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The Nobel Prize in Physics 2016

Gian Michele Graf, Theoretische Physik, ETH Zürich

The Physics Nobel Prize 2016 was bestowed upon three theoretical physicists,
David J. Thouless, F. Duncan M. Haldane, and J. Michael Kosterlitz. The cita-
tion read “for theoretical discoveries of topological phase transitions and topological
phases of matter”.

Several accounts of their results have been written, among them of course the
document [1] released by the Royal Swedish Academy on the occasion of the Prize,
but also the article [21] in the magazine of the EPS, which is delivered to all members
of the SPS.

The present scope is different and perhaps more limited, in that we focus on a
presentation of the results which warranted the Prize, while going at quite some
length in explaining them in a way that is hopefully understandable to physicists
of all kinds. On the other hand we shall dwell only selectively on the impact those
works had and still have. More about that is found in the references just mentioned,
as well as in the review [11] and in recent articles [14, 12, 22, 24] in the Mitteilun-
gen/Communications of the SPS.

The XY-model and the Kosterlitz-Thouless phase transition

The achievement of Kosterlitz and Thouless applies to a number of models in sta-
tistical mechanics in dimension 2, through which it became clear that superfluidity
and superconductivity are possible in that dimension, though not being associated
with a spontaneously broken symmetry, as they are in higher dimensions. (Though
we do not enter on the relation with experiments, we cannot refrain from mentioning
the work of Martinoli [18].)

Here we will focus on just one such model, which is simpler than others. The
XY-model is a classical ferromagnetic spin model. The system consists of spins, one
at each point of a lattice. A single spin is planar, like a compass needle, and the
interaction is invariant under a common rotation of all of them. Each spin is actually
given by a unit vector ~s which points in any direction of the plane, or equivalently
by the corresponding angle θ (see Fig. 1, left).

The Hamiltonian, i.e. the total energy of the system, is

H = −J
∑
〈x,y〉

~sx · ~sy = −J
∑
〈x,y〉

cos(θx − θy) , (1)
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Figure 1: Left: A single spin of the XY-model. It is important that the angles θ
and θ + 2π represent the same configuration ~s. Right: The unwound spin becomes
an unbounded real variable. Note that the real axis is simply connected, unlike the
circle.

where ~sx is the spin at the lattice site x and the sum ranges over pairs 〈x, y〉 of
nearest neighbors. The coupling J > 0 favors alignment between spins. The lattice
should be finite (say, of sides of length L � a with a the lattice spacing) in order
for the energy H to be so too, though it is ultimately the infinite lattice we have in
mind. The model is defined for arbitrary dimension d of the lattice, which is a priori
unrelated to the dimension 2 of the plane hosting the spin, but the result honored
with the Prize is specific to d = 2.

Some digression is in order before that result, let alone the reason thereof, can
be stated. Because of the rotational symmetry the system has many groundstates,
each of them consisting of all spins pointing in one common but arbitrary direction,
θx = θ. In any of those states, the direction of the spin at any site can be inferred
from that at any other, arbitrarily distant site (long-range order), the two being
in fact equal. Moreover, any groundstate breaks the symmetry since it singles out
a particular direction, θ, which may serve as a label distinguishing between them
(spontaneous symmetry breaking). But not so at positive temperature, no matter
how small! Let us spell this out (Mermin-Wagner Theorem [20]): Even if the spins
θx at boundary sites x were prescribed to point in one same direction θ, a spin at
a site well inside the lattice would still point in all directions with almost equal
probabilities.

Let us go as far as to give a heuristic rationale of this background result too,
since it will prove useful later. (It will by the way also rightly suggest that in
d = 3 spontaneous symmetry breaking does persist at moderate positive tempera-
tures.) The energy of small fluctuations about one of the above groundstates is well
approximated by

H =
J

2

∑
〈x,y〉

(θx − θy)2 , (2)
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as seen by expanding the cosine and then dropping an additive constant, which is
independent of the field configuration and hence irrelevant. Unlike (1), the expres-
sion is no longer invariant under a 2π-shift of the angle at one site. The degrees of
freedom θx have thus factually been replaced by those seen on the r.h.s. of Fig. 1.
The model admits an electrostatic interpretation which is best seen in the continuum
(or long-wavelength) approximation. There the Hamiltonian becomes

H =
J ′

2

∫
(∇θ)2ddx (3)

with J ′ = Ja2−d; so, if θ(x) is viewed as the electric potential, whence −∇θ as the
electric field, then H is the electrostatic energy.

In d = 3 (d = 2) the potential outside of a ball (resp. disk) of charge Q and
radius R is

θ(x) =
Q

4πr
, (d = 3) ; θ(x) = − Q

2π
log

r

R
, (d = 2) (4)

with r = |x|. (The relevance of this field configuration for the lattice model (2) is
limited to R & a, with the lattice spacing a serving as a lower cutoff for distances.)
Let us compare this with the elementary relation Q = CV , where C is the capac-
itance of the ball, or disk, and V is the potential difference to spatial infinity, i.e.
V = Q/4πR and V = ∞ in the two cases at hand. We so see that C is finite in
d = 3 (in fact, C = 4πR), but vanishes in d = 2, and we conclude that, in the first
case, it takes a strictly positive minimal energy E = CV 2/2 to create a finite field
θ(x) = V in a finite region of space (in fact, growing with its extension R), but
also that the cost of the same fluctuation is arbitrarily small in the second case, no
matter how extended it is. We will stick to the case d = 2.

What matters more than the energy cost is, at positive temperature T > 0, the
cost in free energy

F = E − TS ,
where S = k logN is the entropy associated to the number N of fluctuations (of
energy E) affecting a given site well inside the lattice. Since S > 0 is growing with
the extension R of the fluctuation, whereas E = 0, we get F � −kT and it becomes
clear that the system favors extended random fluctuations, thus obliterating at that
given site any influence of the boundary value of the field. In the case of the XY-
model that restores the rotational symmetry in the thermal average.

Though there is no long-range order, as just seen, there is quasi-long-range order.
In the case of the unwound models (2, 3) that feature is expressed by the correlations

〈exp i(θx − θy)〉 = 〈cos (θx − θy)〉 ∝ |x− y|−kT/2πJ (5)
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at large separations x − y between points. Here 〈·〉 denotes the thermal aver-
age, wherein field configurations θ are weighted by the usual Boltzmann factor
exp (−H[θ])). (Equation (5) is derived quite easily, since by (2) or (3) the aver-
age results in a Gaussian integral.) The point to be noticed is that the correlations
decay by a power law, and thus fairly slowly, and they do so throughout the phase,
meaning for a whole range of temperatures (here T > 0). By contrast, most often
correlations decay exponentially in absence of long-range order, whereas power-law
decay is limited to critical temperatures corresponding to phase transitions.

Let us finally return to the XY-model, where the correlations are given as 〈~sx ·
~sy〉 = 〈cos (θx − θy)〉. Based on the analogy with the models (2, 3), one would
guess the same behavior as in Eq. (5). But not quite so! The truth, compellingly
established by Berezinskii [5], Kosterlitz and Thouless [16], entails a phase transition:
There is a critical temperature Tc > 0 such that

〈~sx · ~sy〉 ∝

{
|x− y|−kT ′/2πJ , (T < Tc) ,

e−|x−y|/ξ , (T > Tc) ,

where T ′ = T ′(T ) is a renormalized temperature with T ′/T → 1 as T → 0, and
T ′/T → ∞ as T ↑ Tc; moreover ξ = ξ(T/J) defines the correlation length with
ξ →∞ as T ↓ Tc, and ξ → 0 as T →∞.

The result says that, in comparison with the models with unwound spin, the
quasi-long-range order survives only at low enough temperatures. The reason of the
discrepancy is that those models sweep it under the rug that the spin is actually a
periodic variable (see Fig. 1, left).

Figure 2: Left: A vortex θx with α = π/6. Center: The field ∇θ, which has
circulation 2π and is not a gradient. Right: The field (∇θ)⊥ with vectors rotated
by π/2.
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In more detail it has to do with vortex configurations (see Fig. 2, left) and given
by θx = α + arg x, which is the direction of the site x in polar coordinates, rotated
by some angle α. That configuration is slowly varying with x away from the origin if
viewed as a configuration of the XY-model, where θx is understood up to multiples
of 2π. As a result, the energy densities (θx − θy)2 seen in (2), and likewise in (3),
remain accurate for large r = |x|, those being local expressions in x. (This is true,
although the same configuration θx is not smooth in the sense of the unwound model
(2), since a unique assignment of arg x requires introducing a discontinuity cut.)

The gradient ∇θx which, as noticed, isn’t one globally, equals 1/r in magnitude
and points in azimuthal direction (see Fig. 2, center). Let us turn the vectors
pointwise and clockwise by 90◦ and then denote them by (∇θx)⊥ (see Fig. 2, right).
The move does not affect the energy density, (∇θx)2 = (∇θx)2⊥, yet results in an
honest gradient field, (∇θ)⊥ = −∇(θ⊥), (as any radial, rotationally symmetric field
is) where θ⊥ = − log(r/a) is in fact the electric potential of a quantized charge
Q = 2π, cf. (4). Based on the electrostatic analogy we conclude that the energy of
two vortices (of core size a) of opposite circulation is

E = 2πJ log
l

a
,

when they are a distance l apart. Incidentally, the divergence for l → ∞ implies
that (twice) the energy of a lone vortex is infinite.

Let us consider the low-temperature phase and ask: How large does a system
(or the size L of a subsystem) have to be, so that it likely contains a vortex pair
of given separation l? This will happen roughly as soon as the energy cost and the
entropy gain break even, F = 0. We qualitatively have

F = E − TS ≈ 2πJ log
l

a
− kT log

L2l

a3

because the number of ways N = exp(S/k) of placing the pair results from that of
picking its midpoint (∼ (L/a)2) and its orientation (∼ l/a). The condition yields

L/l = (l/a)α , (α = πJ/kT − 3/2) .

When T is small (α � 1), L/l grows fast with l/a, meaning that vortex pairs
are all the rarer the larger their separation is. As T grows and α decreases, the
suppression of large pairs weakens. Finally, when α → 0 we have L/l ≈ 1, which
means that vortex pairs of all sizes are now abundant, heralding the onset of a new,
high-temperature phase. In summary: For T < Tc the system is populated by vortex
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pairs, which grow in density and separation with T . Like dipoles in a medium they
affect (or renormalize) its dielectric constant. As T approaches Tc the vortices, or
the charges of the dipoles, break loose; for T > Tc they screen each other (Debye
screening) with some screening length ξ, decreasing in T .

It must though be said that the above is in essence a very compelling scenario,
but not a proof. It is thus comforting to know that McBryan and Spencer [19] and
Fröhlich and Spencer [6] turned much of the above story into theorems. It is, per-
haps, a little surprising that this is not mentioned in the document [1] of the Royal
Swedish Academy.

Quantum antiferromagnets and gapped spin phases

The prime example of a quantum antiferromagnet is the Heisenberg spin chain.
Each spin has quantum number s = 1/2, 1, 3/2, . . ., meaning that the spin vector ~S

satisfies ~S 2 = s(s+ 1). The Hamiltonian is

H =
∑
i

~Si · ~Si+1 (6)

and formally resembles (1) except for the antiferromagnetic coupling (J = −1). A
basic question about the model is as to whether there is a strictly positive minimal
energy to pay for exciting the system above its groundstate (a gap for short). In the
classical case, which corresponds to s = ∞, there is no gap, as can be seen by an
expansion in small fluctuations similar to (3). True, that expression was derived for
a ferromagnet, but that is of no importance because the two situations are connected
by the transformation ~Si 7→ −~Si applied at every other site (staggering). Quantum-
mechanically however that sign flip is not allowed, because it conflicts with the
commutation relation [Sx, Sy] = i~Sz. In the quantum realm things might thus be
different, but need not. Actually in the extreme quantum case, s = 1/2, the model
is also gapless, as known from the Bethe ansatz. Common belief was that the same
would hold true at all intermediate values of s.

Haldane formulated [9, 8] a conjecture, now named after him, that in light of the
above is quite surprising: Chains with half-integer spin are gapless, but those with
integer spin are gapped.

Evidence of the sort Haldane gave can be presented here only in very sketchy
terms: It rests on a path-integral formulation, which is a representation in terms of
classical paths, thus allowing for a comparison between the quantum groundstate
and the classical one, which is staggered. This manifests itself in two ways. First, the
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(classical) paths contribute different (quantum) phases depending on spin, somehow
in the same way that turning a single spin by 2π contributes a sign only for half-
integer spin. Second, staggering remains allowed, though with the effect that phase
differences (not sums) between neighboring spins matter. They give rise to a so-
called topological term in the action, on top of its classical expression.

Note that ultimately it is the spin chain of integer spin, i.e. the case where the
above (quantum) sign effect is absent, which is apparently at variance with classical
behavior. This may seem puzzling. The better viewpoint however is that for anti-
ferromagnets the comparison should be done with a classical spin chain at positive
temperature (which has a gap), because the quantum system has fluctuations even
in its groundstate in view of the non-commuting spin components.

Evidence of a completely different kind was provided for s = 1 by Affleck,
Kennedy, Lieb, and Tasaki [2], who considered Hamiltonians depending on a pa-
rameter,

H =
∑
i

(
~Si · ~Si+1 + α(~Si · ~Si+1)

2
)
, (7)

that generalize (6) but are supposed to behave the same way for moderate values of
the parameter α. Remarkably, for α = 1/3 the model is solvable, as we momentarily

explain. Let us recall that two spins s = 1 add up to a spin ~S1 + ~S2 with quantum
number among S = 0, 1, 2. Let P (S) denote the projection onto the corresponding
subspace of their joint Hilbert space. Then

H =
∑
i

(
~Si · ~Si+1 +

1

3
(~Si · ~Si+1)

2 +
2

3

)
= 2

∑
i

P
(2)
i,i+1 . (8)

This simply follows from (~S1 + ~S2)
2 = ~S 2

1 + ~S 2
2 + 2~S1 · ~S2 by using ~S 2

i = 2 and
the values S(S + 1) of the l.h.s. associated with the different projections P (S); the
coefficients on the l.h.s. of (8) are chosen in such a way that only S = 2 survives.

Figure 3: Each dot, line, and circle represents a spin 1/2, a singlet pair, and the
projection constraining two spin 1/2’s into a spin 1 (after [2]).

The model is antiferromagnetic in that it penalizes maximal spin alignment (S =
2). Moreover it has an explicit eigenstate of zero energy, which must be a groundstate
because the Hamiltonian is a sum of (positive) projections. The construction of that
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state goes as follows: Each spin ~Si can be thought of as the sum of a pair of spins
1/2, subject to the constraint that they add up to S = 1, not S = 0 (see Fig. 3). We
can however postpone that constraint, since the corresponding projection commutes
with the Hamiltonian. Two neighboring spin 1’s now involve four spin 1/2’s. The
middle two are put into a singlet state (S = 0), whence all four spins have S = 1
at most. In particular the state is annihilated by the projections in (8). Finally,
the constraint projection is applied to the state, which remains an eigenstate with
eigenvalue 0.

In a semi-infinite chain the unpaired spin 1/2 at the one remaining end of the
chain provides an example of fractionalization, since all the fundamental degrees of
freedom are spin 1’s. It also accounts for a 2-fold degeneracy of the groundstate.
In the (two-sided) infinite chain the groundstate is unique and, more importantly,
gapped as proven in [2]. The main reason is that the Hamiltonian is free of frustra-
tion, meaning that the groundstate minimizes all terms on the r.h.s. of (8) one by
one.

The integer quantum Hall effect and Chern numbers

The fundamental discovery of the integer quantum Hall effect by von Klitzing
has been recounted many times since 1980. We shall thus be brief (for more see
e.g. [3]). In a slab, subjected to a (strong) out-of-plane magnetic field and traversed
by a (weak) in-plane current, a voltage drop in the direction transverse to both is
observed (Hall effect, 1879).

quantized plateaus

1

3

2

1/B

classical curve

σH

Figure 4: The Hall conductance in natural units e2/h = 1 as a function of the
(inverse) magnetic field (qualitative behavior).

The remarkable fact seen in two-dimensional electron gases at temperatures be-
low 2K is that the value of the Hall conductance deviates from the classical behavior:
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It is quantized, meaning that

σH = n
e2

2π~
, (9)

where n is an integer, and moreover constant within a part in 109 throughout some
sizable range of values of the magnetic field (plateau), as shown in Fig. 4; at the
same time the longitudinal voltage drop vanishes. The effect is seen in very clean,
yet not perfect, samples, in which case the width of the plateaus would actually
vanish.

Quite a few arguments have been put forward in order to explain this phe-
nomenon, as well as the even more challenging fractional quantum Hall effect, where
n is replaced by a rational number. (We won’t say anything about the latter, ex-
cept mentioning in passing the work of Fröhlich, see e.g. [7]). Common to early
discussions of the integer case is the single-particle picture (but not much more than
that), whence the many-body groundstate is obtained by filling states with electrons
up to the Fermi level. Some of those arguments may at first sight even look unre-
lated to one another, whereas others recognizably lie on a logical path, along which
the understanding is freed step by step from details that are peculiar to specific
models and at the same time tied to more fundamental and general mathematical
concepts. This has certainly played a role in the later formulation of the Haldane
model [10], because it was by then clear that the breaking of time-reversal invariance
was essential, more than a positive magnetic field.

But let’s proceed by order: Laughlin’s argument [17] is based on a (general)
gauge argument and on Landau levels, which constitute the peculiar energy spec-
trum of an electron that is free except for being subjected to a magnetic field. In one
of the works [25] for which Thouless was awarded the Prize, he and his coauthors
computed σH by applying linear response theory, aka the Kubo formula (another
general principle), to electrons exposed to a periodic potential (on top of the mag-
netic field) describing the crystalline solid. This is far from just being a feature
included for “added realism”; it rather led them to place the quantization of σH in
the general frame of Bloch band theory. The formula they derived for the integer is

n =
∑
m

1

2πi

∫
T

(
〈∂k1ψmk|∂k2ψmk〉 − 〈∂k2ψmk|∂k1ψmk〉

)
d2k , (10)

where k = (k1, k2) is the quasi-momentum ranging over the Brillouin zone T (a
torus), Bloch bands are labeled by m, and Bloch states denoted by ψmk(x) and
normalized as functions of x in the unit cell; moreover ∂ki is short for ∂/∂ki and the
sum ranges over filled bands only. In particular, the Fermi level is supposed to lie
in a band gap (band insulator).
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It is worth at this point to warn from a pitfall: The integrand is the curl of the
vector field A(k) = 〈ψmk|∇kψmk〉 (or, more polishedly, the curvature of the Berry
connection), whence upon applying Stokes’ theorem one is tempted to conclude
that n vanishes, because the torus has no boundary at all. What saves the day
is this: The state |ψmk〉 is unique only up to a phase, as it is commonplace in
quantum mechanics. Changing that phase, even depending on k, does not change
the integrand, nor hence n. It remains however to be seen whether there is a smooth
choice |ψmk〉 for k ranging over all of the torus, as opposed to just patches sufficing
the purpose of Eq. (10). If not, A(k) isn’t globally defined in k and the above
argument is luckily flawed. As a matter of fact, in absence of magnetic field, such
an overall smooth choice is possible (and somehow constructed in any introductory
textbook on solid state physics) and in line with n = 0 in (9). In its presence
however, n measures the obstruction to such a choice.

Not surprisingly, that integer was abstractly known before to mathematicians
as a homotopy invariant (Chern number) of vector bundles, a fact that was quickly
noticed [4, 15]. It pays to use that concept further, since it is visually appealing.

Intuitively a vector bundle looks like a comb with teeth densely arranged along
the shaft. Slightly more mathematically, the shaft is replaced by a manifold of
arbitrary dimension d (think of a curve or a surface), called the base space, and the
teeth are real or complex vector spaces Ek of common dimension r, called fibers,
which depend continuously on the point k of the base space. The collection of
all fibers makes the vector bundle E. For instance the (complex) vector bundle
underlying (10) has the torus T as base space (d = 2) and the linear span of the
Bloch states |ψmk〉, (m = 1, . . . r) as fiber over k, where r is the number of filled
bands.

Let us investigate vector bundles beginning with a simple example: The Möbius
strip (see Fig. 5, left), viewed as consisting of (real) lines (r = 1) arranged along the
circle (d = 1). It is intuitively non-trivial because of the twist. We however need a
precise definition, which does not rely on the strip being embedded in the ambient
space and which can be generalized later. It goes as follows: Start from a point
on the circle, pick a vector in its fiber, and extend that choice continuously all the
way around the circle (see Fig. 5, right), the only condition being that the vectors
shall not vanish anywhere, not even at the endpoints of the interval, which are in a
sense awaiting to be glued back to a circle. Since the vectors there, say v− and v+,
belong to the same 1-dimensional fiber, we have v+ = tv− with some factor t 6= 0.
Had we done the exercise with a trivial (untwisted) strip, we would now have t > 0
and we could modify the vectors along the interval so as to end up with t = 1 and
therefore with a globally continuous choice on the circle. But not so for the Möbius
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Figure 5: Left: The Möbius strip as a vector bundle with the circle as base space.
Right: A nowhere vanishing vector interpolating between v− and v+ (see text).

strip, where we visibly get t < 0 and the condition t 6= 0 prevents any deformation
from reaching t = 1.

A closely related example is obtained by replacing the lines with complex vector
spaces, but still of dimension r = 1. In this case t is a complex number and the
stated condition no longer prevents the deformation to t = 1, exhibiting the bundle
as trivial. The point is that the removal of the origin from the complex plane does
not disconnect it, unlike the real line.

A further modification is by increasing the dimension r of the complex vector
space. The appropriate investigative tool is no longer a nowhere vanishing vector,
but a frame (v1, . . . , vr) of vectors, i.e. a basis of the fiber, which continuously de-
pends on the base point (for r = 1 this is the same thing as before). When joining
endpoints we get v+i =

∑r
j=1 tjiv

−
j with a complex r × r-matrix T = (tij) relating

the two bases of the same fiber (transition matrix). As such, detT 6= 0. Any such
matrix can be deformed to the unit matrix, T = 1, whence the bundle remains
trivial. In the next move, let us change the dimension of the base space by fattening
the circle to a cylinder (see Fig. 6, left and center). Any vector bundle above it
remains trivial, since we only made continuous changes.

At last we come back to the torus, which is obtained from the cylinder by gluing
the two circles at its ends (see Fig. 6, right). Along them, one of the coordinates
k = (k1, k2) is fixed, say k2, while k1 is running once around the loop. We so get a
transition matrix T (k1) depending on k1. The question is no longer whether each of
them can individually be deformed into the unit matrix, which it can, but whether
the loop k1 7→ T (k1) can be deformed into the trivial one, k1 7→ 1. It not always
can! Indeed, the map k1 7→ detT (k1) represents a loop in the complex plane that
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k1

Figure 6: Left: The circle with coordinate k1. Center: Cylinder and circles at its
ends. Right: Torus obtained by gluing ends. (The base spaces are displayed, but
not the fibers.)

avoids the origin. As such it may or may not wind around it. Its winding number, n,
is the Chern number of the vector bundle, this being the same number that Eq. (10)
computes.

To see this it is enough to consider a single band, thus dropping the index m.
We are entitled, as we just saw, to use Stokes’ theorem on the cylinder obtained by
inserting a cut into the torus (see Fig. 6, right). The boundary then consists of two
oppositely oriented copies of the circle S. We obtain

n =
1

2πi

∫
S
A1

∣∣+
−dk1 ,

where A is as before and f |+− denotes the difference of f at matching points on the
two circles. There we have |ψk〉+ = t(k1)|ψk〉− with some complex number t(k1) of
unit modulus (phase). Then A1|+− = 〈ψk|∂k1ψk〉|+− = t̄(dt/dk1) and n is indeed the
winding number of the phase.

Further developments, outlook, and conclusions

Among the three topics discussed in this article, it is the last one which has seen
the strongest development in recent years, one in fact which may warrant further
Nobel Prizes. Kane and Mele [13] literally brought a new twist to the story, by
showing that even time reversal-invariant systems could harbor topological features,
at least in the case of a time-reversal map Θ with Θ2 = −1, as appropriate to
electrons and more generally to fermions. The Chern number (10) vanishes for
those systems, i.e. that they are trivial in the sense discussed above. They may
however not be so within their own class, meaning that their vector bundles may
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not be deformable into one another if time-reversal invariance is enforced along the
way, too. There is also an index which tells inequivalent bundles apart. Unlike
the Chern number however, it just takes two values, ±1 (or 0 and 1, depending on
conventions). The original definition thereof was given in terms of a Pfaffian, but a
pictorial account can be given as well.

To do so, let us first return briefly to the Chern number. Consider, as done
before, the transition matrix T (k1) as k1 runs along the seam joining the ends of
cylinder. Without loss of generality, that matrix may be assumed to be unitary,
so that its eigenvalues are points on the unit circle of the complex plane. Like the
matrix T (k1) itself, the eigenvalues change with k1 but return to their original values
as k1 runs from 0 to 2π, completing the loop (see Fig. 7, left). It takes a moment’s
thought to see that the Chern number, i.e. the winding number of detT (k1), can
be read off as the number of eigenvalues that cross any fiducial line; more precisely,
each crossing contributes ±1 depending on its direction.

k1
0 2π

k1π 0

0 π
k1

Figure 7: Left: (Chern number) The eigenvalues as functions of k1 ∈ [0, 2π] (loop)
plotted as points on the unit circle. Note that they are the same (in blue) at both
endpoints. As a result, the number of signed crossings is independent of the height
of the fiducial line (in red). Center: The circle with coordinate and the link between
k1 and −k1. Right: (Kane-Mele index) The eigenvalues as functions of k1 ∈ [0, π]
(half-loop). Note that eigenvalues pair up at endpoints. As a result, the parity of
the number of crossings is independent of the height of the fiducial line.

The index devised by Kane and Mele is similarly described. Time-reversal sends
the point (k1, k2) of the torus to (−k1,−k2), while the symmetry requires that frames
at the two points are related to one another (with details omitted). The original
question is sharpened by asking whether there is a global choice of frames enjoying
the symmetry. The investigation proceeds as before, but with a difference: On the
seam k2 = ±π the transition matrix T (k1) still links the frames at (k1,−π) and at
(k1, π), but now they are in turn related by symmetry to those at (−k1, π) and at
(−k1,−π), respectively. Therefore, the matrices T (k1) and T (−k1) must determine
each other, as indicated by a dashed line in Fig. 7, center. In particular the upper
half of the loop teaches us all there is to learn from the full one. (As an example,
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the Chern number indeed vanishes, because during the lower half of the loop the
eigenvalues just backtrack the motion they had during the upper half.) At the point
k1 = 0 of the loop (and likewise at k1 = π) the dashed line represents a constraint
on the matrix T (0) itself; it states, as it turns out, that its eigenvalues are even
degenerate (see Fig. 7, right), which is a manifestation of Kramers degeneracy. The
Kane-Mele index can then be read off from the figure as the parity of the number
of crossings. As a playful remark, the figures in Fig. 7 (right and left) may be
interpreted as choreographies of round dances, with k1 in the role of time and the
curves in that of worldlines of dancers. The one on the right e.g. corresponds to a
dance known as “rueda de casino”, where dancers are supposed to pair up at the
ends, but are often free in between. The rueda is thus endowed with a Kane-Mele
index!

Schnyder et al. [23] pointed out that time-reversal symmetry is not the only
one allowing for a finer classification; in fact particle-hole symmetry, as well as the
product of both, do so too. Moreover the classification depends on the dimension-
ality of the material and is eventually summarized in the so-called periodic table of
topological insulators and superconductors (for a review, see [11]). To conclude it
may suffice to say that many more developments, both theoretical and experimen-
tal, have occurred in recent years, such as Majorana boundary states just to name
another one, and more will surely follow.
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