Then, every X,Y ∈ Z(M) with X l Y satisfy exactly one of
the following:
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• ρ(Y ) − ρ(X) = l > 1 and η(Y ) − η(X) = 1. We call
such an edge in the Hasse diagram of Z(M) a rank edge
and label it ρ = l.

• ρ(Y ) − ρ(X) = 1 and η(Y ) − η(X) = l > 1. We call
such an edge a nullity edge and label it η = l.

• ρ(Y ) − ρ(X) = 1 and η(Y ) − η(X) = 1. We call such
an edge a elementary edge.

Theorem 1 (Announced in [15]). Let C be a non-degenerate,
binary linear (n, k, d, r, δ)-LRC with d > 2 and without
replication. Let M = (E, ρ) be the associated matroid. Then
Z = Z(M) satisfies the following:

1) ∅ and E are cyclic flats.
2) Every covering relation Z lE is a nullity edge labeled

with a number ≥ d− 1.
3) If δ = 2, then for every i ∈ E, there is X ∈ Z with

i ∈ X such that ρ(X) ≤ r.
4) If δ > 2, then for every i ∈ E, there is X ∈ Z with

i ∈ X such that
a) Every covering relation Y l X is a nullity edge

labeled with a number ≥ δ − 1.
b) Every cyclic flat Y with Y lX has rank ≤ r− 2.

III. LATTICE STRUCTURE AND REPAIR PROPERTIES

The first part of this section is devoted to understanding how
restricting to binary linear codes affects the structure of the
lattice of cyclic flats. The main result of this section consists
of proving that the lattice of cyclic flats has the property of
being atomic.

In the second part, we will discuss the meaning of these
results for binary linear codes and LRCs. In particular, we
will see that every non-degenerate binary linear (n, k, d)-code
without replication is already a binary linear (n, k, d, r′, 2)-
LRC for a certain r′. Furthermore, for LRCs with δ > 2, we
will see that these codes have a hierarchy in failure tolerance.

a) Structural properties of the lattice of cyclic flats: We
will first begin by the relation between binary linear codes
and the associated matroid. The following proposition is a
reformulation of Proposition 8 in [5] together with the easy
observation that, in a binary linear code, two symbols are
dependent if and only if they are equal.

Proposition 4. Let C be a binary linear (n, k, d)-code. Then
C is non-degenerate with no replication if and only if the
associated matroid M = (E, ρ) is simple and contains no
co-loops.

Now that we have established the type of matroids that
is revelant to our case, we can study the implications of
Proposition 3 for the lattice of cyclic flats. The following
lemma, in addition to being a crucial step towards proving
Theorem 2, has even stronger implications, as it shows that
any element in Z(M) is equal not only to the join, but also
to the union of all the atoms it contains.

Lemma 1. Let M = (E, ρ) be a simple binary matroid that
contains no co-loops, e an element of E, and C a circuit of
M . We have the following results:

1) Z is an atom of Z(M) if and only if η(Z) = 1.

2) cl(C) is an atom of Z(M) if and only if cl(C) = C.
3) If C is a circuit containing e of minimal length, then

cl(C) = C.
4) Every element e ∈ E is contained in an atom.

Theorem 2. Let M = (E, ρ) be a simple binary matroid that
contains no co-loops. Then the lattice of cyclic flats Z(M) is
atomic.

b) Hierarchy of failure tolerance: By Proposition 4,
we can reinterpret Lemma 1 and Theorem 2 as statements
about non-degenerate binary storage codes. Indeed, combining
Lemma 1.4 with Proposition 2, we see that every symbol is
directly contained in a small repair set with δ = 2, i.e., in
a repair set that can correct exactly one erasure. Hence we
obtain the following theorem.

Theorem 3. For every non-degenerate binary linear (n, k, d)-
code C with no replication, C is also an (n, k, d, r′, 2)-LRC
for some r′ ∈ {2, . . . , k}.

Now, if we want to be able to correct more than one erasure,
then the repair sets cannot be atoms of Z(M) as these have
dZ = 2. They have to be at least one level above some atoms.
However, the previous theorem still holds, meaning that for
every symbol, there is also an atom containing it. Thus, we
get a natural hierarchy in failure tolerance. If one node fails,
then we can contact the close-by nodes in the atom to repair
it. If more nodes fail, but no more than δ− 1, we can contact
other repair sets to fix them. And if more than δ − 1 nodes
fail, then we need to use the global properties of the code.

Moreover, by the remark following Theorem 2, it follows
that repair sets are unions of all the atoms below them.
Since the collection of repair sets contains every symbol,
we can choose the collection of atoms that will give us the
(r′, 2) locality to be inside repair sets. The following corollary
summaries the previous observations in one statement.

Corollary 1. Let C be a non-degenerate binary linear
(n, k, d, r, δ)-LRC with no replication and with δ > 2. Let
{Ri}i∈I be the list of repair sets. Then, there exists a collection
of sets {Xj}j∈J such that for all Xj , there exists Ri with
Xj ( Ri such that C is also an (n, k, d, r′, 2)-LRC.

From a practical point of view, this reinforces the usefulness
of the failure tolerance hierarchy. For example, suppose that
the symbol e ∈ E fails. We can start by downloading nodes in
the atom Zeat in order to repair e. Now, if we realize that some
other nodes in Zeat have failed as well, we can keep the part
that we already downloaded from Zeat and contact more nodes
in the corresponding repair set to repair all the failed symbols
in Zeat. Thus, we do not have to restart from the beginning if
we find out during the repair process that a small amount of
other nodes have failed as well.

IV. IMPROVING THE SINGLETON-TYPE BOUND FOR δ > 2

The goal of this section is to improve the existing bound for
non-degenerate linear (n, k, d, r, δ)-codes C when the codes
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are binary, contain no replication and δ > 2. It has been proven
in [16] that, for a linear (n, k, d, r, δ)-code over Fq , we have

d ≤ n− k + 1−
(⌈

k

r

⌉
− 1

)
(δ − 1). (1)

We start by defining a new parameter that represents the
maximum rank of a repair set.

Definition 6. Let C be an (n, k, d, r, δ)-LRC. Let {Ri}i∈I be
the list of repair sets and M = (E, ρ) the associated matroid
to C. We define ` to be ` := maxi∈I ρ(Ri).

As mentioned in the introduction, even if the maximum rank
and r can be assumed to coincide over large field size, this
is no longer the case for binary codes with δ > 2. Indeed, as
binary MDS codes do not exist when the minimum distance is
greater than 2, we must have ` < r for such codes. Moreover,
any bound on the rank of a binary code in terms of its size
and minimum distance, gives a bound on ` in terms of r, and
as a consequence a new translation of our bounds to a bound
in terms of r. As our main interest is in small values of δ,
Proposition 5 is strong enough for the purposes of this paper.

Proposition 5. Let C be a non-degenerate, binary
linear(n, k, d, r, δ)-LRC with δ > 2 and without replication.
Let {Ri}i∈I be the collection of repair sets. Then,

` ≤ r − 1 and η(Ri) ≥ δ for all i ∈ I.
Since we will focus on the rank of the repair sets rather

than on the size, we assume from now on that repair sets are
maximal after fixing its rank or, in matroid terms, that repair
sets are cyclic flats. We will denote these repair sets by Zi
instead of Ri to avoid confusion.

Remember that Proposition 2 links the minimum distance of
a code to the coatoms among the cyclic flats. We would like to
construct a cyclic flat that is close to the coatoms level, to give
an accurate lower bound on max{η(Z) : Z ∈ Z(M)−{E}}.
We will do this by creating a chain in Z(M) of joins of repair
sets and we will call these type of chains repair-sets-chain or,
for short, rps-chain.

Definition 7. Let C be a non-degenerate (n, k, d, r, δ)-code
and {Zi}i∈I the collection of repair sets. Let M = (E, ρ) the
associated matroid. An rps-chain

∅ = Y0 ( Y1 ( . . . ( Ym = E

is a chain in Z(M) defined inductively by
1) Let Y0 = ∅.
2) Given Yi−1 ( E, we choose xi ∈ E \Yi−1 and Zi with

xi ∈ Zi arbitrarily, and assign Yi = Yi−1 ∨ Zi.
3) If Yi = E, we set m = i.

Notice that this chain is not uniquely defined since we can
choose symbols and corresponding repair sets freely.

Now, we are interested in how the rank and the nullity can
increase at each step. To bound the rank and nullity difference
at each step of the rps-chain (Yi)

m
i=2, one can use the rank

axioms to obtain ρ(Yi)− ρ(Yi−1) ≤ ` and η(Yi)− η(Yi−1) ≥
δ − 1. However, this does not take binarity, and in particular
Proposition 3, into account. Indeed, if ρ(Yi) − ρ(Yi−1) = `,

then we must have Yi−1∩Zi = ∅ and ρ(Zi) = `. Hence, there
is no code nor an rps-chain that can simultaneously achieve
both bounds.

Next, we introduce an indicator function that will capture
when the intersection is a coatom of a repair set. To be
more concise, we will denote by Ai the event that Yi−1 ∩
Zi ∈ coAZ(M |Zi). First, this is a necessary condition to have
η(Yi) − η(Yi−1) = δ − 1. Secondly, this will also imply that
ρ(Yi)− ρ(Yi−1) = 1 since every covering relation of a repair
set has a nullity edge by Proposition 3. The following lemma
summarizes these observations.

Lemma 2. Let C be a non-degenerate, binary linear
(n, k, d, r, δ)-LRC with δ > 2 and without replication, and
let M = (E, ρ) be the associated matroid. Let {Zi}i∈I be the
collection of repair sets and (Yi)

m
i=0 an associated rps-chain.

Then (Yi)
m
i=0 has the following properties:

1) ρ(Yi)− ρ(Yi−1) ≤ `− (`− 1)1Ai
for all i = 2, . . . ,m.

2) η(Yi)− η(Yi−1) ≥ δ − 1Ai
for all i = 2, . . . ,m.

In order to use Lemma 2 to get a Singleton-type bound
with these assumptions, we need to define a new parameter
that will count the number of times the intersection Yi−1 ∩Zi
is a coatom of Zi.

Definition 8. Let (Yi)mi=0 be an rps-chain. Define 0 ≤ α ≤ 1
by αm = #{i : Yi−1∩Zi ∈ coAZ(M |Zi)}. We say that (Yi)mi=0

is an rpsα-chain.

We can now derive a new Singleton-type bound with the
extra parameter α.

Theorem 4. Let C be a non-degenerate, binary linear
(n, k, d, r, δ)-LRC with δ > 2 and without replication. Let
α ∈ [0, 1] be such that C has an rpsα-chain. Then,

d ≤ n− k + 1 + δ −
⌈⌈

k

`− (`− 1)α

⌉
(δ − α)

⌉
.

Since this bound is valid for all α, we can optimize α to
get a bound for all types of rps-chain, i.e., a Singleton-type
bound that only depends on the parameters n, k, d, ` and δ.

Theorem 5. Let C be a non-degenerate, binary linear
(n, k, d, r, δ)-LRC with δ > 2 and without replication. Then,

d ≤ n− k + 1−
(⌈

k

`

⌉
− 1

)
δ + 1`|(k−1) and l 6=k−1. (2)

In order to make the comparison to the previously known
bound (1) easier and to emphasize the improvement provided
by the new bound, we state the following corollary of Theorem
5 using Proposition 5. This gives us a bound that only depends
on n, k, d, r and δ.

Corollary 2. Let C be a non-degenerate, binary linear
(n, k, d, r, δ)-LRC with δ > 2 and without replication. Then,

d ≤ n− k + 1−
(⌈

k

r − 1

⌉
− 1

)
δ + 1(r−1)|(k−1) and r 6=k. (3)

We provide one small example that achieves the bound from
Corollary 2.
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Example 1. Let C be the binary linear (10, 4, 4)-code given
by the following generator matrix,

G =



1 0 0 0 1 0 1 1 1 1
0 1 0 0 1 1 0 1 1 1
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1


.

We can define three repair sets by their corresponding
columns in G, Z1 = {1, 2, 3, 5, 6, 8}, Z2 = {2, 3, 6, 7, 9, 10},
and Z3 = {1, 4, 6, 7, 8, 10}.

For all i ∈ {1, 2, 3}, we have |Zi| = 6, ρ(Zi) = 3, and
dZi

= 3, and hence we obtain a binary linear (10, 4, 4, 4, 3)-
LRC that achieves the bound from Corollary 2.

The following graph is a comparison of the previous known
Singleton-type bound (1) and the new one from Corollary 2
for two different values of r. We can see that the new bound
is always better than (or equivalently, smaller) or equal to the
previous bound.

Fig. 1: Comparison of the previous Singleton-type bound (1)
and the new bound (3) for n = 50 and δ = 3.

The most commonly used field-dependent distance bound
for LRCs is the Cadambe–Mazumdar bound [6], which is
only stated without reference to the local minimum distance
(or equivalently, for δ = 2). It can straightforwardly be
generalized to codes tolerating more than one local erasure,
as also noted in [17]:

Proposition 6. (Cf. [17, Remark 3]) Let C be a non-
degenerate linear (n, k, d, r, δ)-LRC over Fq with maximal
local rank `. Then,

k ≤ min
t∈Z+

[
t`+ k

(q)
opt(n− t(r + δ − 1), d)

]
, (4)

where k
(q)
opt(n, d) is the maximum rank of a linear code of

length n and minimum distance d over Fq .

However, the determination of k
(q)
opt is a classical open

problem in coding theory. Moreover, even given a formula
for k(q)opt, evaluating (4) may be a tedious task. In that sense,
the bound (2) is more explicit than this one.

Comparing the bounds (2) and (4) represents a challenge
since (2) is a bound on d with, on the right-hand side, a ceiling
function on k, while (4) is a bound on k with a minimum
over another unknown bound that includes d. One method is
to transform (2) to have every term in k on the left, so it will
be bounded by the remaining terms on the right hand side and
also by the left hand side after replacing k by the maximum
dimension given by (4). The best bound will be the one that
gives the minimum of the two alternative right hand sides.

This allows for a partial but computable comparison of (2)
and (4).

We estimated k
(q)
opt in (4) via the Plotkin bound and took

the approach described above and it turned out, for the values
we tried, the extension of the Cadambe–Mazumdar bound (4)
is better or equal than (2), i.e., gives the afore-mentioned
minimum. However this is only a glimpse of the relation
between the two bounds and the complete comparison is left
for future work. The bound (2) improves the known Singleton-
type bound for binary LRCs and highlights explicitly con-
straints on the minimum distance d. In conclusion, this work
takes the first step toward an explicit bound for binary LRCs
via matroidal techniques, and further improvements can be
obtained by extending the techniques developed in this paper,
via a more detailed (and technical) study of the cyclic flats.
This is left to an extended version of this article.
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Abstract—In this paper we propose a definition of Absorbing
Sets for binary Generalized LDPC (GLDPC) codes. We show that
under practical Max-Log iterative decoding, our AS definition
enables a local description of the message evolution with the
iterations, with a simplified model very similar to the one used
for the analysis of Min-Sum LDPC decoding. Accordingly, these
ASs exhibit a threshold behavior also in GLDPC codes.

Index Terms—Generalized Low-Density Parity-Check codes,
Error floor, Absorbing sets, Max-Log decoding, Tanner graph.

I. INTRODUCTION

After the introduction of Turbo-Codes and the rediscovery

of Low-Density Parity-Check (LDPC) codes, the idea of Gen-

eralized LDPC (GLDPC) codes was also recovered from [1].

GLDPC codes raised new attention as a compromise between

the two aforementioned classes of iterative concatenated codes,

especially because they appeared not to suffer from the error

floor phenomenon. In [2] and [3] it is proven that in the

ensembles of GLDPC codes with Hamming component codes

there exist codes with minimum Hamming distance growing

linearly with the block-size, even with low Variable Node (VN)

degree dv = 2 (GLDPC codes are usually considered with

VN-degree 2 since decoding complexity is minimized and the

code rate is maximized). In other terms, GLDPC codes show

good spectral shape behavior [4].

The good spectral shape behavior, although necessary for

floorless codes, is not sufficient under suboptimal decoding,

such as message passing on graphs with loops. For GLDPC

codes it has been observed that iterative decoders can fail,

ending without valid decisions, both over the Binary Erasure

Channel (BEC) and over the Binary Symmetric Channel

(BSC). In [5] the definition of Stopping Set (SS) from [6]

is generalized to Stopping Set of order m, as a subset S of

VNs whose neighboring Check Nodes (CNs) are connected

to S at least m times. In [5] SSs are identified as the main

cause of error floors both on the BEC and on the BSC

under iterative Hard Bounded Distance decoding. In [7], the

asymptotic exponent of the SS size distribution in GLDPC

codes is investigated in conjunction with the Hamming weight

distribution of the code.

Absorbing sets (ASs), defined in [8], are combinatorial

substructures of the Tanner graph in LDPC codes that describe

the dominant decoding failures of various soft message passing

decoders over AWGN channels [8], [9]. Recently Non-Binary

(NB) LDPC codes have gained new interest and the definition

of ASs has been extended to NB-LDPC codes in [10]. These

ASs are named Generalized AS (GAS) in [11].

Elementary ASs (i.e. with CNs connected no more than

twice to the VNs of the AS) enable a linear state-space

model for the local analysis of the iterative decoder (see [12]

and references therein). In [13] and [14] we studied through

a linear state-space model with saturation, the behavior of

practical iterative decoders in binary LDPC Tanner graphs

with ASs and we defined an AS parameter, the threshold,

that discriminates the existence/non-existence of misleading

equilibria for the iterative decoder.

In this paper we propose a definition of ASs for GLDPC

binary codes that captures decoding failures of practical,

Max-Log [15] iterative decoders, over AWGN channels. We

focus on degree-2 VNs, for which the GAS definition cannot

be trivially extended to GLDPC codes. We show that our

definition of ASs for GLDPC codes, under Max-Log decoding,

enables a linear model similar to that used in [13], [14] for

binary LDPC codes. Therefore also GLDPC decoders exhibit

a threshold behavior in presence of ASs. We show a couple of

examples of GLDPC codes with ASs of size provably smaller

than the minimum Hamming distance of the code, that can

indeed entrap the iterative decoder. Thereby these ASs are

responsible for an error floor whose probability also depends

on the multiplicity of these structures inside the graph. Finally,

we discuss the problem of the search of these ASs in GLDPC

codes with extended Hamming component codes and we check

their multiplicity against a probabilistic computation.

II. GENERALIZED LDPC CODES AND NOTATION

A binary regular GLDPC code, with Nv VNs of degree

dv = 2 and Nc CNs, is defined by the biadjacency matrix

Γ and by the code constraints imposed by the CNs. The

CNs could be a mixture of various component codes. In

this paper, to keep notation simple, we assume one type of

component code only, C(N, K). The matrix Γ has dv = 2
ones per column, N ones per row, and size Nc × Nv , where

Nc = 2Nv/N . Each row of Γ has ones in the columns

corresponding to the N VNs that are constrained to form

a codeword of C. Replacing each 1 in Γ with a column of

the parity check matrix Hc of C we obtain the parity check

matrix H of the GLDPC code, of size (N −K)Nc ×Nv . The

design code rate is R = 1 − (N − K)Nc/Nv = 2Rc − 1 with

Rc = K/N .

In Fig. 1 we draw the bipartite graph of a GLDPC code with

the above constraints. We order the VNs according to the first

set of component codewords, and we let a permutation matrix

π assign the VNs to the CNs according to the matrix Γ, and

their position inside each codeword of C. Iterative decoding is
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Fig. 1. GLDPC Tanner graph with dv = 2 and component code C(N, K).

run by activating the CNs on one side of π, then the VNs, then

the CNs on the other side of π and finally the VNs again, and

then iterating this procedure. An optimal MAP decoder for C,

when activated with input LLRs Lk, (k = 1 . . . N ), computes

extrinsic messages Ej , (j = 1 . . . N) for the VNs, by

Ej = log

∑
c∈C:cj=+1

∏N
k=1 exp(ckLk/2)

∑
c∈C:cj=−1

∏N
k=1 exp(ckLk/2)

− Lj . (1)

When activated, each VN vi, (i = 1 . . . Nv) computes the a

posteriori LLR adding the two extrinsic LLRs E′
i and E′′

i

received by the neighboring CNs, with the channel LLR λi

Oi = λi + E′
i + E′′

i (2)

and the input messages for the two CNs by

L′
i = λi + E′′

i , L′′
i = λi + E′

i. (3)

III. ABSORBING SETS OF GLDPC CODES

An absorbing set [8] in LDPC codes is a subset of VNs that,

although not forming a codeword, locally satisfy a majority

of neighboring CNs of each VN. These subgraphs can lock

the iterative decoders to wrong decisions, despite some CNs

left unsatisfied, because iterative decoding processes messages

only at a local level. Assume to transmit the all-zero codeword,

corresponding to symbols ci = +1, ∀i: messages greater

than zero correspond to correct decisions, whereas negative

messages correspond to errors. Suppose that, at a certain

iteration, the decoder has negative decisions for all the VNs

of an AS. Satisfied CNs propagate negative messages that

reinforce the wrong decisions. Unsatisfied CNs try to correct

these values forwarding positive messages, but they are a

minority and thus can fail to correct the decisions.

In GLDPC codes, CNs compute messages based on the

component code C as in (1). In practical implementations,

MAP decoders (1) are generally replaced by their Max-Log

versions, and messages are quantized and saturated to a

maximal value. Assuming Max-Log decoding and a function

sat that clips extrinsic messages to their maximum value,1 (1)

is replaced by

Ej = sat


 max
c∈C:cj=+1

N∑

k 6=j

ckLk

2
− max

c∈C:cj=−1

N∑

k 6=j

ckLk

2


 (4)

1Apart from saturation, in Eq. (4) Ej is linear in the inputs Lk . The
saturation level can be set arbitrarily as long as all Lk and Ej are scaled
accordingly. In this paper, as in [13], we assume a function sat(x) that clips
x to ±1 and input LLRs Lk scaled by the maximal extrinsic value Emax.

Fig. 2. Examples of Absorbing Sets for GLDPC codes with component codes
of minimum Hamming distance dH = 4.

By (4) it is apparent that a CN propagates a negative message

Ei whenever the most likely codeword (neglecting Li) has

ci = −1. And this can happen, even with one single negative

input message Lk, provided its reliability is higher than the

sum of the positive ones. In other words, a simple classification

of neighboring CNs satisfied/unsatisfied does not capture the

harmful subgraphs that entrap the decoder.

In GLDPC codes, a set of VNs with values -1 must match

a codeword of C to locally satisfy the CN. This set must have

at least size dH , where dH is the minimum Hamming distance

of C. Suppose that the two max operators in (4) select c = +1
and a codeword of weight dH , e.g., without loss of generality,

with ck = −1 in positions k = 1, 2 . . . dH . The output (4)

of the CN does not depend on the rest of the LLRs in the

component codeword, and it reads

Ej = sat [L1 + L2 + . . . LdH
− Lj , ] j = 1...dH . (5)

Thereby, under Max-Log decoding, we can write a quasi-

linear relation between input and output messages inside the

set of VNs that correspond to low weight codewords of the

component codes.

A. Saturated Linear Model for CN and VN Decoders

For instance, assume that C is an extended Hamming (eH)

code with dH = 4, and that the permutation matrix π allows

subgraphs like that drawn in Fig. 2 (a). The subset of VNs

D = {v1, v2, v3, v4, v5}, of size a = 5, is the union of the

VNs that form two minimum Hamming weight codewords of

C, constrained by the two CNs. Let x = [x1, . . . x6]
T be the

extrinsic messages sent by the two CNs to the VNs in D2 ⊂ D
which are connected to both of them, i.e., D2 = {v2, v3, v4}.

Using (5), we can write a quasi-linear system (apart from

saturation) that describes the iterative activation of VNs and

CNs and involves the messages x(k) generated by the CNs

at the kth iteration, the channel LLRs λ, and the messages

e = [e1, e2]
T received by v1 and v5, respectively, from CNs

outside the subgraph. In matrix form, the system reads

x(k) = sat
(
Ax(k−1) + Re + Cλ

)
(6)

where the 6 × 6 routing matrix A and the 6 × 2 external

LLRs matrix R forward the internal extrinsic messages x(k−1),
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and the external extrinsic messages e, respectively. The 6 × 5
channel LLRs matrix C combines the channel LLRs λi of

each VN vi, (i = 1...5) inside each message xj . I.e.,

A =




0 0 0 0 1 1
0 0 0 1 0 1
0 0 0 1 1 0
0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 0 0 0




, C =




1 0 1 1 0
1 1 0 1 0
1 1 1 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1




,

RT =

[
1 1 1 0 0 0
0 0 0 1 1 1

]
.

Note that, unlike in the state-space linear model of [13], here

the CNs generate the linear combinations of internal messages,

whereas the degree-2 VNs swap the messages of the two

incoming edges. The system (6), that locally describes iterative

decoding, allows misleading equilibria, i.e. pairs of vectors

(x,λ) such that x = sat (Ax + Re + Cλ) is stable along

the iterations and produces wrong decisions. For instance, the

pair (x,λ) = (−1, −1) is an equilibrium for any vector e
since e ≤ 1 because of saturation,2 and it corresponds to

wrong decisions about all VNs in D since Oi < 0, i = 1..5
according to (2). These decisions cannot be changed by further

iterations, independently of the messages incoming from the

external graph, despite the CNs are not satisfied. In other

words, the subgraph of Fig. 2 (a) is an absorbing set.

We can look for sufficient conditions for system (6) to

converge to an equilibrium corresponding to correct decisions.

As in [13], we assume that in the rest of the graph messages

converge towards correct decisions and we start the analysis

of the iterations when the messages received by D from

external CNs are already saturated to their maximal value,

e = +1. This point of view is chosen to decouple the

dynamical behavior of the decoder inside and outside the AS.

By this choice we should use an initial vector x(0) which is

the result of the message evolution up to that iteration, which

is unknown. Since we are looking for sufficient conditions,

we can consider any starting configuration x(0). If no x(0)

results in a convergence failure, the AS cannot trap the decoder

independently of this message evolution.

Note that the ith row weight of A is equal to the number of

internal messages xj that are added to the external messages

ek to compute the extrinsic LLR xi as by (5). Since we are

assuming that e = +1, we have A1 + Re = (dH − 1)1, and

(6) can be rewritten as

x(k) = sat
(
A

(
x(k−1) − 1

)
+ (dH − 1)1 + Cλ

)
. (7)

If we let Cλ = µ = [µ1, µ2...µ6]
T , the system (7) is

formally identical to the system assumed in [13] and [14].

The only difference is that each entry µi is the sum of the

dH − 1 independent channel LLRs of the VNs that complete

a codeword of weight dH with the recipient of xi.

2In our notation, 1 is the all-ones column vector and the inequalities when
applied to vectors are to be meant component-wise.

The formal equivalence of the dynamical system (7) with

[14, Eq.(8)], reveals a threshold behavior similar to ASs for

binary LDPC codes. Given the equilibrium of the system (7),

i.e. pairs (x,µ) such that x = f (x,µ) with

f (x,µ) = sat (A (x − 1) + (dH − 1)1 + µ) , (8)

we can compute τµ defined as

τµ = max
(µ,x)

min(µ) (9)

s.t. − 1 ≤ x ≤ 1, ∃j : xj < 1, x = f (x,µ)

In [13] it is proven that if µi > τµ, ∀i, no misleading equi-

librium, nor periodic or aperiodic sequence x(k) is generated

by (7) for any initial state x(0). Thus (7) converges to x = +1
that is the only equilibrium allowed. This equilibrium leads the

VNs to correct decisions, since the a posteriori LLR is equal

to Oi = 2+λi.
3 The corresponding threshold for each channel

LLR λi can be taken as τ = τµ/(dH − 1). If λi > τ, ∀i then

µi > (dH − 1)τ = τµ, ∀i. Since in this condition there exist

no equilibrium with x 6= +1, the decoder cannot be trapped

by this AS.

If no channel LLR can take values below the AS threshold

τ , the AS cannot trap the decoder, and we say it is deactivated.

As shown in [13], a practical way to deactivate an AS with

threshold τ < 0, is by setting different saturation levels λmax

and Emax for the channel and extrinsic LLRs, representing

them with a different number of bits, say qI and q, respectively.

If τ < −λmax/Emax, the AS is deactivated.

The AS of Fig. 2 (a) has threshold τ = 0 since τµ = 0,

and it cannot be deactivated. We verified by simulation over a

real GLDPC graph, namely C1, with eH (128,120) component

codes and blocksize Nv = 16384, that these ASs can indeed

trap the iterative decoder. Using λmax = 7 for the channel

LLRs and increasing values Emax by using q = 4, 5 and 6 bits

to represent the extrinsic LLRs, did lower the Word Error Rate

(WER) contribution of each one of these ASs (from 3 · 10−8,

to 2.5 · 10−9 and 2 · 10−11 respectively, at SNR Es/N0 = 3.6
dB, 20 iterations) but they could trap the decoder anyway.

A different type of AS, also found in the GLDPC graph,

has the subgraph drawn in Fig. 2 (b) and can be analyzed

with the same method. Since its threshold τ = −2/3, it can

trap the decoder with q = 4, but it is deactivated with q =
5 since −λmax/Emax = −7/15 > τ . Importance Sampling

(IS) simulation with received vectors biased in the direction

of these ASs, did not deliver any error event with q ≥ 5.

An intuitive picture of the decoders behavior with these ASs

is shown in Fig. 3 where the two plots (a) and (b) refer to the

ASs of Fig. 2 (a) and (b), respectively. We plot the received

vectors that generated a decoding failure, separating the two

components r1 and r2: r1 is the component (normalized by

1/a) along the direction joining the a-length transmitted vector

+1 and the a-length AS vector −1; r2 is the orthogonal

component, in the a dimensional subspace. In Fig. 3 (a) we

see that error events are registered for any value of q. The

3Here, the dynamic range of λi is assumed not higher than E′
i and E′′

i .

International Zurich Seminar on Information and Communication (IZS), February 21 – 23, 2018

110



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

r
1

r 2

(b)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
(a)

r
1

r 2

 

 

q=4

q=5

q=6

Fig. 3. Error regions for the iterative GLDPC decoders with the small
Absorbing Sets of Fig. 2 (a) and (b).

error region becomes slightly smaller increasing q, but does

not disappear. On the contrary in Fig. 3 (b) we see error events

for the q = 4 decoder only, and the error region is faraway

from +1. Even with q = 4, the WER contribution of each of

the AS of Fig. 2 (b) is much smaller (approximately 7 ·10−12)

and the error-floor is dominated by the ASs of Fig. 2 (a).

B. GLDPC Absorbing Sets Definition

The most important difference between the two ASs of

Fig. 2 is that their CNs receive a different number of positive

messages e from the external graph. We define the degree of

dissatisfaction (o) of a CN by negative decisions about the

VNs in D, as the number of messages received from outside

the AS. In the AS we need to consider all CNs with a degree

of dissatisfaction o ≤ w −2, where w is the Hamming weight

of the codeword of C considered. In fact, a CN with o = w−1
behaves as the external graph. In other words, we include in

the AS all the CNs that exchange at least two messages with

the VNs of degree two in the AS.

Definition III.1. In the Tanner graph of a binary GLDPC

code, with VN-degree dv = 2, an Absorbing Set is a subgraph

with a subset E of the CNs, and a subset D = D1 ∪D2 of the

VNs, where Di are the VNs in D with i neighboring CNs in

E , if

1) D is the union of low Hamming weight codewords for

each CN c ∈ E .

2) E is the subset of the neighboring CNs of D, that are

connected at least twice to D2.

If we are interested in the smallest ASs, we need to consider

the minimum weight (dH) codewords for each CN in E . Each

AS can be classified by a triplet (a, b, o) where a = |D|,
b = |E| and o is the degree of dissatisfaction of the CNs in E .

For instance, the AS in Fig. 2 (a) is a (5,2,1) AS, whereas in

Fig. 4. Smallest ASs compatible with girth-8 constrained adjacency matrix
and dH = 4 component codes: AS (12,4,2) (a) and AS (15,6,1) (b).

Fig. 2 (b) we have a (6,2,2) AS.4 We can imagine other ASs

but these two have the minimum size a. However, constraints

on the adjacency matrix can be easily imposed to exclude these

small ASs. In the next subsection we discuss this topic.

C. Absorbing Sets of Girth-Constrained GLDPC Codes

Subgraphs like those drawn in Fig. 2, can be found in

GLDPC codes with random interleaving π, but they cannot

occur in graphs with adjacency matrix Γ of girth 8, i.e.,

with the property that any two CNs share no more than one

VN (see, for instance, [16] or [4]). Consider again dH = 4
component codes, but with a girth-8 adjacency matrix Γ. The

smallest possible AS that can exist in this GLDPC graph is a

(12,4,2) AS, that involves four CNs with o = 2 and 12 VNs,

and it is represented in Fig. 4 (a). The corresponding system

of equations (6) returns a threshold τ = −2/3. These ASs can

therefore be easily deactivated.

The smallest possible AS with o = 1 for all CNs is the

(15,6,1) AS shown in Fig. 4 (b). This is a more dangerous

AS, and cannot be deactivated since its threshold is τ = 0.

We checked the behavior of these ASs by IS simulation over

a GLDPC graph C2 with girth-8 adjacency matrix Γ built by

circulant blocks [16], extended Hamming (64,57) component

codes and blocksize Nv = 32768 (R = 25/32). We verified

that the ASs shown in Fig. 4 (b) can trap iterative decoders

with q = 4, 5 or 6 bits for the representation of the extrinsic

LLRs. In particular at Es/N0 = 2.5 dB we found that each

AS contribution to the total WER is 3 · 10−19, 6 · 10−22 and

5 · 10−26 with q = 4, 5 or 6, respectively.

IV. SEARCH AND ENUMERATION OF GLDPC AS

The error probability due to the ASs with a certain topology

also depends on their multiplicity. Their search and enumer-

ation in a specific graph requires the inspection of both the

adjacency matrix Γ and of the component codebook C. This

search is quite complex in general. Hamming codes exhibit the

simplifying property that any pair of ones can be completed

with a third one in a specific position to get a codeword. This

property is inherited by eH codes: any triplet of ones can be

turned into a codeword with a single fourth one in a specific

position. Our inspection can thus focus on Γ, enumerating all

4In general, different CNs inside an AS could have different degrees o, but
in our examples, this does not occur, so we take it as a scalar value.
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triplets of VNs shared by two CNs. The two codewords of

weight 4 including those VNs can be identified later.

We want to enumerate in C1 the ASs (5,2,1) with subgraph

shown in Fig. 2 (a). The GLDPC code C1 has blocksize Nv =
16384 bits, constrained by Nc = 2N = 256 eH(128,120) CNs,

R = 2Rc −1 = 7/8, and a purely random permutation matrix

π. We stress the fact that the Hamming weight of these ASs

(a = 5) is smaller than the minimum Hamming distance dmin

of C1, since we checked that there is no Hamming weight 4 or

6 codeword allowed by π, hence dmin ≥ 8 in C1. We have one

AS (5,2,1) for every triplet of bits shared by two CNs, which

can be enumerated. The number of bits shared by a pair of CNs

under a random permutation π, as a first approximation, has

a binomial probability distribution of parameter 2/Nc = 1/N .

The expected number of AS (5,2,1) in a code like C1 is

A5 = N2
N∑

k=1

(
k

3

)(
N

k

)
1

N

k (
1 − 1

N

)N−k

≈ 2667. (10)

The exhaustive inspection of C1 enumerated 2705 ASs (5,2,1).

These are responsible for an error-floor at WER 8 · 10−5, 7 ·
10−6 and 5 · 10−8 for Max-Log decoders with q = 4, 5 and

6, respectively (at Es/N0 = 3.6 dB, 20 iterations).

Later, we chose eH(64,57) component codes for a Quasi-

Cyclic GLDPC code C2 with blocksize Nv = 32768, R =
2Rc − 1 = 25/32 and a girth-8 adjacency matrix Γ built as in

[16]. The matrix Γ has dv = 2 row-blocks of N = 64 circulant

matrices of size S × S, with S = 512. The shifts of the first

row-block were set to zero. The shifts of the second row-

block s1, s2...sN have been chosen randomly, but all distinct

to guarantee girth g = 8. With g = 8 the minimum Hamming

distance of the code is dmin ≥ 16 [4] and thus larger than the

most critical AS analyzed, of size a = 15.

To enumerate the ASs (15,6,1), we need to look in the

graph of C2, for triplets of cycles of length 8 that share 9

VNs and 6 CNs. For each triplet we have exactly one AS

(15,6,1). The exhaustive inspection of the graph enumerated

about 4400 × S ≈ 2.3 · 106 ASs (15,6,1). We can check this

number against a probabilistic argument. Select three VNs,

in columns c1, c2, c3 from three different column-blocks of

Γ, with shifts s1, s2, s3 in the second row-block. We have

S3
(
N
3

)
different choices. Pick any two of these three VNs. The

probability that there exists a cycle of length 8 across these two

VNs is the probability that there exist in Γ two circulant blocks

of shifts s1±(c1−c2) mod S. This probability is (N/S)2 by

random choice of the shifts, hence the probability that all the

three pairs belong to cycles of length 8 is (N/S)6. Finally, if

a triplet of cycles like this exists, it is counted 6 times by this

combinatorial argument. As a first approximation, the expected

number of these ASs (15,6,1) is

A15 =
1

6
S3

(
N

3

)(
N

S

)6

≈ 3 · 106. (11)

Taking the multiplicity into account, the total estimated WER

contribution of these ASs is 7 · 10−13, 10−15 and 2 · 10−19

for Max-Log decoders with q = 4, 5 and 6, respectively (at

Es/N0 = 2.5 dB, 20 iterations).

V. CONCLUSIONS

In this paper we have proposed a definition for combinato-

rial substructures of the Tanner graph of binary VN-degree 2,

GLDPC codes, that can trap practical Max-Log decoders over

AWGN channels, i.e., Absorbing Sets of GLDPC codes. For

these structures we can derive a quasi-linear model that reveals

a threshold behavior similar to ASs in binary LDPC codes. The

model predictions have been checked via IS simulation over

two examples. Design constraints on the adjacency matrix of

the code can avoid the smallest structures, but larger ASs able

to trap the iterative decoders do exist. In case of extended

Hamming component codes we enumerated by exhaustive

search the most critical ASs and we checked our results against

combinatorial arguments.
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Abstract—It was recently shown by Fazeli et al. that the storage
overhead of a traditional t-server private information retrieval
(PIR) protocol can be significantly reduced using the concept of
a t-server PIR code. In this work, we show that a family of t-
server PIR codes (with increasing dimensions and blocklengths)
can be constructed from an existing t-server PIR code through
lengthening by a single information symbol and code extension
by at most

⌈
t/2

⌉
code symbols. Furthermore, by extending a

code construction notion from Steiner systems by Fazeli et al.,
we obtain a specific family of t-server PIR codes. Based on
a code construction technique that lengthens and extends a t-
server PIR code simultaneously, a basic algorithm to find good
(i.e., small blocklength) t-server PIR codes is proposed. For the
special case of t = 5, we find provably optimal PIR codes for
code dimensions k ≤ 6, while for all 7 ≤ k ≤ 32 we find
codes of smaller blocklength than the best known codes from
the literature. Furthermore, in the case of t = 8, we also find
better codes for k = 5, 6, 11, 12. Numerical results show that
most of the best found 5-server PIR codes can be constructed
from the proposed family of codes connected to Steiner systems.

I. INTRODUCTION

Private information retrieval (PIR) has attracted significant
attention for well over a decade since its introduction by Chor
et al. in [1]. A formal PIR protocol allows to privately retrieve
a single file among the servers storing it without revealing
any information about the requested file to each individual
server. Traditional PIR protocols operate on a database of n
bits, which is replicated among several servers to achieve PIR.
Thus, the storage overhead of traditional PIR protocols is at
least 2, and the overall goal is to reduce the total upload and
download cost of the protocol.

PIR for distributed storage systems was first addressed in
[2]. For distributed storage systems the size of the requested
file is typically much larger than the number of files, and
thus the upload cost is much lower than the download cost.
Hence, only the download cost is considered, as opposed to
traditional PIR protocols. Recent work on PIR protocols for
distributed storage systems typically assumes that the storage
code is given, and then the PIR protocol is designed as a
second layer to the system [3], [4]. This is in contrast to the
work by Fazeli et al. in [5], where, in order to reduce the
storage overhead of traditional PIR protocols, the concept of
a t-server PIR code was proposed. A t-server PIR code is an
[n, k] linear code satisfying the so-called t-PIR property, i.e.,

This work was partially funded by the Research Council of Norway (grant
240985/F20).

for every information symbol, there exist t mutually disjoint
subsets of {1, 2, . . . , n} such that it can be recovered from the
code symbols indexed by any of these t subsets. By employing
an [n, k] t-server PIR code, they have shown that all known
t-server information-theoretic PIR protocols can be emulated
by a coded PIR protocol with storage overhead equal to n/k.

Finding good codes that operate efficiently with a small stor-
age overhead, i.e., designing a t-server PIR code with a small
blocklength for a given dimension, is an important research
challenge. In [5], an insightful series of t-server PIR code
constructions based on existing code construction techniques
were presented. In the recent work of [6], the authors found
that the so-called shortened projective Reed Muller (SPRM)
codes are good t-server PIR codes for t = 2` − 1 and 2`

where ` is a positive integer. For t = 3, 4, it was shown in [6]
that SPRM codes are indeed optimal in the sense of achieving
a lower bound on the blocklength of a t-server PIR code.

In this work, we will show that a t-server PIR code with
small blocklength can be constructed by lengthening and
extending an existing PIR code. Furthermore, we prove that
a certain family of codes associated with Steiner systems
possesses the t-PIR property. Since optimal codes for t ≤ 4 are
known (see [5], [6]), we mainly focus on the special case of
t = 5 (or, equivalently, t = 6) for which we show that provably
optimal PIR codes can be constructed from lengthening and
extending an existing PIR code for code dimensions k ≤ 6,
while for all 7 ≤ k ≤ 32 we find codes of smaller blocklength
than the best known codes from the literature. Moreover, we
also show that for certain values of k, SPRM codes are not
optimal for t = 8.

II. DEFINITIONS AND PRELIMINARIES

Throughout this paper, we will focus on binary codes only.
Component-wise addition of vectors from a vector space will
be written as normal addition, and as is customary in coding
theory, we denote row vectors by boldface italic Roman
letters, e.g., x. However, sometimes we will slightly abuse
this notational convention by using c to refer to a column
vector. Moreover, whether an all-zero vector 0 (or an all-one
vector 1) is a row vector or a column vector will become clear
from the context. The Hamming weight of a binary vector x
is denoted by wH(x) throughout the paper.

A. t-Server PIR Codes
Definition 1: Consider an [n, k] linear code C and its

corresponding generator matrix G ,
[
c1, . . . , cn

]
. This [n, k]

International Zurich Seminar on Information and Communication (IZS), February 21 – 23, 2018

113



code is said to be an [n, k; t] PIR code if for every i ∈ Nk ,
{1, 2, . . . , k}, there exist t mutually disjoint sets R(i)

h , h ∈ Nt,
such that

ei , (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0)T =
∑

j∈R(i)
h

cj , ∀ h ∈ Nt,

where superscript “T” denotes vector transposition. We also say
that such a code C (or G) has the t-PIR property. Moreover,
given a message symbol ui, i ∈ Nk, those mutually disjoint
sets R(i)

h , h ∈ Nt, are called the recovering sets for ui.
For given values of k and t, the minimum value of n for

which an [n, k; t] PIR code exists is of great interest. This
motivates us to look at a related parameter in conventional
coding theory: the length of the shortest binary linear code
with dimension k and minimum Hamming distance d. The
smallest blocklength of a linear code for fixed values of
(k, d) has been discussed extensively in the existing literature.
Note that our notation of an [n, k; t] PIR code should not
be confused with the usual three parameters notation of an
[n, k, d] linear code, where the third parameter d denotes the
minimum Hamming distance of the [n, k] code. We make the
following definitions.

Definition 2:

NP(k, t) , min{n : an [n, k; t] binary PIR code exists}.
N(k, d) , min{n : an [n, k, d] binary linear code exists}.

B. Bounds for t-Server PIR Codes

It is well-known that the minimum Hamming distance d of
a t-server PIR code must be at least t [7].

Proposition 1: If an [n, k; t] PIR code exists, then its
minimum Hamming distance d must satisfy d ≥ t.

Corollary 1: For given values of k and t, NP(k, t) is lower-
bounded by the smallest blocklength n such that an [n, k, t]
code exists, i.e., NP(k, t) ≥ N(k, t).

Proof: See the extended version [8].
In [6], a lower bound on the minimum blocklength NP(k, t)

for any systematic [n, k; t] PIR code was presented. As shown
in [9], the bound from [6] also holds for any binary [n, k; t]
PIR code. The lower bound from [6], denoted by LP(k, t), is

LP(k, t) , k +

⌈√
2k +

1

4
+

1

2

⌉
+ t− 3, t ≥ 3.

It can easily be verified that in general N(k, t) ≥ LP(k, t) for
small values of t > 4. In fact, we will show in Section V that
N(k, t) is a tighter lower bound on NP(k, t) than LP(k, t) for
t = 6.

Some useful upper and lower bounds on NP(k, t) were
provided by Fazeli et al. in [5]. Together with the constructions
introduced therein, the authors provided an upper bound table
on NP(k, t) for all values of k ≤ 32 and t ≤ 16. We briefly
summarize their results below.

Lemma 1 (Lemmas 13 and 14 in [5]):
(a) NP(k, t+ t′) ≤ NP(k, t) +NP(k, t

′),
(b) NP(k + k′, t) ≤ NP(k, t) +NP(k

′, t),

(c) NP(k, t) ≤ NP(k + 1, t)− 1,
(d) NP(k, t) ≤ NP(k, t+ 1)− 1, and
(e) if t is odd, then NP(k, t+ 1) = NP(k, t) + 1.

III. CODE CONSTRUCTIONS

In this section, we first present a code construction by
lengthening and extending a given PIR code, and then present
an extension of a code construction inspired by Steiner systems
proposed by Fazeli et al. in [5]. An earlier work constructing
PIR codes (and even stronger batch codes) for t = k based
on Steiner systems (and more general block designs) was
presented in [10].

A. Lengthening and Extending PIR Codes

In the following theorem, we will investigate an important
property of a PIR code with an arbitrary positive integer t.

Theorem 1: For any given t ∈ N , {1, 2, . . .}, we have

NP(k + 1, t) ≤ NP(k, t) +

⌈
t

2

⌉
.

Proof: See the extended version [8].
Theorem 1 is an improved version of part (b) of Lemma 1

for k′ = 1, while for k′ > 1, it is an improved version only if
k′
⌈
t
2

⌉
< NP(k

′, t). This theorem suggests that for a given even
value of t, a new t-server PIR code can always be generated
by adding one information symbol and appending at most t/2
code symbols to the original t-server PIR code.

Next, we will discuss a special family of systematic codes
that will help in the numerical search for good PIR codes with
small blocklength, especially when k is large.

B. Construction of PIR Codes Based on Steiner Systems

In [5], a systematic code construction based on Steiner
systems was proposed, in which the authors introduce a rep-
resentation method of systematic codes, and give a sufficient
(but not necessary) condition for constructing PIR codes.

Definition 3: Let Pk = {Pj}rj=1 be a collection of
subsets of Nk. A systematic [n = k + r, k] code C can
be represented by defining the codewords of C as x ,
(u1, . . . , uk, xk+1, . . . , xk+r), where u1, . . . , uk are the infor-
mation bits of the code and each redundancy bit xk+j is
defined as xk+j ,

∑
i∈Pj

ui, j ∈ Nr.
We denote the constructed code by C (Pk). Furthermore,

for the sake of notational convenience, we define J (i) ,
{
j ∈

Nr : i ∈ Pj
}

to be the set of indices j ∈ Nr such that i ∈ Pj .
The systematic generator matrix G of this code can be

written as G =
[
Ik|Pk×r

]
, where Ik is the k×k identity matrix

and the k × r redundancy matrix Pk×r = {pij}1≤i≤k, 1≤j≤r
is defined by

pij ,
{
1, if i ∈ Pj ,
0, otherwise.

Lemma 2 (Lemma 7 in [5]): Suppose that a collection Pk =
{Pj}rj=1 satisfies the following properties.

1) For all i ∈ Nk,
∣∣J (i)

∣∣ ≥ t− 1, and
2) for all j 6= j′ ∈ Nr,

∣∣Pj ∩ Pj′
∣∣ ≤ 1.
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Then, the corresponding systematic code C (Pk) is a t-server
PIR code.

The above lemma only leads to an absorbing upper bound
on the redundancy NP(k, t) − k for fixed t and sufficiently
large k, which shows that it is equal to O(

√
k). However, for

smaller values of the parameter k, whether or not this upper
bound is tight is still unknown. Moreover, in [5] a similar
PIR code construction based on constant-weight codes was
provided, where all rows of Pk×r have constant weight and a
given minimum Hamming distance.

It is known that the minimum Hamming distance d of a PIR
code must be larger than or equal to the desired parameter t
(see Proposition 1), and so are the row Hamming weights of
any generator matrix G for the code. Hence, it is reasonable
to change the sufficient condition of

∣∣J (i)
∣∣ ≥ t−1 in Lemma

2 to
∣∣J (i)

∣∣ = t− 1, ∀ i ∈ Nk.
Motivated by Steiner systems, we define a more elaborate

systematic code family as follows.
Definition 4: For any integer t ∈ N and a given collection

Pk = {Pj}rj=1 of subsets of Nk, we say that a systematic
code C (Pk) (or its corresponding generator matrix) has
property St if all of the following conditions are satisfied.

1) Pr = Nk,
2)
∣∣J (i)

∣∣ = t− 1 for all i ∈ Nk,
3)
∣∣Pj ∩ Pj′

∣∣ ≤ 1 for all j 6= j′ ∈ Nr−1, and
4) for any given m ∈ Nk, there exists a subset I(m) ⊆ Nk

with I(m)∩
(⋃

j∈J (m)\{r} Pj
)
= ∅ and a subset V(m) ⊆

Nr−1 with V(m) ∩ J (m) = ∅ such that

um +
∑

i∈I(m)

ui +
∑

j∈V(m)

∑

i∈Pj

ui =

k∑

i=1

ui.

Similarly to Lemma 2, a systematic code with property St
turns out to be an [n, k; t] PIR code.

Lemma 3: If a systematic code C (Pk) has property St,
then it is an [n = k + r, k; t] PIR code.

Proof: See the full version [8].
The following example illustrates the code design of

Lemma 3.
Example 1: For an [n, k] = [17, 8] systematic code, we

describe it in terms of P8 as follows:

P8 ,
{
P1 , {1, 2, 3},P2 , {1, 4, 6},P3 , {1, 5, 7},
P4 , {2, 4, 8},P5 , {2, 5, 6},P6 , {3, 4, 7},
P7 , {3, 5, 8},P8 , {6, 7, 8},P9 , N8

}
.

One can see that r = 9 and that the systematic code C (P8)
has property S5. Here, condition 4) can be verified by the
following observations (e.g., take m = 1, 8):

J (1) = {1, 2, 3, 9}, J (8) = {4, 7, 8, 9},
I(1) = {8}, I(8) = {1}, V(1) = V(8) = {5, 6},
N8 = {1} ∪ P5 ∪ P6 ∪ {8}.

Then, we can conclude that this code is a 5-server [17, 8] PIR
code. For example, the recovering sets for the first information
bit are determined by R(1)

1 = {1},
R(1)

2 = {m ∈ P1 : m 6= 1} ∪ {k + 1} = {2, 3, 9},

R(1)
3 = {m ∈ P2 : m 6= 1} ∪ {k + 2} = {4, 6, 10},
R(1)

4 = {m ∈ P3 : m 6= 1} ∪ {k + 3} = {5, 7, 11},
R(1)

5 = {8, k + 5, k + 6, k + r} = {8, 13, 14, 17}.
In fact, the idea behind Lemma 3 is to try to combine the

properties of Steiner systems and part (e) of Lemma 1, in such
a way that we can construct an [n+1, k; t+1] PIR code from
an [n, k; t] PIR code when t is even.

We also remark that a systematic [n, k; t] PIR code with
property St usually has different cardinalities of its recovering
sets (the so-called non-uniform information-symbol locality
property). For instance, for the code of Example 1, each
information symbol has 1 recovering set of cardinality 1,
3 recovering sets of cardinality 3, and 1 recovering set of
cardinality 4. This is also in alignment with [6], where
the presented PIR codes in general have recovering sets of
different cardinalities. In Section V, we will show that codes
having property S5 are good 5-server PIR codes with small
blocklength.

IV. SEARCHING FOR OPTIMAL PIR CODES

In this section, we present an algorithm to search for
good (i.e., small blocklength) PIR codes. Since optimal codes
for t ≤ 4 are already known for all code dimensions k,
we concentrate on t = 5. Because Theorem 1 implies that
we can construct a t-server PIR code by lengthening and
extension, hence, combined with the idea of lexicographic
code construction [11], Algorithm 1 is proposed to find a
sequence of good systematic PIR codes for t = 5.1

Initially, we choose the best known [n, k; 5] code with a
systematic generator matrix in which all rows have weight 5.
Note that for small values of n and k, such a code is not too
difficult to find. As an example, the generator matrix G of a
systematic [8, 2; 5] code in which all rows have weight 5 is

G =

[
1 0 1 1 1 0 0 1
0 1 1 0 0 1 1 1

]
. (1)

The outer while loop of Algorithm 1 increases a counter
(denoted by i) from 1 to

(
r+w
4

)
(the counter runs over all

possible length-(r + w) binary vectors of weight 4). The
function LengtheningExtending(Gbest, z) in Line 6 of
Algorithm 1 is defined by

G̃ ,
[
Ikbest 0 Pkbest×(r+w)

0 1 z

]
,

kbest + 1 r + w

where Gbest =
[
Ikbest |Pkbest×(r+w)

]
and wH(z) = 4.2 Note that

if w = 2, it follows from the proof of Theorem 1 in [8] that
kbest ≥ k + 1; explaining why we choose 1 ≤ w ≤ 2 from
the beginning. Furthermore, notice that for w = 1, sometimes

1In general, this algorithm can be applied for any t. The main reason why
we focus on small values of t is that when t is increasing, the complexity to
determine whether a code has the t-PIR property is also increasing.

2Note that the definition of G̃ guarantees that Gbest is always in systematic
form in each iteration.
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Algorithm 1: Searching for optimal 5-server PIR codes
Input : A systematic constant row-weight-5 generator

matrix G = [Ik|Pk×r] for an [n, k; 5] code, and a
given w ∈ N2.

Output: A systematic constant row-weight-5 generator
matrix Gbest for an [nbest, kbest; 5] code, where
kbest ≥ k is the largest possible code dimension
found and nbest = kbest + r + w.

1 Gbest ← [Ik|Pk×r|Ok×w], kbest ← k
2 /* Ok×w is a k × w all-zero matrix */
3 i← 1
4 z ← the row vector (1, 1, 1, 1, 0, . . . , 0) of length r + w
5 while i ≤

(
r+w
4

)
do

6 G̃← LengtheningExtending(Gbest, z)
7 d̃← minimum Hamming distance of G̃
8 /* we simply say a code G̃ is the set of all rows of G̃ */
9 if d̃ ≥ 6 then

10 if G̃ has the 5-PIR property then
11 Gbest ← G̃, kbest ← kbest + 1
12 else
13 return (Gbest, kbest)
14 end
15 end
16 i← i+ 1, z ← Lexical(z)
17 end
18 if kbest = k then
19 Gbest ← G
20 end
21 return (Gbest, kbest)

the algorithm only results in the original input code. We also
verify whether d̃ ≥ 6 or not in Line 9 of Algorithm 1. This is
to ensure that the resulting code generated by G̃ can potentially
satisfy Proposition 1.3 Finally, given a vector z, Lexical(z)
generates the next lexicographical constant-weight z of length
r + w, e.g., Lexical(z) = (1, 1, 1, 0, 1, 0, . . . , 0) for z =
(1, 1, 1, 1, 0, . . . , 0).

We also remark that the resulting kbest from Algorithm 1
strongly depends on the selected G = [Ik|Pk×r] and the
given w in the input. It is difficult to predict whether the
corresponding blocklength nbest is good or not. For example,
given the systematic [n = k + r, k; t] = [8, 2; 5] code defined
in (1) and w = 1, the output from Algorithm 1 is an
[nbest, kbest; 5] = [11, 4; 5] code without property S5, while for
w = 2, Algorithm 1 results in an [nbest, kbest; 5] = [13, 5; 5]
code with property S5 (see Section V that follows). Now, for
code dimension k = 4, the [11, 4; 5] code is better than the
[12, 4; 5] code obtained by shortening the optimal [13, 5; 5]
code. Hence, for a fixed code dimension k, to find a good 5-
server PIR code with small blocklength, we have to compare
all the resulting [n, k; 5] codes found by Algorithm 1.

3Since the construction guarantees that all rows have equal Hamming
weights, the Hamming distance between any pair of rows is even, i.e., the
necessary condition d̃ ≥ 5 is equivalent to d̃ ≥ 6.

In general, the complexity of exhaustively examining the
t-PIR property for a given code becomes infeasible for large
n and k, even for t = 5. However, according to our numerical
results, for small code dimensions k, an optimal 5-server
PIR code often has property S5. Therefore, we investigate
a sequence of good PIR codes with respect to property S5.
In fact, a sequence of good codes with small blocklength
can always be generated by lengthening by one information
symbol and extending at most 2 coordinates from a smaller-
sized code with property S5, as shown in the theorem below.

Theorem 2: For any given values of n and k, if a systematic
[n, k] code has property S5, then there must exist a systematic
[n+ 3, k + 1] code that also has property S5.

Proof: See the details in the extended version [8].
Based on Theorem 2, we can slightly modify Algorithm 1

to investigate 5-server PIR codes with property S5. First,
we replace the input generator matrix by a generator ma-
trix G = [Ik|Pk×(r−1)|1] with property S5, and modify the
starting Gbest to [Ik|Pk×(r−1)|Ok×w|1] in Line 1 of Algo-
rithm 1. The function LengtheningExtending(Gbest, z)
for Gbest =

[
Ikbest |Pkbest×(r+w−1)|1

]
in Line 6 of Algorithm 1

is accordingly re-defined as

G̃ ,
[
Ikbest 0 Pkbest×(r+w−1) 1

0 1 z 1

]
,

kbest + 1 r + w − 1

where wH(z) = 5 − 2 = 3. Notice that the outer while loop
counter now should increase from 1 to

(
r+w−1

3

)
, and the initial

z in Line 4 should be replaced by the length-(r + w − 1)
vector z = (1, 1, 1, 0, . . . , 0). In fact, there is no need to
modify Line 9 of Algorithm 1, since the resulting G̃ will again
satisfy conditions 1)–3) of Definition 4.4 As a result, after the
modifications to Algorithm 1 outlined above, and if Line 10 of
Algorithm 1 is replaced by the verification of property S5 for
G̃, we are able to find good 5-server PIR codes with property
S5 for large code dimensions k ≥ 16 (see Section V below).
From Theorem 2 it follows that if w = 2, kbest ≥ k + 1.

V. NUMERICAL RESULTS

In this section, upper bounds on NP(k, t) for 1 ≤ k ≤ 32
and t = 4, 6, 8 are summarized in Table I. In particular, for
t = 6, we also present the numerical results obtained using the
search algorithm from Section IV. Entries for which strictly
better codes are found than in the current literature are marked
in bold. In comparison with the obtained improved upper
bound, a lower bound on NP(k, 6) is also given. For t = 4, the
SPRM codes provided in [6] are optimal. More specifically,
the blocklength is equal to the lower bound LP(k, 4).

In order to show how good our constructed 6-server PIR
codes are, we also list the best (smallest) known blocklength

4Note that the construction of G̃ will make all the row-weights of G̃ equal to
5 and the last column equal to the all-one vector (i.e., conditions 1) and 2) of
Definition 4 are satisfied). In order to satisfy condition 3) of Definition 4, the
minimum Hamming distance of G̃ must be larger than or equal to 2·(5−2) =
6, since any two row vectors in G̃ must have a common 1 in at most two
coordinates.
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TABLE I
BEST KNOWN BOUNDS ON NP(k, t) FOR SMALL VALUES OF k AND EVEN
t = 4, 6, 8. IN THE CASE OF t = 6, nB DENOTES THE BEST FOUND

BLOCKLENGTH BASED ON OUR PROPOSED SEARCH ALGORITHM, AND nU
IS DEFINED IN (2). STARRED VALUES (OR COLUMNS) CAN BE PROVED TO

BE OPTIMAL, WHILE BOLD ENTRIES ARE NEW RESULTS.
k\t 4∗ [6] 6 8 [6]

N(k, t) [12] nB nU

1 4 − 6∗ − 8∗

2 6 − 9∗ − 12∗

3 7 − 11∗ − 14∗

4 9 − 12∗ � − 15∗

5 10 14 14∗ 13! 19

6 11 15 15∗ � 14! 21

7 13 16 17 15! 22
8 14 17 18 20 24
9 15 18 20 23 25
10 16 20 21 24 26
11 18 21 22 25 30
12 19 22 23 26 32
13 20 23 25� 27 33
14 21 24 27� 29 35
15 22 26 28� 34 36
16 24 27 31 35 37
17 25 28 32 37 39
18 26 29 33 38 40
19 27 30 35 39 41
20 28 31 36 40 42
21 29 32 37 42 46
22 31 33 39 46 48
23 32 34 40 47 49
24 33 36 41 49 51
25 34 37 42 50 52
26 35 38 43 51 53
27 36 39 44 53 55
28 37 40 46 54 56
29 39 41 47 55 57
30 40 42 48 56 58
31 41 43 50 58 60
32 42 44 52 59 61

for t = 8 (the smallest blocklength of the SPRM codes from
[6]). They will result in an improved upper bound for t = 6,
since by part (d) of Lemma 1, NP(k, 6) ≤ NP(k, 8)−2. Hence,

nU , min{n1, n2 − 2} (2)

is the best known upper bound for t = 6, where n1 denotes the
best known blocklength provided in [5], and n2 is the smallest
blocklength of SPRM codes for t = 8 provided in [6].

Note again that, according to part (e) of Lemma 1 and
in order to compare our findings with [5, Table III] and [6,
Table II], only even values of t are interesting. Here, for t = 6
the blocklengths nB of Table I are obtained by adding one to
the blocklengths of our best found 5-server PIR codes. We
make the following remarks to Table I.

1) The superscript “∗” indicates that the corresponding
blocklength can be shown to be optimal. We use the lower
bound N(k, t), whose value can be obtained from [12],
since LP(k, 6) = LP(k, 4) + 2 ≤ N(k, 6) and no tighter
lower bound for t = 6 is known.

2) The superscript “�” indicates that the best found system-
atic [n, k; 5] code has a constant-weight generator matrix
of row-weight 5 and without property S5.

3) The superscript “!” indicates that the corresponding
blocklength is impossible, since it is smaller than N(k, t)
(a contradiction to Corollary 1). We believe that the value
of nU = 15 for (k, t) = (7, 6) in [5, Table III] was
obtained from [5, Thm. 9] and should have corresponded
to (k, t) = (6, 6) due to a misprint in [13, p. 289] in the
redundancy of type-1 doubly transitive invariant codes.
We believe this explains the contradictions.

4) The superscript “[·]” indicates the reference number.
We also remark that for t = 8, using our algorithm we are

able to find better PIR codes for certain values of k: we have
obtained nB = 18, 20, 29, 31 for k = 5, 6, 11, 12, respectively.
This indicates that the SPRM codes are not optimal for t = 8.

VI. CONCLUSION

In this paper, we presented a construction of a t-server
PIR code by lengthening and extension of an existing PIR
code. We also presented an extension of a code construction
inspired by Steiner systems proposed by Fazeli et al., which
was used in the proposed algorithm to search for good (i.e.,
small blocklength) 5-server PIR codes. For code dimensions
k ≤ 6, provably optimal PIR codes were found, while for all
7 ≤ k ≤ 32, codes of smaller blocklength than the best known
codes from the literature were found and presented. Moreover,
better 8-server PIR codes were also found for k = 5, 6, 11, 12.
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Abstract—Besides all the attention given to lattice construc-
tions, it is common to find some very interesting nonlattice
constellations, as Construction C, for example, which also has
relevant applications in communication problems (multi-level
coding, multi-stage decoding, good quantization efficieny). In this
work we present a constellation which is a subset of Construction
C, based on inter-level coding, which we call Construction C?.
This construction may have better immunity to noise and it also
provides a simple way of describing the Leech lattice Λ24. A
condition under which Construction C? is a lattice constellation
is given.

Index terms—Lattice construction, Bit-interleaved coded mod-
ulation (BICM), Construction C?, Construction by Code-
Formula, Leech lattice.

I. INTRODUCTION

Communication problems involve, in general, transmitting
digital information over a channel with minimum losses. One
way to approach it is by using coded modulation [8], where not
only coding, but also mapping the code bits to constellation
symbols is significant. In the latest years, a prevalent coded
modulation scheme is the bit-interleaved coded modulation
(BICM), which is the motivation to our study.

BICM, first introduced by Zehavi [11], [6], asks mainly
to have: an nL−dimensional binary code C, an interleaver
(permutation) α and a one-to-one binary labeling map µ :
{0, 1}L → X , where X is a signal set X = {0, 1, . . . , 2L−1}
in order to construct a constellation ΓBICM in Xn ⊆ Rn.
The code and interleaveled bit sequence c is partitioned into
L subsequences ci of length n :

c = (c1, . . . , cL), with ci = (ci1, ci2, . . . , cin). (1)

The bits c1j , . . . , cLj are mapped at a time index j to
a symbol xi chosen from the 2L−ary signal constellation
X according to the binary labeling map µ. Hence, for a
nL−binary code C to encode all bits, then we have the scheme
below:

codeword (c) → interleaver α →
partitioning into L subsequences of length n → mapping µ →

xj = µ(c1j , . . . , cLj), j = 1, . . . , n

Under the natural labeling µ(c1, c2, , . . . , cL) = c1 + 2c2 +
· · · + 2L−1cL and assuming identity interleaver α(C) = C, it
is possible to define an extended BICM constellation in a way
very similar to the well known multilevel Construction C, that
we call Construction C?.

The constellation produced via Construction C? is always
a subset of the constellation produced via Construction C for
the same projection codes (as defined below) and it also does
not usually produce a lattice. The objective of our paper is to
explore this new construction, aiming to find a condition that
makes it a lattice and also to describe the Leech lattice Λ24

with Construction C?.
The paper is organized as follows: Section II shows some

preliminary definitions; in Section III we introduce Construc-
tion C?, illustrate it with examples and also show how to
describe the Leech lattice using this construction; in Section
IV we exhibit a condition for ΓC? to be a lattice and Section
V is devoted to conclusions.

II. MATHEMATICAL BACKGROUND

In this section, we will introduce the basic concepts, no-
tation and results to be used in the sequel. We will denote
by + the real addition and by ⊕ the sum in F2, i.e.,
x⊕ y = (x+ y)mod 2.

Definition 1. (Lattice) A lattice Λ ⊂ RN is a set of integer
linear combinations of independent vectors v1, v2, . . . , vn ∈
RN , with n ≤ N.

It is possible to derive lattice constellations from linear
codes using the known Constructions A and D [7].

Definition 2. (Construction A) Let C be a linear
(n, k, d)−binary code. We define the binary Construction A
as

ΛA = C + 2Zn. (2)

Definition 3. (Construction D) Let C1 ⊆ · · · ⊆ CL ⊆ Fn2 be
a family of nested linear binary codes. Let ki = dim(Ci) and
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let b1, b2, . . . , bn be a basis of Fn2 such that b1, . . . , bki span
Ci. The lattice ΛD consists of all vectors of the form

L∑

i=1

2i−1
ki∑

j=1

αijbj + 2Lz (3)

where αij ∈ {0, 1} and z ∈ Zn.
Another remarkable and well studied multi-level construc-

tion, that in general does not produce a lattice constellation,
even when the underlying codes are linear, is Construction C,
defined below using the terminology in [9] (more details and
applications also in [1] [3]).

Definition 4. (Construction C) Consider L binary codes
C1, . . . , CL ⊆ Fn2 , not necessarily nested or linear. Then
we define an infinite constellation ΓC in Rn that is called
Construction C as:

ΓC := C1 + 2C2 + · · ·+ 2L−1CL + 2LZn, (4)

or equivalently

ΓC := {c1 + 2c2 + · · ·+ 2L−1cL + 2Lz : ci ∈ Ci,
i = 1, . . . , L, z ∈ Zn}. (5)

Note that if L = 1 and we consider a single level with
a linear code, then both Constructions C and D reduce to
lattice Construction A. There exists also a relation between
Constructions C and D that will be presented in what follows.

Definition 5. (Schur product) For x = (x1, . . . , xn) and y =
(y1, . . . , yn) ∈ Fn2 , we define x ∗ y = (x1y1, . . . , xnyn).

It is easy to verify, using the Schur product that for x, y ∈
Fn2

x+ y = x⊕ y + 2(x ∗ y). (6)

Denote by ΛC the smallest lattice that contains ΓC . Kosit-
wattanarerk and Oggier [10] give a condition that if satisfied
guarantees that Construction C will provide a lattice which
coincides with Construction D.

Theorem 1. [10] (Lattice condition for Constructions C and
D) Given a family of nested linear binary codes C1 ⊆ · · · ⊆
CL ⊆ Fn2 , then the following statements are equivalent:

1. ΓC is a lattice.
2. ΓC = ΛC .
3. C1 ⊆ · · · ⊆ CL ⊆ Fn2 is closed under Schur product,

i.e., given two elements ci, c̃i ∈ Ci, ci ∗ c̃i ∈ Ci+1, for all
i = 1, . . . , L− 1.

4. ΓC = ΛD,

III. CONSTRUCTION C? OVER BINARY CODES

This section is devoted to the introduction of a new method
of constructing constellations from binary codes: Construction
C?.

Definition 6. (Construction C?) Let C be an nL−dimensional
code in FnL2 . Then Construction C? ∈ Rn is defined as

ΓC? := {c1 + 2c2 + · · ·+ 2L−1cL + 2Lz : (c1, c2, . . . , cL) ∈ C,
ci ∈ Fn

2 , i = 1, . . . , L, z ∈ Zn}. (7)

Definition 7. (Projection codes) Let (c1, c2, ..., cL) be a par-
tition of a codeword c = (b1, ...., bnL) ∈ C into length−n
subvectors ci = (b(i−1)n+1, ...., bin), i = 1, . . . , L. Then, a
projection code Ci consists of all vectors ci that appear as we
scan through all possible codewords c ∈ C. Note that if C is
linear, every projection code Ci, i = 1, . . . , L is also linear.

Remark 1. If C = C1 × C2 × · · · × CL then Construction C?

coincides with Construction C, because the projection codes
are independent. However, in general, the projection codes are
dependent, i.e., not all combinations compose a codeword in
the main code C so we get a subset of Construction C., i.e.,
ΓC? ⊆ ΓC .

Definition 8. (Associated Construction C) Given a Construc-
tion C? defined by a linear binary code C ⊆ FnL2 , we call the
associated Construction C the constellation defined as

ΓC = C1 + 2C2 + · · ·+ 2L−1CL + 2Zn, (8)

such that C1, C2, . . . , CL ∈ Fn2 are the projection codes of C
as in Definition 7.

One can observe that the immediate advantage of working
with Construction C? instead of Construction C lies in the fact
that a code of block length nL typically has a larger minimum
Hamming distance and may present a better immunity to noise
than a code of block length n.

Example 1. Consider a linear binary code C with length nL =
4, (L = n = 2), where C = {(0, 0, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0),
(0, 0, 1, 1)} ⊆ F4

2. Thus, an element w ∈ ΓC? can be written
as

w = c1 + 2c2 + 4z ∈ ΓC? , (9)

such that (c1, c2) ∈ C and z ∈ Z2. Geometrically, the resulting
constellation is given by the blue points represented in Figure
1. Note that ΓC? is not a lattice because, for example,
(1, 2), (3, 0) ∈ ΓC? , but (1, 2) + (3, 0) = (4, 2) /∈ ΓC? . How-
ever, if we consider the associated Construction C with codes
C1 = {(0, 0), (1, 0)} and C2 = {(0, 0), (1, 1), (0, 1), (1, 0)},
we have a lattice (Figure 1), because C1 and C2 satisfy the
condition given by Theorem 1.

Fig. 1. (Nonlattice) Construction C? constellation in blue and its associated
(lattice) Construction C constellation in pink
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The next example presents a case where both Constructions
C? and C are lattices, but they are not equal.

Example 2. Let a linear binary code C = {(0, 0, 0, 0),
(0, 0, 1, 0), (1, 0, 0, 1), (1, 0, 1, 1)} ⊆ F4

2 (nL = 4, L = n =
2), so the projection codes are C1 = {(0, 0), (1, 0)} and
C2 = {(0, 0), (1, 0), (0, 1), (1, 1)}. An element w ∈ ΓC? can
be described as

w =





(0, 0) + 4z, if c1 = (0, 0) and c2 = (0, 0)

(1, 2) + 4z, if c1 = (1, 0) and c2 = (0, 1)

(2, 0) + 4z, if c1 = (0, 0) and c2 = (1, 0)

(3, 2) + 4z, if c1 = (1, 0) and c2 = (1, 1),

(10)

z ∈ Z2. This construction is represented by black points in
Figure 2. Note that ΓC? is a lattice and C 6= C1 × C2, what
implies that ΓC?  ΓC . However, the associated Construction
C is also a lattice (Figure 2).

Fig. 2. (Lattice) Construction C? constellation in black and its associated
(lattice) Construction C constellation in green

To appreciate the advantage of ΓC? over the associated ΓC ,
one can notice that the packing densities are, respectively
∆ΓC? = Π

4 ≈ 0.7853 and ∆ΓC
= Π

8 ≈ 0.3926. Therefore,
in this example, ΓC? has a higher packing density than ΓC .

We can also describe the densest lattice in dimension 24, the
Leech lattice Λ24, in terms of Construction C? constellation
with L = 3 levels.

Example 3. Based on the construction given by Conway and
Sloane [7] (pp. 131-132) and Amrani et al [2], we start by
considering three special linear binary codes

• C1 = {(0, . . . , 0), (1, . . . , 1)} ⊆ F24
2 ;

• C2 as a Golay code C24 ⊂ F24
2 achieved by adding a

parity bit to the original [23, 12, 7]−binary Golay code
C23, which consists in a quadratic residue code of length
23;

• C3 = C̃3 ∪ C3 = F24
2 , where C̃3 = {(x1, . . . , x24) ∈ F24

2 :∑24
i=1 x1 ≡ 0 mod 2} and C3 = {(y1, . . . , y24) ∈ F24

2 :∑24
i=1 y1 ≡ 1 mod 2}.

Observe that C1, C2 and C3 are linear codes. Consider a
code C ⊆ F72

2 whose codewords are described in one of two
possible ways:

C = {(0, . . . , 0, a1, . . . , a24︸ ︷︷ ︸
∈C24

, x1, . . . , x24︸ ︷︷ ︸
∈C̃3

),

(1, . . . , 1, a1, . . . , a24︸ ︷︷ ︸
∈C24

, y1, . . . , y24︸ ︷︷ ︸
∈C3

)}. (11)

Thus, we can define the Leech lattice Λ24 as a 3−level
Construction C? given by

Λ24 = ΓC? = {c1 + 2c2 + 4c3 + 8z : (c1, c2, c3) ∈ C, z ∈ Z24}.
(12)

Observe that in this case ΓC? 6= ΓC .
In this case, the associated Construction C has packing

density ∆ΓC
≈ 0.00012 < 0.001929 ≈ ∆ΓC? , which is the

packing density of Λ24, the best known packing density in
dimension 24 [7].

IV. CONDITIONS FOR LATTICENESS OF CONSTRUCTION C?

In general, it is possible to have a lattice ΓC? , with ΓC?  
ΓC , as can be observed in Example 2. This fact motivated
our search for a condition for a lattice Construction C?. In
the upcoming discussion, we will exhibit some definitions and
present a condition for ΓC? to be a lattice.

Definition 9. (Antiprojection) The antiprojection (inverse im-
age of a projection) Si(c1, . . . , ci−1, ci+1, . . . , cL) consists of
all vectors ci ∈ Ci that appear as we scan through all possible
codewords c ∈ C, while keeping c1, . . . , ci−1, ci+1, . . . , cL
fixed:

Si(c1, ..., ci−1, ci+1, ..., cL) =

{ci ∈ Ci : (c1, . . . , ci︸︷︷︸
i-th posititon

, . . . , cL) ∈ C}. (13)

The main contribution of this paper is the following:

Theorem 2. (Lattice conditions for ΓC? ) Let C ⊆ FnL2 be a
linear binary code with projection codes C1, C2, . . . , CL such
that C1 ⊆ S2(0, . . . , 0) ⊆ · · · ⊆ CL−1 ⊆ SL(0, . . . , 0) ⊆ CL ⊆
Fn2 . Then the constellation given by ΓC? represents a lattice if
and only if Si(0, . . . , 0) closes Ci−1 under Schur product for
all levels i = 2, . . . , L.

The proof of Theorem 2 is given below, after a few
motivational examples and related results.

While Si(0, . . . , 0) ⊆ Ci by construction, note that the
assumption that Ci ⊆ Si+1(0, . . . , 0), for i = 2, . . . , L, is
not always satisfied by a general Construction C?, sometimes
even if this Construction C? is a lattice; see Example 5.

Observe that when ΓC? = ΓC , i.e., when C = C1 × C2 ×
· · ·×CL, we have that Si(0, . . . , 0) = Ci, i = 1, . . . , L and our
condition will coincide with the one presented in Theorem 1.
Besides, if ΓC?  ΓC we also have that:

Corollary 1. (Latticeness of associated Construction C) Let
C ⊆ FnL2 . If C1 ⊆ S2(0, . . . , 0) ⊆ · · · ⊆ CL−1 ⊆
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SL(0, . . . , 0) ⊆ CL and the constellation ΓC? is a lattice then
also the associated Construction C is a lattice.

Proof. If ΓC? is a lattice, conditions presented in Theorem 2
holds. For associated Construction C, Si(0, . . . , 0) = Ci, for
all i = 1, . . . , L. Thus, it follows that C1 ⊆ C2 ⊆ · · · ⊆ CL is
closed under Schur product and ΓC is a lattice.

Before presenting the proof of Theorem 2, we will see that
the Leech lattice construction described in Example 3 satisfies
its condition.

Example 4. We want to examine whether the proposed codes
C1, C2 and C3 in Example 3 satisfy the conditions stated by
Theorem 2.

Observe that for these codes S2(0, . . . , 0) = C2 and
S3(0, . . . , 0) = C̃3 = {(x1, . . . , x24) ∈ F24

2 :
∑24
i=1 x1 ≡ 0

mod 2}. Hence we need to verify that C1 ⊆ S2(0, . . . , 0) ⊆
C2 ⊆ S3(0, . . . , 0) ⊆ C3 and that Si(0, . . . , 0) closes Ci−1

under Schur product for i = 2, 3.
Indeed C1 ⊆ S2(0, . . . , 0) = C2, since (0, . . . , 0) ∈ C2 and

if we consider the parity check matrix H ∈ F12×24
2 of the

[24, 12, 8]−Golay code

H =
(
B12×12 | I12×12

)
, (14)

where

B12×12 =




1 1 0 1 1 1 0 0 0 1 0 1
1 0 1 1 1 0 0 0 1 0 1 1
0 1 1 1 0 0 0 1 0 1 1 1
1 1 1 0 0 0 1 0 1 1 0 1
1 1 0 0 0 1 0 1 1 0 1 1
1 0 0 0 1 0 1 1 0 1 1 1
0 0 0 1 0 1 1 0 1 1 1 1
0 0 1 0 1 1 0 1 1 1 0 1
0 1 0 1 1 0 1 1 1 0 0 1
1 0 1 1 0 1 1 1 0 0 0 1
0 1 1 0 1 1 1 0 0 0 1 1
1 1 1 1 1 1 1 1 1 1 1 0




(15)
it is easy to check that H · (1, . . . , 1)T = 0 ∈ F12

2 , so
(1, . . . , 1) ∈ C2 which implies that C1 ⊆ S2(0, . . . , 0).

Moreover, an element c2 ∈ C2 can be written

as c2 = G.h, where G =

(
I12×12

B12×12

)
is

the generator matrix of the Golay code and
h = (h1, h2, h3, h4, h5, h6, h7, h8, h9, h10, h11, h12)T ∈ F12

2 .
Thus, when we sum all the coordinates of the resulting
vector c2 = G.h we have 8h1 + 8h2 + 8h3 + 8h4 +
8h5 + 8h6 + 8h7 + 8h8 + 8h9 + 8h10 + 8h11 + 12h12 ≡ 0
mod 2⇒ c2 ∈ C̃3 = S3(0, . . . , 0). Hence,

C1 ⊆ S2(0, . . . , 0) ⊆ C2 ⊆ S3(0, . . . , 0) ⊆ C3. (16)

We still need to prove that
• S2(0, . . . , 0) closes C1 under Schur product and this is

clearly true because the Schur product of any elements
in C1 belong to S2(0, . . . , 0).

• S3(0, . . . , 0) closes C2 under Schur product: if we con-
sider c2 = G.h ∈ C2 and c̃2 = G.h̃ ∈ C2, we have
checked computationally that the sum of all coordinates
of the Schur product c2 ∗ c̃2 ≡ 0 mod 2 ⇒ c2 ∗ c̃2 ∈
S3(0, . . . , 0) = C̃3.

We can have a lattice Construction C? even when the
nesting condition in Theorem 2 is not satisfied.

Example 5. Consider the linear binary code C =
{(0, 0, 0, 0, 0, 0), (1, 0, 1, 1, 0, 1), (0, 0, 1, 0, 1, 1), (1, 0, 0, 1, 1, 0),
(0, 0, 0, 0, 1, 0), (0, 0, 1, 0, 0, 1), (1, 0, 0, 1, 0, 0), (1, 0, 1, 1, 1, 1)}
⊆ F6

2 with L = 3, n = 2. Observe that C1 * S2(0, 0, 0, 0) and

ΓC? = {(0, 0) + 8z, (1, 2) + 8z, (2, 4) + 8z, (3, 6) + 8z,

(4, 0) + 8z, (5, 2) + 8z, (6, 4) + 8z, (7, 6) + 8z} (17)

with z ∈ Z2, is a lattice.

To prove Theorem 2 we need to introduce the following
auxiliary result:

Lemma 1. (Sum in ΓC? ) Let C ⊆ FnL2 be a linear binary
code. If x, y ∈ ΓC? are such that

x = c1 + 2c2 + · · ·+ 2L−1cL + 2Lz (18)
y = c̃1 + 2c̃2 + · · ·+ 2L−1c̃L + 2Lz̃, (19)

with (c1, c2, . . . , cL), (c̃1, c̃2, . . . , c̃L) ∈ C and z, z̃ ∈ Zn, then

x+ y = c1 ⊕ c̃1 + 2(s1 ⊕ (c2 ⊕ c̃2)) + · · ·+
+2L−1(sL−1 ⊕ (cL ⊕ c̃L)) + 2L(sL + z + z̃),(20)

where

si = (ci ∗ c̃i)⊕ r1i ⊕ r2i ⊕ · · · ⊕ ri−1
i = (ci ∗ c̃i)

i−1⊕
j=1

rji ,

r1i = (ci ⊕ c̃i) ∗ (ci−1 ∗ c̃i−1), rji = rj−1
i ∗ rj−1

i−1 ,

2 ≤ j ≤ L− 1, i = 1, . . . , L. (21)

Proof. The proof is done by mathematical induction in the
number of levels L and it will be provided in the full paper
[4].

The mathematical intuition behind Theorem 2 lies in the
fact that since a + b = a ⊕ b + 2(a ∗ b) for a, b ∈ Fn2 , when
adding two points in ΓC or ΓC? , each level i ≥ 2 has the
form of ci⊕ c̃i⊕ carry(i−1), where carry(i−1) is the ”carry”
term from the addition in the lower level. Since the projection
code Ci is linear, ci ⊕ c̃i is a codeword in the i−th level.
Hence, closeness of ΓC? under addition amounts to the fact
that carry(i−1) is also a codeword in Ci, which is essentially
the condition of the theorem. Formally,

Proof of Theorem 2. (⇐) For any x, y ∈ ΓC? , written as in
Equations (18) and (19), we have x+ y as given in Lemma 1
(Equations (20) and (21)) and we need to verify if x+y ∈ ΓC? .

Clearly x+y ∈ C1+2C2+· · ·+2L−1CL+2LZn. It remains to
demonstrate that (c1⊕c̃1, s1⊕c2⊕c̃2, . . . , sL−1⊕cL⊕c̃L) ∈ C.
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Indeed, using the fact that the chains Ci−1 ⊆ Si(0, . . . , 0)
for all i = 2, . . . , L are closed under the Schur product, it is
an element of C because it is a sum of elements in C, i.e.,

(c1 ⊕ c̃1, s1 ⊕ c2 ⊕ c̃2, . . . , sL−1 ⊕ cL ⊕ c̃L) =

(c1 ⊕ c̃1, c2 ⊕ c̃2, . . . , cL ⊕ c̃L)︸ ︷︷ ︸
∈C

⊕ (0, s1, . . . , 0)︸ ︷︷ ︸
∈C

⊕ · · · ⊕

⊕ (0, . . . , 0, sL−1)︸ ︷︷ ︸
∈C

. (22)

Observe that any nL−tuple (0, . . . , si−1, . . . , 0) is in C
because by hypothesis, the chain Si(0, . . . , 0) closes Ci−1

under Schur product, hence Si(0, . . . , 0) contains (ci−1 ∗
c̃i−1), r1

i−1, ...., r
i−2
i−1 which is sufficient to guarantee that

si−1 ∈ Si(0, . . . , 0) so (0, . . . , si−1, . . . , 0) ∈ C, for all
i = 2, . . . , L− 1.
(⇒) For the converse, we know that ΓC? is a lattice, which
implies that if x, y ∈ ΓC? then x+y ∈ ΓC? . From the notation
and result from Lemma 1, more specifically Equations (18),
(19), (20) and (21), it means that

(c1 ⊕ c̃1, s1 ⊕ (c2 ⊕ c̃2), . . . , sL−1 ⊕ (cL ⊕ c̃L)) ∈ C. (23)

We can write this L−tuple as

(c1 ⊕ c̃1, s1 ⊕ (c2 ⊕ c̃2), . . . , sL−1 ⊕ (cL ⊕ c̃L))︸ ︷︷ ︸
∈C

=

(c1 ⊕ c̃1, c2 ⊕ c̃2, . . . , cL ⊕ c̃L)︸ ︷︷ ︸
∈C, by linearity of C

⊕(0, s1, . . . , sL−1) (24)

⇒ (0, s1, . . . , sL−1) ∈ C. (25)

Notice that we have

s1 = c1 ∗ c̃1 (26)
s2 = ((c1 ∗ c̃1) ∗ (c2 ⊕ c̃2))⊕ (c2 ∗ c̃2) (27)
s3 = ((c3 ⊕ c̃3) ∗ (c2 ∗ c̃2)) ∗ (c2 ⊕ c̃2 ∗ (c1 ∗ c̃1))

⊕ ((c3 ⊕ c̃3) ∗ (c2 ∗ c̃2))⊕ (c3 ∗ c̃3) (28)
...

Due to the nesting C1 ⊆ S2(0, . . . , 0) ⊆ · · · ⊆ CL−1 ⊆
SL(0, . . . , 0) ⊆ CL, we can guarantee that there exist code-
words whose particular Schur products ci ∗ c̃i = 0, for
i = 1, . . . , L− 2. Thus,

sL−1 = (cL−1 ∗ c̃L−1) (29)

and from Equation (25), (0, 0, . . . , cL−1 ∗ c̃L−1) ∈ C, i.e.,
SL(0, . . . , 0) must close CL−1 under Schur product. Proceed-
ing similarly, we demonstrate that Si(0, . . . , 0) must close
Ci−1, for all i = 2, . . . , L and it completes our proof.

V. CONCLUSION AND FUTURE WORK

In this paper a new method of constructing constellations
was introduced, denoted by Construction C?, which is subset
of Construction C and is based on a modern coding scheme,
the bit-interleaved coded modulation (BICM). It was proved

when this construction is a lattice and how to describe the
Leech lattice using this technique.

Our future work include examining on a comparative basis
the advantages of Construction C? compared to Construction
C in terms of packing density. We also aim to change the
natural labeling µ to the Gray map, the standard map used in
BICM. Another direction to be completed is to find a more
complete condition for the latticeness of Construction C?, that
covers cases such as the one in Example 5.
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Abstract—We consider compound MIMO wiretap channels
where minimal channel state information at the transmitter
(CSIT) is assumed. Using the flatness factor for MIMO channels,
we propose lattice codes universally achieving the secrecy capac-
ity of compound MIMO wiretap channels up to a constant gap
that is linear in the number of transmit antennas, independently
on the number of eavesdropper antennas. The proposed approach
improves upon existing works on secrecy coding for MIMO
wiretap channels from an error probability perspective, and
establishes information theoretical security (in fact semantic
security). We also give an algebraic construction to reduce the
code design complexity, as well as the decoding complexity of the
legitimate receiver.

I. INTRODUCTION

Due to the open nature of the wireless medium, wireless
communications are inherently vulnerable to eavesdropping
attacks. Information theoretic security offers additional pro-
tection for wireless data, since it only relies on the physical
properties of wireless channels, thus representing a compet-
itive/complementary approach to security compared to tradi-
tional cryptography.

In the information theory community, a commonly used
secrecy notion is strong secrecy: the mutual information
I(M ;ZN ) between the confidential message M and the
channel output ZN should vanish when the code length
N → ∞. This assumption of uniformly distributed messages
was dropped in [17], establishing semantic security: for any
message distribution, the advantage obtained by an eavesdrop-
per from its received signal vanishes for large block lengths.
This notion is motivated by the fact that the plaintext can be
fixed and arbitrary.

For the Gaussian wiretap channel, [15] introduced the
secrecy gain of lattice codes while [11] proposed semantically
secure lattice codes based on the lattice Gaussian distribution.
To this aim, the flatness factor of a lattice was introduced in
[11] as a fundamental criterion which implies that conditional
outputs are indistinguishable for different input messages.
Using a random coding argument, it was shown that there exist
families of lattice codes which are good for secrecy, meaning
that their flatness factor is vanishing, and achieve semantic
security for rates up to 1/2 nat from the secrecy capacity.

Compared to the Gaussian wiretap channel, the cases of
fading and multi-input multi-output (MIMO) wiretap channels
are more technically challenging. The fundamental limits of

fading wireless channels with secrecy constraints have been
investigated in [1], [3], [4], [9], [?] where the achievable
rates, secrecy capacity, and the secrecy outage probability were
given. Although CSIT is sometimes available for the legitimate
channel, it is hardly possible that it would be available for the
eavesdropping channel. Schaefer and Loyka [18] studied the
secrecy capacity of the compound MIMO wiretap channel,
where a transmitter has no knowledge of the realization of
the eavesdropping channel, except that it belongs to a given
set (the compound set). The compound model represents a
well-accepted, reasonable approach to information theoretic
security, which assumes minimal CSIT of the eavesdropping
channel [10], [8], and can also model multicast scenarios.

In this paper, we propose universal codes for compound
Gaussian MIMO wiretap channels. Previously, [14] has estab-
lished strong secrecy over ergodic stationary MIMO wiretap
channels for secrecy rates that are within a constant gap to the
secrecy capacity. Besides different channel models (compound
vs. ergodic channels) considered, we obtain a smaller (and
different in nature) gap by employing a different construction
as in [14].

For a compound channel formed by the set of all matrices
with same white-input capacity, our lattice coding scheme
universally achieves rates up to (Cb − Ce − na)+, where Cb
is the capacity of the legitimate channel, Ce is the capacity
of the eavesdropper channel and na is the number of transmit
antennas and (x)+ = max {x, 0}. We also show how to extend
the analysis in order to accommodate number-of-antennas
mismatch, i.e., security is valid regardless of the number of
antennas at the eavesdropper. This is a very appealing property,
since the number of receive antennas of an eavesdropper may
be unknown to the transmitter. Notice that previous works [2],
[14] required ne ≥ na.

II. PROBLEM STATEMENT

We consider the following wiretap model. A transmitter
sends information through a MIMO channel to a legitimate
receiver (Bob) and is eavesdropped by an illegitimate user
(Eve). The channel equations for Bob and Eve read:

Yb︸︷︷︸
nb×T

= Hb︸︷︷︸
nb×na

X︸︷︷︸
na×T

+ Wb︸︷︷︸
nb×T

and Ye︸︷︷︸
ne×T

= He︸︷︷︸
ne×na

X︸︷︷︸
na×T

+ We︸︷︷︸
ne×T

,

(1)
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where na is the number of transmit antennas, nb, ne is the
number of receive antennas for Bob and Eve, T is the
coherence time, and Wb and We have circularly symmetric
complex Gaussian iid entries with variance σ2

b , σ
2
e per complex

dimension. We denote the signal-to-noise ratios by

ρb ,
P

σ2
b

and ρe ,
P

σ2
e

.

We assume that the exact channel realizations (Hb,He) are
unknown to the transmitter but belong to a compound set S =
Sb×Se ⊂ Cnb×na ×Cne×na . Suppose that Sb and Se are the
set of channels with same isotropic mutual information i.e.,

Sb =
{

Hb ∈ Cnb×na :
∣∣∣I + ρbH

†
bHb

∣∣∣ = eCb

}
and

Se =
{
He ∈ Cne×na :

∣∣I + ρeH
†
eHe

∣∣ = eCe
}
,

(2)

for fixed Cb, Ce ≥ 0. In this case, it is known (e.g. [18])
that Cs ≥ (Cb − Ce)+. The worst case is achieved by taking
a specific “isotropic” realization such that H†bHb and H†eHe

are a multiple of the identity, from where we conclude that
Cs = Cb−Ce. In what follows we construct lattice codes that
approach the rate Cs with semantic security. As a corollary,
the semantic security capacity and the strong secrecy capacity
for the compound set Sb × Se coincide.

A. Notions of Security

A secrecy code (or, more precisely, an (R,R′, T ) secrecy
code) for the compound MIMO channel consists of: .
(i) A set of messages MT =

{
1, . . . , eTR

}

(ii) An auxiliary source U taking values in UT with entropy
R′ = H(U).

(iii) An encoding function fT :MT × UT → Cna×T s.t.

1

T
tr
(
E
[
fT (m,U)†fT (m,U)]

])
≤ naP (3)

(iv) A decoding function g : Sb × Rnb×T →MT .
A pair (sb, se) ∈ Sb × Se is referred to as a channel state
(or channel realization). To ensure reliability for all channel
states, we require a sequence of codes whose error probability
for message M vanishes:

P(T )
err|M , P(g(sb,M) 6= M)→ 0,∀sb ∈ Sb, as T →∞. (4)

Let pM be a message distribution over MT . For channel
coding, pM is usually assumed to be uniform, however this
assumption is not sufficient for modern security purposes. Let
Ye be the output of the channel to the eavesdropper, who is
omniscient. In the limit of T → ∞ the notion of semantic
security coincides with the following [11],[17]:

max
m′,m′′∈MT

V(pYe|m′ , pYe|m′′)→ 0 for all se ∈ Se, (5)

where V stands for the l1 variational distance between distri-
butions. In other words the eavesdropper cannot distinguish
the output of the channel for different messages. This notion
also requires a sequence of codes to be universally secure for
all channel states. We say that a sequence of codes of rate
approaching R is semantically secure for compound MIMO

if, for all (sb, se) ∈ S it satisfies the reliability condition (4)
and (5). In what follows we proceed to construct universally
secure codes for the MIMO wiretap channel using lattice coset
codes.

III. CORRELATED DISCRETE GAUSSIAN DISTRIBUTIONS

We exhibit in this subsection the important results and
concepts for the definition and analysis of our lattice coding
scheme.

A. Preliminary lattice definitions

A (complex) lattice Λ with generator matrix Bc is a discrete
additive subgroup of Cna given by

Λ = L(Bc) =
{
Bcx : x ∈ Z2na

}
. (6)

A complex lattice has an equivalent real lattice generated by
the matrix Br obtained by stacking real and imaginary parts
of matrix Bc.

A fundamental region R(Λ) for Λ, is any interior-disjoint
region that tiles Cna through translates by vectors of Λ. For
any y,x ∈ Cna we say that y = x (mod Λ) iff y − x ∈ Λ.
By convention, we fix a fundamental region and denote by
y (mod Λ) the unique representative x ∈ R(Λ) such that
y = x (mod Λ). The volume of Λ is defined as the volume
of a fundamental region for the equivalent real lattice, given by
V (Λ) = |Br|. Notice that if Bc is full rank, then V (Λ) > 0.

B. The Flatness Factor

The discrete Gaussian distribution and the flatness factor
will be used to measure bound the information leakage to an
eavesdropper.

The pdf of a correlated Gaussian distribution with covari-
ance matrix Σ is

f√Σ,c(x) =
1

πna |Σ| exp
{
−(x− c)TΣ−1(x− c)

}
.

We write f√Σ,Λ(x) for the sum of fσ,c(x) over c ∈ Λ.
Wen c = 0 we omit the index. The flatness factor of a
lattice quantifies the distance between fσ,Λ(x) and an uniform
distribution over R(Λ).

Definition 1 (Flatness factor for correlated Gaussian distribu-
tions).

εΛ(
√

Σ) , max
x∈R(Λ)

|V (Λ)f√Σ,Λ(x)− 1|

where R(Λ) is a fundamental region of Λ.

When c = 0 we ignore the index and write
f√Σ,0(x) = f√Σ(x). For a co-variance matrix Σ we de-
fine the generalized-volume-to-noise ratio as γΛ(

√
Σ) =

V (Λ)1/na/|Σ|1/na .
In our applications, the matrix Σ will be determined by

the channel realization (1), and we will deal with lattices
of dimension naT , where T is the coherence time. Figure 1
shows the effect of fading on the lattice Gaussian function. A
function which is flat over the Gaussian channel (correspond-
ing to Σ = I) (a) need not be flat for a channel in deep fading
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(corresponding to a ill-conditioned Σ) (b), in which case an
eavesdropper could clearly distinguish one dimension of the
signal.

(a) Σ = 0.25I (b) Σ = 0.25diag(6, 1/6)

Fig. 1: Illustration of the Gaussian periodic function for
the lattice Z2 and different co-variance matrices with same
determinant.

C. The discrete Gaussian Distribution

In order to define our coding scheme, we need a last
element, which is the distribution of the sent signals. To
this purpose, we define the discrete Gaussian distribution
DΛ+c,

√
Σ as the distribution assuming values on Λ + c, such

that the probability of each point λ+ c is given by

DΛ+c,
√

Σ(λ+ c) =
f√Σ(λ+ c)

f√Σ,Λ(c)
.

Its relation to the continuous Gaussian distribution can be
done via the smoothing parameter or the flatness factor. For
instance, a vanishing flatness factor guarantees that the power
per-dimension of DΛ+c,σI is approximately σ2.

The next proposition ([14, Appendix I-A]) says that the sum
of a continuous Gaussian and a discrete Gaussian is approxi-
mately a continuous Gaussian, provided that the flatness factor
is small.

Lemma 1. Given x1 sampled from discrete Gaussian distribu-
tion DΛ+c,

√
Σ1

and x2 sampled from continuous Gaussian dis-
tribution f√Σ2

. Let Σ0 = Σ1+Σ2 and let Σ−1
3 = Σ−1

1 +Σ−1
2 .

If
√

Σ3 � ηε(Λ) for ε ≤ 1
2 , then the distribution g of

x = x1 + x2 is close to f√Σ0
:

g(x) ∈ f√Σ0
(x) [1− 4ε, 1 + 4ε] .

IV. CODING SCHEME AND ANALYSIS

A. Overview

Given a pair of nested lattices Λe ⊂ Λb ∈ CnaT such that
1

T
log |Λb/Λe| = R,

the transmitter maps m to a representative of Λb/Λe via a
one-to-one map φ, such that φ(m) = λm, and then samples
the signal x ∼ DΛe+λm,σs , broadcasting it to the channels. A
block diagram for the transmission until the front-end receivers
Bob and Eve is depicted in Figure 2a.

In order to find pairs of sequences of nested lattices Λb and
Λe we resort to constructions of lattices from error-correcting
codes.

1) Construction A: A general “flexible” construction can be
defined via “generalized reductions”. For let φp : Λbase → FTp
be a surjective homomorphism from a base lattice Λbase of
complex dimension N to the vector space FTp (also referred
to as a reduction). Define the lattice Λ(C) as the pre-image of
a linear code C,

Λ(C) = φ−1(C).
If C has length T and dimension k, the volume of Λ(C) equals
to pT−kV (Λbase). For instance if T = 2N , Λbase = Z[i]T

mapping φ is the reduction modulo p:

φ(a1 + b1i, a2 + b2i, . . . , aN + bN i) =

(a1 (mod p), b1 (mod p), a2 (mod p), b2
(mod p), · · · , aN (mod p), bN (mod p)),

(7)

we recover an analogue to Loeliger’s (mod-p) Construction A
[12]. In this case we obtain a nested lattice beween Z[i]T and
pZ[i]T . More refined “direct” constructions can be obtained
by using number theory and prime ideals of Z[i]. Notice that,
for this construction, if C1 ⊂ C2, we obtain two nested lattices
Λ(C1) ⊂ Λ(C2), from where we can perform coset codes.
We choose the“reliability lattice” Λb = Λ(C2), the “secrecy
lattice” Λe = Λ(C1). The parameters of the code are chosen
according to the achievable rates, and will be describe more
carefully later on.

2) Main result: The lattice Λe controls the eavesdropper
confusion, and has to be chosen in such a way that the flatness
factor vanishes universally for any eavesdropper realization
(universally good for secrecy), so that it does not leak any
information. Our main result is the following theorem, stating
the existence of schemes with vanishing probability of error
and information leakage for universally any pair realizations
in the compound set Sb × Se.

M + + +

Wb

Encoder

+ +

we

Bob

Eve

+

Fb

f�1 M̂mod Rb⇤eQRb⇤b R�1
b

�m 2 ⇤b/⇤e

Hb

He

yb

x
� D⇤e+�m,�2

s

(a) Block diagram of the wiretap coding scheme.

(b) Block diagram of Bob’s receiver, where Fb is the MMSE-GDFE
matrix and R−1

b is the inverse linear operator that maps cosets of
RbΛb/RbΛ into cosets of Λb/Λe.

Fig. 2: Encoding and decoding over the compound wiretap
channel.

Theorem 1. There exists a sequence of pairs of nested lattices
(ΛTb ,Λ

T
e )∞T=1, ΛTb ⊂ ΛTe ⊂ CnaT , such that, as T → ∞, the

lattice coding scheme universally achieves any secrecy rates

R < (Cb − Ce − na)+,
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where m is the number of transmit antennas.

B. The Legitimate Channel: Reliability

It was shown in [6] that if X ∼ DΛb,σs , then the maximum-
a-posteriori (MAP) decoder for the signal Yb is equivalent
to lattice decoding of FbYb, where Fb is the MMSE-GDFE
matrix to be defined in the sequel. We cannot claim directly
that X ∼ DΛb,σs

, since the message distribution in M need
not be uniform. Nevertheless, we show that reliability is still
possible for all individual messages

The full decoding process is depicted in Figure 2b. Bob first
applies a filtering matrix Fb so that

Ỹb = FbỸb = RbX + Wb,eff,

where R†bRb = H†bHb + ρ−1
b I and F†bRb = ρ−1

b Hb. The
effective noise is then

Wb,eff = (FbHb −Rb)X + FbWb.

The next step is to decode Ỹb in RbΛb, in order to obtain
QRbΛb

(Ỹb), which is then remapped into the element of the
coset RbΛb/RbΛe through the operation mod RbΛe. We can
then invert the linear transformation associated to Rb (notice
that Rb is full rank) in order to obtain the coset in Λb/Λe and
re-map it to the message spaceM through f−1. Using the fact
that the effective noise is sub-Gaussian [14] with parameter σ2

b .
Therefore, as long as ε′ ≈ 0 the probability of error tends to
zero if we choose Λb to be AWGN good.

C. The Eavesdropper Channel: Semantic Security

For a fixed realization He, the key element for bounding
the information leakage is the following lemma [11, Lem 2]:

Lemma 2. Suppose that there exists a random variable with
density q taking values in Cne×T such that V(pYe|m, qYe) ≤
εT for all m ∈MT . Then, for all message distributions

I(M ; Ye) ≤ 2TεTR− 2εT log 2εT . (8)

We show that if the distribution is sufficiently flat, then
Ye|m is statistically close to a multivariate Gaussian. Let us
assume for now that He is an invertible square matrix. We next
show how to reduce the other cases to this one. In this case,
given a message M , we haveHex ∼ DHe(Λe+λm),

√
(HeH†

e)σ2
s

.

According to Lemma 1, the distribution of Hex + we is
within variational distance 4εT from the normal distribution
N (0,

√
Σ0), where εT = εHeΛe(

√
Σ3) and

Σ0 = (HeH†e)σ2
s + σ2

eI and Σ−1
3 = (HeH†e)−1σ−2

s + σ−2
e I.

(9)
We have thus the following bound for the information

leakage (Equation (8) with εT replaced by 4εT ).

I(M ; ye) ≤ 8TεTR− 8εT log 8εT . (10)

Therefore, if the flatness factor εT = εHeΛe
(
√

Σ3) =
O(1/T ), the leakage vanishes as T increases for the specific
realization He. To achieve strong secrecy universally, we
must, however, ensure the existence of a lattice with vanishing

flatness factor for all possible Σ3. The universality discussion
is omitted due to space constraints (full details are avaliable
in [5]), but can be obtained similar to reliability in [6], with
channel quantization. The secrecy condition, implies, in turn,
that semantic security is possible for any VNR

γHeΛT
e

(
√

Σ3) =
|H†eHe|1/naTV (Λe)

1/naT

|Σ3|1/naT
< π or (11)

V (Λe)
1/naT <

∣∣I + ρeH
†
eHe

∣∣−1/na
πσ2

s = (πσ2
s)e−Ce/na .

Number-of-Antenna Mismatch. The last section assumed
that the number of eavesdropper receive antennas an trans-
mit antennas are equal. However, due to universality, the
arguments can be extended to any number of eavesdropper
antennas. We provide a sketch of the case ne < na.

Let H̃e ∈ C(na−ne)×na be a completion of He in (1) and
consider the following surrogate (augmented) MIMO channel

(
Ye

Ỹe

)
=

(
He

βH̃e

)
X +

(
We

W̃e

)
,

where H̃e is scaled so that the capacity of the new channel is
arbitrarily close to the original one. Indeed for any full rank
completion H̃e, from the matrix determinant lemma, we have
|I + ρeH

†
eHe| ≥ eCe Therefore, by making β → 0, the left-

hand side tends to eCe . For any signal X, the information leak-
age of the surrogate channel is strictly greater then the original
one (the the eavesdropper’s original channel is stochastically
degraded with respect to the augmented one). A universally
secure code for the na × na MIMO compound channel will
have vanishing information leakage for the surrogate na× na
channel (for any completion) and therefore will also be secure
for the original ne × na channel.

D. Proof of Theorem 1: Achievable Secrecy Rates

From the previous subsections, semantic security can be
achievable if Λb and Λe satisfy

1) Reliability (4): γRbΛb
(σb) > πe

2) Secrecy (11): γHeΛe(
√

Σ3) < π
3) Sub-gaussianity of equivalent noise and power con-

straint: εΛe
(σs)→ 0

The first two conditions can be satisfied for rates up to

log |I + ρbH
†
bHb| − log |I + ρeH

†
eHe| − na

nats per channel use, but the last conditions may, a priori,
limit these rates to certain signal-to-noise ratio (SNR) regimes.
However if condition 2) is satisfied, we automatically satisfy
the condition for εΛe(σs)→ 0, since

V (Λe)
1/naT

σ2
s

≤ V (Λe)
1/naT

e−Ce/naσ2
s

< π.

Therefore if (ΛTb ,Λ
T
e ) is a sequence of nested universally-

good/universally-secure pairs lattices, then we can achieve
rates up to R ≤ (Cb − Ce − na)+.

We conjecture that this gap can be reduced with better
bounds on the variational distance with respect to the flatness
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factor. Theorem 1 is also a slight improvement on the main
result of [11, Thm. 5] in the sense that one of the conditions
on the SNR of Bob (SNRb > e) is no longer needed.

V. ALGEBRAIC CONSTRUCTIONS

We close this paper with an alternative method for achieving
semantic secrecy, assuming that the lattice admit an “algebraic
reduction” and can absorb part of the channel state. In this
method, inspired by previous works [7], [13] there is no
increase in blocklength due to channel quantization and, in
fact, any code which is good for the wiretap Gaussian channel
can be coupled with this technique, as long as it also possesses
an additional algebraic structure.

A. Algebraic Approach

Following [16], we define a lattice ΛTe admitting algebraic
reduction. In the sequel we denote the Frobenius norm of a
matrix by ‖M‖F ,

√
tr(M†M).

Definition 2. We say that Λ admits algebraic reduction if for
any unit determinant matrix M ∈ CnaT×naT there exists a
matrix decomposition of the form M = EU, where E and U
are also unit-determinant satisfying the following properties:

1) UΛ = Λ and
2)
∥∥E−1

∥∥
F
≤ α for some absolute constant α that does

not depend on M.

The Golden Code is one example of lattice that admits
algebraic reduction [13]. Any lattice built from the generalized
Construction A admits a similar reduction. Furthermore, if we
can relax the requirement (1) to include equivalence instead
of equality, it is possible to exhibit constructions that admit
algebraic reduction for any number of antennas [6].The proof
of the following lemma shows that lattices admitting algebraic
reduction has bounded flatness factor. The proof is omitted due
to space constraints.

Lemma 3. Suppose that Λ ⊂ CnaT is such that its dual, Λ∗,
admits algebraic reduction. Then

εΛ(
√

Σ) ≤ εΛ

(√
α−1(det Σ)1/naT

)
.

Therefore, for any channel realization, a sufficient condition
for the flatness factor in (11), εHeΛe

(
√

Σ3), to vanish is that
the upper bound in Lemma 3 vanishes.

This can be achieved provided that:

V (Λe)
1/naT < πe−Ce/naα−1σ2

s . (12)

Notice that this last expression depends only on the determi-
nant of Σ3 or on the capacity of the eavesdropper channel,
not on any individual realization. For this condition to hold,
we only need a sequence of secrecy-good lattices for an
eavesdropping AWGN channel with smaller noise variance (by
factor α−1). Therefore, the following result holds.

Theorem 2. Let (ΛTb ,Λ
T
e ) be a sequence of nested lattices

where: (i) ΛTb is universally good for the compound MIMO

channel and (ii) ΛTe satisfies Definition 2 and is secrecy good
for the AWGN channel (Condition (12)). Then nested lattice
Gaussian coding achieves any secrecy rates up to

R ≤ (Cb − Ce − na − na log(α))+.

Notice the extra gap with respect to Theorem 1. Although
we have conjectured that the gap in Theorem 1 can be
essentially removed, this is not the case for logα in Theorem
2. Indeed, since α cannot be smaller than

√
na, this gap is

always larger than na log na. However the code construction
can be reduced to the problem of finding good lattices for
the Gaussian wiretap channel (with some additional algebraic
structure), making the design potentially more practical.

-
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Abstract–This paper proposes a low complexity precoding alg-
orithm based on the recently proposed Generalized Least Square
Error (GLSE) scheme with generic penalty and support. The
algorithm iteratively constructs the transmit vector via Approx-
imate Message Passing (AMP). Using the asymptotic decoupling
property of GLSE precoders, we derive closed form fixed point
equations to tune the parameters in the proposed algorithm for a
general set of instantaneous signal constraints. The tuning strat-
egy is then utilized to construct transmit vectors with restricted
peak-to-average power ratios and to efficiently select a subset
of transmit antennas. The numerical investigations show that
the proposed algorithm tracks the large-system performance of
GLSE precoders even for a moderate number of antennas.

I. INTRODUCTION

For a given precoding support X ⊂ C and penalty function
u(·) : X 7→ R, the Generalized Least Square Error (GLSE)
precoder constructs the transmit vector x ∈ XN from the data
vector s ∈ CK and the channel matrix H ∈ CN×K as x =
glse (s, ρ|H) where ρ is a power control factor and [1]

glse (s, ρ|H) = argmin
v∈XN

‖Hv − √
ρs‖2 + u(v). (1)

The generality of X and u(·) allows for addressing various
forms of constraints on the transmit vector. Compared to the
classical approaches for imposing such constraints, the studies
in [1]–[4] have shown significant enhancements obtained via
the GLSE precoding scheme. Nevertheless, the computational
complexity of this scheme has been remained as the main chal-
lenge and is intended to be addressed in this paper.

The main motivation of this study comes from the great deal
of interest being received recently by massive Multiple-Input
Multiple-Output (MIMO) systems [5]. Form implementational
points of view, however, these systems confront the problem
of high Radio Frequency (RF)-cost which raises due to the
vast number of RF-chains needed in such setups. The initial
approach to overcome this issue is to restrict the Peak-to-
Average Power Ratio (PAPR) of the transmit vector [6], [7].
In this case, nonlinear power amplifiers with lower dynamic
ranges can be employed, and the total RF-cost can be sig-
nificantly reduced. Another approach is Transmit Antenna
Selection (TAS) [8], [9] in which a subset of transmit antennas
is kept active at each transmission interval, and therefore,
the number of required RF-chains is reduced. Although such
approaches combat the issue of high RF-cost, the conventional
algorithms significantly degrade the performance. In this case,
GLSE precoders reduce this degradation by finding the optimal

This work was supported by the German Research Foundation, Deutsche
Forschungsgemeinschaft (DFG), under Grant No. MU 3735/2-1.

transmit vector which satisfies the constraints imposed by
these approaches. In general, GLSE precoders solve an op-
timization problem in each transmission interval. This task is
not trivial for choices of u(·) and X which are non-convex. For
cases with convex optimization problems, the precoder can be
implemented via generic linear programming algorithms. The
high computational complexity of these algorithms for large
dimensions, however, leaves the implementation of GLSE
precoders as an issue in massive MIMO setups. Generalized
Approximate Message Passing (GAMP) [10] proposes a low
complexity iterative approach for several estimation problems
based on approximating the loopy belief propagation algorithm
in the large limit [11]. The algorithm is known to considerably
outperform other available iterative approaches. The underly-
ing estimation problems, which are addressed by GAMP, are
mathematically similar to the GLSE precoding scheme, and
therefore, the algorithm can be employed to design a class of
iterative precoders based on the GLSE scheme.

The main contribution of this paper is to adopt and tune
the GAMP algorithm to address the GLSE precoding scheme,
recently proposed in [1]–[4]. The developed iterative scheme
is referred to as “GLSE-GAMP” precoding and exhibits low
complexity characteristic. Using the fact that the GLSE and
GLSE-GAMP precoders consider same optimization prob-
lems, we further propose a tuning strategy based on the asymp-
totic results in [1]–[4] derived via the replica method. Our
numerical investigations show that the performance of GLSE-
GAMP precoders tuned by the proposed strategy is accurately
consistent with asymptotics of corresponding GLSE precoders.

Notation

Throughout the paper, scalars, vectors and matrices are rep-
resented with non-bold, bold lower case and bold upper case
letters, respectively. IK is a K ×K identity matrix, and HH is
the Hermitian of H. The set of real and integer numbers are
denoted by R and Z, and C represents the complex plane. For
s ∈ C, Re {s}, Im {s} and s := [Re {s} Im {s}]T identify the
real part, imaginary part and augmented vector, respectively,
and the expression s ∈ S indicates that s is the augmented ver-
sion of s ∈ S. For f(x) = [f1(x), . . . , fn(x)]

T, the gradient
operator is defined as ∇x f(x) := [∇x f1(x), . . . , ∇x fn(x)]T.
‖·‖ and ‖·‖1 denote the Euclidean and ℓ1-norm, respectively.
Considering the random variable x, px represents either the
probability mass or density function. Moreover, E identifies the
expectation. For sake of compactness, {1, . . . , N} is abbre-
viated by [N ], and we define φ̃(x, λ) := exp(−x2/λ) and
Q̃(x, λ) :=

∫ ∞
x

φ̃(u, λ)du/λ for a given non-negative real λ.
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II. PROBLEM FORMULATION

Consider a Gaussian broadcast MIMO setup in which a
sequence of data symbols {sk} for k ∈ [K] is transmitted
to K single-antenna users simultaneously. The transmitter is
equipped with N transmit antennas. The channel is considered
to be quasi-static fading and perfectly known at the transmitter.
By employing the GLSE precoding scheme given in (1) with
some penalty u(·) and precoding support X ⊆ C, the transmit
vector is constructed as xN×1 = glse (s, ρ|H) where sK×1 :

= [s1, . . . , sK ]
T and ρ is a non-negative power control factor.

For this setup, we assume that the following constraints hold.
(a) sK×1 has independent and identically distributed (i.i.d.)

zero-mean complex Gaussian entries with unit variance.
(b) u(·) decouples meaning that u(v) =

∑N
j=1 u(vj).

(c) N and K grow large, such that the load factor α := K/N
is kept fixed in both N and K .

(d) HHH = UDUH in which U is an N ×N unitary matrix,
and D is a diagonal matrix with asymptotic eigenvalue
distribution pD. For pD, we define the Stieltjes transform
as GD(s) = E

{
(d − s)−1

}
with the expectation being

taken over d ∼ pD and the R-transform as RD(ω) =
G−1

D (−ω) − ω−1 where G−1
D (·) denotes the inverse with

respect to composition.
By proper choices of the supportX and penalty u(·), the GLSE
precoder can impose several constraints on the transmit vector.

• Setting u(v) = λ‖v‖2 and X =
{
x ∈ C : |x|2 < P

}
, the

transmit vector is restricted to have a limited PAPR. In
fact in this case, the peak power is set to P and a desired
constraint on the PAPR is imposed by tuning λ such that
the average power is accordingly restricted.

• Let u(v)=λ‖v‖2 +µ‖v‖1 and X = C; then, the number
of active transmit antennas is constrained.

III. GLSE-GAMP PRECODERS

The GLSE scheme can be considered as a max-sum problem
which can be addressed via the GAMP algorithm [10].

A. GAMP Algorithm

The GAMP algorithm, proposed in [10], intends to estimate
vN×1 from sK×1 iteratively considering the following setup.
(a) Each entry of v is generated from the corresponding entry

of some a ∈ AN via pv|a.
(b) The entries of s are obtained form the entries of the vector

zK×1 through identical scalar channels with ps|z .
(c) z is a random linear transform of v, i.e., z = Hv for

some random K × N matrix H.
Depending on the estimation scheme, the GAMP algorithm is
developed to address the “max-sum” or “sum-product” prob-
lems. The max-sum GAMP algorithm iteratively determines
the Maximum-A-Posterior (MAP) estimation

x = argmax
v

N∑

n=1

fin(vn, an) +
K∑

k=1

fout(zk, yk) (2)

for some scalar functions fin(·, ·) and fout(·, ·) which represent
the conditional distributions pv|a and ps|z . The sum-product

GAMP algorithm, moreover, addresses the Minimum Mean-
Square-Error (MMSE) estimation where x = E {v|s,a}.

B. The GAMP-GLSE Algorithm

By comparing GLSE precoding with (2), it is observed that
the precoding scheme solves a max-sum problem in which z :
= Hv with H being the channel matrix, vk ∈ X for k ∈ [K],
and fin(vn, an) = −u(vn) and fout(zk, sk) = −|zk −√

ρsk|2.
As the result, the GAMP algorithm can be applied to iteratively
construct the transmit vector x. By some lines of derivations,
the max-sum GAMP algorithm can be adopted to the GLSE
scheme in (1). The resulting algorithm is referred to as “GLSE-
GAMP” algorithm and is represented in Algorithm 1 for the
precoding support X ⊆ C and the complex-valued matrix H.
The variables and functions in the algorithm, for k ∈ [K] and
n ∈ [N ], are defined as follows.

• The real two-dimensional vectors wk, zk, yk, sk, un and
xn are the augmented forms of the complex scalars wk,
zk, yk, sk, un and xn, respectively.

• The matrices Rw
k , Ry

k, Ru
n and Rx

n are real 2×2 matrices,
and Qkn is defined as

Qkn :=

[
Re {hkn} −Im {hkn}
Im {hkn} Re {hkn}

]
(3)

with hkn representing the entry (k, n) of H.
• gout (·) is the output thresholding function defined as

gout (w, s,R) := ∇w min
z∈C Eout(z,w, s,R) (4)

where the function Eout(·) is determined by

Eout(z,w, s,R) =
1

2
(z − w)TR−1(z − w)

+ ‖z − √
ρ s‖2 (5)

• gin (·) is the input thresholding function being defined as

gin (u,R) := argmin
x∈X Ein(x,u,R). (6)

where the function Ein(·) is evaluated by

Ein(x,u,R) =
1

2
(u − x)TR−1(u − x) + u(x). (7)

• The initial conditions are xn(1) = argminx∈X u(x) and
Rx

n(1) =
[
∇2
x u(un(1))

]−1.
The update rules in Algorithm 1 are derived by extending

the sum-max GAMP algorithm to the case with a complex-
valued matrix H and an arbitrary input support X ⊆ C. The
extension is followed by determining the update rules for the
corresponding loopy belief propagation algorithm and then
taking some steps similar to [10, Appendix C]. The detailed
derivations are skipped due to the page limit and is represented
in the extended version of the manuscript.

Remark 1: One should distinguish between the GLSE scheme
and the GLSE-GAMP algorithm. In fact, the former is a least
square based scheme to design transmit signals which fulfill
some desired constraints. The GLSE-GAMP algorithm, on the
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Algorithm 1 GLSE-GAMP Precoding Algorithm

Initiate Start from t = 1 and for k ∈ [K] let yk(0) = 0. Set
xn(1) and Rx

n(1) for n ∈ [N ] to their initial conditions.

while t < T
for k ∈ [K]

Rw
k (t) =

N∑

n=1

QknRx
n(t)QT

kn (8a)

zk(t) =

N∑

n=1

Qknxn(t) (8b)

wk(t) = zk(t) − Rw
k (t)yk(t − 1) (8c)

yk(t) = gout(wk(t), sk,Rw
k (t)) (8d)

Ry
k(t) = −∇w gout(wk(t), sk,Rw

k (t)) (8e)

end for
for n ∈ [N ]

Ru
n(t) =

[
K∑

k=1

QT
knRy

k(t)Qkn

]−1

(9a)

un(t) = xn(t) + Ru
n(t)

[
K∑

k=1

QT
knyk(t)

]
(9b)

xn(t + 1) = gin(un(t),Ru
n(t)) (9c)

Rx
n(t + 1) = [∇u gin(un(t),Ru

n(t))] Ru
n(t) (9d)

end for
end while

Output: xn(T ) for n ∈ [N ].

other hand, proposes an iterative approach based on GAMP
to address the GLSE scheme. For some choices of the penalty
function, precoding support and channel matrix, the GLSE-
GAMP algorithm converges to the transmit signal given by
the GLSE scheme. There are however some particular cases
in which the GLSE-GAMP algorithm does not converge. For
these cases, Algorithm 1 does not give the desired transmit sig-
nal. To avoid the divergence in such cases, we need to modify
the algorithm. This issue is briefly discussed in Section V.

In contrast to GLSE precoders, GLSE-GAMP precoders ex-
hibit low complexity characteristic. Considering Algorithm 1
and noting that the matrices in (8a)-(9d) are fixed 2×2 matri-
ces, it is straightforward to show that the total worst-case com-
plexity of GLSE-GAMP precoders per iteration is O(KN).
The number of iterations, moreover, does not grow with
the dimensions. Therefore, one can conclude that the overall
complexity of the precoding scheme is O(KN) as well.

C. Tuning GLSE-GAMP precoders

In order to impose a given set of constraint on the transmit
signal, the corresponding GLSE-GAMP precoder should be
tuned. As an example, consider the case in which the number
of active transmit antennas, as well as the average transmit

power, is desired to be restricted via a GLSE-GAMP precoder.
In this case, one may set X = C and u(v) = λ‖v‖2 +µ‖v‖1.
The factors λ and µ in this case control the average transmit
power and the fraction of active antennas, respectively. Con-
sequently for given constraints, these factors need to be tuned.
Nevertheless, the derivation of an exact tuning strategy is not
a trivial problem as the constrained parameters, i.e., the ave-
rage power or fraction of active antennas, cannot be derived in
terms of the tuning factors straightforwardly. We therefore pro-
pose a tuning strategy based on the asymptotics of the GLSE-
GAMP algorithm and its connection to the GLSE scheme. The
large-system performance of GLSE-GAMP precoders is stud-
ied through asymptotic analyses of “state evolution” equations;
see [12] and the references therein. Following the results in
the literature, e.g. [13], [14], it is shown that for choices of H,X and u(·), in which the GLSE-GAMP algorithm converges,
the asymptotic performance of the algorithm coincides with
the large-system performance of GLSE precoders investigated
in [1], [4]. This result indicates that in the large-system limit,
the tuning factors for GLSE-GAMP and GLSE precoders are
the same. Therefore, for a given set of constraint, we derive
the tuning factors of the GLSE-GAMP precoders by tuning
the corresponding GLSE precoders.

Tuning Strategy: Assume that the constraints fj(x)/N = Cj

are desired to be satisfied via a GLSE-GAMP precoder with
penalty u(·) and support X which are controlled by λj for j ∈
[J ]. Here, fj(·) are decoupling functions meaning that fj(x) =∑N

n=1 fj(xn). To tune λj accordingly, we define

x = argmin
v∈X |v − s0|2 + ξ u(v) (10)

where s0 ∼ CN
(
0, σ2

)
with

σ2 = [RD(−χ)]
−2 ∂

∂χ
[(λsχ − p)RD(−χ)] . (11)

and ξ = [RD(−χ)]
−1 for χ and p which satisfy p = E|x|2 and

σ2χ

ξ
= ERe {x∗s0} . (12)

The precoder is then accordingly tuned by choosing λj for
j ∈ [J ] such that the equations Efj(x) = Cj are satisfied.

Derivation: The derivation follows the marginal decoupling
property of the GLSE precoders presented in [1], [4]. In fact,
using the property, it is concluded that fj(x)/N asymptoti-
cally converges to Efj(x). By taking the approach illustrated
at the beginning of the section, the tuning strategy is obtained.

The proposed tuning strategy evaluate the decoupled GLSE
precoder1 by finding χ and p form the fixed-point equations.
The asymptotic constrained parameters are then determined
by taking the expectation Efj(x) and set it equal to Cj . One
should note that the strategy in general is heuristic, since it
tunes the precoders for the large-system limit. Nevertheless,

1See Proposition 2 in [1] for the decoupling property of GLSE precoders.
A more general version of the property is represented in [4, Section II-A].
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the numerical investigations show that for several cases, the
GLSE-GAMP precoders are well tuned via this strategy.

IV. APPLICATIONS OF GLSE-GAMP PRECODERS

In this section, we investigate two special cases of GLSE-
GAMP precoders with TAS and limited PAPR. Throughout
the analyses, we assume that H represents an i.i.d. Rayleigh
fading channel with variance 1/N , i.e., RJ(ω) = α(1−ω)−1.

A. GLSE-GAMP Precoder with TAS

As it was discussed, TAS can be directly addressed at the
transmit side by using GLSE scheme with u(v) = λ|v|2+µ|v|.
The corresponding GLSE-GAMP precoder is therefore given
by Algorithm 1 where X = C, gout (w, s,R) = Gww + Gss
and ∇w gout (w, s,R) = Gw, respectively with

Gw := −2ATA − (A − I2)
TR−1(A − I2) (13a)

Gs := −2
[
2ATAR − AT + (A − I2)

TR−1AR
]

(13b)

and A := (I2 + 2R)−1. For the input thresholding function,
the analytic evaluation of the function from the augmented
form in (6) is not trivial. We thus employ the complex scalar
form of the equation which results in gin (u,R) = G(u)f(u)
and ∇u gin (u,R) = G(u)F(u) where

G(u) =

{
Gu ‖u‖ ≥ τ

0 ‖u‖ < τ
(14)

with τ := 2µ
[
Tr{R−1}

]−1 and Gu := (I2 + 2λR)−1, and

f(u) :=

[
1 − τ

‖u‖

]
u, (15a)

F(u) :=
τ

‖u‖3
uuT +

[
1 − τ

‖u‖

]
I2. (15b)

By setting µ = 0, the GLSE scheme reduces to Regularized
Zero Forcing (RZF) precoding, and thus, the GLSE-GAMP
algorithm iteratively constructs the output of the RZF precoder.

Tuning Strategy: We employ the strategy in Section III-C
to tune µ and λ such that the fraction of active antennas and
the average transmit power are η and P , respectively. For
this case, J = 2 and f1(x) = ‖x‖2 and f2(x) = ‖x‖0.
Consequently, λ and µ are determined from the fixed-point
equations φ̃(ξµ; θ) = η for θ = (ρ + P )/α and

(1 + 2ξλ)2 =
θ

P

[
η − 2ξµQ̃(ξµ; θ)

]
(16)

and ξ is determined in terms of λ and µ through

αξ =
1

2
+

ξ

1 + 2ξλ

[
η − ξµQ̃(ξµ; θ)

]
. (17)

B. GLSE-GAMP Precoder with PAPR Constraint

The precoder in Section IV-A can further take the PAPR
constraint into account by setting X=

{
x ∈ C : |x|2 < Pmax

}
.

The support in this case imposes a peak power constraint
on the transmit signal which along with the penalty function
restricts both the PAPR and the number of active antennas1.

1See [1, Section IV-B] for further illustrations.

Considering Algorithm 1, the output function for this setup
remains unchanged , and the input function reads

gin (u,R) =





u

‖u‖
√

Pmax τ̃ ≤ ‖u‖

Gu f(u) τ ≤ ‖u‖ < τ̃

0 0 ≤ ‖u‖ < τ

(18)

with the corresponding gradient

∇u gin (u,R) =





ũũT

‖u‖3

√
Pmax τ̃ ≤ ‖u‖

GuF(u) τ ≤ ‖u‖ < τ̃

0 0 ≤ ‖u‖ < τ,

(19)

where ũ := [u2, −u1]
T, τ := 2µ

[
Tr{R−1}

]−1, and

τ̃ :=

(
1 +

4λ

Tr{R−1}

)√
Pmax +

2µ

Tr{R−1} . (20)

Gu, f(u) and F(u) are moreover given as in Section IV-A. By
setting µ = 0, the precoder employs all the transmit antennas
and restricts only the PAPR. In this case, F(u) = I2, f(u) =
u, and τ reduces to zero.

Tuning Strategy: Consider the same constraints as for the
case without the PAPR restriction. From Section III-C, λ and µ
for the average power P and the fraction of active antennas η
are given by the fixed-point equations φ̃(ξµ; θ) = η and

(1 + 2ξλ)2 =
θ

P
[∆1(ξµ) − 2ξµ∆2(ξµ)] . (21)

Here, ξ is a function of λ and µ which satisfies

αξ =
1

2
+

ξ

1 + 2ξλ
[∆1(ξµ) − 2ξµ∆2(ξµ)] . (22)

Moreover, θ = (ρ + P )/α and we have defined

∆1(ξµ) := φ̃(ξµ; θ) − φ̃(ξµ + (1 + 2ξλ)
√

Pmax; θ), (23a)

∆2(ξµ) := Q̃(ξµ; θ) − Q̃(ξµ + (1 + 2ξλ)
√

Pmax; θ). (23b)

V. NUMERICAL INVESTIGATIONS

To investigate the performance of GLSE-GAMP precoders,
we define the distortion measure for a given ρ as

D(ρ) :=
1

K
E‖Hx − √

ρs‖2 (24)

which determines the average distortion caused by the mul-
tiuser interference at receive terminals. It is moreover shown
that the achievable ergodic rate per user can be bounded from
below in terms of D(ρ) as proved in [2].

The circles in Fig. 1 show the distortion given by the GLSE-
GAMP precoder presented in Section IV-A for various inverse
load factors α−1 = N/K considering several constraints on
the number of active antennas. The results have been given
for N = 64 antennas and T = 20 iterations. The asymptotic
performances of the corresponding GLSE precoders, derived
via the replica method in [4], have been also sketched with
solid lines. Here, ρ = 1 and λ is set such that P = 0.3. As the
figure shows, the GLSE-GAMP precoder tracks accurately the
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Fig. 1: Distortion at ρ = 1 vs. α−1 for P = 0.3 and various η. Circles
depict the performance of the GLSE-GAMP precoder for N = 64
and T = 20. Solid lines denote the asymptotic performance of the
corresponding GLSE scheme determined by the replica method.

performance of the GLSE scheme, even for a practically mod-
erate number of antennas. For the PAPR-limited precoder in
Section IV-B, the distortion at ρ = 1 has been plotted in terms
of α−1 in Fig. 2. The curves have been sketched for multiple
PAPR constraints. Similar to Fig. 1, solid lines correspond to
the GLSE scheme and circles denote the simulation results
for the GLSE-GAMP precoder with N = 64 and T = 20 for
PAPR = 3 dB. Here, we have considered P = 0.5, and Pmax

is tuned via the proposed strategy assuming all the antennas
being active. The figure depicts that by increasing the PAPR up
to 5 dB, the performance of the precoder is sufficiently close to
the case without PAPR restriction. This observation suggests
for employing the GLSE-GAMP precoder, in order to reduce
the transmit PAPR without any significant performance loss.
In this case, low efficiency power amplifiers can be utilized
which can significantly reduce the RF-cost.

Remark 2: It is known that the GAMP algorithm converges
for i.i.d. Gaussian matrices [13], [14]. However, by deviating
from this assumption, the algorithm may diverge. This issue
was recently addressed in [15] via the Vector Approximate
Message Passing (VAMP) algorithm. Consequently, for chan-
nel models with ill-conditioned matrices, one can develop a
precoding algorithm based on the GLSE scheme by taking a
same approach while employing VAMP.

VI. CONCLUSION

This paper has proposed a class of low complexity precoders
based on the GLSE scheme using the GAMP algorithm. The
numerical investigations have been consistent with the replica
results for the GLSE scheme given in [1]–[4]. This consistency
demonstrates that various implementational limitations in mas-
sive MIMO systems can be effectively overcome using some
low-complexity, but effective, algorithms. As indicated in
Remark 2, the GLSE-GAMP precoders may fail in converging
for channel models with ill-conditioned channel matrices, and
therefore, an alternative algorithm can be proposed via VAMP.
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Fig. 2: Distortion at ρ = 1 vs. α−1 for several PAPRs. P = 0.5
and η = 1. Solid lines and circles respectively denote the results for
GLSE and GLSE-GAMP algorithm with N = 64 and T = 20.

The extension under VAMP is however skipped and left as a
possible future work.
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Abstract—The application of multilevel codes in lattice-reduc-
tion-aided equalization is considered, i.e., the decoding of mul-
tilevel codes when (Gaussian) integer linear combinations of the
codewords in signal space are present. Typically, multilevel codes
do not generate lattice codes, hence arbitrary integer linear
combinations are not directly decodable. We show that this
lattice property is not required, which relaxes the constraints
on the component codes significantly. A generalized version of
multistage decoding which incorporates a “carry correction” is
proposed; it circumvents the lattice property and any integer
linear combinations are decodable. Numerical simulations are
given to cover the performance of the proposed method.

I. INTRODUCTION

In the literature, low-complexity but well-performing ap-

proaches for the equalization in multiple-input/multiple-output

(MIMO) multi-user uplink scenarios are discussed for more

than one decade. Lattice-reduction-aided (LRA) techniques

[16], [15] and the tightly related concept of integer-forcing (IF)

receivers [10], [17] are of special interest. In both schemes, the

main idea is not to decode the transmitted signals, but integer

linear combinations thereof; LRA and IF receivers differ in

the way the (residual) integer interference is handled, cf. [4].

Right from the start, IF schemes were proposed as coded

schemes—a strong coupling between integer equalization

and decoding/code constraints is present. In contrast, LRA

schemes are usually treated uncoded as a combination with

coded modulation schemes seems to be easier. Here, the actual

demand is that the code is linear in signal space; any integer

linear combination of codewords has to be a codeword. Lattice

codes obviously fulfill this demand.

In this paper, we are interested in the combination of multi-

level codes (MLC) and LRA equalization, because multilevel

coding together with multistage decoding (MSD) is in principle

a capacity-achieving strategy [14]. Typically, multilevel codes

do not generate lattice codes [9] and are not linear. However,

we show that this property is indeed not required. We study the

relevant design criteria on the component codes and propose a

generalized version of multistage decoding which incorporates

a “carry correction” such that integer linear combinations are

decodable.1

The paper is organized as follows: In Sec. II the system

model is introduced. The consequences of integer linear com-

binations on multilevel codes are studied in Sec. III and a new

decoding scheme with carry correction is proposed. Sec. IV

presents numerical examples; the paper is briefly summarized

in Sec. V.

II. SYSTEM MODEL

Throughout the paper, we assume K non-cooperating (single-

antenna) users k, k = 1, . . . ,K , communicating their binary

source symbols2 qk ∈ F2 to a central receiver with NR ≥ K
antennas. To that end, the symbols are encoded and mapped to

complex-valued transmit symbols xk, drawn from some signal

constellation A with variance σ2
x.

Denoting the K-dimensional transmit vector as x, the

NR × K (flat-fading) channel matrix as H , and the NR-

dimensional noise vector (with zero-mean Gaussian noise

components with variance σ2
n per dimension) as n, the receive

vector y (complex baseband notation) reads as usual

y = Hx + n . (1)

We assume joint processing of the NR components of the

receive vector y. The common, practicable approach is to

first perform some form of joint equalization, followed by

individual decoding of the codes.

Lattice-reduction-aided and integer-forcing equalization are

low-complexity, well-performing approaches. In both variants,

the main idea is to factorize the channel matrix as

H = W Z , (2)

where Z ∈ GK×K , G = Z + jZ, is a full-rank (Gaussian)

integer matrix. Then, only the non-integer part W is equalized

(here via MMSE linear equalization) [3], [17], [4]. The differ-

ent factorization criteria (lattice or dual-lattice approach, ZF or

MMSE criterion), constraints (unimodular vs. full-rank), and

algorithms (shortest basis problem vs. shortest independent

vector problem) are irrelevant for the scope of the paper; for

an overview see, e.g., [4].

Including the linear (ZF or MMSE) equalizer frontend, the

remaining part of the (LRA/IF) receiver has to deal with

r = Zx + n̄
def
= x̄ + n̄ , (3)

where n̄ is the effective disturbance after equalization—here,

for brevity we assume that all (complex-valued) components

have the same variance σ2
n̄. Fig. 1 shows the effective end-to-

end channel model.

The main difference between LRA and IF equalization is

how the integer interference is resolved. In LRA schemes, the

1Shortly after the submission of this paper we became aware of a similar
work [1], however, treating only coding over ASK constellations.

2The notation distinguishes quantities over the complex numbers (typeset
as x, Z, . . . ), and over finite fields (typeset in Fraktur font; q, c, Z0, . . . ).
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Fig. 1. End-to-end integer channel model (including linear equalization).
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Fig. 2. System model of the receiver over end-to-end integer channels. Top:
lattice-reduction-aided equalization; Bottom: integer-forcing receiver.

linear combinations x̄ of the transmit symbols in signal space

are estimated by the decoders and the interference is undone

via Z−1 over the complex numbers, cf. Fig. 2, top. Finally,

via the encoder inverses, estimates q̂k are produced.

In IF schemes (Fig. 2, bottom), the source symbols are

drawn from a finite field Fp, p a prime, and encoding is done

over Fp. At the receiver, linear combinations q̄k of the source

symbols are delivered by the decoders and the integer matrix

Z (the Fp-equivalent to Z) is inverted over Fp.

These different orders of encoder inverse and inverse of Z
impose different constraints on the codes. In LRA schemes,

integer linear combinations in signal space have to be decod-

able. When lattice codes are used, this is directly fulfilled.

III. MULTILEVEL CODES AND INTEGER INTERFERENCE

A particular strategy to coded modulation is multilevel coding

[7], [14]. Via a set of binary component codes Cl, l =
0, . . . ,m − 1, and a mapping from binary address labels

of m = log2(M) digits to M signal points (constituent

constellation), a code in signal space is generated.

A. Mapping

We are interested in one-dimensional (amplitude-shift key-

ing, ASK) and (square) two-dimensional (quadrature-ampli-

tude modulation, QAM) constituent constellations and restrict

ourselves to mapping according to the set partitioning rule

[13]. In both cases, the mapping can be written as [5]

M(bm−1 . . . b1b0) = modB

(∑m−1

l=0
ψ(bl)φ

l
)

−O , (4)

where ψ(·) is the common mapping from the finite field (F2)

elements “0” and “1” to integers “0” and “1”, i.e., ψ(0) = 0
and ψ(1) = 1. B = M for ASK and B =

√
M for QAM

defines the boundary region3 and O = M−1
2 for ASK and

O = (1 + j)
√

M−1
2 for QAM is the offset for zero-mean

constellations. Ignoring the modulo reduction and the offset,

the point in signal space is given by its binary expansion

w.r.t. the base φ. For ASK we have φ = 2 and the usual

binary expansion of an integer is present. For QAM we choose

φ = −1 + j. This is due to the fact that the Gaussian integers

G can be uniquely given via a binary representation where the

base (radix) is the complex number ±1 ± j [11], [6], cf. also

[5].

B. Multilevel Codes and Lattices

Using this mapping, the multilevel code is defined by

CMLC = modB

(∑m−1

l=0
ψ(Cl)φ

l
)

−O , (5)

where ψ(·), mod(·), and the offset O are applied component-

wise and Cl, l = 0, . . . ,m−1, are the binary component codes

(at level l). Here, to simplify exposition, they are assumed to

be block codes of equal length N .

Such a multilevel code is never a lattice. However, we can

consider the following construction (“construction by code

formula” [9], [5])

C =
∑m−1

l=0
ψ(Cl)φ

l + φmGN , (6)

which differs from CMLC by i) eliminating the offset O and ii)

inherently assuming an infinite number of “uncoded levels” via

the addition of φmGN (φmZN in case of ASK), i.e., periodic

extension by adding integer multiples of φm to the coordinates

of the codewords (note that |φm| = B is the size of the support

per dimension of the multilevel code).

In [9] it is shown that C is a (real) lattice, i.e., has group

structure under ordinary vector addition (over R), if

a) Cl are linear codes

b) C0 ⊆ C1 ⊆ · · · ⊆ Cm−1 (7)

c) for all l and ci, cj ∈ Cl it has to hold ci ⊙ cj ∈ Cl+1

where ⊙ denotes the element-wise multiplication (in the

arithmetic of F2, i.e., AND operation) of the words ci and

cj . The intuition behind the third demand is that the addition

of two mapped words in real space (ASK) can be written as

[9] (⊕: element-wise addition in the arithmetic of F2)

ψ(ci) + ψ(cj) = ψ(ci ⊕ cj) + 2ψ(ci ⊙ cj) , (8)

where ci ⊙ cj is the “carry” since4 1 + 1 = 2 = [1 0]2.

For QAM signaling we have to resort to the arithmetic w.r.t.

the base −1 + j. Here, 2 = [1 1 0 0]−1+j which gives

ψ(ci) + ψ(cj) = ψ(ci ⊕ cj) + (φ2 + φ3)ψ(ci ⊙ cj) , (9)

i.e., the “carry” is 110 [6] and ci ⊙ cj ∈ Cl+2 ⊆ Cl+3 is the

respective constraint ((7)c) is sufficient but not required).

3modB(x) ∈ 0, . . . , B − 1 if x is real-valued; mod is applied separately
to real and imaginary part when x is complex-valued.

4The sum of two codewords in signal space is only a valid codeword if the
sum of two codewords in Hamming space is also in the code (linear codes)
and if the “carry” is in the code of the next higher level.
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If in ASK only the lowest level is coded (identical to

construction A [2]), Constraints b) and c) are automatically

fulfilled and a lattice is present. However, the (gross) coding

gain is then limited to 6 dB by the first uncoded level. In

QAM the levels are spaced only by |φ| =
√

2 (3 dB) and not

2 as in ASK. Here, no carry to the next level but only the

second and third next level is caused. Hence, the lower two

levels can be coded and still all constraints are fulfilled and a

lattice is present. In this case, the (gross) coding gain is also

limited to 6 dB.

C. Multilevel Codes and Integer Linear Combinations

We are now interested in (Gaussian) integer linear combi-

nations of multilevel codewords. To this end, we consider C
from (6), i.e., ignore the boundary and the offset.

Let the MLC codewords c(k) in signal space be obtained

via the m codewords c
(k)
l , l = 0, . . . ,m− 1, k = 1, 2, . . ., in

Hamming space, i.e.,

c(k) =
∑m−1

l=0
ψ(c

(k)
l )φl . (10)

The action of integer linear combinations of these codewords

is determined by the binary expansion (w.r.t. the base φ, z
(k)
i ∈

F2) of the respective (Gaussian) integer zk

zk =
[
. . . z

(k)
2 z

(k)
1 z

(k)
0

]
φ

=
∑

i≥0
ψ(z

(k)
i )φi . (11)

Using (10) and (11) we have (ψ(a)ψ(b) = ψ(ab), a, b ∈ F2)

∑
k
zkc

(k) =
∑

k
zk

∑m−1

l=0
ψ(c

(k)
l )φl

=
∑m−1

l=0

∑
i≥0

∑
k
ψ(z

(k)
i )φi ψ(c

(k)
l )φl

=
∑m−1

l=0

∑
i≥0

∑
k
ψ(z

(k)
i c

(k)
l )φi+l

=
∑

ℓ
ψ(ceff

ℓ )φℓ , (12)

where ceff
ℓ is the effective codeword at level ℓ. These words

can be calculated by applying (8) or (9) (ASK or QAM) recur-

sively. For example, for two codewords and QAM signaling

we have

ceff
0 = z

(1)
0 c

(1)
0 ⊕ z

(2)
0 c

(2)
0 (13)

ceff
1 = z

(1)
0 c

(1)
1 ⊕ z

(2)
0 c

(2)
1 ⊕ z

(1)
1 c

(1)
0 ⊕ z

(2)
1 c

(2)
0

ceff
2 = z

(1)
0 c

(1)
2 ⊕ z

(2)
0 c

(2)
2 ⊕ z

(1)
1 c

(1)
1 ⊕ z

(2)
1 c

(2)
1

⊕ z
(1)
2 c

(1)
0 ⊕ z

(2)
2 c

(2)
0 ⊕ z

(1)
0 c

(1)
0 ⊙ z

(2)
0 c

(2)
0

...

Having a look at the appearing terms and keeping in mind that

ceff
ℓ has to be a valid codeword of code Cℓ the three above

demands (7) on the codes are directly clear.

D. Multistage Decoding

Usually, multilevel codes are decoded via multistage de-

coding (MSD), cf. Alg. 1. Thereby, given r = c + n with

c =
∑m−1

l=0 ψ(cl)φ
l ∈ C, one component code (estimate ĉl)

after the other is decoded, taking into account the decoding

results of lower levels but ignoring the codes of higher

levels (i.e., treating them as uncoded). Each decoding step is

Alg. 1 Multistage Decoding.

function ĉ = MSD(r)

1 ℓ = 0; rℓ = r // init

2 while ℓ < m {
3 ĉℓ = DECCℓ

{
rℓ

}
// decode level ℓ

4 rℓ+1 = (rℓ − ψ(̂cℓ))/φ // eliminate known level

5 ℓ = ℓ+ 1 }
6 ĉ =

∑m−1

l=0
ψ(̂cl)φ

l // codeword estimate

hence identical to decoding a lattice constructed via lattice

construction A [2] (multilevel code where only the lowest

level is coded). Thus, in a multistage decoder it is immaterial

whether the entire code forms (a translate of a subset of) a

lattice.

However, it is essential that the effective word at level ℓ
is a valid codeword from Cℓ. If integer linear combinations

of codewords are to be decoded and Constraint c) of (7) is

violated, carries from lower levels destroy this property and

MSD does not work any more.

E. Carry Correction

In the following, we assume that Constraints a) and b) on the

component codes are fulfilled but Constraint c) is violated. We

present a generalization of multistage decoding which decodes

the K linear combinations and eliminates the effect of the

carries.

Let c(1), c(2), . . ., c(K) be the codewords of the K users

in signal space (component codewords c
(k)
0 , c

(k)
1 , . . ., c

(k)
m−1,

k = 1, . . . ,K , in Hamming space) and Z the integer matrix.

Ignoring the noise for the moment we have


r1
...

rK


 = Z



c(1)

...

c(K)


 . (14)

From the discussion above (cf. (12) and (13)), we see that

the effective codewords at level l = 0 are obtained from the

component codewords at this levels via


ceff
1,0
...

ceff
K,0


 = Z0



c
(1)
0
...

c
(K)
0


 (15)

where z
(i,j)
0 is the least significant bit (LSB) of zi,j w.r.t.

to the basis φ and Z0 = [z
(i,j)
0 ]. Having estimates for ceff

k,0,

k = 1, . . . ,K , the original codewords at level 0 can hence be

obtained by solving (over F2) the set of linear equations (15).

Once the codewords at level 0 are known, the contributions

(over C) of the superposition of these levels into the higher

levels (carries) can be calculated via5



s1
...

sK


 = Qφ

{
Z



ψ(c

(1)
0 )
...

ψ(c
(K)
0 )




}
. (16)

5Qφ{z} denotes the quantization operation which nulls the LSB in the
binary expansion w.r.t. φ, i.e., with z = [. . . z2 z1 z0]φ we obtain Qφ{z} =
[. . . z2 z1 0]φ. This nulling is required since only the contribution to the higher
levels but not the current level is of interest.
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Alg. 2 Multistage Decoding with Carry Correction.

function [ĉ(1), . . . , ĉ(K)] = MSD(r)

1 ℓ = 0; rk,ℓ = rk , k = 1, . . . , K // init

2 while ℓ < m {
3 ĉk,ℓ = DECCℓ

{
rk,ℓ

}
, k = 1, . . . ,K // decode level ℓ

4 solve (15) and calculate sk via (16) // calculate carries

5 rk,ℓ+1 = (rk,ℓ −ψ(̂ck,ℓ)− sk,ℓ)/φ // eliminate known

6 ℓ = ℓ+ 1 } interference

7 ĉ(k) =
∑m−1

l=0
ψ(̂ck,l)φ

l // codeword estimates

This known “interference” caused by the codewords at level

0 can now be eliminated. Hence, in a generalized version of

MSD, i) the influence of the effective codeword at level 0
is eliminated by subtraction of ψ(ceff

i,0) and ii) the influence

(carries) of the linear combinations of the codewords onto

higher levels is eliminated by subtraction of sk. This procedure

is iterated over the levels. In Alg. 2, a pseudo-code description

of this generalized version of multistage decoding is given.

The additional complexity for the calculation of the cor-

rection terms sk is negligible compared to the decoding

operations.

F. Conditions on Z

The final question is under which conditions does the carry

correction work. Since the effective codewords are generated

via the binary matrix Z0 (the matrix of LSBs of the (Gaussian)

integer entries of the matrix Z), this matrix has to have full

rank.6

In order that Z0 has full rank, its determinant (over F2) has

to be non-zero. We have ψ(det(Z0)) = mod2(det(ψ(Z0)))
and using the Leibniz formula for the expansion of the

determinant, we obtain det(ψ(Z0)) = det(Z) + φG.

If det(Z) ∈ G is “odd” (LSB w.r.t. base φ equal to one)

then det(ψ(Z0)) is also odd and hence non-zero. Unimodular

matrices have an “odd” determinant. If det(Z) is “even”

(LSB equal to zero) then det(ψ(Z0)) is also even and thus

det(Z0) = 0 and Z0 is not invertible.

Thus it is proven that for all matrices for which det(Z)
is “odd” (∈ 1 + φG), hence in particular for unimodular

matrices, carry correction works. This imposes restrictions on

Z. However, it has been shown that using a suited lattice

reduction algorithm (Minkowski reduction) for i.i.d. Gaussian

channel matrices even the restriction to unimodular matrices

causes almost no loss compared to the set of full-rank matrices

[12].

IV. NUMERICAL RESULTS

In oder to study the effect of integer linear combinations and

carry correction, numerical simulations have been conducted.

We assume a 16 QAM constellation; the code has four levels.

First, a “toy example” is presented. Linear block codes of

length N = 13 are employed, the generator matrices of the

6If Z0 has columns which are the all-zero vector, the corresponding
codewords do not influence the effective codewords and do not contribute
to carry generation. Hence, only the relevant part (matrix Z0 with all-zero
columns removed) has to have full rank.
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Fig. 3. Word error rate over the inverse noise power (in dB). 16 QAM. Com-
ponent codes: linear block codes of length N = 13. Rate 31/13 bit/symbol.
K = 3 users. Fixed integer matrix Z = [2−2j 1 −2−j; 1 −1−j 0;
−1 j 0]; det(Z) = 2 + j. Dotted: asymptotic behavior.

(13, 2, 8) code at level 0 and that of the (13, 4, 4) code level

1 are

G0 =

[
1111111100000
0000011111111

]
, G1 =



1111111100000

1100000111111
0011111100011

0000011111111


 . (17)

At level 2 a (13, 12, 2) single-parity-check code is used and

level 3 is uncoded ((13, 13, 1) code). This construction does

not fulfill Condition c) of (7), hence no lattice is present and

carry correction is required for correct decoding.

Fig. 3 shows the results (word error rate averaged over the

users) for K = 3 and the arbitrarily selected integer matrix

Z = [2−2j 1 −2−j; 1 −1−j 0; −1 j 0] with det(Z) =
2 + j. Uncoded transmission and coded transmission over the

single-input/single-output (SISO) AWGN channel are shown

for reference. The code has an asymptotic (gross) coding gain

of 9 dB (dotted; curve for uncoded transmission shifted by the

asymptotic gain). If no carry correction is applied, decoding of

the multilevel code fails completely.7 With the proposed carry

correction the performance of the code over the SISO channel

can almost be achieved (some error multiplication is present).

If level 2 is (treated as) uncoded, Constraint c) is fulfilled

and no carry correction is required. However, the (asymptotic,

gross) coding gain is then limited to 6 dB. Via carry correction

we can break this 6 dB barrier.

Next, a multilevel code with low-density parity-check

(LDPC) codes as component codes is considered. The rates

of the codes are adjusted according to the capacity design

rule for multilevel codes [14]. For a target rate of 3 bits

per QAM symbol, the rates of the component codes have

to be selected as R0/R1/R2/R3 = .282/.753/.964/1. We

use a code length N = 5000, which gives code dimensions

κ0/κ1/κ2/κ3 = 1412/3766/4820/5000.

7Note that the component decoders always return a valid codeword. Since,
due to the carry, the effective word at level 2 is not a valid codeword, wrong
correction occurs, leading to a high floor in the error rate.
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Fig. 4. Bit error rate over the inverse noise power (in dB). 16 QAM. Compo-
nent codes: LDPC codes of length N = 5000. Rate 3 bit/symbol. K = 3
users. Fixed integer matrix Z = [1 j −1+j; 1 0 −2j; 2j −1 −j];
det(Z) = j. Dotted: asymptotic behavior.

As LDPC codes irregular repeat-accumulate codes [8] are

used. The required subcode property C0 ⊂ C1 ⊂ C2 ⊂
C3 = FN

2 is guaranteed by constructing the parity-check

matrices Hl in such a way that Hl+1 is a subset of the rows

of Hl. To that end, first the (N − κ2) × N matrix H2 is

constructed with an ultra-sparse left part (column weight 2)

and a right staircase part. This matrix is extended to H1 by

adding κ2 − κ1 rows in such a way that the newly added

left part is ultra-sparse and that the staircase construction

is seamless continued in the right part. Given H1, the final

parity-check matrix H0 is constructed in the same way by

adding κ1 − κ0 rows. Given the parity-check matrices Hl,

generator matrices Gl for systematic encoding are calculated.

Noteworthy, this construction guarantees the subcode property

(Constraint b)) of the linear (Constraint a)) component codes.

However, Constraint c) is neither taken into account nor

fulfilled.

Fig. 4 shows the error rate of the information bits over the

noise level (in dB).8 Here, Z = [1 j −1+j; 1 0 −2j;
2j −1 −j] with det(Z) = j is chosen randomly. Message-

passing decoders using log-likelihood ratios based on nearest-

neighbor approximation are used; at maximum 10 iterations

are performed. Basically, the same behavior as in the example

above is visible. The exact shape of the flattening in case of

conventional (independent) multistage decoding depends on

the operation of the decoder in case of non-converges (here:

the current variable-node values are quantized and output).

If level 2 is treaded as uncoded, the (gross) coding gain is

again limited to 6 dB. Via the proposed generalized decoding

scheme, a performance extremely close to that of the code

over the SISO AWGN channel can be achieved.

V. SUMMARY AND CONCLUSIONS

In this paper, we have studied the application of multilevel

codes in LRA equalization, i.e., the decoding of multilevel

8Please note the different scaling of the x-axis compared to Fig. 3.

codes when (Gaussian) integer linear combinations of the

codewords are present. A generalized version of multistage

decoding incorporating a carry correction has been proposed

which has only marginal additional complexity compared to

independent decoding. Thereby, the constraints on the compo-

nent codes are significantly relaxed and no lattice code has to

be generated. Numerical results for arbitrary but fixed integer

matrices have been given.

The next step is the performance evaluation over random

(i.i.d. Gaussian) channel matrices. The factorization algorithm

in [4] can straightforwardly be generalized such that only

Z matrices with “odd” determinant are returned. However,

almost no loss occurs if Minkowski reduction with its restric-

tion to unimodular matrices is used. In summary, via the new

decoding procedure, a simple combination of multilevel codes

with low-complexity LRA equalization is enabled.
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Abstract—We consider the MIMO communication channel
impaired by phase noises at the transmitter and receiver. We
focus on maximum likelihood detection for uncoded single-carrier
transmission. We derive an approximation of the likelihood func-
tion, and propose the so-called self-interference whitening (SIW)
algorithm. While the exact ML solution is computationally
intractable, we construct a simulation-based lower bound on
the error probability of ML detection. Numerical experiments
demonstrate that SIW is, in most cases of interest, very close to
optimal with moderate phase noise. Surprisingly, such near-ML
performance can be achieved by applying only twice the nearest
neighbor detection algorithm.

I. INTRODUCTION

We consider the signal detection problem for the following
discrete-time multiple-input multiple-output (MIMO) channel

yyy = diag
(
ejθr,1, . . . , ejθr,nr

)
HHHdiag

(
ejθt,1, . . . , ejθt,nt

)
xxx+zzz, (1)

where HHH ∈ Cnr×nt is the channel matrix known to the re-
ceiver; zzz ∈ Cnr×1 represents a realization of the additive noise
whereas θt,l and θr,k are the phase noises at the l th transmit
antenna and the k th receive antenna, respectively; the input
vector xxx ∈ Cnt×1 is assumed to be carved from a quadratic
amplitude modulation (QAM). The goal is to estimate xxx from
the observation yyy ∈ Cnr×1, with only statistical knowledge on
the additive noise and the phase noises.

When phase noise is absent, the problem is well understood,
and the maximum likelihood (ML) solution can be found using
a nearest neighbor detection (NND) algorithm (see [1] and
references therein). For instance, the sphere decoder [2] is
an efficient NND with low expected complexity dimension
with respect to the dimension nt [3]. Further, there also
exist approximate NND algorithms, e.g., based on lattice
reduction, with near-ML performance when used for MIMO
detection [4].

The presence of phase noise in (1) is a practical, long-
standing problem in communication. In the seminal [5] back
in the 70’s, Foschini et al. used this model to capture the
residual phase jitter at the phase-locked loop of the receiver
side, and investigated both the receiver performance and the
constellation design in the scalar case (nt = nr = 1). In
fact, most communication systems feature phase noise due to
the phase and frequency instabilities in the carrier frequency
oscillators at both the transmitter and the receiver [6]. The
channel (1) is a valid mathematical model when the phase

noise varies slowly as compared to the symbol duration.1

While phase noise can be practically ignored in conventional
MIMO systems, its impact becomes prominent at higher
carrier frequencies since it can be shown that phase noise
power increases quadratically with carrier frequency [6], [9].
The performance degradation due to phase noise becomes
even more severe with the use of higher order modulations
for which the angular separation between constellation points
can be small. At medium to high SNR, phase noise dominates
additive noise, becoming the capacity bottleneck [10], [11]. As
for signal detection, finding the ML solution for the MIMO
phase noise channel (1) is hard in general. Indeed, unlike for
conventional MIMO channels, the likelihood function of the
transmitted signal cannot be obtained in closed form.

In this work, we propose an efficient MIMO detection algo-
rithm which finds an approximate ML solution in the presence
of phase noise. The main contributions of this work are sum-
marized as follows. First we derive a tractable approximation
of the likelihood function of the transmitted signal. While the
exact likelihood does not have a closed-form expression, the
proposed approximation has a simple form and turns out to be
accurate for weak to medium phase noises. Then we propose
a heuristic method that finds an approximate solution by
applying twice the nearest neighbor detection algorithm. The
proposed algorithm, called self-interference whitening (SIW),
has a simple geometric interpretation. Intuitively, the phase
noise perturbation generates self-interference that depends on
the transmitted signal through the covariance matrix. The
main idea is to first estimate the covariance of the self-
interference with a potentially inaccurate initial signal solution,
then perform the whitening with the estimated covariance,
followed by a second detection. From the optimization point
of view, our algorithm can be seen as a (well-chosen) concave
approximation to a non-concave objective function. Finally we
assess the performance of SIW and competing algorithms in
different communication scenarios. Since the error probability
of ML decoding is unknown, we propose a simulation-based
lower bound which we use as a benchmark. Simulation re-

1As pointed out in [7] and the references therein, an effective discrete-
time channel is usually obtained from a waveform phase noise channel after
filtering. When the continuous-time phase noise varies rapidly during the
symbol period, the filtered output also suffers from amplitude perturbation.
See the full version of this paper [8] for further discussion.
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sults show that SIW achieves near ML performance in most
scenarios. In this sense, our work reveals that near optimal
MIMO detection with phase noise can be done as efficiently
as without phase noise.

II. ASSUMPTIONS AND PROBLEM FORMULATION

Notation: For random quantities, we use upper case letters,
e.g., X , for scalars, upper case letters with bold and non-italic
fonts, e.g., VVV, for vectors, and upper case letter with bold and
sans serif fonts, e.g., MMM, for matrices. Deterministic quantities
are denoted in a rather conventional way with italic letters,
e.g., a scalar x, a vector vvv, and a matrix MMM . The Euclidean
norm of a vector vvv is denoted by ‖vvv‖. The transpose and
conjugated transpose of MMM are MMMT and MMMH , respectively.

We assume a MIMO channel with nt transmit and nr receive
antennas. Let HHH denote the channel matrix, where the (k, l)-
th element of HHH , denoted as hk,l, represents the channel gain
between the l th transmit antenna and k th receive antenna. The
transmitted vector is denoted by xxx = [x1, . . . , xnt ]

T , where
xl ∈ X , l = 1, . . . , nt, X being typically a QAM constellation
with normalized average energy, i.e., 1

|X |
∑
x∈X |x|2 = 1. The

base-band output is the following random vector

YYY = ΛΛΛRHHHΛΛΛT xxx+ ZZZ,

where the diagonal matrices ΛΛΛR := diag
(
ejΘr,1, . . . , ejΘr,nr

)

and ΛΛΛT := diag
(
ejΘt,1 , . . . , ejΘt,nt

)
capture the phase per-

turbation at the receiver and transmitter, respectively; ZZZ ∼
CN (0, γ−1III) is the additive white Gaussian noise (AWGN)
vector, where γ is the nominal signal-to-noise ratio (SNR).
The phase noise ΘΘΘ := [Θt,1 · · · Θt,nt Θr,1 · · · Θr,nr ]

T is
jointly Gaussian with ΘΘΘ ∼ N (0,QQQθ) where the covariance
matrix QQQθ can be arbitrary. This model includes as a special
case the uplink channel in which nt is the number of single-
antenna users. In such a case, the transmit phase noises are
independent. We consider uncoded transmission so that each
symbol xl can take any value from X with equal probability.

Further, we assume that the channel matrix can be random
but is perfectly known at the receiver, whereas such knowledge
at the transmitter side is irrelevant in uncoded transmission.
We also define HHHΘ := ΛΛΛRHHHΛΛΛT and accordingly HHHθ for some
realization of ΘΘΘ = θθθ, thus, HHH0 = HHH . Finally, we ignore the
temporal correlation of the phase noise process and the channel
process, and focus on the spatial aspect of the problem.

With AWGN, we have the following conditional probability
density function (pdf)

p(yyy |xxx,θθθ,HHH) =
γnr

πnr
e−γ‖yyy−HHHθ xxx‖

2

,

and the likelihood function by integrating over ΘΘΘ

p(yyy |xxx,HHH) = ln
(
EΘΘΘ

[
e−γ‖yyy−HHHΘΘΘ xxx‖2

])
+ ln

γnr

πnr
.

The ML detector finds an input vector from the alphabet Xnt

such that the likelihood function is maximized. In practice, it
is often more convenient to use the log-likelihood function as
the objective function, i.e., after removing a constant term,

f(xxx,yyy,HHH, γ,QQQθ) := ln
(
EΘΘΘ

[
e−γ‖yyy−HHHΘΘΘ xxx‖2

])
,

where the arguments γ and QQQθ can be omitted whenever
confusion is not likely. Thus,

x̂xxML(yyy,HHH) := arg max
xxx∈Xnt

f(xxx,yyy,HHH). (2)

From (2) we see two main challenges to compute the optimal
solution. First, the expectation in (2) cannot be obtained in
closed form. A numerical implementation is equivalent to
finding the numerical integral in nt +nr dimensions. This can
be extremely hard in high dimensions. Second, the size of the
optimization space, |X |nt , can be prohibitively large when the
modulation size |X | and the input dimension nt become large.
In the full paper [8], we examine in more details why both of
these issues are indeed challenging.

In a conventional MIMO channel, finding the ML solution
is reduced to solving the following problem

x̂xx0
ML(yyy,HHH) := arg min

xxx∈Xnt
‖yyy −HHH0 xxx‖2, (3)

which is also called the minimum Euclidean distance detection
or nearest neighbor detection. Although the search space
in (3) remains large, the expectation is gone. Furthermore,
since the objective function is the Euclidean distance, efficient
algorithms (e.g., sphere decoder [2] or lattice decoder [1])
exploiting the geometric structure of the problem can be
applied without searching over the whole space Xnt . Indeed,
the sphere decoder has a polynomial average complexity with
respect to the input dimension nt when the channel matrix is
drawn i.i.d. from a Rayleigh distribution [3].

In practice, one may simply ignore the existence of phase
noise and still apply (3) to obtain x̂xx0

ML which we refer to as
the naive ML solution hereafter. While this can work relatively
well when the phase noise is close to 0, it becomes highly
suboptimal with stronger phase noise which is usually the
case in high frequency bands with imperfect oscillators. In
this paper, we provide a near ML solution by circumventing
the two challenges mentioned earlier. We first propose an
approximation of the likelihood function. Then we propose an
algorithm to solve approximately the optimization problem (2).

III. PROPOSED SCHEME

A. Proposed Approximation of the Likelihood Function

We derive an approximation of the likelihood when the
phase noise is small. Indeed, in practice, the standard deviation
of the phase noise is typically smaller than 10 degrees ≈ 0.174
rad. For stronger phase noises, it is not reasonable to use QAM
and the problem should be addressed differently. Consider the
following approximation:

ΛΛΛHR yyy −HHHΛΛΛTxxx = [−HHHDDDx DDDy]

[
ejθθθt

e−jθθθr

]

≈ (yyy −HHHxxx)− j[HHHDDDx DDDy]θθθ, (4)

with DDDx := diag(x1, . . . , xnt), DDDy := diag(y1, . . . , ynr),
and θθθ :=

[
θθθTt θθθTr

]T
; (4) is from the linear approximation2

2Here we use, with a slight abuse of notation, ejθθθ to denote the vector
obtained from the element-wise complex exponential operation. Similarly, the
little-o Landau notation o(θθθ) is element-wise.
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(a) 4-QAM, f = f̂ = −10. (b) 64-QAM, f = f̂ = −1.6.

Fig. 1: Proposed approximate likelihood in the scalar case:
γ = 30dB and phase noise has standard deviation 3◦.

ejθθθ = 1 + jθθθ + o(θθθ). Thus the Euclidean norm has the
real approximation ‖yyy − ΛΛΛRHHHΛΛΛTxxx‖2 ≈ ‖AAAθθθ + bbb‖2 where
AAA ∈ R2nr×(nt+nr) and bbb ∈ R2nr×1 are defined as

AAA :=

[
=[HHHDDDx] =[DDDy]
−<[HHHDDDx] −<[DDDy]

]
, bbb :=

[
<[yyy −HHHxxx]
=[yyy −HHHxxx]

]
. (5)

The above approximation leads to the following result.

Proposition 1. LetAAA and bbb be defined as in (5). Then we have
the following approximation of the log-likelihood function
ln
(
EΘΘΘ

[
e−γ‖yyy−HHHθ xxx‖

2
])
≈ f̂(xxx,yyy,HHH, γ,QQQθ) with

f̂(xxx,yyy,HHH) := −γ bbbTWWW−1
xxx bbb− 1

2
ln det (WWWxxx) , and (6)

WWWxxx := III + 2γAAAQQQθAAA
T. (7)

Hence, the proposed approximate ML (aML) solution is

x̂xxaML(yyy,HHH) := arg min
xxx∈Xnt

{
γ bbbTWWW−1

xxx bbb+
1

2
ln det (WWWxxx)

}
. (8)

Proof. The proof is straightforward after applying the above
approximation. Details can be found in the full paper [8].

In Fig. (1), we illustrate the proposed approximation for 4-
and 64-QAM, we plot for each constellation point a level set
of the likelihood function with respect to “yyy” in solid line.
The level sets of the approximated likelihood function are
plotted similarly in dashed line. While the likelihood function
is evaluated using numerical integration, the approximation is
in closed form given by (6). In this figure, we observe that the
approximation is quite accurate, especially for signal points
with smaller amplitude. Further, the resemblance of the level
sets for the approximate likelihood to ellipsoids suggests that
the main contribution in the right hand side of (6) comes from
the first term −γ bbbTWWW−1

xxx bbb. We shall exploit this feature later
on to construct the proposed algorithm.

While the proposed approximation simplifies significantly
the objective function, the optimization problem (8) remains
hard when the search space is large. For instance, with 64-
QAM and 4 × 4 MIMO, the number of points in Xnt is
more than 107! Therefore, we need further simplification by
exploiting the structure of the problem.

B. The Self-Interference Whitening Algorithm

The difficulty of the optimization (8) is mainly due to the
presence of the matrix WWWxxx that depends on xxx. Let us first
assume that the WWWxxx corresponding to the optimal solution
x̂xxaML were somehow known, and is denoted by WWWx̂xx. Then
the optimization problem (8) would be equivalent to

x̂xxaML(yyy,HHH) = arg min
xxx∈Xnt

{
γ bbbTWWW−1

x̂xx bbb+
1

2
ln det (WWWx̂xx)

}

= arg min
xxx∈Xnt

bbbTWWW−1
x̂xx bbb

= arg min
xxx∈Xnt

∥∥∥WWW−
1
2

x̂xx (ỹyy − H̃HHx̃xx)
∥∥∥

2

, (9)

where WWW−
1
2

x̂xx is any matrix such that
(
WWW
− 1

2

x̂xx

)H

WWW
− 1

2

x̂xx = WWW−1
x̂xx ;

x̃xx :=

[
<[xxx]
=[xxx]

]
, ỹyy :=

[
<[yyy]
=[yyy]

]
, H̃HH :=

[
<[HHH] −=[HHH]
=[HHH] <[HHH]

]
.(10)

Note that for a given WWWx̂xx, (9) can be solved with any
NND algorithm. Unfortunately, without knowing the optimal
solution x̂xxaML, the exact WWWx̂xx cannot be found. Therefore, the
idea is to first estimate the matrix WWWx̂xx with some suboptimal
solution x̂xx, and then solve the optimization problem (9) with
a NND. We call this two-step procedure self-interference
whitening (SIW). For instance, we can use the naive ML
solution x̂xx0

ML as the initial estimate to obtain WWWx̂xx, and have
x̂xx′aML(yyy,HHH) = arg minxxx∈Xnt

∥∥WWW−
1
2

x̂xx0
ML
ỹyy −WWW−

1
2

x̂xx0
ML
H̃HHx̃xx
∥∥2
.

Remark 1. The intuition behind the SIW scheme is as follows.
From the definition of WWWxxx in (7) and AAA in (5), we see that WWWxxx
depends on xxx only through HHHDDDx. First, the column space of
HHHDDDx does not vary with xxx since DDDx is diagonal. Second, a
small perturbation of xxx does not perturb WWWxxx too much. Since
the naive ML point x̂xx0

ML is close to the actual point xxx in the
column space of HHH , it provides an accurate estimate of WWWxxx.
This can also be observed on Fig. (1b), where we see that the
ellipsoid-like dashed lines have similar sizes and orientations
for constellation points that are close to each other.

Remark 2. Another possible initial estimate is the naive linear
minimum mean square error (LMMSE) solution. As the naive
ML, the naive LMMSE ignores the phase noise and returns

x̂xx0
LMMSE(yyy,HHH) := arg min

xxx∈Xnt
‖HHHH(γ−1III +HHHHHHH)−1yyy − xxx‖2.

(11)

The SIW algorithm is described in Algorithm 1. Here, the
complex function NND(yyy,HHH,X ) finds among the points from
the alphabet X the closest one to yyy in the column space of
HHH; the function realNND(ỹyy, H̃HH, X̃ ) is the real counterpart of
NND. The function “complex(x̃xx′)” embeds the real vector
x̃xx′ to the complex space by taking the upper half as the
real part and the lower half as the imaginary part. The SIW
outputs the newly obtained point only if it has a higher
approximate likelihood value than the naive ML point does.
An example of the scalar case using 256-QAM is shown in
Fig. (2). The transmitted point is x and the received point is
y. The solid line is the level set of the likelihood function. If
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Algorithm 1 Self-interference whitening

Input: yyy, HHH , γ, QQQθ
Find x̂xx0

LMMSE from (11)
Find x̂xx0

ML ← NND(yyy,HHH,X )
if f̂(x̂xx0

LMMSE, yyy,HHH, γ,QQQθ) > f̂(x̂xx0
ML, yyy,HHH, γ,QQQθ) then

x̂xx← x̂xx0
LMMSE

else
x̂xx← x̂xx0

ML

end if
Generate WWWx̂xx from x̂xx using (5) and (7)
Find WWW

1
2

x̂xx using the Cholesky decomposition
Generate ỹyy and H̃HH according to (10)
x̃xx′ ← realNND(WWW

− 1
2

x̂xx ỹyy,WWW
− 1

2

x̂xx H̃HHx̃xx, X̃ )
x̂xx′ ← complex(x̃xx′)
if f̂(x̂xx′, yyy,HHH, γ,QQQθ) > f̂(x̂xx,yyy,HHH, γ,QQQθ) then

x̂xx′aML ← x̂xx′

else
x̂xx′aML ← x̂xx

end if
Output: x̂xx′aML

the likelihood function were computed for each point in the
constellation (this is computationally hard), one would recover
x from y successfully. While Euclidean detection outputs the
wrong point x̂, SIW can “correct” the error by first estimating
the unknown matrix WWWxxx, and then computing the matrix WWWx̂xx
which is represented by the red dashed ellipse around x̂. The
estimateWWWx̂xx is very close to the correct valueWWWxxx, given by the
actual x (blue dashed line). Then, SIW searches for the closest
constellation point to y in the coordinate system generated by
WWWx̂xx, so that x is recovered successfully. Also, computationally
efficient NND algorithms can be used to perform the search.

The complexity of the SIW algorithm is essentially twice
that of the NND algorithm used, since the other operations in-
cluding the LMMSE detection have at most cubic complexity
with respect to the dimension of the channel. The complexity
of the NND algorithm depends directly on the conditioning of
the given matrix. If the columns are close to orthogonal, then
channel inversion is almost optimal. However, in the worse
case, when the matrix is ill-conditioned, the NND algorithm
can be slow and its complexity is exponential in the problem
dimension. There exist approximate NND algorithms, e.g.,
based on lattice reduction, that can achieve near optimal
performance with much lower complexity.

IV. NUMERICAL EXPERIMENTS

We now compare the performance3 of SIW to ML and other
baseline schemes: i) the naive LMMSE (11), ii) the naive
ML (3), and iii) the selection between the two where the
receiver outputs the one whose approximate likelihood value
is higher. We derive a lower bound on the performance of

3Our performance metric is the vector detection error rate: detection is
considered successful only when all the symbols in xxx are recovered correctly.

1

23

y

x̂ = x̂0
ML

x

WWWx̂

y

x
x̂ = x̂0

ML

Fig. 2: SIW in the scalar case: 256-QAM, PN 2◦. Dashed lines
are the ellipses defined by WWWx̂ (in red) and WWWx (in blue).

ML detection since it is hard to implement. A scheme mini-
mizing (6) admits the following performance lower bound:

P aML
e ≥ P

{
f̂(XXX,YYY,HHH) < max

xxx∈Xnt
f̂(xxx,YYY,HHH)

}
(12)

≥ P
{
f̂(XXX,YYY,HHH) < max

xxx∈L⊆Xnt
f̂(xxx,YYY,HHH)

}
, (13)

where (12) holds by definition and (13) by monotonicity.
While (13) holds for all L, one has equality if L contains all
the points in Xnt that have a higher approximate likelihood
value than XXX does. Here, we consider a large set around XXX to
compute the lower bound (13), but do not study its tightness.
Similarly, for ML detection, we have

PML
e ≥ P

{
f(XXX,YYY,HHH) < max

xxx∈Xnt
f(xxx,YYY,HHH)

}
(14)

≥ P {f(XXX,YYY,HHH) < f(XXX′,YYY,HHH)} , ∀XXX′ ∈ Xnt(15)
= P {XXX 6= XXX′, f(XXX,YYY,HHH) < f(XXX′,YYY,HHH)} , (16)

where (14) holds by definition and (16) holds since XXX 6= XXX′

is a consequence of f(XXX,YYY,HHH) < f(XXX′,YYY,HHH). Also, (15)
holds for any XXX′ ∈ Xnt , with equality if XXX′ is the exact ML
solution. Since the ML solution is unknown, one may use
any suboptimal solution instead and to obtain a lower bound.
Indeed (16) is much easier to evaluate than (14), as the latter
requires to minimize over Xnt . Intuitively, if XXX′ is a near ML
solution, then the lower bound should be tight enough. We
need to perform twice the numerical integration only when
xxx′ 6= xxx. If xxx′ 6= xxx with small probability, evaluating (16) can
be done quickly.

In Fig. (3a) we consider point-to-point Rayleigh fading
single-antenna, i.e., single-input single-output (SISO), chan-
nels. We consider 1024-QAM with phase noise of standard
deviation 1◦ at both the transmitter and receiver sides. Here
the naive ML scheme is in fact a simple threshold detection
for the real and imaginary parts. First, we see that ignoring the
existence of phase noise incurs a significant performance loss.
Second, if exhaustive search is done with the proposed likeli-
hood approximation, then it achieves the ML performance,
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(a) SISO, 1024-QAM, PN 1◦. (b) 4× 4 LoS-MIMO, 1024-QAM, PN 1◦. (c) 4× 4 Uplink, 256-QAM, PN 2◦.

Fig. 3: Simulation results for different communication scenarios.

since the simulation-based lower bound overlaps with the
curve with exhaustive search. This confirms the accuracy of the
approximation (6) in the SISO case. Even more remarkably,
the SIW algorithm almost achieves the ML performance
without exhaustive search.

In Fig. (3b) we consider point-to-point line-of-sight (LoS)
MIMO, commonly deployed as microwave backhaul
links [10], [12], [13]. We assume that the channel is constant
over time but each antenna is driven by its own oscillator.
This is the worst-case assumption, and motivated in practice
by the fact that the communication distance is large and
thus the distance between antenna elements is increased so
that the channel matrix is well conditioned [12], [13]. We
use the model of [13] with two transmit and two receive
antennas each with dual polarizations, effectively a 4 × 4
MIMO channel. The optimal distance between the antenna
elements at each side can be derived as a function of the
communication distance [12], for which the channel matrix
is unitary. As above we consider 1024-QAM with phase
noise of standard deviation 1◦. As in the SISO case, phase
noise mitigation substantially improves the performance and
the proposed likelihood approximation remains accurate as
shown by the comparison between the exhaustive search (8)
and the lower bound on ML detection.

In Fig. (3c) we consider the uplink cellular communication
channel with four single-antenna users and one multi-antenna
base station receiver. We assume i.i.d. phase noises at the
users’ side with standard deviation 2◦ and no phase noise at
the receiver side. This is a reasonable assumption since the
oscillators at the base station are usually of higher quality
than those used by mobile devices. We assume i.i.d. Rayleigh
fading. Unlike in the previous scenarios, the naive ML is
(surprisingly) dominated by the naive LMMSE at high SNR.
Indeed, without receiver phase noise, inverting the channel
yields spatial parallel channels. Although this incurs a power
loss in general, phase noises across the parallel sub-channels
are independent, so the demodulation only suffers from a
scalar self-interference. On the other hand, naive ML suffers
from the aggregated perturbation from all the phase noises.
So naive LMMSE beats naive ML detection at high SNRs

where phase noise dominates the additive noise. If both the
transmitter and receiver have comparable phase noises, this
does not occur, as channel inversion amplifies the receiver
phase noises. The gain of SIW over the other schemes is clear.

V. CONCLUSIONS

We have studied the ML detection problem for uncoded
MIMO phase noise channels, and proposed an approximation
of the likelihood function that has been shown to be accurate
in the regimes of practical interest. More importantly, using
the geometric interpretation of the approximate likelihood
function, we have designed SIW, an efficient approximate
algorithm requiring only two nearest neighbor detections.
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Abstract—This work presents a new version of the generalized
belief propagation (GBP) decoding algorithm for regular LDPC
ensembles, where a cycle decomposition of the underlying Tanner
graph is used to define GBP clusters. Such an approach allows to
take advantage of the presence of cycles in the Tanner graph of
a code, and not to ignore them, as the usual BP algorithm does.
The new GBP algorithm improves the decoding performance of
regular LDPC codes of lengths from several dozens to several
hundreds bits.

Owing to multiple upcoming applications in the world of
Internet of Things, there is a growing interest in design of
short-length linear codes, able to serve for real-time forward
error correction. The codes are expected to have codelengths
from several dozens to several hundreds of bits and to have a
real-time decoding algorithm. Graph codes, and LDPC codes
in particular, could be good candidates for these applications,
thanks to the low complexity of their belief propagation (BP)
decoding algorithm [1]. Unfortunately, BP is known to have
a bad performance over short codelengths, and the reason for
this is the presence of short cycles in the underlying Tanner
graph for a given graph code.

Considering LDPC codes, the problem of cycles is not new
and has created a number of modifications of the original
BP decoding procedure, either with a post-processing of
messages over the cycles in the residual Tanner graph (see,
e.g., [2], [3]) or, as in case of structured codes (e.g., Repeat-
Accumulate codes), by performing a MAP decoding over some
particular cycle(s) in the graph. For quantum LDPC codes,
for which 4-cycles are an issue, an interesting approach has
been taken in case of the Kitaev’s toric code [4] by using
clusters and renormalisation groups. Moreover the idea of BP
decoding over clusters has been proposed in [5] and is called
a Generalized Belief Propagation (GBP). Unfortunately, the
GBP has several main drawbacks [6]: 1) it usually worsens
the iterative decoding threshold; 2) it is difficult to find an
appropriate cluster characterisation in a general case, for an
arbitrary LDPC code structure and 3) the complexity of the
GBP decoding is usually much larger compared to the BP
decoding.

In this work, a new GBP decoding algorithm is investigated,
with the aim to circumvent the drawbacks 2 and 3 of the GBP
for short-length LDPC codes (when the iterative decoding
threshold degradation is not an issue). Given a Tanner graph of
an LDPC code, one uses a cycle decomposition of the graph

in order to create clusters, and an iterative algorithm is further
defined in order to exchange extrinsic messages between the
clusters. A cluster is related to a cycle in the Tanner graph
of given LDPC code, and can therefore be represented by
a tailbiting convolutional code. Thanks to the 2-state trellis
representation of this convolutional component code, each
cluster can be decoded with a low-complexity MAP decoding
algorithm.

Our first results are obtained for (2, 4) LDPC codes over the
binary erasure channel. As the degrees of both variable and
check nodes are even, the cycle decomposition has disjoint
cycles. Figure 1 shows the word error rates (WERs) of three
(2, 4) LDPC codes of respective lengths 100, 500 and 1000,
decoded by the standard BP algorithm (blue curves) and our
GBP algorithm (red curves). The numerical results are also
compared with lower bounds on the WER of a linear code
under ML decoding (Theorem 2 of [7]), shown by black
dashed curves. Our results will further be extended to the case
of odd variable and/or check node degrees.

0.05 0.1 0.15 0.2 0.25
epsilon
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Fig. 1: WERs vs. erasure probability of the BEC for (2, 4)
LDPC codes of lengths 100, 500 and 1000 (from top to

bottom) resp., under BP decoding (blue) and under our GBP
decoding (red), compared with lower bounds on the MP

decoding (dashed curves).
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Abstract—We present recent results on spatially coupled turbo-
like codes and point out a connection to the self-concatenated
trellis construction proposed by Loeliger in 1997 [1].

I. CODES ON GRAPHS WITH TRELLIS CONSTRAINTS

We use the term turbo-like codes for generalized LDPC
codes with convolutional component codes. In the correspond-
ing factor graphs, the factor nodes represent trellis constraints
instead of single parity-check equations. To efficiently describe
the structure of different ensembles, similarly to protographs,
we use a compact graph representation, illustrated in Fig. 1.

10

A Unified Ensemble of Concatenated Convolutional Codes

Towards a unified view of LDPC and turbo codes [ISIT 2017]:

 This ensemble generalizes the concept of repeat accumulate codes

parallel
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braided
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December 8, 2017 Michael Lentmaier, HiSilicon, Lund

Fig. 1. A compact graph representation of turbo-like code ensembles [2].

II. SPATIAL COUPLING AND THRESHOLD SATURATION

Spatially coupled (SC) turbo-like code ensembles can then
be obtained from a sequence of compact graphs, analogously
to SC-LDPC codes. The graphs are coupled by connecting
the variable nodes at position t to factor nodes at positions
t, . . . , t + m, where m denotes the coupling memory. For
the BEC, it can be shown using exact density evolution (DE)
recursions that with spatial coupling the decoding threshold of
an iterative BP decoder can be improved to the threshold of an
optimal MAP decoder (threshold saturation) [2] [3]. For the
AWGN channel, where exact DE recursions are not available,
the thresholds can be estimated with Monte Carlo methods
or predicted from the BEC thresholds [4]. For the ensembles
shown in Fig. 1, the predicted thresholds are given in Table I.

TABLE I
PREDICTED AWGN CHANNEL THRESHOLDS (Eb/N0[dB]) FOR
DIFFERENT TURBO-LIKE CODE ENSEMBLES OF RATE R = 1/3.

BP MAP BPm=1
SC BPm=3

SC BPm=5
SC

Parallel −0.1052 −0.3070 −0.3070 −0.3070 −0.3070
Serial 1.4023 −0.4740 −0.1196 −0.4673 −0.4740
Braided 1.2139 −0.4723 −0.4690 −0.4723 −0.4723
Hybrid 3.8846 −0.4941 0.2809 −0.4706 −0.4941

Observe that, while the classical turbo codes (parallel con-
catenation) have the best BP threshold, their MAP threshold is

actually the worst. Vice versa, hybrid concatenated and braided
codes have poor BP thresholds without spatial coupling. On
the other hand, hybrid codes have the best MAP threshold, and
braided codes are best for small coupling memory m = 1.

III. SELF-CONCATENATED CONVOLUTIONAL CODES

The idea of self-concatenated codes goes back to 1997 and
has been proposed independently (at the same conference)
by Loeliger [1] and by Divsalar / Pollara [5]. Compared to
LDPC codes, a characteristic feature of turbo-like codes is
that their factor graph contains a small number of long trellis
constraints instead of a large number of short constraints. But
what is the advantage of having more than one trellis? In
[6] we have presented a unified self-concatenated ensemble,
shown in Fig. 2, which contains all the ensembles in Fig. 1 as
special cases. A novel element in this ensemble is the feedback
of parity bits, which is required for representing the serial,
hybrid, and braided ensembles. The various instances of the
ensemble differ in the amount of feedback, puncturing and the
structure of the permutations. Spatial coupling can be achieved
by imposing a causality condition on the permutation matrices.

T

C
CR

u

v(1)

v(1)

v(2)v(2)

(b)(a)

ρ1

ρ2

u

Π(1) Π(2)

lN

Fig. 2. A unified ensemble based on a single trellis (a) encoder block diagram
(b) compact graph.
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Extended Abstract. Sparse superposition (SS) codes, or
sparse regression codes, were first introduced by Barron and
Joseph in 2010 for reliable communication over the additive
white Gaussian noise channel and proven to be capacity-
achieving under adaptive successive decoding along with
power allocation [1], [2] and under the approximate message
passing algorithm [3]. The information word or message is
a vector made of L sections, s = [s1, . . . , sL]. Each section
is a B-dimensional vector with a single component equal to
1 and B − 1 components equal to 0. We set N = LB for
the block length. The message s can be seen as a one-to-
one mapping from an original message u ∈ {0, 1}L log2(B),
where the position of the non-zero component in sl is specified
by the binary representation of ul (i.e. s is obtained from
u using a simple position modulation scheme). We consider
random codes generated by a fixed coding matrix F ∈ RM×N

with i.i.d real Gaussian entries distributed as N (0, 1/L).
The codeword Fs ∈ RM has a normalized average power
E||Fs||22/M = 1. The cardinality of this code is BL and
the length of the codeword is M . Hence, the (design) rate is
defined as R = (N log2B)/(MB). The code is thus specified
by (M,R,B) where R is the code rate, M the block length, B
the section size. Codewords are transmitted through a known
memoryless channel W . This requires a mapping π to map
codeword components [Fs]µ ∈ R, µ ∈ {1, . . . ,M}, onto the
input alphabet of W . The concatenation of π and W can
be seen as an effective memoryless channel Pout, such that
Pout(y|Fs) :=

∏M
µ=1W (yµ|π([Fs]µ)).

Decoding amounts to recover s from channel outputs y.
For Gaussian channels it can be interpreted as a "standard"
compressed sensing problem with structured sparsity where y
would be the compressed measurements. The rate R can be
linked to the "measurement rate" α, used in the compressed
sensing literature, by α = M/N = (log2B)/(BR). For other
channels it is more akin to a generalized linear estimation
problem (again with structured sparsity for s). Thus, the
same algorithms and analysis used in compressed sensing
and generalized linear estimation theory like the generalized
approximate message passing algorithms algorithm and state
evolution [5] can be used in the present context. See [4]–[6].
The optimal ensemble threshold for reliable communication
is determined by the mutual information. This quantity is
given (up to a trivial channel dependent term) by the av-
erage free energy f = limN→+∞N−1E lnZ(y,F) where
Z(y,F) is the normalizing factor of the posterior distribution
P0(s)Pout(y|Fs)/Z(y,F). The replica method of statistical

mechanics conjectures an exact expression for f from which
the optimal ensemble threshold can be read off [7], [8].

Recently it has been possible to prove the replica formulas
for generalized estimation problems [9] (and consequently also
for the SS code ensemble described above). Such formulas
are given by "single letter" variational problems of the form
f = supq∈[0,ρ] infr>0{ψP0(r) + αψPout(q; ρ) − rq/2} where
ψP0(r) = E ln

∫
dP0(x)e

√
rY0x−rx2/2 is the free entropy of

a scalar Gaussian channel Y0 =
√
rX0 + Z0, Z0 ∼ N (0, 1)

and ψPout(q; ρ) = E ln
∫

DwPout(Ỹ0|√q V +
√
ρ− q w), V ∼

N (0, 1), Ỹ0 ∼ Pout(·|√q V +
√
ρ− q W̃ ), W̃ ∼ N (0, 1),

Dw = dw(2π)−1/2e−w2/2, ρ = E[X2
0 ]. The proof proceeds

by an adaptive path interpolation method recently developed
for a number of simpler estimation problems (e.g. matrix and
tensor factorization problems) [10]. Proofs of replica fromulas
have a long history by now which started with the fundamental
work of Guerra and Toninelli on the Sherrington-Kirkpatrick
spin glass. See [11] for an introduction. Roughly speaking, the
new element introduced in the adaptive path method exploits
remarkable (Nishimori) identities generally valid in Bayesian
inference which imply concentration of overlap parameters and
vanishing of the Guerra-Toninelli remainder terms.
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Abstract—Graphical notations like factor graphs have proven
to be very useful toward expressing relationships between (ran-
dom) variables and toward formulating low-complexity algorithm
for either exactly or approximately computing quantities of
interest. Two particular classes of normal factor graphs (NFGs)
have been used in the context of stabilizer quantum codes; in
this paper, we review these two different classes of NFGs and
explain a connection between them.

Stabilizer quantum error-correction codes (QECC) are a
popular approach to correct certain types of errors that can
happen to quantum states. (For an introduction to this topic,
see, e.g., [1, Ch. 10].) In this paper, we focus on two classes
of normal factor graphs (NFGs) [2]–[4] that have been used
in the context of stabilizer QECCs: on the one hand, the class
of NFGs in [5], on the other hand, the class of NFGs in [6],
[7]. In this paper we link the two approaches.

In order to proceed, we introduce some notation. Let I be
the 2× 2 identity matrix and let

X ,
[
0 1
1 0

]
, Y ,

[
0 −i
i 0

]
, and Z ,

[
1 0
0 −1

]

be the Pauli matrices. The group 〈G1, · 〉 with group elements

G1 ,
{
c · P

∣∣ c ∈ {±1,±i}, P ∈ {I,X, Y, Z}
}

and group operation given by matrix multiplication is known
as the single-qubit Pauli group. The group

〈Gn, · 〉 ,
(
〈G1, · 〉

)⊗n

with group elements

Gn ,
{
c · P1P2 · · · Pn

∣∣ c ∈ {±1,±i}, Pi ∈ {I,X, Y, Z}
}
,

and group operation given by matrix multiplication is known
as the n-qubit Pauli group. (Here we have used the shorthand
notation P1P2 · · · Pn , P1⊗P2⊗· · ·⊗Pn for Pauli operators.)

Let Nn be the set of unitary matrices of size 2n × 2n such
that

U · Gn · UH = Gn for all U ∈ Nn. (1)

This set of matrices forms a group under matrix multiplication
and is known as the normalizer of Gn (see, e.g., [1, Ch. 10])
or as the Clifford group (see, e.g., [8]). It turns out that any
U ∈ Nn can be expressed, up to a global phase, in terms of
O(n2) Hadamard, phase, and controlled-NOT gates (see, e.g.,
[1, Th. 10.6]).

Consider a k-qubit system |ψ〉 that needs to be protected
w.r.t. so-called Pauli errors, i.e., errors where qubits can be
affected by unitary matrices in the Pauli group (as, e.g.,
happens in the case of a quantum depolarization channel).

Encoding of such a state in terms of an Jn, kK stabilizer
QECC can be expressed in terms of a suitable unitary matrix
U ∈ Nn applied to |φ〉 ⊗ |0〉⊗(n−k), where |0〉⊗(n−k) are
n − k ancilla qubits in the +1 eigenstate of the Z operator.
Decoding, on the other hand, can be accomplished by applying
the unitary matrix UH, measuring the ancilla qubits with the
measurement matrices 1

2 · (I ± Z), figuring out the most
likely error based on the measurement outcomes (with the
help of a classical computer), and applying a suitable unitary
transformation to the k qubits. It is rather straightforward to
express this procedure in terms of an NFG from the class of
NFGs that was introduced in [5]. (See also the reformulation
of such NFGs in terms of so-called double-edge NFGs in [9].)

The stabilizer group of a stabilizer QECC is a subgroup of
Gn containing all the operators that stabilize an arbitrary state
|ψ〉 after encoding, i.e., applying a matrix from the stabilizer
group to an encoded state leaves the encoded state invariant.
(Note that the stabilizer group is commutative.) The papers [6],
[7] introduced a class of NFGs that allow one to express the
stabilizer group of a stabilizer QECC, more precisely, that
allow one to express a vector representation of the stabilizer
group. In particular, the stabilizer group of various types of
stabilizer QECC can be expressed in terms of these NFGs, and
relatively simple proofs can be used to show the commutativity
of the stabilizer group. (Algebraically, this is expressed as a
certain sub-orthogonality property under the symplectic inner
product of the vector representation of the stabilizer group.)
Such NFGs are of interest toward low-complexity algorithms
for decoding stabilizer QECCs.

Although the two above-mentioned classes of NFGs are su-
perficially rather different, a connection between them can be
achieved by applying suitable closing-the-box operations [4],
[10] and using (1). The details are explained in the presenta-
tion.
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Abstract—Molecular Communication is a rising paradigm to
transfer message between nano-machines. Due to the specific
characteristics of these systems, the channel noise and memory
significantly influence the system performance. In this paper,
a new adaptive threshold detector is proposed, which utilized
the inter-symbol-interference. In contrast to other detection
algorithms with high complexity, the proposed detector is more
practical when the channel conditions are not easy to find
or not known at the receiver side. Numerical results show
that the proposed detector achieves lower bit error rate than
the common threshold detectors. Furthermore, the comparison
between detectors is given, which is based on the variation of
distance, symbol period and number of molecules.

I. INTRODUCTION

ADVANCES in design and development of nanomachines
inspires the study of communication between such units.
Molecular communication (MC) has been introduced as one
of the most promising paradigm for communication between
devices at nanoscale which inspired by nature. Information can
be transmitted by changing in number, type, and the timing
of the molecules [1], [2], [3]. Nanomachines (NM) are very
limited in terms of complexity [4]- [5] and it is stated that a
single NM can only perform simple tasks. The connection
of several NMs via MC channels increase the capabilities
of one NM and realize the construction of nanonetworks. In
molecular communications NMs transmit information through
the diffusion of chemical molecules. The diffusion channel is
fundamentally different in every aspect to a classical wireless
communications channel. Since the diffusion channel impulse
response (CIR) has a long tail, molecules from the previous
transmitted symbols will interfere with current transmitted
symbol, resulting in the inter-symbol interference (ISI) which
makes a unreliable transmission [6]. However, a simplified
transmitter model, channel model and receiver detection meth-
ods are generally assumed in the literature for making the
analysis tractable.

The MC system with fixed threshold was first introduced
in [7]. In [8], two different detection methods are classified
as sampling-based (amplitude) and strength-based (energy).
In sampling-based the detector simply measures the amount
of molecules arriving at a certain instant of time while in
strength-based detector, receiver accumulates the number of

molecules arriving at a certain time period. In [9], the value of
the threshold is designed to maximize a posteriori probability.
In [6], detection process is based on multiple observation with
a weight assigned to each observation. Sequence detection
methods based on maximum a posteriori (MAP) and maximum
likelihood (ML) criterions introduced in [10]. It had been
shown in [11] that the effect of ISI can be utilized in a new
adaptive-threshold algorithm which results better performance
in certain situations. While by means of adaptive-threshold
the detector accumulates the number of received molecules in
each symbol period and compare it with number of previous
symbol molecules.

As the main contribution of this paper, a new detection
algorithm is proposed which optimize the threshold by ap-
plying weights to current and previous symbols energies. This
new decoding method while being low-complex as possible,
achieves a reasonable performance compare to common detec-
tors. Numerical results and a comparison between detectors
in terms of distance, symbol duration and the number of
molecules will be represented.

The remainder of this paper is classified as follows: In
section II the communication system model is introduced.
The proposed detector presented in section III. The numerical
results and comparison to common detectors provided in
section IV. Finally, in section V, the paper is concluded.

II. SYSTEM MODEL

As depicted in Fig. 1, the MC model that is studied in
this paper consists of two NMs, one of which represented as
Transmitter Nano-machine (TN) and the other, represented as
Receiver Nano-machine (RN). The transmitter is located at
the origin of an infinite three-dimensional fluid environment,
d denotes the distance between the transmitter to the center of
the receiver whose radius is r. At the beginning time of each
transmission time slot, TN releases N molecules to represent
the transmission of a symbol. The diffusion process is rep-
resented as Brownian motion and therefore is simulated as a
three-dimensional random walk. Once a molecule arrives at the
receiver, it will be removed from the medium. The averaged
Channel impulse response of MC system for distances 25µm
and 35µm is depicted in Fig. 2. At time t = 0, 1000 molecules
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Fig. 1. Diffusion-based molecular communication system model.

is released by transmitter, which represent bit 1. The hitting
probability function, which described as a probability per unit
of time for a molecule to arrive at RN, is an inverse Gaussian
function [11]:

fhit(t) =
r(d− r)
d
√
4πDt3

exp− (d− r)2
4Dt

(1)

fhit can be interpreted as the impulse response of a diffusion
channel. In (1) D denotes the diffusion coefficient, which is
given by:

D =
kbT

6πηr
(2)

Where kb is the Boltzmann constant, T is the temperature,
η is the viscosity of the fluid medium, and r is the radius of
the molecule. Therefore, the fraction of molecules absorbed
by receiver until time t, can be derived by intergrating fhit:

Fhit(t) =

t∫

0

fhit(x)dx =
r

d
erfc

(
d− r√
4Dt

)
(3)

For simplicity, we assume that the radius for all molecules
are equal so that the diffusion coefficients are the same.
Furthermore, the probability for a molecule to reach RN
during the ith bit duration [iTb, (i + 1)Tb] after release can
be computed as :

pi = Fhit ((i+ 1)Tb)− Fhit (iTb) (4)

The scenario that a single molecule arrives the RN during
certain bit duration can be represented by a bernoulli experi-
ment with two possible events of either hitting RN or not. For
n molecules released at the same time under the assumption
that molecules propagate independently and not change the
hitting probability at RN, the n Bernoulli experiments can be
described by the binomial distribution

yi ∝ B (n, pi) (5)

where yi is the number of received molecules during the
ith bit duration after their release. When transmitting a bit
sequence, the number of received molecules at time instant k
is summation over all yi :

y[k] =

I∑

i=0

B (x[k − i], pi) (6)

here i is the length of channel memory and x[k] is the OOK
modulated symbol :

x(k) =

{
0 if u[k] = 0,

N if u[k] = 1.
(7)
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Fig. 2. Channel impulse response of molecular communication system. The
environment examined here is the same as the one studied in section IV.

Moreover, RN performs energy detection and assumed to be
a perfectly absorbing receiver. Noise sources that considered
throughout this paper will be noise from the random propaga-
tion of the molecules, ISI molecules and background noise. In
the first stage of the communication process, the TN encodes
information symbols into the concentration of the molecules.
One type of molecule and on-off keying modulation is utilized
throughout this paper. Therefore, at the beginning of the bit
interval to transmit bit ’1’, TN releases a certain amount of
molecules and to transmit bit ’0’, TN releases no molecules.
Where x[k] stands for the kth data bit and s(k) is corre-
sponding released signal. The RN accumulate the number of
received molecules from each symbol duration and determines
incoming messages by comparing it to a threshold. As already
mentioned, the design of threshold can be divided in two
categories, fixed threshold [7] or adaptive threshold [11]. In
fixed threshold detector (FTD), the optimal threshold is found
based on minimizing BER and stays constant throughout the
communication process. In adaptive threshold detector (ATD),
the designed threshold varies depending on previously received
symbols.
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III. PROPOSED DETECTOR

In this section, we propose the adaptive weighted threshold
detector (AWTD). The idea of an adaptive threshold is inspired
by the phenomenon of short-term synaptic plasticity [11].
Because of the limitation on NMs, it is necessary to introduce
a simple and low-complex detection method for molecular
communication. The concept of AWTD is motivated from
the forgetting factor in RLS algorithm, in which we assign
weights to two previously received symbols and compare it to
the number of received molecules in current symbol. So, the
decision rule can be described as :

y(k) =

{
1 if r(k) > αr(k − 1) + α2r(k − 2),

0 if r(k) ≤ αr(k − 1) + α2r(k − 2).
(8)

Where y(k) stands for the kth decoded bit, r(k) as the
number of molecules arrives within kth symbol period and α is
the weight we assign. The AWTD detector decodes the kth bit
by comparing the number of received molecules during current
bit period with energy of two previous symbols with a weight
assigned to each one. The optimal value of α determined by
means of minimizing BER.

Since our simulation results show that the value of α is
independent of system parameters like distance and symbol
duration. In many applications that require the deployment of
mobile NMs, when only transmitter moving or in channel con-
dition when both of transmitter and receiver moving randomly,
AWTD is the reasonable approach for detection. On the other
hand, since AWTD do not need any knowledge about channel
conditions, in channel models with time varying diffusion
coefficient, it is the detection method that we can rely on.
Other detection methods, like ML sequence detector or optimal
threshold detector, are based on the knowledge of the channel
characteristics. Obtaining channel information introduce an
additional complexity and overhead. Our proposed detector
is independent of channel knowledge and adapts its threshold
only with respect to two previously symbols. Consequently
any training or generation of test statistics are not required.
So the memory and computational requirements of AWTD
will be low, which can simply be implemented in molecular
communication systems. More discussion will be represented
in section IV.

IV. NUMERICAL RESULTS

In this section, we conduct simulation to determine the
performance of the detector described in this paper. The impact
of distance, number of transmitted molecules and symbol
duration on BER will be studied in this section. We consider
the system parameters that are summarized in Table I, Which
is the same one applied in [11].

In Fig. 3, the BER for different values of α is shown.
As already mentioned, the value of α is independent of
other system parameters. Consequently, we considered three
different scenarios to show this independency. With the help
of these results, we take the optimal value as α = 0.6.

TABLE I
SIMULATION SYSTEM PARAMETERS

Parameter Value unit
RX Radius 4.5 [µm]

Diffusion coeff. 4.37× 10−10 [m2/s]
Distance 25, 30, 35, 40, 45 [µm]

Ts 0.25, 0.5, 0.75, 1, 1.25, 1.5 [s]
Sampling period 0.05 [s]

Molecules Released 100, 500, 1000, 2500, 5000, 7500, 10000 -
Number of Realizations 1000 -

Sequence Length 100 -

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Optimal Weights

10-3

10-2

10-1

100

B
E

R

Distance=30,Nmol=1000,T
s
=0.5

Distance=20,Nmol=5000,T
s
=1

Distance=40,Nmol=5000,T
s
=0.75

Fig. 3. Optimal weight versus BER.

In Fig. 4 the performance of detectors as a function of the
number of transmitted molecules is investigated. For scenario
under investigation number of molecules is varying from
Nmol = 100 to Nmol = 10000 with fixed d = 30µm and
ts = 0.75s. Simulation results show that FTD algorithm
receives highest BER, this is caused by the fact that in
contrast to adaptive threshold methods which utilized ISI
effect, the FTD method struggle with higher distance and
eventually higher ISI. As can be seen, both adaptive methods
achieve better performance when the number of molecules
increased, while our proposed detector AWTD outperforms
ATD algorithm over the whole range of molecule numbers.

In Fig. 5 the impact of symbol duration on BER has been
illustrated. The symbol duration is varying from ts = 0.25s
to ts = 1.5s with fixed Nmol = 1000 and d = 30µm.
We observe that FTD algorithm obtain lower BER when the
symbol duration is increased and consequently ISI decreased.
With referring to Fig. 5, our proposed detector achieves better
performance for Ts under 1s in compare to FTD. Comparing
to ATD, our detector nearly archives same BER for ts < 0.6s
and outperform ATD for ts > 0.6s.

As shown in section II, distance have a large impact on
channel impulse response. As we observer in Fig. 2, the peak
value for d = 25µm happens earlier than d = 35µm. So the
peak value and consequently the number of received molecules
strictly depends on the distance between the transmitter and
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Fig. 4. Number of transmitted molecules versus BER. Distance and ts are
fixed at d = 30µm and ts = 0.75s, respectively.
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Fig. 5. Impact of Symbol duration on BER. Nmol and distance are fixed at
1000 and 30µm, respectively.

the receiver. In Fig. 6 the impact of distance on BER has
been illustrated. The distance is varying from d = 25µm up
to d = 45µm, with fixed Nmol = 1000 and ts = 0.75s. For
scenario under investigation, the new proposed algorithm out-
performs ATD for distances under d = 35µm. In comparison
to FTD, FTD achieves better performance for distances lower
than d = 25µm and AWTD more precisely is superior to FTD
for distances higher than 30 µm.

V. CONCLUSION

A diffusion-based molecular communication system has
been investigated. Specifically a system with single transmitter
and single receiver with OOK modulation has been analyzed.
Our proposed AWTD scheme will utilized the two previous
symbols for evaluation the optimal threshold. The impact of
number of molecules, distance and symbol duration on BER

25 30 35 40 45

Distance

10-2

10-1

100

B
E

R

FTD
AWTD
ATD

Fig. 6. Impact of distance on BER. Nmol and ts are fixed at 1000 and
0.75s, respectively.

has been studied. It has been proved that proposed detector
outperforms ATD and FTD for whole range on molecules. It
achieves lower BER compare to ATD for specific symbol du-
rations distances. Future works include theoretical derivation
of optimal weight and BER. Finally, investigation of other
modulation schemes and different scenarios can be analyzed
for new proposed detector.
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Abstract—In this paper, the fundamental limits of simul-
taneous information and energy transmission in the two-user
Gaussian interference channel (G-IC) are fully characterized.
More specifically, an achievable and converse region in terms of
information and energy transmission rates (in bits per channel
use and energy-units per channel use, respectively) are presented.
The achievable region is obtained using a combination of rate
splitting, power-splitting, common randomness and superposition
coding. Finally, the converse region is obtained using some of the
existing outer bounds on the information transmission rates, as
well as a new outer bound on the energy transmission rate.

I. INTRODUCTION

Over the last decade, energy harvesting has been con-
sidered as a promising technology with great potential for
green technologies, low voltage wearable electronics, and
wireless devices. This aligns with the fact that receivers can
simultaneously extract information and energy from radio-
frequency signals [7], [9]. However, recent research has shown
that energy and information transmission are often conflicting
tasks. That is, there exists a trade-off between the information
transmission rate and the energy transmission rate. This trade-
off is observed in point-to-point channels [5] and multi-user
channels such as the multiple access channel [1], [4] and
the interference channel [8]. However, very little is known
about this trade-off in other multi-user channels with energy
harvesting. More importantly, very little is known about the
fundamental limits of multi-user SIET.

This paper focuses on the Gaussian interference channel
with an external energy harvester (EH). This channel models
two point-to-point links subject to mutual interference, where
both transmitters are engaged with transmitting information
to their intended receiver while jointly providing a minimum
energy rate at the EH. The fundamental limits of this channel
are thoroughly studied. An achievable and converse region
in terms of information and energy transmission rates are
identified. The achievable region is obtained using a combina-
tion of rate splitting, power-splitting, common randomness,
and superposition coding. The converse region is obtained
using some of the existing outer bounds on the information
transmission rates, as well as a new outer bound on the energy
transmission rate.

II. GAUSSIAN INTERFERENCE CHANNEL WITH ENERGY
HARVESTER

Consider the Gaussian interference channel with a non-
colocated energy harvester depicted in Fig. 1. Transmitter i,
with i ∈ {1, 2}, aims to execute two tasks: (a) an information
transmission task and (b) an energy transmission task.

A. Information Transmission Task
From the information transmission standpoint, the goal of

transmitter i is to convey message index Wi ∈ Wi to receiver
i using N channel input symbols Xi,1, Xi,2, . . . , Xi,N . The
channel coefficient from transmitter k to receiver i, with
k ∈ {1, 2}, is denoted by hik ∈ R+. For channel use n,
input symbol Xi,n is observed at receiver i in addition to the
interference produced by the symbol Xj,n sent by transmitter
j, with j ∈ {1, 2}\{i}, and a real additive Gaussian noise Zi,n
with zero mean and variance σ2

i . Hence, the channel output at
receiver i during channel use n, denoted by Yi,n, is

Yi,n = hiiXi,n + hijXj,n + Zi,n. (1)

At each channel use n, the symbol Xi,n sent by transmitter i
depends on the message index Wi and a randomly generated
index Ω ∈ N. The random index Ω is assumed to be
independent of both W1 and W2 and known by all transmitters
and receivers. Let f (N)

i,n : Wi × N → R be the encoding
function at channel use n, such that for all n ∈ {1, 2, . . . , N}:

Xi,n=f
(N)
i,n (Wi,Ω). (2)

Channel input symbols Xi,1, Xi,2, . . . , Xi,N are subject to an
average power constraint of the form

1

N

N∑

n=1

E[X2
i,n] ≤ Pi, (3)

where the expectation is taken with respect to Wi and Ω,
which follow uniform probability distributions over their cor-
responding supports. Receiver i observes the channel outputs
Yi,1, Yi,2, . . . , Yi,N and uses a decoding function

φ
(N)
i : N×RN → {1, 2, . . . , 2Ri}, (4)

to get an estimate ”Wi

(N)
= φ

(N)
i (Ω, Yi,1, Yi,2, . . . , Yi,N ) of

the transmitted message Wi. The information rate at receiver
i is denoted by Ri and it is defined by:

Ri =
log2 |Wi|

N
, (5)
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3 / 17

Fig. 1: Two-user Gaussian interference channel with a non-
colocated energy harvester.

in bits per channel use. The decoding error probability is given
by

P (N)
e (R1, R2)

= max

Å
Pr

Å
”W1

(N) 6= W1

ã
,Pr

Å
”W2

(N) 6= W2

ãã
. (6)

The signal to noise ratio (SNR) at receiver i is denoted by

SNRi =
h2iiPi
σ2
i

. (7)

Similarly, the interference to noise ratio (INR) at receiver i is
denoted by

INRi =
h2ijPj

σ2
i

, for j 6= i. (8)

B. Energy Transmission Task

Let h3i ∈ R+ be the channel coefficient from transmitter i
to the energy harvester (EH). The symbols sent by transmitter
1 and 2 to the EH are subject to an additive Gaussian noise
Z3,n with zero mean and variance σ2

3 . More specifically, the
channel output at the EH, denoted by Y3,n, is

Y3,n = h31X1,n + h32X2,n + Z3,n. (9)

The SNR of transmitter i at the EH is denoted by

SNR3i =
h23iPi
σ2
3

. (10)

Let b > 0 denote the minimum average energy rate that must
be guaranteed at the input of the EH. Let B(N) be the average
energy transmission rate (in energy-units per channel use) at
the end of N channel uses. That is,

B(N) 4=
1

N

N∑

n=1

Y 2
3,n. (11)

Note that the maximum average energy rate Bmax is

Bmax = σ2
3

Ä
1 + SNR31 + SNR32 + 2

√
SNR31SNR32

ä
.
(12)

From the energy transmission standpoint, the goal of both
transmitters is to jointly guarantee that the average energy rate
B(N) is greater than a given operational energy transmission
rate B that must satisfy

b 6 B 6 Bmax. (13)

The probability of energy outage, given an average energy rate
B, is defined as follows:

P
(N,ε)
outage(B)

4
= Pr

î
B(N) < B − ε

ó
, (14)

for some ε > 0.

C. Simultaneous Information and Energy Transmission (SIET)

Given a minimum energy rate b to be satisfied at the EH,
the system is said to be operating at the information-energy
rate triplet (R1, R2, B) ∈ R3

+ when both transmitter-receiver
pairs use a transmit-receive configuration such that: (i) reliable
communication at information rates R1 and R2 is ensured; and
(ii) reliable energy transmission at energy rate B is ensured.
A formal definition is given below.

Definition 1 (Achievable Rates): The triplet (R1, R2, B) ∈
R3

+ is achievable if for all i ∈ {1, 2}, there exists a sequence
of encoding functions f (N)

i,1 , f
(N)
i,2 , . . . , f

(N)
i,N , and the decoding

functions φ(N)
1 and φ

(N)
2 , such that both the average error

probability P (N)
e (R1, R2) and the energy-outage probability

P
(N,ε)
outage(B) tend to zero as the block-length N tends to infinity.

That is,

lim sup
N→∞

P (N)
e = 0, and (15)

lim sup
N→∞

P
(N,ε)
outage = 0. (16)

Using Definition 1, the fundamental limits of simultaneous in-
formation and energy transmission in the Gaussian interference
channel can be described by the information-energy capacity
region, defined as follows.

Definition 2 (Information-Energy Capacity Region): The
information-energy capacity region given a minimum energy
rate b, denoted by Eb, corresponds to the closure of all
achievable information-energy rate triplets (R1, R2, B).

III. MAIN RESULTS

The main result consists of a description of the information-
energy capacity region Eb, for a given b > 0. The following
sections show that the information-energy capacity region Eb,
with b any positive real number, is approximated by the re-
gions Eb (Theorem 1), which represents an information-energy
achievable region, and Eb (Theorem 2), which represents an
information-energy converse region.

A. An Achievable Region

The following theorem describes a set of rate-tuples that are
achievable (Definition 1).

Theorem 1: Let b be a fixed positive real. Then, the
information-energy capacity region Eb contains all the rate
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tuples (R1, R2, B) that satisfy for all i ∈ {1, 2} and j ∈
{1, 2}\{i}:

Ri≤
1

2
log

Å
1 +

(1− λie)SNRi

1 + λjpINRi

ã
, (17a)

R1 +R2≤
1

2
log

Å
1 + (1− λie)SNR1 + (1− λje)INR1

1 + λjpINR1

ã
,

+
1

2
log

Å
1 +

λjpSNRj

1 + λipINRj

ã
, (17b)

R1 +R2≤
1

2
log

Å
1 + λ1pSNR1 + (1− λ2e)INR1

1 + λ2pINR1

ã

+
1

2
log

Å
1 + λ2pSNR2 + (1− λ1e)INR2

1 + λ1pINR2

ã
,

(17c)

2Ri +Rj≤
1

2
log

Å
1 + (1− λie)SNRi + (1− λje)INRi

1 + λjpINRi

ã

+
1

2
log

Å
1 + λjpSNRj + (1− λie)INRj

1 + λipINRj

ã

+
1

2
log

Å
1 +

λipSNRi

1 + λjpINRi

ã
, (17d)

b ≤ B≤σ2
3

Å
1 + SNR31 + SNR32

+2
√

SNR31SNR32

√
λ1eλ2e

ã
, (17e)

with (λip, λie) ∈ [0, 1]2 such that λip + λie ≤ 1.
Proof: The sketch of proof of Theorem 1 is presented in

the following section.

B. Sketch of Proof of Achievability

The achievability scheme used to obtain Theorem 1 is built
upon random coding arguments using rate-splitting [6], super-
position coding [2], common randomness and power-spliting
[1]. Let Wi ∈ {1, 2 . . . , 2NRi} and Ω ∈ {1, 2 . . . , 2NRE} be
respectively the message index and the common random index
at transmitter i. Following a rate-splitting argument, the index
Wi is divided into two sub-indices Wi,P ∈ {1, 2 . . . , 2NRi,P }
and Wi,C ∈ {1, 2 . . . , 2NRi,C}, where Ri,C + Ri,P = Ri.
The message index Wi,C must be decoded at both receivers,
whereas the index Wi,P must be decoded only at the in-
tended receiver. This rate-splitting is reminiscent of the Han-
Kobayashi scheme in [6].

Lemma 1: An achievable information rate pair (R1, R2)
satisfies the following inequalities, for all i ∈ {1, 2} and j ∈
{1, 2}\{i}:

Ri ≤ I(Xi;Yi|Uj , V ) (18a)
R1 +R2 ≤ I(Xi, Uj ;Yi|V ) + I(Xj ;Yj |Ui, Uj , V ) (18b)
R1 +R2 ≤ I(X1, U2;Y1|U1, V ) + I(X2, U1;Y2|U2, V )(18c)

2Ri +Rj ≤ I(Xi, Uj ;Yi|V ) + I(Xi;Yi|Ui, Uj , V )

+(Xj , Ui;Yj |Uj , V ), (18d)

for a given joint distribution PV U1U2S1S2(v, u1, u2, s1, s2)
that factorizes as PV (v) PU1|V (u1|v) PU2|V (u2|v)

PS1|U1V (s1|u1v) PS2|U2V (s2|u2v) and Xi = θi (V,Ui, Si),
with θ1 and θ2 injective functions.

Proof: The proof of Lemma 1 uses standard arguments
of weak typicality and is omitted in this paper.
For all k ∈ {1, 2} and a fixed triplet (λkc, λkp, λke) ∈ [0, 1]3

such that λkc + λkp + λke = 1, consider the following
random variables: V ∼ N (0, 1); Uk ∼ N (0, λkc); and
Sk ∼ N (0, λkp), which are independent of each other. Let
the channel input of transmitter k be

Xk =
√
PkSk +

√
PkUk +

√
λkePkV. (19)

The choice of this input distribution yields

I(Xi;Yi|Uj , V ) =
1

2
log

Å
1 +

(1− λie)SNRi

1 + λjpINRi

ã
(20a)

I(Xi, Uj ;Yi|V ) =
1

2
log

Å
1+(1−λie)SNRi+(1−λje)INRi

1+λjpINR1

ã
,

(20b)

I(Xj ;Yj |Ui, Uj , V )=
1

2
log

Å
1 +

λjpSNRj

1 + λipINRj

ã
(20c)

I(Xi, Uj ;Yi|Ui, V )=
1

2
log

Å
1 + λipSNRi + (1− λje)INRi

1 + λjpINRi

ã
,

I(Xi, Uj ;Yi|Ui, V )=
1

2
log

Å
1 + λipSNRi + (1− λje)INRi

1 + λjpINRi

ã
,

(20d)

I(Xj , Ui;Yj |Uj , V )=
1

2
log

Å
1 + λjpSNRj + (1− λie)INRj

1 + λipINR2

ã
.

(20e)

Finally, plugging (20) into (18) completes the proof of (17a)
- (17d).

The average received energy rate B̄ achieved by using the
input signals in (19) is given by

B̄=E[Y 2
3,n]

=h231E[X2
1,n] + h232E[X2

2,n] + 2h31h32E[X1,nX2,n] + σ2
3

≤h231P1 + h232P2 + 2h31h32
√
λ1eP1λ2eP2 + σ2

3

=σ2
3

Å
1 + SNR31 + SNR32 + 2

√
SNR31SNR32

√
λ1eλ2e

ã
.

From the weak law of large numbers, it holds that ∀ε > 0,

lim
N→∞

Pr
Ä
B(N) < B̄ − ε

ä
= 0. (21)

From (21), it holds that for any energy rate B that satisfies
0 < B ≤ B̄, it holds that

lim
N→∞

Pr
Ä
B(N) < B − ε

ä
= 0, (22)

which proves (17e) and completes the sketch of proof.

C. Converse

The following theorem describes a converse region denoted
by Eb.

Theorem 2: Let b be a fixed positive real. Then, the
information-energy capacity region Eb is contained into the set
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of all the rate tuples (R1, R2, B) that satisfy for all i ∈ {1, 2}
and j ∈ {1, 2}\{i}:

Ri≤
1

2
log(1 + βiSNRi), (23a)

R1 +R2≤
1

2
log(1+βiSNRi+βjINRi)

+
1

2
log(1+

βjSNRj

1 + βjINRi
), (23b)

R1 +R2≤
1

2
log

Å
1+
β1SNR1+β2INR1+β1β2INR1INR2

1+β1INR2

ã

+
1

2
log

Å
1+
β2SNR2+β1INR2+β1β2INR1INR2

1+β2INR1

ã
,

(23c)

2Ri +Rj≤
1

2
log(1+

βiSNRi

1+βiINRj
)

+
1

2
log(1+βiSNRi+βjINRi)

+
1

2
log

Å
1+
βjSNRj+βiINRj+βiβjINRiINRj

1+βjINRi

ã
,

(23d)

b ≤ B≤σ2
3

Å
1+SNR31+SNR32

+2
»

(1−β1)SNR31(1−β2)SNR32

ã
, (23e)

with (β1, β2) ∈ [0, 1]2.
Proof: The sketch of the proof of Theorem 2 is presented

in the following section.

D. Sketch of Proof of the Converse

Fix an information-energy rate triplet (R1, R2, B) achiev-
able with a given coding scheme (Definition 1). Denote by
X1 and X2 the channel inputs resulting from transmitting the
independent message W1 and W2 using such coding scheme.
Denote by Y 1 and Y 2 the corresponding channel outputs.
Define the following random variables:

U1 = h21X1 + Z
′
2, and

U2 = h12X2 + Z
′
1,

where, Z
′
1 and Z

′
2 are real Gaussian random variables inde-

pendent of each other with zero means and variances σ2
1 and

σ2
2 , respectively. Using assumption (15) and Fano’s inequality,

it follows that the information rates R1 and R2 must satisfy
the following inequalities:

NRi 6
N∑

n=1

h(Yi,n|Xj,n)−Nh(Zi) + o(N) (24a)

N(R1 +R2) 6
N∑

n=1

h(Yi,n) +
N∑

n=1

h(Yj,n|Uj,n, Xi,n)

−Nh(Zj)−Nh(Z
′
i) + o(N) (24b)

N(R1 +R2) 6
N∑

n=1

h(Y1,n|U1,n) +
N∑

n=1

h(Y2,n|U2,n)

−Nh(Z
′
1)−Nh(Z

′
2) + o(N) (24c)

N(2Ri +Rj) 6
N∑

n=1

h(Yi,n) +
N∑

n=1

h(Yi,n|Ui,n, Xj,n)

+
N∑

n=1

h(Yj,n|Uj,n)−N(h(Z1) + h(Z2)

+h(Z
′
1) + h(Z

′
2)) + o(N), (24d)

where o(N)
N tends to zero as N tends to infinity. Using

assumption (16), for a given εN > 0 and an η > 0, there
exist N0(η) such that for any N ≥ N0(η) it holds that

Pr
Ä
B(N) < B − εN

ä
< η. (25)

Equivalently,

Pr
Ä
B(N) ≥ B − εN

ä
≥ 1− η. (26)

From Markov’s inequality, the following holds:

(B − εN )Pr
Ä
B(N) ≥ B − εN

ä
≤ E[B(N)]. (27)

Combining (26) and (27) yields

(B − εN )(1− η) ≤ E[B(N)], (28)

which can be written as

(B − δN ) ≤ E[B(N)], (29)

for some δN > εN and a sufficiently large N . In the
following, for all n ∈ N, the bounds in (24) and (29) are
evaluated assuming that the channel inputs X1,n and X2,n are
independent random variables with mean and variance:

µi,n
4
= E[Xi,n], (30)

γ2i,n
4
= Var[Xi,n]. (31)

The input sequences must satisfy the input power constraint
(3) which can be written for i ∈ {1, 2}, as

1

N

N∑

n=1

E[X2
i,n] =

(
1

N

N∑

n=1

γ2i,n

)
+

(
1

N

N∑

n=1

µ2
i,n

)
6 Pi.

(32)
Using these elements, the terms in the right-hand side of (24)
can be upper-bounded as follows:

h(Yi,n|Xj,n) 6 1

2
log
(
2πe(σ2

i + h2iiγ
2
i,n)
)
, (33a)

h(Yi,n) 6 1

2
log
(
2πe(σ2

i + h2iiγ
2
i,n + h2ijγ

2
j,n)
)
, (33b)

h(Yi,n|Ui,n, Xj,n) 6 1

2
log

Ö
1 +

h2
iiγ

2
i,n

σ2
i

1 +
h2
ji
γ2
i,n

σ2
j

è

+
1

2
log(2πeσ2

i σ
2
j ), and (33c)

h(Yi,n|Ui,n) 6 1

2
log(2πeσ2

i σ
2
j )

+
1

2
log

Ö
1 +

h2
iiγ

2
i,n

σ2
i

+
h2
ijγ

2
j,n

σ2
i

+
γ2
i,nγ

2
j,nh

2
ijh

2
ji

σ2
i
σ2
j

1 +
γ2
i,n
h2
ji

σ2
j

è
. (33d)
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The expectation of the average received energy rate is given
by

E
î
B(N)

ó
= E

[
1

N

N∑

n=1

Y 2
3,n

]
=

h231

(
1

N

N∑

n=1

(γ21,n + µ2
1,n)

)
+ h232

(
1

N

N∑

n=1

(γ22,n + µ2
2,n)

)

+2h31h32
1

N

N∑

n=1

µ1,nµ2,n + σ2
3 . (34)

Using Cauchy-Schwarz inequality, combining (29) and (34)
yields the following upper-bound on the energy rate B:

B 6 σ2
3 +

h231
N

N∑

n=1

(γ21,n + µ2
1,n) +

h232
N

N∑

n=1

(γ22,n + µ2
2,n)

+2h31h32

(
1

N

N∑

n=1

µ2
1,n

)1/2(
1

N

N∑

n=1

µ2
2,n

)1/2

+δN . (35)

Consider the following definitions, for all i ∈ {1, 2}:

µ2
i
4
=

1

N

N∑

n=1

µ2
i,t, (36a)

γ2i
4
=

1

N

N∑

n=1

γ2i,n, and (36b)

βi
4
=
γ2i
Pi
. (36c)

Plugging (33) in (24) and after some manipulations using the
definitions in (36) and using Jensen’s inequality complete the
sketch of the proof.

E. Approximation of the Information-Energy Capacity Region
Using the inner region Eb and the outer region Eb, described

respectively by Theorem 1 and Theorem 2, the information-
energy capacity region Eb can be approximated according to
the following theorem.

Theorem 3 (Approximation of Eb): Let Eb ⊂ R3
+ and Eb ⊂

R3
+ be the sets of tuples (R1, R2, B) described by Theorem 1

and Theorem 2, respectively. Then,

Eb ⊂ Eb ⊂ Eb, (37)

and for all (R1, R2, B) ∈ Eb it follows that ((R1 −
1/2)+, (R2 − 1/2)+, (B − Bmax

2 )+) ∈ Eb.
Proof: Following similar steps as in [3], it can be

shown that for all (R1, R2, 0) ∈ Eb it follows that ((R1 −
1/2)+, (R2 − 1/2)+, 0) ∈ Eb. Note also that for all
(R1, R2, B) ∈ Eb and for all (R1, R2, B

′) ∈ Eb, there always
exists a tuple (β1, β2, λ1e, λ2e) such that: B−B′

Bmax

=
2|h31||h32|

√
P1P2

Ä√
(1− β1)(1− β2)−

√
λ1eλ2e

ä

σ2
3 + h231P1 + h232P2 + 2h31h32

√
P1P2

≤ 2
√

SNR31SNR32

1 + 4
√

SNR31SNR32

≤ 1

2
,

which completes the proof.

IV. EXAMPLE
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(a) 3-D representation of Eb.
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(b) 3-D representation of Eb.

Fig. 2: 3-D representation of Eb and Eb .

Consider a Gaussian interference channel with an external
EH with parameters SNR1 = SNR2 = 20 dB, INR1 =
INR2 = SNR31 = SNR32 = 10 dB and σ2

3 = 1.
Figure 2a and Figure 2b show Eb and Eb, respectively,

with b = 0. Note that for all B ∈ [0, 1 + SNR31 +
SNR32], transmitting information with independent codewords
is enough to satisfy the energy rate constraints. This implies
that β1 = β2 = 1 is optimal in this regime. Alternatively, for
all B ∈ [1 + SNR31 + SNR32, Bmax], transmitters deal with
trade-off between the information and energy rate. Increasing
B reduces the information region and makes the information-
energy capacity region shrink.
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Abstract—Despite significant progress in the caching literature
concerning the worst case and uniform average case regimes, the
algorithms for caching with nonuniform demands are still at
a basic stage and mostly rely on simple grouping and memory-
sharing techniques. In this work we introduce a novel centralized
caching strategy for caching with nonuniform file popularities.
Our scheme allows for assigning more cache to the files which
are more likely to be requested, while maintaining the same sub-
packetization for all the files. As a result, in the delivery phase
it is possible to perform linear codes across files with different
popularities without resorting to zero-padding or concatenation
techniques. We will describe our placement strategy for arbitrary
range of parameters. The delivery phase will be outlined for
a small example for which we are able to show a noticeable
improvement over the state of the art.

I. INTRODUCTION

Caching is a communication technique for redistributing
the traffic in a broadcast network and thereby reducing its
variability over time. The idea is to transfer part of the data to
the users during low traffic periods. This data is stored at the
caches of the users and helps as side information when later
the server transfers the remaining data in a second phase. The
central question in the caching literature is that for a given
cache size, by how much one can reduce the traffic in this
second (delivery) phase, assuming that in the first (placement)
phase one only had partial or no knowledge at all of the
requests of the users. There has been significant progress in
answering this question under two paradigms. Firstly, when
we look at the worst case delivery rate, meaning that we
aim at minimizing the delivery rate for any request vector.
Secondly, when we consider an average delivery rate under
uniform distribution of the popularity of the files. For both of
these scenarios the exact tradeoff between the size of the cache
and the delivery rate has been characterized under uncoded
placement [1], [2] , i.e., when in the placement phase users
are not permitted to perform coding across several files.

By comparison, the question about minimizing the average
delivery rate when the file popularities are non-uniform is
still largely open. The main line of work [3]–[6] consists of
partitioning the files into two or more groups, where each
group contains files with similar popularity. Then one performs
memory-sharing between these groups: each user divides his
cache into several chunks, and assigns a chunk to each group

of files. Naturally, if a group includes the more popular files a
larger chunk of the cache (per file) will be allocated to them.
Finally in the delivery phase each group is served individually,
ignoring coding opportunities between files from different
groups.

This simple scheme even when restricted to two groups has
been proved to be order-optimal, meaning that it achieves
a rate within a constant factor of an information theoretic
converse bound. Nevertheless, the fact that coding opportu-
nities between files from different groups are ignored should
be viewed as an unfortunate technical obstacle rather than
a natural extension of the strategies that exist for uniform
caching. The dilemma is clear: assigning unequal amounts
of cache to different groups and applying the centralized
caching strategy in [1] for each group results in different sub-
packetizations for files that belong to different groups. As a
result, their sub-files will be of unequal size. It is therefore
impossible to apply linear codes between different groups
unless we resort to zero padding strategies or we concatenate
the subfiles. Problems of the same nature - but perhaps less
severe - appear if we resort to decentralized caching strategies
[3], [5], [7].

Our main contribution in this paper is to propose a central-
ized caching strategy that bypasses this seemingly inevitable
barrier. Specifically our placement strategy allows us to assign
different amount of cache per file to different groups while
maintaining equal sub-packetization for all the files. It is
then very natural to allow for coding between files even if
they do not belong to the same group. To the best of our
knowledge this is the first centralized caching strategy that
is specifically tailored for nonuniform file popularity. We will
demonstrate the potential of this caching strategy by providing
explicit delivery schemes for a small choice of the parameters
and comparing its performance with the grouping strategies
discussed earlier.

The rest of the paper is organized as follows. In Section
II we will briefly describe the model. We will then move on
to explaining our placement strategy in Section III. Next, in
section IV we will describe our delivery strategy for a small
choice of the parameters and compare its performance to the
literature. Finally, we will conclude our work in Section V.
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user 1 user K

Fig. 1: An illustration of the caching network

II. MODEL DESCRIPTION

Our model and notation will be almost identical to the one
described in [1]. We have a server which is in possession of N
independent files {W 1, . . . ,WN} of equal size F and K users
each equipped with a cache of size MF . The communication
is done in two phases. In the placement phase, the server fills
in the cache of each user without prior knowledge of their
requests but with the knowledge of the popularity of the files.
Next, each user requests precisely one file from the server. The
request of each user is drawn independently from a distribution
p[1:N ] where pi represents the probability of requesting file
i. Note that this distribution does not vary across different
users. We represent the set of requests by a vector d where
di ∈ [1 : N ] for all i ∈ [1 : K]. In the delivery phase the
server broadcasts a message of rate R(d) to satisfy all the users
simultaneously. See Figure 1 for an illustration. We deviate
from the model in [1] in that we look at the expected delivery
rate instead of the peak delivery rate. We say that a memory-
rate pair (M,R) is achievable if and only if there exists a
joint caching and delivery strategy with a cache of size MF
such that for any request vector d a delivery message of rate
R(d)F satisfies all the users simultaneously, and

R =
∑

d

P(d)R(d) =
∑

d∈[1:N ]K

K∏

i=1

pdiR(d).

III. THE PLACEMENT PHASE OF STRATEGY β

The placement phase of our strategy, which we refer to as
strategy β, starts by partitioning the N files into L groups
G1,...,GL of respective size N1,...,NL, such that

∑L
i=1Ni =

N . How to perform this partitioning is left as a design
parameter but in general files within one partition should
have similar probabilities of being requested. We represent
by gi ∈ [1 : L] the group to which the file W i belongs.
Accordingly, each user partitions his cache into L chunks
of size M1,...,ML such that for any ` ∈ [1 : L], we have

M` ∈ {0, N`/K, 2N`/K, . . . , N`}. It should be clear that this
is only possible for discrete values of M =

∑L
i=1Mi. The

overall achievable memory-rate region will be the convex hull
of all the discrete pairs (M,R) which can be served by our
strategy. We define

r` = KM`/N` (1)

and assume without loss of generality that r1 ≥ r2 ≥ · · · ≥
rL. Note that r[1:L] are integers.
Naturally, the following two identities hold.

L∑

`=1

N`r` =MK (2)

0 ≤ r` ≤ K ∀` ∈ [1 : L]. (3)

Every file in the network regardless of which group they
belong to is divided into S subfiles of equal size where

S =

(
K

K − r1, r1 − r2, . . . , rL−1 − rL, rL

)
.

The subfiles are indexed as follows

W i
τ1,...,τL where τ1 ⊆ [1 : K]

τj ⊆ τj−1 for j ∈ 2, . . . , L,

|τi| = ri for i ∈ [1 : L].

Note that there are precisely S such distinct indices.
For any (i, k) user k stores subfile W i

τ1,...,τL in his cache if
and only if k ∈ τgi .

At this point it may help to illustrate this placement
strategy via a simple example. Let us say that we have
3 users and 2 files and 2 groups such that each group
contains exactly one file. Let us call the files A = W 1

and B = W 2 and assume that r1 = 2 and r2 = 1, so
M = r1N1+r2N2

K = 1. We must divide file A into 6 subfiles
A = {A12,1, A12,2, A13,1, A13,3, A23,2, A23,3}. Same division
applies to file B. The contents of the caches of the two users
are illustrated in Table I.

user 1 user 2 user 3
A12,1 A12,1 A13,1

A12,2 A12,2 A13,3

A13,1 A23,2 A23,2

A13,3 A23,3 A23,3

B12,1 B12,2 B13,3

B13,1 B23,2 B23,3

TABLE I: Placement phase of strategy β for parameters N =
2, K = 3, M = 1, r1 = 2, r2 = 1

Let us now go back to the general placement strategy and
calculate the amount of cache that user k dedicates to the `’th
group. By definition the index of the k’th user must be present
in all the sets τ1, . . . , τ` whereas its index may or may not be
present in the sets τ`+1, . . . , τL. We should divide the number
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of such indices τ1 . . . τL by the total number of subfiles S to
find the amount of cache dedicated to each file in group `.

M` =
N`
S

(
K − 1

r1 − 1

)
×
`−1∏

i=1

(
ri − 1

ri+1 − 1

)
×
L−1∏

i=`

(
ri
ri+1

)

=N`

(
K−1
r1−1

)
(
K
r1

) ×
`−1∏

i=1

(
ri−1
ri+1−1

)
(
ri
ri+1

)

=N`
r1
K
×
`−1∏

i=1

ri+1

ri

=
r`N`
K

.

Note that this expression matches with the way we defined the
parameter r` in Equation (1).

IV. DELIVERY STRATEGY FOR K = 3, N = 2 AND
COMPARISON TO THE LITERATURE

Let us start by describing our delivery strategy for the same
toy example as in the previous section. The explicit delivery
messages for all possible request vectors are provided in Table
II.

request vector delivery message delivery rate
(A,A,A) A12,1 ⊕A13,1 ⊕A23,2 1/3

A12,2 ⊕A13,3 ⊕A23,3

(A,A,B) B12,1 ⊕A23,2 , B13,1 ⊕A23,3 2/3
B12,2 ⊕A13,1 , B23,2 ⊕A13,3

(A,B,B) B12,1 ⊕A23,2 , B13,1 ⊕A23,3 2/3
B12,2 ⊕B13,3 , B23,2 ⊕B23,3

(B,B,B) B12,1 ⊕B12,2 , B12,1 ⊕B13,3 2/3
B13,1 ⊕B23,2 , B13,1 ⊕B23,3

TABLE II: the set of delivery messages for N = 2,K = 3
and r1 = 2, r2 = 1 for all possible request vectors (different
permutations are omitted.)

Let us say that file A is requested with probability p and file
B with probability 1−p. We assume without loss of generality
that p ≥ 0.5. The expected delivery rate is

R =
1

3
p3 +

2

3
(1− p3) = 2

3
− 1

3
p3.

Alternatively we can set (r1, r2) = (3, 0) which results in an
expected delivery rate of 1− p3. Therefore,

Rβ = min{2
3
− 1

3
p3, 1− p3}. (4)

Therefore, the point (M,R) = (1,min{ 23 − 1
3p

3, 1 − p3}) is
achievable with strategy β. We want to compare this with the
achievable rate of grouping strategy in [3]. The strategy in
[3] is particularly designed for decentralized caching, which
by nature has an inferior performance (in terms of delivery
rate) compared to its centralized counterpart. Thus, before we
perform the comparison we slightly modify the strategy in [3]
without compromising its basic concepts: the files are grouped
in L disjoint sets and each user partitions his cache into L
segments. Coding opportunities between several groups are
ignored in the placement and delivery phase. However, instead

of performing decentralized caching within each group we
deploy the centralized caching strategy from [1], [2]. We refer
to this as strategy α. It is easy to see that strategy α always
outperforms the strategy in [3] in terms of expected delivery
rate. It is also easy to see that strategy α always performs at
least as good as the strategy in [1], [2] since by definition we
can have only one partition which includes all the files. Let
us now proceed to compare the two strategies α and β.

For the same choice of parameters K = 3, N = 2,M = 1,
strategy α can be deployed with L = 1 or L = 2 groups. The
former gives an expected rate of

Rα,L=1 =
1

2
(p3 + (1− p)3) + 2

3
(1− p3 − (1− p)3)

=
2

3
− 1

6
(p3 + (1− p)3).

If instead we set L = 2, we must divide the cache into two
segments of sizes M1 and M2 = 1−M1. We will then ignore
any coding opportunities between the files A and B, so the
delivery rate is given by

Rα,L=2 = [1−M1]p
3 + [1−M2](1− p)3

+ [(1−M1) + (1−M2)](1− p3 − (1− p)3)
= 1−M1p

3 − (1−M1)(1− p)3.
Assuming p ≥ 1

2 it is then profitable to set M1 = 1 and we
get a rate of

Rα,L=2 = 1− p3.
To summarize, we can write

Rα = min{2
3
− 1

6
(p3 + (1− p)3), 1− p3}. (5)

Comparing Equations (4) and (5) we see that strategy β strictly
outperforms strategy α as long as 1

2 < p < (1/2)
1
3 ≈ 0.794.

Let us summarize this in a table.

probability of file A Expected Delivery Rate

strategy α Strategy β

0.5 ≤ p ≤ 0.739 2
3
− 1

6
(p3 + (1− p)3) 2

3
− 1

3
p3

0.739 < p ≤ 0.794 1− p3 2
3
− 1

3
p3

0.794 < p ≤ 1 1− p3 1− p3

TABLE III: Comparison of the expected delivery rate of
strategies α and β when K = 3, N = 2 and M = 1. We
assume that file A is requested with probability p ≥ 1/2.

In Figure 2 we compare the delivery rates of the two
strategies for N = 2,K = 3,M = 1. On the horizontal axis
the probability of ordering file A increases from 0.5 to 1 and
on the vertical axis we have the expected delivery rate. The
maximum gain is offered over strategy α when p = 0.738
in which case Rβ ≈ 0.89Rα. A converse bound from [8] is
plotted for comparison.

Similar analysis can be done for other cache sizes. In
Table IV we summarize the achievable rate of strategy β for
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Fig. 2: Comparison of strategies α and β resumed in Table III
together with the converse bound from [8].

cache size, M (r1, r2) Expected Delivery Rate

0 (0, 0) 2− p3 − (1− p)3

1
3

(1, 0) 5
3
− p3 − 2

3
(1− p)3

2
3

(1, 1) 1− 1
3
p3 − 1

3
(1− p)3

1 (2, 1) 2
3
− 1

3
p3

1 (3, 0) 1− p3

4
3

(2, 2) 1
3

4
3

(3, 1) 2
3
− 2

3
p3

5
3

(3, 2) 1
3
− 1

3
p3

2 (3, 3) 0

TABLE IV: The expected delivery rate of strategy β when
K = 3, N = 2 for different values of (r1, r2) which results in
different cache sizes M . We assume that file A is requested
with probability p ≥ 1/2.

difference choices of the parameters r1 and r2 which results
in M = (r1 + r2)/K.

The achievable memory-rate region for K = 3, N = 2 is
the convex hull of all these points. Note that depending on the
value of p some of these points may become irrelevant. For
instance if p = 1, the points achieved by setting (r1, r2) =
(2, 2) does not lie on the boundary of the convex hull. In
Figure 3 we have plotted the achievable memory-rate region
for strategies α and β for N = 2,K = 3 and for p = 0.765,
where the improvements offered by strategy β are most visible.
Again, the converse bound from [8] has been included for
comparison. Note that the plot has been trimmed, since the
performance is identical for very small or very large cache

Fig. 3: Comparison of the expected delivery rate of strategies
α and β and the strategy described in [2] (YMA) when K =
3, N = 2, together with the converse bound from [8]. We
assume that file A is requested with probability p = 0.765.

sizes. The gains are most visible in the vicinity of M = 1.

V. CONCLUSION AND FUTURE WORK

In this paper we presented a novel centralized caching
strategy for non-uniform demands and demonstrated that for
a small choice of parameters it outperforms the state of the
art. For our future work, we intend to generalize our delivery
strategy to arbitrary range of parameters. It is noteworthy that
our strategy has the potential to be adapted to a user-specific
popularity scenario, that is when the probability of requesting
different files varies across the users. This can serve as another
interesting direction for future research.
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Abstract— Let X(m) and X(n) be two binary Markov chains
that are randomly drawn according to a stationary Markov
environment. We are interested in the following question: given
X(m), how non-random can the sequence of errors that are
made when predicting X(n) be and how is it influenced by the
complexity of a predictor? To answer this, we consider a predictor
which is ‘calibrated’ to the environment based on a sample X(m),
that is, it minimizes an upper bound (based on X(m)) on the
probability of making a prediction error. We define a test of
randomness for the sequence of errors made by this predictor
in predicting the other sample X(n). The test is based on the
difference between the average number of errors made on X(m)

and on X(n). We derive a bound on the possible range of this
difference and show how the complexity of a predictor influences
how atypically random the error sequence can be.

I. INTRODUCTION

Prediction and compression are fundamentally related [4].
The number of bits (codeword length) sufficient to represent
the next symbol in a data sequence equals the logarithm
of the inverse of the prediction probability of that symbol
conditioned on the previous symbols [2, 4]. Typically, a
random environment (or source) generates data in a non-i.i.d.
manner. Predicting the next symbol x in the data, given a
context which consists of available data in proximity to x
(either in time or space) means that the probability distribution
of x conditioned on this context is less uniform. This means
that the number of bits sufficient to encode x is smaller [2]
and the data sequence can be compressed more efficiently. This
fact is used in many compression algorithms (for instance, in
image compression) by encoding the sequence of prediction
errors instead of the actual data sequence. This leads to more
efficient compression since the errors are often ’less random’
and their distribution has a smaller support (or is less uniform)
than the actual data itself.

In this paper we are interested in how less random are
prediction errors and how this depends on the complexity of
the predictor. We consider an environment that is represented
as a binary Markov chain of order k∗ (which is assumed to be
unknown). As a predictor of the environment, we consider any
binary function defined over a space of all states that consists
of k bits (where k may be different than k∗). Amongst all such
binary functions, we choose one which is calibrated to the
environment based on a finite Markov chain which is sampled

from the environment. By calibrated, roughly speaking, we
mean that it has the lowest prediction error and we set this to
be our criterion. We define the complexity of the calibrated
predictor to be the uncertainty in meeting this criterion.

To asses how non-random the errors are, we apply the
predictor on another Markov chain which is sampled from the
same environment. We then look at the discrepancy between
the average number of errors made on the above two samples,
where on the second sample we consider time instants when
the prediction is sufficiently confident. From this we define
a test of randomness which is based on a bound on the
possible range of values of this discrepancy. We then obtain
an explicit dependence of the discrepancy on the complexity
of the calibrated predictor. We start with describing the setup.

II. SETUP

Let {Xt : t ∈ Z} be a sequence of binary random variables
possessing the following Markov property,

P (Xt = xt | Xt−1 = xt−1, Xt−2 = xt−2, . . .)

= P (Xt = x | Xt−1 = xt−1, . . . , Xt−k∗ = xt−k∗) (1)

where xt−k∗ , . . . , xt−1, xt take binary values in the set
{−1, 1}. This sequence is known as a Markov chain of
order k∗. We model the environment as a stationary time-
homogeneous Markov chain of order k∗. We assume that k∗

is unknown.
From the environment, we sample m + max {k, k∗} con-

secutive values that form a finite Markov chain

X(m) := {Xt}mt=−max{k,k∗}+1. (2)

Denote by Sk∗ a set of states s(i), i = 0, 1, . . . , 2k
∗ −

1, where s(0) := [s
(0)
k∗−1, . . . , s

(0)
0 ] = [−1, . . . ,−1,−1],

s(1) := [s
(1)
k∗−1, . . . , s

(1)
0 ] = [−1, . . . ,−1, 1], . . .,s(2

k∗−1) :=

[1, . . . , 1]. Based on Sk∗ , the chain X(m) can be represented
as a sequence

S∗(m) = {S∗t }mt=1 (3)

of random states where

S∗t :=
(
Xt−(k∗−1), Xt−(k∗−2), . . . , Xt

)
∈ Sk∗ (4)

defines the random state at time t. With respect to Sk∗ , a state
transition occurs from S∗t to S∗t+1 by shifting left the sequence
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of bits in (4), to obtain S∗t+1 := (Xt−(k∗−2), . . . , Xt, Xt+1).
There are two possible transitions that can occur from S∗t into
S∗t+1: a negative transition, where the lower bit Xt+1 is −1
and positive transition where Xt+1 is 1.

We denote by Q a 2k
∗ × 2k

∗
transition probability matrix

of the Markov chain {Xt : t ∈ Z}. Its (ij)th entry is denoted
by

Q[i, j] := p
(
s(j)

∣∣∣s(i)
)
. (5)

We denote by p(1|i) and p(−1|i), the probability of the two
possible transitions from state s(i) and we assume that for all
0 ≤ i ≤ 2k

∗−1, p(1|s(i)) > 0, thus the environment’s Markov
chain is irreducible. Let

π :=
[
π0, . . . , π2k∗−1

]
(6)

denote the stationary probability distribution where πi is the
probability that S∗t = s(i). That a stationary probability
distribution exists is explained in the full version of the paper
[3].

For a positive integer k, which may be different from k∗,
we define a state space Sk. Denote by S(m) the sequence of
states of Sk that corresponds to X(m), that is,

S(m) = {St}mt=1 (7)

and

St :=
(
Xt−(k−1), Xt−(k−2), . . . , Xt

)
∈ Sk. (8)

Consider a De Bruijn graph of dimension k with vertex set
that corresponds to Sk. An edge exists between two distinct
vertices if the transition probability (5) from at least one of
the corresponding states to the other, is positive. Such graph is
2-connected (maximum degree 4). Define the distance d (s, s′)
between states s, s′ ∈ Sk to be the length of the shortest path
between the corresponding vertices. Define the diameter of Sk
as diam(Sk) := maxs,s′∈Sk d (s, s′) and it equals k.

A γ-cover of Sk with respect to the metric d is a set C ⊆ Sk
such that for every element s ∈ Sk there exists an s′ ∈ C
such d(s, s′) ≤ γ. The size of the smallest γ-cover of Sk is
defined as the γ-covering number of Sk with respect to d, and
is denoted by Nγ .

III. PREDICTION RULES, WIDTH AND MARGIN

The value of k is chosen by us as a guess to the true
unknown order k∗ of the environment’s Markov chain. As
possible predictors of the next symbol of the environment, we
use binary functions on Sk. Denote byH the class of all binary
functions h : Sk → {−1, 1}. For a subset R ⊆ Sk let

dist(s,R) := min
s′∈R

d(s, s′).

From [1], we define the width of h at s as

wh(s) := dist
(
s,Rh(s)

)
(9)

where R+, R− ⊆ Sk are regions classified as 1 and −1,
respectively, by h, and h(s) is the complement of h(s).

Because s 6∈ Rh(s) then wh(s) > 0. Define fh : Sk → R
by

fh(s) := h(s)wh(s) (10)

to be a margin function associated with h. We can evaluate
the width and margin functions because k is known and
thus the edges of the De Bruijn graph on Sk are known
(the De Bruijn graph of the environment’s space Sk∗ and
its corresponding transition matrix Q are not needed). For
the purpose of bounding the prediction error it is convenient
to express the classification h(s) in terms of the margin as
follows, h(s) = sgn (fh(s)) where sgn(a) equals 1 if a > 0
and −1 otherwise. The absolute value of fh(s) expresses the
‘confidence’ in the decision h(s). We use this fact to consider
errors made at confident predictions.

Given any binary function h ∈ H, the predictor based on h
decides at time t according to the following rule: if h(St−1) =
1 it predicts for Xt the value 1, otherwise it predicts −1. The
probability that h makes a prediction error is constant with
respect to time t because the environment is stationary. We
denote it by

L(h) := P (h(St−1) 6= Xt) = P (Xtfh (St−1) < 0) . (11)

Denote the l∞ -norm of fh by ‖fh‖ := maxs∈Sk |fh(s)| .
Denote the class of margin functions by F := {fh : h ∈ H}.
An α-cover of F with respect to the l∞ norm on Sk is a set
F̂α :=

{
f
(α)
j

}r
j=1

such that for every element f ∈ F there

exists an f
(α)
j ∈ F̂α such

∥∥∥f − f (α)j

∥∥∥
l∞
≤ α. We denote by

hj := sgn
(
f
(α)
j

)
the binary function that corresponds to f (α)j

(note that j := j(α) and we omit the dependence on α for
brevity). The size r of the smallest α-cover of F is defined as
the α-covering number of F with respect to l∞ norm on Sk
and is denoted by Nα. From [1] it follows that

Nα ≤
(

2

⌈
3diam (Sk)

α

⌉
+ 1

)Nα/3
(12)

where Nα is the α-covering number of Sk with respect to the
metric d. It follows that

log2Nα/2 ≤ Nα/6 log2

(
15k

α

)
. (13)

A. Margin error
Denote by γ ∈ [0, diam(Sk)] a margin parameter and let

a := a(γ) and b := b(γ) be non-decreasing functions. The
prediction margin error of h at time t is

Xtfh(St−1) < b(γ). (14)

When b(γ) = 0, (14) is the prediction error (whose probability
is (11)). Based on X(m) define the margin-error sequence as

Ψ(m,γ)(h) :=
{

Ψ
(m,γ)
t (h)

}m
t=1

= {I {Xtfh(St−1) < b(γ)}}mt=1 .

The average number of times that a margin-error occurs on
X(m) by h is defined as

L(b(γ))
m (h) :=

1

m

m∑

t=1

Ψ
(m,γ)
t (h).
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Its expected value is denoted by

L(b(γ))(h) := P (Xtfh(St−1) < b(γ)) .

In case b(γ) = γ we denote by

L(γ)
m (h) : = 1

m

∑m
t=1 I {Xtfh(St−1) < γ}

and

L(γ)(h) = P (Xtfh(St−1) < γ) .

After obtaining a sample X(m) from the stationary environ-
ment, we sample n + max {k, k∗} consecutive bits to obtain
a second sample

X(n) := {Xt}nt=−max{k,k∗}+1

with a corresponding state sequence S(n) as defined in (7).
Based on X(n), the prediction error sequence is defined as

Ψ(n)(h) := {Ψt}nt=1 := {I {Xtfh(St−1) < 0}}nt=1 .

The average number of times that an error occurs when
predicting X(n) by h is defined as

Ln(h) :=
1

n

n∑

t=1

Ψ
(n)
t (h).

We are interested in the non-randomness of the sequence of
errors that correspond to instants of time at which a predictor
is confident. Observing Ψ(n) only at such time instants yields
the following two error subsequences,

Ψ(ν
(γ)
− )(h) := {I {Xtlfh(Stl−1) < 0}}ν

(γ)
−
l=1

and
Ψ(ν

(γ)
+ )(h) := {I {Xtlfh(Stl−1) < 0}}ν

(γ)
+

l=1

where ν(γ)− , ν(γ)+ are the number of times that the sequence
S(n) enters a state s ∈ Sk such that fh(s) < −a(γ) and
fh(s) > a(γ), respectively. We define the averages of Ψ(ν

(γ)
− )

and Ψ(ν
(γ)
+ ) as follows,

H(γ,n)
ν− (h) =

1

ν
(γ)
−

∑

l:fh(Stl−1)<−a(γ)
I {Xtlfh(Stl−1) < 0}

(15)
and

H(γ,n)
ν+ (h) =

1

ν
(γ)
+

∑

l:fh(Stl−1)>a(γ)

I {Xtlfh(Stl−1) < 0} .

(16)

B. Discrepancy

We define the following measures of discrepancy, which are
functions of X(m) and X(n):

Υ
(γ)
− (h) := Υ

(ν
(γ/2)
− )

m,n (h) = H(γ/2,n)
ν− (h)− L(b(2γ))

m (h)

and

Υ
(γ)
+ (h) := Υ

(ν
(γ/2)
+ )

m,n (h) = H(γ/2,n)
ν+ (h)− L(b(2γ))

m (h).

The expected value is,

E
[
H(γ/2,n)
ν−

]
= Eν−

[
1

ν−
E

[
ν−∑

l=1

I {Xtlfh (Stl) < 0}
∣∣∣∣∣ν−
]]

= Eν−
[

1

ν−
ν−L(h)

]
= L(h),

and
EL(b(2γ))

m (h) = L(b(2γ))(h).

We have,

L(h) = P (Xtfh (St−1) < 0) ≤ P (Xtfh (St−1) < b(2γ))

= L(b(2γ))(h)

therefore

EΥ
(γ)
− (h) = EH(γ/2)

ν− (h)− EL(b(2γ))
m (h)

= L(h)− L(b(2γ))(h)

≤ 0. (17)

Similarly, we have

EΥ
(γ)
+ (h) ≤ 0. (18)

IV. CALIBRATED PREDICTOR

In [3] it is shown that there exists a finite integer l0, such that
for l ≥ l0, the transition matrix Q in (5) satisfies Ql > 0, that
is, every entry of Ql, denoted by p(l)(s(j)|s(i)), is positive. We
choose l0 := min{l : Ql > 0} and in theory, if Q was known
then l0 can be evaluated by computing Ql for a sequence
l ≥ 1 until the first l is found such that Ql > 0. Define
the minimum entry of Ql0 by µ0. We henceforth make the
following assumption:

Assumption 1. The environment’s transition matrix Q satisfies
one of the following conditions: (i) the minimum entry of Ql0

is µ0 6= 2−k
∗

or (ii) µ0 = 2−k
∗

and for all 0 ≤ i ≤ 2k
∗ − 1,

the transition probabilities p(1|i) = p(−1|i) = 1
2 .

In both parts (i) and (ii) of the above assumption, Q may
have a uniform stationary distribution πT =

[
2−k

∗
, . . . , 2−k

∗]
,

which means Q is doubly stochastic and liml→∞Ql is a matrix
U , of the same size as Q, with all its entries identical to 2−k

∗
.

Part (ii) treats the special case where this limit U is reached
exactly at time l0, that is, Ql0 = U . According to the cases of
Assumption 1, define

ρ(k∗, l0) :=



1−2k∗µ0

2µ0

if case (i) holds
and l0 = 1,

2k
∗−1

(1−2k∗µ0)
(l0−1)/l0

(
1−(1−2k∗µ0)

1/l0
) if case (i) holds

and l0 ≥ 2,

2k
∗−1 if case (ii) holds.

Define

η(m, γ, δ) := r(k, k∗)ρ(k∗, l0)√
2

m

(
(ln 2)

(
1 +

(
Nγ/12 + 1

)
log2

(
30k

γ

))
+ ln

(
1

δ

))
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where

r(k, k∗) :=

{
1 if k∗ ≥ k + 1

k − k∗ + 2 if k∗ ≤ k.

We define the penalized margin error of h as

L̂(γ)
m (h) := L(γ)

m (h) + η(m, γ, δ)

which is a random variable since it depends on X(m) through
L
(γ)
m (h). The following is a concentration bound for a Markov

chain which holds uniformly over the class H and over the
range of values for γ.

Lemma 1. For γ > 0 let Nγ be the γ-covering number
of Sk with respect to the metric d. Let X(m) be a Markov
chain sampled from the environment. For any 0 < δ ≤ 1,
with probability at least 1 − δ, for all h ∈ H and for every
0 < γ ≤ diam(Sk), the following holds

L(h) ≤ L̂(γ)
m (h). (19)

The proof is provided in [3]. Next, we use L̂
(γ)
m (h) as

a criterion function for selecting a good predictor. Given a
random sequence X(m) let (h′, γ′) be any pair that satisfies
the following:

L̂(γ′)
m (h′) = min

h∈H,γ∈(0,diam(Sk)]
L̂(γ)
m (h). (20)

Let
γm := max {γ′ : (h′, γ′) satisfies (20)}

and denote by hm its corresponding function. Define (hm, γm)
as a calibrated predictor, that is, a predictor system which is
calibrated to its random environment based on a sample X(m).
It is shown in [3] that the calibrated predictor (hm, γm) always
exists.

Remark 2. The calibrated predictor (hm, γm) minimizes the
penalized margin error over h ∈ H and over the range of
values of γ. By Lemma 1, with probability at least 1− δ, hm
has a minimum upper bound L(hm) ≤ L̂

(γm)
m (hm). If this

occurs, we say that the criterion succeeds.

Note that while γm is not used in the predictor’s decision,
its choice influences which h ∈ H is selected to be hm.
The higher the value of γm, the less sensitive the value of
L̂
(γm)
m (hm) is to the particular realization of the random sam-

ple X(m), and the more that hm generalizes to fit the typical
behavior of the actual environment (as opposed to fitting just
a particular sample of the environment). We therefore call
γm the level of adaptivity of the calibrated predictor to the
environment.

V. COMPLEXITY OF CALIBRATED PREDICTOR

For a fixed m ≥ 1 and 0 < δ ≤ 1, and for any h ∈ H,
0 < γ ≤ diam(Sk) let us define

E
(γ)
h :=

{
x(m) : L(h) > L(γ)

m (h) + η(m, γ, δ)
}

to be the set of bad samples on which the upper bound (19)
fails to hold for system (h, γ). Let the class of such sets be
defined as

EH :=
{
E

(γ)
h : h ∈ H, 0 < γ ≤ diam (Sk)

}
.

Next we approximate EH by a finite class of sets that are
defined in a similar way. Let l be a non-negative integer.
Consider a minimal (1/2)l+2k-cover F̂k(1/2)l+2 of F (the

factor k is the diameter of Sk). For f (k(1/2)
l+2)

j ∈ F̂k(1/2)l+2

denote by hj = sgn(f
(k(1/2)l+2)
j ). Define a set of bad samples

associated with hj as

B
(γ)
j :=

{
x(m) : L(γ)(hj) > L(γ)

m (hj) + η(m, 4γ, δ)
}
.

For 0 ≤ l < ∞ denote by Bj,l := B
((1/2)l+2)
j and define the

class
C(l) := {Bj,l}

N
k(1/2)l+2

j=1

where Nγ is the γ-covering number of F with respect to the
l∞-norm on Sk. The next lemma states that given (hm, γm)

we can approximate the set E(γm)
hm

by an element of the class
C(lm) where lm is directly obtained from γm by checking in
which interval γm is contained.

Lemma 3. For m ≥ 1 let (hm, γm) be a predictor calibrated
based on X(m). Define lm as a non-negative integer that
satisfies (1/2)lm+1k ≤ γm ≤ (1/2)lmk. Then there exists
a 1 ≤ j ≤ Nk(1/2)lm+2 , which is denoted jm, such that
E

(γm)
hm

⊆ Bjm,lm where Bjm,lm ∈ C(lm).

The proof is in [3]. Next we define a notion of complexity
of the calibrated predictor. In the context of [5], we set the
functional requirement of the calibrated predictor (selected by
the criterion) to be that if the bound (19) fails to hold for
(hm, γm) (the criterion fails), then this must be detected. We
define the complexity of the system (hm, γm) to be the level
of uncertainty in detecting that the criterion fails given that it
fails.

The event that represents failure of the criterion is X(m) ∈
E

(γm)
hm

. From Lemma 3, if X(m) ∈ E
(γm)
hm

then X(m) ∈
Bjm,lm therefore it is possible to detect failure of the criterion
by detecting that X(m) falls in at least one element Bj,lm of
C(lm).

Given X(m) ∈ E(γm)
hm

, the index jm of the set Bjm,lm that
contains X(m) is random because the set E(γm)

hm
is random

due to (hm, γm). This index jm takes values in the set{
1, . . . ,

∣∣C(lm)
∣∣} and its conditional entropy is bounded by

the entropy of the uniform probability distribution on this set,

H
(
jm

∣∣∣X(m) ∈ E(γm)
hm

)
≤ log2

∣∣∣C(lm)
∣∣∣ bits.

Therefore, the uncertainty in detecting that the criterion fails,
given that it fails, is what we define as the complexity of the
system. It is no more than log2

∣∣C(lm)
∣∣ bits and, from (12), is

bounded from above as

log2

∣∣∣C(lm)
∣∣∣ ≤ Nk(1/2)lm+1/6 (lm + log2(30)) . (21)
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By definition of lm we have lm ≤ log2

(
k
γm

)
and γm

2 ≤
(
1
2

)lm+1
k therefore (21) is no larger than Nγm/12 log2

(
30k
γm

)
.

This is defined as the complexity of the calibrated predictor,

C(hm, γm) := Nγm/12 log2

(
30k

γm

)
bits.

Note that the larger the adaptivity level γm of the cali-
brated predictor, the lower its complexity C(hm, γm). Thus,
a calibrated predictor which is better adapted to its random
environment has a lower complexity.

VI. TESTING FOR RANDOMNESS

We aim to understand how the complexity of the cali-
brated predictor (hm, γm) affects the randomness of its output
which consists of two subsequences of prediction errors,
Ψ(ν

(γm)
− )(hm) and Ψ(ν

(γm)
+ )(hm) that correspond to instants

when the predictor is confident (the margin is of absolute value
greater than a(γm)).

Let us define the following null hypothesis: the ex-
pected value of the discrepancy is non-positive, that is,
EΥ

(γm)
− (hm) ≤ 0 and EΥ

(γm)
+ (hm) ≤ 0. From (17), (18) it

follows that the null hypothesis holds. Draw X(m) and X(n).
Denote the realization of these sequences by x(m) and x(n).
Use the criterion (20) on x(m) to obtain a calibrated predictor
(hm, γm) and measure its margin error L(γm)

m (hm), which we
denote by αm. Denote by β−n and β+

n the negative and positive
errors H(γm)

ν− (hm), H(γm)
ν+ (hm) based on x(n), respectively.

Theorem 4, presented below, shows that the event
Υ

(γm)
− (hm) > ε or Υ

(γm)
+ (hm) > ε (based on error sub-

sequences of some minimum length) has a probability less
than δ. Thus we have the following test of randomness with
significance level δ and critical value ε: if β−n − αm > ε or
β+
n − αm > ε then reject the null hypothesis.
If the test rejects the null hypothesis then at least one

of the discrepancy values, β−n − αm or β+
n − αm, deviates

significantly from the expected value, which means that the
error subsequences do not pass the test of randomness.

VII. MAIN RESULT

Let a(γm) = 68γm, b(γm) = 76γm and substitute them in
(15) and (16). The next theorem gives the expression for the
critical value ε of the test of randomness.

Theorem 4. For any positive integers m, n, k, k∗ and ` ≤ n,
let Nγ denote the γ-covering number of the space Sk with
respect to d. Let

ε(m,n, `, δ) =
2r(k, k∗)ρ(k∗, l0)

ω

(
2

n

(
Nγm/6 ln

(
2

⌈
6k

γm

⌉
+ 1

)

+ ln

(
8k(3− 2(`/n))

δγm(ω − (`/n))

)))1/2

+ r(k, k∗)ρ(k∗, l0)

(
2

m

(
Nγm/3 ln

(
2

⌈
3k

γm

⌉
+ 1

)
+ ln

(
4k(3− 2(`/n))

δγm

)))1/2

.

Then for any 0 < δ ≤ 1 and ω ∈ (`/n, 1], the probabil-

ity that Υ
(ν

(γm/2)
− )

m,n (hm) > ε or Υ
(ν

(γm/2)
+ )

m,n (hm) > ε with
min

{
ν
(γm/2)
− , ν

(γm/2)
+

}
≥ ωn is no more than δ.

The proof of the theorem is in [3].
Remark 5. The value ` is the assumed minimum length of the
output error sequences Ψ(ν

(γm)
− )(hm) and Ψ(ν

(γm)
+ )(hm). The

value of ω is set, only after the random lengths of these output
sequences is known, to a value that satisfies min {ν−, ν+} ≥
ωn. If ω is less than `/n then the theorem cannot be applied.

The expression for ε involves two factors that are of the
same order as the complexity C(hm, γm) of the calibrated
predictor. Thus ε increases with the predictor’s complexity,
which suggests that a simple predictor has a small critical
value ε therefore it only takes a small discrepancy value
β−n − αm or β+

n − αm to reject the null hypothesis. In other
words, the more complex the calibrated system, the higher the
critical value ε and the higher the discrepancy that is allowed
without rejecting the output as being atypically random for that
system. This means that a more complex calibrated predictor
may produce atypically-random output error sequences.

Also, since the output error sequences consist only of the
instants when the predictor has an absolute margin greater
than a(γm) (which is a non-decreasing function of γm), and
since ε decreases as γm increases, then, assuming that ω
is fixed (and the lengths of the error subsequences are at
least ωn long), it follows that the critical value ε decreases
as the predictor’s level of confidence a(γm) increases. This
means that a calibrated predictor system which is based on a
lower decision confidence value a has a higher critical value ε
and hence may produce more atypically-random output error
sequences.

If the adaptivity level γm and the error αm are small, the
system (hm, γm) is not well adapted to the environment (it
overfits the sample X(m)). In this case, the critical value ε
is large and the system may produce output error sequences
with large β−n or β+

n while not rejecting the null hypothesis.
This means that a calibrated predictor with a low level of
adaptivity γm may produce more atypically-random output
error sequences.
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