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Abstract	

	

Energy	converting	devices	are	limited	by	the	properties	of	available	constituent	materials.	For	

example,	 the	 working	 fluid	 in	 a	 thermal	 engine	 determines	 its	 range	 of	 operational	

temperatures,	 or	 the	 choice	 of	 semiconductor	material	 constrains	 a	 photovoltaic	 panel’s	

efficiency.	 A	 recent	 trend	 in	 materials’	 science	 seeks	 to	 overcome	 these	 limitations	 by	

developing	 structured	materials	 that	 achieve	 properties	 exceeding	 those	 of	 conventional	

materials.	This	approach	has	led	to	the	invention	of	metamaterials,	and	resulted	in	devices	

capable	of	surpassing	fundamental	 limits,	for	example	focusing	waves	in	a	sub-wavelength	

region.	 Until	 now,	 most	 of	 the	 work	 in	 metamaterials	 has	 focused	 on	 exploiting	 linear	

phenomena,	 for	 example	 to	 open	 band-gaps,	 focus	 or	 cloak	waves.	 This	 thesis	 pursues	 a	

fundamental	understanding	of	nonlinear	energy	conversion	processes	in	artificial	lattices.	The	

first	part	of	 the	work	 investigates	the	effect	of	driven,	 localized	modes	on	the	quasi-static	

mechanical	properties	of	a	material.	 It	demonstrates	that	an	external	energy	 input	can	be	

used	to	tune	a	material’s	differential	stiffness	over	an	extreme	range	including	negative	and	

infinite	 values.	 The	 thesis	 proceeds	 with	 the	 investigation	 of	 lattices	 containing	 multiple	

interacting	 modes.	 These	 lattices	 are	 shown	 to	 act	 as	 purely	 mechanical	 analogs	 of	

optomechanical	systems.	They	are	capable	of	converting	mechanical	energy	into	a	harmonic	

motion	with	a	 tunable	 frequency	and	phase.	Phase	 tunability	 is	a	particularly	 relevant	 for	

technological	 applications	 because	 it	 enables	 devices	 that	 combine	 energy	 from	multiple	

sources	 and	 avoid	 destructive	 interference	 effects.	 	 This	 thesis	 continues	 by	 investigating	

energy-converting	systems	under	stochastic	excitation.	In	this	regime,	mechanical	quantities	

have	thermodynamic	interpretation,	and	the	system	under	study	behaves	as	a	stochastic	heat	

engine	 i.e.	 a	 low-dimensional	 equivalent	 of	 a	 conventional	 thermal	 machine.	 The	 engine	

presents	exotic	phenomena	such	as	negative	thermal	conductivity	and	nonpassive	states	of	

motion.	 The	 last	 part	 of	 the	 thesis	 introduces	 an	 algorithm	 to	 generate	 metamaterial	

geometries	 from	discrete	mass-spring	systems.	While	 this	algorithm	 is	currently	 limited	to	

linear	 systems,	overcoming	 this	 limitation	will	enable	 the	 fabrication	of	energy	converting	

metamaterials	such	as	stochastic	heat	engines.	
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Abstract	

	

I	 dispositivi	 di	 conversione	 dell’energia	 sono	 limitati	 dalle	 proprietà	 dei	 materiali	 che	 li	

costituiscono.	 Ad	 esempio,	 il	 fluido	 in	 un	 motore	 termico	 ne	 determina	 l’intervallo	 di	

temperature	entro	cui	può	operare,	o	 la	scelta	di	un	particolare	materiale	semiconduttore	

vincola	 l'efficienza	 di	 un	 pannello	 fotovoltaico.	 Una	 recente	 tendenza	 nella	 scienza	 dei	

materiali	 cerca	 di	 superare	 queste	 limitazioni	 sviluppando	 materiali	 strutturati	 che	

raggiungono	proprietà	 superiori	 a	quelle	dei	materiali	 convenzionali.	Questo	approccio	ha	

portato	 all'invenzione	 dei	metamateriali	 e	 prodotto	 dispositivi	 in	 grado	 di	 superare	 limiti	

fondamentali,	 per	 esempio	 riuscendo	 a	 concentrare	 onde	 in	 un’area	 significativamente	

inferiore	alla	loro	lunghezza	d'onda.	Fino	ad	ora	la	maggior	parte	del	lavoro	sui	metamateriali	

si	 è	 concentrata	 sull’utilizzo	 di	 fenomeni	 lineari,	 ad	 esempio	 per	 aprire	 band-gap,	 per	

focalizzare	onde	o	rendere	oggetti	invisibili	a	queste.	Questa	tesi	persegue	una	comprensione	

di	livello	fondamentale	dei	processi	non	lineari	di	conversione	dell'energia	in	cristalli	artificiali.	

La	prima	parte	di	questo	lavoro	studia	l'effetto	dell’eccitazione	di	modi	locali	sulle	proprietà	

meccaniche	quasi	statiche	di	un	materiale.	Si	dimostra	che	un	apporto	di	energia	esterna	può	

essere	usato	per	regolare	la	rigidità	differenziale	di	un	materiale	in	una	gamma	estrema,	che	

include	valori	negativi	ed	infiniti.	Questa	tesi	procede	con	lo	studio	di	cristalli	che	contengono	

molteplici	modi	interagenti.	Questi	cristalli	vengono	mostrati	agire	come	analoghi	puramente	

meccanici	di	sistemi	optomeccanici.	Essi	sono	in	grado	di	convertire	l'energia	meccanica	in	un	

moto	 armonico	 con	 frequenza	 e	 fase	 a	 scelta.	 La	 possibilità	 di	 scelta	 della	 fase	 è	

particolarmente	rilevante	per	le	applicazioni	tecnologiche,	perché	permette	ai	dispositivi	che	

combinano	energia	da	fonti	multiple	di	evitare	effetti	di	interferenza	distruttiva.	Questa	tesi	

prosegue	 analizzando	 i	 sistemi	 di	 conversione	 di	 energia	 sotto	 eccitazione	 stocastica.	 In	

questo	regime,	le	grandezze	meccaniche	hanno	interpretazione	termodinamica,	e	il	sistema	

studiato	 si	 comporta	 come	una	macchina	 termica	 stocastica,	 equivalente	 a	 una	macchina	

termica	convenzionale	ma	con	limitati	gradi	di	libertà.	La	macchina	presenta	fenomeni	esotici	

come	una	conducibilità	 termica	negativa	e	una	distribuzione	di	probabilità	della	velocità	e	

della	posizione	che	non	massimizza	l’entropia.	L'ultima	parte	della	tesi	introduce	un	algoritmo	

per	ottenere	geometrie	di	metamateriali	a	partire	da	sistemi	discreti	massa-molla.	Sebbene	

questo	algoritmo	sia	attualmente	limitato	a	soli	sistemi	lineari,	superando	in	futuro	questa	
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limitazione	sarà	possibile	realizzare	metamateriali	per	la	conversione	di	energia	che	operino	

come	macchine	termiche	stocastiche.	
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equilibrium	distance	between	the	defect	and	the	neighbors	in	the	deformed	lattice	
with	no	defect	drive.	All	the	other	beads	in	the	chain	are	approximated	by	two	linear	
springs	KC,	with	KC	calculated	independently	for	each	deformation	value	x.	(d)	
Simplified	system	with	the	defect	in	motion.	The	defect	is	displaced	from	equilibrium	
by	an	amount	ud.	The	two	neighboring	beads	are	statically	pushed	away	from	it	by	an	
amount	Δ	due	to	thermal	expansion.	............................................................................	30	

FIG.	2.S2:	Analytical	predictions	and	comparison	to	numerical	results.	(a)	Defect	particle	
velocity	obtained	by	numerically	integrating	the	equations	of	motion	for	the	full	
system.	The	excitation	amplitudes	are	10	nm	(blue),	30	nm	(green),	50	nm	(red),	and	70	
nm	(cyan).	(b)	Defect	velocity	predicted	by	the	analytical	model	for	excitation	forces	of	
25	mN	(blue),	75	mN	(green),	125	mN	(red),	175	mN	(cyan).	The	amplitudes	of	vibration	
in	panels	(a)	and	(b)	correspond	to	the	defect	particle	and	not	the	defect	neighbor	as	in	
Fig	2	of	the	main	paper.	(c)		Force-displacement	relation	of	the	material	obtained	
through	numerical	integration,	for	excitation	amplitudes	of	64	nm	(blue),	66	nm	
(green),	68	nm(red)	70	nm	(cyan)	and	72	nm	(purple).	(d)		Force-displacement	relation	
obtained	analytically,	for	defect	drive	forces	of	139	mN	(blue),	144	mN	(green),	149	mN	
(red),	154	mN	(cyan)	and	159	mN	(purple).	All	panels	are	calculated	for	an	excitation	
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Figure	2.S3: Stiffness	tuning	to	positive	infinity.	(a)	Stiffness	numerator	corresponding	to	a	
power	law	potential	F = 1pδtp	as	a	function	of	the	exponent.	Calculated	for	a	chain	of	
9	particles	with	δT = 1.	Parameters	are	M = 1	and	b = 0.025.	(b)		Map	relating	the	
applied	excitation	frequency	and	amplitude	to	the	stiffness	for	a	9-particle	lattice	with	
a	power	law	interaction	force	exponent	F = Ap0.5,	A = 1.5*105.	The	defect	mass	in	
the	map	is	3.552g	and	the	damping	τ	is	0.275	ms.	The	force	law	exponent	0.5	is	
indicated	as	a	red	dot	in	(a).	...........................................................................................	34	

FIG.	2.S4:	Transient	analysis.	(a)	Numerical	solution	for	the	largest	Floquet	time	constant.	
This	value	determines	the	speed	at	which	the	defect’s	oscillation	relaxes	back	to	steady	
state.	(b)	As	the	system	approaches	a	bifurcation,	the	amplitude	response	becomes	
steeper,	and	(c)	the	stiffness	is	modified	more	significantly.	This	is	accompanied	by	
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longer	relaxation	time	constants,	which	limits	the	speed	of	the	system.	In	all	figures,	
the	defect’s	excitation	frequency	is	10.5	KHz.	The	excitation	amplitudes	are	64.52	nm	
(blue),	65.48	nm	(green),	66.32	nm	(red),	67.07	nm	(cyan)	and	67.74	nm	(purple).	.....	37	

FIG.	2.S5: Experimental	fits	to	determine	numerical	parameters.	(a)	Fit	of	the	static	response	
of	the	chain	to	Hertzian	Force	Law.	(b)	Fit	of	the	linear	amplitude	response	of	the	
defect	to	a	Lorentzian	to	determine	the	linear	dissipation	of	the	chain.	.......................	40	

FIG.	2.S6:	Experimental	tunable	damping.	The	upper	panels	present	the	Force-Displacement	
relation	for	an	excitation	of	(a)	7.54	nm	(b)	8.38	nm	and	(c)	9.22	nm.	The	lower	panels	
show	the	Amplitude-Displacement	relation	for	the	corresponding	excitation	amplitude.	
The	insets	in	(a)	provide	a	detail	of	the	Force-Displacement	relation	at	the	transition	
point	between	high	and	low	amplitude	solutions.	The	transition	between	amplitudes	
occurs	discontinuously	in	a	single	step.	The	displacements	have	been	corrected	for	drift	
at	a	rate	of	119.4	pm/s,	141.8	pm/s	and	104.5	pm/s	respectively.	...............................	42	

FIG.	2.S7:	Experimental	measurement	of	the	incremental	stiffness.	(a)	Comparison	between	
the	experimental	stiffness	(blue),	obtained	by	numerical	differentiation	of	the	
experimental	results	and	a	theoretical	fit.	The	theoretical	fit	has	been	obtained	by	
scaling	the	excitation	force	in	the	numerical	prediction	in	order	to	match	the	initial	part	
of	the	curve.	(b)	Differentiation	of	discretized	measurements.	The	purple	line	
corresponds	to	a	numerical	simulation.	The	dots	correspond	to	the	experimental	
measurements	and	are	spaced	at	10	nm	to	match	the	resolution	of	our	setup.		The	
green	line	corresponds	to	the	stiffness	obtained	by	numerical	differentiation.	............	43	

FIG	3.1:	Frequency-converting	metamaterial	concept.	(a)	Metamaterial	design	consisting	of	
a	chain	of	nonlinearly-interacting	magnets.	The	central	particle	of	the	chain	is	a	defect,	
which	has	a	lower	mass.	This	magnet	acts	as	the	high-frequency	input	to	the	system.	
The	down-converted	energy	can	be	extracted	far	away	from	the	defect.	In	our	
experiments,	the	defect	is	driven	by	a	wire	carrying	an	electrical	current	(Yellow	
arrow).	(b)	Cropped	image	of	the	experimental	magnet	chain,	obtained	using	the	same	
computer	vision	camera	that	is	also	used	to	track	the	magnets.	Each	magnet	is	
enclosed	in	a	3D	printed	case,	and	has	a	random	speckle	pattern	to	facilitate	its	
tracking	by	digital	image	correlation.	(c)	Extended	mode	of	vibration.	The	red	hollow	
circle	is	the	defect	particle,	while	the	blue	solid	dots	represent	the	other	particles.		(d)	
Experimental	frequency	response	of	the	extended	mode	(blue	dots)	and	Lorentzian	fit	
(red	solid	line).	(e)	Localized	mode	of	vibration.	(d)	Experimental	frequency	response	of	
the	localized	mode	(blue	dots)	and	Lorentzian	fit	(red	solid	line).	.................................	46	

FIG	3.2:	Experimental	response	of	the	system	under	harmonic	excitation.	(a)	Position	of	the	
magnets	as	a	function	of	time.	The	red	dotted	line	corresponds	to	the	defect	magnet,	
which	acts	as	the	input	to	the	frequency-converting	system.	The	green	dashed	line	is	
taken	as	the	output	of	the	system.	(b)	Fourier	transform	of	the	defect	magnet’s	
position,	which	is	modulated	at	the	extended	mode’s	frequency.	The	vertical	dotted	
line	represents	the	excitation	frequency.	(c)	Fourier	transform	of	the	output	magnet’s	
position.	This	magnet’s	motion	happens	primarily	at	the	second	extended	mode’s	
frequency.	......................................................................................................................	48	

FIG.	3.3:	Reduced-order	description	of	the	frequency	conversion	process	(a)	Projection	of	the	
experimental	time	evolution	(Fig	3.2a)	in	the	linear	modal	basis.	(b)	Average	energy	as	
a	function	of	the	mode	number.	The	system’s	energy	is	highly	concentrated	in	the	
second	extended	mode	and	the	localized	defect	mode.	(c)	Dynamic	expansion	of	the	
defect	mode.	When	the	defect	vibrates,	the	nonlinear	magnetic	interaction	results	in	a	
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non-zero	average	force	acting	on	the	defect’s	neighbors.	This	effect	is	analogous	to	the	
radiation	pressure	in	an	optomechanical	system.	(d)	The	motion	of	the	second	
extended	mode	modulates	the	distance	between	the	defect	particle	and	its	neighbors,	
dynamically	tuning	the	defect	mode	frequency.	This	effect	is	analogous	to	the	
mechanically-induced	modulation	of	the	Fabry-Perot	resonance	in	an	optomechanical	
system.	(e)	Detail	of	the	extended	mode	and	localized	mode	evolution,	measured	
experimentally.	(f)	Theoretical	prediction	for	the	extended	and	localized	mode	
evolution,	obtained	from	a	reduced-order	model	considering	only	two	modes	(Eq.	6	
and	7).	The	numerical	simulation	in	panel	f	corresponds	to	a	system	with	mE = 0.45	g,	
mL = 0.232	g,	fE = 0.5664	Hz,	fL = 3.913	Hz,	fI = 4.38	Hz,	FI = 45	µN,	QE =
4.518,	QL = 66.62	and	γ = 1.801	Nm2,	where	kX = mX2πfX2	and	bX = mX2πfX	QX.
	........................................................................................................................................	52	

FIG.	3.4:	Synchronized	frequency	conversion.	(a)	Position	of	the	magnets	as	a	function	of	
time.	The	yellow	dotted	line	(particle	7)	and	the	red	dotted-dashed	line	(particle	14)	
are	defect	magnets	that	act	as	the	high-frequency	inputs	of	the	system.	The	green	
dashed	line	is	the	low	frequency	output.	(b)	Fourier	transform	of	the	defects’	positions,	
which	are	modulated	at	the	extended	mode’s	frequency.	The	vertical	dotted	line	
represents	the	excitation	frequency.	(c)	Fourier	transform	of	the	output	magnet’s	
position.	This	magnet’s	motion	happens	primarily	at	the	third	extended	mode’s	
frequency.	......................................................................................................................	55	

FIG.	3.5:	Reduced-order	description	of	the	synchronized	frequency	conversion.	(a)	Time	
evolution	of	the	magnets	in	terms	of	the	linear	eigenmode	basis.	(b)	Energy	
distribution	in	each	normal	mode.	The	energy	is	concentrated	in	the	third	extended	
mode	and	in	the	two	localized	defect	modes.	(c)	Mode	profiles	of	the	three	most	
relevant	eigenmodes.	(d)	Experimental	time	evolution	of	the	third	extended	mode	uE	
and	the	two	localized	modes	uL1	and	uL2	as	a	function	of	time	(e)	Theoretical	
prediction	for	the	time	evolution	of	the	eigenmodes.	The	theoretical	predictions	have	
been	obtained	using	a	3-DOF	reduced	order	model.	The	numerical	parameters	used	in	
panel	e	are:	mE = 0.45	g,	mL1 = 0.2318	g,	mL2 = 0.2915	g,	fE = 0.7494	Hz,	fL1 =
3.404	Hz,	fL2 = 3.063	Hz,	fI1 = 4.1	Hz,	fI2 = 3.81	Hz,	FI1 = FI2 = 42	µN,	QE =
12.27,	QL1 = 39.3,	QL2 = 60.27,	γ1 = -2.4293Nm2,	γ2 = 2.5761	Nm2.	................	56	

FIG.	3.6.	Theoretical	investigation	of	phase	and	frequency	tunability.	(a)	Phase	tuning	
scheme.	The	output	signal’s	phase	is	tuned	by	moving	the	last	particle	(xn)	following	a	
Gaussian	profile.	(b)	Extended	mode	signal	2790	seconds	after	the	phase-shifting	
perturbation	has	been	effected.	The	lines	correspond	to	perturbations	with	A0	equal	to	
0	mm	(blue,	solid),	6.2562	mm	(red,	dotted)	and	6.5917	mm	(yellow,	dashed).	(c)	
Output	phase	as	a	function	of	the	maximum	displacement	of	the	phase-adjusting	
perturbation.	The	blue	solid	line	is	measured	1790	seconds	after	the	perturbation,	
while	the	circles	are	measured	1000	seconds	after	the	first	measurement,	2790	
seconds	after	the	perturbation’s	peak.	Panels	b	and	c	have	been	obtained	by	
integrating	the	full	equation	of	motion	(Eq.	1)	with	d0 = 16.3	mm,	mi, i ≠ 11 =
0.45	g,	m11 = 0.197	g,	bi, i ≠ 11 = 306.83	µNsm,	b11 = 42.62	µNsm,	Fi, i ≠ 11 =
0N,	F11 = FIsin2πfit,	FI = 48.45	µN	and	fI = 4.38	Hz.	The	force-law	parameters	are	
as	described	in	the	theoretical	model	section.		(d)	Frequency	down-conversion	ratio	
(top)	and	input	and	output	frequencies	(bottom)	as	a	function	of	the	mass	ratio	
between	the	defect	and	extended	modes.	These	plots	have	been	obtained	by	keeping	
the	extended	mode’s	mass	constant	and	modifying	the	defect’s	mass.	(e)	Frequency	
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down-conversion	ratio	(top)	and	input	and	output	frequencies	(bottom)	as	a	function	
of	the	extended	mode	mass,	while	keeping	the	modal	mass	ratio	mEmL	constant.	In	
this	section,	all	parameters	except	the	masses	are	identical	to	those	in	Fig.	3.3f.	........	58	

FIG	3.S1:	Magnetic	force-displacement	relation.	The	blue	circles	are	the	experimental	
measurements	and	the	red	line	represents	the	power-law	fit.	.....................................	60	

FIG	3.S2:	Nonlinear	parameters	as	a	function	of	the	defect	location.	(a)	Here,	the	extended	
mode	is	the	second	extended	mode	of	the	lattice,	corresponding	to	the	single-defect	
system	in	the	main	paper.	(b)	The	extended	mode	is	the	third	extended	mode	of	the	
lattice,	corresponding	to	the	two-defects	system	in	the	main	paper.	In	both	panels,	the	
dotted	line	represents	the	experimental	light	defect	location.	In	panel	b,	the	dashed	
line	represents	the	heavy	defect	location.	.....................................................................	64	

FIG	3.S3:	Comparison	of	full	and	reduced	models.	a	Time	evolution	of	the	localized	and	
extended	modes	calculated	using	the	full	system	simulation.	The	modal	description	has	
been	obtained	by	projecting	the	trajectories	into	the	modal	basis.	b	Modal	time	
evolution	calculated	using	the	two-mode	reduced	order	model.	c	Modal	time	evolution	
calculated	using	the	optomechanical	model.	The	t = 0	point	has	been	selected	
independently	in	each	simulation,	in	order	to	present	a	consistent	phase.	..................	65	

FIG	3.S4:	Fitting	of	the	two-defect	system	parameters.	a	Frequency	response	of	the	third	
extended	mode.	b	Frequency	response	of	the	first	localized	mode	(Centered	around	
the	defect	with	mass	mD1 = 0.197	g.	c	Frequency	response	of	the	second	localized	
mode	(Centered	around	the	defect	with	mass	mD1 = 0.244	g	....................................	66	

FIG	3.S5:	Experimental	determination	of	the	nonlinear	parameter	γ.	a	Frequency	response	
of	the	localized	mode.	b	Displacement	of	the	extended	mode	as	a	function	of	the	
localized	mode	excitation	frequency,	measured	simultaneously	with	panel	a.	c	
Experimental	relationship	between	localized	mode	amplitude	and	extended	mode	
static	displacement	(Crosses),	and	polynomial	fit	(Red	line).	.........................................	67	

FIG.	4.1:	Cyclic	thermal	engines.	(a)	Stirling	heat	engine.	The	engine	uses	a	piston	to	
cyclically	compress	and	expand	a	gas.	A	secondary	piston	displaces	the	gas	and	
regulates	the	coupling	to	the	hot	and	cold	reservoirs.		(b)	Thermal	cycle	for	the	Stirling	
engine.	The	difference	in	pressure	during	expansion	and	contraction	causes	the	gas	to	
perform	net	work	over	a	cycle	(green	shaded	area).	(c)	Proposed	mechanical	
autonomous	stochastic	engine,	consisting	of	two	ribbons,	main	and	secondary	
(displacements	xM	and	xH	respectively)	and	a	cantilever	(displacement	xW).		(d)	
Thermal	cycle	for	the	proposed	engine	consisting	of	4	steps:	(i)	xw	is	at	its	leftmost	
position	and	energy	flows	from	xH	to	xM	(ii)		Mw	moves	to	the	right	(xw > 0),	while	
xM	stays	in	a	high	energy	state	(iii)	xw	is	at	its	rightmost	position,	and	energy	flows	
from	xM	to	the	cold	bath	(iv)	xw	moves	back	to	the	initial	position	while	xM	stays	in	a	
low	energy	state.	............................................................................................................	71	

FIG.	4.2:	Thermal	engine	operation.	(a)	Theoretical	uncoupled	frequency	response	of	the	
main	ribbon	(xM),	for	cantilever	displacements	xW	of	-50	µm	(blue,	solid),	0	µm	
(green,	dashed)	and	50	µm	(red,	dotted).	The	uncoupled	frequency	response	of	the	
secondary	ribbon	xH	(thick	purple)	is	shown	for	comparison.	(b)	Theoretical	energy	
transfer	QH	between	the	hot	bath	(applied	to	the	secondary	ribbon	xH)	and	the	main	
ribbon	(xM),	as	a	function	of	the	cantilever	displacement.	The	colored	dots	correspond	
to	the	curves	in	(a).	The	roman	numerals	indicate	the	step	of	the	thermal	cycle	
associated	to	each	displacement	and	energy	transfer.	(c)	Experimental	probability	
distribution	of	xM	as	a	function	of	the	cantilever’s	oscillation	phase,	θxW, xW.	(d)	
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Experimental	force	acting	on	the	cantilever,	as	a	function	of	the	cantilever	
displacement.	(e)	Theoretical	(blue	line)	and	experimental	(black	dots)	power	transfer	
from	the	main	ribbon	to	the	cantilever	as	a	function	of	the	effective	temperature	of	
xH.	(f)	Experimental	time	evolution	of	the	cantilever	(dark	red)	and	ribbon	(light	blue).	
The	green	circle	indicates	the	case	TH = 4.2 ∙ 1018K,	corresponding	to	the	
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FIG.	4.3:	Properties	of	the	cantilever	motion.	(a)	Experimental	phase	space	probability	
distribution	corresponding	to	the	case	when	the	frequency	of	the	ribbons	is	tuned	to	
achieve	thermal	engine	operation	at	TH = 4.2 ∙ 1018K.	(b)	Theoretical	phase	space	
probability	distribution	for	the	experimental	case	in	(a).	(c)	Phase	space	probability	
density	function	for	the	cantilever	in	the	detuned	system	(where	fM > fH,	see	
Supplementary	Information	for	the	exact	values)	at	TH = 2 ∙ 1018K.	d	Theoretical	
prediction	for	the	system	in	(c).	(e)	Experimental	entropy	of	the	cantilever	motion	as	a	
function	of	the	energy	(blue	crosses),	compared	to	a	theoretical	prediction	(red	line)	
and	to	the	maximal	entropy	for	the	given	energy	(green	dotted	line).	The	green	circle	
indicates	the	experimental	conditions	used	in	panels	a,	b	and	f,	as	well	as	Fig.	4.2c,	d	
and	f.	(f)	Fourier	transform	of	the	experimental	cantilever	motion.	.............................	75	

FIG.	4.4:	Theoretical	investigation.	(a)	Mass-spring	model	for	the	system.	(b)	Energy	transfer	
as	a	function	of	the	cantilever	temperature	TW.	(c)	Efficiency	of	the	thermal	machine	
(blue,	solid)	and	comparison	with	the	Carnot	efficiency	(red,	dashed).	Here,	the	
cantilever	motion	has	been	prescribed	to	be	xW = 50	µmcosωWt	to	prevent	
incoherent	energy	transfer	between	the	ribbons	and	the	cantilever.		(d)	Refrigerator	
Coefficient	Of	Performance	(C. O. P. = QCW)	when	the	cantilever	is	forced	to	oscillate	
at	AW = 50	µm	(blue,	solid)	and	when	driven	by	noise	at	TW = kWAW2kB	(green,	
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FIG.	4.S1:	Main-Cold	engine	(a)	Mass-spring	diagram	of	the	engine.	(b)	Output	power	as	a	
function	of	the	main	ribbon’s	frequency,	for	a	prescribed	cantilever	vibration	amplitude	
of	50	µm.	(c)	Engine	power	as	a	function	of	the	work	amplitude	(dWdt =	<
-γxM2xW >).	(d)	Energy	efficiency	and	comparison	with	the	Carnot	limit.	e	Power	
output	as	a	function	of	the	temperature	acting	on	the	cantilever.	The	parameters	used	
in	this	simulation:	fM = 190.8	Hz,	fC = 165.37	Hz,	fW = 26.87	Hz,	mM = mC =
0.207g,	mW = 1.27	Kg,	QC = 59.41,	QM = 167.78,	kCM = 0.0381 ∙ kC,	γ =
513	kNm-2,	µ = 16.9	MNm-3,	TH = 2 ∙ 1018K,	TM = TC = 0,	AW = 50	µm	(unless	
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FIG.	4.S2:	Hot-Main-Cold	engine.	(a)	Mass-spring	diagram	of	the	engine.	(b)	Engine	
efficiency	as	a	function	of	the	cold	spring	stiffness.	(c)	Engine	power	as	a	function	of	
the	work	amplitude.	(d)	Energy	transfer	as	a	function	of	the	work	temperature.	(e)	
Efficiency	in	the	nonautonomous	limit.	The	parameters	used	in	this	simulation	are:	
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FIG.	4.S4:	Cantilever’s	frequency	response.	(a)	Amplitude	of	the	cantilever’s	velocity	as	a	
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FIG.	4.S5:	Ribbon	frequency	response	measurement.		(a)	and	(b):	Ribbon	amplitude	(a)	and	
phase	(b)	as	a	function	of	the	excitation	frequency,	for	the	case	where	the	ribbon	
tensions	are	tuned	to	result	in	thermal	machine	operation	(Fig.	4.3	a,	b,	d,	e	in	the	main	
paper).	(c)	and	(d):	Amplitude	(c)	and	phase	(d)		as	a	function	of	the	excitation	
amplitude	for	the	case	where	the	ribbon	are	detuned	so	thermal	machine	operation	
does	not	occur	(Fig.	4.3	c,	d	in	the	main	paper).	In	all	four	panels,	the	dashed	green	line	
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Introduction	

Motivation	and	objectives	
	

Virtually	all	modern	technologies	require	energy	 in	order	to	operate.	 In	general,	obtaining	

energy	from	available	sources	requires	some	type	of	conversion	(for	example,	from	light	to	

electricity	in	a	photovoltaic	panel,	or	from	heat	to	work	in	a	heat	engine)	before	the	energy	

can	be	used.	In	spite	of	this	ubiquity,	energy	conversion	processes	are	not	well	understood	in	

systems	far	from	equilibrium[1],	even	in	relatively	simple	cases	such	as	sets	of	nonlinearly-

interacting	masses	 and	 springs.	 For	 these	 systems,	 an	 equilibrium	 or	 close-to-equilibrium	

description	is	available,	but	most	interesting	scenarios	(e.g.	living	organisms,	heat	engines)	

involve	 out-of-equilibrium	 states	 for	 which	 a	 general	 theory	 is	 lacking.	 In	 this	 thesis,	 we	

investigate	nonlinear	systems	with	the	goal	of	developing	energy	converting	materials.	We	

limit	ourselves	to	systems	using	a	low	number	of	degrees	of	freedom.	These	systems	provide	

a	privileged	 look	 into	the	underlying	physics:	Due	to	their	 low	dimensionality,	 they	can	be	

simulated	in	computers,	and	all	of	their	degrees	of	freedom	can	be	monitored	experimentally	

in	real	time.	The	fact	that	we	are	now	able	to	fabricate	and	simulate	this	class	of	systems	has	

led	 to	 the	 emergence	 of	 stochastic	 thermodynamics.	 A	 novel	 field	 exploring	 the	

thermodynamics	 of	 highly	 fluctuating	 systems.	 This	 is	 in	 contrast	 with	 conventional	

thermodynamics,	where	systems	contain	an	extremely	large	number	of	degrees	of	freedom,	

on	 the	 order	 of	 Avogadro’s	 number,	 and	 therefore	 individual	 trajectories	 can	 neither	 be	

simulated	nor	measured	experimentally.			

	

The	 desire	 to	 understand	 energy	 conversion	 processes	 is	 motivated	 by	 pure	 scientific	

curiosity,	but	is	also	driven	by	practical	applications:	Energy	converting	devices	are	limited	by	

the	properties	of	 the	 constituent	materials.	 Following	with	 the	previous	examples,	 a	heat	

engine	that	exploits	a	phase	transition	will	be	limited	to	operate	in	the	temperature	region	

where	the	phase	transition	occurs,	and	a	photovoltaic	panel’s	absorption	wavelength	will	be	

constrained	 by	 the	 bandgap	 of	 the	 semiconductor	 used.	 In	 conventional	materials,	 these	

properties	are	typically	bound	in	pre-defined	intervals.	For	example,	a	material’s	density	is	
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positive	and	finite,	and	so	is	its	bulk	modulus.	Recently,	a	new	approach	has	emerged	which	

seeks	to	overcome	these	limitations	by	using	a	microscopic	structure,	resulting	in	so-called	

metamaterials.	This	microscopic	structure	allows	the	material	to	achieve	extreme	properties	

(e.g.	negative	effective	mass[2])	or	properties	that	do	not	appear	together	in	conventional	

materials	 (e.g.	simultaneously	high	stiffness	and	damping[3]).	These	novel	properties	arise	

from	resonances	and	interactions	in	the	internal	structure,	and	can	be	used	to	realize	high-

performance	 devices	 such	 as	 lenses	 that	 are	 not	 limited	 by	 diffraction	 effects[4].	 The	

metamaterial	approach	has	found	considerable	successes	in	various	applications,	 including	

focusing[4-7],	cloaking[8-11]	and	stopping	waves[2].	Metamaterials	hold	great	promise	for	

energy	 technologies,	 due	 to	 their	 ability	 to	 respond	 at	 frequencies	 not	 accessible	 to	

conventional	materials[12]		and	due	to	metamaterial’s	ability	to	localize	energy[13].	Inspired	

by	 these	 results,	 the	 low-dimensional	 models	 discussed	 in	 this	 thesis	 focus	 on	 energy	

conversion	phenomena	that	arise	due	to	the	nonlinear	interaction	between	a	low	number	of	

modes	of	vibration	inside	a	lattice.	

	

Outline	
	

The	work	in	this	thesis	proceeds	from	simpler	systems	to	more	complex	cases,	starting	with	

a	single	degree	of	 freedom	system	subject	 to	a	harmonic	drive	and	proceeding	to	a	 three	

degrees	of	 freedom	system	under	stochastic	excitation.	Here	 I	provide	a	brief	outline	that	

highlights	the	logical	progress	connecting	the	papers	that	compose	this	cumulative	thesis.	

	

Chapter	2	starts	by	 investigating	the	dynamics	of	an	extended	system,	a	granular	chain,	 in	

which	only	a	single	mode	of	vibration	is	excited.	The	granular	chain,	a	one-dimensional	lattice	

of	 steel	 particles	 interacting	 though	 nonlinear	 Hertzian	 contacts,	 is	 chosen	 for	 its	 rich	

nonlinear	 dynamics	 (see[14]	 for	 an	 overview	 of	 granular	 phenomena),	 arising	 from	 the	

asymmetric	Hertzian	interaction,	and	the	vast	body	of	knowledge	describing	its	properties.	

We	explore,	 theoretically	and	experimentally,	 the	system	under	quasi-static	deformations,	

and	determine	the	effect	of	the	excitation	on	the	mechanical	properties	of	the	lattice	such	as	

the	 stiffness	 and	 damping.	 As	 main	 conclusions,	 we	 determine	 that	 the	 excitation	 of	 a	

localized	mode	can	result	in	changes	in	the	force-displacement	relation,	including	negative	or	
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even	 infinite	 stiffness.	When	we	 subject	 the	 lattice	 to	 increasing	 levels	 of	 excitation,	 we	

observe	 a	 hysteretic	 force-displacement	 response.	 As	 a	 consequence	 of	 the	 hysteretic	

response	in	this	regime,	subjecting	the	lattice	to	a	quasistatic	deformation	cycle	requires	the	

addition	of	external	energy.	The	required	energy	can	be	controlled	by	modifying	the	lattice	

excitation,	and	for	this	reason	we	refer	to	this	phenomenon	as	tunable	damping.	

	

Chapter	3’s	objective	is	to	utilize	the	response	of	an	excited	lattice	to	transfer	energy	between	

two	frequencies.	This	requires	a	phenomenon	similar	to	the	tunable	damping	described	in	

Chapter	2,	but	with	opposite	sign	(i.e.	where	a	cyclic	lattice	deformation	results	in	positive	

work	 done	 on	 the	 external	 force	 causing	 the	 deformation).	 Using	 the	 theoretical	 model	

devised	 in	Chapter	2,	 the	 requisite	property	 for	 such	behavior	 is	 a	dynamically	hardening	

nonlinearity,	i.e.	one	that	satisfies	(def dge < 0).	For	this	purpose,	we	select	a	magnet	chain	

as	the	experimental	system	for	Chapter	3.	Due	to	differences	between	the	magnetic	force	

and	the	Hertzian	contact	 law,	the	magnetic	system	exhibits	the	required	type	of	nonlinear	

interaction.	We	experimentally	demonstrate	that	this	system	is	capable	of	converting	energy	

between	 two	 frequencies,	 and	 build	 a	 reduced-order	 model	 capable	 of	 explaining	 the	

frequency	conversion	dynamics	using	two	degrees	of	 freedom.	We	 identify	a	combination	

resonance	as	the	energy	converting	mechanism,	rather	than	a	hysteretic	force-displacement	

loop	 as	 found	 in	 Chapter	 2.	 The	 combination	 resonance	 arises	 due	 to	 a	 feedback	 delay	

between	the	motion	of	 the	extended	mode	and	the	amplitude	of	 the	 localized	mode.	We	

show	 that	 this	 system	 is	 a	 mechanical	 analog	 of	 an	 optomechanical	 system,	 and	 that	 is	

capable	 of	 producing	 signals	with	 a	 tunable	 output	 frequency	 and	 phase,	 and	 to	 harvest	

energy	from	multiple	frequency	components	and	integrate	it	into	a	single	output.	

	

Chapter	4	 seeks	 to	 investigate	 the	dynamics	of	 the	 reduced-order	 system	 from	Chapter	3	

under	stochastic	excitation.	Stochastic	excitations	describe	situations	where	the	excitation	

function	 is	 not	 known.	 They	 represent	 most	 relevant	 applications	 of	 energy	 converting	

technology:	 Thermal	 agitation,	 the	 random	 vibrations	 of	 a	 machine	 or	 the	 electric	 field	

coming	from	a	black-body	source	(such	as	the	sun)	are	described	by	stochastic	processes.	We	

explore	this	phenomenon	in	a	“toy-model”	experimental	system	consisting	of	a	set	of	strings	

and	 a	 cantilever,	which	 presents	 the	 same	 type	of	 nonlinear	 dynamics	 that	 describes	 the	

interaction	between	lattice	modes	in	Chapter	3	(See	Equation	6	and	7	in	Chapter	3	and	Eq.	
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1a-c	in	Chapter	4).	The	choice	of	a	different	experimental	system	is	driven	by	the	requirement	

of	 low	mechanical	 loss,	which	 is	not	met	by	 the	magnets	setup	of	Chapter	3,	which	has	a	

quality	factor	of	approximately	10,	but	is	met	by	the	cantilever	system	(Which	has	a	quality	

factor	around	1000).	Due	to	the	use	of	a	stochastic	excitation,	the	physical	magnitudes	of	the	

system	 have	 a	 thermodynamic	 interpretation.	 For	 example,	 the	 friction	 force	 can	 be	

interpreted	as	a	heat	flow	out	of	the	system.	Using	the	definitions	of	heat	and	work	from	

stochastic	thermodynamics,	we	characterize	the	performance	of	the	system	and	compare	it	

to	thermodynamic	limits.	We	also	show	that	the	system	presents	exotic	phenomena	such	as	

negative	thermal	conductivity[15]	and	nonpassive	states	of	motion[16-18],	states	where	the	

probability	 distribution	 of	 the	 system’s	 variables	 (position	 and	 momentum)	 does	 not	

maximize	the	entropy	for	the	given	expected	value	of	the	energy.	

	

Chapter	5	presents	an	algorithm	to	extract	discrete	mass-spring	models	from	metamaterial	

designs,	and	to	obtain	metamaterial	geometries	 that	 fit	desired	arbitrary	discrete	models.	

This	represents	a	departure	from	previous	chapters	that	focused	on	the	energy	conversion	

dynamics	 of	 low-dimensional	models	 for	 discrete	 lattices.	 However,	 being	 able	 to	 obtain	

geometries	from	discrete	models	is	an	essential	step	towards	the	vision	of	creating	materials	

with	 novel	 energy	 converting	 performances,	 since	 most	 studies	 on	 energy	 converting	

phenomena	(including	those	in	Chapters	2-4	of	this	thesis)	are	done	in	discrete	models.	The	

approach	presented	utilizes	 ideas	 from	condensed-matter	physics	 (Such	as	effective	 tight-

binding	models	and	the	Schrieffer-Wolff	transformation[19]).	The	design	method	is	based	in	

dividing	the	model	into	sub-spaces	describing	various	aspects	of	the	model	(For	example,	the	

coupling	stiffness	between	a	unit	cell	and	each	neighbor	are	treated	as	belonging	to	different	

subspaces).	This	division,	which	is	not	exact	but	an	approximation,	allows	us	to	perform	an	

exhaustive	search	on	each	sub-space.	The	result	from	this	approximate	optimization	is	used	

as	an	 initial	guess	for	a	gradient	search	that	takes	 into	account	 interferences	between	the	

different	 sub-spaces	 and	 produces	 an	 exact	 geometry.	 The	 potential	 of	 this	 approach	 is	

demonstrated	 by	 obtaining	 designs	 for	 acoustic	 lenses,	 zero	 group	 velocity	materials	 and	

topological	 insulators.	While	the	algorithm	is	currently	 limited	to	 linear	systems,	the	same	

design	philosophy	can	be	extended	 to	nonlinear	 systems	and	should	enable	 the	design	of	

novel	energy	converting	metamaterials.		

	



	
5	

Significance	of	the	work	
	

This	work	discusses	energy	converting	phenomena	in	low	dimensional	nonlinear	systems.	It	

shows	 that	 relatively	 simple	mechanical	 systems	 can	present	nontrivial	 energy	 converting	

phenomena	including	tunable	damping,	frequency	conversion,	negative	thermal	conductivity	

and	heat	engine	operation.	The	work	also	describes	a	method	to	translate	discrete	systems	

into	metamaterial	designs.	Here	I	briefly	discuss	the	significance	of	each	publication	in	this	

thesis.	

	

Chapter	2	demonstrates	that	driven	nonlinear	 lattices	can	present	highly	tunable	stiffness,	

reaching	negative	and	infinite	damping,	in	addition	to	zero	frequency	band	gaps	and	tunable	

damping.	In	addition,	it	allows	to	selectively	tune	individual	regions	of	the	force-displacement	

relation	of	 a	material,	 by	utilizing	 the	 two	degrees	of	 freedom	provided	by	 the	excitation	

force’s	amplitude	and	frequency.		Tuning	a	material’s	stiffness	is	a	long-standing	problem	with	

various	proposed	solutions[20-22],	and	our	work	is,	to	the	best	of	our	knowledge,	the	first	

published	mechanism	that	allows	the	introduction	of	stiffness	changes	at	selectable	points	of	

the	 force-displacement	 relation.	 This	 can	be	used	 to	 create	 tunable	 devices	 that	 are	 able	

operate	under	different	loads	(for	example,	tunable	vibration-mitigating	materials	that	can	

block	vibrations	while	holding	arbitrary	loads,	which	is	not	the	case	in	alternative	technologies	

such	as	those	based	on	buckling[23]).	The	presence	of	zero-frequency	band	gaps	is	significant	

because	 it	 provides	 a	means	 to	 block	 extremely	 low-frequency	 vibrations,	which	 requires	

large	masses	when	other	technologies	are	used[24].		

	

Chapter	3	demonstrates	energy	conversion	in	lattices	with	a	tunable	output	frequency	and	

phase.	It	is	significant	for	two	reasons:	First,	it	provides	a	mechanism	to	generate	signals	with	

a	selectable	output	phase,	which	can	be	used	to	create	tunable	phased	arrays	or	to	obtain	

energy	 from	 multiple	 sources	 while	 avoiding	 destructive	 interference.	 Second,	 it	

demonstrates	 a	 purely-mechanical	 analog	 of	 optomechanical	 systems[25,	 26].	 This	 is	

significant	because	it	enables	the	translation	of	the	vast	knowledge	regarding	optomechanical	

interactions	(For	example,	how	to	build	optomechanical	transistors[27]	or	heat	engines[28])	

into	the	mechanical	domain.	
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Chapter	 4	 provides	 the	 first	 experimental	 demonstration	 of	 a	 mechanical	 autonomous	

stochastic	heat	engine.	Stochastic	heat	engines	have	their	origin	in	the	classical	problems	of	

the	 Maxwell	 demon	 and	 the	 Feynman	 ratchet,	 but	 had	 only	 been	 demonstrated	

experimentally	 using	 non-autonomous	 systems	 that	 rely	 on	 external	 control	 loops	 to	

prescribe	a	thermodynamic	cycle[29,	30].	This	work	shows,	theoretically	and	experimentally,	

that	autonomous	heat	engine	operation	can	arise	naturally	 in	the	presence	of	nonlinearly-

interacting	degrees	of	freedom	in	contact	with	thermal	baths	at	different	temperatures.	From	

a	 fundamental	point	of	view,	having	an	experimental	model	of	an	autonomous	stochastic	

heat	engine	 is	significant	because	 it	provides	a	test	system	for	stochastic	thermodynamics	

(Non-autonomous	engines	are	not	satisfactory	models	because	 the	external	control	 signal	

prescribes	the	output	motion	and	therefore	trivializes	the	calculation	of	the	work).		From	an	

applied	point	of	view,	autonomous	operation	is	a	requirement.	While	stochastic	heat	engines	

produce	extremely	small	power	and	therefore	would	not	be	usable	unless	they	operate	at	

extreme	frequencies	or	are	tightly	 integrated,	any	hypothetical	 future	application	must	be	

autonomous,	since	non-autonomous	engines	consume	vast	amounts	of	power	to	operate	the	

computers	 and	 lasers	 that	 prescribe	 the	 thermodynamic	 cycle,	 thereby	 consuming	 more	

energy	than	they	produce.	

	

Chapter	5,	which	presents	a	method	to	generate	metamaterial	geometries	that	conform	to	

arbitrary	mass-spring	models,	 is	 significant	 for	 two	 reasons:	 First,	 it	 is,	 to	 the	 best	 of	 our	

knowledge,	 the	 most	 versatile	 metamaterial	 design	 technique	 available.	 It	 enables	 the	

efficient	 design	 of	 complex	 functionalities	 such	 as	 topologically	 protected	 wave	

propagation[31],	which	would	be	impossible	to	engineer	using	alternative	approaches	such	

as	 transformation	 optics.	 Second,	 it	 enforces	 a	metamaterial	 design	 approach	where	 the	

desired	behavior	is	engineered	using	a	discrete	model	description,	and	the	actual	geometry	

is	then	generated	by	an	automated	software.	Working	with	reduced-order	models	has	the	

advantage	 of	 greatly	 simplifying	 the	 design	 process,	 by	 abstracting	 away	 implementation	

details.	In	addition,	once	a	satisfactory	discrete	model	has	been	found,	the	same	functionality	

can	 be	 implemented	 in	 vastly	 different	 types	 of	 systems	 (mechanical,	 thermal,	

electromagnetic).	 This	 approach	 has	 been	 extremely	 successful	 in	 electrical	 engineering,	

where	 circuits	 are	 always	 designed	 in	 terms	 of	 lumped	 elements	 (capacitors,	 inductors,	

resistors,	etc.)	without	regarding	the	actual	implementation	details	of	the	elements,	and	are	
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then	 physically	 implemented	 using	 off-the-shelf	 parts	 or	 specific	 software	 to	 generate	

integrated	circuit	blueprints.	

	

Besides	 the	 impact	of	 this	work	 in	 the	 specialized	 fields	of	mechanical	metamaterials	and	

stochastic	 thermodynamics,	 this	 work	 has	 a	 broader	 significance	 because	 its	 conclusions	

involve	simple	nonlinear	 interaction	potentials.	Even	though	some	of	the	publications	that	

compose	this	thesis	are	concerned	with	complex	and	specialized	 interaction	 laws	(e.g.	 the	

Hertzian	contact	law	or	interactions	between	permanent	magnets),	all	publications	include	

Taylor	expanded	models	that	demonstrate	how	the	described	phenomena	apply	to	a	much	

broader	 class	 of	 systems,	 requiring	 only	 quadratic	 or	 cubic	 nonlinearities,	 and	 therefore	

extensible	even	outside	the	mechanical	domain.		

	

Background	and	state	of	the	art	
	

This	thesis	lies	at	the	intersection	between	metamaterials,	nonlinear	lattices	and	stochastic	

thermodynamics.	Here	I	provide	a	brief	introduction	to	each	of	these	fields,	highlighting	the	

open	questions	that	are	addressed	in	this	work.	

	

Metamaterials	
	

Metamaterials	 are	 typically	 defined	 as	 inhomogeneous	 materials	 having	 a	 microscopic	

structure	 that	 is	 significantly	 smaller	 than	 the	expected	wavelength	of	operation	 (but	 still	

larger	 than	 conventional	 atoms	 or	 molecules)	 and	 presenting	 one	 or	 multiple	 properties	

beyond	those	of	conventional	materials.	One	of	the	first	of	such	unconventional	properties	

to	be	proposed	was	the	negative	index	of	refraction,	an	idea	that,	while	considered	as	early	

as	in	1904[32],	is	typically	traced	back	to	the	work	of	Victor	Vesselago[33].	Vesselago’s	work	

rose	to	prominence	with	the	work	of	John	Pendry[4],	who	demonstrated	in	2000	that	such	

material	could	be	used	to	build	 lenses	not	bound	by	diffraction	 limits,	and	suggested	that	

these	properties	were	attainable	with	the	use	of	microscopic	resonating	structures	such	as	

thin	 slabs,	 wires,	 or	 rings[4].	 Almost	 simultaneously	 with	 Pendry’s	 work,	 Liu	 et	 al.[2]	

demonstrated	 that,	 in	 acoustics,	 microscopic	 resonating	 structures	 could	 be	 used	 to	
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introduce	negative	effective	elastic	properties.	In	Liu’s	work,	the	negative	properties	resulted	

in	acoustic	band-gaps,	thereby	enabling	ultra-efficient	soundproofing	materials.	

	

Since	the	field’s	beginnings	with	Pendry’s	work	17	years	ago,	metamaterials	have	been	the	

object	of	numerous	works,	involving	an	ever-increasing	set	of	phenomena	and	applications.	

Now	 metamaterials	 are	 used	 as	 antennas	 inside	 commercial	 devices,	 and	 are	 known	 to	

present	 band-gaps,	 act	 as	 invisibility	 cloaks	 around	 objects[8-11]	 (albeit	 on	 a	 limited	

frequency	 range),	 have	 sensing	 applications[34-36],	 and	 can	 be	 used	 for	 wireless	 energy	

transfer[37-39]	or	to	simulate	exotic	physical	objects	such	as	wormholes[40,	41].	While	the	

initial	work	on	metamaterials	was	concerned	with	electromagnetic	properties,	mechanical	

equivalents	 soon	 followed.	 In	 the	 present,	 the	 field	 of	 metamaterials	 includes	

electromagnetic[8,	42-44],	optical[45-47],	acoustic[11,	48-52],	bulk[53,	54]	and	plate[55,	56]	

(Lamb)	waves	in	solids	and	thermal[57-60]	systems	(A	somewhat	arbitrary	distinction,	based	

mostly	 on	 frequency,	 is	 typically	 made	 between	 electromagnetic/optical	 and	

acoustic/thermal	metamaterials).			

	

In	 spite	of	 the	massive	progress	 in	 the	 field	of	metamaterials,	 techniques	 for	 engineering	

functionality	 are	 scarce,	 and	 metamaterials	 designs	 typically	 involve	 a	 certain	 degree	 of	

intuition	or	heuristic	reasoning	about	required	symmetry	properties[61].	This	is	due	to	the	

immense	size	of	 the	space	of	possible	unit	cell	designs,	and	the	non-convex	nature	of	 the	

optimization	 problem.	 Current	 approaches	 include	 computationally-expensive	 topological	

optimization,	combining	finite	element	simulations	with	generic	optimization	schemes	such	

as	simulated	annealing[62,	63]	or	genetic	algorithms[63-65].	Other	design	techniques	involve	

the	use	of	a	discrete	set	of	basic	building	materials	(labeled	0	and	1	in	reference	to	digital	

electronics),	 which	 can	 greatly	 reduce	 the	 dimension	 of	 the	 search	 space	 during	

optimization[66-68].	But	perhaps	the	most	successful	of	such	approaches	is	transformation	

optics[42,	69,	70].	Transformation	optics	takes	advantage	of	Maxwell’s	equations	invariance	

to	coordinate	transformations[71]:	If	the	equations	are	expressed	in	a	different	coordinate	

system,	 they	 take	 the	 same	 form	 –albeit	 with	 different	 material	 parameters.	 With	 the	

availability	of	metamaterials	covering	the	broad	range	of	required	properties,	this	technique	

has	 enabled	 the	 design	 of	 advanced	 devices	 such	 as	 cloaks[8-10],	 lenses[5-7]	 or	

electromagnetic	 wormholes[40,	 41].	 In	 spite	 of	 transformation	 optics’	 power	 to	 design	
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materials	 that	 bend	waves	 in	 arbitrary	ways,	 it	 is	 unclear	 that	 it	 is	 of	 any	 use	when,	 for	

example	designing	metamaterials	with	 topological,	 energy	 converting	or	 logic	 capabilities.	

Another	metamaterial	 design	 approach,	 proposed	 by	 Enghetta	 et	 al.[72-75]	 uses	 lumped	

elements	(Capacitors	and	inductors	in	the	case	of	electromagnetic	metamaterial	or	masses	

and	 springs	 in	 a	 mechanical	 metamaterial)	 to	 describe	 the	 physics	 of	 the	 metamaterial	

building	 blocks.	 Lumped	 element	 descriptions	 greatly	 simplify	 the	 metamaterial	 design	

process.	 This	 has	 been	 exploited	 to	 engineer	 novel	 functionalities	 such	 as	 filters	 with	 a	

complex	frequency	response[74].	This	approach	is	limited	by	the	fact	that	there	are	no	generic	

approaches	 to	 find	 metamaterial	 geometries	 that	 conform	 to	 arbitrary	 lumped	 element	

models.	 This	 limitation	 is	 exemplified	 in	 the	 design	 of	 metamaterials	 with	 topologically-

protected	wave	propagation	capabilities.	While	straightforward	descriptions	of	 topological	

lattices	 can	 be	 written	 in	 terms	 of	 mass-spring	 models[31,	 76]	 ,	 mechanical	 topological	

metamaterials	reported	in	the	literature	have	relied	in	a	heuristic	engineering	of	symmetry	

and	modal	degeneracy[61].		Chapter	5	of	this	thesis	solves	this	problem	in	the	regime	where	

the	coupling	stiffness	between	unit	cells	is	significantly	smaller	than	the	cell’s	local	stiffness,	

by	presenting	an	algorithm	capable	of	finding	geometries	conforming	to	arbitrary	mass-spring	

models	 and	 demonstrating	 it	 on	 the	 paradigmatic	 example	 of	 the	 topological	

metamaterial[31].	

	

For	the	particular	goal	of	energy	harvesting	and	conversion,	metamaterials	present	a	diverse	

set	 of	 phenomena	 with	 potential	 for	 practical	 applications[12,	 77-84].	 These	 include	 the	

ability	to	focus	waves	on	a	transducer[13,	79],	to	localize	energy[85]	and	to	present	tailored	

emission	and	absorption	spectra[80,	84].	If	the	metamaterial	incorporates	nonlinearity,	this	

functionality	can	be	enhanced	to	include	rectification	of	waves	to	produce	a	DC	signal[81],	

and	 can	 extend	 the	 frequency	 of	 operation	 over	 a	 broader	 range[86,	 87].	 The	 field	 of	

metamaterials	 for	 energy	 harvesting	 is	 extremely	 new,	 with	 most	 studies	 having	 been	

published	on	or	after	2013[12,	80,	81,	83].	As	a	consequence,	new	metamaterial	phenomena	

relevant	 for	 frequency	conversion	application	are	still	being	discovered.	 In	addition	 to	 the	

previously	reported	ability	of	metamaterials	to	localize	and	rectify	energy,	Chapter	3	of	thesis	

presents	a	frequency	conversion	mechanism	with	tunable	frequency	and	phase	that	be	used	

to	extract	energy	from	multiple	incoherent	sources	of	mechanical	energy.		
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The	Fermi-Pasta-Ulam	problem	and	nonlinear	lattices	
	

While	studies	in	metamaterials	initially	focused	on	linear	effects,	the	importance	of	including	

nonlinearity	in	order	to	realize	advanced	functionality	(e.g.	information	processing	or	energy	

conversion)	was	identified	as	early	as	2010	in	a	review	by	Zheludev[88].	When	engineering	

structures	consisting	of	nonlinear	interacting	unit	cells,	it	should	be	taken	into	account	that	

the	 study	 of	 nonlinear	 lattices	 has	 a	 long	 tradition	 in	 the	 physics	 community.	 As	 a	

consequence,	metamaterial	studies	can	look	into	prior	work	in	nonlinear	lattices	to	identify	

phenomena	 with	 potential	 in	 metamaterial	 applications,	 and	 nonlinear	 lattice	 studies	 in	

physics	can	use	 the	design	 flexibility	offered	by	metamaterials	 to	build	novel	 systems	and	

investigate	fundamental	nonlinear	phenomena	such	as	solitons.	

	

Its	beginnings	can	be	found	in	the	work	of	Fermi,	Pasta	and	Ulam	(FPU)	on	the	evolution	from	

coherent	 motion	 to	 thermalized	 states	 in	 a	 lattice	 models	 for	 the	 nonlinear	 vibration	 of	

strings[89]	–	A	work	that	can	be	seen	as	anticipating	the	field	of	stochastic	thermodynamics,	

as	 it	attempts	 to	answer	questions	about	 the	 transition	 to	 thermodynamic	equilibrium	by	

explicit	 calculation	 of	 the	 system’s	 trajectories[90].	 Since	 the	 publication	 of	 FPU’s	 report,	

works	have	explored	a	variety	of	different	systems	and	models,	such	as	the	Klein-Gordon[91-

94],	Discrete	Nonlinear	Schrödinger	[95,	96],	 	Toda[97],	Hertzian[98-101]	and	magnet[102]	

chains,	spins[103],	DNA[104-106]	and	proteins[107,	108],	which	differ	 in	the	mathematical	

properties	 and	 physical	 origin	 of	 the	 nonlinear	 interaction	 potentials.	 Nonlinear	 lattices	

present	 very	 diverse	 phenomena,	 which	 include	 solitons[99,	 101-103,	 109-113],	

breathers[85,	 107,	 114-117],	 band-gaps[118-120]	 ,	 unidirectional	 wave	 propagation[121-

123],	shock	waves[124],	energy	trapping[125-127]	and	various	types	of	tunability[128-131].	

As	a	consequence	of	the	diverse	phenomenology,	nonlinear	lattices	have	been	proposed	for	

applications	 in	areas	such	as	vibration[24]	and	 impact[125,	132]	mitigation,	acoustic	pulse	

focusing[133,	 134],	 energy	 harvesting[135,	 136],	 	 filtering[120]	 and	mechanical	 logic[137,	

138].		

	

In	this	work,	we	use	nonlinear	lattices	as	model	for	nonlinear	metamaterials.	This	decision	is	

motivated	by	 the	 fact	 that	nonlinear	 lattices	 are	well	 characterized	 in	 the	 literature,	with	

proven	experimental	setups	and	accurate	theoretical	models.	 	 In	particular,	we	utilize	one	



	
11	

dimensional	Hertzian	and	magnet	chains	containing	defects,	consisting	of	a	particle	with	a		

lower	mass.	The	presence	of	defects	introduces	localized	states	of	vibration[139]	that	can	be	

used	as	an	energy	input	to	the	system.	

	

Stochastic	thermodynamics	
	

Stochastic	thermodynamics[140-143]	is	concerned	with	the	physics	of	thermally	fluctuating,	

low	dimensional	systems,	such	as	particles	that	experience	Brownian	motion.	It	associates	a	

thermodynamical	interpretation	to	mechanical	quantities	such	as	the	dissipation	force	or	the	

thermomechanical	noise,	allowing	a	discussion	in	terms	of	the	first	law	of	thermodynamics	

and	 the	 notion	 of	 entropy	 production[144].	 The	 first	 observation	 of	 Brownian	 motion	 is	

attributed	 to	 Robert	 Brown[145],	 who	 saw	 the	 random	motion	 of	 pollen	 particles	 in	 the	

microscope;	the	first	theoretical	explanation	was	provided	by	Einstein[146],	who	attributed	

it	to	the	thermal	movement	of	molecules.	This	result	was	extremely	ground-breaking,	since	it	

provided	evidence	for	the	molecular	theory	of	heat,	which	was	controversial	at	the	time.	The	

intersection	 between	 molecular	 mechanics	 and	 thermodynamics	 was,	 for	 some	 time,	 a	

contentious	 issue[147].	Several	proposed	devices,	such	as	the	Maxwell	demon[148]	or	the	

Feynman	ratchet[147,	149],	seem	to	violate	the	laws	of	thermodynamics	through	some	clever	

use	 of	molecular	mechanics.	 Resolving	 these	 paradoxes	 required	 taking	 into	 account	 the	

thermodynamic	meaning	 of	 information[150-154],	 highlighting	 its	 physical	 nature	 and	 its	

connection	to	energy[155].	

	

While	works	concerning	the	thermodynamics	of	fluctuating	systems	have	existed	for	longer	

than	a	century,	the	last	20	years	have	seen	a	massive	surge	of	interest	in	the	field[141,	156],	

beginning	with	the	work	of	Evans[157]	on	probabilistic	second	 law	violations.	This	current	

interest	 is	 motivated	 by	 recent	 advances	 in	 various	 fields.	 In	 particular,	 microfabrication	

allows	us	to	build	devices	small	enough	to	be	significantly	affected	by	Brownian	motion[158],	

and	modern	 computers	 and	 algorithms	 can	 solve	 the	 stochastic	 equations	 of	motion	 for	

complex	systems,	providing	a	new	tool	for	the	study	of	out-of-equilibrium	thermodynamics	

(The	work	of	Evans	itself	was	based	on	computer	simulations).	Several	motivations	drive	this	

study:	 The	 desire	 to	 suppress	 thermodynamic	 fluctuations	 in	 order	 to	 improve	 the	

performance	of	systems	such	as	nanomechanical	sensors[158,	159],	the	desire	of	obtaining	a	
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better	understanding	on	 thermodynamics	of	out-of-equilibrium	systems	and	the	quest	 for	

newer,	 and	 potentially	more	 efficient	 forms	 of	 energy	 conversion.	 Remarkable	 results	 of	

stochastic	 thermodynamics	 include	 Brownian	 motors,	 which	 exploit	 Brownian	 motion	 to	

assist	in	the	microscopic	transport	of	matter	and	energy[160]	and	fluctuation	theorems[144,	

161-169]	which	relate	probabilities	of	change	for	thermodynamic	variables	like	work,	heat	or	

entropy.	 Among	 these	 fluctuation	 theorems,	 the	most	 well-known	 are	 the	 Jarzynski[162]	

identity	and	the	Crooks[161]	fluctuation	relation.	These	results	have	powerful	applications	in	

a	variety	of	fields.	For	example,	in	biology,	fluctuation	theorems	enable	the	determination	of	

the	 free	 energy	 differences	 between	 folded	 and	 unfolded	 molecules	 of	 DNA[170,	 171],	

RNA[172,	173]	and	proteins[174,	175]	or	to	distinguish	between	different	topological	variants	

of	 biomolecules[176].	 In	 spite	 of	 the	 recent	 developments,	 the	 field	 of	 stochastic	

thermodynamics	has	significant	open	questions.	Thermodynamic	concepts	such	as	work[177]	

or	 entropy[178]	 do	 not	 have	 a	 universal	 definition	 in	 low-dimensional	 systems	 out	 of	

equilibrium,	and	ultimate	limits	in	performance	and	power[179,	180]	of	stochastic	devices	are	

not	known	in	the	most	general	case.		

	

A	particularly	active	sub-field	of	 research	 in	stochastic	 thermodynamics,	and	one	that	 this	

thesis	is	concerned	with,	is	the	field	of	stochastic	heat	engines[29,	30,	181-186].	Stochastic	

heat	 engines	 are	 low-dimensional	 systems	 that	 generate	 work	 by	 rectifying	 the	 thermal	

motion	of	particles.	The	initial	concept	of	the	stochastic	heat	engine	originated	in	the	work	of	

Maxwell	 [148]	 Smoluchowski[147]	 and	 Szilard[187,	 188],	 who	 proposed	 microscopic	

mechanical	 devices	 that	would,	 hypothetically,	 be	 able	 to	 extract	work	 from	 the	 thermal	

agitation	of	molecules	in	a	gas.	These	results	are	of	great	theoretical	interest,	because	they	

highlight	 a	 tension	 between	 the	 field	 of	 thermodynamics,	 that	 deals	 with	 macroscopic	

descriptions	of	systems	containing	a	 large	number	of	degrees	of	freedom,	and	the	field	of	

mechanics,	 that	describes	 the	 fundamental	 laws	governing	 the	microscopic	dynamics	of	a	

system’s	 constituent	 particles.	 While	 the	 apparent	 contradictions	 were	 later	 resolved	 by	

Feynman	and,	in	a	more	general	way,	by	Landauer[151],	this	field	has	now	regained	significant	

interest.	This	is	because,	while	the	work	of	Maxwell	[148],	Smoluchovski[147]	and	Szilard[187,	

188]	was	purely	theoretical,	the	past	decade	has	brought	the	progress	that	allow	us	to	build	

and	study	these	systems	experimentally.		
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Currently,	 the	majority	 of	 experimental	 studies	 in	 stochastic	 heat	 engines	 are	 done	 on	 a	

system	consisting	of	a	colloidal	particle	confined	by	an	electromagnetic	or	optical	trapping	

potential[29,	 168,	 182,	 183,	 189-191],	 which	 allows	 the	 dynamic	 manipulation	 of	 the	

particle’s	 trapping	 stiffness.	 While	 initial	 experiments	 sought	 to	 demonstrate	 statistical	

violations	of	the	second	law	and	validate	the	fluctuation	theorems[168,	189-191],	this	setup	

allowed	for	the	experimental	demonstration	of	work	extraction	from	Brownian	motion.	First,	

by	demonstrating	that	possessing	information	on	the	state	of	a	particle	enables	the	extraction	

of	 energy	 from	Brownian	motion.	 In	 a	 landmark	 experiment[155],	 a	 trapped	 particle	was	

subject	to	an	electromagnetic	potential	that	was	dynamically	adjusted	to	prevent	backwards	

motion,	 using	 information	 on	 the	 particle’s	 position	 obtained	 with	 a	 camera	 and	 a	

microscope.	Subsequent	experiments	on	colloidal	particles	demonstrated	full	stochastic	heat	

engine	operation	without	the	need	of	active	feedback,	following	driving	protocol	proposed	

by	 Schmiedl	 and	 Seifert[192].	 In	 these	 experiments[29],	 work	 was	 produced	 from	 a	

temperature	difference.	A	laser	system	was	used	to	heat	the	colloidal	particle	at	pre-defined	

time	intervals,	while	a	different	laser	introduced	synchronized	expansions	and	contractions	

of	the	trapping	potential,	following	a	Stirling	heat	cycle.	After	this	initial	demonstration	of	a	

stochastic	 heat	 engine,	 a	 variety	 of	works	 have	 appeared	 that	 demonstrated	 a	 variety	 of	

adiabatic	 processes	 and	 thermal	 cycles	 using	 similar	 setups[182,	 183].	 Remarkable	

experiments	 in	 this	 regard	have	been	 reported	 in	 2016,	 including	 experiments	 that	 use	 a	

single	 atom	as	 the	Brownian	 particle[30]	 and	 experiments	 that	 involve	 a	 trapped	particle	

interacting	with	reservoirs	containing	bacteria	to	explore	the	effect	of	active	matter[186].	

	

A	significant	issue	with	heat	engines	based	on	trapped	colloidal	particles	is	that	they	are	non-

autonomous,	since	they	use	an	external	cycle	or	feedback	loop	prescribed	using	computer-

controlled	electromagnetic	or	optical	fields.	This	poses	two	problems:	First,	the	computers	

and	 lasers	 controlling	 the	 setup	consume	much	more	power	 than	 the	engine	produces.	A	

typical	 computer’s	 power	 consumption	 is	 on	 the	 order	 of	100h,	while	 a	 stochastic	 heat	

engine’s	power	output	is	a	fraction	of	ijk l ≈ 10nop	h	(Here	ij = 1.38 ∙ 10nqe r s	is	the	

Boltzmann	constant,	k = 300s	 is	 the	temperature	and	l = 1	tu	 is	 the	cycle	duration).	A	

second	 problem	 of	 non-autonomous	 heat	 engines	 is	 that	 the	 external	 control	 system	

prescribes	the	phase	and	frequency	of	the	engine.	This	complicates	the	task	of	characterizing	

the	engine’s	performance,	because	it	limits	the	states	that	the	engine	can	access,	and	because	
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it	 provides	us	with	 information	on	 the	 location	of	 the	particle,	which	 crucially	 affects	our	

ability	to	extract	energy	from	the	system,	as	demonstrated	previously[155].	It	is	possible	to	

overcome	these	limitations	and	build	autonomous	heat	engines	by	using	multiple	nonlinear-

interacting	 degrees	 of	 freedom.	 A	 remarkable	 proposal	 along	 these	 lines	 is	 the	

optomechanical	heat	engine,	proposed	by	Zhang,	Bariani	and	Meystre[28].	In	this	engine,	a	

mechanical	resonator	modulates	an	optical	cavity’s	resonance	wavelength,	causing	periodic	

heating	 and	 cooling	 by	 driving	 the	 cavity	 on	 and	 off-resonance	with	 photon	 and	 phonon	

baths.	While	 this	 approach	 is	 conceptually	 promising,	 the	 optomechanical	 nonlinearity	 is	

extremely	weak,	which	has	prevented	so	far	the	experimental	realization	of	this	engine.	A	

different	approach,	proposed	by	Strasberg	et	al.	[193]	and	experimentally	realized	by	Koski	

et	 al.[184]	 utilizes	 single-electron	 interactions	 in	 quantum	 systems	 to	 introduce	 a	 self-

sustaining	thermal	cycle.	This	approach	is,	however,	limited	to	extremely	small	temperatures	

(Koski’s	experimental	system	operates	below	100	ts)	due	to	fragility	of	the	quantum	effects	

involved.	 The	 autonomous	 stochastic	 heat	 engine	 presented	 in	 Chapter	 4	 of	 this	 thesis	

overcomes	the	limitation	of	optomechanical	systems	by	utilizing	the	geometric	nonlinearity	

of	a	mechanical	resonator,	which	is	much	larger	than	the	nonlinear	optomechanical	coupling.	

Since	the	proposed	engine	is	not	based	on	quantum	effects,	it	is	also	not	limited	to	extremely	

low	temperatures.	

	

Methods	
	

This	 thesis	 combines	 experimental	 and	 theoretical	 work.	 The	 theory	 is	 used	 to	 identify	

interesting	phenomena,	to	design	a	suitable	experimental	setup,	and	to	provide	a	framework	

to	 interpret	 the	 results,	 while	 the	 experiments	 are	 intended	 to	 confirm	 the	 theoretical	

predictions	 and	 validate	 the	 conclusions.	 Here	 I	 briefly	 describe	 the	 experimental	 and	

theoretical	methods	used.	

	

	

Experimental	methods	
	

This	thesis	utilizes	three	experimental	setups	in	Chapters	2-4	(Chapter	5	is	purely	theoretical).	

In	 all	 three	 setups,	 a	 system	under	 test	 is	 subject	 to	 a	mechanical	 excitation,	 and	one	or	
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various	measurements	are	simultaneously	conducted	to	determine	the	forces,	displacements	

or	velocities	at	different	points	in	the	system.		

	

The	setup	in	Chapter	2	is	designed	to	measure	the	force-displacement	relation	of	a	granular	

material	in	which	an	internal	mode	of	vibration	is	simultaneously	being	excited.	The	granular	

chain	 under	 test	 consists	 of	 9	 steel	 spheres	 (radius	 of	 9.525	 mm),	 held	 in	 place	 using	

polycarbonate	rods.	The	central	particle	is	a	defect	(radius	4.763	mm)	that	creates	a	localized	

mode	of	vibration	and	acts	as	the	energy	input	of	the	system.	The	particle	next	to	the	defect	

is	split	in	half	to	accommodate	for	a	piezoelectric	transducer	(Physik	Instrumente	PD050.31)	

used	to	excite	the	defect	with	a	high-frequency	signal.	The	defect’s	motion	is	measured	with	

a	Polytec	CLV-2534	 Laser	Doppler	Vibrometer	 connected	 to	 a	 Zurich	 Instruments	 ZI-HF2LI	

Lock-In	 amplifier.	 The	quasi-static	 lattice	deformation	 is	prescribed	by	using	a	high	 stroke	

piezoelectric	actuator	(Physik	Instrumente	P-841.60),	and	the	resulting	force	is	measured	with	

an	Omega	LCMFD-50N	strain	gauge	conditioned	with	a	custom-made	differential	amplifier.	

	

The	 experimental	 setup	 in	 Chapter	 3	 is	 designed	 to	 measure	 the	 spatial	 and	 frequency	

distribution	of	energy	in	an	extended	system,	when	a	localized	resonance	is	excited.	The	setup	

consists	 of	 a	 chain	of	magnets	 (containing	20	or	 21	magnets	depending	on	 the	particular	

experiment)	embedded	in	small	3D	printed	cases.	The	magnets	are	kept	in	place	by	Teflon	

bars,	 and	 the	experiments	 are	performed	on	 top	of	 an	 air	 table	 to	minimize	 friction.	 The	

magnet	position	is	tracked	by	digital	image	correlation,	using	a	Point	Grey®	GS3-U3-41C6C-C	

computer	vision	camera	and	the	Vic-2D®	software	from	Correlated	Solutions™.	The	magnets	

are	excited	using	a	 conductive	wire	perpendicular	 to	 the	 chain.	 The	wire	 is	driven	 from	a	

Topping	TP22	class	D	audio	amplifier	fed	from	Agilent	33220A	signal	generator.	

	

The	setup	in	Chapter	4	is	designed	to	investigate	the	response	of	a	nonlinear	system	under	a	

stochastic	excitation	that	mimics	thermomechanical	noise.	 It	consists	of	two	brass	ribbons	

(Length	30	cm,	thickness	250	µm)	and	a	cantilever	(Length	40	cm,	see	Chapter	4	for	details	on	

the	geometry).	The	tension	of	the	ribbons	is	adjusted	using	a	linear	stage.	One	of	the	ribbons	

is	placed	in	a	magnetic	field,	and	mechanically	excited	by	passing	an	electric	current	through	

it.	 The	 signal	 driving	 the	 ribbon	 is	 generated	 in	 a	 laptop	 running	 a	 custom	 software.	 The	

software	uses	the	Apple™	CoreAudio®	library	to	play	band-limited	white	noise	obtained	by	
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performing	a	 time-domain	simulation	of	a	4th	order	 low-pass	 filter	driven	with	a	Gaussian	

noise	term	(See	the	Stochastic	Differential	Equation	section	in	Theoretical	methods	for	details	

on	the	algorithm).		Velocity	measurements	are	performed	in	one	of	the	ribbons	and	in	the	

cantilever	using	two	Polytec	Laser	Doppler	Vibrometers	(CLV-2534	and	OFV-505).	The	choice	

of	a	different	model	for	each	degree	of	freedom	is	based	on	the	material	available	in	the	lab.	

The	 signal	 from	 the	 vibrometers	 is	 digitized	with	 a	 Tektronix	DPO-3034	 in	high-resolution	

mode.	

	

Theoretical	methods	
	

Finite	element	simulations	–	Finite	element	simulations	in	all	chapters	have	been	performed	

using	COMSOL	Multiphysics®’s	structural	mechanics	module.	COMSOL®	built-in	solvers	have	

been	used	in	all	cases	except	in	Fig.	5.2f,	where	the	mass	and	stiffness	matrices	have	been	

exported	and	solved	using	a	separate	dynamic	condensation	code	written	 in	C++	 (See	the	

chapter’s	 methods	 section	 for	 details).	 In	 a	 dynamic	 condensation,	 a	 model	 for	 a	

metamaterial’s	unit	cell	is	built	by	expressing	the	boundary	forces	in	terms	of	the	boundary	

displacements.	 This	method	drastically	 reduces	 the	number	of	 degrees	of	 freedom,	while	

having	only	a	moderate	effect	on	sparsity.	

	

Linear	algebra	calculations	–	Linear	algebra	calculations	involving	a	small	number	of	degrees	

of	freedom	(<1000)	have	been	done	in	MATLAB®.	Linear	system	solutions	involving	a	large	

number	of	degrees	of	 freedom	have	been	obtained	using	the	 Intel™	Math	Kernel	Library®	

PARDISO	solver,	which	provides	higher	performance	and	allows	to	reuse	intermediate	results	

(LU	factorization)	when	working	with	multiple	right	hand	sides.	

	

Compilers	–	Numerical	C++	codes	in	chapters	2,	4	and	5	have	been	compiled	using	the	Intel	

compiler	 in	 the	 ETH	 Euler	 cluster.	 Due	 to	 their	 low	 computational	 cost,	 time	 domain	

simulations	in	Chapter	3	have	been	compiled	and	run	in	a	desktop	computer	using	GCC.	

	

Deterministic	 differential	 equations	 –	 All	models	 based	 on	 ordinary	 differential	 equations	

have	been	simulated	using	a	generic	4th	order	Runge-Kutta	algorithm[194]	implemented	in	

C++,	 using	double	precision	data	 types,	 except	 for	 figure	4b	 in	Chapter	 2,	which	 required	
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extended	precision	data	types	due	to	the	extremely	small	displacements	required	to	stay	in	

the	 linear	 regime.	 In	Chapter	2,	periodic	 steady-state	 solutions	have	been	 found	using	an	

accelerated	method	that	 involves	performing	time-domain	simulations	 for	a	single	period,	

applying	small	variations	on	the	initial	conditions	inside	a	Newton-type	root	finding	scheme,	

until	the	periodicity	condition	is	met.	This	algorithm,	which	speeds	up	calculations	by	a	factor	

of	approximately	10,	has	been	implemented	in	MATLAB®.	

	

Stochastic	differential	equations	–	Simulations	of	Langevin-type	dynamics	have	been	done	

using	a	custom	C++	implementation	of	a	Stochastic	Runge-Kutta	algorithm[195]	with	strong	

order	1.5	(Provided	as	an	appendix).	Average	quantities	such	as	heat,	work	or	efficiency	have	

been	determined	by	averaging	over	a	certain	amount	of	time	(Typically	1000s)	and	also	over	

a	large	number	of	simulations	(between	500	and	1000,	depending	on	the	particular	quantity).	

Gaussian	random	numbers	are	obtained	by	using	Mersenne-Twister	uniform	random	number	

generator	and	the	Beasley-Springer-Moro	inversion	formula.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



	
18	

Extreme	stiffness	tunability	through	the	excitation	of	nonlinear	

defect	modes.	

Marc Serra-Garcia1*, Joseph Lydon2, Chiara Daraio1,2. 

*e-mail: sermarc@ethz.ch 

 

This chapter was published in Physical Review E[129]. 

© 2016 American Physical Society.  

Reproduced in accordance with the journal’s copyright terms. 

 

Abstract	

 

The	incremental	stiffness	characterizes	the	variation	of	a	material’s	force	response	to	a	small	

deformation	 change.	 In	 lattices	 with	 non-interacting	 vibrational	 modes,	 the	 excitation	 of	

localized	 states	 does	 not	 have	 any	 effect	 on	material	 properties	 such	 as	 the	 incremental	

stiffness.	We	report	that,	in	nonlinear	lattices,	driving	a	defect	mode	introduces	changes	in	

the	 static	 force-displacement	 relation	 of	 the	 material.	 By	 varying	 the	 defect	 excitation	

frequency	and	amplitude,	the	incremental	stiffness	can	be	tuned	continuously	to	arbitrarily	

large	 positive	 or	 negative	 values.	 Furthermore,	 the	 defect	 excitation	 parameters	 also	

determine	the	displacement	region	at	which	the	force-displacement	relation	is	being	tuned.	

We	demonstrate	this	phenomenon	experimentally	in	a	compressed	array	of	spheres	tuning	

its	 incremental	 stiffness	 from	 a	 finite,	 positive	 value,	 to	 zero,	 and	 continuously	 down	 to	

negative	infinity.		
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Main	text	
	

Defects	are	ubiquitous	in	materials.	Initially	thought	to	decrease	a	material’s	performance,	

deliberately	 introducing	 defects	 is	 now	 key	 to	 achieving	 desirable	 properties	 [196].	 A	

characteristic	feature	of	defects	is	that	they	allow	localized	states	of	vibration	to	exist	in	the	

vicinity	of	a	defect	[197].	Previous	studies	have	explored	the	effect	of	these	defect	modes	on	

the	electrical	[198],	thermal	[199,	200]	and	optomechanical	[201]	properties	of	materials,	but	

no	study	so	far	has	attempted	the	deliberate	excitation	of	localized	defect	modes	as	a	means	

to	 change	bulk	material	 properties.	Having	materials	with	extreme	properties	 is	 desirable	

from	a	practical	point	of	view,	because	they	enable	devices	that	can	focus	[4],	cloak	[202-204]	

or	mitigate	vibrations	[2]	with	a	performance	greater	than	that	allowed	by	conventional	wave	

mechanics.	This	desire	has	motivated	the	use	of	resonances	[2,	203],	buckling	elements	[20],	

negative	 stiffness	 inclusions	 [21,	205]	or	magnetic	 coupling	between	particles	 [22,	206]	 in	

order	 to	 achieve	 a	 stiffness	 that	 is	 negative,	 zero	 or	 higher	 than	 that	 of	 diamond.	 These	

principles	 result	 in	 extreme	 material	 properties,	 but	 only	 over	 a	 narrow	 range	 of	

displacements	[20],	frequencies	[52]	or	temperatures	[21,	207].		

	

In	 this	 letter	we	demonstrate	 a	physical	mechanism	 that	 results	 in	 extreme	values	of	 the	

incremental	 stiffness,	 defined	 as	 the	 change	 in	 the	 material’s	 reaction	 force	 when	 its	

deformation	is	changed.	The	mechanism	is	based	on	the	nonlinear	interaction	between	lattice	

particles.	A	distinctive	property	of	nonlinear	 lattices	 is	 the	presence	of	 thermal	expansion	

[208],	in	which	the	lattice	expands	or	contracts	as	a	response	to	an	increase	or	decrease	in	its	

vibrational	energy.	In	our	system,	we	drive	a	defect	mode	in	a	lattice	with	a	harmonic	signal.	

As	 a	 consequence	 of	 anharmonicity	 in	 the	 lattice,	 an	 external	 deformation	 affects	 the	

resonance	 frequency	 of	 the	 defect.	 This	 causes	 the	 defect	 mode	 to	 move	 in	 and	 out	 of	

resonance	when	the	lattice	is	deformed.	The	resulting	changes	in	the	vibrational	amplitude	

cause	 a	 dynamic	 expansion	 or	 contraction	 of	 the	 defect.	 This	 affects	 the	 force	 at	 the	

boundary,	and	therefore	alters	the	incremental	stiffness	of	the	lattice.	We	use	this	concept	

to	achieve	negative	stiffness	(Fig.	2.1a).		
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FIG.	2.1:	Tuning	the	stiffness	through	dynamic	expansion.	(a)	Schematic	diagram	of	the	tunable	

stiffness	mechanism	illustrated	in	a	1-D	granular	chain.	The	diagram	shows	the	response	of	the	

lattice	to	a	prescribed	boundary	displacement.	During	this	displacement	the	defect	is	subject	to	

a	harmonic	excitation	at	fixed	frequency	and	amplitude,	as	a	consequence,	it	vibrates	with	an	

amplitude	A.	As	the	lattice	is	compressed	(green	arrow),	the	defect	mode	is	detuned	from	the	

excitation	 signal	 (red	arrows).	 This	 results	 in	a	negative	 incremental	 stiffness	due	 to	dynamic	

contraction	 of	 the	 defect	mode.	 (b)	 Changes	 of	 the	 driving	 frequency	 and	 amplitude	 of	 the	

excitation	determine	the	incremental	stiffness,	and	(c)	the	strain	point	at	which	the	stiffness	is	

being	modified.		The	curves	are	offset	for	clarity. 

	

We	demonstrate	the	concept	experimentally	in	a	one-dimensional	lattice	of	9	coupled	steel	

(Young	modulus	v = 210	wxy)	spheres.	The	spheres	have	a	radius	of	9.525	tt	and	a	mass	

of	 28.4	z,	 except	 for	 two	 particles	 in	 the	 center.	 (see	 Fig.	 2.1a,	 and	 Supplemental	

Information).	 The	 interaction	between	 the	 spheres	 is	modeled	using	 the	Hertzian	 contact	

law[139].	The	central	particle	is	a	defect	that	allows	the	existence	of	a	localized	vibrational	

mode[123,	139,	197]	The	defect	is	a	4.763	tt	sphere.	The	particle	next	to	the	defect	consists	

of	a	piezoelectric	actuator	sandwiched	between	two	steel	cylinders	with	{ = 20	tt	and	ℎ =
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4	tt.	This	particle	is	used	to	harmonically	excite	the	defect	mode.	The	lattice	is	kept	in	place	

using	two	polycarbonate	rods.	We	monitor	the	defect	mode	vibration	using	a	laser	Doppler	

vibrometer	 pointing	 at	 the	 particle	 next	 to	 the	 defect.	We	 acquire	 the	 quasi-static	 force-

displacement	 relation	 of	 the	 lattice,	 by	 prescribing	 an	 external	 deformation	 using	 a	

piezoelectric	actuator	placed	at	one	end	of	the	chain,	while	simultaneously	measuring	the	

force	 at	 the	 opposite	 boundary.	 The	 vibration	 of	 the	 defect	 mode	 affects	 the	 force-

displacement	 relation.	 The	 amplitude	 and	 frequency	 of	 the	 defect	 excitation	 control	 the	

mechanical	 properties	 of	 the	 material.	 Using	 these	 variables	 we	 can	 select	 both	 the	

incremental	stiffness	magnitude	(Fig.	2.1b	and	Supplemental	Video	1)	and	the	displacement	

point	where	the	incremental	stiffness	is	being	modified	(Fig.	2.1c	and	Supplemental	Video	2)	

This	allows	tuning	the	force-displacement	response	of	a	lattice	at	a	selectable	displacement	

value,	a	 capability	 that	exists	 in	biological	organisms[209],	but	not	 in	 systems	 that	exhibit	

negative	stiffness	when	subject	to	an	external	energy	input[210,	211].		

	

Due	 to	 the	 nonlinearity	 of	 the	 lattice,	 the	measured	 force	 depends	 on	 both	 the	 applied	

displacement	 and	 on	 the	 amplitude	 of	 the	 mode,	 f(~, �).	 Therefore,	 the	 incremental	

stiffness,	defined	as	the	total	derivative	of	the	force	with	respect	to	the	displacement,	is	given	

by	the	equation:	

	

df

dg
=

Äf

Ä~ Å
+

Äf

Ä� É

Ä�

Ä~
 Eq. 1 

	

The	first	term	on	the	right	side	of	Eq.	1	gives	the	stiffness	of	the	lattice	neglecting	any	change	

in	the	defect	mode’s	amplitude.		The	second	term	describes	the	effect	of	the	oscillation	of	

the	 defect	mode.	 The	 function	 Äf Ä� É	 is	 the	 change	 in	 the	 force	 due	 to	 a	 change	 in	

amplitude	of	the	defect	mode	and	quantifies	the	intensity	of	the	thermal	expansion.	From	a	

dynamical	point	of	view,	this	arises	due	to	an	asymmetry	of	the	 interaction	potential[208]	

and	in	our	 lattice	 is	always	positive	(see	Supplemental	Materials).	Finally,	the	effect	of	the	

strain	on	the	amplitude	of	the	mode	is	contained	in	the	quantity	Ä� Ä~.	
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The	vibration	amplitude’s	dependence	on	strain	is	a	consequence	of	the	harmonic	excitation	

and	of	the	nonlinearity	present	in	the	chain.	The	harmonic	excitation	results	in	a	defect	mode	

resonance,	 which	 occurs	 when	 the	 defect	 mode’s	 frequency	 fÑ	 matches	 the	 excitation	

frequency	fÖ.	The	nonlinearity	relates	the	mode’s	frequency,	fÑ,	to	the	lattice	strain,	~[139].	

In	our	system	the	Hertzian	contact	results	in	the	relationship,	fÑ ∝ ~o á.	As	a	result,	straining	

the	 lattice	 causes	 a	 change	 in	 the	mode’s	 frequency	 (Fig.	 2.2a).	 If	 the	mode’s	 frequency	

approaches	the	excitation	frequency,	the	mode	gets	closer	to	resonance,	and	therefore	the	

oscillation	 amplitude	 increases.	 Conversely,	 if	 the	mode	 frequency	moves	 away	 from	 the	

excitation	 frequency,	 the	oscillation	amplitude	decreases	 (Fig	2.2b.).	This	 strain	controlled	

resonance	 results	 in	 a	 dependence	 of	 amplitude	 on	 strain	 and	 therefore,	 in	 a	 non-zero	

Ä� Äg.	

	

Different	excitation	frequencies	cause	the	resonance	to	happen	at	different	strain	values	(Figs	

2.2a,b).	 This	 is	 due	 to	 aforementioned	 frequency	 strain	 relationship,	 which	 associates	 a	

particular	resonance	strain	to	each	excitation	frequency.	By	choosing	the	excitation	frequency	

we	are	able	to	set	the	displacement	region	where	the	system	is	in	resonance	and	the	stiffness	

is	being	modified	(Fig.	2.2b).	
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FIG.	2.2:	Response	of	the	nonlinear	defect	mode.	(a)	Theoretical	defect	mode	(blue)	and	acoustic	

band	(green)	frequencies	dependence	on	prescribed	displacement.	Experimental	measurements	

are	 plotted	 as	 red	 dots	 with	 the	 four	 curves	 in	 panel	 (b)	 marked	 with	 black	 crosses.	 (b)	

Normalized	experimental	velocity	of	the	defect	mode	as	a	function	of	displacement	of	the	lattice.	

Curves	 correspond	 to	 excitation	 frequencies	 of	 10(blue,	 solid),	 10.5(green,	 dashed),	 11(red,	

dashed-dotted)	and	11.5	kHz	(cyan,	dotted).	The	frequencies	in	panel	(a)	are	obtained	by	fitting	

these	 curves	 using	 a	 Lorentzian	 function.	 (c)	 Experimental	 velocity	 of	 the	 defect	 mode	 àÖ,	

measured	at	 the	site	next	 to	 the	defect	particle,	 for	drive	amplitudes	of	4.2,	 (blue,	 solid),	9.8	

(green,	dashed)	and	15.4	nm	(red,	dotted)	all	at	10.5	kHz.	(d)	Numerical	results	corresponding	to	

c,	for	defects	driven	at	20,	50,	and	80	nm,	respectively.	Our	discrete	particle	model	(see	Methods)	

qualitatively	 reproduces	 the	 experimental	 results,	 but	 is	 unable	 to	make	precise	 quantitative	

predictions,	this	could	be	due	to	the	fact	that	our	model	neglects	experimental	factors	such	as	

internal	particle	and	actuator	resonances,	as	well	as	the	nonlinear	friction	between	the	particles	

and	the	rods.		

	

The	effect	of	 the	excitation	amplitude	on	the	defect’s	vibration	 is	 shown	 in	Fig.	2.2c,d.	As	

expected,	 driving	 the	 defect	 with	 larger	 harmonic	 forces	 results	 in	 larger	 oscillations.	

Furthermore,	 as	 the	 excitation	 amplitude	 gets	 larger	 the	 resonance	 response	 becomes	

increasingly	asymmetric.	This	is	a	common	property	of	driven	nonlinear	oscillators	close	to	a	
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bifurcation[212].	 As	 nonlinear	 system’s	 approach	 bifurcation	 points,	 oscillations	 become	

extremely	sensitive	to	the	strain[213];	 in	our	system	the	magnitude	of	Ä� Äg	approaches	

minus	 infinity.	 This	 allows	 us	 to	 achieve	 arbitrarily	 large	 negative	 values	 of	 incremental	

stiffness.		

	

These	 extreme	 negative	 values	 have	 been	 attained	 experimentally.	 The	 measured	 force-

displacement	curves	at	four	different	drive	amplitudes	are	shown	in	Fig.	2.3.	The	incremental	

stiffness	at	our	selected	strain	progressively	decreases	as	the	defect	excitation	is	increased	

(Fig.	 2.3a-d).	 For	 the	 largest	 excitation	 amplitude,	 the	 force-displacement	 curve	 is	

discontinuous,	indicating	that	the	stiffness	is	extremely	negative	(Fig.	2.3d).	This	indicates	that	

the	excitation	is	very	close	or	above	the	bifurcation	amplitude.	In	order	to	validate	that	this	

effect	 is	 due	 to	 the	 defect’s	 vibration,	 we	 simultaneously	 measure	 the	 defect’s	 mode	

amplitude,	 presented	 below	 each	 force-displacement	 curve	 in	 Fig.	 2.3a-d.	 The	 greatest	

change	in	the	incremental	stiffness	happens	where	the	slope,	Ä� Äg,	is	the	most	negative.	

This	 occurs	 because	 larger	 changes	 in	 vibrational	 amplitude	 are	 accompanied	 by	 larger	

changes	in	dynamic	expansion.	The	forces	introduced	by	this	dynamic	expansion	are	small,	a	

feature	that	we	attribute	to	the	dimensions	of	our	system	and	the	properties	of	the	Hertzian	

interaction.	 It	 should	 be	 noted	 that	 the	 negative	 stiffness	 values	 are	 stable	 because	 our	

experiment	is	done	under	prescribed	displacement	boundary	conditions.	
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FIG.	 2.3:	 Experimental	 tuning	 of	 the	 incremental	 stiffness.	 Force-	 displacement	 curves	 for	

excitation	amplitudes	of	 (a)	5.9	nm	 (b)	6.4	nm	 (c)	7.54	nm	 (d)	10.9	nm.	Shown	below	are	 the	

defect	mode	velocities	 (proportional	 to	the	mode	amplitude,	�(x))	as	a	 function	of	 the	overall	

displacement,	g,		of	the	lattice.	In	panel	d,	the	system	discontinuously	transitions	between	two	

oscillation	 branches.	 This	 introduces	 a	 region	 of	 completely	 vertical	 slope	 in	 the	 force-

displacement	curve.	The	curves	have	been	measured	at	an	increasing	displacement	rate	of	0.53	

nm/s.	

	

Each	pair	of	drive	frequency	and	amplitude	results	in	a	determined	incremental	stiffness	at	a	

particular	 displacement	 point.	We	 explore	 this	 relationship	 analytically	 by	 constructing	 a	

discrete	particle	model.	The	model	accounts	for	the	nonlinear	interaction	between	particles	

and	 for	 losses	 due	 to	 linear	 damping.	 (see	 Supplemental	 Information	 for	 a	 complete	

description)	in	Fig.	2.4a.	The	blue	lines	show	contours	at	the	same	excitation	amplitude	and	

the	red	lines	at	the	same	frequency.	To	get	a	particular	stiffness	at	a	desired	displacement,	

we	select	the	excitation	parameters	corresponding	to	the	 lines	passing	through	this	point.		

While	we	only	show	a	finite	number	of	constant	lines,	all	possible	values	in	the	shaded	region	

are	attainable.	In	the	theoretical	model,	the	stiffness	tuning	mechanism	works	to	arbitrarily	

large	displacements;	 in	 practice,	 the	 system	will	 be	 limited	 to	 a	 smaller	 range	due	 to	 the	

presence	of	plastic	deformation	at	the	contacts.	
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FIG.	2.4:	Theoretical	Investigation.	(a)	Map	relating	the	excitation	parameters	with	the	modified	

incremental	 stiffness	 and	displacement	point.	 Each	point	 position	 in	 the	map	 corresponds	 to	

tuning	the	stiffness	to	the	value	in	the	Y-axis	at	the	displacement	point	indicated	by	the	X-axis.	

Each	dotted	red	line	defines	a	set	of	tuned	stiffness	states	that	are	accomplished	by	the	same	

excitation	frequency.	Solid	blue	lines	represent	sets	of	tuned	stiffness	that	are	attained	by	the	

same	excitation	amplitude.	The	 intersection	between	 red	 lines	and	blue	 lines	determines	 the	

excitation	frequency	and	amplitude	required	to	achieve	the	stiffness	labeled	by	the	Y-axis	at	the	

displacement	labeled	by	the	X-axis.		(b)	Zero	frequency	band	gap	obtained	by	choosing	excitation	

parameters	corresponding	to	zero	stiffness	for	the	lattice.	The	blue	and	green	line	show	the	force	

transmitted	with	the	defect	drive	on	and	off,	respectively.	When	the	defect	excitation	is	turned	

off,	the	lattice	acts	as	a	linear	spring	for	small	deformations	around	the	prescribed	displacement	

value;	when	the	defect	excitation	is	turned	on,	there	is	a	band-gap	centered	at	zero	frequency.	

The	dotted	red	line	shows	the	band	gap	edge	frequency,	âä.	(c)	Force-displacement	relationships	

of	 the	 system	when	 it	 is	 driven	 above	 the	 bifurcation	 amplitude.	 The	 presence	 of	 a	 tunable	

hysteresis	allows	the	system	to	be	used	as	a	tunable	damper.	(d)	Analytical	force-displacement	

relation	 for	 a	 lattice	 of	 particles	 with	 the	 nonlinear	 interaction	 force	 law	f ã = �ãÑ.å	 (See	

supplemental	information	for	details	on	the	parameters	used),	with	a	defect	excitation	frequency	

of	 13.5	 KHz	 and	 amplitudes	 0.72N	 (blue,	 solid),	 0.74N	 (green,	 dashed),	 0.76N	 (red,	 dashed-
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dotted)	 and	 0.78N	 (cyan,	 dotted).	 For	 this	 potential	 exciting	 the	 defect	 mode	 results	 in	 an	

arbitrarily	large	positive	stiffness.	

 

A	remarkable	 feature	of	 the	mechanism	presented	 in	 this	 letter	 is	 that	 it	 results	 in	a	zero	

incremental	stiffness	for	certain	defect	excitation	parameters.	In	this	region	the	material	will	

support	a	load,	but	it	will	not	transmit	any	vibration	to	it,	which	is	of	great	practical	relevance	

[214].	 In	the	zero	stiffness	region	the	lattice	will	have	a	zero	frequency	band	gap.	Tunable	

band	gaps	in	mechanical	metamaterials	can	be	found	in	the	literature	[120,	215].	However,	a	

distinctive	feature	of	our	mechanism	is	that	it	leads	to	band-gaps	centered	at	zero	frequency.	

We	simulate	the	band-gap	using	our	numerical	model.	In	the	simulation,	the	lattice	is	subject	

to	a	static	compression.	We	adjust	the	defect’s	excitation	frequency	and	amplitude	to	tune	

the	stiffness	to	zero	at	this	compression	value.	We	then	apply	a	very	small	amplitude	periodic	

deformation	in	one	end	of	the	chain.	The	deformation	has	a	frequency	âç.	Simultaneously,	

we	monitor	the	transmitted	force	at	the	other	end	(Fig	2.4b).	We	can	see	that	the	band	gap	

exists	 only	 at	 low	 frequencies,	 and	 that	 that	 high	 frequency	 deformations	 can	 propagate	

without	attenuation.	We	quantify	the	width	of	the	band	gap	by	fitting	the	transmission	to	a	

first	order	high	pass	filter,	é âç = âç âä 1 + âç âä q.	This	results	in	a	cutoff	frequency,	

âä = 20.35	éè.	The	upper	end	of	the	band-gap	is	a	consequence	of	the	fact	that	the	predicted	

zero	 stiffness	 force	versus	displacement	 relationship	assumes	a	defect	mode	oscillating	 in	

steady-state.	When	we	change	the	deformation	of	the	lattice,	the	steady-state	oscillation	of	

the	defect	is	perturbed.	The	system	cannot	recover	the	steady	state	motion	instantaneously.	

The	 time	 it	 takes	 for	 the	 defect	 mode	 to	 relax	 back	 to	 its	 steady	 state	 limits	 the	 upper	

frequency	 of	 the	 band	 gap.	 The	 speed	 of	 the	 system	 can	 be	 analyzed	 by	 using	 a	 linear	

perturbation	method	(Floquet	analysis,	see	Supplemental	Information).	It	is	possible	to	attain	

higher	cut-off	frequencies	by	using	smaller	particles	(see	supplementary	information	of	ref.	

[21]).				

	

At	the	point	where	the	stiffness	reaches	minus	infinity,	the	dynamics	undergoes	a	bifurcation.	

Bifurcations	are	known	 to	occur	 in	granular	 lattices	with	defects	 [117].	At	 this	bifurcation	

point	the	system	goes	from	having	a	single	solution	to	having	multiple	stable	solutions[212].	
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This	leads	to	a	hysteretic	force-displacement	response,	with	the	system	following	different	

paths	when	contracting	or	expanding	(Fig.	2.4c).	The	area	of	the	hysteresis	loop	corresponds	

to	the	loss	of	energy	incurred	as	the	lattice	is	driven	around	a	compression	cycle.	The	non-

conservative	forces	in	the	system,	represented	by	the	damping	and	the	defect	excitation,	will	

dissipate	the	lost	energy	and	return	the	system	to	its	initial	state	after	a	cyclic	deformation.	

Since	changing	the	drive	amplitude	can	control	the	area	enclosed	in	the	hysteresis	loop,	this	

effect	can	be	used	to	implement	tunable	dampers.	We	present	an	experimental	observation	

of	the	tunable	damping	in	the	Supplemental	Information.	

	

The	changes	in	the	stiffness	that	we	present	in	this	letter	arise	due	to	the	presence	of	a	strain-

controlled	resonance	and	due	to	thermal	expansion.	These	effects	are	a	consequence	of	the	

nonlinear	 interaction	 between	 the	 lattice	 particles.	 The	 nonlinear	 interaction	 potential	

determines	the	sign	of	the	thermal	expansion,	as	well	as	the	shape	and	strain-dependence	of	

the	defect	resonance.	Therefore,	the	inter-particle	interaction	potential	determines	whether	

the	lattice’s	stiffness	will	become	extremely	positive	or	extremely	negative	when	driving	the	

defect	mode.	We	explore	the	effect	of	different	interaction	potentials	in	the	supplemental	

information.	For	the	case	of	a	force	law	of	the	form	f ã = �ãÑ.å	the	excitation	of	the	defect	

mode	results	in	an	increase	in	the	stiffness,	that	can	reach	arbitrarily	high	values.	Figure	2.4D	

presents	the	analytical	force-displacement	curves	for	this	case.		

	

We	have	 investigated	the	stiffness	of	a	 lattice	subject	to	 localized	defect	state	excitations.		

The	nonlinearity	couples	the	motion	of	the	defect	mode	to	the	bulk	properties	of	the	lattice.	

This	results	in	a	stiffness	that	can	take	arbitrarily	large	positive,	zero	or	negative	values.	This	

effect	 can	 introduce	zero	 frequency	band	gaps,	and	 for	high	excitation	 forces,	 the	 system	

becomes	hysteretic,	and	can	act	as	a	tunable	damper.	Future	studies	should	elucidate	the	

equivalent	 phenomenon	 in	 2D	 and	 3D	 lattices,	 and	 explore	 the	 effect	 of	 engineered	

interaction	potentials	 in	 the	 speed	 and	performance	of	 the	 system.	 	While	 our	 study	has	

focused	 on	 the	 effect	 of	 localized	 excitations	 on	 mechanical	 properties,	 we	 expect	 an	

analogous	phenomenon	to	exist	in	electromagnetic	systems,	such	as	Varactor	Loaded	Split	

Ring	Resonator	arrays.	This	is	due	to	the	fact	that	those	systems	present	quadratic[216]	and	
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cubic[217]	 nonlinearities,	 as	 well	 as	 a	 dependence	 of	 resonances	 on	 an	 external	 static	

bias[218].	

	

Supplementary:	Analytical	Model	
	
	
The	 system	 considered	 in	 this	 paper	 consists	 of	 a	 chain	 of	 particles	 coupled	 through	 an	

anharmonic	interaction	potential	(Fig.	2.S1A,B).	In	order	to	get	exact	results,	the	motion	of	all	

particles	needs	to	be	accounted	for.	However,	studying	the	dynamics	of	a	large	number	of	

particles	analytically	 is	a	difficult	problem.		 In	our	system,	we	can	avoid	this	complexity	by	

realizing	that	most	of	the	motion	is	concentrated	around	the	defect.	This	is	a	consequence	of	

the	 defect	 mode	 being	 highly	 localized.	 	 This	 localization	 allows	 us	 to	 capture	 all	 of	 the	

essential	dynamics	of	the	system	by	considering	a	single	oscillating	particle	and	assuming	that	

other	particles	in	the	lattice	displace	only	quasi-statically	(Supplemental	Fig	2.1C,	D).	By	using	

this	simplification,	we	can	qualitatively	reproduce	all	of	the	effects	that	we	have	observed	

experimentally,	such	as	the	tuned	force-displacement	relationship	of	the	lattice.	In	order	to	

accomplish	this,	we	consider	the	system	at	a	prescribed	total	displacement,	and	then	proceed	

to	 calculate	 the	 amplitude	 of	 vibration	 of	 the	 defect,	 as	 well	 as	 the	 static	 force	 at	 the	

boundary.			

	

At	each	fixed	compression	value,	we	model	the	defect	as	a	point	mass	M,	with	a	dynamic	

displacement	from	equilibrium,	êÖ.		The	defect	is	subject	to	a	linear	damping	fÖ = −íêÖ 	and	

a	periodic	excitation	force	f ì = fî cos ïì .			As	per	our	model	approximation,	we	consider	

the	neighboring	particles	to	have	a	constant	displacement	from	equilibrium	denoted	by	ñ.	

We	also	assume	that	the	defect	motion	happens	only	at	the	excitation	frequency,	and	is	given	

by	êÖ = � cos ïì + ó .	We	replace	the	particles	between	the	defect	neighbors	and	the	walls	

by	 a	 linear	 spring	with	 a	 force	 relation	f(Δ) = fÑ + sòñ,	 where	fÑ	 is	 the	 static	 force	 at	

equilibrium	and	sò 	is	calculated	by	linearizing	the	interaction	force	of	all	the	particles	after	

the	defect’s	neighbors	and	lumping	them	into	a	single	spring.	



	
30	

 
FIG.	2.S1: Analytical	model	of	the	system.	(a)	Initial	lattice	with	no	deformation.	The	lattice	consists	

of	a	chain	of	particles,	where	the	central	particle	is	a	defect	having	a	mass	M	smaller	than	the	rest	

of	the	particles.	The	defect	interacts	with	the	neighbors	through	a	nonlinear	force	fô ãö ,	where	ãö	

is	 the	 total	 distance	 separating	 the	 defect	 and	 the	 neighbors.	 (b)	 Deformed	 lattice.	 The	 lattice	

boundary	 has	 been	 displaced	 by	 an	 amount	 x.	 (c)	 Simplified	 system	 used	 in	 the	 analytical	

approximation.	For	each	fixed	displacement	value	x,	the	interaction	potential	between	the	defect	

and	the	neighbors	is	approximated	by	a	third	order	polynomial	f ã ,	where	ã = ãö − ãÑ,	ãÑ	being	

the	equilibrium	distance	between	 the	defect	and	 the	neighbors	 in	 the	deformed	 lattice	with	no	

defect	drive.	All	the	other	beads	in	the	chain	are	approximated	by	two	linear	springs	sò ,	with	sò 	

calculated	 independently	 for	each	deformation	value	x.	 (d)	 Simplified	 system	with	 the	defect	 in	

motion.	The	defect	is	displaced	from	equilibrium	by	an	amount	êÖ.	The	two	neighboring	beads	are	

statically	pushed	away	from	it	by	an	amount	ñ	due	to	thermal	expansion.	

 

We	 further	 simplify	 the	 system	by	 performing	 a	 Taylor	 expansion	 of	 the	 nonlinear	 spring	

connecting	 the	 defect	mode	with	 the	 two	 half-lattices	 on	 each	 side.	We	 take	 the	 Taylor	

expansion	up	to	third	degree,	f ã = fÑ + iã + iõãq + iõõãe.	Here,	fô ãö 	is	approximated	

by	the	f ã .	A	force	including	terms	up	to	third	degree	is	able	to	capture	static	equilibrium,	

linear	 oscillation,	 thermal	 expansion	 and	 resonance	 bending	 effects.	 The	 expansion	 is	

calculated	 around	 the	 inter-particle	 distance	 at	 rest,	 denoted	by	ãÑ.	 At	 each	deformation	

value,	 we	 calculate	 the	 coefficients	 in	 the	 Taylor	 expansion	 for	 the	 defect-neighbor	

interaction	and	the	linearized	spring	constant	for	the	half-lattices.		
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This	model	results	in	an	equation	of	motion	for	the	single	defect	particle	and	an	equation	for	

the	static	equilibrium	of	the	defect’s	neighbors.	Note	that,	due	to	the	symmetry	of	the	system,	

we	only	need	a	single	equilibrium	equation	for	the	two	neighbors.	

	

úêÖ + íêÖ − f −êÖ − ñ + f êÖ − ñ = fî cosïì Eq. S1a 

sòñ + fÑ = f êÖ − ñ  Eq. S1b 

	

To	solve	for	the	amplitude	and	static	force,	we	perform	a	harmonic	balance	[212]		including	

only	components	at	the	excitation	frequency,	and	discarding	terms	containing	powers	of	�q	

above	3.	We	neglect	higher	frequency	components	because	they	are	significantly	lower	in	the	

frequency	spectrum	of	the	defect’s	vibration.	For	the	neighbor’s	equation,	we	neglect	all	the	

harmonic	terms	and	take	only	the	zero-frequency	component	force.	This	procedure	results	in	

the	following	condition	for	the	amplitude	of	the	defect:	

	

�q 2i	 +
3

4
2iõõ −

8

3

iõq

sä + i
	 �q 	− ú	ïq

q

+ íï q − fî
q = 0 

Eq. S2 

	

The	harmonic	balance	condition	allows	us	to	determine	the	vibration	amplitude	of	the	defect,	

since	all	other	variables	are	known:	The	parameters	i,	iõ,	iõõ	and	sä 	depend	on	the	total	

deformation	of	the	lattice,	which	is	prescribed.	fî	and	ï	describe	the	defect	excitation	and	

are	also	prescribed.	The	defect’s	mass	ú	and	damping	í	are	fixed	parameters	of	the	system.		

	

We	can	get	further	insight	on	the	properties	of	this	system	by	realizing	that	the	amplitude	

condition	(Eq.	S2)	is	identical	to	the	one	that	is	obtained	by	performing	the	same	harmonic	

balance	procedure	on	a	Duffing	oscillator.	A	Duffing	oscillator	is	a	single	degree	of	freedom	

dynamical	 system	 described	 by	 the	 equation	 g + o

ù
g + ïûqg + üge = fÖ ú,	 and	 is	 an	

extremely	well	studied	system.	In	order	to	transform	our	system	into	a	Duffing	oscillator,	we	

use	the	equations:	

	

ïÑ
q =

2i

ú
 Eq. S3a 
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Eq. S3b 

	

Knowing	 the	 vibration	 amplitude	 of	 the	 defect,	 it	 is	 possible	 to	 determine	 the	 thermal	

expansion,	and	therefore	the	force	at	the	boundary.	To	do	so	we	use	the	defect	neighbor’s	

equilibrium	equation,	and	the	fact	that	the	force	on	the	linearized	spring	sò ,	that	connects	

the	defect’s	neighbors	to	the	boundary,	is	the	same	on	both	ends	of	the	spring.	

	

f† = fÑ +
o

q

°¢

o£
§
§•

	�q. 
Eq. S4 

	

As	expected,	the	force	at	the	boundary	is	the	sum	of	the	force	without	any	defect	drive,	and	

a	 thermal	 expansion	 term	 that	 increases	 with	 increasing	 defect	 motion.	 The	 thermal	

expansion	is	a	consequence	of	the	asymmetric	terms	in	the	interaction	potential.	During	a	

period	of	 the	defect	oscillation	around	an	equilibrium	point,	 symmetric	 terms	result	 in	an	

equal	 amount	 of	 attractive	 and	 repulsive	 force.	 In	 contrast,	 asymmetric	 terms	 introduce	

different	amounts	of	attractive	and	repulsive	force,	and	therefore	produce	a	net	effect	in	the	

force	at	the	boundary.				

	

Since	the	analytical	model	allows	us	to	predict	the	static	force	at	each	displacement	value,	we	

can	 differentiate	 this	 prediction	 with	 respect	 to	 the	 displacement	 in	 order	 to	 obtain	 the	

stiffness	(Eq.	S5).	This	equation	contains	the	original	stiffness	of	the	lattice,	a	term	relating	

changes	in	force	at	the	boundary	to	changes	in	the	vibration	amplitude	of	the	defect,	and	a	

term	due	to	the	change	in	the	thermal	expansion	coefficient	as	the	lattice	is	compressed.	
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Eq. S5 

 

The	term	d� dg	can	be	found	implicitly	from	the	harmonic	balance.	This	is	done	by	thinking	

of	the	balance	condition	(Eq.	S2)	as	a	function	of	the	amplitude	and	displacement,	and	noting	

that	the	amplitude	itself	depends	on	the	displacement:	
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q. Eq. S6 

	

Since	this	function	must	stay	constant	at	zero	for	all	displacements,	its	total	derivative	with	

respect	to	the	displacement	must	also	be	zero:	

	
d´

dg
=
Ä´

Ä�

d�

dg
+
Ä´

Äg
= 0 Eq. S7 

	

From	the	previous	equation,	it	is	possible	to	obtain	a	closed	expression	for	d� dg,	provided	

that	the	amplitude	of	oscillation	is	known:	

	

ÖÅ

Ö®
= −

ÆØ
Æ∞ ±
ÆØ
Æ± ∞

. 
Eq. S8 

  

 
FIG.	2.S2:	Analytical	predictions	and	comparison	to	numerical	results.	(a)	Defect	particle	velocity	

obtained	by	numerically	integrating	the	equations	of	motion	for	the	full	system.	The	excitation	

amplitudes	are	10	nm	(blue),	30	nm	(green),	50	nm	(red),	and	70	nm	(cyan).	(b)	Defect	velocity	

predicted	by	the	analytical	model	for	excitation	forces	of	25	mN	(blue),	75	mN	(green),	125	mN	

(red),	175	mN	(cyan).	The	amplitudes	of	vibration	in	panels	(a)	and	(b)	correspond	to	the	defect	

particle	and	not	the	defect	neighbor	as	in	Fig	2	of	the	main	paper.	(c)		Force-displacement	relation	

of	the	material	obtained	through	numerical	integration,	for	excitation	amplitudes	of	64	nm	(blue),	

66	nm	(green),	68	nm(red)	70	nm	(cyan)	and	72	nm	(purple).	(d)	 	 Force-displacement	 relation	

obtained	analytically,	for	defect	drive	forces	of	139	mN	(blue),	144	mN	(green),	149	mN	(red),	154	

mN	(cyan)	and	159	mN	(purple).	All	panels	are	calculated	for	an	excitation	frequency	of	10.5	KHz.	

	

We	have	presented	a	simplified	model	that	captures	the	tuning	of	the	incremental	stiffness	

through	the	excitation	of	local	defect	modes.	The	analytical	model	qualitatively	reproduces	

the	results	of	the	system	in	spite	of	the	fact	that	 it	reduces	the	nonlinear	dynamics	of	the	
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system	of	9	particles	to	a	single	closed	polynomial	expression.	We	use	the	model	to	engineer	

the	nonlinear	interaction	potential	so	it	allows	us	to	tune	the	stiffness	to	arbitrarily	positive	

values.	This	is	accomplished	by	looking	at	the	stiffness	equation	(Eq.	S5).	When	the	changes	

in	the	stiffness	are	very	large,	the	term	iõ� Ä� Äg	is	always	dominant.	This	is	because	Ä� Äg	

can	grow	arbitrarily	 large,	while	 the	other	terms	 in	 the	equation	are	bounded.	The	term’s	

contribution	to	the	stiffness	of	the	chain,	s,	is	given	by:	

ñs = −
Å

o£
§
™•

°¢
ÆØ
Æ∞ ±
ÆØ
Æ± ∞

.  
Eq. S9 

	

This	 contribution	 is	 large	when	 the	system	approaches	a	bifurcation.	When	 that	happens,	

Ä´ Äg	tends	to	zero.	Depending	on	the	sign	of	the	numerator	−iõ Ä´ Äg ,	the	stiffness	will	

grow	arbitrarily	positive	or	arbitrarily	negative.	We	study	this	value	for	a	power	law	potential,	

f = �g≤	(Supplemental	Fig.	2.S3A).	When	the	exponent	p	is	between	0	and	1,	the	numerator	

is	positive.	 In	 lattices	with	 this	kind	of	 interaction	 force	 law,	 the	stiffness	can	be	 tuned	to	

arbitrarily	positive	values	(Fig.	2.S3B).	Recently	proposed	theoretical	work	[219],	combined	

with	novel	microfabrication	techniques[220]	should	enable	the	design	of	mechanical	lattices	

with	tailored	interaction	potentials.	Therefore,	it	should	be	possible	to	create	materials	with	

stiffness	that	can	be	tuned	over	a	broad	range	to	positive	or	negative	values.	

	

 
Figure	2.S3: Stiffness	tuning	to	positive	infinity.	(a)	Stiffness	numerator	corresponding	to	a	power	

law	potential	f = o

≤
ãö
≤	as	a	function	of	the	exponent.	Calculated	for	a	chain	of	9	particles	with	ã≥ =

1.	Parameters	are	ú = 1	and	í = 0.025.	(b)	 	Map	relating	the	applied	excitation	frequency	and	

amplitude	to	the	stiffness	for	a	9-particle	lattice	with	a	power	law	interaction	force	exponent	f =
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�¥Ñ.å,	� = 1.5 ∗ 10å.	The	defect	mass	 in	the	map	 is	3.552g	and	the	damping	l	 is	0.275	ms.	The	

force	law	exponent	0.5	is	indicated	as	a	red	dot	in	(a).	

Supplementary:	Transient	Analysis	
	

In	 this	 work,	 we	 have	 demonstrated	 that	 is	 possible	 to	 modify	 the	 force-displacement	

response	of	a	lattice	by	applying	an	excitation	to	a	defect	mode.	The	mechanism	underlying	

the	changes	 in	 the	 force-displacement	 relation	 requires	 the	defect	oscillation	 to	be	 in	 the	

steady	state.	If	the	lattice	is	deformed	dynamically	at	high	speed,	the	defect	mode	oscillation	

will	not	be	able	to	reach	the	steady	state.	This	will	result	in	a	breakdown	of	the	picture	we	

have	presented.	The	goal	of	this	section	is	to	investigate	the	system’s	convergence	towards	

the	steady	state,	in	order	to	identify	the	maximum	frequency	at	which	the	lattice	can	operate,	

as	well	as	its	dependence	on	the	system	parameters.	

	

Changes	in	the	system	as	a	perturbation	of	the	kinematic	variables	
	

We	will	study	the	speed	of	convergence	to	the	steady	state	by	considering	a	system	oscillating	

in	steady-state	and	treating	changes	in	the	deformation	of	the	lattice	as	perturbations	to	the	

steady	state	oscillation.		

	

The	nonlinear	 dynamical	 system	presented	 in	 this	 letter	 can	be	described	by	 a	 system	of	

equations	of	the	form:	

dg

dì
= âÑ g 	

Eq. S10 

	

Where	g	is	a	vector	with	2n	components,	n	being	the	number	of	particles	in	the	system.	The	

first	n	components	describe	the	particle’s	displacements	from	equilibrium,	and	the	second	n	

components	describe	the	time	derivatives	of	said	displacements.	The	steady-state	solution	to	

this	 system	will	 be	 labeled	 as	gÑ ì .	 The	 function	âÑ	 can	 be	 obtained	 by	 considering	 the	

equations	of	motion	and	the	Hertzian	interaction	law,	as	described	in	the	numerical	methods	

part	of	the	Materials	and	Methods	section.	

	

The	Hertzian	interaction	force	between	particles	has	the	form:	
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f êô, êô£o = � êô − êô£o + ãô £

e
q 	

Eq. S11 

	

Where	A	is	a	Hertzian	contact	parameter,	êô 	and	êô£o	are	the	positions	of	two	neighboring	

particles,	and	ãô 	is	the	overlap	between	the	two	particles	at	equilibrium,	computed	with	no	

defect	 excitation.	 This	 force	 law	 is	 dependent	 on	 the	 equilibrium	 overlap	 between	 the	

particles.	When	the	system	is	compressed,	this	overlap	will	be	modified	and	so	will	the	force	

law.	In	this	case,	Eq	S10	will	no	longer	describe	the	dynamics	of	the	system.	Instead,	we	will	

have	a	new	function:	

	

dg

dì
= âo g 	

Eq. S12 

	

In	general,	the	steady-state	solution	gÑ ì 	of	the	system	âÑ	will	not	be	a	steady-state	solution	

of	the	system	âo.	Instead,	the	system	âo	will	have	a	new	steady-state	solution	described	by	

go(ì).	 If	the	change	is	small,	the	new	steady-state	solution	will	be	close	to	the	old	steady-

state	solution.	We	will	then	describe	the	state	of	the	system	as	g ì = go ì + ñg.	Where	

go ì 	is	the	current	exact	steady	state	solution,	and	ñg	is	a	small	perturbation	that	must	decay	

for	the	system	to	be	in	steady	state.	Provided	that	ñg	is	small	enough,	the	equation	of	motion	

for	the	system	can	be	linearized	and	expressed	as:	

	

dgo
dì

+
dñg

dì
= âo go ì +

Äâô
o

Äg∂ ®∑(ö)

ñg∂ 	
Eq. S13 

	

Since	 go(ì)	 is	 a	 solution	 to	 the	 system,	 we	 know	 that	 Ö®
Öö
= âo go ì ,	 so	 the	 previous	

equation	can	be	written	as:	

	

dñg

dì
=

Äâô
o

Äg∂ ®∑(ö)

ñg∂ = r ì ñg	
Eq. S14 
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Where	rô∂ =
∏π∫

∑

∏®ª
	is	the	Jacobian	of	the	system.	This	treatment	results	in	a	linear	differential	

equation	with	periodically	varying	coefficients.	This	is	a	consequence	of	the	fact	that	go ì 	is	

the	 periodic,	 steady	 state	 solution,	 and	 therefore	 its	 derivatives	 are	 also	 periodic.	 If	 the	

system	 is	 stable,	 the	 perturbation	 ñg	 will	 decay	 over	 time,	 and	 the	 trajectory	 g(ì)	 will	

converge	to	the	limit	cycle		solution.	Linear	systems	with	time-varying,	periodic	coefficients	

can	be	analyzed	using	Floquet	theory.	A	key	result	of	Floquet	theory	is	that	the	solution	of	a	

linear	differential	equation	with	periodic	coefficients	is	of	the	form[221]:	

	

ñg ì = ºnÅöê ì 	 Eq. S15 

	

Where	�	is	a	matrix	quantity	and	ê ì 	is	a	periodic	function	that	satisfies	ê ì = ñg(0).	

Since	ê ì 	is	periodic	and	therefore	bounded,	the	rate	of	decay	for	each	component	of	the	

perturbation	will	be	bounded	by	the	largest	eigenvalue	of	ºnÅö.	We	use	lÑ	to	refer	to	the	time	

constant	 associated	with	 this	 largest	 eigenvalue.	 Figure	 2.S4a	 illustrates	 the	 slowest	 time	

constant	of	the	system,	lÑ,	as	a	function	of	the	displacement	of	the	lattice.	This	is	done	for	

different	defect’s	excitation	amplitudes.	In	contrast	with	a	linear	harmonic	oscillator,	the	rate	

of	 convergence	 towards	 the	 steady	 state	 slows	 down	 with	 increasing	 defect	 excitation	

amplitude.	 The	 time	 constant	 diverges	 as	 the	 system	 approaches	 the	 amplitude	

corresponding	to	minus	infinite	stiffness,	which	means	that	the	system	will	be	limited	to	very	

slow	deformations	around	this	extreme	value.	

	

	

 
FIG.	2.S4:	Transient	analysis.	(a)	Numerical	solution	for	the	largest	Floquet	time	constant.	This	value	

determines	 the	 speed	 at	which	 the	 defect’s	 oscillation	 relaxes	 back	 to	 steady	 state.	 (b)	As	 the	

system	approaches	a	bifurcation,	the	amplitude	response	becomes	steeper,	and	(c)	the	stiffness	is	

modified	more	significantly.	This	is	accompanied	by	longer	relaxation	time	constants,	which	limits	
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the	speed	of	the	system.	In	all	figures,	the	defect’s	excitation	frequency	is	10.5	KHz.	The	excitation	

amplitudes	are	64.52	nm	(blue),	65.48	nm	(green),	66.32	nm	(red),	67.07	nm	(cyan)	and	67.74	nm	

(purple).		

 

Among	 all	 the	 stiffness	 that	 can	 be	 achieved	with	 the	method	 described	 in	 this	 letter,	 a	

particular	case	with	significant	practical	relevance	is	the	zero-stiffness	case.	A	lattice	with	zero	

stiffness	presents	a	zero	frequency	band	gap,	similar	to	those	that	emerge	when	the	particles	

are	subject	to	a	local	potential.	This	type	of	system	is	able	to	block	the	transmission	of	low-

frequency	vibrations.	However,	the	system	is	only	able	to	block	vibrations	slow	enough	for	

the	defect	to	be	able	to	stay	in	steady	state	oscillation.	We	investigate	the	particular	case	of	

a	 zero-stiffness	 lattice	 using	 the	 Floquet	 analysis	 method	 that	 we	 have	 presented.	 The	

resulting	 slowest	 time	 constant	 is	 lÑ = 7.807	tu.	 This	 time	 constant	 results	 in	 a	 cutoff	

frequency	âù = 1 (2Ωl) = 20.39	éè.	We	observe	a	very	good	agreement	with	the	frequency	

cutoff	âä = 20.35	éè	obtained	in	Fig.	2.4B,	which	was	obtained	by	numerically	simulating	the	

transmission	of	a	vibration	through	the	lattice.	This	indicates	that	the	bound	provided	by	the	

largest	eigenvalue	is	tight,	suggesting	a	significant	gain	between	bulk	lattice	deformations	and	

the	perturbation	component	êÑ ì 	associated	to	lÑ.	

	

Supplementary:	Materials	and	methods	
 

Numerical	simulations:		
	

The	numerical	results	are	obtained	by	integrating	the	Newton’s	second	law	of	motion	for	each	

of	the	nine	particles.	The	interaction	between	particles	is	modeled	by	the	Hertzian	contact	

law	[100,	222],	

fô Δ = æôΔ
e/q	¿â	Δ > 0	, fô Δ = 0	¿â		Δ ≤ 0	 Eq. S16 

	

	
, 

 

in	which	Δ	is	the	overlap	of	the	Hertzian	potential,	æô	is	a	contact	factor	between	particles	

depending	on	geometry	and	material.	Using	this	notation	the	equations	of	motion	are:	



	
39	

	

tôgô = fô ãô + gôno − gô − fô£o ãô + gôno − gô − tôgô/l	.	 Eq. S17 
 

In	 this	 equation,	 the	 force	 acting	 on	 each	 particle	 is	 given	 by	 the	 interaction	 between	

neighbors	and	a	linear	damping	term.	The	linear	damping,	l,	as	well	as	the	Hertzian	contact	

factors	 between	 the	 lattice	 and	 the	 setup,	 æÑ	 and	 æoÑ,	 are	 fitted	 experimentally.	 The	

equations	also	contain	 the	masses	of	each	particle,	tô,	and	 the	equilibrium	static	overlap	

between	particles	ãô.	The	sum	of	the	static	overlaps	is	the	total	displacement	(x)	applied	to	

the	lattice.	We	implement	the	prescribed	displacement	boundary	condition	by	adding	two	

additional	variables	gÑ	and	goÑ	and	holding	them	equal	to	zero.	For	experimental	fitting	and	

the	exact	numeric	values	used	in	simulations	see	the	“Model	Parameter”	section	below.		
 

Experimental	Methods	
	

The	experiments	are	carried	out	on	a	1-D	lattice	of	9	stainless	steel	316	beads	(McMaster-

Carr),	with	a	radius	of	9.525	mm.	We	replace	the	central	bead	by	a	defect	bead	with	a	radius	

of	4.763	mm,	and	we	replace	the	bead	next	to	the	defect	by	a	piezoelectric	actuator	(Physik	

Instrumente	PD050.31)	held	between	two	stainless	steel	cylinders	with	a	radius	of	10	mm	and	

a	length	of	4	mm.	The	chain	is	kept	in	place	using	two	polycarbonate	bars	of	6.4	mm	radius.		

	

The	amplitude	of	the	defect	mode	vibration	 is	measured	using	a	 laser	Doppler	vibrometer	

(Polytec	CLV-2534)	pointing	at	the	particle	next	to	the	defect,	and	the	compression	force	is	

measured	using	a	static	load	cell	(Omega	LCMFD-50N)	and	amplified	with	a	gain	of	100.	The	

electrical	outputs	from	the	sensors	are	measured	with	a	lock-in	amplifier	(Zurich	Instruments	

ZI-HF2LI).	 The	 strain	on	 the	 lattice	 is	 prescribed	using	 a	high-stroke	piezoelectric	 actuator	

(Physik	Instrumente	P-841.60).	The	force-displacement	curves	are	obtained	at	a	steady	state	

by	waiting	1.5	seconds	to	ensure	quasistatic	behavior.		

Supplementary:	Model	Parameters	
	
We	obtain	the	numerical	results	by	simplifying	the	complex	dynamics	of	the	granular	chain	to	

a	 discrete	 particle	 model	 following[100].	 The	 table	 below	 lists	 the	 values	 used	 in	 the	

simulations,	which	are	either	measured	experimentally	or	fit	for.	We	fit	for	two	parameters	

in	our	model.		
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The	first	is	the	lattices’	Hertzian	contact	stiffness	at	the	ends.	We	found	that	the	experimental	

support	expands	slightly	as	a	result	of	 its	 finite	stiffness.	We	include	this	by	modifying	the	

contact	stiffness	at	the	edges	of	the	chain.	This	does	not	affect	the	dynamics	at	the	defect	

site.	Supplemental	Figure	2.S5	shows	the	Hertzian	fit	used	to	find	the	total	stiffness	of	the	

chain	and	supporting	structure,	æπôö
nq/e = æôô

nq/e.	

	

 
FIG.	2.S5: Experimental	fits	to	determine	numerical	parameters.	(a)	Fit	of	the	static	response	of	the	

chain	to	Hertzian	Force	Law.	(b)	Fit	of	the	linear	amplitude	response	of	the	defect	to	a	Lorentzian	

to	determine	the	linear	dissipation	of	the	chain.	

 

The	 second	parameter	we	 fit	 for	 is	 the	 linear	dissipation	of	 the	particles.	 To	 find	 this,	we	

perform	a	frequency	sweep	at	low	amplitude	drive	excitations	in	the	experiment	and	fit	the	

measured	amplitude	response	to	a	Lorentzian.		We	measure	the	quality	factor	of	the	mode	

and	then	choose	a	dissipation	time	constant	for	the	numerical	model	that	results	in	the	same	

quality	factor	for	the	defect	mode.	

	

The	contacts	at	the	excitation	particle	are	modified	to	include	the	sinusoidal	expansion	of	the	

chain.	Because	the	stiffness	of	the	piezoelectric	disk	is	much	larger	than	the	Hertzian	contacts,	

the	piezo	expands	proportional	to	the	voltage	applied,	and	the	assembled	structure	can	be	

assumed	to	move	as	a	single	expanding	bead.	

	

æô = 9.7576	¬/√t
e q, ¿ ≠ 1,5,7,10 Sphere – sphere contact stiffness 

æo = æoÑ = 1.7106	 ¬ √te q , ¿ = 1,10 Boundaries contacts stiffness 
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æå = 7.9670	 ¬ √te q	 Defect sphere contact stiffness 

æƒ = 13.799	 ¬ √te q Excitation particle – sphere contact 

stiffness 

tô = 28.4	z, ¿ ≠ 6,7 Sphere mass 

t≈ = 3.6z, tƒ = 20.2z Defect mass, and excitation particle mass 

ãô =
fÑ
æô

q/e

	 , ¿ ≠ 6,7 Equilibrium spatial overlap 

ãô =
fÑ
æô

q/e

+ 	
∆

2
cos	(2ΩâÖì)	, ¿ = 6,7 

Spatial overlap including the harmonic 

signal applied to the excitation particle 

l = 0.275tu Dissipation time constant 

 
Table S1: Model Parameters. The values of C1, C10, tô, t≈ and τ are experimentally 

measured. The value of the contacts æô, ¿ ≠ 1,10 is obtained from the Hertzian contact law. 

Supplementary:	Experimental	observation	of	tunable	damping	
 
When	the	defect	mode	is	excited	above	the	bifurcation	amplitude,	the	system	has	two	stable	

solutions.	 This	 results	 in	 hysteretic	 amplitude-displacement	 and	 force-displacement	

responses.	 Hysteretic	 force-displacement	 relations	 dissipate	 energy	 and	 therefore	 can	 be	

used	to	implement	tunable	dampers.	Here	we	include	an	experimental	observation	of	these	

hysteretic	responses.	
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FIG.	2.S6:	Experimental	tunable	damping.	The	upper	panels	present	the	Force-Displacement	relation	

for	an	excitation	of	(a)	7.54	nm	(b)	8.38	nm	and	(c)	9.22	nm.	The	lower	panels	show	the	Amplitude-

Displacement	relation	for	the	corresponding	excitation	amplitude.	The	insets	in	(a)	provide	a	detail	of	

the	Force-Displacement	relation	at	the	transition	point	between	high	and	low	amplitude	solutions.	

The	transition	between	amplitudes	occurs	discontinuously	in	a	single	step.	The	displacements	have	

been	corrected	for	drift	at	a	rate	of	119.4	pm/s,	141.8	pm/s	and	104.5	pm/s	respectively. 

Supplementary:	Experimental	characterization	of	the	lattice’s	stiffness	
	

The	 incremental	 stiffness	 is	defined	as	 the	derivative	of	 the	boundary	 force	f	with	 respect	 to	 the	

lattice	displacement	~.	 Calculating	numerical	 derivatives	 from	experimental	 data	 is	 hard.	 This	 is	 a	

consequence	 of	 the	 noise	 and	 discrete	 nature	 of	 the	 experimental	 measurements.	 Figure	 2.S7	

provides	 the	 numerical	 derivative	 of	 the	 force	 as	 a	 function	 of	 the	 displacement,	 at	 the	 point	 of	

maximally	tuned	slope,	for	a	set	of	25	measurements.	
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FIG.	 2.S7:	 Experimental	 measurement	 of	 the	 incremental	 stiffness.	 (a)	 Comparison	 between	 the	

experimental	stiffness	(blue),	obtained	by	numerical	differentiation	of	the	experimental	results	and	a	

theoretical	fit.	The	theoretical	fit	has	been	obtained	by	scaling	the	excitation	force	in	the	numerical	

prediction	 in	 order	 to	 match	 the	 initial	 part	 of	 the	 curve.	 (b)	 Differentiation	 of	 discretized	

measurements.	The	purple	line	corresponds	to	a	numerical	simulation.	The	dots	correspond	to	the	

experimental	measurements	and	are	spaced	at	10	nm	to	match	the	resolution	of	our	setup.		The	green	

line	corresponds	to	the	stiffness	obtained	by	numerical	differentiation. 
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Abstract	

	

We	 study	 frequency	 conversion	 in	 nonlinear	 mechanical	 lattices,	 focusing	 on	 a	 chain	 of	

magnets	as	a	model	system.	We	show	that	by	inserting	mass	defects	at	suitable	locations,	we	

can	introduce	localized	vibrational	modes	that	nonlinearly	couple	to	extended	lattice	modes.	

The	nonlinear	 interaction	 introduces	an	energy	 transfer	 from	the	high-frequency	 localized	

modes	 to	 a	 low-frequency	 extended	 mode.	 This	 system	 is	 capable	 of	 autonomously	

converting	energy	between	highly	tunable	input	and	output	frequencies,	which	need	not	be	

related	by	integer	harmonic	or	subharmonic	ratios.	It	is	also	capable	of	obtaining	energy	from	

multiple	 sources	 at	 different	 frequencies	with	 a	 tunable	 output	 phase,	 due	 to	 the	 defect	

synchronization	provided	by	the	extended	mode.	Our	lattice	is	a	purely	mechanical	analog	of	

an	optomechanical	system,	where	the	localized	modes	play	the	role	of	the	electromagnetic	

field,	and	the	extended	mode	plays	the	role	of	the	mechanical	degree	of	freedom.		
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Introduction		
	

Frequency	converting	processes	have	applications	in	a	variety	of	problems,	for	example,	in	

obtaining	different	wavelengths	from	a	fixed-frequency	 laser[223],	harvesting	energy	from	

vibration	 sources[224]	 and	 generating	 entangled	 photons[225].	 Typically,	 frequency	

conversion	 is	 accomplished	 through	wave	mixing[226]	 (which	 requires	 at	 least	 two	 input	

signals	with	a	prescribed	frequency	difference),	harmonic	generation[223]	(which	produces	

an	output	that	 is	a	multiple	of	 the	 input	signal)	and	subharmonic	bifurcations[227]	 (which	

produce	 an	 output	 that	 is	 an	 integer	 fraction	 of	 the	 original	 signal).	 In	 addition,	 these	

frequency	 conversion	mechanisms	 prescribe	 the	 output’s	 signal	 phase,	which	 hinders	 the	

process	of	harvesting	energy	from	multiple	sources.	Combination	resonances[228],	processes	

that	arise	in	the	presence	of	multiple	nonlinearly-interacting	modes,	can	achieve	frequency	

down-conversion	between	arbitrary	 input	and	output	signals	not	related	by	a	harmonic	or	

subharmonic	ratios.	The	resulting	input	and	output	frequencies	can	be	tuned	by	adjusting	the	

modes’	 frequencies.	 Combinational	 resonances	 can	 be	 found,	 for	 example,	 in	 vibrating	

beams[229],	membranes	and	plates[230].	

	

In	 this	 paper,	 we	 show	 that	 nonlinear	 lattices	 have	 the	 potential	 to	 act	 as	 frequency-

converting	devices,	due	to	the	combination	resonances	arising	from	the	nonlinear	interaction	

between	the	lattice’s	normal	modes.	Chains	of	nonlinearly	interacting	elements	have	been	

studied	for	decades,	beginning	in	the	FPU	problem[89,	231]	.	They	present	a	wide	variety	of	

phenomena,	 including	 solitons[232,	 233],	 band-gaps[119],	 energy	 trapping[125],	

breathers[85,	 116],	 unidirectional	 wave	 propagation[123],	 negative	 or	 extreme	

stiffness[129],	localized	modes	with	tunable	profile[128],	shocks	and	rarefaction	waves[124].	

These	 phenomena	 can	 be	 used	 to	 realize	 acoustic	 rectifiers[123],	 logic	 gates[138],	

lenses[134],	 filters[118],	 vibration-attenuation[24]	 and	 energy	 harvesting	 systems[116].	

Nonlinear	 lattices	 can	 be	 implemented	 using	 a	 broad	 range	 of	 materials[234],	

geometries[131]	and	interactions[102],	allowing	to	tune	the	masses,	coupling	strengths	and	

damping	values	of	the	particles	to	optimize	the	performance	under	the	required	operating	

conditions.	Because	of	this	tunability,	nonlinear	metamaterials	are	a	promising	candidate	for	

energy	converting	devices.		
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FIG	3.1:	Frequency-converting	metamaterial	concept.	(a)	Metamaterial	design	consisting	of	a	chain	of	

nonlinearly-interacting	magnets.	The	central	particle	of	the	chain	is	a	defect,	which	has	a	lower	mass.	

This	magnet	 acts	 as	 the	 high-frequency	 input	 to	 the	 system.	 The	 down-converted	 energy	 can	 be	

extracted	 far	away	 from	the	defect.	 In	our	experiments,	 the	defect	 is	driven	by	a	wire	carrying	an	

electrical	current	(Yellow	arrow).	(b)	Cropped	image	of	the	experimental	magnet	chain,	obtained	using	

the	same	computer	vision	camera	that	is	also	used	to	track	the	magnets.	Each	magnet	is	enclosed	in	

a	 3D	 printed	 case,	 and	 has	 a	 random	 speckle	 pattern	 to	 facilitate	 its	 tracking	 by	 digital	 image	

correlation.	(c)	Extended	mode	of	vibration.	The	red	hollow	circle	is	the	defect	particle,	while	the	blue	

solid	dots	represent	the	other	particles.		(d)	Experimental	frequency	response	of	the	extended	mode	

(blue	 dots)	 and	 Lorentzian	 fit	 (red	 solid	 line).	 (e)	 Localized	 mode	 of	 vibration.	 (d)	 Experimental	

frequency	response	of	the	localized	mode	(blue	dots)	and	Lorentzian	fit	(red	solid	line).		
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Experimental	system		

	

Our	experimental	setup	consists	of	a	chain	of	magnets[102]	floating	on	an	air	table	(Fig	3.1a).	

Each	magnet	is	embedded	in	a	3D	printed	case	that	adds	an	additional	mass,	with	different	

case	designs	resulting	in	different	particle	masses	(t = 0.45z	for	the	non-defect	particles,	

t«o = 0.197z	for	the	first	defect	and	t«o = 0.244z	for	the	second	defect).	The	presence	

of	defects	introduces	localized	modes	around	each	defect	particle	(Fig	3.1b,c).	When	these	

modes	are	excited,	the	resulting	motion	is	exponentially	localized	around	the	defect.	In	our	

experimental	setup,	the	defects	act	as	inputs	for	the	frequency-conversion	system.	We	excite	

them	by	passing	current	through	a	small	conductive	wire	normal	to	the	length	of	the	chain	

(Fig	3.1a).	The	wire	is	driven	harmonically	from	an	Agilent	33220A	signal	generator	amplified	

by	a	Topping	TP22	class	D	audio	amplifier.	An	extended	mode	of	vibration	(Fig	3.1c	and	d)	

interacts	with	the	localized	mode	to	introduce	frequency	conversion.	We	monitor	the	motion	

of	the	magnets	using	a	Point	Grey	GS3-U3-41C6C-C	computer	vision	camera,	with	a	frame	

rate	 between	 40	 and	 200	 fps	 that	 allows	 us	 to	 resolve	 all	 particles’	motion.	We	 use	 the	

software	 VIC-2D	 from	 Correlated	 Solutions	 to	 track	 the	 particles	 and	 determine	 their	

trajectory.		

	

Experimental	results	for	the	system	with	a	single	defect		

	

We	start	by	studying	a	lattice	of	21	magnets	containing	a	singe	defect	(t«o = 0.197z)	in	the	

middle	position	(i=11).	The	first	and	last	magnets	are	fixed.	We	set	the	excitation	frequency	

to	 approximately	 the	 sum	 of	 the	 defect’s	 frequency	 (Fig.	 3.1f)	 and	 the	 extended	mode’s	

frequency	(Fig.	3.1d),	with	the	goal	of	exciting	a	combinational	resonance	(ï» + ïç)	between	

the	extended	and	localized	modes	[228].	We	slowly	increase	the	excitation	amplitude	until	a	

threshold	 is	 reached	 and	 self-sustaining	 oscillations	 develop	 far	 away	 from	 the	 defect,	

indicating	the	transfer	of	energy	between	the	 localized	mode	and	an	extended	mode	(Fig.	

3.2a).	In	this	regime,	the	defect	motion	is	modulated	by	the	extended	mode	(Fig.	3.2b).	Due	

to	the	exponential	localization	of	the	defect’s	motion,	the	Fourier	transformed	displacement	

of	a	particle	situated	far	away	from	the	defect	(Fig	3.2c)	does	not	reveal	significant	motion	at	

the	 input	 frequency,	 and	 consists	 almost	 exclusively	 of	 down-converted	 energy.	 The	
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frequency	conversion	efficiency,	defined	as	the	energy	dissipated	in	the	extended	mode	in	

comparison	with	the	energy	input	into	the	system	… =  †ÀÃÀ
¨Õ	

 †∫Ã∫
¨Õ∑Œ∫Œœ
,	equals	10.8 ± 0.9%.	This	

efficiency	arises	from	our	particular	system	parameters	and	is	not	an	absolute	limit.		

	

	

	

	

	

FIG	3.2:	Experimental	response	of	the	system	under	harmonic	excitation.	(a)	Position	of	the	magnets	

as	a	function	of	time.	The	red	dotted	line	corresponds	to	the	defect	magnet,	which	acts	as	the	input	

to	the	frequency-converting	system.	The	green	dashed	line	is	taken	as	the	output	of	the	system.	(b)	

Fourier	 transform	 of	 the	 defect	 magnet’s	 position,	 which	 is	 modulated	 at	 the	 extended	 mode’s	

frequency.	The	vertical	dotted	line	represents	the	excitation	frequency.	(c)	Fourier	transform	of	the	

output	magnet’s	position.	This	magnet’s	motion	happens	primarily	at	the	second	extended	mode’s	

frequency.	
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Theoretical	model		

	

Our	 theoretical	model	 describes	 the	magnets	 as	 point	masses.	We	model	 the	 interaction	

between	 particles	 using	 an	 empirical	 power-law	 model,	 f d = �dj,	 with	 � = 3.378 ∙

10noq¬tá.eo≈	and	∆ = −4.316	determined	experimentally	(See	Supplementary	Information	

for	 fitted	force-displacement	curves).	This	model	does	not	have	a	straightforward	physical	

justification	in	terms	of	the	material	properties	and	the	geometry	of	the	magnets,	but	it	 is	

chosen	because	it	reproduces	the	experimental	force	law	with	very	high	precision	and	low	

complexity.	Using	this	force-displacement	law	we	can	write	the	equation	of	motion	for	the	

system	(The	indices	in	parentheses	indicate	that	no	summation	is	performed	over	them):	

	

t(ô)g(ô) + í(ô)g(ô) − � dÑ ¿ − “	 + gô − g∂
j

o”∂ ô

+ � dÑ “ − ¿	 + g∂ − gô
j

ô ∂”‘

= fô ì 	 Eq.	1	

	

Where	t(ô)	and	í(ô)	are	the	mass	and	damping	coefficient	of	the	¿-th	particle,	�	and	∆	are	

the	magnetic	 force	 law	 parameters,	fô ì 	 is	 the	 external	 driving	 force	 acting	 on	 the	 ¿-th	

particle	 (which	may	be	zero	 if	 the	particle	 is	not	externally	driven),	and	dÑ	 is	 the	distance	

between	magnets	at	rest.	When	performing	the	reduced-order	analysis,	we	will	assume	that	

dÑ	 is	the	same	for	all	magnets.	This	is	an	approximation,	since	magnets	that	are	not	in	the	

center	of	the	lattice	are	subject	to	asymmetric	long-range	forces.	However,	we	have	found	

this	approximation	to	yield	acceptable	results.	We	emphasize	that	our	theoretical	model	is	

not	 limited	 to	 nearest-neighbor	 interactions	 and	 takes	 into	 account	 the	 magnetic	 force	

between	all	pairs	of	magnets.	All	numerical	integration	in	this	paper	is	done	using	a	4th	order	

Runge-Kutta	algorithm	with	a	time	step	of	1	tu.	

	

Reduced	modal	description	and	frequency	conversion	mechanism	

	

The	mechanism	responsible	for	the	frequency	conversion	in	our	lattice	becomes	much	clearer	

when	we	look	at	the	evolution	of	the	system	in	terms	of	the	normal	modes	of	the	linearized	

system.	We	can	obtain	this	description	by	approximating	the	force-displacement	relation	by	

a	second	order	Taylor	series.	When	we	do	this	approximation,	the	system	becomes:	
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úô∂g∂ + ∆ô∂g∂ + sô∂g∂ + ’ô∂°g∂g° = fô ì 	 Eq.	2	

	

Here	the	indices	“	and	i	are	summed	over	all	degrees	of	freedom,	ú,	∆	denote	the	mass	and	

damping	matrices	 defined	 conventionally,	 and	 the	 terms	s	 and	’	 are	obtained	by	 Taylor	

expansion	of	the	force	law:	

	

sô∂ =
d

dg∂
� dÑ ¿ − t	 + gô − g÷

j

o”÷ ô

+ � dÑ t − ¿	 + g÷ − gô
j

ô ÷”‘

	 Eq.	3	

	

’ô∂° =
1

2

dq

dg∂dg°
� dÑ ¿ − t	 + gô − g÷

j

o”÷ ô

+ � dÑ t − ¿	 + g÷ − gô
j

ô ÷”‘

	 Eq.	4	

	

Since	ú	is	symmetric	and	positive-definite	and	s	symmetric,	we	can	find	an	invertible	matrix	

x	such	that	x≥úx	and	x≥sx	are	both	diagonal.	For	simplicity	we	assume	that	the	damping	

is	 proportional	 to	 the	 mass	 matrix	 and	 therefore	 also	 diagonalizable.	 In	 this	 basis	 the	

equations	of	motion	become:	

	

xô÷úô∂x∂‘ê‘ + xô÷∆ô∂x∂‘ê‘ + xô÷sô∂x∂‘ê‘ + ’ô∂°xô÷x∂‘x°◊ê‘ê◊ = f÷ ì 	 Eq.	5	

	

The	diagonalized	system	in	Eq.	5	does	not	provide	any	significant	numerical	advantage,	since	

’ô∂°is	highly	non-local	in	the	modal	basis	(i.e.	modes	far	apart	do	interact	as	strongly	as	nearby	

modes).	However,	we	can	see	the	motivation	for	this	approach	if	we	look	at	the	experimental	

results	in	the	modal	basis	(Fig.	3.3a).	In	this	basis,	most	of	the	motion	occurs	in	the	second	

extended	mode	 and	 in	 the	 localized	mode.	 In	 fact,	 these	modes	 hold	 around	 90%	of	 the	

system’s	energy	(Fig.	3.3b).	Therefore,	we	can	restrict	our	description	to	these	two	modes	

without	incurring	a	significant	error.	This	reduced-order	description	is:	

	

tçêç + íçêç + iç − 2ÿê» gç = fŸ cos 2ΩâŸì 	 Eq.	6	

t»ê» + í»ê» + i»ê» − ÿêç
q = 0	 Eq.	7	
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In	 this	 description,	 êç	 and	 ê» 	 are	 the	 displacements	 of	 the	 localized	 and	 extended	 modes	

respectively,	fŸ 	is	the	input	force,	âŸ 	is	the	input	frequency,		tç,	íç	and	iç	are	the	effective	mass,	

damping	and	stiffness	of	the	localized	defect	mode,	t»,	í» 	and	i» 	are	the	effective	mass,	

damping	and	stiffness	of	the	extended	mode.	The	term	ÿ = ’ô∂°xô»x∂çx°ç = ’ô∂°xôçx∂»x°ç =

’ô∂°xôçx∂çx°» 	 denotes	 the	 quadratic	 interaction	 between	 modes.	 This	 term	 can	 be	

determined	by	performing	a	Taylor	expansion	of	the	 interaction	force,	or	by	analyzing	the	

frequency	response	of	the	local	and	extended	modes	(See	Supplementary	Information).	We	

note	 that	 the	 reduced	 equations	 of	 motion	 present	 an	 asymmetry:	 There	 is	 no	 term	

proportional	to	g»q	in	Eq.	6	and	there	is	no	term	proportional	to	g»gç	in	Eq.	7.	These	terms	do	

not	appear	in	our	lattice	due	to	the	location	of	the	defect,	but	they	are	not	generally	zero	(See	

Supplementary	Information	for	a	study	on	the	relation	between	nonlinear	terms	and	defect	

location).	The	interaction	between	modes	can	be	understood	in	the	following	way:	Due	to	

nonlinearity,	the	vibration	of	the	defect	mode	pushes	against	its	neighbors,	in	a	way	that	is	

analogous	to	thermal	expansion	of	a	crystal[129]	or	the	optical	pressure	in	an	optomechanical	

system	(Fig	3.3c).	For	small	amplitudes,	this	expansion	is	proportional	to	the	square	of	the	

vibration	amplitude,	resulting	in	the	term	ÿgçq	in	the	extended	mode	equation.	In	addition,	

the	motion	of	the	extended	mode	modulates	the	distance	between	the	defect	particle	and	

its	 neighbors	 (Fig	 3.3d),	 thereby	 affecting	 the	 localized	 mode’s	 effective	 stiffness	 and	

introducing	 the	 parametric	 term	ñiç = ÿg»,	 analogous	 to	 the	modulation	 of	 the	 optical	

cavity	wavelength	in	an	optomechanical	system.	This	type	of	interaction	appears	in	a	variety	

of	systems	such	as	phonon	modes	in	superconductors[235]	and	can	result	in	stochastic	heat	

engine	opearation[236].	This	reduced-order	model	is	able	to	reproduce	the	experimentally-

observed	 behavior	 (Figs.	 3.3e	 and	 3.3f)	with	 remarkable	 accuracy	 in	 spite	 of	 the	model’s	

simplicity	and	the	presence	of	non-idealities	in	the	system.	We	highlight	that	the	only	fitting	

parameter	 is	 the	 excitation	 amplitude.	 The	 particle	mass,	 mode	 quality	 factor	 and	 inter-

particle	force	law	have	all	been	measured	experimentally.	

	

	

	



	
52	

	

FIG.	 3.3:	 Reduced-order	 description	 of	 the	 frequency	 conversion	 process	 (a)	 Projection	 of	 the	

experimental	time	evolution	(Fig	3.2a)	in	the	linear	modal	basis.	(b)	Average	energy	as	a	function	of	

the	mode	number.	The	system’s	energy	is	highly	concentrated	in	the	second	extended	mode	and	the	

localized	 defect	mode.	 (c)	Dynamic	 expansion	 of	 the	 defect	mode.	When	 the	 defect	 vibrates,	 the	

nonlinear	magnetic	interaction	results	in	a	non-zero	average	force	acting	on	the	defect’s	neighbors.	

This	effect	is	analogous	to	the	radiation	pressure	in	an	optomechanical	system.	(d)	The	motion	of	the	

second	 extended	 mode	 modulates	 the	 distance	 between	 the	 defect	 particle	 and	 its	 neighbors,	

dynamically	tuning	the	defect	mode	frequency.	This	effect	is	analogous	to	the	mechanically-induced	

modulation	of	 the	Fabry-Perot	resonance	 in	an	optomechanical	system.	 (e)	Detail	of	 the	extended	

mode	 and	 localized	 mode	 evolution,	 measured	 experimentally.	 (f)	 Theoretical	 prediction	 for	 the	

extended	and	localized	mode	evolution,	obtained	from	a	reduced-order	model	considering	only	two	

modes	(Eq.	6	and	7).	The	numerical	simulation	in	panel	f	corresponds	to	a	system	with	t» = 0.45	z,	

tç = 0.232	z,	â» = 0.5664	éè,	âç = 3.913	éè,	âŸ = 4.38	éè,	fŸ = 45	√¬,	⁄» = 4.518,	⁄ç = 66.62	

and	ÿ = 1.801	 ¬ tq,	where	iÉ = tÉ 2ΩâÉ q	and	íÉ = tÉ2ΩâÉ	 ⁄É.	
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The	 two-mode	 system	 described	 in	 Eq.	 6	 and	 Eq.	 7	 is	 a	 purely-mechanical	 analog	 of	 an	

optomechanical	system[25,	26,	237].	The	extended	mode	plays	the	role	of	the	low-frequency	

mechanical	 motion,	 while	 the	 localized	 mode	 plays	 the	 role	 of	 the	 high-frequency	

electromagnetic	field.	The	term	ÿgçq	acting	on	the	extended	mode	plays	the	role	of	the	optical	

pressure,	while	the	term	2ÿg»gç	acting	on	the	localized	mode	reproduces	the	modulation	of	

the	 Fabry-Perot	 resonance	 by	 the	 mechanical	 degree	 of	 freedom	 in	 an	 optomechanical	

system.	This	analogy	can	be	made	explicit	by	expressing	the	motion	of	the	defect	mode	as	

êç ì = 1 2 [y ì ºô‹ö + y∗ ì ºnô‹ö]	 and	 assuming	 that	 y ì 	 changes	 slowly	 and	 that	

1 ⁄ç ≪ 1.	With	these	assumptions,	we	arrive	at	the	following	equation	(A	detailed	derivation	

and	comparison	with	the	full	model	are	provided	in	the	Supplementary	Information):	

	

tê» + í»ê» + i»ê» = ÿ
y q

2
	

	
Eq.	8	

y + y
ïÑ
2⁄ç

− ¿ñ ê» = fŸ 	
Eq.	9	

	

Where	ïÑ	 is	 the	 natural	 frequency	 of	 the	 localized	mode	 and	 the	 detuning	ñ ê» 	 is	 the	

difference	 between	 the	 localized	 mode’s	 natural	 frequency	 and	 the	 defect’s	 excitation	

frequency,	as	a	function	of	the	extended	mode’s	position.	All	other	parameters	have	the	same	

meaning	 than	 they	 did	 in	 Eq.	 6	 and	 Eq.	 7.	While	 being	 an	 approximation,	 this	 form	 has	

numerical	advantages	by	not	containing	rapidly	changing	components	at	the	frequency	of	the	

localized	mode,	and	not	requiring	the	evaluation	of	trigonometric	functions	for	the	excitation.	

Besides	numerical	reasons,	the	description	provided	in	Eq.	8	and	Eq.	9	is	identical	to	the	model	

of	 an	 optomechanical	 system[25,	 237,	 238],	 for	 which	 there	 is	 extensive	 analytical	

literature[25,	239].	This	analogy	provides	a	lucid	interpretation	of	the	frequency	converting	

mechanism,	whereby	the	self-sustaining	oscillations	of	the	extended	more	are	the	result	of	a	

feedback	 mechanism	 between	 the	 extended	 mode’s	 motion	 and	 the	 localized	 mode	

amplitude.	In	this	picture,	the	localized	mode	amplitude	y	depends	on	the	extended	mode	

displacement	through	the	term	ñ ê» .	Equation	9	imposes	a	retardation	between	y	and	ê» 	

and,	as	a	consequence,	the	term	ÿ y q	has	a	quadrature	component	(shifted	90	degrees	from	

ê»(ì))	that	results	in	negative	damping[26].	When	this	negative	damping	exceeds	the	value	
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of	í»,	the	system	develops	self-sustaining	oscillations,	which	saturate	at	a	finite	value	due	to	

non-linearity[26].		

	

Multiple-defect	synchronized	frequency	conversion		

	

Systems	containing	multiple	defects	can	present	synchronized	frequency	conversion,	where	

the	 motion	 of	 multiple	 defects	 is	 determined	 by	 the	 same	 extended	 mode,	 thereby	

synchronizing	the	defect’s	modulation	envelopes	and	resulting	in	the	conversion	of	energy	

from	multiple	input	frequencies	to	a	single	output	frequency.	The	use	of	an	extended	mode	

to	 synchronize	multiple	 resonant	 elements	 appears	 in	 the	 context	 of	 Josephson	 junction	

arrays[240],	 and	 here	 we	 use	 it	 to	 extract	 energy	 from	 multiple	 sources	 of	 mechanical	

vibrations.	Our	experimental	system	consists	of	20	magnets,	with	defect	particles	in	positions	

7	(0.244z)	and	14	(0.197z).	The	initial	and	final	particles	are	fixed.	As	in	the	case	with	a	single	

defect,	we	set	an	excitation	frequency	for	each	defect	equal	to	the	defect’s	frequency	plus	an	

extended	mode’s	frequency.	This	time	we	use	the	third	extended	mode	instead	of	the	second,	

because	it	presents	two	regions	of	maximum	strain	at	the	two	defect’s	positons.	As	we	did	in	

the	single	defect	case,	we	increase	both	defect’s	excitation	amplitudes	simultaneously,	until	

we	observe	self-sustaining	oscillations	far	from	the	defect.	Figure	3.4a	shows	the	trajectories	

of	the	magnets	in	the	self-sustaining	regime.	We	calculate	the	energy	transfer	between	both	

defects	and	the	extended	mode,	by	utilizing	the	empirical	 force-displacement	relation	and	

the	defect’s	 trajectories,	and	we	observe	that	both	defects	are	contributing	energy	to	the	

extended	 mode	 with	 a	 power	 (x =< fg» >=< ÿgçqg» >)	 of	 16.9 ± 1.5	flh	 and	 25.8 ±

4.0	flh	 respectively,	 indicating	successful	extraction	of	energy	 from	multiple	sources.	The	

frequency	conversion	efficiency	is	20.5 ± 10.4%.	As	in	the	previous	case,	the	motion	of	the	

defects	presents	sidebands	 indicating	a	modulation	by	 the	extended	mode	 (Fig.	3.4b).	Far	

from	the	defect,	 the	motion	takes	place	exclusively	at	 the	extended	mode’s	 frequency,	as	

required	for	successful	frequency	conversion	operation.	
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FIG.	3.4:	Synchronized	frequency	conversion.	(a)	Position	of	the	magnets	as	a	function	of	time.	The	

yellow	dotted	line	(particle	7)	and	the	red	dotted-dashed	line	(particle	14)	are	defect	magnets	that	act	

as	the	high-frequency	inputs	of	the	system.	The	green	dashed	line	is	the	low	frequency	output.	(b)	

Fourier	transform	of	the	defects’	positions,	which	are	modulated	at	the	extended	mode’s	frequency.	

The	 vertical	 dotted	 line	 represents	 the	 excitation	 frequency.	 (c)	 Fourier	 transform	 of	 the	 output	

magnet’s	position.	This	magnet’s	motion	happens	primarily	at	the	third	extended	mode’s	frequency.	

	

As	 in	 the	 case	 with	 a	 single	 defect,	 expressing	 the	magnet’s	 trajectories	 in	 terms	 of	 the	

lattice’s	linear	normal	modes	reveals	that	the	motion	(Fig.	3.5a)	and	the	energy	(Fig.	3.5b)	are	

primarily	concentrated	in	an	extended	mode	(Fig	3.5c,	left)	and	in	the	two	localized	modes,	

the	 profiles	 of	 which	 are	 depicted	 in	 Fig.	 3.5c.	 This	 energy	 concentration	 allows	 us	 to	

formulate	a	reduced-order	description	following	the	same	procedure	as	in	the	system	with	a	

single	defect.	The	resulting	system	of	equations	has	the	form:	

	

tçogço + íçogço + iço − 2ÿog» gço = fŸo cos 2ΩâŸqì 	 Eq.	10	

tçqgçq + íçqgçq + içq − 2ÿqg» gçq = fŸq cos 2ΩâŸqì 	 Eq.	11	

t»g» + í»g» + i»g» − ÿogço
q − ÿqgçq

q = 0	 Eq.	12	

	



	
56	

The	model	in	equations	10-12	is	capable	of	qualitatively	predicting	the	evolution	of	the	modes	

(Fig.	3.5d	and	3.5e),	but	under-estimates	the	output	amplitude	relative	to	the	experiments.	

We	attribute	this	difference	to	uncertainty	in	the	system’s	resonance	frequencies	and	quality	

factors.	This	is	suggested	by	the	difference	between	theory	and	experiment	in	the	extended	

mode’s	 frequencies	 (See	 Supplementary	 Information)	 and	 in	 the	 phase	 of	 the	 localized	

mode’s	vibration.	

	

	
FIG.	3.5:	Reduced-order	description	of	the	synchronized	frequency	conversion.	(a)	Time	evolution	of	

the	magnets	in	terms	of	the	linear	eigenmode	basis.	(b)	Energy	distribution	in	each	normal	mode.	The	

energy	is	concentrated	in	the	third	extended	mode	and	in	the	two	localized	defect	modes.	(c)	Mode	

profiles	of	the	three	most	relevant	eigenmodes.	(d)	Experimental	time	evolution	of	the	third	extended	

mode	ê» 	and	the	two	localized	modes	êço	and	êçq	as	a	function	of	time	(e)	Theoretical	prediction	for	

the	time	evolution	of	the	eigenmodes.	The	theoretical	predictions	have	been	obtained	using	a	3-DOF	
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reduced	order	model.	The	numerical	parameters	used	in	panel	e	are:	t» = 0.45	z,	tço = 0.2318	z,	

tçq = 0.2915	z,	 â» = 0.7494	éè,	 âço = 3.404	éè,	 âçq = 3.063	éè,	 âŸo = 4.1	éè,	 âŸq = 3.81	éè,	

fŸo = fŸq = 42	√¬,	 ⁄» = 12.27,	 ⁄ço = 39.3,	 ⁄çq = 60.27,	 ÿo = −2.4293¬ tq,	 ÿq =

2.5761	 ¬ tq.	

	

Output	phase	tunability		

	

In	our	lattice,	the	output	signal’s	phase	is	not	prescribed	by	the	inputs	and	can	be	dynamically	

tuned	 while	 the	 system	 is	 operating.	 This	 offers	 an	 opportunity	 to	 synchronize	 multiple	

devices,	create	passive	and	tunable	phased	arrays	or	transfer	information	by	modulating	the	

output	signal’s	phase.	We	theoretically	demonstrate	this	output	phase	tunability	in	Fig.	3.6a-

c.	The	phase	modulation	is	accomplished	by	perturbing	the	last	particle	following	a	Gaussian	

profile	given	by	g‘ ì = �‡º
n
·‚·©

¨

¨„¨ 	(Fig.	3.6a),	where	�‡	denotes	the	maximum	perturbation	

amplitude,	ìÑ	is	the	moment	where	the	perturbation	is	applied	and	‰	represents	the	width	of	

the	perturbation.	We	choose	a	Gaussian	profile	because	it	is	highly	localized	in	both	time	and	

frequency	domains.	Applying	this	perturbation	results	in	a	change	in	the	output	signal	phase,	

that	 persists	 long	 after	 the	 perturbation	 has	 vanished.	 Figure	 3.6b	 shows	 the	 extended	

mode’s	 displacement	 1790	 seconds	 after	 a	 perturbation,	 for	 different	 perturbation	

amplitudes	(In	this	calculation,	the	perturbation	width	‰ = 30u	is	much	smaller	than	the	wait	

time,	ensuring	that	no	effect	remains	by	the	time	the	results	are	obtained).	Two	remarkable	

observations	 shall	 be	made	 regarding	 the	 phase	 tunability	 shown	 in	 Fig.	 3.6c:	 Firstly,	 this	

tunability	 covers	 the	whole	 range	 (0° − 360°).	 Secondly,	 the	 perturbation-induced	 phase	

shift	persists	for	a	period	of	time	that	is	much	longer	than	any	of	the	system’s	time	constants,	

since	the	phase	does	not	change	significantly	if	we	wait	an	additional	1000u	until	ì = 2790u.	

In	the	experimental	system,	this	phase	stability	would	be	limited	by	the	presence	of	external	

noise	sources	and	Brownian	motion.	
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FIG.	3.6.	Theoretical	 investigation	of	phase	and	frequency	tunability.	 (a)	Phase	tuning	scheme.	The	

output	 signal’s	 phase	 is	 tuned	 by	 moving	 the	 last	 particle	 (g‘)	 following	 a	 Gaussian	 profile.	 (b)	

Extended	mode	signal	2790	seconds	after	the	phase-shifting	perturbation	has	been	effected.	The	lines	

correspond	to	perturbations	with	�Ñ	equal	to	0	mm	(blue,	solid),	6.2562	mm	(red,	dotted)	and	6.5917	

mm	(yellow,	dashed).	 (c)	Output	phase	as	a	 function	of	 the	maximum	displacement	of	 the	phase-

adjusting	perturbation.	The	blue	solid	line	is	measured	1790	seconds	after	the	perturbation,	while	the	

circles	are	measured	1000	seconds	after	the	first	measurement,	2790	seconds	after	the	perturbation’s	

peak.	Panels	b	and	c	have	been	obtained	by	integrating	the	full	equation	of	motion	(Eq.	1)	with	dÑ =

16.3	tt,	 tô,ôÊoo = 0.45	z,	 too = 0.197	z,	 íô,ôÊoo = 306.83	 √¬u t,	 íoo = 42.62	 √¬u t,	

fô,ôÊoo = 0¬,	foo = fŸ sin 2Ωâôì,	fŸ = 48.45	√¬	and	âŸ = 4.38	éè.	The	force-law	parameters	are	as	

described	in	the	theoretical	model	section.		(d)	Frequency	down-conversion	ratio	(top)	and	input	and	

output	frequencies	(bottom)	as	a	function	of	the	mass	ratio	between	the	defect	and	extended	modes.	

These	plots	have	been	obtained	by	keeping	the	extended	mode’s	mass	constant	and	modifying	the	

defect’s	mass.	(e)	Frequency	down-conversion	ratio	(top)	and	input	and	output	frequencies	(bottom)	

as	a	function	of	the	extended	mode	mass,	while	keeping	the	modal	mass	ratio	t» tç	constant.	In	

this	section,	all	parameters	except	the	masses	are	identical	to	those	in	Fig.	3.3f.	
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Tunability	

	

	A	remarkable	feature	of	our	frequency-converting	system	is	the	possibility	of	tuning	the	input	

and	output	frequencies	over	a	broad	range,	both	during	the	design	phase	and	dynamically	

once	 the	 system	has	 already	been	built.	 Figure	 3.6	 theoretically	 explores	 the	 relationship	

between	the	input	and	output	frequencies	and	the	modal	masses.	We	first	explore	the	effect	

of	 the	 mass	 ratio	 by	 altering	 the	 mass	 of	 the	 defect	 mode	 without	 altering	 that	 of	 the	

extended	mode	(Fig	3.6a).	This	results	in	a	change	in	the	optimal	input	frequency	without	a	

significant	 effect	 on	 the	 output	 frequency.	 We	 then	 proceed	 to	 alter	 the	 masses	 of	 the	

localized	and	extended	mode	simultaneously	(Fig	3.6b).	This	changes	both	input	and	output	

frequencies,	while	maintaining	the	down-conversion	ratio	constant.	In	the	conversion	ratio	

calculation,	 we	 identify	 the	 optimal	 input	 frequency	 by	 sweeping	 the	 input	 between	 the	

resonance	 frequency	of	 the	 localized	mode	 and	 the	 resonance	 frequency	of	 the	 localized	

mode	 plus	 twice	 the	 resonance	 frequency	 of	 the	 extended	 mode,	 and	 finding	 the	 input	

frequency	that	results	in	the	highest	energy	transfer.	In	addition	to	the	particle’s	mass,	there	

are	many	unexplored	avenues	for	tuning	the	frequency	conversion	ratio.	Examples	include	

the	 static	 compression	 applied	 on	 the	 chain,	 the	magnet	 strength	 and	 geometry	 and	 the	

application	of	external	magnetic	fields[130].	In	addition,	modern	3D	printed	materials	allow	

us	to	engineer	nonlinear	inter-particle	interactions[219]	beyond	these	offered	by	magnetic	

systems.	

	

Conclusions	and	outlook	

	

	We	have	demonstrated	that	magnet	lattices	with	defects	are	capable	of	converting	energy	

from	 high	 frequencies	 to	 lower	 frequencies,	 that	 need	 not	 be	 related	 by	

harmonic/subharmonic	 relations.	 This	 is	possible	 through	 the	nonlinear	 coupling	between	

extended	and	 localized	normal	modes.	Such	 frequency-converting	 lattice,	analogous	 to	an	

optomechanical	system,	is	highly	tunable	in	both	frequency	and	phase,	and	can	extract	energy	

from	multiple	signals	at	different	frequencies	to	generate	a	single-component	output.	This	

work	 may	 motivate	 the	 design	 of	 innovative	 nonlinear	 metamaterials	 and	 devices	 with	

tunable	energy	conversion	capabilities.	
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Supplementary:	Force-displacement	relation	
	

We	 experimentally	 determine	 the	 parameters	 for	 the	 interaction	 force	 by	measuring	 the	

force-displacement	relation	and	fitting	it	using	a	power	law	function	of	the	form	f = �gj.	

The	measurements	 and	 fitted	 curve	 are	 plotted	 in	 Fig.	 3.S1.	 Through	 this	 procedure,	 we	

obtain	values	of	� = 3.378 ± 0.751	¥¬tá.eo≈	and	∆ = −4.316 ± 	0.0460.	

	

	
FIG	3.S1:	Magnetic	force-displacement	relation.	The	blue	circles	are	the	experimental	measurements	

and	the	red	line	represents	the	power-law	fit.	

	

Supplementary:	Derivation	of	the	optomechanical	equations	of	motion	
	

Here	we	show	that	the	equations	governing	the	reduced-order	dynamics	of	the	frequency	

converting	 lattice	(Eq.	6-7	 in	the	main	paper)	can	be	approximated	by	those	describing	an	

optomechanical	 system,	 under	 realistic	 assumptions.	 The	 equations	 that	 we	 want	 to	

approximate	are:	

	

tçêç + íçêç + iç − 2ÿê» êç = fŸ cos ïì 	 Eq.	S1	

t»ê» + í»ê» + i»ê» − ÿêç
q = 0	 Eq.	S2	
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We	 start	 our	 approximation	 by	 expressing	 the	 displacement	 of	 the	 localized	 mode	 as	 a	

harmonic	 function,	 with	 a	 slowly-changing	 amplitude	 and	 phase	 given	 by	 the	 complex	

function	y ì :	

êç =
1

2
y ì ºô‹ö + yºnô‹ö 	 Eq.	S3	

	

This	allows	us	to	rewrite	Eq.	S1	as:		

	

tç
Ö¨

Öö¨
	
o

q
y ì ºô‹ö + y ì ºnô‹ö +

÷À‹©À
ÁÀ

Ö

Öö

o

q
	 y ì ºô‹ö + y ì ºnô‹ö +

iç − 2ÿê»
o

q
[y ì ºô‹ö + y ì ºnô‹ö] =

o

q
[fÑº

ô‹ö + fÑº
nô‹ö]	

Eq.	S4	

	

For	 equation	 S4	 to	 hold,	 terms	multiplied	 by	ºô‹ö	must	 be	 identical	 on	 both	 sides	 of	 the	

equation	(Taking	terms	multiplied	by	ºnô‹ö	would	yield	an	identical	condition.	This	identity	

results	in:	

	

tç
dq

dìq
	 y ì ºô‹ö +

tçïÑç
⁄ç

d

dì
	 y ì ºô‹ö + iç − 2ÿê» y ì º

ô‹ö = fÑº
ô‹ö	 Eq.	S5	

	

By	evaluating	the	derivative	and	both	sides	by	ºô‹ö	we	obtain:	

	

tç	 −ï
qy ì + 2¿ïy ì + y ì +

tçïÑç
⁄ç

	 ¿ïy ì + y ì + iç − 2ÿg» y ì

= fÑ	

	

Eq.	S6	

	

Now	we	make	our	first	assumption:	That	the	localized	mode	amplitude	and	phase	are	slowly	

changing.	This	allows	us	to	neglect	the	second	derivative	of	y	in	Eq.	S6,	resulting	in:	

	

tç	 −ï
qy ì + 2¿ïy ì +

tçïÑç
⁄ç

	 ¿ïy ì + y ì + iç − 2ÿg» y ì = fŸ 	 Eq.	S7	

Which	can	be	regrouped	as:	
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ïÑç
⁄ç

+ 2¿ï y ì +
iç − 2ÿê»

tç
− ïq +

ïÑç
⁄ç

¿ï y ì =
fŸ
tç

	 Eq.	S8	

	

Since	⁄ç	is	a	large	value	(40-60	in	our	experimental	setup)	and	ïÑç	is	of	the	same	order	than	

ï,	we	can	neglect	the	contribution	of	ïÑç ⁄ç	in	the	right	hand	side.	This	results	in:	

	

y ì +
−¿

2ï

iç − 2ÿê»
tç

− ïq +
ïÑç
2⁄ç

y ì =
fŸ

2ïtç
	 Eq.	S9	

	

We	 note	 that	 the	 term	 iç − 2ÿg» tç	 is	 the	 square	 of	 the	 localized	 mode’s	 angular	

frequency,	 as	 a	 function	 of	 the	 displacement	 of	 the	 extended	 mode.	 We	 call	 this	 term	

ïÑç g»
q	 to	 distinguish	 it	 from	 the	 natural	 frequency	 of	 the	 localized	mode	when	 the	

extended	mode	is	at	rest	(g» = 0),	which	we	termed	ïÑç.	By	defining	the	detuning	ñ g» =

ïÑç g» − ï	as	the	difference	between	the	natural	 frequency	ïÑç g» 	and	the	excitation	

frequency,	we	obtain:	

	

y ì +
−¿

2(ïÑç ê» − ñ ê» )
ïÑç ê»

q
− ïÑç ê» − ñ ê»

q
+
ïÑç
2⁄ç

y ì

=
fŸ

2ïtç
	

Eq.	S10	

	

Expanding	the	squares	in	the	left	hand	side	of	Equation	10,	we	obtain:	

	

y ì +
¿(ñ ê» − 2ïÑç ê» )ñ ê»

2(ïÑç ê» − ñ ê» )
+
ïÑç
2⁄ç

y ì =
fŸ

2ïtç
	 Eq.	S11	

	

Since	 ñ ≪ ïÑç g» 	 we	 can	 neglect	 the	 additive	 term	 ñ g» 	 in	 the	 numerator	 and	

denominator:	

y ì +
¿(−2ïÑç ê» )ñ ê»

2(ïÑç ê» )
+
ïÑç
2⁄ç

y ì =
fŸ

2ïtç
	 Eq.	S12	

	

Which	can	be	simplified	to	the	equation	for	a	classical	optomechancial	system:	
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y ì +
ïÑç
2⁄ç

− ¿ñ ê» y ì =
fŸ

2ïtç
	 Eq.	S13	

	

We	now	examine	the	equation	for	the	extended	mode,	by	replacing	êç ì 	(Eq.	S3)	into	Eq.	

S2.	:	

	

t»ê» + í»ê» + i»ê» −
ÿ

4
yqºôq‹ö + yºnôq‹ö + 2yy = 0	 Eq.	S14	

	

By	neglecting	the	rapidly	varying	degrees	of	freedom	at	2ω,	we	arrive	at	the	equation:	

	

t»ê» + í»ê» + i»ê» −
ÿ

2
y q = 0	 Eq.	S15	

Equations	 S13	 and	 S15	 correspond	 to	 the	 optomechanical	 model	 presented	 in	 the	 main	

paper.	

Supplementary:	Tuning	the	nonlinear	parameters	by	modifying	the	defect’s	
location	
	

We	can	tune	the	nonlinear	parameters	in	our	reduced-order	model	by	changing	the	defect	

location.	 The	most	 general	 equation	 of	motion	 for	 the	 system,	 truncated	 to	 contain	 only	

second-order	terms,	is	given	by:	

	

tçêç + íçêç + içêç − Ëçêç
q − 2ÿ»êçê» − ÿçê»

q = fŸ cos ïì 	 Eq.	S16	

t»ê» + í»ê» + i»ê» − Ë»ê»
q − 2ÿçêçê» − ÿ»êç

q = 0	 Eq.	S17	

	

Figure	 3.S2	 presents	 the	 nonlinear	 parameters	 as	 a	 function	 of	 the	 defect	 location.	 The	

selected	defect	locations	maximize	the	ÿ» 	coupling,	while	ensuring	that	all	other	nonlinear	

parameters	are	small.	The	point	of	maximal	ÿ» 	corresponds	to	the	region	where	the	mode’s	

strain	 Èô = gô£o − gô 	 is	 maximal,	 resulting	 in	 the	 highest	 change	 in	 the	 defect-neighbor	

distance	during	the	motion	of	the	extended	mode.	
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FIG	3.S2:	Nonlinear	parameters	as	a	function	of	the	defect	location.	(a)	Here,	the	extended	mode	is	

the	second	extended	mode	of	the	lattice,	corresponding	to	the	single-defect	system	in	the	main	paper.	

(b)	The	extended	mode	is	the	third	extended	mode	of	the	lattice,	corresponding	to	the	two-defects	

system	in	the	main	paper.	 In	both	panels,	 the	dotted	 line	represents	the	experimental	 light	defect	

location.	In	panel	b,	the	dashed	line	represents	the	heavy	defect	location.	

	

Supplementary:	Comparison	between	full,	reduced	and	optomechanical	
system	
	

Here	(Fig.	3.S3)	we	present	a	comparison	between	the	system’s	evolution	predicted	by	the	

full	model	(Eq.	1	in	the	main	paper),	the	two-mode	reduced	order	model	(Eq.	6	and	Eq.	7	in	

the	main	paper).		and	the	optomechanical	model	(Eq.	8	and	Eq.	9	in	the	main	paper).			
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FIG	3.S3:	Comparison	 of	 full	 and	 reduced	models.	a	 Time	evolution	of	 the	 localized	 and	 extended	

modes	 calculated	 using	 the	 full	 system	 simulation.	 The	 modal	 description	 has	 been	 obtained	 by	

projecting	 the	 trajectories	 into	 the	modal	basis.	b	Modal	 time	evolution	calculated	using	 the	 two-

mode	reduced	order	model.	c	Modal	time	evolution	calculated	using	the	optomechanical	model.	The	

ì = 0	 point	 has	 been	 selected	 independently	 in	 each	 simulation,	 in	 order	 to	 present	 a	 consistent	

phase.	

	

We	observe	that	the	three	models	produce	similar	predictions.	This	allows	us	to	conclude	that	

a	reduced-order	modelling	approach	provides	a	good	approximation,	and	that	our	nonlinear	

lattice	accurately	mimics	the	dynamics	of	an	optomechanical	system.	

	

Supplementary:	Determination	of	the	natural	frequencies	in	the	two-defect	
system		
	

Here	we	discuss	the	determination	of	the	resonance	frequencies	and	quality	factors	for	the	

third	 extended	 mode	 and	 the	 two	 localized	 modes,	 used	 in	 the	 section	Multiple-defect	

syncronized	frequency	conversion	of	the	main	paper.	The	frequency	is	determined	by	exciting	

the	modes	using	a	variable	frequency	signal.	We	monitor	each	particle’s	motion	and	project	

it	 into	the	theoretically-predicted	modal	basis.	The	amplitude	 is	determined	by	calculating	

the	 RMS	 value	 of	 the	 modal	 coordinate	 after	 subtracting	 the	 average.	 We	 then	 fit	 the	

frequency	response	using	a	Lorentzian	function	to	obtain	the	mode’s	frequency	and	quality	

factor.	
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FIG	3.S4:	Fitting	of	the	two-defect	system	parameters.	a	Frequency	response	of	the	third	extended	

mode.	b	Frequency	response	of	the	first	localized	mode	(Centered	around	the	defect	with	mass	t«o =

0.197	z.	c	Frequency	response	of	the	second	localized	mode	(Centered	around	the	defect	with	mass	

t«o = 0.244	z	

	

	

Extended	mode	
Frequency	 0.7494 ± 0.0197	éè	

Quality	factor	 12.27 ± 6.24	

First	Localized	mode	
Frequency	 3.404 ± 0.004	éè	

Quality	factor	 39.30 ± 3.35	

Second	localized	mode	
Frequency	 3.063 ± 0.004	éè	

Quality	factor	 60.27 ± 10.34	

	

Table	1:	Two-defect	system	model	parameters.	

	

Supplementary:	Determination	of	the	nonlinear	constant	from	the	frequency	
response		
	

In	 all	 of	 our	 paper’s	 simulations,	 the	 nonlinear	 parameter	 ÿ	 has	 been	 determined	 by	

performing	a	Taylor	expansion	of	the	magnetic	force-displacement	relation	presented	in	Fig.	

3.S1.	In	some	circumstances	(For	example,	in	microscopic	systems)	it	may	not	be	possible	to	

accurately	measure	the	interaction	potential.	Here	we	calculate	the	nonlinear	parameter	ÿ	

from	 the	 frequency	 response	 curves	 (Fig.	 3.S5a),	 by	 simultaneously	 monitoring	 the	

displacement	 of	 the	 extended	 mode	 (Fig.	 3.S5b)	 during	 the	 frequency	 response	

characterization.	

	

The	equation	of	motion	for	the	extended	mode	is	given	by:	
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t»ê» + í»ê» + i»ê» − ÿêç
q = 0	

	
Eq.	S18	

For	excitation	amplitudes	below	the	self-oscillation	threshold,	êç	follows	a	harmonic	motion	

with	constant	amplitude.	Under	these	conditions,	ê» 	cannot	follow	the	rapid	changes	of	êçq	

and	 reacts	 only	 to	 its	 average	 value.	 Since	 the	 displacement	 of	ê» 	 during	 the	 frequency	

response	measurement	is	quasistatic,	we	can	neglect	the	terms	t»ê» 	and	í»ê».	This	results	

in	the	equation:	

	

< ê» >=
ÿ

i»
< êç

q >	

	
Eq.	S19	

Figure	3.S5c	presents	the	extended	mode	displacement	as	a	function	of	the	localized	mode	

amplitude.	 By	 fitting	 this	 relation	 using	 a	 quadratic	 polynomial,	 we	 obtain	 a	 nonlinear	

coefficient	 ÿ = 1.79 ± 0.56	 ¬ tq	 which	 compares	 extremely	 well	 with	 the	 value	 	 ÿ =

1.81 ± 0.42	 ¬ tq	obtained	from	the	experimental	force-displacement	relation.	

	

	
FIG	 3.S5:	Experimental	 determination	 of	 the	 nonlinear	 parameter	ÿ.	a	 Frequency	 response	 of	 the	

localized	mode.	b	Displacement	of	the	extended	mode	as	a	function	of	the	localized	mode	excitation	

frequency,	 measured	 simultaneously	 with	 panel	 a.	 c	 Experimental	 relationship	 between	 localized	

mode	amplitude	and	extended	mode	static	displacement	(Crosses),	and	polynomial	fit	(Red	line).	
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Abstract	

-	Stochastic	heat	engines	are	devices	that	generate	work	from	random	thermal	motion	using	

a	 small	number	of	highly	 fluctuating	degrees	of	 freedom.	Proposals	 for	 such	devices	have	

existed	for	more	than	a	century	and	include	the	Maxwell	demon	and	the	Feynman	ratchet.	

Only	 recently	 have	 they	 been	 demonstrated	 experimentally,	 using	 e.g.,	 thermal	 cycles	

implemented	 in	 optical	 traps.	 However,	 recent	 experimental	 demonstrations	 of	 classical	

stochastic	heat	engines	are	nonautonomous,	since	they	require	an	external	control	system	

that	prescribes	a	heating	and	cooling	cycle,	and	consume	more	energy	than	they	produce.	

This	Letter	presents	a	heat	engine	consisting	of	three	coupled	mechanical	resonators	(two	

ribbons	 and	 a	 cantilever)	 subject	 to	 a	 stochastic	 drive.	 The	 engine	 uses	 geometric	

nonlinearities	in	the	resonating	ribbons	to	autonomously	convert	a	random	excitation	into	a	

low-entropy,	 nonpassive	 oscillation	 of	 the	 cantilever.	 The	 engine	 presents	 the	 anomalous	

heat	transport	property	of	negative	thermal	conductivity,	consisting	in	the	ability	to	passively	

transfer	energy	from	a	cold	reservoir	to	a	hot	reservoir.	
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Main	text	

	

	Thermodynamics	in	low-dimensional	systems	far	from	equilibrium	is	not	well	understood,	to	

the	point	that	essential	quantities	such	as	work[177]	or	entropy[241]	do	not	have	universally	

valid	definitions	in	such	systems.	Formulating	a	physical	theory	for	thermal	processes	in	low	

dimensional	systems	is	the	subject	of	stochastic	thermodynamics[1],	an	emergent	field	that	

has	resulted	in	the	discovery	of	a	variety	of	microscopic	heat	engines[29,	155,	183,	184,	193,	

242-245],	 fluctuation	 theorems[144,	 161,	 162,	 246]	 and	 provided	 new	 insights	 on	 the	

connection	 between	 information	 and	 energy[152,	 155,	 247-249].	 A	 central	 problem	 in	

stochastic	thermodynamics	 is	the	construction	and	analysis	of	stochastic	heat	engines,	the	

low	dimensional	analogs	of	conventional	thermal	machines.	A	stochastic	heat	engine	is	a	low-

dimensional	device	that	operates	between	two	thermal	baths	at	different	temperatures,	and	

is	able	to	produce	work	while	suppressing	the	randomness	inherent	in	thermal	motion[29,	

155,	177,	183,	192,	242,	250,	251].	Thermal	engine	operation	is	characterized	by	the	presence	

of	 nonpassive	 states	 of	 motion,	 which	 have	 lower	 entropy	 (for	 the	 same	 energy)	 than	

equilibrium	states[16,	17]	and	therefore	allow	the	extraction	of	energy	without	an	associated	

entropy	 flow[177].	 The	 interest	 in	 stochastic	heat	machines	 is	motivated	by	 the	desire	 to	

understand	 energy	 conversion	 processes	 at	 the	 fundamental	 level.	 This	 understanding,	

coupled	with	modern	nanofabrication	techniques	is	expected	to	result	in	more	efficient	and	

powerful	thermal	machines.	

	

The	concept	of	the	stochastic	heat	engine	dates	back	to	the	classical	thought	experiments	of	

the	Maxwell	demon[148,	248]	and	the	Feynman	ratchet[147,	149].	Only	very	recently	have	

working	experimental	realizations	of	the	stochastic	heat	engine	been	reported	on[29,	155,	

183,	184,	242].	The	bulk	of	these	experimental	realizations	is	based	on	the	manipulation	of	a	

particle	 in	 an	 optical	 trap,	 and	 include	 the	 implementation	 of	 adiabatic	 processes[183],	

feedback	 loops[155],	 as	 well	 as	 Stirling[29]	 and	 Carnot[242]	 cycles.	 These	 engines	 are	

nonautonomous	since	they	operate	under	externally	prescribed	cycles.	As	a	consequence,	

the	energy	they	require	to	operate	is	orders	of	magnitude	higher	than	the	work	they	produce,	

and	the	externally	prescribed	dynamical	cycle	masks	the	significant	challenges	that	hinder	the	

description	 of	 autonomous	 physical	 systems[177].	 In	 this	 Letter,	 we	 describe	 a	 classical	
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mechanical	system	that	realizes	autonomous	thermal	engine	operation.	Our	proposed	engine	

consists	of	two	coupled	ribbons	and	a	cantilever	beam	connected	to	one	of	the	ribbons.	The	

presence	of	nonlinearity	in	the	ribbons	dynamically	and	autonomously	adjusts	the	coupling	

to	 the	 hot	 and	 cold	 thermal	 baths,	 thus	 replacing	 the	 external	 control	 unit	 in	 the	 non-

autonomous	realizations	reported	until	now.	We	demonstrate	this	concept	in	a	macroscopic	

table-top	setup,	utilizing	two	30	cm	long	brass	ribbons	and	a	40.6	cm	long	steel	cantilever	

(see	Supplementary	Information).	Since	our	system	is	too	large	to	exhibit	sufficient	Brownian	

motion	at	room	temperature,	we	magnetically	excite	one	of	the	ribbons	using	white	noise	to	

simulate	 a	 high	 effective	 temperature,	 kÍ	 (up	 to	 5 ∙ 10op	s).	 In	 the	 Supplementary	

Information,	we	numerically	 demonstrate	 the	 engine’s	 scaling	 to	microscopic	 dimensions,	

where	Brownian	motion	at	experimentally	accessible	temperatures	(150	ºC)	is	sufficient	to	

induce	measurable	self-sustained	thermal	engine	operation.		

	

The	thermal	cycle	of	our	engine	is	analogous	to	the	classical	Stirling	cycle	(Fig.	4.1a	and	b),	

which	consists	of	four	steps	performed	on	a	working	fluid	--	heating,	expansion,	cooling	and	

compression.	The	ribbon	attached	to	the	cantilever	(main	ribbon,	with	displacement	denoted	

gÎ)	plays	the	role	of	the	working	fluid.	This	ribbon	is	in	contact	with	a	cold	thermal	bath	at	

temperature	 kò 	 (in	 our	 experimental	 setup	 kò 	 is	 the	 temperature	 of	 the	 ribbon’s	

environment,	293	K).	The	cantilever,	also	at	room	temperature	kÏ = 293s,	acts	as	a	piston	

that	introduces	cyclic	compressions	and	expansions	of	the	ribbon	and	extracts	work	from	the	

fluctuations	 in	 the	ribbon’s	 tension.	 	Due	to	geometric	nonlinearity,	 this	 tension	 increases	

proportionally	to	the	ribbon’s	vibrational	energy	and	is	analogous	to	the	pressure	of	the	gas	

in	a	conventional	engine.	A	hot	thermal	bath,	at	temperature	kÍ	introduces	the	thermal	noise	

that	causes	Brownian	motion.	This	heat	bath	is	applied	to	a	secondary	ribbon	(labeled	gÍ).	

The	 secondary	 ribbon	 is	 weakly	 coupled	 to	 the	 main	 ribbon	 and	 regulates	 the	 coupling	

between	the	hot	reservoir	and	the	main	ribbon	(Fig.	4.1c	and	d)	
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FIG.	4.1:	Cyclic	thermal	engines.	(a)	Stirling	heat	engine.	The	engine	uses	a	piston	to	cyclically	compress	

and	expand	a	gas.	A	secondary	piston	displaces	the	gas	and	regulates	the	coupling	to	the	hot	and	cold	

reservoirs.		(b)	Thermal	cycle	for	the	Stirling	engine.	The	difference	in	pressure	during	expansion	and	

contraction	 causes	 the	 gas	 to	 perform	 net	 work	 over	 a	 cycle	 (green	 shaded	 area).	 (c)	 Proposed	

mechanical	 autonomous	 stochastic	 engine,	 consisting	 of	 two	 ribbons,	 main	 and	 secondary	

(displacements	gÎ	and	gÍ 	respectively)	and	a	cantilever	(displacement	gÏ).		(d)	Thermal	cycle	for	the	

proposed	engine	consisting	of	4	steps:	(i)	gÌ	is	at	its	leftmost	position	and	energy	flows	from	gÍ 	to	

gÎ	(ii)		úÌ	moves	to	the	right	(gÌ > 0),	while	gÎ	stays	in	a	high	energy	state	(iii)	gÌ	is	at	its	rightmost	

position,	and	energy	flows	from	gÎ	to	the	cold	bath	(iv)	gÌ	moves	back	to	the	initial	position	while	

gÎ	stays	in	a	low	energy	state.	

	

Stirling	engines	require	a	mechanism	to	heat	and	cool	the	working	fluid	in	synchrony	with	the	

motion	 of	 the	 piston.	 In	 conventional	 engines	 this	 can	 be	 accomplished	 by	 a	 secondary	

internal	piston	(Fig.	4.1a)	that	displaces	the	fluid,	placing	it	in	contact	with	the	hot	and	cold	

reservoirs.	 Prior	 implementations	 of	 the	 stochastic	 Stirling	 cycle	 used	 a	 laser	 to	 heat	 the	

working	particle	at	pre-determined	time	intervals[29],	making	the	engine	nonautonomous.	

Our	engine	attains	autonomous	operation	by	utilizing	the	resonance	responses	of	the	two	

ribbons.	 Due	 to	 geometric	 nonlinearity,	 the	 resonance	 frequency	 of	 the	 main	 ribbon	

(âÎ)	depends	on	the	position	gÏ	of	the	cantilever	(Fig.	4.2a),	while	the	resonance	frequency	

of	 the	 secondary,	 hot	 ribbon	 (âÍ)	 is	 fixed.	 As	 a	 consequence,	 the	 overlap	 between	 the	

respective	frequency	responses	(and	therefore	the	energy	transfer[252]	between	kÍ	and	gÎ),	

is	controlled	by	the	cantilever	(Fig.	4.2b).	By	setting	the	frequency	of	the	main	ribbon	below	

the	frequency	of	the	secondary	ribbon,	the	maximum	energy	transfer	between	the	hot	bath	
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and	the	main	ribbon	occurs	when	the	cantilever	is	at	its	leftmost	position,	as	required	by	the	

thermal	 cycle	 (Fig	 4.2b).	 Recent	 theoretical	 proposals	 in	 optomechanics	 utilize	 a	 similar	

mechanism	to	control	the	coupling	between	an	optical	resonator	and	a	heat	source	[28,	253,	

254].	

	

This	tension-mediated	feedback	mechanism	introduces	the	synchronous	heating	and	cooling	

required	 for	 thermal	 engine	operation	without	 the	need	of	 externally	 prescribed	periodic	

temperature	variations	as	 in	prior	works[29,	183,	242].	The	 resulting	 changes	 in	 the	main	

ribbon’s	vibrational	energy	can	be	seen	in	the	probability	distribution	of	its	position,	which	is	

modulated	by	the	cantilever	motion	(Fig.	4.2c).	The	modulation	is	maximal	when	the	natural	

frequencies	are	chosen	such	that	modulation	sidebands	of	the	main	ribbon’s	motion	coincide	

with	a	resonance	peak	of	the	coupled	system.	For	weakly	coupled	ribbons,	this	condition	is	

approximately	âÍ − âÎ ≈ âÏ	 .	 In	our	experiments,	 	âÎ	varies	between	140	Hz	and	190	Hz,	

âÍ	¿u	192.55	éè	and	âÏ = 26.87	éè	(see	Supplementary	Information).	

	
	

FIG.	4.2:	Thermal	engine	operation.	(a)	Theoretical	uncoupled	frequency	response	of	the	main	ribbon	

(gÎ),	for	cantilever	displacements	gÏ	of	−50	√t	(blue,	solid),	0	√t	(green,	dashed)	and	50	√t	(red,	

dotted).	The	uncoupled	frequency	response	of	the	secondary	ribbon	gÍ 	(thick	purple)	 is	shown	for	
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comparison.	 (b)	 Theoretical	 energy	 transfer	⁄Í 	 between	 the	 hot	 bath	 (applied	 to	 the	 secondary	

ribbon	gÍ)	and	the	main	ribbon	(gÎ),	as	a	function	of	the	cantilever	displacement.	The	colored	dots	

correspond	to	the	curves	in	(a).	The	roman	numerals	indicate	the	step	of	the	thermal	cycle	associated	

to	each	displacement	and	energy	transfer.	(c)	Experimental	probability	distribution	of	gÎ	as	a	function	

of	the	cantilever’s	oscillation	phase,	θ gÏ, gÏ .	(d)	Experimental	force	acting	on	the	cantilever,	as	a	

function	 of	 the	 cantilever	 displacement.	 (e)	 Theoretical	 (blue	 line)	 and	 experimental	 (black	 dots)	

power	transfer	from	the	main	ribbon	to	the	cantilever	as	a	function	of	the	effective	temperature	of	

gÍ.	(f)	Experimental	time	evolution	of	the	cantilever	(dark	red)	and	ribbon	(light	blue).	The	green	circle	

indicates	the	case	kÍ = 4.2 ∙ 10ops,	corresponding	to	the	experimental	conditions	depicted	in	panels	

c,	d	and	f.	

	

Figure	4.2d	shows	the	dynamic	 tension	exerted	by	 the	main	ribbon	on	the	cantilever	as	a	

function	of	the	cantilever’s	position.	The	dynamic	tension	was	calculated	from	the	measured	

probability	distribution	of	the	ribbon’s	position	gÎ	using	the	equation	k = ÿ < gÎq >,	where	

ÿ = 513i¬ tq	 quantifies	 the	 nonlinear	 coupling	 between	 the	 ribbon’s	 tension	 and	 its	

bending	 stiffness.	 This	 quantity	 is	 analogous	 to	 the	 pressure-volume	 relation	 in	 a	 piston	

engine.	 The	 area	 inside	 the	 curve	 corresponds	 to	 the	 average	 work	 transferred	 to	 the	

cantilever	per	cycle	of	operation.	This	area	has	a	value	of	179.2 ± 7.7	flr,	in	good	agreement	

with	 the	average	power	dissipated	 in	 the	cantilever,	determined	to	be	171.2 ± 7.1	flr	per	

cycle	from	the	quality	factor	and	average	vibrational	amplitude.	The	power	output	increases	

nonlinearly	with	applied	noise	temperature	(Fig	4.2e).	At	kÍ = 4.2 ∙ 10ops,	its	normalized	value	

x = 0.095 ± 0.009	i†kÍuno	 is	 comparable	 to	 that	 of	 stochastic	 engines	 reported	 in	 the	

literature,	whose	values	are	around	0.02	i†kuno[29]	and	5	i†kuno	[242].	The	high	effective	

noise	 temperatures	 in	 Fig.	 4.2e	 are	 a	 consequence	of	 the	macroscopic	 dimensions	of	 our	

tabletop	setup,	which	mandate	the	use	of	an	external	noise	excitation.		In	the	Supplementary	

Information,	we	present	simulations	on	a	microscopic	engine	capable	of	attaining	an	output	

power	above	12000	i†kuno,	owing	to	its	high	frequency	of	operation.	While	our	table-top	

demonstration	 	 requires	 a	 significant	 amount	 of	 energy	 to	 simulate	 the	 high	 effective	

temperature	kÍ,	the	microscopic	engine	does	not	use	any	additional	energy	source	besides	

the	heat	extracted	from	kÍ.		
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During	 thermal	 machine	 operation,	 the	 trajectory	 of	 the	 cantilever	 is	 approximately	 a	

harmonic	 signal	with	 a	 slowly	 varying	 envelope,	while	 the	motion	 of	 the	 ribbon	 is	 highly	

random	 (Fig	 4.2f).	 We	 further	 investigate	 the	 properties	 of	 the	 cantilever	 motion	 by	

calculating	the	phase	space	probability	distribution	from	the	experimental	measurements	(Fig	

4.3a)	 and	 theoretical	 simulations	 (Fig	 4.3b).	 The	 cantilever’s	 probability	 distribution	 is	

concentrated	around	a	circular	orbit,	approximating	harmonic	motion	with	some	amplitude	

and	phase	noise	(in	pure	harmonic	motion	the	probability	density	would	be	zero	everywhere	

except	in	a	circular,	one-dimensional	region).	This	probability	distribution	is	non-passive:	the	

amount	of	energy	is	not	minimal	given	the	entropy	of	the	distribution.	This	allows	for	work	

extraction	without	a	corresponding	flow	of	entropy[177].	Additionally,	the	system	presents	a	

region	of	population	inversion,	with	higher	probability	density	around	the	circular	orbit	than	

close	to	the	origin,	where	the	energy	is	lowest.	This	distribution	is	similar	to	the	theoretically	

predicted	Wigner	function	for	a	quantum	optomechanical	heat	engine[254],	and	contrasts	

with	the	passive	Gaussian	distribution	describing	harmonic	oscillators	subject	to	a	white	noise	

excitation[255].	We	compare	the	phase	space	distribution	during	thermal	machine	operation	

(Figs.	4.3a	and	4.3b)	with	that	of	a	detuned	system	(i.e.	where		âÍ < âÎ,	see	Supplementary	

Information).	In	the	detuned	system,	the	main	ribbon	heating	is	out	of	sync	with	the	phase	of	

the	 cantilever	 oscillation	 cycle.	 This	 prevents	 thermal	machine	 operation	 and	 results	 in	 a	

Gaussian	phase	space	probability	distribution	for	the	cantilever,	maximizing	the	entropy	for	

a	given	mean	energy	(Figs.	4.3c	and	d).	

	

We	quantify	the	randomness	of	the	cantilever’s	motion	by	calculating	the	entropy	of	its	phase	

space	probability	distribution	(Fig.	4.3e).	The	difference	between	the	cantilever’s	entropy	and	

the	corresponding	equilibrium	entropy	increases	at	high	cantilever	vibrational	energies.	This	

indicates	 the	 coexistence	 of	 two	 energy	 transfer	mechanisms:	 An	 incoherent	mechanism	

analogous	to	heat	transfer[256],	where	fluctuations	of	the	main	ribbon	introduce	fluctuations	

on	 the	 ribbon’s	 tension	 that	 cause	 the	 cantilever	 to	 move	 randomly,	 and	 a	 coherent	

mechanism	 where	 the	 motion	 of	 the	 main	 ribbon	 is	 modulated	 by	 the	 vibration	 of	 the	

cantilever.	At	low	amplitudes	(Fig.	4.3e	and	Supplementary	Animation	1),	or	when	the	main	

ribbon	frequencies	are	not	tuned	to	result	in	thermal	machine	operation	(Figs.	4.3c	and	4.3d),	

the	incoherent	mechanism	dominates,	resulting	in	a	maximally	entropic	(passive)	probability	

distribution	 for	 the	 cantilever.	 At	 high	 amplitudes	 the	 coherent	 mechanism	 becomes	
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significant	and	the	motion	of	the	cantilever	is	nonpassive,	with	entropy	below	the	maximal	

value	(Fig.	4.3e).	The	Fourier	transform	of	the	cantilever	velocity	(Fig.	4.3f)	reveals	that	 its	

motion	 occurs	 mostly	 at	 the	 first	 mode	 of	 resonance.	 	 Higher	 cantilever	 modes	 and	

resonances	 of	 the	 ribbons	 are	 below	 the	 fundamental	 component	 by	 at	 least	 80	 dB.	We	

attribute	the	presence	of	small	quantities	of	harmonics	to	nonlinearities	in	our	measurement	

system.	

	

	
FIG.	4.3:	Properties	of	 the	 cantilever	motion.	 (a)	 Experimental	phase	 space	probability	distribution	

corresponding	 to	 the	 case	when	 the	 frequency	of	 the	 ribbons	 is	 tuned	 to	 achieve	 thermal	 engine	

operation	 at	 kÍ = 4.2 ∙ 10ops.	 (b)	 Theoretical	 phase	 space	 probability	 distribution	 for	 the	

experimental	case	in	(a).	(c)	Phase	space	probability	density	function	for	the	cantilever	in	the	detuned	

system	(where	âÎ > âÍ,	see	Supplementary	Information	for	the	exact	values)	at	kÍ = 2 ∙ 10ops.	d	

Theoretical	prediction	for	the	system	in	(c).	(e)	Experimental	entropy	of	the	cantilever	motion	as	a	

function	 of	 the	 energy	 (blue	 crosses),	 compared	 to	 a	 theoretical	 prediction	 (red	 line)	 and	 to	 the	

maximal	entropy	for	the	given	energy	(green	dotted	line).	The	green	circle	indicates	the	experimental	

conditions	 used	 in	 panels	 a,	 b	 and	 f,	 as	 well	 as	 Fig.	 4.2c,	 d	 and	 f.	 (f)	 Fourier	 transform	 of	 the	

experimental	cantilever	motion.	
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The	heat	engine	presented	in	this	Letter	corresponds	to	the	mass-spring	model	in	Fig.	4.4a	

and	 is	described	by	 the	system	of	underdamped	 [257]	Langevin	 [258,	259]	equations	 (see	

supplementary	information	for	derivation	and	numerical	algorithms):	

	

tÍgÍ + íÍgÍ + iÍgÍ + iÍÎ gÍ − gÎ + √gÍ
e = ÓÍ 

tÎgÎ + íÎgÎ + iÎ − 2ÿgÏ gÎ + iÍÎ gÎ − gÍ + √gÎ
e = Óò 

tÏgÏ + íÏgÏ + iÏgÏ − ÿgÎ
q = ÓÏ 

Eq.	1	

a-c	

	

Here	iÍ,	iÎ	and	iÏ	are	the	stiffness	of	the	hot	ribbon,	the	main	ribbon	and	the	cantilever	

respectively,	íÍ,	íÎ	and	íÏ	are	the	corresponding	linear	damping	coefficients	and	tÍ,	tÎ,	

and	tÏ	are	the	corresponding	masses.	The	terms	ÓÍ,	Óò 	and	ÓÏ	represent	the	thermal	noise	

introduced	by	the	baths	acting	on	each	degree	of	freedom.	These	terms	have	a	white	noise	

power	spectral	density	of	4sjkÉíÉ	[142].	This	relationship	between	dissipation,	temperature	

and	 excitation	 force	 is	 used	 to	 determine	 the	 experimental	 effective	 temperature.	 In	 the	

numerical	 simulations,	 the	 temperature	 kÍ	 is	 set	 to	 match	 the	 excitation	 used	 in	 the	

experiments,	while	kò 	 and	kÏ	 are	 set	 to	 zero	 (except	otherwise	 indicated)	 since	 they	are	

negligible	in	comparison	to	kÍ.	The	constant	iÍÎ	represents	the	linear	coupling	between	the	

two	ribbons,	ÿ	 is	the	nonlinear	coupling	between	the	main	ribbon	and	the	cantilever	(also	

appearing	in	the	ribbon’s	dynamic	tension	equation),	and	√	is	the	cubic	nonlinear	stiffness	of	

the	 ribbons.	 Experimentally	 measured	 values	 for	 the	 all	 parameters	 are	 provided	 in	 the	

Supplementary	Information.	Coupled	degrees	of	freedom	subject	to	Brownian	motion	have	

been	studied	in	electronic	systems[256],	and	the	asymmetric	coupling	between	gÎ	and	gÏ	

appears	in	the	description	of	phonon	modes	in	superconductors[235].			
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FIG.	 4.4:	Theoretical	 investigation.	 (a)	Mass-spring	model	 for	 the	 system.	 (b)	Energy	 transfer	 as	 a	

function	of	 the	 cantilever	 temperature	kÏ.	 (c)	Efficiency	of	 the	 thermal	machine	 (blue,	 solid)	 and	

comparison	with	the	Carnot	efficiency	(red,	dashed).	Here,	the	cantilever	motion	has	been	prescribed	

to	be	gÏ = 50	√t cos ïÏì 	to	prevent	incoherent	energy	transfer	between	the	ribbons	and	the	

cantilever.	 	 (d)	 Refrigerator	 Coefficient	 Of	 Performance	 (æ. Ô. x. = ⁄ò h)	 when	 the	 cantilever	 is	

forced	to	oscillate	at	�Ï = 50	√t	(blue,	solid)	and	when	driven	by	noise	at	kÏ = iÏ�Ï
q ij	(green,	

dotted).	The	red	dashed	line	is	the	Carnot	maximal	C.O.P.		

	

As	demonstrated	in	Fig.	4.3,	the	theoretical	model	predictions	are	in	good	agreement	with	

the	 experiments.	 Thus,	 we	 use	 the	 model	 to	 determine	 quantities	 that	 are	 not	 directly	

measurable	 in	 our	 experimental	 setup,	 such	 as	 the	 energy	 transfer	 between	 ribbons.	We	

highlight	 the	most	 relevant	 theoretical	 findings	 in	 Fig.	 4.4.	We	 define	 the	 power	 transfer	

between	a	degree	of	 freedom	and	 its	 thermal	bath	as	 the	work	of	 the	 thermal	noise	and	

damping:	hÉ ì =< íÉgÉ − ÓÉ gÉ >	 [260]	.	We	first	study	the	effect	of	the	cantilever	

thermal	bath’s	temperature	kÏ.	Increasing	kÏ	increases	the	energy	transferred	between	kÍ	

and	kÏ	(Fig	4.4a).	This	corresponds	to	an	effective	negative	thermal	conductivity.	In	addition,	

the	system	is	able	to	transfer	energy	between	the	thermal	baths	kÍ	and	kÏ	even	when	kÏ	is	

increased	 above	 kÍ.	 This	 observation,	 which	 seems	 to	 defy	 the	 second	 law	 of	

thermodynamics,	is	made	possible	by	the	fact	that	gÎ	is	at	a	lower	temperature	than	gÍ,	and	

absorbs	 the	 excess	 entropy	 extracted	 from	 ÓÍ.	 Figure	 4.4c	 presents	 the	 efficiency	 of	 the	

thermal	 machine	 as	 a	 function	 of	 the	 ratio	 between	 kÍ	 and	 kò .	 The	 machine	 attains	 a	

maximum	 efficiency	 of	 approximately	 30%	 of	 the	 maximal	 Carnot	 efficiency	 using	 our	

experimental,	 unoptimized	 parameters.	 In	 the	 Supplementary	 Information,	 we	 present	
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alternative	designs	that	attain	efficiencies	up	to	50%	of	the	theoretical	maximum.	When	the	

temperature	ratio	kÍ kò 	is	close	to	1,	the	energy	flow	between	kÍ	and	kò 	reverses,	and	the	

machine	acts	as	a	refrigerator	[251].	The	refrigerator	regime	requires	a	constant	supply	of	

energy	to	the	cantilever.	This	energy	can	be	provided	by	externally	prescribing	the	cantilever	

displacement,	 or	 by	 increasing	 kÏ	 to	 introduce	 large	 amplitude	 thermal	 motion	 in	 the	

cantilever.	In	the	latter	case,	the	main	ribbon	is	cooled	through	the	addition	of	heat	to	the	

system,	which	behaves	as	an	absorption	refrigerator	[253,	261-264].	Figure	4d	presents	the	

efficiency	of	the	refrigerator	operation.	

	

This	 work	 has	 demonstrated	 that	 a	 mechanical	 system	 consisting	 of	 two	 ribbons	 and	 a	

cantilever	has	the	ability	 to	act	as	a	heat	engine	or	refrigerator,	and	presents	the	unusual	

property	of	negative	thermal	conductivity.	Traditionally,	Brownian	motion	has	been	seen	as	

an	 inconvenience	 when	 present	 in	 mechanical	 systems,	 e.g.,	 by	 limiting	 the	 precision	 of	

nanomechanical	 sensors[265].	 Our	 work	 demonstrates	 that	 this	 thermal	 noise	 may	 be	 a	

source	of	energy	and	a	tool	to	study	thermodynamics	in	both	macro	and	micro	scale	systems.	

	

Supplementary:	Alternative	heat	engines	
	

In	the	main	paper	it	was	demonstrated	that	a	mechanical	system	can	act	as	a	stochastic	heat	

engine	by	exploiting	nonlinearity	and	resonance.	The	generality	of	this	fundamental	concept	

is	explored	 in	this	section.	We	briefly	discuss	two	alternative	arrangements	of	masses	and	

nonlinear	springs	that	also	function	as	heat	engines.			

	

Main-Cold	engine	
	

We	first	consider	an	engine	similar	to	the	engine	that	was	discussed	in	the	main	paper	(Fig.	

4.S1a).	The	only	difference	is	that	the	hot	thermal	bath	is	applied	to	the	main	ribbon	instead	

of	 the	secondary	 ribbon.	For	 the	engine	 to	operate,	 the	 resonance	 frequency	of	 the	main	

ribbon	must	be	above	the	natural	frequency	of	the	secondary,	cold	ribbon	(Fig.	4.S1b).	

	

The	engine	is	described	by	the	system	of	equations:	
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tògò + íògò + iògò + iòÎ gò − gÎ + √gò
e = Óò 	

tÎgÎ + íÎgÎ + iÎ − 2ÿgÏ gÎ + iòÎ gÎ − gò + √gÎ
e = ÓÍ 	

tÏgÏ + íÏgÏ + iÏgÏ − ÿgÎ
q = ÓÏ	

	

Eq.	S1	

A-C	

	

	
FIG.	4.S1:	Main-Cold	engine	(a)	Mass-spring	diagram	of	the	engine.	(b)	Output	power	as	a	function	of	

the	main	 ribbon’s	 frequency,	 for	 a	 prescribed	 cantilever	 vibration	 amplitude	of	50	√t.	 (c)	 Engine	

power	 as	 a	 function	 of	 the	 work	 amplitude	 (dh dì =	< −ÿgÎ
q gÏ >).	 (d)	 Energy	 efficiency	 and	

comparison	with	 the	Carnot	 limit.	e	 Power	output	as	a	 function	of	 the	 temperature	acting	on	 the	

cantilever.	The	parameters	used	in	this	simulation:	âÎ = 190.8	éè,	âò = 165.37	éè,	âÏ = 26.87	éè,	

tÎ = tò = 0.207z,	tÏ = 1.27	sz,	 ⁄ò = 59.41,	 ⁄Î = 167.78,	 iòÎ = 0.0381 ∙ iò ,	 ÿ =

513	i¬tnq,	 √ = 16.9	ú¬tne,	 kÍ = 2 ∙ 10ops,	 kÎ = kò = 0,	 �Ï = 50	√t	 (unless	 otherwise	

indicated).	

	

The	efficiency	and	output	power	of	this	engine	are	similar	to	those	obtained	in	the	main	paper	

(Fig.	4.S1	c-d),	where	the	hot	bath	was	applied	to	the	secondary	ribbon.	This	engine	is	also	

capable	 of	 pumping	 energy	 from	 a	 cold	 thermal	 bath	 to	 a	 hot	 thermal	 bath	 (Fig.	 4.S1e).	
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However,	in	contrast	with	the	engine	presented	in	the	main	paper,	in	this	case	an	increase	in	

the	cantilever	temperature		decreases	the	power	transferred	to	gÏ.	

	

	
	
	
	
Hot-Main-Cold	engine	
	

We	can	build	engines	with	higher	efficiency	and	output	power	by	adding	an	additional	ribbon	

(Fig.	4.S2a).	In	this	case,	the	main	ribbon	(gÎ)	is	attached	to	two	ribbons.	One	of	them	(gÍ)	is	

in	contact	with	the	hot	thermal	bath,	while	the	other	(gò)	is	in	contact	with	the	cold	thermal	

bath.	For	maximum	efficiency,	the	hot	ribbon’s	natural	frequency	should	be	tuned	above	the	

frequency	of	the	main	ribbon,	while	the	cold	ribbon’s	natural	frequency	has	to	be	set	below	

the	 frequency	of	 the	main	 ribbon	 (Fig.	 4.S2b).	 	 This	 system	 is	 described	by	 the	 system	of	

equations:	

	

tÍgÍ + íÍgÍ + iÍgÍ + iÍÎ gÍ − gÎ + √gÍ
e = ÓÍ	

tògò + íògò + iògò + iòÎ gò − gÎ + √gò
e = Óò 	

tÎgÎ + íÎgÎ + iÎ − 2ÿgÏ gÎ + iòÎ gÎ − gò + iÍÎ gÎ − gÍ + √gÎ
e = ÓÎ	

tÏgÏ + íÏgÏ + iÏgÏ − ÿgÎ
q = ÓÏ	

Eq.	S2	

A-D	

	

Figure	4.S2c	 shows	 the	power	output	 (h =< fg >=< −ÿgÎ
q gÏ >)	 	 as	 a	 function	of	 the	

prescribed	 cantilever	 vibration	 amplitude.	 The	 relation	 between	 cantilever	 amplitude	 and	

output	power	is	similar	to	that	obtained	for	the	Cold-Main	engine	of	the	previous	section	and	

the	 Hot-Main	 engine	 of	 the	 main	 paper,	 where	 a	 nonlinear	 increase	 in	 output	 power	 is	

observed.	In	this	case,	however,	the	saturation	occurs	at	higher	amplitudes,	and	the	output	

power	is	larger	by	a	factor	of	more	than	two	(Compare	Figs	4.S1c	and	4.S2c).	
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FIG.	4.S2:	Hot-Main-Cold	engine.	 (a)	Mass-spring	diagram	of	 the	engine.	 (b)	 Engine	efficiency	as	a	

function	of	the	cold	spring	stiffness.	(c)	Engine	power	as	a	function	of	the	work	amplitude.	(d)	Energy	

transfer	 as	 a	 function	 of	 the	 work	 temperature.	 (e)	 Efficiency	 in	 the	 nonautonomous	 limit.	 The	

parameters	 used	 in	 this	 simulation	 are:	 âÍ = 194.5	éè,	 âÎ = 165.37	éè,	 âò = 141.5	éè,	 âÏ =

26.87	éè,	 tÍ = tÎ = tò = 0.207z,	tÏ = 1.27	sz,	 ⁄Í = ⁄ò = 59.41,	 ⁄Î = 1000,	 iòÎ =

iÍÎ = 0.0381 ∙ iò ,	 ÿ = 513	i¬tnq,	 √ = 16.9	ú¬tne,	 kÍ = 2 ∙ 10ops,	 kÎ = kò = 0,	 �Ï =

50	√t	(unless	otherwise	indicated).	

	

In	addition	to	an	increase	in	power,	this	design	also	brings	an	increase	in	efficiency	(Figs.	4.S2c	

and	d).	This	efficiency	reaches	a	maximum	of	47%	of	the	Carnot	limit,	which	is	significantly	

higher	 than	 the	efficiency	of	 the	 two-ribbon	engines	 (about	30%).	As	 in	 the	previous	 two	

cases,	the	engine	is	able	to	transfer	energy	from	cold	to	hot	temperatures	(Fig	4.S2e).		
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Supplementary:	Equations	of	motion	for	the	ribbon-cantilever	system	
	

Our	system	consists	of	two	pieces	of	metal	ribbon	(gÎ	and	gÍ)	and	a	cantilever	(gÏ).	In	this	

section	we	derive	the	coupled	equations	of	motion	for	the	system	(Eq.	1	of	the	main	paper)	

as	a	function	of	the	geometry.			

	

Cantilever	equation	
	

The	motion	of	the	cantilever	can	be	described	by	considering	only	the	first	bending	mode	of	

vibration.	This	is	a	consequence	of	the	fact	that	higher	modes	of	vibration	are	much	stiffer	

and	therefore	vibrate	at	smaller	amplitudes.	This	assumption	is	confirmed	experimentally	by	

inspecting	the	Fourier	transform	of	the	cantilever	motion	(Fig	4.3f	of	the	main	paper).	Under	

this	assumption,	the	dynamics	of	the	cantilever	are	described	by	a	damped-driven	harmonic	

oscillator:		

	

tÏgÏ + íÏgÏ + iÏgÏ = k	 gÎ 	

	

Eq.	S3	

where	tÏ,	íÏ	and	iÏ	are	the	effective	mass,	damping	and	stiffness,	 respectively,	of	 the	

normal	mode	with	position	gÏ.	The	right	hand	side	sums	the	external	forces	acting	on	the	

mode.	 In	our	 experimental	 system,	 the	only	 external	 force	 acting	on	 the	 cantilever	 is	 the	

ribbon	tension,	which	we	represent	by	k.	The	value	of	k	is	a	function	of	the	ribbon’s	in-plane	

vibrational	displacement	gÎ	(We	will	obtain	an	expression	for	k(gÎ)	in	the	Ribbon	equation	

section).	The	variable	gÏ	represents	the	position	of	the	normal	mode	at	a	particular	instant	

of	time.	As	such,	it	can	be	defined	in	different	ways	depending	on	the	mode’s	normalization.	

In	 this	 derivation,	 we	 set	 the	 mode	 normalization	 that	 makes	 the	 modal	 coordinate	 gÏ	

coincide	with	the	displacement	of	the	cantilever	at	the	point	where	the	ribbon	is	attached.	

We	calculate	the	effective	mass	and	stiffness	using	the	commercial	Finite	Element	Method	

(FEM)	package	Comsol	Multiphysics®.	The	motion	of	the	cantilever	must	take	into	account	

the	 longitudinal	 stiffness	 of	 the	 ribbon.	 We	 use	 a	 value	 of	 31.55	 i¬ t	 that	 correctly	

reproduces	 the	measured	 cantilever	 frequency,	 as	 described	 in	 the	 section	 Experimental	

determination	of	the	quality	factors,	frequencies	and	coupling	constant,	where	we	will	also	

determine	the	damping	constant	íÏ.	
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The	effective	mass	is	defined	as	the	integral	 Ò g, Ú, è êq + àq + Ûq dÙ
ı

	where	ê,	à	and	

Û	represent	the	displacements	of	the	mode	along	the	directions	g,	Ú	and	è	respectively,	while	

Ò	is	the	density	of	the	cantilever	material.	This	provides	us	with	a	cantilever	mass	of	1.27 ±

0.04	iz,	where	the	uncertainty	originates	from	tolerances	 in	the	geometry	measurement.	

The	effective	 stiffness	 can	be	 calculated	 from	 the	eigenfrequency	using	 the	equation	i =

tïq.		

	

	
FIG.	 4.S3:	 Cantilever’s	 first	 normal	 mode	 of	 vibration.	We	 use	 this	 mode	 profile	 to	 calculate	 the	

effective	mass	of	the	cantilever	(tÌ	in	our	system	of	equations).	The	cantilever	has	a	length	of	40.6	

cm,	a	height	of	4	cm	and	a	thickness	of	5	mm.	The	block	mass	at	the	cantilever’s	end	has	dimensions	

of	5x5x6	cm.	The	cantilever	is	made	of	steel	with	a	Young’s	modulus	v = 200	wxy,	a	Poisson	ratio	

ˆ = 0.33	and	a	density	Ò = 7850	 sz te.	

	

Ribbon	equation	
	

The	 motion	 for	 a	 beam-like	 resonator	 can	 be	 approximated	 by	 the	 Woinowski-Krieger	

equation[266].	This	equation	is	a	modified	Euler-Bernoulli	equation	that	takes	into	account	

the	effect	of	the	vibration-induced	tension.		The	Woinowski-Krieger	equation	for	a	slender	

beam	of	length	˜	takes	the	form:	

	

v¯
ÄáÛ

ÄÚq
−
v�

˜
ñÚ + ñÚÑ +

1

2

ÄÛ

ÄÚ

q

dÚ
ç

Ñ

ÄqÛ

ÄÚq
+ Ò�

ÄqÛ

Äìq
− â Ú, ì = 0	 Eq.	S4	
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Here,	Ò	is	the	density	of	the	ribbon,	�	is	the	cross-section	area,	¯	is	the	bending	moment	of	

inertia,	and	v	is	the	Young’s	modulus.	The	Ú	axis	corresponds	to	the	direction	along	the	length	

of	the	ribbon,	and	Û	is	the	deflection.	ñÚÑ	is	the	elongation	of	the	ribbon	when	the	cantilever	

is	at	equilibrium.	The	displacement	of	the	cantilever	from	its	equilibrium	position	introduces	

a	ñÚ	change	in	the	length	of	the	ribbon.		

	

At	small	amplitudes,	the	Woinowski-Krieger’s	nonlinear	term	(represented	by	the	integral	in	

Eq.	S4)	vanishes.	 In	this	regime,	the	system	behaves	 like	an	Euler-Bernoulli	beam	in	which	

case	it	would	be	reasonable	to	define	a	set	of	vibrational	modes	for	the	ribbon.	It	is	possible	

to	extend	the	range	of	validity	of	this	picture	to	higher	amplitudes	by	first	performing	a	modal	

decomposition	and	then	using	the	Galerkin	method	to	account	for	the	nonlinear	effects[158].	

This	approach	is	valid	as	long	as	the	amplitude	is	small	enough	to	ensure	that	the	mode	profile	

is	not	significantly	affected	by	the	nonlinearity.		Here	we	use	this	method	to	derive	a	nonlinear	

equation	for	the	motion	of	the	first	mode	of	vibration	for	the	ribbons.	We	follow	the	same	

approach	as	Postma	et	al.	[158].	This	approach	consists	in	expressing	the	solution	of	Eq.	S4	as	

a	time-dependent	linear	combination	of	trial	functions:	

	

Û Ú, ì = êô ì ˘ô Ú

‘

ô

	

	

Eq.	S5	

	

In	general,	a	finite	set	of	trial	functions	will	not	be	able	to	exactly	satisfy	Eq.	S4.	This	implies	

that	the	left	hand	side	of	the	equation	will	not	be	identically	zero.	Instead,	there	will	be	an	

error	term	È g, ì :	

	

v¯
ÄáÛ

ÄÚq
−
v�

˜
ñÚ + ñÚÑ +

1

2

ÄÛ

ÄÚ

q

dg
ç

Ñ

ÄqÛ

ÄÚq
+ Ò�

ÄqÛ

Äìq
− â Ú, ì = È Ú, ì 	 Eq.	S6	

	

The	Galerkin	method	imposes	the	condition	that	the	error	term	should	be	orthogonal	to	each	

of	the	trial	functions.	Orthogonality	between	È g, ì 	and	˘ô(g)	is	defined	as:	
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˘ô ì È Ú, ì
ç

Ñ
dÚ = 0	 Eq.	S7	

	

The	system	is	completely	determined	because	there	are	as	many	orthogonality	conditions	as	

unknown	 functions	êô ì .	We	 use	 the	 eigenmodes	 of	 the	 linear	 system	 as	 test	 functions	

˘ô(Ú),	and	we	consider	only	the	first	normal	mode	of	vibration.	This	assumption	is	reasonable	

since	higher	order	modes	are	considerably	stiffer,	and	 therefore	oscillate	at	much	smaller	

amplitudes.	Applying	the	orthogonality	condition	(Eq.	S7)	to	Eq.	S6	results	 in	the	following	

ordinary	 differential	 equation	 describing	 the	 time	 evolution	 of	 the	 mode	 coordinate	 êo	

(Henceforth	referred	to	as	ê):	

	

tê + iê + 2ÿñê + √êe = f ì 	

	
Eq.	S8	

The	term	2ÿñê	 is	responsible	for	the	coupling	between	the	cantilever	and	the	ribbon.	The	

parameters	in	Eq.	S8	are	given	by:	

	

t = Ò� ˘q Ú dÚ
ç

Ñ
	 i = v¯

Äá˘ Ú

ÄÚá
˘ Ú dÚ

ç

Ñ
+ 2ËñÚÑ	 Eq.	S9	

A-D	
2ÿ = −
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Äq˘ Ú

ÄÚq
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q
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In	order	to	evaluate	these	expressions,	we	calculate	the	mode	profile	˘(Ú)	using	the	pre-

stressed	 eigenfrequency	 analysis	 function	 of	 Comsol	Multiphysics®	 5.0.	We	 use	 the	 plate	

model	to	describe	the	dynamics	of	the	ribbon.	In	the	finite	element	simulation,	we	select	an	

elongation	 ñgÑ = 250√t	 that	 yields	 resonance	 frequencies	 that	 are	 comparable	 to	 the	

experimental	 values.	 	 The	 thickness	 of	 the	 beams	 is	 set	 to	 16.25 ± 1.83	√t	 in	 order	 to	

reproduce	the	longitudinal	stiffness	of	31.55 ± 1.04	i¬/t	that	yields	the	correct	cantilever	

resonance	 frequency,	 assuming	 a	 density	Ò = 8500	 iz te	 and	 a	 Young’s	modulus	v =

115 ± 10	wxy.	The	integration	in	Eq.	S9a-d	is	performed	along	the	central	axis	of	the	beam.	

For	convenience,	we	fix	the	normalization	of	the	mode	to	be:	

	

˘q Ú dÚ
ç

Ñ
= ˜	 Eq.	S10	
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This	definition	sets	the	effective	mass	t = Ò�˜	equal	to	the	physical	mass	of	the	ribbon.	The	

values	of	the	parameters	corresponding	to	our	experiment	are	given	in	Table	S1:	

	

Parameter	 Value	

m	 0.207 ± 0.023	z	

˙	 513 ± 56	 i¬ tq	

˚	 16.9 ± 1.8	ú¬ te	

	Supplementary	Table	1:	Ribbon	effective	mass	and	nonlinear	parameters.			

	

We	 will	 calculate	 the	 value	 of	 ñÚÑ	 and	 i	 from	 the	 frequency	 response	 in	 the	 section	

Experimental	determination	of	the	quality	factors,	frequencies	and	coupling	constant.	

	

Coupling	between	ribbons	

	

The	coupling	between	gÍ	and	gÎ	is	implemented	by	a	small	piece	of	ribbon	placed	between	

the	 two	 resonators.	 The	 coupling	 is	 assumed	 to	be	 linear,	 and	modeled	with	 a	 term	f =

iÍÎ gÍ − gÎ .	We	will	experimentally	measure	the	value	of	iÍÎ	in	the	following	section.			

Supplementary:	Experimental	determination	of	the	quality	factors,	
frequencies	and	coupling	constant	
	

The	previous	section	describes	a	model	for	the	system	that	is	based	on	analytical	and	finite	

element	 simulations.	 These	 methods	 are	 adequate	 to	 predict	 several	 of	 the	 system	

parameters.	In	this	section	we	experimentally	measure	the	remaining	system	parameters	that	

cannot	be	accurately	predicted	with	theoretical	models.	

	

Cantilever	frequency	and	quality	factor	
	

We	measure	the	cantilever	by	exciting	it	using	a	harmonic	signal	and	measuring	the	frequency	

response.	The	excitation	 is	provided	by	a	solenoid	that	 induces	a	 force	on	a	small	magnet	

attached	to	the	cantilever.	The	frequency	response	is	extracted	using	a	Lock-In	amplifier	that	

receives	 the	 signal	 from	 a	 Laser	 Doppler	 Vibrometer.	 Figure	 4.S4	 shows	 the	 measured	
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frequency	 response	 and	 the	 corresponding	 fit	 using	 the	MATLAB®	 state	 space	 parameter	

estimation	function.	The	fit	yields	a	cantilever	resonance	at	26.87 ± 0.01	Hz	with	a	quality	

factor	of	964 ± 41.	

	

	
FIG.	4.S4:	Cantilever’s	frequency	response.	(a)	Amplitude	of	the	cantilever’s	velocity	as	a	function	of	

the	 excitation	 frequency.	 (b)	 Phase	 of	 the	 cantilever’s	 velocity	 as	 a	 function	 of	 the	 excitation	

frequency.	 The	 green	 lines	 represent	 measured	 values,	 while	 the	 blue	 lines	 represent	 the	 fitted	

response.		

	

Ribbon’s	resonance	frequencies,	couplings	and	damping	
	

In	 this	 section,	 we	 determine	 the	 experimental	 quality	 factor,	 frequency	 and	 coupling	

stiffness	 for	 the	 ribbons.	We	accomplish	 this	by	measuring	 the	 frequency	 response	of	 the	

ribbon	when	excited	by	a	harmonic	signal	of	variable	frequency.	The	results	are	fitted	using	

MATLAB®	state	space	parameter	estimation.	
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FIG.	4.S5:	Ribbon	frequency	response	measurement.		(a)	and	(b):	Ribbon	amplitude	(a)	and	phase	(b)	

as	a	function	of	the	excitation	frequency,	for	the	case	where	the	ribbon	tensions	are	tuned	to	result	

in	thermal	machine	operation	(Fig.	4.3	a,	b,	d,	e	 in	the	main	paper).	(c)	and	(d):	Amplitude	(c)	and	

phase	 (d)	 	as	a	 function	of	 the	excitation	amplitude	for	 the	case	where	the	ribbon	are	detuned	so	

thermal	machine	operation	does	not	occur	 (Fig.	4.3	c,	d	 in	 the	main	paper).	 In	all	 four	panels,	 the	

dashed	 green	 line	 represents	 the	 experimental	 data	 and	 the	 solid	 blue	 line	 represents	 the	 fitted	

response.	

	

The	state	space	parameter	estimation	results	are	given	in	Table	S2.	

	

Parameter	 Value	(Tuned)	 Value	(Detuned)	

¸˝	 192.55 ± 0.02	éè	 134.32 ± 0.04	éè	

¸˛	 165.37 ± 0.02	éè	 176.67 ± 0.02	éè	

ˇ˝	 59.3 ± 1.8		 26.9 ± 1.2	

ˇ˛	 167.8 ± 3.0	 151.7 ± 2.0	

!˝"/!˛	 0.0381 ± 0.0059	 0.0381 ± 0.0060	

Supplementary	Table	2:	Ribbon	parameters.			

	

We	attribute	 the	 large	differences	between	⁄Í	 and	⁄Î	 this	 to	eddy	current	 losses	 in	 the	

ribbon	due	to	the	large	magnetic	fields	used	for	excitation.	
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Supplementary:	Methods	
	

Numerical	methods	
	

We	simulate	the	system	by	expressing	the	equations	of	motion	in	Itô	form:	

	

dgÍ = àÍ ∙ dì + 0 ∙ dho	

dgÎ = àÎ ∙ dì + 0 ∙ dhq	

dgÏ = àÏ ∙ dì + 0 ∙ dhe	

dàÍ = −
1

tÍ
íÍàÍ + iÍgÍ + iÍÎ gÍ − gÎ ∙ dì + 2ijíÍkÍ ∙ dhá	

dàÎ = −
1

tÎ
íÎàÎ + iÎ − 2ÿgÏ gÎ + iÍÎ gÎ − gÍ ∙ dì + 2ijíÎkÎ ∙ dhå	

dàÏ = −
1

tÎ
íÏàÏ + iÏgÏ − ÿgÎ

q ∙ dì + 2ijíÏkÏ ∙ dh≈	

Eq.	S11	

A-F	

In	this	system,	the	terms	tÍ,	tÎ,	tÏ,	iÍ,	iÎ,	iÏ,	iÍÎ,	íÍ,	íÎ,	íÏ	and	ÿ	have	the	same	

meaning	as	in	Eq.	S1	in	the	main	paper.	The	excitation	temperature	in	the	simulations	was	

fitted	in	order	to	reproduce	the	experimental	results.	This	also	required	adjusting	the	natural	

frequency	 of	 the	 secondary	 ribbon	 by	 +0.5	éè.	 The	 vector	 dh	 represents	 the	

thermomechanically	induced	velocity	change	incurred	during	the	time	interval	dì,	and	has	a	

Gaussian	distribution.		

	

The	Gaussian-distributed	random	numbers	were	obtained	using	a	Mersenne-Twister	uniform	

random	number	generator	and	the	Beasley-Springer-Moro	inversion	formula.	We	simulated	

the	time	evolution	of	the	system	using	a	stochastic	Runge-Kutta	algorithm	with	strong	order	

1.5[195]	implemented	in	C++,	which	ran	on	the	ETH	Euler	cluster.	Statistical	quantities	such	

as	the	RMS	velocities	were	averaged	over	an	interval	of	5000	s,	using	a	time	step	of	3	√u	for	

all	the	figures	except	the	microscopic	engine.	The	microscopic	simulations	use	a	time	step	of	

60	¥u	and	an	averaging	time	of	0.1	u.	

	

Experimental	materials	and	methods	
	

We	measured	the	cantilever	motion	using	a	Polytec	Laser	Doppler	Vibrometer	(LDV),	model	

OFV-503	with	a	decoder	model	OFV-3001	placed	at	an	angle	of	45°	(Fig.	4.S6a).	For	the	ribbon,	

we	 used	 a	 Polytec	 LDV	model	OFV-505	with	 a	 decoder	model	OFV-5000,	 pointing	 at	˜ =
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14.1	#t	 along	 the	 length	 of	 the	 ribbon.	 We	 calculated	 the	 modal	 amplitude	 from	 the	

measured	 velocity	 by	 using	 the	 mode	 profile	 function	 obtained	 from	 finite	 element	

simulation.	 The	 sensitivity	of	 the	 lasers	was	 set	 to	125	ttunoÙno	 for	 the	 cantilever	 and	

200	ttunoÙno	for	the	ribbon.	We	digitized	the	signal	from	the	lasers	for	a	length	of	2000s		

of	 2.5	 iuyt¥$ºu u	 using	 a	 Tektronix™	 oscilloscope	 model	 DPO-3034	 in	 high-resolution	

mode.	We	 calculated	 the	 displacements	 of	 the	 cantilever	 and	 ribbon	 by	 low-passing	 the	

velocity	signal	to	remove	any	DC	component	and	then	integrating	the	resulting	signal	using	

the	MATLAB®	cumtrapz	function.	The	cutoff	frequencies	for	the	high-pass	filter	were	selected	

at	5	Hz	for	the	cantilever	and	60	Hz	for	the	ribbons.		

	

	
FIG.	4.S6:	Experimental	 setup.	 (a)	Picture	of	 the	experimental	 setup	with	 the	 two	 ribbons	and	 the	

cantilever.	 	(b)	Schematic	diagram	of	the	experimental	setup	including	the	noise	excitation.	c	Steel	

structure	and	magnets	used	to	apply	a	noise	excitation	to	the	secondary	ribbon.		

	
We	 implemented	 the	 ribbons	by	 cutting	 a	 sheet	of	 brass	obtained	 from	Brütsch-Rügger™	

(Catalog	number	162950.0110)	with	a	nominal	 thickness	of	20 ± 2	√t	 into	 two	stripes	of	

height	é = 5	tt	and	length	˜ = 50	#t.	The		free	length	the	ribbons	(after	clamping)	was	

˜% = 30	#t.	We	placed	the	two	ribbons	at	a	distance	of	8	tt	and	introduced	a	coupling	

between	them	by	soldering	an	additional	strip	of	brass	at	both	ribbons	at	length	˜ò = 6	#t	

along	their	length	(Fig.	4.S6b).	



	
91	

	

We	introduced	the	noise	excitation	on	the	secondary	ribbon	by	placing	it	under	a	magnetic	

field	implemented	with	12	neodymium	magnets	from	Supermagnete™	catalog	number	Q-40-

10-05-N	enclosed	in	a	C-shaped	steel	bar	(Fig.	4.S6c).	We	circulated	the	noise	current	across	

the	ribbon	by	driving	both	ends	from	a	Topping	TP22	amplifier	in	series	with	a	5.5	Ohm	power	

resistor.	 The	 noise	 signal	 driving	 the	 ribbon	 was	 obtained	 by	 generating	 a	 sequence	 of	

normally	distributed	random	numbers,	which	was	subsequently	lowpassed	using	an	8th	order	

Low-Pass	filter	with	a	cutoff	frequency	of	10	KHz.	The	electrical	signal	was	generated	with	the	

sound	card	of	a	MacBook	laptop	using	Apple™	CoreAudio	library.	The	Fourier	transform	of	

the	 amplified	 signal	 revealed	 that	 the	 noise	 spectrum	 was	 flat	 on	 the	 region	 of	 interest	

between	50	Hz	and	300	Hz.	

	

Determination	of	statistical	quantities	and	errors	
	

We	calculated	the	histograms	in	Figure	4.2d	and	Figure	4.3	a-d	by	binning	the	time	series	data	

from	 the	numerical	 simulations	 into	 a	 two-dimensional	 histogram	with	 128x128	bins.	We	

calculated	the	entropies	from	the	histograms	using	the	definition:	

	

é = Ò gÏ, ¥Ï log Ò gÏ, ¥Ï dgÏd¥Ï
'

	 Eq.	S12	

	

Where	’	 is	 the	phase	space	of	 the	cantilever,	gÏ	 is	 the	cantilever	position	and	¥Ï	 is	 the	

cantilever	 momentum.	 The	 statistical	 uncertainties	 associated	 to	 each	 time	 series	

measurement	were	calculated	by	dividing	the	measured	time	series	 in	8	sub-sequences	of	

equal	 length.	 We	 then	 evaluated	 the	 variance	 of	 the	 measured	 quantities	 in	 the	 8	 sub-

sequences	and	utilized	this	value	to	extrapolate	the	uncertainty	of	our	measurement.		
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Supplementary:	Microscopic	heat	engine	operating	on	thermal	fluctuations	
	

The	experimental	thermal	engine	that	we	have	presented	in	this	paper	requires	an	external	

noise	 source	 to	 simulate	a	 large	 temperature	and	 therefore	obtain	 significant	amounts	of	

Brownian	motion.	This	 is	a	consequence	of	 the	engine’s	macroscopic	 size,	 since	Brownian	

motion	 in	 a	meter-sized	 steel	 structure	 is	 extremely	 small.	 The	 goal	 of	 this	 section	 is	 to	

demonstrate	that	it	is	possible	to	implement	engines	producing	measurable	amounts	of	work	

at	 experimentally	 accessible	 temperatures	 (~200ºC)	 by	miniaturizing	 the	 ribbons	 and	 the	

cantilever.	 The	dimensions	of	our	microscopic	engine	are	experimentally	 feasible,	 and	we	

base	our	 simulations	 in	 parameters	 obtained	 from	 the	 literature,	 corresponding	 to	 actual	

experimental	devices.	

	

We	model	the	cantilever	using	a	diamond	(Young’s	modulus	vò = 960	wxy	and	density	Òò =

3500	 sz te)	beam	of	length	˜ò = 20	√t,		width	Ûò = 880	flt	and	height	ℎò = 370	flt,	

with	a	quality	factor	⁄ò = 47800	(See	[267]	for	details	on	the	geometry,	quality	factor	and	

fabrication	process).	The	ribbons	are	made	with	graphene	and	have	a	length	˜% = 2.7	√t,	

width	Û% = 20	flt,	thickness	ì% = 3	flt	and	quality	factor	⁄% = 35.	Graphene	ribbons	with	

this	geometry	can	be	modeled	using	conventional	finite	element	theory	or	beam	theory	(See	

Fig.	 2d	 in	 Ref.	 [268]),	 using	 a	 Young’s	 modulus	 of	 v% = 1	kxy	 and	 a	 density	 Ò% =

2200	 iz te.	

	

The	main	ribbon	is	attached	to	the	cantilever	at	a	distance	g( = 2.9	√t	from	the	cantilever’s	

supporting	end	(Fig.	4.S7a).	This	is	because	the	longitudinal	stiffness	of	the	ribbon	is	very	high	

and	 would	 place	 an	 excessive	 load	 to	 the	 cantilever	 if	 it	 were	 attached	 at	 the	 end.	 The	

equations	of	motion	for	the	microscopic	system	are:	

	

tÍgÍ + íÍgÍ + iÍgÍ + iÍ≥ gÍ − g≥ + √gÍ
e = ÓÍ 	

tÎgÎ + íÎgÎ + iÎ − 2ÿÑ˘(gÅ)gÏ gÎ + iÍÎ gÎ − gÏ + √gò
e = Óò 	

tÏgÏ + íÏgÏ + iÏgÏ − ÿÑ˘(gÅ)gÎ
q = ÓÏ	

	

Eq.	S13	

A-C	

Where	gÏ	represents	the	displacement	of	the	cantilever	at	g = ˜ò ,	˘(g()	is	the	cantilever’s	

first	bending	mode	profile,	evaluated	at	 the	attachment	point	of	 the	 ribbon.	The	 ribbon’s	
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nonlinear	parameter	ÿÑ	can	be	computed	using	Eq.	S9,	and	all	the	other	symbols	have	the	

same	meaning	as	in	Eq.	1	of	the	main	text.	Equation	S13	can	in	fact	be	reduced	to	Eq.	1	by	

defining	ÿ = ÿÑ˘ gÅ .	This	definition	provides	us	with	a	mechanism	to	adjust	the	value	of	ÿ	

when	designing	a	device.		

	

	
FIG	4.S7:	Microscopic	engine.	(a)	Schematic	diagram	of	the	engine,	with	the	hot	ribbon	attached	at	a	

distance	gÅ	from	the	cantilever’s	support.		(b)	Cantilever’s	vibration	amplitude	as	a	function	of	the	hot	

thermal	 bath	 temperature	kÍ 	 (blue,	 solid)	 compared	 to	 the	 thermomechanical	 amplitude	 of	 the	

cantilever	at	kÍ 	(green,	dahsed).		The	red	dotted	line	is	the	output	power,	which	reaches	a	maximum	

value	 of	12810	ijkÍuno	 at	230	℃.	 (c)	 Example	 of	 a	 cantilever’s	 trajectory	 (red)	 and	 a	 graphene	

nanoribbon’s	 trajectory	 (light	 blue).	 	 (d)	 Phase	 space	 probability	 distribution	 for	 the	 cantilever,	

showing	a	distinctively	nonpassive	circular	shape.	

	

Figure	 4.S7b	 presents	 a	 simulation	 of	 the	 thermal	 machine’s	 cantilever	 amplitude	 as	 a	

function	 of	 the	 hot	 thermal	 bath	 temperature.	 In	 all	 simulations,	 both	 the	 cold	 bath	

temperature	kò 	and	the	cantilever’s	temperature	kÏ	are	set	to	20	℃.	The	RMS	value	of	the	

cantilever’s	displacement	gÏ	is	much	larger	than	it	can	be	attributed	to	thermomechanical	

noise.	If	the	cantilever’s	temperature	were	to	raise	to	kÍ = 180℃	due	to	direct	conduction	

from	the	cold	bath,	 the	thermomechanical	noise	would	still	be	more	than	6	times	smaller	

than	 the	 simulated	 vibration	 amplitude.	 At	 a	 temperature	 kÏ = 180℃,	 the	 cantilever	

reaches	a	peak	amplitude	of	1	flt	(Fig	4.7c).	This	motion	can	be	measured	experimentally	at	

very	high	resolution	(See	Fig.	3	in	Ref.	[267]).	Therefore,	the	thermal	machine	effect	should	

be	 observable	 in	 a	 system	 of	 these	 dimensions.	 Due	 to	 its	 high	 operating	 frequency,	 the	
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proposed	engine	is	capable	of	producing	an	output	power	orders	of	magnitude	above	that	of	

prior	works.	

	

We	have	shown	that	a	microscopic	autonomous	thermal	engine	can	produce	a	detectable	

amount	 of	 power.	Our	 calculations	 use	 realistic	 parameters	 obtained	 from	 the	 literature.	

However,	constructing	a	device	with	these	properties	is	challenging	and	our	description	omits	

some	technical	aspects:	Precisely	controlling	the	attachment	point	of	a	graphene	ribbon	is	a	

hard	nanofabrication	problem.	In	addition,	the	device	requires	a	mechanism	to	heat	the	hot	

ribbon,	and	to	tune	the	frequency	response.	The	heating	can	be	accomplished	by	passing	a	

current	through	the	ribbon,	or	by	utilizing	thermally	conductive	electrodes.	The	frequency	

tuning	may	be	accomplished	by	imposing	a	static	deflection	on	the	cantilever	by	means	of	an	

electrostatic	potential.	Finally,	the	required	quality	factors	are	high.	This	latter	aspect	can	be	

mitigated	by	numerically	optimizing	the	design	(Or	switching	to	a	more	powerful	alternate	

engine	such	as	the	one	discussed	in	Fig.	4.S2).	Increasing	the	temperature	while	decreasing	

the	operating	amplitude	and	stiffness	of	 the	cantilever	will	also	 result	 in	a	 relaxed	quality	

factor	requirement.				

	

System	parameters	
	

The	parameters	used	for	the	numerical	simulations	of	the	microscopic	engine	are	given	 in	

Table	S3.	

	

Parameter	 Value	

¸˛	 27.203	úéè	

¸˛	 30.195	úéè	

˙	 4.47 ∙ 10ƒ 	¬ tq	

˚	 1.8 ∙ 10oá 	¬ te	

*˝ =*˛	 3.56 ∙ 10no+	sz	

*,	 2.85 ∙ 10noå	sz	

!˝˛	 0.0938	iÎ	

ˇ,	 47800	

ˇ˝ = ˇ˛	 35	
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Supplementary	Table	3:	Microscopic	engine	parameters.			

	

These	parameters	have	been	obtained	using	the	same	procedure	that	we	described	in	the	

section	Equations	of	motion	 for	 the	 ribbon-cantilever	 system.	 The	FEM	simulations	on	 the	

cantilever	account	for	the	stiffness	of	the	ribbon	by	using	a	spring	foundation	at	the	ribbon	

attachment	point.	The	ribbon’s	frequencies	require	a	tension	of	2.2	fl¬	for	the	main	ribbon	

and	2.9	fl¬	for	the	hot	ribbon.	
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Abstract	

Discrete	 models	 provide	 concise	 descriptions	 of	 complex	 physical	 phenomena,	 such	 as	

negative	 refraction,	 topological	 insulators,	 and	 Anderson	 localization.	 While	 there	 are	

multiple	tools	to	obtain	discrete	models	that	demonstrate	particular	phenomena,	it	remains	

a	 challenge	 to	 find	metamaterial	 designs	 that	 replicate	 the	 behavior	 of	 desired	 nontrivial	

discrete	models.	Here	we	 solve	 this	 problem	by	 introducing	 a	new	class	of	metamaterial,	

which	we	term	“perturbative	metamaterial”,	consisting	of	weakly	interacting	unit	cells.	The	

weak	interaction	allows	us	to	associate	each	element	of	the	discrete	model	(individual	masses	

and	 springs)	 to	 individual	 geometric	 features	 of	 the	 metamaterial,	 thereby	 enabling	 a	

systematic	 design	 process.	 We	 demonstrate	 our	 approach	 by	 designing	 2D	 mechanical	

metamaterials	that	realize	Veselago	lenses,	zero-dispersion	bands,	and	topological	insulators.	

While	our	selected	examples	are	within	the	mechanical	domain,	the	same	design	principle	

can	 be	 applied	 to	 acoustic,	 thermal,	 and	 photonic	 metamaterials	 composed	 of	 weakly	

interacting	unit	cells.		
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Introduction	
	

Metamaterials	 utilize	 sub-wavelength	 structures	 to	 control	 wave	 propagation,	 achieving	

extreme	functionalities	such	as	focusing	beyond	the	diffraction	limit[4,	269-272],	performing	

mathematical	operations	with	light[273],	or	cloaking	objects[8,	274].	While	the	potential	of	

metamaterials	is	well	established,	we	lack	systematic	approaches	to	metamaterial	discovery,	

which	 is	currently	based	on	 intuition,	trial	and	error,	or	unguided	searches	of	 large	design	

spaces.	Data-driven	design	approaches[275-277]	have	been	successful	in	engineering	quasi-

static	material	performance,	but	extending	them	to	dynamics	requires	taking	 into	account	

the	interactions	between	multiple	vibrational	modes	of	the	unit	cell.	A	promising	approach	

towards	 metamaterial	 design	 in	 the	 dynamic	 regime	 draws	 inspiration	 from	 the	 field	 of	

electronics[204,	 278,	 279],	 where	 complex	 devices	 are	 designed	 by	 combining	 discrete	

“lumped”	 elements,	 such	 as	 capacitors	 or	 inductors.	 These	 lumped	 elements	 are	 able	 to	

capture	the	intended	behavior	independently	of	the	implementation	details	of	the	elements,	

which	greatly	 simplifies	 the	design	process.	Once	a	phenomenon	has	been	described	as	a	

lumped	element	model,	it	can	be	easily	implemented	in	different	domains.	In	the	mechanical	

domain	 the	 capacitors	 and	 inductors	 can	 be	 replaced	 by	 masses	 and	 springs,	 and	

implemented	 in	platforms	as	diverse	as	pendulum	arrays[31]	or	networks	of	piezoelectric	

resonators[280].	While	 it	 is	 possible	 to	 implement	 lumped	models	 by	 combining	 discrete	

masses,	springs,	capacitors	or	inductors,	there	is	currently	no	systematic	design	process	to	

convert	 these	 models	 to	 metamaterials.	 This	 is	 because	 the	 space	 of	 possible	 designs	 is	

extremely	 large,	 and	 the	 relationship	between	a	 structure	 and	 its	 dynamical	 properties	 is	

highly	non-trivial.	

	

We	 propose	 a	 generic	 tool	 to	 solve	 this	 inverse	 problem:	 we	 map	 building	 blocks	 of	 a	

metamaterial	 to	 components	 of	 a	 mass-spring	 model,	 and	 determine	 the	 metamaterial	

design	by	searching	the	space	of	possible	combinations	of	building	blocks.	In	order	for	this	

approach	to	be	successful,	we	need	to	address	two	key	challenges.	First,	we	need	an	efficient	

algorithm	to	extract	a	reduced	order	model	from	the	metamaterial	design.	Second,	we	need	

a	system	where	changes	to	different	parts	of	the	design	do	not	interfere	with	each	other,	such	

that	the	design	elements	are	additive	in	their	effect.	This	additive	property	allows	us	to	divide	
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the	 search	 space	 into	much	 smaller	 independent	 sub-spaces,	 resulting	 in	 an	 exponential	

speedup	of	the	search	process.	

	

In	 this	 paper	 we	 successfully	 address	 these	 two	 challenges	 with	 “perturbative	

metamaterials”:	systems	consisting	of	unit	cells	with	a	spectrum	of	linear	normal	modes	that	

weakly	interact	with	modes	of	neighboring	unit	cells.	We	obtain	reduced-order	models	for	

our	metamaterial	 through	a	method	adapted	 from	quantum	material	 science:	we	use	 the	

Schrieffer-Wolff	transformation[19,	281]	to	isolate	modes	in	the	frequency	range	of	interest.	

The	purpose	of	extracting	reduced	order	models	is	to	efficiently	quantify	how	design	changes	

affect	 the	 material’s	 dynamic	 properties.	 We	 then	 catalogue	 these	 changes	 for	 various	

geometries,	and	optimize	the	configuration	of	the	metamaterial’s	components	to	obtain	the	

target	mass-spring	model.	We	show	that	with	a	suitable	series	expansion	of	the	Schrieffer-

Wolff	 transformation,	 we	 can	 explore	 a	 space	 containing	 on	 the	 order	 of	 1030	 design	

configurations,	 which	 is	 impossible	 to	 do	 using	 optimization	 methods	 with	 current	

computational	power.	We	demonstrate	this	in	a	system	of	plates	connected	by	soft	beams,	

which	achieves	the	additive	property	essential	for	an	effective	algorithm.		

	

We	show	the	potential	of	our	generic	scheme	on	three	key	examples:	a	Veselago	lens,	a	zero	

group	velocity	material,	and	a	topological	insulator,	each	with	increasing	complexity	in	their	

unit	cell	designs.	

	

Extracting	a	reduced	order	model	from	a	perturbative	metamaterial	
	

Here	we	present	a	method	to	extract	a	reduced	order	model	for	a	given	metamaterial	design	

(e.g.,	 Fig.	 5.1a),	which	 is	 a	 pre-requisite	 for	 our	 design	 procedure.	 The	method	works	 for	

arbitrary	unit	cells	as	long	as	they	interact	weakly.	We	start	by	selecting	the	frequency	range	

where	 the	model	will	 be	 valid.	 Each	unit	 cell	mode	 that	 falls	within	 that	 range	 (Fig.	 5.1b)	

translates	 to	 a	degree	of	 freedom	 in	 the	 reduced-order	model.	Our	 reduced	order	model	

calculation	(Fig.	5.1a-c)	differs	from	existing	reduction	techniques[282-284]	[285-288]		in	that	

it	 constructs	an	approximation	of	a	 complex	metamaterial	geometry	by	combining	 results	

obtained	 by	 considering	 geometric	 features	 individually.	 This	 property	 is	 crucial	 when	
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designing	metamaterials	 from	discrete	models.	We	explain	our	method	using	a	 system	of	

square	 lattice	 of	 steel	 plates	 (10mm	 x	 10mm	 x	 0.5mm)	 weakly	 interacting	 through	 soft,	

polymer	beams.	The	plates	can	also	contain	holes	that	tune	the	local	resonance	frequencies.	

We	emphasize	that	this	system	is	chosen	as	an	example,	and	our	method	can	be	applied	to	

any	metamaterial	that	satisfies	the	weak	interaction	condition.	

	

The	 reduced-order	 models	 are	 based	 on	 a	 local	 modal	 expansion	 and	 consist	 of	 local	

resonators	coupled	through	springs.	Each	local	resonator	corresponds	to	a	plate	mode	that	

falls	 within	 our	 frequency	 range	 of	 interest,	 and	 the	 springs	 account	 for	 the	 coupling	

introduced	by	the	beams.	We	refer	to	a	system	of	plates	without	beams	as	“uncoupled”,	and	

a	system	of	plates	connected	with	beams	as	“coupled”	(Fig.	5.1b,c).	For	clarity,	we	define	two	

separate	coupling	terms:	V	is	the	coupling	between	modes	in	the	full	physical	system,	VR	is	

the	coupling	in	the	reduced-order	model	that	we	extract.		

	

Assuming	the	beams	are	short	enough	such	that	we	can	consider	their	effect	as	instantaneous	

and	neglect	their	internal	degrees	of	freedom	(DOFs),	the	equation	of	motion	of	the	coupled	

system	is:	

	

ê + ú + ∆ú no s + ∆s ê = 0	,		 	 	 (1)	

	

where	u	is	the	displacement,	M	and	s	represent	the	effective	mass	and	effective	stiffness	of	

the	plates,	and	ΔM	and	Δs	represent	the	contributions	of	the	beams.	Since	we	have	weakly	

interacting	unit	cells,	we	can	neglect	higher	powers	of	ΔK	and	ΔM,	such	that:	

	

ê + éÑ + Ù ê = 0	.	 	 	 	 	 (2)	

	

Here,	éÑ = únos	is	the	diagonalized	dynamical	matrix	of	the	uncoupled	system,	 éÑ + Ù 	

the	 dynamical	 matrix	 of	 the	 coupled	 system,	 and	 Ù = úno ñs −úno ñú únos	a	

perturbation	on	the	uncoupled	system.	In	general,	the	perturbation	V	couples	each	mode	of	

the	unit	 cell	 to	each	mode	of	neighboring	unit	 cells.	 This	prevents	us	 from	restricting	our	

description	to	modes	that	only	lie	in	our	frequency	range	of	interest,	i.e.	éÑ + Ù	is	not	block-

diagonal,	but	instead	contains	coupling	terms	between	our	modes	of	interest	and	irrelevant	
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modes.	 To	 remove	 the	 coupling	 between	 relevant	 and	 irrelevant	 spaces,	 we	 perform	 a	

suitable	rotation,	called	the	Schrieffer-Wolff	(SW)	transformation,	of	the	dynamical	matrix.	

Originally	 developed	 in	 the	 context	 of	 the	 Anderson	 model	 of	 magnetic	 impurities	 in	

metals17[281],	the	SW	transformation	is	the	rotation	matrix	U	such	that	. éÑ + Ù .≥ 	is	block	

diagonal[19].	This	model	reduction	is	a	staple	in	quantum	information	and	condensed	matter	

physics[289,	290];	here	we	use	it	to	analyze	dynamics	of	mechanical	metamaterials.		

	

The	SW	transformation	can	be	calculated	perturbatively,	with	the	expansion	parameter[19]	

	

È = 	
ı∫ª
»∫n»ª

	,	 	 	 	 	 (3)	

	

where	Ei	 are	Ej	 are	eigenvalues	of	 the	uncoupled	 system,	 and	Vij	 is	 the	 coupling	between	

modes	i	and	j.	This	expansion	parameter	can	be	interpreted	as	the	strength	of	the	coupling	

relative	to	the	spectral	gap	between	the	mode	of	interest	and	other	modes.	For	small	coupling	

values,	the	first-order	term	provides	a	satisfactory	approximation	(Fig	5.1e).	This	first-order	

term	is	linear,	which	means	the	contributions	of	the	individual	geometric	elements	(beams	

and	holes	in	the	plate	system)	are	additive,	which	is	of	crucial	importance	for	our	algorithm.	

Higher	orders	of	the	SW	transformation	provide	a	more	accurate	reduced-order	description	

of	 the	 system	 in	 the	 presence	 of	 stronger	 couplings	 (Fig	 5.1f,	 g),	 but	 contain	 long-range	

interactions,	 i.e.,	 stiffness	 terms	 that	 couple	 plates	 not	 physically	 connected	 by	 beams	

(Supplementary	Information).	

	

In	 this	work,	we	extract	 the	 reduced-order	 coupling	matrix	Ùô∂% 	 from	a	 finite	 element	 (FE)	

simulation	(Methods).	To	determine	the	effect	of	the	beams,	we	first	calculate	a	large	number	

of	modes	for	a	system	of	two	coupled	plates	(Fig	5.1b).	Then,	we	express	these	coupled	modes	

as	a	linear	combination	of	uncoupled	plate	modes,	by	using	a	least-squares	approximation	of	

the	plate’s	displacement	within	a	test	area	(Fig	5.1c).	We	use	this	representation	to	determine	

the	 dynamical	 matrix	 of	 the	 coupled	 system,	 by	 inverting	 the	 eigenvalue	 problem,	/ =

xno(éÑ + Ù)x.	Here,	D	is	the	matrix	whose	diagonal	contains	the	eigenvalues	of	the	coupled	

system	and	P	 is	a	matrix	whose	columns	contain	 the	modal	displacements	of	 the	coupled	

system	 expressed	 as	 a	 linear	 combination	 of	 uncoupled	 plate	modes.	We	 determine	 the	
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perturbation	introduced	by	the	holes	by	following	an	analogous	procedure:	We	calculate	the	

modes	 for	a	plate	with	holes,	express	 these	as	a	 linear	combination	of	unperturbed	plate	

modes	and	invert	the	eigenvalue	problem.	By	summing	the	contribution	of	the	beams	and	

holes,	 we	 determine	Ùô∂,	 which	 is	 finally	 SW-transformed	 resulting	 in	 the	 reduced-order	

model	Ùô∂%.		

	
FIG.	5.1:	Method	of	extracting	a	reduced-order	model.	(a).	Test	material,	made	of	steel	plates	connected	with	

polymer	beams.	(b).	Uncoupled	degenerate	plate	modes	(left)	and	modes	of	the	coupled	plate	system	(right).	

(c).	Two	plates	coupled	with	one	beam	and	multiple	holes	to	adjust	the	plate’s	local	stiffness.	The	displacement	

is	sampled	in	the	blue	area	and	used	for	the	coupling	stiffness	calculation.	(d).	Example	2D	band	structure	for	a	

plate-beam	 metamaterial	 and	 frequency	 range	 of	 interest,	 around	 145	 kHz	 encompassing	 2	 plate	 modes.	

Dispersion	 relation	 for	 FE	 simulation	 (black	data	points)	 and	 reduced	order	model	 for:	 (e).	 system	with	 soft	

couplings	(beams	with	Young’s	modulus	of	4	GPa)	compared	with	first	and	second	order	SW	transformation,	

and	 (f).	 system	with	 larger	 coupling	 strength	 (beams	with	Young’s	modulus	of	20	GPa)	 compared	with	 first,	

second,	and	fourth	order	SW	transformations.	(g).	Error	in	the	frequency	relative	to	the	bandwidth	frequency	

(fBW)	predicted	by	the	SW	transformation,	for	increasing	coupling	strengths.	
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Metamaterial	design	from	a	discrete	model	
	

We	 apply	 the	 reduced-order	 modeling	 method	 to	 design	 a	 metamaterial,	 by	 finding	 the	

optimal	configuration	of	plates,	beams,	and	holes	 to	match	the	target	mass-spring	model,	

whose	coupling	matrix	is	denoted	Ù≥.	We	limit	the	beam	stiffness	to	small	values,	such	that	

the	first	order	SW	transform	provides	a	good	first	approximation.	As	a	consequence,	we	can	

assume	changes	in	our	design	are	additive	in	their	effect	(Supplementary	Information).	This	

means	we	can	easily	explore	a	large	space	of	possible	configurations	(containing	up	to	1030	

elements),	 by	 optimizing	 different	 parts	 of	 the	 design	 separately	 (each	 design	 subspace	

containing	less	than	1010	elements),	and	by	adding	combinations	of	calculated	responses	from	

a	 few	FE	 simulations	 (~102)	 of	 different	beam	and	hole	parameters.	 The	design	examples	

illustrate	this	concept.		

	

The	first	step	of	our	method	is	to	map	the	discrete	model’s	DOFs	into	plate	modes,	taking	into	

account	that	a	single	plate	can	map	to	multiple	DOFs	by	utilizing	multiple	plate	modes,	e.g.,	

degenerate	modes	(as	in	the	“zero	group	velocity	material”	and	“topological	insulator”	design	

examples).	 	 This	 mapping	 is	 done	 manually,	 and	 there	 are	 multiple	 acceptable	 ways	 to	

accomplish	it.	

	

The	second	step	is	to	introduce	the	desired	inter-plate	couplings,	by	determining	the	beam	

parameters:	 location	and	 thickness,	 and	 in	 some	cases	 the	angle	 (e.g.,	 in	 the	 “topological	

insulator”	example).	To	do	this,	we	pre-compute	a	table	of	coupling	stiffnesses	for	different	

beam	locations	and	plate	alignments	(d	in	Fig.	5.1c).	We	then	perform	a	combinatorial	search,	

exploiting	the	additivity	of	the	first-order	SW	transformation,	to	find	a	set	of	beams	that	add	

up	to	the	desired	coupling	(Methods).	Finally,	we	perform	a	gradient-based	optimization	to	

compensate	 for	 second-order	effects	due	 to	 the	 finite	beam	stiffness.	This	optimization	 is	

seeded	by	 the	approximate	 solution	 from	 the	 combinatorial	 search	and	 is	 done	on	a	 test	

system	containing	two	plates	(Fig.	5.1c).			

	

The	 third	 step	 is	 to	 tune	each	plate’s	 local	 response,	 i.e.,	 each	mode’s	 frequency	and	 the	

couplings	between	different	modes	of	the	same	plate.	This	tuning	corrects	for	the	local	effect	

of	the	beams,	which	shift	the	plate	frequencies	and	introduce	couplings	between	different	
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modes	of	the	same	plate.	We	first	add	up	the	local	contribution	of	all	beams	connected	to	a	

plate	and	then	determine	the	necessary	adjustment	to	match	the	desired	local	properties.	

This	adjustment	 is	obtained	by	 introducing	holes	 in	 the	plate.	Since	the	plate	modes	have	

different	displacement	profiles,	holes	in	different	locations	will	have	different	effects	in	each	

of	the	modes.	We	determine	the	hole	radii	and	locations	by	the	same	procedure	that	we	used	

with	the	beams:	(1)	create	a	table	of	the	hole’s	effect	 in	different	 locations,	 (2)	perform	a	

combinatorial	search	on	the	hole	table,	and	(3)	perform	a	gradient-based	optimization	on	the	

results	of	the	combinatorial	search.	

	

As	 a	 fourth	 and	 final	 step,	 we	 perform	 a	 final	 gradient-based	 optimization	 on	 a	 system	

containing	multiple	unit	cells.	This	optimization	includes	all	holes	and	beams,	and	therefore	

is	able	to	compensate	for	second-order	effects	that	arise	due	to	the	interactions	of	beams	

and	holes	as	well	as	long-range	couplings	(Supplementary	Information).		

	

Design	examples	
	

Phononic	Veselago	lens		
	

We	first	design	a	classical	Veselago	lens[33]	metamaterial	as	an	example	to	demonstrate	how	

our	 design	method	works.	We	 choose	 this	 example	 because	 the	 Veselago	 lens	 is	 a	 well-

understood	system	that	has	been	demonstrated	in	optical[4]	and	acoustic[272]	systems.	

	

In	 the	 phononic	 Veselago	 lens,	 a	 double	 negative	medium,	 i.e.,	 a	medium	with	 negative	

effective	modulus	(-K)	and	effective	density,	is	embedded	in	a	conventional	medium	of	equal	

but	positive	modulus	(+K)	and	effective	density	(Fig.	5.2a).	We	create	a	mass-spring	system	

that	approximates	the	lens	in	a	square	lattice.	The	basic	unit	cell	consists	of	a	single	resonator	

connected	by	springs	to	its	4	nearest	neighbors	(Fig.	5.2b).		

	

The	target	coupling	stiffness	between	unit	cells	is	either	+K	or	–K.	The	effective	masses	are	

obtained	by	shifting	the	local	resonance	frequencies	of	the	sites	inside	and	outside	the	lens	

region.	The	normalized	effective	mass	of	a	harmonic	oscillator	at	a	particular	 frequency	 is	
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úîππ ï = 1 −
‹©
¨

‹¨
,	where	ïÑ	is	the	resonance	frequency	of	the	mode	and	ï	is	the	lens’	

frequency	of	operation.	The	Veselago	lens	requires	ú◊î‘0 ï = −ú÷îÖôÃ÷ ï .	The	relation	

between	the	local	resonance	frequency	of	the	sites	inside	and	outside	the	lens	region	is	thus:	

	

	 ï◊î‘0
q = 2ïq − ï÷îÖôÃ÷

q .	 	 	 	 	(4)	

	

We	choose	the	plate	mode	24	to	couple	between	unit	cells,	which	has	a	high	enough	stiffness	

compared	 to	 the	 beams,	 and	 is	well	 separated	 from	neighboring	modes.	 Since	 the	mode	

profiles	at	the	boundaries	have	90°	rotational	symmetry,	if	the	plates	are	perfectly	aligned,	

couplings	of	only	one	sign	are	possible.	To	overcome	this	limitation,	we	offset	the	plates	so	

we	can	 find	beam	positions	 to	design	both	positive	and	negative	couplings	 (Fig.	5.2c).	We	

choose	 the	 beam	parameters	 that	 give	 a	 positive	 or	 negative	 coupling	 based	on	 the	 pre-

computed	 coupling	 stiffnesses	 (Fig.	 5.2d).	 We	 then	 choose	 the	 hole	 parameters	 that	

compensate	for	the	local	stiffness	introduced	by	the	beams,	such	that	the	unit	cells	inside	and	

outside	the	lens	have	the	required	local	resonance	frequencies	from	equation	(4)	(Fig.	5.2e).		

	

We	 analyze	 the	 resulting	 metamaterial	 lens	 using	 FE	 simulations	 (Methods).	 The	 results	

clearly	illustrate	the	Veselago	lens	effect	(Fig.	5.2f),	and	show	excellent	agreement	with	the	

results	of	the	mass-spring	model	(Fig.	5.2g).		
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FIG	5.2:	Veselago	lens	metamaterial	example.	(a).	A	schematic	of	focusing	in	the	Veselago	lens.	(b).	Mass-spring	

model	of	the	lens,	showing	construction	of	the	four	different	unit	cells	and	their	corresponding	metamaterial	

design:	a	unit	cell	with	all	positive	springs	(red),	a	unit	cell	with	all	negative	springs	(green),	and	two	interface	

unit	cells	with	a	combination	of	positive	and	negative	springs	(gray	and	blue).	Lattice	sites	(x1,	x2,	x3,	x4)	are	local	

resonators	with	 their	 own	mass	 and	 spring.	 The	mass-spring	model	 contains	 100x100	 unit	 cells,	where	 the	

double	negative	region	consists	of	nineteen	rows	in	the	center.	(c).	Illustration	of	plate	offset	concept	with	mode	

24:	when	plates	are	aligned	(left),	only	couplings	of	one	sign	are	possible.	If	plates	are	offset	by	distance	d,	both	

positive	and	negative	couplings	are	possible.	(d).	Calculated	coupling	stiffness	for	different	beam	locations	at	a	

given	offset,	where	data	points	show	 locations	of	 the	beams	to	achieve	positive	and	negatives	stiffness.	 (e).	

Calculated	local	stiffness	change	for	different	hole	radii,	where	data	points	show	the	radii	in	each	of	the	four	

unit	cells	for	the	intra-plate	coupling	compensations.	(f).	Results	of	metamaterial	lens	from	FE	simulations,	at	

175.284	kHz.	g.	Results	of	mass-spring	model	lens,	at	175.204	kHz.	The	color	bar	applies	to	both	f	and	g,	and	

indicates	the	normalized	amplitude	of	the	RMS	displacement.		

	

Zero	group	velocity	material	
	

We	now	design	a	zero	group	velocity	(cg)	material,	which	has	a	flat	band	within	a	lattice	with	

1D	periodicity,	as	a	way	to	demonstrate	the	use	of	multiple	and	degenerate	modes	of	a	single	

plate	in	our	design	method.	The	zero	cg	material	is	analogous	to	a	quasi-1D	Lieb	lattice,	and	

is	of	interest	as	it	is	a	perfectly	periodic	configuration	that	leads	to	a	flat	band	without	using	

defects.	Such	localized	states	have	been	explored	recently	in	photonic	waveguides[291,	292],	

and	could	have	applications	for	slow	phonon	modes	in	elastic	metamaterials.			
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In	this	example,	the	target	unit	cell	consists	of	three	equal	resonators	in	an	“L”	configuration	

(Fig.	5.3a).	We	start	by	mapping	every	DOF	(x1,	x2,	y1)	to	a	plate	mode.	We	choose	a	unit	cell	

design	consisting	of	two	plates	(P1	and	P2).	We	map	go	and	Úo	to	a	pair	of	degenerate	plate	

modes	(21,	22)	in	P1,	and	gq	to	one	mode	in	P2,	within	the	same	degenerate	pair.	This	leaves	

us	with	an	extra	mode	within	our	frequency	range	of	interest,	Úq	(Fig.	5.3b),	which	we	remove	

from	 the	 dynamics	 by	 shifting	 its	 frequency	 outside	 the	 range	 of	 interest,	 through	 the	

introduction	of	holes	in	the	plate.	We	point	out	that	this	mode	assignment	is	not	unique	and	

we	could,	e.g.,	use	non-degenerate	modes	and	a	three-plate	unit	cell	design.	We	choose	to	

use	degenerate	modes	 to	 illustrate	how	we	can	exploit	 them,	which	 is	 crucial	 in	 the	next	

design	example,	the	topological	insulator.	

	

The	equation	of	motion	of	the	system	in	Fig.	5.3b	is:	êô = Ùômodq≥ 	êô + Ù÷≥ê ô£o + Ù÷≥ê ôno .	

The	vector	u	contains	the	two	DOFs	x	and	y,	and	 i	 is	 the	 index	of	 the	unit	cell.	The	target	

coupling	matrices	for	the	inter-plate	couplings	(Ù÷≥),	and	the	intra-couplings	(ÙÑ≥,	Ùo≥)	are:	

	

Ù÷≥ =
ü 0
0 0

,			Ùo
≥ =

Ë ü
ü Ë ,			ÙÑ

≥ =
Ë 0
0 Ë + ∆ 	 	 	 (5)	

	

where	ü	is	the	coupling	strength,	Ë	is	the	local	stiffness	of	the	plate,	ü ≪ Ë,	and	Δ	is	the	

compensation	for	the	extra	mode.		

	

In	 this	 metamaterial	 design,	 we	 illustrate	 the	 concept	 of	 using	 one	 plate	 to	 implement	

multiple	DOFs	(Fig.	5.3b,c).	We	chose	the	degenerate	plate	modes	21	and	22	(Fig.	5.1b),	which	

is	 motivated	 by	 the	 following	 requirements:	 (1)	 there	 is	 good	 separation	 between	 the	

degenerate	pair	of	interest	and	neighboring	modes;	and	(2)	the	mode	profiles	at	the	boundary	

exhibit	a	complex	structure	that	enable	a	wide	variety	of	coupling	stiffness.		

	

We	do	a	combinatorial	search	to	determine	the	plate	offset,	and	thickness	and	position	of	the	

beams,	finding	that	three-beam	combinations	can	satisfy	the	target	coupling	stiffness	matrix	

Ù÷≥.	We	 then	 find	 the	 plate	 hole	 locations	 to	 satisfy	 the	 target	matrices	Ùo≥ 	and	ÙÑ≥.	We	
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perform	an	additional	gradient-based	optimization	on	multiple	unit	cells	to	reduce	the	second	

order	error	between	the	metamaterial	and	target	stiffness	(Supplementary	Information).		

	

The	dispersion	relation	for	the	zero	cg	metamaterial	compared	to	the	mass-spring	model	is	

shown	in	Figure	5.3d.	The	metamaterial	dispersion	shows	excellent	correspondence	to	the	

mass-spring	system.	While	there	is	some	slight	non-zero	group	velocity	in	the	flat	band	from	

long-range	couplings	(Supplementary	Information),	our	metamaterial	approaches	the	desired	

the	mass-spring	model	with	very	good	precision.		

	

	
FIG.	5.3:	Zero	group	velocity	metamaterial.	(a)		Zero	cg	material	mass-spring	model.	(b)	Mass-spring	model	used	

for	metamaterial	design,	where	each	vertical	column	of	two	masses	x	and	y	represents	two	degenerate	modes	

of	one	plate	in	the	metamaterial.	The	metamaterial	is	optimized	to	separate	mode	y2	in	plate	2	from	the	other	

modes,	 and	 to	push	K0	 to	0.	 (c)	Design	of	 the	 zero	 cg	metamaterial,	with	unit	 cell	 highlighted	 in	purple.	 (d)		

Dispersion	curves	for	the	zero	cg	material	mass-spring	model	compared	to	the	designed	metamaterial.	Only	the	

three	energy	bands	of	interest	are	shown	for	clarity.	
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Topological	insulator	
	

Topological	 insulators	are	a	unique	class	of	materials	 that	are	electrically	 insulating	 in	 the	

bulk,	yet	conductive	on	the	surface,	and	whose	surface	states	are	immune	to	back-scattering	

and	defects[293-295].	These	materials	have	inspired	a	new	class	of	mechanical	systems	that	

mimic	 these	 topological	 insulator	 properties	 in	 the	 elastic	 domain[31,	 61,	 280,	 296-299].	

Researchers	have	developed	a	mapping	between	topological	spin-orbit	systems	and	discrete	

mechanical	 lattices[76,	300],	which	are	highly	complex.	Here,	we	focus	on	the	mass-spring	

model	proposed	in	ref.	15,	which	contains	6	DOFs	per	unit	cell	that	interact	nontrivially	with	

neighboring	unit	cells.	While	this	mass-spring	model	was	realized	with	a	discrete	system	of	

pendula[31],	 the	 implementation	 of	 such	 models	 in	 metamaterials	 is	 an	 open	 research	

problem,	which	our	method	is	able	to	solve.	

	

The	mass-spring	model	unit	cell	for	this	topological	insulator	consists	of	three	2-DOFs	lattice	

sites[31]	 (Fig.	 5.4a).	 The	 equation	 of	 motion	 is	 êô∂ = Ùç≥	êô∂ + ÙÑ≥ê ô£o ∂ + ÙÑ
≥ê ôno ∂ +

Ùômode
≥ êô ∂£o + Ùômode

≥ êô(∂no).	The	vector	u	contains	the	two	DOFs	x	and	y,	and	i	and	j	are	the	

row	and	column	indices	of	the	unit	cells	in	Fig.	5.4a.	The	target	inter-plate	coupling	matrices	

are:	

	

Ù‘≥ = 	ü
cos	(2Ωfl/3) sin	(2Ωfl/3)
−sin	(2Ωfl/3) cos	(2Ωfl/3)

	 	 	 	 (6)	

	

where	fl	 is	an	 integer	that	spans	from	0	to	2.	The	 intra-plate	coupling	matrix	 is	Ùç≥ = ¯qË,	

where	I2	is	the	identity	matrix,	and	β	and	α	are	as	defined	above.		
	

The	 designed	 metamaterial	 translates	 each	 2-DOF	 site	 into	 a	 single	 plate,	 by	 using	 the	

degenerate	plate	modes	21	and	22.	Thus	the	unit	cell	consists	of	3	plates	coupled	with	beams	

(Fig.	5.4b),	which	are	optimized	to	match	the	required	ÙÑ≥,	Ùo≥,	and	Ùq≥ 	matrices.	By	performing	

separate	 combinatorial	 optimizations	 for	 each	 coupling,	we	 reduce	 the	 problem	 to	 three	

searches	 on	 a	 space	 of	 1010	 configurations	 instead	 of	 a	 single	 search	 on	 a	 space	 of	 1030	

configuration.	Our	method	cannot	obtain	a	solution	for	all	three	couplings	at	a	single	offset,	
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so	we	introduce	a	third	beam	parameter:	an	angle.	A	non-zero	beam	angle	allows	for	different	

plate	alignments	using	the	same	offset	for	the	three	different	couplings	(Fig.	5.4b).		
	

We	 calculate	 the	 band	 structure	 of	 the	metamaterial	 with	 1D	 periodicity	 (Methods).	 The	

dispersion	relation	(Fig.	5.4c)	shows	the	expected	three	bands	of	bulk	modes,	separated	by	

two	counter-propagating	edge	modes	that	cross	at	π/3	and	2π/3.	We	then	model	a	finite	7x7	

plate	system	and	calculate	the	eigenmodes	with	a	FE	simulation,	and	the	results	clearly	show	

edge	modes	 (Fig.	5.4d).	The	metamaterial	 shows	excellent	agreement	 to	 the	 target	mass-

spring	model	 (Supplementary	 Information).	 The	designed	metamaterial	 also	 illustrates	 the	

stability	of	topologically	protected	modes	against	defects.	We	explore	this	by	introducing	a	

defect	 in	 the	 metamaterial,	 which	 we	 model	 as	 three	 fixed	 plates.	 The	 edge	 mode	 still	

persists,	and	propagates	around	the	defect	(Fig.	5.4e).	

	

Micro-fabrication	of	these	composite	metamaterials	should	result	in	high-speed	devices	with	

advanced	 signal	 processing	 capabilities,	 and	 benefit	 engineering	 applications	 in	

communication	systems,	ultrasonic	imaging,	and	filtering	for	surface	acoustic	waves.	Further	

exploration	 should	 aim	 to	 increase	 the	 bandwidth	 and	 reduce	 constraints	 in	 the	material	

parameters,	as	well	as	to	deliberately	introduce	nonlinearity.	The	same	design	method	that	
we	have	presented	here	can	be	applied	to	electromagnetic	systems[278,	301],	enabling	
the	design	of	arbitrary	photonic	circuits	with	extreme	computing	capabilities[273].	
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FIG	5.1:	Topological	insulator	metamaterial.		(a)	Mass-spring	model	for	topological	insulator15,	where	each	mass	

x	 and	 y	 represents	 two	 degenerate	modes	 of	 a	 plate	 in	 the	metamaterial.	 Inset	 shows	 construction	 of	 the	

couplings	between	neighboring	pairs	of	DOF	x	and	y.	(b)		Metamaterial	designed	from	topological	insulator	mass-

spring	model.	(c)	Dispersion	curves	for	the	metamaterial,	with	periodicity	in	one	direction	and	finite	in	the	other,	

showing	three	bulk	bands,	indicated	by	the	black	points,	separated	by	the	two	sets	of	counter-propagating	edge	

modes,	indicated	by	the	red	and	blue	solid	lines.	(d)	Example	edge	mode	of	the	metamaterial.	(e)	Edge	mode	

propagation	around	a	defect	(3	fixed	plates)	in	the	metamaterial.	In	d	and	e,	the	outer	edge	plates	are	fixed,	and	

the	 color	 bar	 indicates	 the	 amplitudes	 of	 both	 plots,	 in	 terms	 of	 total	 modal	 displacements	 with	 arbitrary	

normalized	units.	

Methods	
	

The	results	presented	in	this	paper	have	been	calculated	by	using	COMSOL	Multiphysics®	for	

the	 finite	 element	 simulations	 and	 MATLAB	 for	 the	 linear	 algebra	 calculations	 (except	

otherwise	 indicated).	The	two	programs	can	communicate	through	the	LiveLink®	 interface	
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provided	 by	 COMSOL.	 The	 simulations	 were	 performed	 in	 ETH	 Euler	 cluster	 nodes	 and	

accessed	up	to	400	GB	of	RAM.	

	

In	all	simulations	we	have	used	a	linear	elastic	model	with	material	parameters	from	epoxy	

resin	for	the	beams	(Young’s	modulus	vj = 4.02	GPa,	Poisson	ratio	ˆj = 0.22	and	density	

Òj = 1190	 iz te)	and	steel	for	the	plates	(v‡ = 193	GPa,	ˆ‡ = 0.3	and	Ò‡ = 8050).	

	

Coupling	Matrix	Extraction	

We	extract	the	coupling	matrices	by	calculating	the	first	80	eigenmodes	for	a	system	of	two	

plates	 coupled	 by	 beams	 (Fig	 5.1c).	 The	 eigenmodes	 are	 calculated	 using	 COMSOL	

Multiphysics®	3D	linear	elasticity	solver,	with	a	highly	refined	mesh	containing	964k	elements.	

This	fine	mesh	is	required	since	the	frequency	shift	introduced	by	the	beams	is	much	smaller	

than	 the	 resonance	 frequency	of	 the	plates,	and	 therefore	small	 imprecisions	 in	 the	plate	

eigenfrequencies	result	in	large	errors	in	the	calculated	coupling	matrix.	

	

We	then	sample	the	x,	y	and	z	components	of	each	eigenmode’s	displacement.	The	sampling	

is	done	at	2268	points	at	each	plate,	distributed	over	a	test	area	extending	2	mm	from	the	

sides	of	the	plate	(Fig	5.1c).	The	sampled	displacements	for	the	80	relevant	eigenmodes	are	

stored	 in	a	matrix,	whose	 i-th	column	.∂ô 	contains	the	x,	y	and	z	displacement	 for	 the	 i-th	

eigenmode:	.∂ô = go
ô , gq

ô ,… gqq≈pô , Úo
ô , Úq

ô ,… , Úqq≈pô , èo
ô , èq

ô ,… , èqq≈pô ≥.	The	subindex	“	 is	used	

to	distinguish	between	the	two	plates.	

	

We	express	the	displacement	of	the	coupled-plate	system	in	terms	of	a	basis	containing	the	

first	40	normal	modes	of	a	free	plate.	Since	our	finite	basis	consists	of	a	limited	number	of	

modes,	it	is	incapable	of	exactly	reproducing	the	coupled	vibration	profiles.	For	this	reason,	

we	use	the	Moore-Penrose	pseudoinverse,	which	provides	a	least-square	approximation	to	

the	solution.	This	approximation	is	given	by	x∂ 	= �≥� no�≥.∂ 	where	A	is	a	matrix	whose	i-

th	column	contains	the	displacement	of	the	i-th	free-plate	eigenmode,	sampled	over	the	test	

area	and	organized	in	the	same	layout	as	.∂.	We	use	80	eigenmodes	of	the	coupled	system	

and	40	eigenmodes	for	the	free	plate.	The	mode	selection	must	take	 into	account	several	

aspects:	the	number	of	eigenmodes	for	the	two-plate	coupled	system	should	be	twice	the	
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number	of	modes	for	the	individual	system,	the	coupled	modes	should	not	include	any	beam	

resonances,	 and	 families	 of	 degenerate	 modes	 should	 be	 either	 completely	 included	 or	

completely	excluded.	Once	the	matrix	x∂ 	has	been	calculated,	we	assemble	the	matrix:	

x =
xo
xq
,	

and	calculate	the	coupling	matrix	as	V	= x/xno − éÑ	where	/	 is	an	80x80	square	matrix	

whose	diagonal	elements	contain	the	eigenvalues	of	the	coupled	system,	/ô∂ = 2Ωâô qãô∂ 	

and	éÑ	contains	the	eigenvalues	of	an	unperturbed	single	plate:	

éÑ =
/Ñ 0
0 /Ñ

	

with	/ô∂Ñ = 2Ωâô
Ñ qãô∂ 	and	âôÑ	the	i-th	eigenfrequency	of	an	unperturbed	plate.	

	

The	coupling	matrix	extraction	method	is	equivalent	to	the	first-order	term	of	the	Schrieffer-

Wolff	 transformation,	 for	 a	 low-energy	 space	 spanning	 the	 first	 40	 eigenmodes	 of	 the	

unperturbed	plate.	This	is	because	to	first	order,	the	Schrieffer-Wolff	transformation	is	simply	

a	 restriction	 on	 the	 low-energy	 subspace,	 with	 the	 identity	 as	 a	 rotation	 matrix	 (see	

Supplementary	 Information).	 	 Once	 this	 first	 transformation	 has	 been	 performed,	 we	

calculate	 the	 higher	 orders	 to	 obtain	 the	 reduced-order	 model	 Ù% 	 containing	 only	 the	

required	modes	(see	supplementary	information).		

	

Optimization	Process	
	
Combinatorial	optimization	
	

We	identify	the	optimal	beam	locations	by	performing	an	exhaustive	search	on	combinations	

of	beam	 locations	and	thicknesses.	 In	 this	 step,	we	calculate	 the	coupling	matrix	Ùô∂% 	 for	a	

system	 containing	 multiple	 inter-plate	 coupling	 beams	 by	 adding	 together	 the	 coupling	

matrices	of	systems	containing	a	single	coupling	beam.	The	validity	of	this	approximation	is	

examined	in	the	Supplementary	Information.		

	

We	first	run	the	optimization	code	for	different	plate	offsets	in	the	range	between	2	mm	and	

4	mm,	with	a	 spacing	of	0.2	mm.	We	 then	assemble	a	 table	of	 coupling	matrices	Ùô∂ 	 as	a	

function	of	the	beam	location,	for	a	fixed	beam	width	of	0.2	mm.	The	coupling	matrices	are	
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calculated	 using	 the	 finite	 element	 method	 described	 in	 the	 coupling	 matrix	 extraction	

section.	 The	 coupling	 matrices	 corresponding	 to	 beam	 widths	 other	 than	 0.2	 mm	 are	

calculated	assuming	a	linear	relation	between	beam	width	and	coupling	matrix,	i.e.	Ùô∂ Û =

Û ÛÑ Ùô∂ ÛÑ .	

	

We	then	evaluate	all	combinations	of	beam	locations	(in	steps	of	0.1	mm)	and	beam	widths	

(between	0.1	m	and	0.5	mm	in	steps	of	0.01	mm).		We	identify	the	optimal	beam	parameters	

by	comparing	the	calculated	coupling	matrices	to	the	objective	coupling	matrices.	Before	this	

comparison,	 the	 calculated	 and	 objective	 matrices	 Ùô∂	are	 normalized	 using	 the	 Hilbert-

Schmidt	norm	 Ù = k{ Ù≥Ù .	This	is	done	since	the	exact	norm	can	be	adjusted	after	the	

fact	 by	 finely	 scaling	 the	beam	widths.	 This	 can	be	done	due	 to	 the	 approximately	 linear	

relation	 between	 beam	 width	 and	 coupling	 matrix.	 In	 this	 step,	 we	 discard	 beam	

combinations	whose	norm	is	more	than	50%	off	the	target	value,	since	those	would	result	in	

extreme	beam	dimensions	after	rescaling.		

	

The	exhaustive	 search	 code	 is	written	 in	C++	 to	maximize	 its	 speed.	 For	every	offset	 (We	

considered	10	of	them),	the	code	explores	10+ − 10oÑ	configurations	and	takes	between	43s	

and	197s	to	run	on	a	2.5	GHz	Intel™	Core	i7®	laptop.	

	

Gradient	optimization	
	
The	gradient	optimization	 is	performed	after	 the	exhaustive	search,	 in	order	 to	 refine	 the	

beam	 parameters	 and	 account	 for	 interactions	 between	 the	 beams.	 At	 every	 gradient	

iteration,	 the	 coupling	 matrix	 is	 evaluated	 for	 a	 reference	 configuration	 and	 for	 small	

variations	 around	 this	 configuration.	 For	 systems	 containing	 three	beams	 (the	 topological	

insulator	and	zero-dispersion	material),	the	configuration	is	represented	by	a	vector	of	the	

form	u = go, Ûo,7o, gq, Ûq,7q, ge, Ûe,7e ≥ 	where	gô 	is	the	location	of	the	i-th	beam,	Ûô 	is	the	

i-th	 beam	 width	 and	 7ô 	 is	 the	 i-th	 beam	 angle.	 Different	 numbers	 of	 beams	 can	 be	

accommodated	by	adding	or	removing	components.	The	coupling	matrix	Ùô∂% 	is	also	expressed	

in	vector	form	à = Ùoo, Ùqo, Ùoq, Ùqq ≥.	These	definitions	allow	us	to	define	a	Jacobian	matrix	

such	as	à uÑ + ñu ≈ àÑ + rñu	where	the	columns	of	r	are	calculated	as	rô = à uÑ + 8ô −

à uÑ ,	and	8	is	a	matrix	where	each	column	8ô 	represents	a	perturbation	in	the	configuration	
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vector’s	i-th	component.	We	use	perturbations	of	0.04	mm	for	the	beam	locations,	0.01	mm	

for	the	beam	thickness	and	2	degrees	for	the	beam	angles.	The	coupling	matrix	vector	à u 	is	

calculated	using	the	coupling	matrix	extraction	method	described	earlier.		

	

The	 optimized	 state	 of	 the	 system	 after	 a	 gradient	 iteration	 is	 defined	 as	 uo = uÑ +

ü8r≥ rr≥ no ∗ º − 8i,	where	º	 is	the	error	vector	º = à − à≥,	à≥ 	 is	the	objective	coupling	

matrix	i	expressed	in	vector	form,	ü	is	a	parameter	controlling	the	gradient	descent	speed	

and	i	is	a	vector	from	the	Jacobian’s	kernel,	i.e.	ri = 0 0 0 0 ≥.	The	value	of	ü	is	set	

to	0.4	at	the	beginning	of	the	optimization	process	and	then	increased	to	1	when	the	modulus	

of	the	error	vector	º	falls	below	5%	of	the	objective	vector	à≥’s	modulus.		

	

The	 kernel	 vector	 i	 does	 not	 affect	 the	 coupling	 matrix	 and	 is	 chosen	 to	 minimize	

participation	of	unwanted	modes.	We	observe	that	the	addition	of	i	reduces	these	unwanted	

modes	by	30%	to	50%.	We	determine	the	direction	of	i	by	first	defining	a	scalar	value	È	that	

quantifies	the	participation	of	unwanted	modes.		The	vector	i	is	then	given	by	the	projection	

of	 the	 gradient	of	È	 into	 the	 kernel	of	 r.	 The	gradient	of	È	 is	 defined	with	 respect	 to	 the	

changes	 in	 the	 geometry,	 so	i = ÿ℘≠î:‘ ; ∗ <=È,	 where	 <=È = È uÑ + 8ô − È uÑ ,	 and	

℘≠î:‘ ; 	is	a	projector	into	the	kernel	of	J.	The	value	of	È	is	defined	as	È = Èo
q + Èq

q +⋯+ È‘q	

where	fl	is	the	number	of	coupled	modes	within	our	frequency	range	of	interest,	and	Èô =

¯ − x .ô¶»Î 	 is	 defined	 as	 the	 distance	 between	 the	 i-th	 coupled	mode’s	 displacement	

profile	 in	 the	 test	 area	 .ô¶»Î = go
ô , gq

ô ,… gqq≈pô , Úo
ô , Úq

ô ,… , Úqq≈pô , èo
ô , èq

ô ,… , èqq≈pô ≥ 	 and	 its	

projection	 into	free-plate	modes	within	the	range	of	 frequencies	of	 interest,	 implemented	

with	the	projector	x = � �≥� no�≥ 	where	�	is	a	vector	whose	columns	contain	the	sampled	

displacements	of	the	free-plate	modes	in	the	frequency	range	of	interest,	following	the	same	

layout	as	.ô¶»Î.	The	errors	in	the	two	coupled	plates	are	reduced	to	a	single	number	as	È	by	

taking	the	RMS	value	of	the	two	errors.	The	norm	of	i	is	adjusted	empirically	between	0.5	

and	2.	
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Finite	Element	Simulations	
	
Veselago	lens		
	
Our	 model	 Veselago	 lens	 consists	 of	 100x100	 unit	 cells,	 each	 of	 them	 containing	 141k	

elements.	In	order	to	solve	this	system,	we	follow	a	dynamic	condensation	approach[302].	

We	cut	each	unit	cell	at	half	along	the	length	of	the	beams	and	define	a	transfer	matrix	that	

relates	the	displacements	and	forces	acting	on	the	boundary	DOFS	at	the	connection	points,	

using	117	DOFs	for	every	connecting	beam	cross	section.	We	do	this	by	first	defining	the	unit	

cell	dynamic	force	balance	equation	–úïqg + ¿íïúg + Ùg = f,	where	ú	and	Ù	are	the	

unit	 cell’s	 mass	 and	 stiffness	matrices	 obtained	 from	 COMSOL,	 í = 33	unq	 is	 a	 damping	

parameter.	We	 then	 introduce	 the	 dynamic	 stiffness	matrix	/ =–úïq + ¿íïú + Ù	 and	

decompose	the	set	of	nodal	forces	and	displacements	into	set	associated	with	boundary	(b)	

and	 interior	 (i)	 nodes.	 By	 prescribing	 zero	 force	 at	 the	 interior	 nodes,	 the	 interior	

displacements	can	be	condensate	as	gô = −/ôôno(/ô†g†).	As	a	result,	we	obtain	a	condensed	

matrix	/äû‘ = /†† − /†ô /ôôno/ô† .	We	 solve	 this	 system	 of	 equations	 using	 the	 PARDISO	

solver	included	in	the	Intel	Math	Kernel	Library,	which	can	solve	systems	with	multiple	right	

hand	sides	without	repeating	common	steps	such	as	the	matrix	factorization.	Similarly,	we	

define	a	conversion	matrix	æ = −/ôôno/ô†
¯

,	that	provides	the	values	of	the	full	displacement	

vector	g	as	a	function	of	the	boundary	DOF’s	gj,	g = æg†.	

	

We	then	solve	the	force-balance	problem	for	the	full	lens	in	terms	of	the	boundary	nodes.	

The	force	at	each	node	is	set	to	zero,	except	for	those	in	the	interface	between	the	x=50	y=31	

and	x=50	y=32	which	are	driven	with	unit	strength.	After	solving	for	the	displacements	in	each	

step,	we	calculate	the	RMS	amplitude	of	every	unit	cell	by	using	the	equation	g%Î= ∝ v,	

where	 v	 is	 the	 total	 steady-state	 energy	 stored	 in	 a	 unit	 cell,	 calculated	 as	 v =

1 2 gj
@æ@ ïqú + Ù ægj	where	†	denotes	the	Hermitian	conjugate.	 	

	

Zero	cg	metamaterial	and	topological	insulator	
	

The	 zero	group	velocity	metamaterial	 is	 simulated	 in	COMSOL	using	a	unit	 cell	 subject	 to	

Floquet	boundary	conditions	at	half	the	beam’s	length,	using	1.02M	elements	per	unit	cell.	
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The	 topological	 insulator	dispersion	 relation	 (Fig.	 5.4c),	we	model	4	unit	 cells	 (3x1	plates)	

stacked	in	a	column	in	the	finite	dimension,	such	that	the	modeled	system	consists	of	12x1	

plates	coupled	with	beams.	This	simulation	was	done	using	901k	elements.		Fixed	boundary	

conditions	were	 applied	 on	 both	 ends	 of	 the	 beams	of	 the	 finite	 dimension,	 and	 Floquet	

boundary	conditions	were	applied	in	the	other	dimension.		To	determine	the	polarization	of	

the	edge	modes	around	the	crossing	points,	we	calculate	on	which	side	of	the	model,	in	the	

finite	dimension,	the	stored	energy	density	is	localized.	The	exact	locations	of	the	edge	mode	

crossing	points	depend	on	which	plate	within	the	3-plate	unit	cell	is	connected	to	the	fixed	

boundary.	The	finite-size	topological	insulator	was	simulated	directly	in	COMSOL	using	2.6M	

elements.		

	

Supplementary:	Calculation	of	the	Schrieffer-Wolff	transformation	as	a	series	
expansion	
	

We	 create	 a	 reduced	 order	 model	 for	 an	 infinite,	 periodic	 perturbative	 metamaterial	 by	

calculating	a	Schrieffer-Wolff	transformation	of	the	perturbation	matrix	Ùô∂.	The	Schrieffer-

Wolff	 transformation	 is	 calculated	 as	 a	 series	 expansion	 up	 to	 order	fl.	 We	 refer	 to	 the	

resulting	reduced	matrix	as	Ù%.	We	will	also	use	éÑ% 	to	refer	to	the	unperturbed	cells’	dynamic	

matrix,	restricted	to	the	subspace	of	modes	that	lie	in	the	frequency	range	of	interest.	The	

reduced	matrices	Ù% 	and	éÑ% 	describe	the	force	acting	on	an	arbitrary	unit	cell	(we	call	it	the	

center)	 as	 a	 function	 of	 the	 displacement	 of	 its	 neighbors.	 When	 calculating	 the	 SW	

transformation	for	order	fl,	we	must	take	into	account	interactions	with	neighbors	that	are	

up	to	fl	unit	cells	away	from	the	center.	Figure	5.S1	shows	the	system	under	consideration.		
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FIG.	5.S1:	Test	system	for	the	calculation	of	the	Schrieffer-Wolff	transformation.	The	dots	represent	

unit	cells.	For	a	first	order	calculation,	only	the	blue	dots	are	required.	We	then	add	the	black	dots	(for	

second	order),	green	dots	(for	third	order),	yellow	dots	(for	fourth	order)	and	red	dots	(for	fifth	order).	

The	lines	represent	the	coupling	between	a	unit	cell	and	its	nearest	neighbor	in	the	x-direction	(ÙÍ,	

green)	and	y-direction	(Ùı,	red).	

We	first	proceed	to	assemble	the	matrices	Ù	and	éÑ	for	the	coupled	system	represented	in	

Fig.	5.S1.	These	are	t	×	t	square	matrices,	where	t = $	×	 flêtíº{	Câ	#º$$u ,	$	being	the	

number	of	local	modes	per	unit	cell.	The	number	of	local	modes	$	refers	to	the	full	description	

obtained	 from	 finite	 elements	 (as	 described	 in	 the	 coupling	matrix	 extraction	 part	 of	 the	

methods	section),	containing	40	modes	per	plate	for	cases	described	in	our	paper,	and	not	to	

the	final	reduced	model	which	contains	1-6	modes	per	unit	cell.		

	

The	matrix	assembly	utilizes	 the	matrices	ÙÍ(Describing	 the	effect	of	 the	beams	coupling	

horizontal	plates),	Ùı 	 (Describing	 the	effect	of	 the	beams	coupling	vertical	plates),	ÙÍDç» 	

(Describing	the	effect	of	the	holes)	and	éÑ=	 (Describing	the	unperturbed	modes	of	a	single	
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plate).	 For	unit	 cells	 containing	multiple	plates,	 additional	matrices	 should	be	 included	 to	

account	for	inter-plate	couplings	inside	the	unit	cell.	The	matrices	ÙÍ	and	Ùı 	are	obtained	by	

simulation	of	a	two-plate	system	as	described	in	the	Coupling	Matrix	Extraction	part	of	the	

Methods	 section.	 The	 horizontal	 two-plate	 simulation	 yields	 the	 coupling	 Ùç% 	 between	

horizontally	neighboring	plates.	In	addition,	the	plate	on	the	left	experiences	a	frequency	shift	

Ùçç	due	to	having	beams	on	the	right,	and	the	plate	on	the	right	experiences	a	shift	Ù%% 	due	

to	having	beams	on	the	left.	We	obtain	an	analogous	result	for	a	system	of	vertical	plates,	

with	local	frequency	shifts	given	by	Ù««	and	ÙEE,	and	an	inter-plate	coupling	given	by	Ù«E.	

The	 matrices	 ÙÍ	 and	 Ùı,	 which	 summarize	 the	 effect	 of	 all	 4	 nearest	 neighbors,	 are	

structured	as:	

	

ÙÍ = Ùçç Ùç%

Ù%ç Ù%%
	 Ùı = Ù«« Ù«E

ÙE« ÙEE
	

	

Where	the	terms	Ùçç,	Ù%%,	ÙEE	and	Ù««	represent	local	changes	in	the	unit	cell	dynamics	

brought	by	the	beams	placed	on	the	right,	left,	bottom	and	top	of	the	plate	respectively,	and	

VLR,	VRL	,VUD,	VDU	 represent	the	 inter-plate	couplings	from	the	beams.	The	terms	Ùçç,	Ù%%,	

ÙEE	and	Ù««	are	what	we	correct	for	with	the	introduction	of	holes	in	the	plate.		For	a	given	

unit	cell	number	{,	the	matrix	Ù	describing	the	whole	system	in	Fig.	5.S1	satisfies:	

	

Ùô£ :no ◊,∂£ :no ◊ = Ùô∂
çç + Ùô∂

%% + Ùô∂
«« + Ùô∂

EE + Ùô∂
ÍDç» 	

	

For	a	pair	of	adjacent	unit	cells	{	and	ì,	with	{	being	on	the	left	of	ì,	we	have	(1 ≤ ¿, “ ≤ $):	

	

Ùô£ :no ◊,∂£ öno ◊ = Ùô∂
ç% 	

Ùô£ öno ◊,∂£ :no ◊ = Ùô∂
%ç	

	

For	a	pair	of	adjacent	unit	cells	{	and	ì,	with	{	below	ì,	we	have	(1 ≤ ¿, “ ≤ $):	

	

Ùô£ :no ◊,∂£ öno ◊ = Ùô∂
«E	

Ùô£ öno ◊,∂£ :no ◊ = Ùô∂
E«	
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The	 term	éÑ	 is	 the	 diagonalized,	 unperturbed	 (excluding	 effects	 of	 the	 beams	 and	holes)	

dynamical	matrix	of	the	system	depicted	in	Fig.	5.S1,	contains	as	many	diagonal	copies	of	éÑ=	

as	unit	cells	required	for	the	desired	order	of	approximation,	and	has	the	form:	

	

éÑ =

éÑ
= 0 … 0
0 éÑ

= … 0
… … … …
0 0 … éÑ

=

	

	

After	assembling	the	matrices,	we	proceed	to	compute	the	Schrieffer-Wolff	transformation	

as	a	series	expansion	of	order	fl ≤ 5.	The	new	effective	dynamical	matrix	will	be	given	by[19]:	

	

éîππ
% = éÑ

% + Ù% = ℘≥ éÑ + éô

‘

:Fo

℘	

	

Where	℘	represents	a	projector	into	the	subspace	of	relevant	modes.	As	a	consequence	of	

this	 projection,	 the	 resulting	 system	éîππ% 	 involves	only	 the	 relevant	modes.	 The	 first	 five	

terms	éô	in	the	series	expansion	of	the	Schrieffer-Wolff	transformation	are	given	by:	

	

éo = Ù	

éq = 1 2 8o,G Ù 	

ée = 1 2 8q,G Ù 	

éá = 1 2 8e,G Ù − 1 24 8o, 8o, 8o,G Ù 	 	

éå = 1 2 8á,G Ù − 1 24 8q, 8o, 8o,G Ù 	 + 8o, 8q, 8o,G Ù 	 + 8o, 8o, 8q,G Ù 	 	

	

Where	G(Ù)	is	a	square	matrix	with	the	same	size	of	Ù,	but	containing	only	block-off-diagonal	

terms,	i.e.	those	that	couple	a	relevant	mode	to	an	irrelevant	mode,	and	having	all	the	block-

diagonal	terms	set	to	zero.	The	symbol	[�, ∆]	represents	a	commutator:	 �, ∆ = �∆ − ∆�.	

The	terms	8oto	8á	are	given	by:	

	

8o = ℒ Ù 	

8q = −ℒ I Ù , 8o 	

8e = ℒ − I Ù , 8q + 1 3 8o, 8o,G Ù 	
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8á = ℒ − I Ù , 8e + 1 3 8o, 8q,G Ù + 8q, 8o,G Ù 	

	

Here,	I Ù 	is	a	matrix	the	same	size	as	Ù	but	with	zeroes	replacing	all	the	terms	coupling	

relevant-to-relevant	or	irrelevant-to-irrelevant	modes.	The	function	ℒ	is	defined	as:	

	

ℒ � ô∂ =
		

�ô∂
éÑ ôô − éÑ ∂∂

									¿â	 ¿, “ 	¿u	í$C#i − Cââ − d¿yzCfly$

			0																																¿â	 ¿, “ 	¿u	í$C#i − d¿yzCfly$
	

	

	

Supplementary:	Additive	Properties	of	Perturbative	Metamaterials	
	

The	 technique	 we	 presented	 in	 this	 paper	 allows	 us	 to	 design	 metamaterials	 based	 on	

complex	mass-spring	models,	such	as	those	with	nontrivial	topological	properties.	This	ability	

to	 implement	advanced	 functionality	 arises	 from	 the	 linear	 relation	between	 the	 reduced	

order	 model	 and	 the	 metamaterial	 geometry,	 which	 is	 valid	 when	 the	 Schrieffer-Wolff	

transformation	 is	 evaluated	 to	 first	 order.	 A	 linear	 relation	 between	material	 and	model	

means	that	the	springs	in	a	mass-spring	model	corresponding	to	a	system	containing	multiple	

inter-plate	 coupling	 beams	 will	 be	 the	 sum	 of	 the	 springs	 in	 the	 mass-spring	 models	

corresponding	to	systems	containing	each	one	of	the	beams	(Fig.	5.S2a).	

	

This	 linear	 approximation	 is	 valid	 as	 long	 as	 the	 first-order	 perturbative	 Schrieffer-Wolff	

transformation	is	accurate	(Fig.	5.S2b).	For	the	polymer	beams	that	we	use	in	this	work	(v =

4.02	GPa),	the	error	in	the	stiffness	matrix	is	below	5%.	This	low	error	allows	us	to	evaluate	

vast	design	spaces	(exceeding	10áÑ	configurations	for	the	beam	locations	and	widths)	without	

having	to	perform	a	full	finite-element	simulation	for	each	design.			 	
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FIG	5.S2:	 	Beam	width	 linearity.	(a)	Two-plate	system	used	to	test	the	 linear	dependence	between	

beam	width	and	coupling	matrix.	(b)	Error	in	the	coupling	matrix	of	a	two-beam	system	obtained	by	

adding	 single-beam	 solutions,	 as	 a	 function	 of	 the	 beam	 stiffness.	 Higher	 beam	 stiffness	 result	 in	

higher	relative	errors	since	the	first-order	Schrieffer-Wolff	transformation	becomes	inaccurate	at	high	

coupling	strengths.	

	

	

Additionally,	in	the	range	of	beam	widths	present	in	our	design,	the	coupling	matrix	Ù	(which	

describes	the	effect	of	the	polymer	beams)	increases	linearly	with	each	beam’s	width	Û:	Ù ≈

ÙÑ
Ì

Ì©
,	 where	 ÙÑ	 and	 ÛÑ	 are	 the	 coupling	 matrix	 and	 beam	 width	 for	 a	 reference	

configuration.	This	approximation	is	very	accurate	(Fig	5.S3a-c),	with	an	error	below	1.2%	for	

the	beam	widths	considered	in	this	work.	
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FIG	5.S3:	Beam	width	linearity.	(a)	Two-plate	system	used	to	test	the	linear	relation	between	beam	

width	and	coupling	matrix.	(b)	Elements	of	the	coupling	matrix	Ùô∂,	describing	the	coupling	between	

plate	modes	21	and	22.	The	coupling	matrices	have	been	obtained	by	finite	element	simulation	(dots)	

and	by	 linear	extrapolation	from	a	single	beam	width	(solid	 lines).	c.	Relative	error	of	the	coupling	

matrix	 as	 a	 function	 of	 the	 beam	 width.	 The	 result	 is	 exact	 when	 the	 beam	 width	 matches	 the	

reference	width	ÛÑ.	

	

The	linear	relation	between	beam	width	and	geometry	allows	us	to	speed-up	the	optimization	

process	by	simulating	a	single	beam	width	at	every	location,	and	extrapolating	the	coupling	

strength	of	different	widths	from	this	single	finite	element	simulation.			

	

Supplementary:	Coupled	optimization	in	the	Zero	Group	Velocity	lattice	
model	
	

Our	 method	 for	 designing	 metamaterials	 by	 separately	 tuning	 the	 design	 parameters	

considers	 only	 the	 interaction	 between	 a	 unit	 cell	 and	 each	 neighbor,	 and	 neglects	

interactions	 between	 different	 perturbations.	 This	 treatment	 is	 exact	 if	 Schrieffer-Wolff	

transformation	is	truncated	to	the	first	(linear)	term	in	its	series	expansion,	but	real	systems	
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will	have	an	error	due	to	the	finite	coupling	strength.	 In	this	section,	we	describe	how	we	

partially	compensate	for	higher-order	errors	by	performing	an	optimization	in	a	larger	system	

consisting	 of	 multiple	 coupled	 unit	 cells	 (Figure	 5.S4a)	 subject	 to	 continuity	 boundary	

conditions,	within	the	context	of	the	zero	group	velocity	material.	

	

As	an	example,	we	consider	a	finite	element	model	consisting	of	two	unit	cells	of	the	zero	

group	velocity	material,	where	each	unit	cell	is	made	of	two	plates	(Fig.	5.3c).	We	use	Comsol	

Multiphysics	to	determine	the	system’s	eigenmodes	and	eigenfrequencies	at	our	frequency	

of	interest.	Since	the	system	consists	of	four	plates,	and	each	plate	contains	two	modes	in	

that	frequency	range	(Fig	5.S4b),	the	problem	requires	the	computation	of	eight	eigenmodes	

of	the	coupled	structure.	We	then	determine	the	coupling	matrix	between	local	modes	by	

utilizing	 the	 same	procedure	as	 in	 the	case	with	 two	plates:	We	 first	express	 the	coupled	

eigenmodes	in	terms	of	our	local	basis	(Fig	5.S4b),	by	probing	the	displacement	field	over	the	

test	area	of	each	plate	(Fig.	5.1c)	and	identifying	the	linear	combination	of	the	basis	modes	

that	provides	the	best	least-square	approximation	of	the	displacement	field	in	the	test	area	

(using	 a	 Moore-Penrose	 pseudoinverse).	 Then	 we	 combine	 the	 eigenfrequencies	 and	

eigenmodes	in	the	local	basis	representation	to	determine	the	reduced-order	coupling	matrix	

VR	for	the	system.	

	

To	minimize	 the	 error	 in	 the	 system’s	 reduced	 dynamical	matrix	 (Fig	 5.S3c),	 we	 utilize	 a	

gradient-based	method.	We	 parameterize	 our	 geometry	 by	 allowing	 the	 beam	 locations,	

thicknesses	and	angles,	as	well	as	the	hole	locations	and	radii	to	change.	We	then	determine	

the	coupling	matrix	for	the	original	system	and	for	modified	systems	where	we	introduce	a	

small	 change	 (0.03	mm)	 in	each	of	 the	system’s	parameters.	This	allows	us	 to	assemble	a	

Jacobian	matrix	r	that	relates	small	changes	in	the	geometry	to	small	changes	in	the	coupling	

matrix.	The	direction	of	maximum	error	descent	is	given	by	z = − 	i −	i≥
≥
r,	where	i	is	a	

64-components	column	vector	containing	the	elements	of	the	coupling	matrix	Ù%,	while	i≥ 	

contains	the	elements	of	the	target	matrix.	We	then	identify	the	optimal	amount	of	change	

in	 the	direction	of	z	by	minimizing	 i + rüz −	i≥ 	with	respect	 to	ü.	We	then	apply	 this	

change	 in	the	model	and	recompute	the	error.	Since	the	Jacobian	matrix	does	not	change	

significantly	between	gradient	 iterations,	we	evaluate	 it	only	once	at	 the	beginning	of	 the	
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optimization	 process.	 Due	 to	 the	 presence	 of	 long-range	 interactions,	 the	 optimization	

algorithm	is	not	able	to	completely	match	the	system’s	dynamical	matrix	Ù% 	to	the	objective	

mass-spring	model	s≥(:Jîö	(Fig	5.S4d).	This	additional	optimization	step	greatly	improves	the	

agreement	between	the	metamaterial’s	response	and	the	target	model,	 reducing	the	root	

mean	square	error	in	the	dispersion	relation	fourfold	from	20.4	Hz	(Fig	5.S4e)	to	5.1	Hz	(Fig	

5.S4f).	

	
	

FIG.	5.S4:	Higher-order	error	compensation.	(a)	Finite	element	model	used	in	the	coupled	optimization	

scheme.	The	model	consists	of	four	plates	(2	unit	cells)	subject	to	continuity	boundary	conditions.	(b)	

Eigenmode	 basis	 used	 to	 describe	 the	 displacement	 of	 the	 coupled	 plates.	 The	 eigenmodes	

correspond	to	a	free	plate.	(c).	Magnitude	of	the	error	between	the	objective	inter-modal	coupling	
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stiffnesses	 and	 the	 coupling	 stiffnesses	 determined	 from	 the	 finite	 element	model	 in	 panel	 a.	 (d)	

Magnitude	 of	 the	 coupling	 error	 after	 the	 optimization.	 The	 red	 squares	 indicate	 long-range	

interactions.	(e)	Band	structure	of	the	lattice	before	the	optimization.	(f)	Band	structure	of	the	lattice	

after	the	optimization.	In	e	and	f	the	blue	lines	are	the	analytical	predictions	from	the	objective	mass-

spring	model	and	the	red	dots	correspond	to	the	finite	element	simulation	on	the	designed	physical	

system.	

Supplementary:	Evaluation	of	the	topological	insulator	design	
	

To	evaluate	the	behavior	of	the	designed	topological	insulator	metamaterial,	we	compare	its	

modal	 properties	 to	 those	of	 the	mass-spring	model.	 	 The	eigenfrequency	 analysis	 of	 the	

physical	system	agrees	well	with	the	mass-spring	analytical	model	(Fig.	5.S5a),	and	shows	two	

bulk	band	gaps.		This	is	confirmed	by	calculating	the	localization	of	each	mode,	defined	as	its	

strain	energy	summed	over	the	unit	cells	on	the	edge,	normalized	by	the	total	strain	energy	

of	 the	mode	over	 the	entire	 finite	metamaterial.	 The	 localization	of	both	 the	mass-spring	

model	and	designed	metamaterial	show	almost	complete	localization	on	the	boundary	unit	

cells	within	the	two	bands	identified	in	the	eigenfrequency	analysis.		An	example	mode	within	

the	first	bulk	band	gap	of	the	mass-spring	model	clearly	shows	the	edge	mode	(Fig.	5.S5b).		

Figure	 5.S6	 shows	 four	 other	 example	modes	within	 both	 bulk	 band	 gaps	 in	 the	 physical	

system.	The	designed	topological	insulator	metamaterial	overall	shows	excellent	agreement	

with	the	behavior	of	the	corresponding	mass-spring	model.					
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FIG.	 5.S5:	Topological	 insulator	mass-spring	model	 compared	 to	metamaterial.	 (a)	 Eigenfrequency	

analysis	and	energy	localization	of	mass-spring	model	compared	to	the	designed	metamaterial,	both	

showing	two	bands	of	topologically	protected	edge	modes.	(b)	Topologically	protected	edge	mode	of	

mass-spring	 model	 from	 Fig.	 5.4a,	 within	 band	 1.	 	 The	 same	 mode	 number	 is	 shown	 in	 the	

metamaterial	results	in	Fig.	5.4d.	Each	pixel	corresponds	to	a	pair	of	degenerate	modes.	
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FIG	5.S6:		Four	examples	of	topologically	protected	edge	modes	of	the	designed	metamaterial	(left)	

and	 mass-spring	 model	 (right).	 	 (a)	Mode	 30	 and	 (b)	mode	 36	 are	 within	 the	 first	 topologically	

protected	band,	and	(c)	mode	63	and	(d)	mode	64	are	within	the	second	topologically	protected	band.		

The	color	bars	shown	in	a	apply	to	all	plots,	and	are	shown	in	arbitrary	units	of	modal	displacements.	
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Summary,	conclusions	and	outlook	

	

This	thesis	has	investigated,	theoretically	and	experimentally,	the	nonlinear	dynamics	of	low-

dimensional	systems	that	act	as	models	of	energy-converting	metamaterials.		Here	I	present	

a	brief	review	of	the	main	conclusions,	potential	impact	and	proposed	future	work.		

	

This	work	started	by	investigating	the	quasi-static	and	dynamic	responses	of	nonlinear	lattices	

subject	to	a	localized	harmonic	excitation.	In	the	quasi-static	regime,	it	has	been	shown	that	

applying	an	external	harmonic	excitation	tunes	the	mechanical	force-displacement	response	

of	 the	 lattice.	This	mechanical	 response	can	 reach	extreme	values,	 and	 include	 regions	of	

negative,	zero	or	infinite	stiffness	as	well	as	present	zero-frequency	bands	gaps	and	tunable	

damping.	The	harmonic	excitation	is	characterized	by	two	degrees	of	freedom:	frequency	and	

amplitude.	This	allows	us	to	select	which	individual	displacement	region	will	be	modified	in	

the	 force-displacement	 relation,	 a	 degree	 of	 tunability	 that	 is	 not	 available	 in	 alternative	

stiffness	 tuning	mechanisms.	 For	 certain	 types	 of	 interaction	 potentials,	 excitation	 forces	

above	a	threshold	value	result	 in	energy	transfer	from	the	excited	particle	to	an	extended	

lattice	mode,	as	it	has	been	explored	in	Chapter	3.	In	this	regime,	our	lattice’s	dynamics	are	

analogous	 to	an	optomechanical	 system,	and	 can	be	used	 to	 convert	energy	 from	one	or	

multiple	excitation	 sources	 into	a	 single	 coherent	oscillation	of	 the	 lattice,	with	a	 tunable	

frequency	and	phase.	The	thesis	has	continued	by	investigating	the	response	of	this	class	of	

nonlinear	 systems	 under	 stochastic	 excitation.	 This	 work	 has	 been	 done	 on	 a	 different	

nonlinear	 system:	 a	 coupled	 string-cantilever	 structure,	 due	 quality	 factor	 requirements.	

Under	appropriate	 conditions,	 the	 system	behaves	as	 a	 stochastic	heat	engine,	producing	

work	from	a	temperature	difference,	or	as	a	refrigerator/heat	pump,	that	transfers	energy	

against	a	thermal	gradient	while	consuming	external	work	or	heat.	The	thesis	concludes	with	

an	 algorithm	 to	 translate	 discrete	 models	 into	 material	 geometries,	 that	 can	 be	 used	 to	

implement	a	variety	of	systems	such	as	plate	wave	lenses	or	topological	insulators.		

	

The	results	presented	in	this	thesis	offer	significant	potential	for	practical	applications.	The	

excitation-induced	zero	frequency	band	gaps	demonstrated	in	driven	nonlinear	lattices	can	

be	used	 for	 vibration	mitigation	 in	 the	 low	 range	of	 the	 frequency	 spectrum,	 the	hardest	
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region	to	filter.	Frequency	converting	metamaterials	can	be	used	in	vibration	harvesting,	to	

aggregate	 energy	 from	multiple	 incoherent	 sources.	 The	 same	 type	 of	 nonlinear	 system,	

when	subject	to	stochastic	excitations,	presents	an	ideal	platform	for	the	experimental	study	

stochastic	 thermodynamics.	However,	 in	order	 to	realize	 these	applications,	several	 issues	

must	be	addressed.	First,	 the	quasistatic	stiffness	changes	presented	 in	chapter	2	and	the	

dynamic	frequency	conversion	phenomena	discussed	in	chapter	3	have	been	demonstrated	

in	one-dimensional	 lattices	containing	a	small	number	of	particles.	Practical	devices	would	

require	a	larger	number	of	particles	in	order	to	have	a	significant	usable	displacement	range	

for	the	tunable-stiffness	system,	or	a	significant	output	power	in	frequency	converting	and	

thermal	 engine	 systems.	 Increasing	 the	 size	 of	 the	 system	 may	 introduce	 emergent	

phenomena	such	as	synchronization	or	phase	transitions.	These	issues	should	be	addressed	

in	future	work,	since	they	are	relevant	for	practical	applications	and	may	offer	a	peek	into	the	

transition	between	stochastic	and	conventional	thermodynamics.	

	

A	separate	issue	that	must	be	investigated	is	the	cause	of	the	low	efficiency	in	the	frequency	

converting	 processes	 described	 Chapter	 3	 and	 in	 the	 stochastic	 heat	 engine	 described	 in	

Chapter	4.	Future	studies	need	to	identify	the	dependence	of	the	conversion	efficiency	on	the	

system’s	parameters,	 and	particularly	on	 the	 type	of	 nonlinear	 interaction.	An	 interesting	

fundamental	question	arising	from	this	work	is	that	of	identifying	which	nonlinear	interaction	

potentials	give	rise	to	nontrivial	thermodynamic	properties,	and	how	the	nonlinear	dynamics	

and	the	thermodynamics	are	connected.	This	is	relevant	from	a	fundamental	point	of	view,	

and	may	also	inform	the	design	of	materials	with	novel	thermodynamic	performances.	

	

Finally,	 the	 metamaterial	 geometry	 generation	 algorithm	 discussed	 in	 Chapter	 5	 leaves	

several	 issues	 for	 future	 work.	 First,	 the	 theoretical	 predictions	 should	 be	 validated	

experimentally.	While	the	dimensions	and	features	of	the	designed	materials	are	within	the	

range	of	conventional	fabrication	technologies,	effects	such	as	losses	or	manufacturing	non-

idealities	may	limit	the	performance	of	the	resulting	materials.		Second,	the	design	algorithm	

should	be	augmented	to	include	nonlinear	effects.	The	incorporation	of	a	quadratic	nonlinear	

term	alone	would	enable	the	production	of	a	dramatically	larger	variety	of	devices,	including	

transistors,	logic	gates	and	energy	converting	systems	such	as	those	discussed	in	Chapters	3	

and	4.	Third,	future	studies	should	explore	photonic	equivalents	of	this	algorithm.	Photonic	
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systems	are	promising	because,	due	to	the	extremely	high	frequency	of	light,	they	have	the	

potential	to	enable	ultra-fast	information	processing.		
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Appendix	1:	Code	for	stochastic	simulation	

#include <iostream> 
#include <fstream> 
#include <cstdlib> 
#include <cmath> 
#include <random> 
#include <chrono> 
 
#define NUM_VARS 14 
#define integration_type double 
#define SQRT3INV 0.57735026919 
#define PI 3.14159265359 
#define K_BOLTZMANN (1.3806488e-23) 
 
// Butcher tableau 
const integration_type srkC0[4] = { 0, 1, 0.5, 0 }; 
const integration_type srkC1[4] = { 0, 0.25, 1.0, 0.25 }; 
const integration_type srkAlpha[4] = { 1.0/6, 1.0/6, 2.0/3.0, 0 }; 
const integration_type srkBeta1[4] = { -1, 4.0/3.0, 2.0/3.0, 0 }; 
const integration_type srkBeta2[4] = { 1, -4.0/3.0, 1.0/3.0, 0 }; 
const integration_type srkBeta3[4] = { 2.0, -4.0/3.0, -2.0/3.0, 0 }; 
const integration_type srkBeta4[4] = { -2, 5.0/3.0, -2.0/3.0, 1.0 }; 
const integration_type srkA0[4][4] = { {0,0,0,0}, {1.0, 0, 0, 0}, {0.25, 0.25, 0, 0}, 
{0, 0, 0, 0} }; 
const integration_type srkA1[4][4] = { {0,0,0,0}, {0.25, 0, 0, 0}, {1.0, 0, 0, 0}, {0, 
0, 0.25, 0} }; 
const integration_type srkB0[4][4] = { {0,0,0,0}, {0, 0, 0, 0}, {1.0, 0.5, 0, 0}, {0, 0, 
0, 0} }; 
const integration_type srkB1[4][4] = { {0,0,0,0}, {-0.5, 0, 0, 0}, {1.0, 0, 0, 0}, {2.0, 
-1.0, 0.5, 0} }; 
 
// Factors to interpolate gaussian cumulative distribution 
#define BSM_A0 2.50662823884 
#define BSM_A1 -18.61500062529 
#define BSM_A2 41.39119773534 
#define BSM_A3 -25.44106049637 
 
#define BSM_B0 -8.47351093090 
#define BSM_B1 23.08336743743 
#define BSM_B2 -21.06224101826 
#define BSM_B3 3.13082909833 
 
#define BSM_C0 0.3374754822726147 
#define BSM_C1 0.9761690190917186 
#define BSM_C2 0.1607979714918209 
#define BSM_C3 0.0276438810333863 
#define BSM_C4 0.0038405729373609 
#define BSM_C5 0.0003951896511919 
#define BSM_C6 0.0000321767881768 
#define BSM_C7 0.0000002888167364 
#define BSM_C8 0.0000003960315187 
 
 
// Variables for runge-kutta 
integration_type y[NUM_VARS]; 
integration_type h0[4][NUM_VARS]; 
integration_type h1[4][NUM_VARS]; 
integration_type noiseVariables; 
integration_type noiseDerivatives; 
 
//Result caching 
integration_type evaluatedDerivatives[4][NUM_VARS]; 
integration_type evaluatedNoise[4][NUM_VARS]; 
integration_type driveTermIk[NUM_VARS]; 
integration_type driveTermIk0[NUM_VARS]; 
integration_type driveTermIkk[NUM_VARS]; 
integration_type driveTermIkkk[NUM_VARS]; 
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integration_type diffStage[NUM_VARS]; 
 
const bool stochasticMask[NUM_VARS] = {false, true, false, true, false, true, false, 
false, false, false, false, false, false, false}; 
 
integration_type t; 
integration_type h; 
integration_type sqH; 
integration_type invH; 
integration_type invSqH; 
 
unsigned seed = std::chrono::system_clock::now().time_since_epoch().count(); 
std::mt19937* generator; 
std::mt19937* generator2; 
 
// System specific section 1 starts here: 
integration_type fh, fc, fw; 
integration_type mh, mc, mw; // Effective masses 
integration_type qh, qc, qw; 
integration_type kh, kc, kw; // Effective stiffness 
integration_type bh, bc, bw; // Dampings 
integration_type th, tc, tw; // Noise temperatures 
integration_type nh, nc, nw; // Noise multiplicative factors 
integration_type mu, lambda, khc; // Nonlinear term, nonlinear coupling and linear 
coupling 
integration_type filterInvTau; 
 
integration_type cosWork, sinWork; 
 
integration_type excitationAmplitude; 
 
// This function needs to be parameterized for sweeping 
void setDefaultParameters(double sweepParam) { 
    double factor = 0.8125; 
    //excitationAmplitude = (1e-6)*sweepParam; 
    mh = 0.000275406*factor; 
    mc = 0.000275406*factor; 
    mw = 1.27; 
     
    qh = 59.41; 
    qc = 167.78; 
    qw = 960; 
     
    fh = 165.3692*1.154; 
    fc = 165.3692; 
    fw = 26.87; 
     
    th = 2.0e18; 
    tc = th*0; 
    tw = sweepParam*th; 
     
    kh = mh*(2.0*PI*fh)*(2.0*PI*fh); 
    kc = mc*(2.0*PI*fc)*(2.0*PI*fc); 
    kw = mw*(2.0*PI*fw)*(2.0*PI*fw); 
     
    bh = mh*2.0*PI*fh/qh; 
    bc = mc*2.0*PI*fc/qc; 
    bw = mw*2.0*PI*fw/qw; 
     
    nh = sqrt(2.0*th*K_BOLTZMANN*bh)/mh; 
    nc = sqrt(2.0*tc*K_BOLTZMANN*bc)/mc; 
    nw = sqrt(2.0*tw*K_BOLTZMANN*bw)/mw; 
     
    khc = 0.0381*kc; 
    filterInvTau = 1.0/5000; 
     
    lambda = factor*(631.45e3); 
    mu = factor*20.8e6; 
} 
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inline void updateNonautonomousTerms(double ct) { 
    sinWork = (excitationAmplitude)*sin(2.0*PI*fw*ct); 
    cosWork = (excitationAmplitude)*cos(2.0*PI*fw*ct); 
} 
 
inline void fourthOrderLowPass(integration_type *variables, integration_type* 
derivatives, integration_type value, int offset, integration_type invTau) { 
    derivatives[offset] = (value-variables[offset])*invTau; 
    derivatives[offset+1] = (variables[offset]-variables[offset+1])*invTau; 
    derivatives[offset+2] = (variables[offset+1]-variables[offset+2])*invTau; 
    derivatives[offset+3] = (variables[offset+2]-variables[offset+3])*invTau; 
} 
 
inline void derivatives(integration_type *variables, integration_type* derivatives, 
double t) { 
   // updateNonautonomousTerms(t); 
    derivatives[0] = variables[1]; 
    derivatives[1] = (-kh*variables[0]-bh*variables[1]-
mu*((variables[0])*(variables[0])*(variables[0]))+khc*(variables[2]-variables[0]))/mh; 
     
    derivatives[2] = variables[3]; 
    derivatives[3] = (-(kc+2.0*lambda*variables[4])*variables[2]-
mu*((variables[2])*(variables[2])*(variables[2]))-bc*variables[3]+khc*(variables[0]-
variables[2]))/mc; 
    //derivatives[3] = (-(kc+2.0*lambda*cosWork)*variables[2]-bc*variables[3]-
mu*((variables[2])*(variables[2])*(variables[2]))+khc*(variables[0]-variables[2]))/mc; 
     
    derivatives[4] = variables[5]; 
    derivatives[5] = (-kw*variables[4]-bw*variables[5]-
lambda*((variables[2])*(variables[2])))/mw; 
     
    fourthOrderLowPass(variables, derivatives, variables[3]*khc*(variables[0]-
variables[2]), 6, filterInvTau); 
    fourthOrderLowPass(variables, derivatives, 
variables[5]*lambda*((variables[2])*(variables[2])), 10, filterInvTau); 
} 
 
inline void noiseFunction(integration_type *variables, integration_type* derivatives, 
double t) { 
    derivatives[0] = 0; 
    derivatives[1] = nh; 
    derivatives[2] = 0; 
    derivatives[3] = nc; 
    derivatives[4] = 0; 
    derivatives[5] = nw; 
    derivatives[6] = 0; 
    derivatives[7] = 0; 
    derivatives[8] = 0; 
    derivatives[9] = 0; 
    derivatives[10] = 0; 
    derivatives[11] = 0; 
    derivatives[12] = 0; 
    derivatives[13] = 0; 
} 
 
// System specific section 1 ends here 
 
void setH(integration_type newH) { 
    h = newH; 
    sqH = sqrt(newH); 
    invH = 1.0/newH; 
    invSqH = 1.0/sqH; 
} 
 
// 
bool whichGenerator; 
inline integration_type getUniformRandomNumber01() { 
    int64_t a,b; 
    if(true) { 
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        a = (*generator)(); 
        b = (*generator).max(); 
    } else { 
        a = (*generator2)(); 
        b = (*generator2).max(); 
    } 
    return ((integration_type)a)/((integration_type)b); 
} 
 
// Generates gaussian distributed number pair with zero mean and variance h N(0,H) 
inline void boxMuller(integration_type *_firstNumber, integration_type *_secondNumber) { 
    integration_type firstNumber; 
    integration_type secondNumber; 
    firstNumber = getUniformRandomNumber01(); 
    if(firstNumber < 1e-9) firstNumber = 1e-9; 
    firstNumber = -2.0 * log(firstNumber); 
    secondNumber = getUniformRandomNumber01() * (2.0*PI); 
    firstNumber = sqrt(h*firstNumber); 
    *_firstNumber = firstNumber*cos(secondNumber); 
    *_secondNumber = firstNumber*sin(secondNumber); 
} 
 
integration_type beasleySpringerMoro(integration_type _vl = -1) { 
 if(_vl < 0) 
  _vl = getUniformRandomNumber01(); 
 if(_vl < 0.5) return -beasleySpringerMoro(1.0-_vl); 
 if(_vl <= 0.92) { 
  integration_type v2 = _vl-0.5; 
  integration_type v22 = v2*v2; 
 
 return  sqH*v2*(BSM_A0+v22*(BSM_A1+v22*(BSM_A2+v22*BSM_A3)))/(1+v22*(BSM_B0+v22*(
BSM_B1+v22*(BSM_B2+v22*BSM_B3)))); 
 } 
 if(_vl > 0.999999999) _vl = 0.999999999; 
 integration_type vx = log(-log(1.0-_vl)); 
 return sqH*(BSM_C0 + 
vx*(BSM_C1+vx*(BSM_C2+vx*(BSM_C3+vx*(BSM_C4+vx*(BSM_C5+vx*(BSM_C6+vx*(BSM_C7+BSM_C8*vx))
)))))); 
} 
 
void generateRandomValues() { 
    integration_type firstNumber, secondNumber, zeroTerm; 
    //boxMuller(&zeroTerm, &secondNumber); 
    zeroTerm = beasleySpringerMoro(); 
    whichGenerator = false;  
    for(int i=0;i<NUM_VARS;i++) { 
        if(stochasticMask[i]) { 
            //boxMuller(&firstNumber, &secondNumber); 
     firstNumber = beasleySpringerMoro(); 
     secondNumber = beasleySpringerMoro(); 
            driveTermIk[i] = firstNumber; 
            driveTermIk0[i] = 0.5*h*(firstNumber+SQRT3INV*secondNumber); 
            driveTermIkk[i] = 0.5*(firstNumber*firstNumber-h); 
            driveTermIkkk[i] = (1.0/6.0)*(firstNumber*firstNumber*firstNumber-
3.0*zeroTerm*firstNumber); 
            whichGenerator = !whichGenerator; 
        } 
    } 
} 
 
void zeroVariables() { 
    for(int i=0;i<NUM_VARS;i++) { 
        driveTermIk[i] = 0; 
        driveTermIk0[i] = 0; 
        driveTermIkk[i] = 0; 
        driveTermIkkk[i] = 0; 
        y[i]=0; 
    } 
} 
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void stochasticRungeKuttaStep() { 
    generateRandomValues(); 
    for(int i=0;i<NUM_VARS;i++) { 
        h0[0][i] = y[i]; h1[0][i] = y[i]; 
        h0[1][i] = y[i]; h1[1][i] = y[i]; 
        h0[2][i] = y[i]; h1[2][i] = y[i]; 
        h0[3][i] = y[i]; h1[3][i] = y[i]; 
    } 
    for(int i=0;i<4;i++) { 
        for(int j=0;j<i;j++) { 
            for(int k=0;k<NUM_VARS;k++) { 
                h0[i][k] += srkA0[i][j]*evaluatedDerivatives[j][k]*h + 
srkB0[i][j]*evaluatedNoise[j][k]*driveTermIk0[k]*invH; 
                h1[i][k] += srkA1[i][j]*evaluatedDerivatives[j][k]*h + 
srkB1[i][j]*evaluatedNoise[j][k]*sqH; 
            } 
        } 
        derivatives(h0[i],evaluatedDerivatives[i],t+srkC0[i]*h); 
        noiseFunction(h1[i],evaluatedNoise[i],t+srkC1[i]*h); 
    } 
    for(int i=0;i<NUM_VARS;i++) diffStage[i]=0; 
    for(int i=0;i<4;i++) { 
        for(int k=0;k<NUM_VARS;k++) { 
            diffStage[k] += srkAlpha[i]*evaluatedDerivatives[i][k]*h; 
            diffStage[k] += 
(srkBeta1[i]*driveTermIk[k]+srkBeta2[i]*driveTermIkk[k]*invSqH+srkBeta3[i]*driveTermIk0[
k]*invH+srkBeta4[i]*driveTermIkkk[k]*invH)*evaluatedNoise[i][k]; 
        } 
    } 
    for(int i=0;i<NUM_VARS;i++) y[i] += diffStage[i]; 
    t += h; 
} 
 
void performIntegration(integration_type newH, int64_t num_steps) 
{ 
    setH(newH); 
    for(int64_t i=0;i<num_steps;i++) { 
        stochasticRungeKuttaStep(); 
    } 
} 
 
double get_sweep_var() 
{ 
 std::ifstream rd; rd.open("sweepvar",std::ios_base::binary); 
 rd.seekg(0,std::ios::beg); 
 double a; 
 void *b = &a; 
 rd.read((char*)b,8); 
 rd.close(); 
 return a; 
} 
 
int main(void) { 
    unsigned seed = std::chrono::system_clock::now().time_since_epoch().count(); 
    generator2 = new std::mt19937(seed+8913432); 
    generator = new std::mt19937(seed); 
    integration_type kineticEnergy = 0; 
    integration_type potentialEnergy = 0; 
    integration_type n = 0; 
    integration_type sigma_T=0; 
    integration_type sigma_V=0; 
    std::ofstream frequencySweep("results_0.txt"); 
    zeroVariables(); 
    y[4] = 35e-5; 
    integration_type currentSweep = get_sweep_var(); 
    setDefaultParameters(currentSweep); 
    performIntegration(5e-6,((int64_t)130*1000*5*10*10*2)*((int64_t)2*2*2*2*10)); 
    frequencySweep << currentSweep << '\t' << y[9] << '\t' << y[13] << '\t' << 
y[13]/y[9] << '\n'; 
    frequencySweep.close(); 
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    std::cout << "RMS amplitude TH: " << sqrt(y[9]) << '\n'; 
    std::cout << "Power transfer: " << y[13] << '\n'; 
    return 0; 
} 
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Appendix	2:	Images	of	the	experimental	setups	

	

	
	

FIG	A2.1:		Granular	chain	utilized	in	early	experiments	demonstrating	the	extreme	stiffness	tunability	

phenomenon	discussed	in	Chapter	2.	On	the	left,	a	piezoelectric	actuator	compresses	the	chain,	while	

on	the	right,	a	strain	gauge	measures	the	chain’s	force	response.	Here,	the	defect	is	driven	by	a	split-

bead	actuator	that	proved	to	be	unstable	against	buckling.	
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FIG	A2.2:		Granular	chain	measured	in	the	stiffness	tunability	experiments	reported	in	Chapter	2.	This	

final	 setup	differs	 from	Fig.	A2.1	 in	 the	use	of	a	 cylindrical	 actuator	 instead	of	a	 split	bead,	which	

improves	 the	 chain	 stability	 against	 buckling.	 Also,	 this	 setup	 includes	 a	 Polytec	 Laser	 Doppler	

Vibrometer	allowing	the	simultaneous	measurement	of	the	defect’s	vibration.	
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FIG	A2.3:		Magnet	chain	demonstrating	synchronized	frequency	conversion	as	reported	in	Chapter	3.	

The	image	shows	a	chain	of	magnetic	particles	constrained	between	two	polymer	rods.	Each	particle	

has	a	visible	speckle	pattern	that	facilitates	its	tracking	by	digital	image	correlation.	The	central	particle	

is	driven	by	an	electromagnetic	actuator.	This	 image	was	obtained	with	 the	same	computer	vision	

camera	utilized	to	track	the	displacements	of	the	particles.	
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FIG	A2.4:	 	Mechanical	autonomous	stochastic	heat	engine.	The	 left	of	 the	 image	contains	 the	 two	

ribbons	that	are	subject	to	simulated	thermal	baths	at	different	temperatures.	The	bottom	shows	the	

cantilever	that	acts	as	output	of	the	engine,	while	the	top-right	corner	contains	the	two	Polytec	Laser	

Doppler	Vibrometers	utilized	 to	monitor	 the	 ribbon	and	cantilever	motions	during	 thermal	engine	

operation.	

	
	
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


