
ETH Library

A comprehensive shape analysis
pipeline for stereoscopic
measurements of particulate
populations in suspension

Journal Article

Author(s):
Rajagopalan, Ashwin K.; Schneeberger, Janik; Salvatori, Fabio; Bötschi, Stefan; Ochsenbein, David R.; Oswald, Martin R.;
Pollefeys, Marc; Mazzotti, Marco

Publication date:
2017-11

Permanent link:
https://doi.org/10.3929/ethz-b-000192659

Rights / license:
Creative Commons Attribution 4.0 International

Originally published in:
Powder Technology 321, https://doi.org/10.1016/j.powtec.2017.08.044

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000192659
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.powtec.2017.08.044
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Powder Technology 321 (2017) 479–493

Contents lists available at ScienceDirect

Powder Technology

j ourna l homepage: www.e lsev ie r .com/ locate /powtec

A comprehensive shape analysis pipeline for stereoscopic
measurements of particulate populations in suspension

Ashwin Kumar Rajagopalana,1, Janik Schneebergera,1, Fabio Salvatoria, Stefan Bötschia,
David R. Ochsenbeina,2, Martin R. Oswaldb, Marc Pollefeysb, Marco Mazzottia,*
aInstitute of Process Engineering, Sonneggstrasse 3, ETH Zürich, CH-8092 Zürich, Switzerland
bComputer Vision and Geometry Group, Universitätstrasse 6, ETH Zürich, CH-8092 Zürich, Switzerland

A R T I C L E I N F O

Article history:
Received 10 June 2017
Received in revised form 10 August 2017
Accepted 13 August 2017
Available online 16 August 2017

Keywords:
Crystallization
Particle size and shape distribution
Imaging-based particle sizing technique
Volumetric visual hull reconstruction
Automated crystal shape classification

A B S T R A C T

A state-of-the-art, compact optomechanical setup coupled with an image analysis routine to measure multi-
dimensional particle size and shape distributions (nD PSSDs) for crystallization processes is presented. A
novel image processing pipeline to process the raw images from the cameras is presented. The pipeline
consists of a stereoscopic camera calibration model, adaptive background subtraction, particle contour
matching, and 3D reconstruction of the segmented crystals. The reconstructed crystals are subjected to
a supervised shape classification strategy, which categorizes each detected crystal into spheres, needles,
quasi-equant particles, platelets and non-convex particles. Additionally, a high-speed image capture mode,
capable of monitoring processes with fast kinetics, is presented. The device discussed in this work is sub-
jected to an experimental campaign, to validate size measurements, characterize steady state, and confirm
repeatability of measurements to affirm and assess the non-invasive nature of the setup on the mea-
surement. An experiment aimed at evaluating the enhancement in the proposed image analysis pipeline
performance, more specifically the automatic shape classification, is further conducted. Finally, a dissolution
process is monitored using a stereoscopic imaging setup for the first time, and the size and shape evolution
of the population in a growth and dissolution phase is monitored for about 18 h.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In crystallization processes, the particle size and shape of the final
product is of key importance as it influences the downstream pro-
cessing operations such as filtration, drying, and tableting. Crystals
exhibit different shapes depending on the crystal habit, and an accu-
rate characterization of shape is critical in the design and control of
such processes. Often, commercially available crystallization process
characterization tools condense shape related information of crys-
tals into a single characteristic length [1]. Hence, a one dimensional
particle size distribution is obtained leaving out the shape informa-
tion of the crystals. However, due to the variety of shapes exhibited
by crystals, in order to accurately quantify the population of crystals,
a multidimensional particle size and shape distribution (PSSD), rather
than a PSD, would be preferable.
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As we have recently reported [2], commercially available sizing
tools that rely on the assumption of a single characteristic length,
such as focused beam reflectance measurement (FBRM), laser diffrac-
tion (LD), Coulter counter (CC), as well as monoscopic imaging
tools, are prone to errors and misleading effects for particles that
are non-spherical. For example, FBRM provides a one-dimensional
chord length distribution (CLD) which is difficult to interpret;
the transformation from the CLD to PSD is an ill-posed problem
and can in fact simply not be done without additional tools [3].
Multi-projection imaging systems [4–7], have been proposed as
remedy as they are able to tackle shape-related issues rather satisfac-
torily, thus reducing the ill effects encountered by commercial sizing
tools for non-spherical particles.

In an earlier publication, the successful implementation of a dual
projection imaging device using a stereoscopic camera setup with a
sapphire glass based flow channel was demonstrated [8]. The setup
has been used to monitor growth and agglomeration of bL-Glutamic
acid [9–12], and the measurement device enabled modeling the
phenomenon with both size and shape information, which would
have been difficult with other process characterization tools. Even
though the image analysis routine implemented in previous works
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was able to distinguish primary particles and non-convex particles
like agglomerates, the need to implement a more accurate and robust
image analysis routine was identified. For example, the classification
of different primary particles was performed only based on the con-
tour boundary pixels of the particles. But considering the boundary
pixels alone, not utilizing the available information in its entirety,
would definitely hinder the characterization of complex shapes in a
process. Although particle shape characterization by means of super-
vised and unsupervised learning algorithms is not entirely novel [13],
methods for shape categorization based on reconstructed volumetric
3D models have never been applied to the best of our knowledge in
the past.

1.1. Contributions

A compact version of the stereoscopic camera setup, ≈5 times
smaller than our previous setup, was engineered. A novel calibration
procedure for the alignment of the multi-camera setup is proposed,
which was missing in our previous works. In contrast to our pre-
vious work, the proposed image segmentation algorithm accounts
for visual artifacts which finally leads to an improved reliability
of measured particle size distributions over time. Furthermore, the
novel shape classification of volumetrically 3D reconstructed parti-
cles leads to a better shape approximation and segregation of the
particles observed by the stereoscopic camera setup. In particu-
lar, the more accurate particle shape description allows for a more
precise and fine-grained classification of particles which allows for
better real-time control of crystallization processes.

1.2. Outline

First, a detailed hardware overview of the measurement device is
provided in Section 2. Second, in Section 3, a comprehensive theoret-
ical study of the basic concepts of camera calibration, image analysis,
and 3D reconstruction is presented. The measurement device valida-
tion and the application of the new particle reconstruction and shape
classification is reported in Section 4. Finally, in Section 5, a discus-
sion on the improvements of the measurement device is given along
with concluding remarks.

2. Measurement device

A major challenge of imaging-based particle sizing techniques
is the dependence of the observed particle size on the orientation

of the particle under inspection with respect to the camera. These
orientation-related issues can be mitigated by means of a multi-
camera setup which provides particle projections from different
angles. The previously published stereoscopic imaging setup, hence-
forth referred to as FTC [8], uses a dual-projection technique capable
of merging particle size information provided by two cameras into
nD PSSDs. This feature yields a more accurate measurement than
what single-view setups can provide [2]. However, the major draw-
back of the FTC is its bulky mechanical design (126 × 126 × 90
cm), making it vulnerable to vibrations during image acquisition.
Moreover, the Xenon flashes employed required additional optics to
provide collimated light; also, a square flow channel assembled by
gluing four sapphire glass windows held by a brass holder was used,
making maintenance of the device cumbersome.

Based on the issues described above, a more compact version
of the optomechanical setup (80 × 74 × 42 cm) was developed with
the goal of overcoming the problems associated with the FTC. The
smaller setup described, henceforth referred to as dual imaging
system for crystallization observation (l-DISCO), fits into a standard
laboratory hood and is less vibration-susceptible during operation.
A schematic of the new setup is shown in Fig. 1; it consists of two
monochrome CMOS cameras (Point Grey Research, Canada) in an
orthogonal configuration with telecentric optics (Opto Engineering,
Italy) resulting in an orthographic projection with very low spa-
tial distortions (<0.1%). The camera-lens system provides a field of
view (FOV) of 2.41 × 2.02 mm at a nominal magnification of 3.5×.
Two high-power, telecentric LED illuminators (Opto Engineering,
Italy), which emit collimated chief rays parallel to the optical axis
produce high contrast silhouettes of particles passing through the
flow channel. The whole setup is mounted on an optical rail cross-
construction. Manual XYZ-translation stages (Newport Corporation,
USA) that allow high precision alignment of the two cameras, and a
rotation stage (Newport Corporation, USA) that allows orienting the
parallel illumination beam, are used. A microcontroller (Atmel, USA)
running in-house software provides an external trigger signal, which
enables a synchronized image acquisition from the cameras.

The introduction of the new cameras allows to operate the
l-DISCO either in a standard mode, with a constant low frame rate
(1–7 Hz), or in a burst mode, with higher frame rates up to 75 Hz. The
burst mode is particularly useful for capturing processes with fast
dynamics, such as dissolution. In standard mode, the l-DISCO can be
operated either online, that is, the image processing is performed in
real-time, or offline, where the image processing is performed after

Fig. 1. Schematic of the new dual imaging system for crystallization observation (l-DISCO). The suspension flowing from the reactor through the flow channel (D) is back-light
illuminated using two telecentric illuminators (B). The suspension is photographed using two digital cameras (A) with telecentric optics (C). The camera, lens and the illuminator
system are mounted orthogonally on an optical rail construction.
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the image acquisition for the entire measurement period. The cam-
eras are connected to high-speed USB 3.0 ports and controlled with
custom drivers implemented using the FlyCapture SDK (Point Grey
Research, Canada).

The suspension is sampled from the reactor using a peri-
staltic pump (Watson-Marlow, Inc., UK) and flows through a single
piece quartz square channel (FireflySci, Inc., USA) embedded in an
insulated sampling loop. The cross-section of the flow channel is
2 × 2 mm and incorporates the two transitions between the circular
tubing and the square channel at both ends. A one-piece flow chan-
nel is superior to the old channel, because of a reduced risk of leakage
and a completely eliminated risk of dissolution of the glue used to
hold the channel.

3. Theoretical background

3.1. Camera calibration

The calibration of camera-based measurement setups is nec-
essary to obtain accurate metric size information from images. It
involves finding optical characteristics of the camera that affect the
image formation (intrinsic parameters), as well as the position and
orientation of the camera coordinate systems in space with respect
to a world coordinate system (extrinsic parameters). Camera cali-
bration has been a research subject for a long time [14–16], and
open-source camera calibration software is available [17]. Standard
off-the-shelf calibration software usually assumes the cameras to
fulfill the so-called pinhole camera model[18], which however is not
applicable when dealing with telecentric lenses since these types
of lenses are designed to produce an orthographic projection of
the object imaged [19]. Our calibration procedure is based on the
following simplifying assumptions:

1. The optical axes of the two lenses lie on parallel planes and are
orthogonal to each other;

2. Nonlinear lens distortions are negligible due to the particular
telecentric lenses used.

Based on the mathematical model of a telecentric camera pre-
sented by Huiyang et al. [20], a custom camera model is derived.
The world coordinate system in homogeneous form is denoted by
Ow = [xw, yw, zw, 1]T, and its origin is placed in the center of the
square glass channel (shown in Fig. 2). The two camera coordinate

systems OA = [xA, yA, zA, 1]T and OB = [xB, yB, zB, 1]T of camera A and
B, respectively, are shown in Fig. 2.

The local image plane coordinate system of each camera, [uA, vA]
and [uB, vB], is placed at the upper-right corner of each image plane.
Given that the location of both cameras is fixed by the optical rail, the
remaining degrees of freedom of each camera include one rotation
axis, around zA and zB, respectively, denoted by the roll angles, 0A
and 0B, and three translational degrees of freedom for each camera
along axes xj, yj, and zj, denoted with dj,x, dj,y, and dj,z, respectively,
where the subscript j identifies the camera source, i.e., j ∈ {A, B}.
The distance along zj is determined by the nominal working dis-
tance of the telecentric lenses, which defines the distance between
the front of the lens and the object when the lens is correctly focused
(dA,z = dB,z = 132.3 mm). The image formation of the camera-
lens system is modeled by a weak perspective projection [18], which
is an orthographic projection followed by isotropic scaling, denoted
by the scaling factors aA and aB, respectively. Following the nota-
tion proposed by Huiyang et al. [20], the relationship between a 3D
point [xw, yw, zw, 1]T in the world coordinate system Ow and its image
projection [uj, vj, 1]T is given in homogeneous form as

⎡
⎣ uj

vj

1

⎤
⎦ = Kj

[
Rj Tj

0 1

] ⎡
⎢⎢⎣

xw

yw

zw

1

⎤
⎥⎥⎦ (1)

where, the intrinsic camera matrices, Kj, are given by

Kj =

⎡
⎢⎣
a−1

j 0 0 ũ0

0 a−1
j 0 ṽ0

0 0 0 1

⎤
⎥⎦ (2)

and the rotation matrices, Rj ∈ R
3, are given by

RA =

⎡
⎣ − sin(0A) 0 − cos(0A)

− cos(0A) 0 sin(0A)
0 1 0

⎤
⎦ and

RB =

⎡
⎣ 0 sin(0B) − cos(0B)

0 − cos(0B) − sin(0B)
−1 0 0

⎤
⎦ (3)

Fig. 2. Coordinate system convention used for the calibration of the stereoscopic camera setup.
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Fig. 3. Illustration of the multi-step image processing approach. This work includes the adaptive background subtraction (B), a contour matching algorithm (C), 3D shape
reconstruction (D), and the automated shape classification of reconstructed particles (E). The result of this procedure is an nD PSSD for each generic shape model.

respectively. Here, [ũ0, ṽ0]T = [1224, 1024]T denotes the principal
point in pixel coordinates, i.e., the point where the principal cam-
era axis intersects the image plane. The image resolution of both
cameras is 2448 × 2048 pixels. The translation vectors are given by
Tj = [dj,x, dj,y, dj,z]T. The relative shift along the zw axis between the
two camera coordinate systems is defined as 4 = dB,x − dA,x. In the
ideal case, 4 should be equal to zero after the mechanical alignment,
thus indicating that a projected 3D point in Ow shares one common
coordinate in the image planes of the cameras. However, in reality,
4 �= 0 since mechanical alignment cannot be attained with suffi-
cient precision; the exact value of the relative shift, 4, has to be found
during the extrinsic calibration. The distances dj,y are mechanically
adjusted, so as that the cell is centered in both images.

In summary, the five parameters to be found by means of the cal-
ibration procedure are aA and aB (intrinsic parameters), and 0A, 0B,
and 4 (extrinsic parameters).

3.1.1. Intrinsic calibration
A planar-object-based calibration method is employed to find

each cameras intrinsic parameters. In order to do so, a calibration
plate with a checkerboard pattern of 0.2 × 0.2 mm (Opto Engineer-
ing, Italy) is mounted perpendicular to the optical axis and an image
of the checkerboard calibration pattern is captured. After the manual
selection of 9 × 9 checkerboard corner points, a corner-refinement
routine [17] is applied, and the exact location of the corner points
on the image plane is found. The distances between neighbouring
corner pixel locations are measured and plotted against the cor-
responding nominal checkerboard size of the pattern. The scaling
factor is then taken as the slope of the line that best fits the data
distribution. The scaling factors for the cameras of the setup pre-
sented in this article are aA =0.993 ± 0.002lm/pixel, and aB =0.991
± 0.002lm/pixel.

3.1.2. Extrinsic calibration
The extrinsic calibration procedure is carried out in two steps,

namely a rough mechanical alignment of the optical components fol-
lowed by a high-precision software calibration. A thin nylon filament
is used as a reference object for the rotational alignment of the two
cameras; one end of the filament is attached to the frame of the setup
and the other end is attached to a weight so as the filament is aligned
with the direction of gravity and centered in the FOV of the cameras.

After an initial, coarse mechanical alignment of the cameras, multi-
ple images of the shadow created by the nylon filament are captured.
A simple image gradient-based algorithm is used to determine the
exact location of a set of center points of the nylon filament with
sub-pixel accuracy. The rotation angles are calculated from the slope
of a linear function found using linear regression of the set of cen-
ter points. The values for the roll angles determined in this way are
0A = −0.86 ± 0.02◦ and 0B = 0.15 ± 0.01◦.

The remaining extrinsic parameter, 4, is determined by means of
a statistical calibration measurement involving spherical latex beads
(CC Size Standard L90, Beckman Coulter, USA) with a nominal diam-
eter of 90 lm. For this, the bounding box centroid difference along
the zw-direction, Dx = x̂B − x̂A, is reported for every matched con-
tour pair, where x̂j are the x-components of the particle bounding
box centroid. Assuming a perfect rotational correction of the cam-
eras, the mean of Dx over all contour-matches can be taken as an
approximation for 4.

3.2. Image processing and analysis

A multi-step, in-house developed image processing approach
(illustrated in Fig. 3) for extracting contours of particle silhouettes
(Sections 3.2.1 and 3.2.2), reconstruction of particle shapes in 3D
(Section 3.2.4), and shape classification of the particles (Section 3.3)
is presented.

3.2.1. Adaptive background subtraction
After the acquisition of a stereoscopic image pair, an adaptive

background subtraction step [21,22] is applied to both images in
order to remove stationary content from the images such as dust, dirt
or scratches on the flow cell, which tend to increase as the cell ages.
The idea behind this technique is to generate a foreground mask of
pixels belonging to moving objects (see III in Fig. 4) by estimating the
stationary background of the scene (see II in Fig. 4), which can be sub-
tracted from successive images. A simple yet effective way to model
the background, B(x, y, tk), at the pixel location (x, y) and time step, tk

is used to compute the temporal mean over a series of images. Using
this approach, the background is updated with a new frame, I(x, y, tk),
according to the recursive update equation

B(x, y, tk) = (1 − c) B(x, y, tk−1) + cI(x, y, tk) (4)
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Fig. 4. (I): new frame at time tk showing a crystal; (II): static background; (III): difference frame (intensity normalized); (IV): segmented difference frame; (V): extracted contour
of the crystal.

where, c ∈ [0, 1] is the learning rate of the update equation, which
determines the contribution from a new frame to the background.
For our application, we used a small value of c = 0.05. The subtrac-
tion of a new frame with the estimated background model results in
a difference frame, Idiff(x, y, t) = |I(x, y, tk)−B(x, y, tk)|, containing only
moving objects, i.e., objects that appear new in the image.

3.2.2. Image segmentation
This processing step identifies whether pixels in the image either

depict a crystal (shown as bright pixels in image IV of Fig. 4) or if they
belong to the background (shown as dark pixels). Given the differ-
ence image Idiff : Y ⊂ R

2 × T → [0, 1] from the previous background
subtraction step, we compute a binary image G : Y ⊂ R

2 × T → {0, 1}
that labels every pixel as either foreground or background. T ⊂ R

denotes the time domain. Being the simplest and fastest segmenta-
tion algorithm, we use thresholding and classify all pixels by means
of a global threshold t ∈ [0, 1] as

G(x, y, tk) =

{
1 if Idiff (x, y, tk) > t

0 otherwise
(5)

In our application, the global threshold value, is found using a
photometric calibration involving spherical latex beads (Beckman
Coulter, USA) with a nominal diameter of 90lm. It is a well-known
fact that thresholding is prone to noise because the classification of
each pixel is independent of its direct neighbors. Therefore, the seg-
ments might not be contiguous or contain holes. In order to cope
with this problem, a median filter with window size of 5 × 5 pixels
is applied to G(x, y, tk) after segmentation, followed by a morpho-
logical opening and closing operation with a rectangular structuring
element with the size of 13 pixels [23]. These operations reduce
noise and close thin concavities in the binary mask. In a succes-
sive step, the contour of the particle silhouettes is extracted using
a boundary tracing algorithm [24] (illustrated in image V of Fig. 4).
Contours containing less than 50 connected pixels are considered to
be below the optical resolution of the camera-lens system and are
thus excluded from further analysis. Contours intersecting the image
boundaries are discarded as they cannot provide an accurate size

measurement of the corresponding particle. All image processing
operations are implemented using the open source computer vision
library OpenCV [25].

In the course of this evaluation, also a variational segmentation
approach known as Total Variation Segmentation (TVSeg) [26–28]
was extensively tested and carefully evaluated for the application
of this work. This method overcomes the drawbacks of simple
segmentation techniques and produces excellent segmentation out-
comes also for images with intensity inhomogeneity and Poisson
noise [27]. However, when compared with binary thresholding, the
computation time of TVSeg is significantly higher which impedes its
application for real-time measurements. Hence, it was decided to
implement binary thresholding for the context of this work.

3.2.3. Stereoscopic contour matching
The aim of this processing step is to find spatial correspondences

between silhouettes on the two stereoscopic images that originate
from the same crystal. Assuming perfect alignment of both cam-
eras and a segmentation without errors, the matching would be
performed by comparing the upper and lower coordinates of the
contours from the two stereoscopic images along the common zw-
coordinate. In reality, the particles from the two stereoscopic images
do not share identical upper and lower coordinates due to calibration
errors, mechanical micro-vibrations, or image segmentation errors.

A particle matching algorithm based on the Euclidean norm of the
upper and lower coordinates of the bounding box, and centroid of
the different particles with a fixed matching threshold from the two
stereoscopic projections was reported earlier [6,8]. Instead of assign-
ing a fixed threshold for the contour matching procedure, a statistical
assignment approach to find the correspondence between contoured
particles from the two segmented images is employed. The matching
is performed based on conditions imposed on (i) the absolute differ-
ence in the zw-coordinate of the contour centroids, and (ii) absolute
or relative differences in the upper and lower zw-coordinates of the
bounding box of the contour.

In the first step, pairs of contours that satisfy the centroid thresh-
old from the two matched stereoscopic images are checked for
difference in the zw-coordinate of the bounding box. On the one

Fig. 5. Volume intersection method used for the 3D reconstruction of particles being imaged by the two cameras. (A) and (B) show the volumes spanned by the two silhouettes,
VA (red silhouette) and VB (blue silhouette); (C) illustrates the intersection of VA and VB; (D) shows the final reconstructed visual hull V = VA ∩ VB.
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hand, if a pair of contour satisfies the threshold for absolute differ-
ence of the zw-coordinate, it is considered to be matched. While on
the other hand, if the absolute difference threshold is not met, but
the relative difference threshold is satisfied, the contour pair is con-
sidered to be matched and is subjected to further image processing
steps.

3.2.4. Visual hull-based 3D reconstruction
For the classification of crystals based on shape, a 3D volumet-

ric model of each crystal is required from which shape attributes can
be extracted and used in the context of shape classification. Shape-
from-Silhouette (SFS) [29,30] is a popular technique for the shape
estimation of an object from a set of calibrated silhouette images.
The reconstruction obtained with this method, henceforth referred
to as visual hull (VH), is the intersection of the projective sets (silhou-
ette cones) obtained by unprojecting all camera-aligned silhouette
images into 3D space. Since object concavities can only be recovered
if they are visible in at least one of the silhouettes, the VH can be
regarded as an upper bound of the actual object shape.

Two methods for the construction of the VH are found in liter-
ature, namely volume- and surface-based methods. The first cate-
gory includes methods that approximate the VH by collections of
cubic elementary cells, so-called voxels [31], and the latter method
estimates the surface of the VH as a polyhedron by intersecting sil-
houette cones [32]. Due to its efficient implementation, the volume-
based approach is the selected method for the application in this
work. The visual hull is approximated by a set of N points inside the
VH, denoted by the data matrix, V = [x1, . . . , xN] ∈ R

3×N , where each
column xi represents a data point in R

3 defining the centroid loca-
tion of a cubic voxel with edge length Ds. With the two orthogonally
aligned cameras, V can be computed by the volume intersection
V = VA ∩VB of the two silhouette cones, VA and VB, each represent-
ing a discretized volume spanned by the two projected silhouettes
as illustrated in Fig. 5. The volume intersection is performed sepa-
rately for each pair of silhouette contours that have been found in
the previous contour matching step. This avoids many reconstruc-
tion artifacts such as so-called “ghosts” that appear when particles
occlude each other in the camera views [33]. The accuracy of the
approximation of the VH is inherently determined by the edge length
of a voxel, Ds. An adaptive voxel size approach is pursued in order
to keep the computation time for the reconstruction constant, inde-
pendent of particle volume. As a consequence, larger particles are
approximated by larger voxels and vice-versa. An upper-bound esti-
mate of the volume of a reconstructed particle is given by VVH =
NDs3. A limitation of the exploited method in the given applica-
tion is the dependence of the reconstructed VH on the orientation
of the particle with respect to the cameras. With only two cameras,
the shape of the VH might be ambiguous, e.g., a needle-like parti-
cle cannot be distinguished from a platelet-like particle when it is
oriented in a 45◦-angle with respect to both cameras (see Fig. 6).
This ambiguity also affects the reconstruction of flat, platelet-like
particles, where certain orientations can lead to non-platelet shaped
reconstructions. These inherent ambiguities could be resolved by
adding more cameras to the setup, providing additional silhouette
projections of particles flowing through the cell.

3.3. Automated shape classification

The measurement of the particle size by means of imaging meth-
ods requires a size metric capable of adequately representing the
characteristic size of the particle to be measured. Finding such a suit-
able metric requires prior 3D shape information of the particle before
particle sizing is performed. In the context of this work, the task of
classifying the shape of a crystal consists of assigning a generic shape
model to each particle recorded by the stereoscopic camera setup,

Fig. 6. Favourable orientation of a cylinder (1A) leads to a correct VH-reconstruction
(1B). In an ambiguous cylinder orientation (2A) one cannot reconstruct the true shape
of the cylinder with only two cameras since both shapes (2A) and (2B) generate the
same silhouettes. The virtual cameras are in both cases aligned along the green and
blue coordinate direction.

and hence categorizing crystals into shape groups that share certain
geometric properties.

3.3.1. Definition of generic shape models
In general, one can distinguish between physically based mor-

phological particle models and generic particle models. The first
class of models uses crystallographic data and aims at reflecting the
morphology of an ideal crystal as accurately as possible [8]. In con-
trast, generic particle models aim at simplifying the shape of the
crystals as much as is sensible for a given application. The faces of
crystals are not necessarily respected using such an approach and
only the macroscopic form is considered. Following the definition
of Schorsch et al. [7], the generic model particles sphere and needle
are distinguished, along with the new classes quasi-equant, platelet,
and non-convex. Note that the non-convex class strongly resembles
the class denoted by the term agglomerate in the work by Ochsen-
bein et al. to describe agglomerates of needle-like crystals [12]. In
this article, however, the more general term non-convex is used since
this label is restricted not only to the agglomeration of needle-like
crystals. The non-convex label in the context of this work might also
include overlapping particles which exhibit non-convex shape, thus
making it difficult to distinguish them from real agglomerates.

The set of generic shapes distinguished in this work is illustrated
in process step E of Fig. 3. Members of the sphere class are spher-
ical objects (spheroids), which can be described with a diameter,
L1, only. Elongated, needle-like particles are described by the nee-
dle class whose characteristic dimensions are approximated by a
cylindrical shape with length, L1, and width, L2, where L1 	 L2.
The class quasi-equant consists of regular, non-spherical particles, for
which L1 ≥ L2 ≥ L3 can be assumed, as for instance in the case of
cuboid shaped crystals. The platelet class describes flat-shaped, tab-
ular objects like platelet crystals, for which L1 ≥ L2 	 L3 is assumed.
The non-convex class is intended for the detection and classification
of crystal agglomeration events yielding irregularly shaped particles.

3.3.2. 2D and 3D shape descriptors
The design and the selection of shape descriptors is of central

importance to supervised learning approaches. A common way for
characterizing particle shapes is to use 2D shape factors that are
computed from the contour of a particle silhouette. Shape factors
are dimensionless quantities that numerically describe the shape
of a particle, independent of its size. Ochsenbein et al. used a set
of shape factors for a supervised machine learning strategy using a
non-linear Support Vector Machine (SVM) algorithm for the sepa-
ration of primary (needle-like, spheres, cuboids, etc.) particles and
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agglomerates [12]. Following up on their work, new descriptors are
investigated in this article. We measure circularity (roundness) of a
particle contour using the isoperimetric quotient (reciprocal of the
P2A compactness measure [34]). In the context of our application, the
isoperimetric quotient, Qj, of a closed contour associated with cam-
era j is defined as the ratio of the projected contour area Aproj,j to the
area of a circle with same perimeter as the contour, denoted by Pproj,j,
i.e.,

Qj =
4pAproj, j

P2
proj, j

(6)

It is easy to show that Qj belongs to the interval (0, 1] and
becomes 1 for a perfect circle. In order to combine the circularity
from both projected contours, the feature transform y = Q AQ B
is applied, where y is referred to as the circularity product of a
particle contour pair. Besides circularity, also perimeter-based con-
vexity [35], j j, is calculated for each particle contour pair:

jj =
Pconv, j

Pproj, j
(7)

where Pproj,j and Pconv,j are the perimeters of the silhouette contours
and the convex hull of the silhouette, respectively, associated with
camera j. The same concept for combining shape descriptors from
multiple projections into a single-valued number is applied to the
convexity measurement, i.e., b = jAjB is referred to as the convex-
ity product. 3D shape descriptors are extracted using an approach for
the analysis of point clouds based on the covariance matrix of the
VH. For this, a sub-set, V̂ ⊂ V with V̂ = [y1, . . . , yn] ∈ R

3×n, is
sampled uniformly at random without replacement for each recon-
structed particle. The sample covariance matrix S = Cov(V̂) for the
voxels represented in the rows of matrix V̂ is calculated as

S =
1
n

n∑
i=1

(yi − ȳ) (yi − ȳ)T ∈ R
3×3 where ȳ =

1
n

n∑
i=1

yi ∈ R
3

(8)

contains the means of all voxels in the corresponding dimension.
In order to construct geometric covariance-descriptors as proposed
by Blomley et al. [36], the eigenvalues of the covariance matrix are
sorted in such a way that k1 ≥ k2 ≥ k3 ≥ 0. A scale normaliza-
tion is achieved by dividing all eigenvalues by the largest eigenvalue,
i.e., k∗

i = ki/k1 where i ∈ {1, 2, 3}. The covariance-sphericity,
Sk = k∗

3/k
∗
1, and the covariance linearity, Lk = (k∗

1 − k∗
2)/k∗

1, were
identified as promising descriptors for the given shape classifica-
tion problem. The resulting 4-dimensional feature vector, including
shape descriptors from both the 2D and 3D domain, takes the form
�x = [y,b, Sk, Lk]T, and is used within the framework of a supervised
learning scheme.

3.3.3. Classifier selection
In this context, the term classifier refers to a function inferred

from labeled training data, which maps the feature vector represent-
ing the shape of a particle to a shape category, called class. Due to its
computational efficiency and its capability of performing multi-class
classification on a data set, the decision tree algorithm [37,38] is cho-
sen as a classifier. Additionally, discriminant functions for the binary
classification of the sphere and the non-convex class are found using
linear support vector machines. A cascaded classification scheme
with two instances is thus proposed. The first classification instance
performs two binary classifications using the convexity and circu-
larity product, y and b, in order to detect non-convex particles and

spheroids. Particles belonging to none of the two classes are classi-
fied by the second classification instance which distinguishes needle,
quasi-equant or platelet based on a decision tree inferred from simu-
lated training data. It is worth noting that the discussed classification
model does not include a rejection option, i.e., a particle is assigned
to one of the five shape classes in any case.

3.3.4. Training data sets and supervised learning
3.3.4.1. Training set of spheres. A training set was obtained from
real experiments containing 962 particles out of which 12.6 % were
labeled as spheres (positive) and the rest as others which build the
set of the remaining four classes (negative). The positive examples
were spherical latex beads (Beckman Coulter, USA) of different nomi-
nal diameters. The optimal linear class-separating decision boundary
(shown in Fig. 7a) was calculated from the circularity product of the
training data set by means of a linear Support Vector Machine (SVM)
using the fitcsvm function from the Statistics and Machine Learning
Toolbox of MATLAB [39].

3.3.4.2. Training set of non-convex particles. The same approach was
followed in the case of non-convex shaped particles like agglomer-
ates. A training set consisting of 973 particles, out of which 11.8 %
were labeled as non-convex shaped by an independent expert, were
used to identify the decision boundary using a linear SVM. After
the calculation of the convexity product, the optimal linear deci-
sion boundary, shown in Fig. 7b, was calculated by the linear SVM
reported above.

3.3.4.3. Simulated training set. On the basis of the reconstruction
ambiguity (mentioned in Section 3.2.4), the second classifier instance
was trained with in silico data so as feature vectors are not com-
promised by the limitations of the reconstruction method using only
two cameras. For this, the extended virtual test bench (eVTB) [2] for
simulating crystal morphologies was used. The eVTB is a simulation
framework which provides an idealized in silico environment for the
simulation of a variety of different crystal morphologies. A train-
ing set including 2400 cuboids and 1200 cylinders served as basis
for learning a decision tree model to distinguish the shape classes
quasi-equant, platelets, and needles. Feature vectors of all simulated
objects were collected and the fitctree function from the Statis-
tics and Machine Learning Toolbox of MATLAB was used to build a
decision tree model from the generated training data. The covari-
ance linearity, Lk, and the covariance sphericity, Sk, along with the
decision boundaries are shown in Fig. 7c. The complexity (or depth)
of the decision tree is determined using 10-fold cross validation.
Using this method, the training samples are split into 10 smaller
sets and decision trees ensembles are generated while the complex-
ity parameter is increased. For each ensemble, the cross-validated
training error is reported and the parameter yielding a small train-
ing error is chosen. It is important to mention that the characteristic
size of simulated particles for the generation of training data was
sampled from a user-defined distribution. Therefore, the decision
boundaries found using the decision tree algorithm were implic-
itly determined by the parameters of this distribution. The chosen
parameters for generating the distribution were related to outcomes
from real experiments.

3.3.4.4. Shape classification validation. In order to validate the classi-
fication performance of the implemented model, three independent
experts were asked to classify 524 samples from a data set not used for
training of the classifier. Classifier labels are compared to the major-
ity label given by the experts using the confusion matrix[40], which is
commonly used for calculating precision and sensitivity of multi-class
classifiers. The validation revealed an overall agreement of 69.0 % of
the classification model labels and the majority label by the experts.
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The reader is referred to the supplementary material of this article
for a detailed assessment of the multiclass validation results.

A few examples of shaded 3D visual hulls, along with the pre-
dicted shape class label of the classification model, are shown in
Fig. 8. The figure shows corresponding stereoscopic image pairs
captured by camera A and B, respectively, and the resulting recon-
structed VH.

4. Experimental results

An experimental campaign was executed for assessing the per-
formance of l-DISCO and of the image analysis routine presented
in this article. In Section 4.1, the stability of the measurements,
as well as their repeatability is shown by measuring a population
of cD-Mannitol crystals in 2-Propanol at saturated conditions. In
Section 4.2, the accuracy of l-DISCO in estimating the particle size
is assessed by measuring populations of standardized spherical latex
beads of three different nominal diameters. In Section 4.3, the capa-
bility of the image analysis routine to perform shape classification
discussed in Section 3.3 and the characteristic response time of the
device for a measurement of a suspension consisting of a mixture
of particles exhibiting three different shapes is discussed. Also, an
experiment with a growth and dissolution phase for bL-Glutamic
acid is presented in Section 4.4, with the aim of demonstrating the
potential of the device to provide time resolved changes in size
and shape of the crystals during an experiment, even for processes
with fast dynamics. It is to be noted that every measurement per-
formed using l-DISCO produces five different distributions for the
five different classes. In this article the number- and volume-based
distributions are shown for the class with the highest contribution,
unless stated otherwise. The reader is directed towards the supple-
mentary material for information regarding the calculation of the
characteristic sizes, nD PSSDs, and moments that will be used in the
following subsections.

4.1. Steady state and measurement repeatability

In order to establish that the system is at steady state, i.e., there
is no change in the underlying population in the sampling loop or
the channel, the PSSD of needle-like cD-Mannitol suspended in a
saturated solution (S = 1.0) in 2-Propanol (Sigma-Aldrich, Buchs,
Switzerland) at 25 ◦C was measured over a period of 5 h by circu-
lating the suspension at a flow rate of 100 mL min−1 through the
channel of l-DISCO, capturing images at a frequency of 5 Hz. Crystals
of the c polymorph of D-Mannitol were produced by crash cooling
from 25 ◦C to 5 ◦C, a saturated solution of D-Mannitol suspended in
deionized and filtered (filter size of 0.22 lm) water obtained from
a Milli-Q Advantage A10 system (Millipore, Zug, Switzerland). The
crystals thus obtained were washed with 2-Propanol, filtered and
dried for 24 h. In the case of appearance or disappearance of particles,
a change in the average characteristic size of the population or in the
percentage of particles belonging to the different classes would be
observed. For example, during a measurement with needle-like par-
ticles, a breakage event would lead to particles exhibiting a prismatic
shape, which in turn would lead to an increase in the percentage of
quasi-equant particles and decrease in the percentage of needle-like
particles; this would most likely be associated to a decrease in the
average characteristic length along the length (L1) direction.

Fig. 9a shows the time-resolved evolution of number-weighted
characteristic size, along the mean length (L1,mean = l10/l00) and
mean width (L2,mean = l01/l00) of the needle-like crystals. The mea-
sured time average L1,mean and L2,mean for repetition 1 was 157 lm
and 19 lm, respectively, while for repetition 2, these measures were
156 lm and 19 lm, respectively. The generic particle model assumes
a needle-like particle to be approximated by a cylinder. It is to be

Fig. 7. Feature space with projected histograms of convexity product, b, and circular-
ity product, y, to distinguish (a) spheres (purple circles) from others (needles, quasi-
equant, platelets and non-convex – cyan right-pointing triangle); (b) non-convex
(grey downward-pointing triangle) from others (spheres, needles, quasi-equant, and
platelets – cyan right-pointing triangle). (c) feature space of covariance linearity,
Lk , and sphericity, Sk , to distinguish between needles, quasi-equant particles and
platelets. The brown dotted lines indicate the decision boundaries for the different
classes.
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Fig. 8. Examples of reconstructed visual hulls of crystals belonging to the generic
shape classes distinguished by the classifier. (a): non-convex shaped agglomerate of
needle-like bL-Glutamic acid; (b): quasi-equant shaped Aspirin crystal; (c): needle-
like bL-Glutamic acid crystal; (d): broken crystal segment of bL-Glutamic acid which
takes the shape of a platelet; (e): spherical latex bead with a nominal diameter of
90 lm (Beckman Coulter, USA).

noted that this approximation introduces a geometrical error inde-
pendent of the optical error reported for the measurement of a
population of spheres in Section 4.2. The quantification of this error is
beyond the scope of this work. Apart from the characteristic lengths,
the time-resolved broadness of the number-weighted distribution,
s i, along the two directions are shown in Fig. 9b. The broadness
measure of the 2D distribution used in this article is calculated as

s1 =

[
l 20

l00
−

(
l10

l 00

)2
] 1

2

and s2 =

[
l 02

l 00
−

(
l 01

l00

)2
] 1

2

(9)

The metric also exhibited a deviation with the same order of mag-
nitude as that of the two characteristic lengths. The near-constant
broadness of the distribution further confirms the fact that there
were no significant changes in the suspension, over the entire dura-
tion of the measurement. A negligible change in the number and
fraction of particles in the different shape classes was observed over
the duration of the experiment, where, 87.8 ± 1.6% and 90.4 ± 0.4%
of the detected particles accounted for the needle-like shape in the
two repetitions, respectively.

The constant and repeatable trends observed from Fig. 9 are good
indicators that the hardware setup has negligible to minimal impact
on quantifying the population in a crystallizer. In addition, the obser-
vation of the minor differences in number and percentage of the
predicted shapes by the new shape classification algorithm has fur-
ther strengthened our confidence in using l-DISCO for quantitative
and reliable measurements.

4.2. 1D particle size validation

Spherical latex beads (Beckman Coulter, Nyon, Switzerland) with
nominal diameters of 20 lm, 65 lm, and 90 lm were suspended
in 400 mL of deionized and filtered (filter size of 0.22 lm) water
obtained from a Milli-Q Advantage A10 system (Millipore, Zug,
Switzerland). The size of the particles was measured using l-DISCO
at a frequency of 5 Hz in order to evaluate the sizing accuracy of
the device. The suspension is circulated for a duration of 15 min at a
constant flow rate of 100 mL min−1 through the channel. After each
experiment, the sampling loop and the channel were carefully cleaned
and thoroughly flushed with purified water, ethanol, and acetone.

On average, 86.5 ± 1.0 % of all detected particles were classi-
fied as spheres by the shape classifier over the three independent
experiments. The second largest shape contribution was the quasi-
equant particles, which contributed to 13.2 ± 1.0 % to the overall
shape composition. Particles of other shapes were present in neg-
ligible amounts (<0.3%). The discretized normalized 1D number-
and volume-weighted distributions for the three independent repe-
titions of the measurement are shown in Fig. 10, where the particle
size distribution (PSD) is shown only for particles classified as
spheres. The distributions nicely overlap, again indicating an excellent
repeatability of the three independent measurements. In the smaller
particle size range (below 60 lm), a lower measurement accuracy was
observed. This can be attributed to the limited depth of field and the
optical resolution of the telecentric lenses, which lead to an impair-
ment of the measurements as the particles are likely to be out of focus.
This is in line with observations from similar imaging devices [4].
For larger particles (above 60 lm), the measurement error between
the mode of the number- or volume-weighted distributions, and the
nominal diameters of the latex beads was less than 5 %.

An interesting observation from the microscope images of the
latex beads, shown in Fig. 10c, was the presence of broken beads
and of beads with nominal diameter larger than the one obtained
from the manufacturer. The broken beads would explain the contri-
bution from quasi-equant-particles, while the presence of the larger
beads would explain the peak at around 110 lm, clearly visible in the
volume-weighted distribution shown in Fig. 10b.
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4.3. Characterization of spheres, needle-like, and quasi-equant particles

Theautomatedshapeclassificationmodelwastestedwithparticles
of three distinct shapes, namely spheres, needles, and quasi-equant
particles, to evaluate its efficacy in tracking sudden changes in the
suspension during the online measurements. Two different poly-
morphs of L-Glutamic acid (L-Glu), namely the prismatic metastable
a polymorph, and the needle-like, stable b polymorph, exist. The
two polymorphs combined with the spherical latex beads (Beckman
Coulter, Nyon, Switzerland) make an excellent system to test the
performance of the shape classification algorithm during a dynamic
measurement with sudden changes in the population of suspension
of particles. Crystals of the a polymorph were produced by mix-
ing equimolar amounts of monosodium L-Glu monohydrate (NAGLU,
Sigma-Aldrich, Buchs, Switzerland, purity >99 %) and hydrochloric
acid (HCL, Sigma-Aldrich, Buchs, Switzerland, 37–38 %) in deionized
and filtered water with continuous stirring at 5.0 ◦C for 1h. The a

crystals obtained were filtered and dried. To obtain the b polymorph,
a saturated solution with respect to the a form of L-Glu at 45.0 ◦C
was created by mixing equimolar amounts of NaGlu and HCl, and the
a crystals obtained from the previous step were allowed to undergo
a polymorphic transformation over 36 h. The transformed crystals
were subsequently filtered and dried [41].

The measurement was initiated by the addition of spherical latex
beads (phase I), with a nominal diameter of 90 lm, to 300.0 g of pure
ethanol (Merck KGaA, Darmstadt, Germany, purity>99.5 %), followed
by the addition of 0.5 of aL-Glu after 10 min (phase II). Finally, 10
min after the addition of aL-Glu, 0.1 g of bL-Glu was added to the
suspension (phase III). Since, L-Glu is insoluble in ethanol, neither
growth nor dissolution of the crystals during the experiment occurred.
The suspension was stirred at 300 rpm and was pumped through the
l-DISCO at a flow rate of 100 mL min−1. The addition of particles
of different shapes at short frequent intervals renders the standard
mode of operation, i.e., obtaining images at a constant, low frequency
over the entire duration of the measurement, suboptimal. Hence,
the burst mode described in Section 2 with a frequency of image
capture, which is an order of magnitude higher than in the standard
mode, would be efficient in capturing the sudden changes in the
process.

The suspension was analyzed by l-DISCO operating in the burst
mode and capturing 600 images every minute at a frame rate of
≈70 Hz for a total measurement duration of 30 min. A total of 9 ×
104 particles were observed and analyzed. The normalized number
of particles (defined as the ratio of number of particles of a desired
class at a specific time to the total number of particles of the desired
class over the entire measurement duration), and the time resolved
fraction of the five particle classes are shown in Fig. 11. During

phase I of the measurement, as expected, the sphere class has the
highest contribution to the fraction of particles observed, while the
needles, platelets and non-convex particles have a negligible contri-
bution. The higher fraction of the quasi-equant class during phase
I can be attributed to the presence of broken spherical latex beads,
which were classified as quasi-equant particles. During phase II, an
increase in the number and fraction of quasi-equant particles due to
the presence of the prismatic (classified as quasi-equant particles) a
polymorph was observed. Interestingly in phase II, also an increase
of non-convex particles can be observed, which can be explained
by the fact that crystals of the sample can stick together. In phase
II, the delay in the stabilization of the normalized number of parti-
cles and of the fraction of classes is understandable due to the time
required for proper mixing of the newly added particles and to the
dead volume of the sampling loop.

During phase III, more than 60 % of the particles were classified
as needles. With the presence of needle-like particles, an increase in
the number and contribution from the platelet class was also evident
due to the ambiguities arising from the camera setup as described in
Section 3.2.4. The higher fraction of non-convex particles compared
to phase-I can be explained by the presence of crystals exhibiting
non-convex shapes, and overlapping needle-like crystals.

One interesting point to note is that even though the three
phases of the measurement last only for 10 min each, the number
and fraction of different classes in each of these individual phases
exhibit only a small deviation around their mean, thus confirming
that the system was indeed at steady state during the individual
phases.

4.4. Growth and dissolution of bL-Glutamic acid

The potential of the stereoscopic imaging setup to monitor the
growth of a population of bL-Glu crystals has been reported in our
previous publications [9,10]. However, to the best of our knowl-
edge, dissolution has never been monitored using a stereoscopic
imaging setup like the one described in this article, although dissolu-
tion kinetics have been reported in the past using other monoscopic
imaging techniques [42,43]. Hence, an experiment was set up con-
sisting of growth followed by dissolution, to demonstrate the ability
of l-DISCO to track the evolution of a population of bL-Glu seeds
during the two distinct phases.

Needle-like bL-Glu crystals produced by the protocol described
in Section 4.3 were milled at 10, 000 rpm in a wet mill to produce
quasi-equant shaped particles. An amount of 0.165 g of the seeds
were suspended in 2000 g of saturated solution of bL-Glu in water at
30.1 ◦C, and the population was characterized using l-DISCO for 0.6
h (steady state phase). The suspension was then crash cooled (from

Fig. 9. Time-resolved (a) number-weighted characteristic lengths, l10/l00 (left ordinate) and l01/l00 (right ordinate) and the (b) number-weighted broadness of the distribution,
s1 (left ordinate) and s2 (right ordinate) of cD-Mannitol in 2-Propanol at saturated conditions (S = 1.0) for the two repetitions (repetition 1 - circles and repetition 2 - squares).
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Fig. 10. Discretized normalized 1D (a) number density distribution, q̂, and (b) volume
density distribution, q̂V (solid lines) from three repetitions for a mixture of spheri-
cal latex beads. Spacing between the numbers and units is not consistent in the page
proof version of the document. Needs to be fixed. (c) Microscope image of the stan-
dard spherical latex beads with a nominal diameter of 90lm. Particles highlighted
with red contours would be classified as spheres and broken particles highlighted with
blue contours would be classified as quasi-equant particles. The spherical particles
highlighted (red) shows two different diameters, 90lm and 109l m.

30.1 ◦C to 25.0 ◦C) to induce supersaturation (S = 1.20), while being
continuously stirred at 300 rpm. The population was allowed to grow
for 11.4 h (growth phase), while being monitored by l-DISCO oper-
ating in intermittent burst mode, capturing 800 images at a frame
rate of ≈70 Hz every 6 min. After the growth phase, a linear heating
ramp (25.0 ◦C to 33.1 ◦C at 2.7 ◦C h−1) aiming at a complete dissolu-
tion of the population was applied. Since the dissolution kinetics of
bL-Glu are significantly faster than growth kinetics, it was decided
to operate the device in the burst mode capturing 800 images at a
frame rate of ≈70 Hz every 2 min to obtain a better time-resolved
measurement in this phase. It is worth noting that in the experiment
considered in this section, i.e., in the temperature range and at the
pressure explored here, L-Glu is present only in the b form, which

is the thermodynamically stable one. The supersaturation generated
during the growth phase in the experiment discussed above does not
cause any observable nucleation and agglomeration, as previously
confirmed by other independent studies [9,12,41].

Over the entire duration of the experiment, a total of 1.3×106

particles were measured by l-DISCO. Fig. 12a and b show the
normalized number of particles and fraction of different classes,
respectively. Spheres, platelets, and non-convex particles are lumped
together as others, as the classes of interest for this experiment
were the needle-like and quasi-equant particles. The normalized
total reconstructed VH volume, which, ideally should be proportional
to the true volume of crystals being observed by the measurement
device, is shown in Fig. 12c.

The quasi-equant class is characterized by a 3D PSSD in (L1, L2,
L3) space. In order to facilitate a comparison with the needle class, a
reduced 2D PSSD for the quasi-equant class combined with the nee-
dle class in the (L̃1, L̃2) plane was used, where L̃1 and L̃2 are the length
and width of the needle-like particles, respectively. The reduced 2D
PSSD for the quasi-equant class was generated by assuming L̃1 = L1,
and L̃2 =

√
4L2L3/p, which preserves the volume of the particle and

transforms it into a needle-like particle with length, L̃1, and width,
L̃2. The number-weighted characteristic length along the L̃1 direction
is shown in Fig. 13b, and the aspect ratio, l̃21/l̃12, for the reduced 2D
PSSD is shown in Fig. 13c.

During the steady state phase, the normalized number of parti-
cles, the fraction of classes, as well as the total reconstructed VH
volume remained unchanged as expected. Similar values for the
fraction of needle-like and of quasi-equant shaped particles for the
milled seeds of bL-Glu were observed. The volume-weighted seed
distribution shown in Fig. 13a has an aspect ratio of 3.3. The seed

Fig. 11. Time-resolved (a) normalized number of particles (f), and (b) fraction of
classes (X), for a mixture of spherical latex beads, aL-Glu, and bL-Glu in pure ethanol.
At t = 0 min, spherical latex beads were added in ethanol, followed by the addition of
prismatic shaped aL-Glu at t = 10 min, and needle-like bL-Glu at t = 20 min.
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Fig. 12. Time resolved (a) normalized number of particles (f), (b) fraction of classes
(X), and (c) normalized reconstructed VH volume (V̄) of all particles analyzed by the
measurement device. Seeds of bL-Glu (grey shaded region) were grown at a super-
saturation of S = 1.20 for 11.4 h (growth phase - blue shaded region), followed by
a complete dissolution of the grown crystals (red shaded region). The 2D PSSD for
the seeds and the product at the end of the growth phase, time-resolved number-
weighted characteristic length and aspect ratio of the reduced 2D PSSD is shown in
Fig. 13.

population has a number-weighted characteristic length of 84 lm.
During the growth phase, the kinetics of bL-Glu along L̃1 direction
are faster than along the L̃2 direction. The preferential growth along
one characteristic direction suggests that bL-Glu crystals exhibit-
ing quasi-equant shape develop into a needle-like shape, hence a
decrease in the number and fraction of quasi-equant particles, and
an increase in the needles would be expected; this hypothesis was

indeed confirmed by the experiment. The population at the end of
the growth phase had an aspect ratio of 5.9 with a number-weighted
characteristic length of 179 lm. It is interesting to note that the
aspect ratio during the growth phase is not constant; the increase
in the aspect ratio can be explained by the change in shape of the
quasi-equant bL-Glu particles. The increase in the reconstructed VH
volume during this phase serves as an additional aid to visualize
crystal growth of the population of crystals.

The final phase of the experiment is divided into two sub-phases,
namely a partial dissolution phase and a complete dissolution phase
for better clarity. No visible change in the number or fraction of
classes, in the total reconstructed VH volume, or in the number-
weighted characteristic length was observed in the first 2 h of the
dissolution phase, which could be explained by the incomplete con-
sumption of supersaturation during the growth phase. The number
of needles drop significantly from this moment on, while the number
of quasi-equant particles attains a maximum followed by a gradual
drop to zero. Upon examination of the images obtained, it could be
confirmed that the long needle-like particles undergo a shape change
to quasi-equant particles, followed by a complete dissolution. During
the final dissolution phase, from Fig. 12a, it is clear that the parti-
cle count for all the three classes drops to zero, while the fraction of
classes shown in Fig. 12b has a high variance, as expected from the
low particle count. The number-weighted characteristic length and
aspect ratio also exhibit a high variance in the complete dissolution
phase, hence for better clarity it was decided to plot these quanti-
ties only during the partial dissolution phase. The particles in the
suspension dissolve, leading to a decrease in the total reconstructed
VH volume and number-weighted characteristic length; and also
the distribution evolves towards a lower aspect ratio, which might
indicate faster dissolution kinetics along the length direction when
compared to the width direction.

The versatility of l-DISCO to provide information at two different
levels is clearly demonstrated in this experiment. On the one hand,
Fig. 12 provides a qualitative high-level information concerning the
evolution of the population during the experiment, which can be
used for process monitoring. On the other hand, Fig. 13 provides a
quantitative detailed (low-level) information about the experiment,
which can be used for process modeling and development. Note
that, the results shown in this section concerning the dissolution
phase represent merely a proof-of-concept experiment, intended to
demonstrate the ability of l-DISCO to monitor dissolution; a quanti-
tative interpretation of such results should be made only with great
caution.

5. Concluding remarks

5.1. Key outcomes

In this work, we have presented an improved dual-camera mea-
surement device, along with enhanced image processing and anal-
ysis algorithms, which are used to extract 3D metric information
from stereoscopic images acquired using a back-light illumination
technique. A novel calibration procedure for multi-camera systems
with telecentric lenses was proposed which aids in the correction
of mechanical misalignment, and thereby increases the accuracy of
spatial matching of particle projections. 3D visual hull reconstruction
of particle shapes observed by the two stereoscopic cameras and in
turn, the ability of geometric shape descriptors to classify particles
into generic shape classes was shown.

The compact optomechanical camera setup, alongside improved
optics, calibration model, background subtraction for image seg-
mentation, and statistical contour matching from the stereoscopic
images, paves the way towards an even more accurate character-
ization of the particle size, and hence the PSSDs when compared
to our previous works. The characterization of a suspension with
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Fig. 13. (a) Volume weighted 2D PSSD, q̂V , in the reduced (L̃1, L̃2) plane for the seeds (grey) and products (blue) at the end (t = 12 h) of the seeded growth phase of bL-Glu. The
contour line values correspond to 0.2, 0.5, 0.7, and 0.9 of the maximum of the PSSD. A linearized grid with 20 bins at a spacing of 46lm for seeds and 54 lm for products along the
L̃1 direction, and a spacing of 13 lm for seeds and 12 lm for products along the L̃2 direction was used. The constant aspect ratios (l̃21/l̃12) for the two distributions are given by
the dotted lines. Time-resolved (b) number-weighted characteristic length (l̃10/l̃00), and (c) aspect ratio (l̃21/l̃12) of the reduced 2D PSSD.

three characteristic particle shapes presented in this article indicated
the ability of l-DISCO to track shape changes with a time resolu-
tion an order of magnitude higher when compared to the FTC. Also,
we are optimistic that the positive outcome from the experiment
concerning the dissolution of bL-Glu is the first step towards mon-
itoring, characterizing, and modeling a dissolution process using a
stereoscopic imaging setup.

5.2. Key limitations

We acknowledge the fact that the long sequence of image pro-
cessing steps going from the two raw images to the final size and
shape distributions introduces several uncertainties. The camera-
lens system introduces an optical error, while the assumption of
a generic particle model introduces a geometrical error. Alas, the
quantification of such errors is a nontrivial task, which is beyond
the scope of this article. We are aware that the VH reconstruction
method presented here merely yields a rough approximation of the
three-dimensional particle shape as long as only two projections are
available. It is clear that configurations with more cameras would
alleviate the problems associated with this aspect. However, the
accompanying, necessary changes in cost, (flow cell) geometry and
the additional effort w.r.t. the calibration, imaging cost, etc. imply
that the choice of the number of cameras represents a trade-off in
this application. It is our strong belief that the boost in information
obtained from having a second camera is such that adding it is hugely
advantageous, whereas every subsequent camera only offers incre-
mental improvement. Furthermore, there is no doubt that the output
from the shape classification model is a qualitative result, which
is not necessarily linked to physical quantities. However, it may

be closely correlated with such. The work carried out is conceived
to make meaningful process indicators available, which provide an
insight into the predominant shape of crystal populations during a
crystallization process. Considering the mentioned limitations, the
output from the measurements should be analyzed with care, to
avoid over-interpretation.

5.3. Way forward

The techniques outlined in this work could be a useful aid in
other fields of research dealing with particulate matter where shape
related information is critical. The compact design enables the device
to be set up in a standard laboratory hood or cart, which makes us
feel confident that we can use it for industrial applications in par-
ticular during late-stage development and for the trouble-shooting
of launched products, in synergy with available commercial charac-
terization tools to provide better insights into various processes. We
have made a significant step forward towards making size and shape
feedback control of a process possible in the near future.

Nomenclature

Greek symbols
aj j-th isotropic scaling factor [lm/pixel]
b convexity product [–]
4 relative translational misalignment of cameras along the

zw axis [lm]
c learning rate of the adaptive background subtraction [–]
j j convexity pertaining to camera j [–]
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k n n-th eigenvalue of V̂ [lm]
k∗

n n-th normalized eigenvalue of V̂ [–]
l ij ij-cross moment of shape distribution [lmi+j−3]
Y image domain
y circularity product [–]
0 j roll angle of j-th camera [rad]
X normalized fraction of classes [–]
s n broadness measure of a 2D distribution in direction n[lm]
t global intensity threshold for binarization
l̃ij ij-cross moment of reduced shape distribution [lmi+j−3]
f normalized number of particles [–]

Roman symbols

[ũ0, ũ0] principal point offset coordinates [pixel]
[uj, uj] image plane coordinates camera j [pixel]
[x, y] discrete pixel coordinates on Y [pixel]
V̂ data matrix holding voxels of the subsampled visual hull

[lm]
V data matrix holding voxels of the visual hull [lm]
Ds edge length of a cubic voxel in the visual hull [lm]
Dx bounding box centroid difference along the zw-direction

[lm]
q̂ discretized normalized nD number density distribution [–]
q̂V discretized normalized nD volume density distribution [–]
x̂j bounding box centroid x-coordinate in coordinate system

Oj[lm]
Ow world coordinate system
Oj j-th camera coordinate system
K j j-th camera matrix
R j j-th camera rotation matrix
T j j-th translation vector
V̄ normalized reconstructed visual hull volume [–]
L̃n reduced characteristic particle size [lm]
�x 4-dimensional feature vector [–]

B(x, y, tk) background model at time step tk

G(x, y, tk) binary segmentation mask at time step tk

I(x, y, tk) new frame at time step tk

Idiff(x, y, tk) new difference frame at time step tk

L n characteristic particle size, L1 ≥ L2 ≥ L3 [lm]
N number of voxels in the visual hull [–]
Q j isoperimetric quotient (circularity) pertaining to camera

j [–]
S supersaturation [–]
T temperature [◦C]
t k time at discrete time step k [s]

Abbreviations, subscripts and superscripts

j camera identifier j ∈ {A, B}
k discrete time step
x, y, z subscripts denoting direction in Euclidean space
A, B subscript pertaining to primary and secondary camera

Acronyms

1D, 2D, 3D n-dimensional, n = 1, 2, . . .
CC Coulter counter
CLD chord length distribution
CMOS complementary metal-oxide-semiconductor
DISCO dual imaging system for crystallization observation
eVTB extended virtual test bench
FBRM focused beam reflectance measurement
FOV field of view
fps frames per second
FTC flow through cell

LD laser diffraction
LED light-emitting diode
PAT process analytical technology
PSD particle size distribution
PSSD particle size and shape distribution
SDK software development kit
SFS shape-from-silhouette
SVM Support Vector Machine
TVSeg total variation segmentation
VH visual hull
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