
ETH Library

Exact model reduction by a slow–
fast decomposition of nonlinear
mechanical systems

Journal Article

Author(s):
Haller, George; Ponsioen, Sten

Publication date:
2017-10

Permanent link:
https://doi.org/10.3929/ethz-b-000234714

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Nonlinear Dynamics 90(1), https://doi.org/10.1007/s11071-017-3685-9

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000234714
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1007/s11071-017-3685-9
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Nonlinear Dyn (2017) 90:617–647
DOI 10.1007/s11071-017-3685-9

ORIGINAL PAPER

Exact model reduction by a slow–fast decomposition
of nonlinear mechanical systems

George Haller · Sten Ponsioen

Received: 17 November 2016 / Accepted: 18 July 2017 / Published online: 8 August 2017
© Springer Science+Business Media B.V. 2017

Abstract Wederive conditions underwhich a general
nonlinear mechanical system can be exactly reduced
to a lower-dimensional model that involves only the
softer degrees of freedom. This slow–fast decompo-
sition (SFD) enslaves exponentially fast the stiffer
degrees of freedom to the softer ones as all oscillations
converge to the reduced model defined on a slowmani-
fold. We obtain an expression for the domain boundary
beyond which the reduced model ceases to be relevant
due to a generic loss of stability of the slow manifold.
We also find that near equilibria, the SFD gives a math-
ematical justification for two modal reduction methods
used in structural dynamics: static condensation and
modal derivatives. These formal reduction procedures,
however, are also found to return incorrect results when
the SFD conditions do not hold. We illustrate all these
results on mechanical examples.

Keywords Model reduction · Invariant manifolds ·
Slow–fast systems

1 Introduction

While often hoped otherwise, a typical multi-degree-
of-freedom mechanical system cannot necessarily be

G. Haller (B) · S. Ponsioen
Institute for Mechanical Systems, ETH Zürich,
Leonhardstrasse 21, 8092 Zurich, Switzerland
e-mail: georgehaller@ethz.ch

reduced to a lower-dimensional model. There is often
a good reason why the original model involves several
degrees of freedom, all of which are essential to repro-
duce the dynamics at the required level of accuracy.

For any multi-degree-of-freedom system, projec-
tions to various linear subspaces are, nevertheless, rou-
tinely employed for model reduction purposes (see
Besselink et al. [4] for a review of techniques in struc-
tural vibrations, Benner et al. [3] for a more general
survey). Most often, however, the accuracy or even
the fundamental validity of these procedures is a priori
unknown. The main reason is that distinguished sub-
spaces identified from linearization or other consider-
ations are generally not invariant under the nonlinear
dynamics.As a consequence, trajectories of the full sys-
tem do not follow those of a projection-based model,
as shown in Fig. 1.

A model reduction principle can be justified in
a strict mathematical sense if the reduced model is
defined on an invariant set of the full nonlinear system,
and hence model trajectories are actual trajectories of
the full system. In addition, the invariant set carrying
the model dynamics should be robust and attracting for
the reduced model to be of relevance for typical trajec-
tories.While numerical or perturbative approximations
to such a set will at best be approximately invariant, the
attractivity of the actual invariant manifold is expected
to keep the impact of non-invariance small, driving tra-
jectories toward the actual invariant set.

Motivated by these considerations, we propose here
two requirements for mathematically justifiable and
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Fig. 1 Model reduction by projection of a full trajectory q(t)
onto a k-dimensional subspace E , typically spanned by a few
eigenvectors u1, . . . , uk of the linearized system at the origin.
The model trajectory x(t) starting from a point q0 ∈ E is con-
strained to lie in E , but the full trajectory q̃(t) starting from q0
will generally leave the plane E

robustmodel reduction in a nonlinear, non-autonomous
mechanical system:

(R1) There exists an attracting and persistent lower-
dimensional forward-invariant manifold M(t).
Along the manifold M(t), the modeled degrees
of freedom (with generalized coordinates y and
velocities ẏ) are smooth functions of the model-
ing degrees of freedom (with generalized coor-
dinates x and velocities ẋ).

(R2) General trajectories approachingM(t) synchro-
nizewithmodel trajectories at rates that are faster
than typical rates withinM(t).

By the requirement (R1), the construction of a smooth,
lower-dimensional dynamical model should be equiv-
alent to a reduction to a lower-dimensional invariant
manifold, as illustrated in Fig. 2a. The dynamics on
this manifold, however, is only relevant for the full sys-
tem dynamics if nearby motions q(t) approach model
trajectories on M(t), i.e., the manifold has a domain
of attraction foliated by stable manifolds of individ-
ual model trajectories. In addition, we requireM(t) to
be persistent (robust under small perturbations) since
mechanical models have inherent parameter uncertain-
ties and approximations, and a model reduction should
be robust with respect to these.

Requirement (R2) ensures that full system trajec-
tories not only approach the set of model trajectories
in the phase space, but also synchronize with specific
model trajectories. Consider, for example, a linear, two-
degree-of-freedom mechanical system with an asymp-
totically stable fixed point at the origin. The fast stable
manifold M of this fixed point (cf. Fig. 2b) is invari-
ant, attracting and persistent, even unique (see, e.g.,
Cabre et al. [5]). Yet, the dynamics on M fails to act
as a faithful reduced-order model for the typical near-
equilibrium dynamics. Indeed, the flow onM predicts
a fast decay rate that is unobservable along typical tra-
jectories on their way to the fixed point. This is because
general trajectories first approach the (x, ẋ) = (0, 0)
subspace, then creep toward the origin more slowly,
synchronizing with motions along this subspace, rather
than with those in M.

In contrast, the invariant manifold M̄ in Fig. 2b sat-
isfies both (R1) and (R2) and is indeed a good choice
for model reduction. This is ensured by a dichotomy of
timescales created by the gap in the real part of the spec-
trum of the eigenvalues of the fixed point. The larger
this gap, the more efficient the reduced-order model in
predicting typical system behavior.

In a nonlinear system, one generally loses the local
slow–fast dichotomy of timescales that may arise near
fixed points, such as the one in Fig. 2b. A global
reduced-order model with the properties (R1)–(R2)
will, therefore, not exist unless the slow–fast timescale
difference created locally by the fixed point extends to
a larger domain of the phase space. In moremechanical
terms, a global model reduction is only feasible when
the x variables stay globally stiffer (i.e., faster) than the
y variables.

Such a global slow–fast partition of coordinates has
been assumed in several case studies of mechanical
systems, such as an undamped spring coupled to a pen-
dulum (Georgiou and Schwartz [9]) and its extensions
to higher or even infinitely many dimensions (Geor-
giou and Schwartz [12], Georgiou and Vakakis [10]).
These studies tacitly assume the existence of a slow
manifold without specific consideration to its stability
and robustness. Due to a lack of normal hyperbolicity
for the limiting slowmanifold (critical manifold), well-
defined invariant slow manifolds do not actually exist
in these mechanical models. Recent results guarantee
only near-invariant surfaces under certain conditions
(MacKay [22],Kristianssen andWullf [20]). These sur-
faces, however, do not attract trajectories from an open

123



Exact model reduction by a slow–fast decomposition 619

Fig. 2 a Illustration of the
geometry of requirements
(R1) and (R2) for model
reduction in a mechanical
system with generalized
coordinates q and associated
velocities q̇. The reduced
model depends only on a
smaller group of degrees of
freedom, described by the
position vector x and the
corresponding velocity
vector ẋ . The remaining
degrees of freedom are
characterized by the
positions y and velocities ẏ.
b An attracting and
persistent invariant
manifold M that does not
provide a faithful
reduced-order model for the
full system dynamics

(t)

Invariant manifold satisfying (R1) Invariant manifold satisfying (R1) 
and (R2) but violating (R2) 
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q(t),q(t)( ) = x(t),x(t), y(t), y(t)( )
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neighborhood of the phase space. As a result, their rel-
evance for model reduction is a priori unclear, as they
violate the requirement (R1).

As a further case study, a forced and stiff linear oscil-
lator coupled to a softer nonlinear oscillatorwas consid-
ered by Georgiou et al. [8,11]. As the authors observe,
the existence of an attracting, two-dimensional slow
manifold in these two studies follows from a global-
ized version of the center manifold theorem (Carr [6])
and from the geometric singular perturbation formula-
tion of Fenichel [7], respectively. These approaches are
similar in spirit to the work we describe here, but per-
tain to specific, low-dimensional, soft–stiff mechanical
models without targeting model reduction issues per
se.

Related work also includes that of Lubich [21],
who developed a numerical scheme for mechanical
systems with very stiff potential forces. In this con-
text, all degrees of freedom are equally fast and hence
no oscillatory mode can be enslaved to the rest via
model reduction. An exceptional slowmanifold (which
involves coordinates from all degrees of freedom)
becomes attracting only under the numerical scheme.
A numerical procedure is introduced for approximat-
ing such slow manifolds in more general but still uni-
formly stiff mechanical systems by Ariel et al. [1]. In
a more mathematical treatment, Stumpp [26] consid-
ered general mechanical systems with stiff damping
forces and showed the existence of an attracting slow

manifold governing the asymptotic behavior of the sys-
tem. Again, all degrees of freedom are assumed equally
stiff, and hence, no modes can be eliminated via model
reduction.

In contrast to these specific case studies and purely
stiff reduction procedures, we consider here general
mechanical systems and establish conditions under
which stiffer degrees of freedom can be identified and
eliminated by reduction to an attracting slow manifold
defined over the remaining softer degrees of freedom.
We do not assume any specific force or inertia term to
be large or small. Rather, we seek the broadest set of
conditions under which an exact slow–fast decompo-
sition emerges and yields a reduced-order mechanical
system. The SFD procedure arising form our analy-
sis satisfies the key requirements (R1)–(R2) discussed
above.

We also establish the maximal domain of SFD and
give a specific upper bound on the rate at which general
solutions synchronize with those of the reduced-order
model. Our includes several classes of mechanical sys-
tems and justifies earlier heuristic reduction schemes
under certain conditions. In particular, under the SFD
conditions, the techniques of static condensation and
modal derivatives, respectively, can rigorously be jus-
tified as first- and second-order local approximations
to a slow manifold near an equilibrium. At the same
time, we give examples of these reduction procedures
fail when the SFD conditions are not met.
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620 G. Haller, S. Ponsioen

We illustrate these results on simple mechanical
systems, but our formulas are explicit enough to be
applied to higher-degree-of-freedom problems. Impor-
tantly, determining the eigenvalues and modes shapes
is not a prerequisite for the application of SFD. Indeed,
the stiffer modes may be fully (both linearly and non-
linearly) coupled to the rest of the modes.

2 Setup

2.1 General form of the mechanical system

Consider a n-degree of freedom, non-dimensionalized
mechanical system of the form

M(q, t)q̈ − F(q, q̇, t) = 0, (1)

where M ∈ R
n×n is a nonsingular mass matrix that

may depend on the generalized coordinates q and the
time t in a smooth fashion (class Cr for some r ≥ 2).
The internal and external forces acting on the system
are contained in the term F ∈ R

n , which generally
depends on q, t and the generalized velocities q̇ ∈ R

n .

2.2 Classic model reduction by projection to a
subspace

As noted in the Introduction, model reduction for sys-
tem (1) is generally motivated by an assumed coordi-
nate change

q = U x, (2)

with a matrix U ∈ R
n×k and a reduced coordinate

vector x ∈ R
k with k < n (see, e.g., Geradin and Rixen

[13]). Substitution into (1), followedbyamultiplication
by U T , then suggests the reduced equations of motion

U T M(U x, t)U ẍ − U T F(U x, U ẋ, t) = 0, (3)

the projection of (1) from the full state space Rn onto
a k-dimensional subspace E , parametrized by the vari-
able x (cf. Fig. 1). The main focus of model reduction
studies is then the most expedient choice of the matrix
U .

It is often forgotten, however, that for Eq. (3) to
hold, one must have q(t) = U x(t) for all times, i.e.,
E must be an invariant plane for (1). This assumption
is practically certain to be violated unless special sym-
metries are present. Even for unforced and stable struc-

tural system (i.e., when (1) is autonomous and q = 0
is asymptotically stable), the invariance of modal sub-
spaces is violated when nonlinear terms are present.
The mismatch between modal subspaces and (nonlin-
ear) invariant manifolds emanating from the origin will
only be small very close to the origin. In addition, var-
ious choices of U may render projected equations that
do not capture typical dynamics even close to q = 0
(cf. Haller and Ponsioen [15] and Sect. 5 below for
examples).

2.3 Slow (softer) and fast (stiffer) variables

If system (1) is non-autonomous, we assume that its
explicit time dependence in M and F is precisely one of
the following three types: (1) periodic (2) quasiperiodic
with finitely many rationally independent frequencies
(3) aperiodic over a finite time interval [a, b]. In the
periodic and quasiperiodic cases, we let t ∈ T = R,
whereas in the aperiodic case, we let t ∈ T = [a, b].

Next, we split the generalized coordinate vector q
as

q =
(

x
y

)
, x ∈ R

s, y ∈ R
f , s + f = n,

into yet unspecified slow coordinates x and fast coordi-
nates y. This slow–fast partition refers to the expected
relative speed of variation of the x and y variables.
In mechanical terms, we expect x to label relatively
softer degrees of freedom as opposed to the relatively
stiff degrees of freedoms labeled by the y coordinates.

We seek conditions under which a mathematically
rigorous model reduction process exists to express y(t)
uniquely as function of x(t), at least asymptotically in
time, along general trajectories q(t) of (1). The (x, y)

partition of q may be suggested by a modal analysis of
the linear system or simply by the physics of a mechan-
ical problem. Importantly, q is not assumed to be a set
of linear modal coordinates, and hence our procedure
does not rely on an a priori identification of a linearized
spectrum near an equilibrium point.

To allow for a potentially stiff dependence of the
system on y, we introduce a small, non-dimensional
parameter ε > 0 and consider M and F as smooth
functions of y/ε and y for ε > 0. At this point, this
represents no loss of generality, given that any smooth
function of y and ε can also be viewed as a smooth
function of y/ε and ε for ε > 0 because y = ε · (y/ε).
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Exact model reduction by a slow–fast decomposition 621

Remark 1 The introduction of the small variable ε

through the identity y = ε · (y/ε) above reflects
expected stiff behavior with respect to the y = 0 posi-
tion in the y degrees of freedom. If, instead, one expects
stiff behavior (small displacements) with respect to a
more general y = y0 �= 0 position, then one should
first let ỹ = y − y0 and then drop the tilde before
introducing the dummy variable ε as above.

Using the notation introduced above, we split the mass
matrices and forcing terms in (1) by letting

M(q, t) =
(

M11
(
x,

y
ε
, t; ε

)
M12

(
x,

y
ε
, t; ε

)
M21

(
x,

y
ε
, t; ε

)
M22

(
x,

y
ε
, t; ε

)
)

,

F(q, q̇, t) =
(

F1
(
x, ẋ,

y
ε
, ẏ, t; ε

)
F2
(
x, ẋ,

y
ε
, ẏ, t; ε

)
)

, ε > 0,

where M11 ∈ R
s×s, M12, MT

21 ∈ R
s× f , M22 ∈

R
f × f , F1 ∈ R

s and F2 ∈ R
f . Again, as notated above,

this notation is general enough to allow for cases in
which M or F depends purely on y, or depends both
on y and y/ε. The corresponding equations of motion
are

M11 ẍ + M12 ÿ − F1 = 0,

M22 ÿ + M21 ẍ − F2 = 0. (4)

Taking appropriate linear combination of these equa-
tions, and introducing the matrix Mi and forces Qi via

Mi

(
x,

y

ε
, t; ε

)
= Mii − Mi j M−1

j j M ji ,

i, j = 1, 2, i �= j,

Qi

(
x, ẋ,

y

ε
, ẏ, t; ε

)
= Fi − Mi j M−1

j j Fj ,

i, j = 1, 2, i �= j, (5)

we deduce from (4) the inertially decoupled equations
of motion:

M1

(
x,

y

ε
, t; ε

)
ẍ − Q1

(
x, ẋ,

y

ε
, ẏ, t; ε

)
= 0,

M2

(
x,

y

ε
, t; ε

)
ÿ − Q2

(
x, ẋ,

y

ε
, ẏ, t; ε

)
= 0. (6)

Importantly, Eq. (6) is fully equivalent to (1) for
any choice of the partition q = (x, y) and for any
choice of a scalar parameter ε > 0. In particular,
M1
(
x,

y
ε
, t; ε

) ∈ R
s×s and M2

(
x,

y
ε
, t; ε

) ∈ R
f × f

are nonsingular matrices for all (x, y, t) and for all
ε > 0. As we shall see in later examples, the partition
q = (x, y) will need to be selected in given problems
in a way that further assumptions detailed below are
satisfied.

2.4 Assumptions of the SFD and illustrating examples

We now list assumptions that will be sufficient to guar-
antee the existence of an exact reduced-order model
satisfying the requirements (R1)–(R2). First, using the
new variable η = y/ε, we define the mass-normalized
forcing terms

P1 (x, ẋ, η, ẏ, t; ε) = M−1
1 (x, η, t; ε) Q1 (x, ẋ, η, ẏ, t; ε) ,

P2 (x, ẋ, η, ẏ, t; ε) = εM−1
2 (x, η, t; ε) Q2 (x, ẋ, η, ẏ, t; ε) ,

which are, by our assumptions, class Cr in their argu-
ments for ε > 0. The following assumptions concern
properties of Pi in their ε = 0 limit.

(A1) Nonsingular extension to ε = 0: The functions
P1 and P2 are at least of class C2 in their argu-
ments at ε = 0.

In otherwords, assumption (A1) requires continuous
differentiability of the transformed forcing terms Pi

also in the limit of ε = 0 , when the dummy variable
η = y/ε is held fixed, independent of ε.

(A2) Existence of a fast zero-acceleration set (criti-
cal manifold): The algebraic equation Q2(x, ẋ,

η, 0, t; 0) ≡ 0 can be solved for η on an open,
bounded domain D0 ⊂ R

s × R
s × T . Specifi-

cally, there exists a C1 function G0 : D0 → R
s

such that

Q2 (x, ẋ, G0(x, ẋ, t), 0, t; 0) ≡ 0 (7)

holds for all (x, ẋ, t) ∈ D0. We refer to the set
M0(t) defined by η = G0(x, ẋ, t) as a critical
manifold.

Assumption (A2) ensures the existence of a smooth
set M0(t) of instantaneous zero-acceleration states
(critical manifold) for the fast coordinates. Here the
velocity variable ẋ ∈ R

s is viewed as arbitrary, and
hence unrelated to the actual time derivative of x(t)
along a trajectory q(t). As a consequence, these instan-
taneous zero-acceleration states are not equilibria and
do not form an invariant set for system (6). Under
assumption (A3) below, however, M0(t) will turn out
to approximate a slow invariant manifold that carries a
reduced-ordermodel satisfying the requirements (R1)–
(R2):

(A3) Formal asymptotic stability of the critical
manifold: With the matrices

A(x, ẋ, t) = −∂ẏ P2 (x, ẋ, G0(x, ẋ, t), 0, t; 0) ,

B(x, ẋ, t) = −∂η P2 (x, ẋ, G0(x, ẋ, t), 0, t; 0) ,

(8)
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622 G. Haller, S. Ponsioen

the equilibrium solution u ≡ 0 ∈ R
f of the

unforced, constant-coefficient linear system

u′′ + A(x, ẋ, t)u′ + B(x, ẋ, t)u = 0 (9)

is asymptotically stable for all fixed parameter
values (x, ẋ, t) ∈ D0. Here prime denotes dif-
ferentiation with respect to an auxiliary time τ

that is independent of t .

Note that assumption (A3) requires the linear unforced
oscillatory system (9), posed formally for the dummy
fast variable η, to be asymptotically stable. In this con-
text, (x, ẋ, t) play the role of constant parameters rang-
ing overD0. Assumption (A3) is satisfied, for instance,
when A is symmetric, positive semi-definite and B is
symmetric, positive definite over D0. In that case, A
represents a damping matrix and B represents a stiff-
ness matrix for all parameter values (x, ẋ, t) ∈ D0.
At this point, (A3) is only a formal requirement with
no immediately clear mathematical meaning. This is
because the critical manifold M0(t) is not invariant
under Eq. (6) and hence the arguments of A and B are,
in fact, time-varying, and hence do not determine the
stability of (9).

Example 1 (Weakly nonlinear system with external
forcing) Consider a typical multi-degree-of-freedom
mechanical system of the form

M1 ẍ + C1 ẋ + K1x + S1 (x, y) = f1(t),

M2 ÿ + C2 ẏ + K2y + S2 (x, y) = f2(t), (10)

with x ∈ R
s and y ∈ R

f . Here the Mi are symmetric
and positive definite constant mass matrices; Ci are
constant symmetric damping matrices; Ki are constant
symmetric stiffness matrices; and the functions

Si (x, y) = O
(
|x |2 , |x | |y| , |y|2

)
(11)

model nonlinear coupling terms. By definition (5), for
an arbitrary scalar parameter ε > 0 independent of
Mi , Ci , Di and Si , we specifically have

Q1

(
x, ẋ,

y

ε
, ẏ, t; ε

)

= −
[
C1 ẋ + K1x + S1

(
x, ε

y

ε

)
− f1(t)

]
,

Q2

(
x, ẋ,

y

ε
, ẏ, t; ε

)

= −
[
C2 ẏ + εK2

( y

ε

)
+ S2

(
x, ε

y

ε

)
− f2(t)

]
.

Therefore, the functions

P1(x, ẋ, η, ẏ, t; ε)

= −M−1
1 [C1 ẋ + K1x + S1 (x, εη) − f1(t)] ,

P2(x, ẋ, η, ẏ, t; ε)

= −εM−1
2 [C2 ẏ + εK2η + S2 (x, εη) − f2(t)] ,

are differentiable in ε at the ε = 0 limit, satisfying
assumption (A1). However, we have

P2(x, ẋ, η, ẏ, t; 0) ≡ 0.

Therefore, while any function G0(x, ẋ, t) satisfies
(A2), both matrices A and B defined in (8) vanish, and
hence assumption (A3) never holds for system (10). For
this assumption to hold, some of the system parameters
must be related to the small parameter ε, as we shall
see in the next two examples.

Example 2 (Partially stiff weakly nonlinear system
with very small stiff-inertia and parametric forcing)
Consider now the slightly modified multi-degree-of-
freedom mechanical system

M1 ẍ + C1 ẋ + K1x + S1 (x, y) = f1(t),

ε2M2 ÿ + C2 ẏ + 1

ε
K2y + S2 (x, y) = f2(t), (12)

with a non-dimensional small parameter ε 	 1. All
variables, matrices and functions are the same as in
Example 1, but the y-component of this system gener-
ates very small inertial forces and also has large linear
stiffness. This time, we have

P1(x, ẋ, η, ẏ, t; ε)

= −M−1
1 [C1 ẋ + K1x + S1 (x, εη) − f1(t)] ,

P2(x, ẋ, η, ẏ, t; ε)

= −1

ε
M−1

2 [C2 ẏ + K2η + S2 (x, εη) − f2(t)] ,

therefore assumption (A1) is not satisfied, given that
P2 is not differentiable at ε = 0 .

Example 3 (Paradigm for targeted energy transfer:
Weakly nonlinear system with small inertia in its
essentially nonlinear component) Consider the multi-
degree-of-freedom mechanical system

M1 ẍ + C1 ẋ + K1x + S1 (x, y) = 0,

εM2 ÿ + C2 ẏ + S2 (x, y) = 0, (13)

with a non-dimensional small parameter ε 	 1. Again,
all variables and matrices are the same as in Example
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Exact model reduction by a slow–fast decomposition 623

(1), but the y-component of (13) generates small iner-
tial forces and no linear stiffness forces. This system is
noted as a prototype example of targeted energy transfer
(cf. Vakakis et al. [27]) from the x degrees of freedom
to the y degrees of freedom. This energy transfer mech-
anism suggests the lack of a reduced-order model over
the x-degrees of freedom, given that the y-variables
display no long-term enslavement to the x-variables.
Calculating the quantities in our assumption (A1), we
find

P1(x, ẋ, η, ẏ, t; ε) =−M−1
1 [C1 ẋ+K1x+S1 (x, εη)] ,

P2(x, ẋ, η, ẏ, t; ε) = −M−1
2 [C2 ẏ + S2 (x, εη)] ,

are differentiable at ε = 0, and hence assumption (A1)
holds. However, the equation

Q2(x, ẋ, η, 0, t; 0) = −S2 (x, 0) = 0

cannot be solved for the variable η at any point. As
a consequence, even though a set of zero-acceleration
states is defined by the equation S2 (x, 0) = 0, this set
is not attracting. Indeed, the matrix B(x, v, t) defined
in assumption (A3) vanishes identically and hence the
linear system (9) is not asymptotically stable.

Example 4 (Partially stiff weakly nonlinear system
with parametric forcing) Consider now the multi-
degree-of-freedom mechanical system

M1 ẍ + C1 ẋ + K1x + S1
(

x,
y

ε

)
= f1(t),

εM2 ÿ + C2 ẏ + 1

ε
K2y + S2 (x, y) = f2(t), (14)

with the same quantities as in Example (1). The differ-
ence here is that the mass matrix of the y degrees of
freedom has small norm for ε 	 1 and the stiffness
matrix is large in norm in the same equation. In addi-
tion, the nonlinear coupling term in the x-equation is
assumed to have a stiff dependence on y. In this case,
we have

P1(x, ẋ, η, ẏ, t; ε)

= −M−1
1 [C1 ẋ + K1x + S1 (x, η) − f1(t)] ,

P2(x, ẋ, η, ẏ, t; ε)

= −M−1
2 [C2 ẏ + K2η + S2 (x, εη) − f2(t)] ,

which satisfy assumption (A1). Solving the equation
Q2(x, ẋ, η, 0, t; 0) = 0 for η, we find that assumption
(A2) is satisfied by the function

G0(x, ẋ, t) = K −1
2 [ f2(t) − S2(x, 0)] ,

(x, ẋ, t) ∈ D0 = R
s × R

s × R, (15)

provided that the stiffness matrix K2 is invertible. In
that case, we obtain

A(x, ẋ, t) = M−1
2 C2,

B(x, ẋ, t) = M−1
2

[
K2+ε∂y S2 (x, εG0(x, ẋ, t))

] ∣∣∣
ε=0

= M−1
2 K2,

and hence the homogeneous linear oscillatory system
in assumption (A3) becomes

η′′ + M−1
2 C2η

′ + M−1
2 K2η = 0

or, equivalently,

M2η
′′ + C2η

′ + K2η = 0. (16)

The zero equilibrium of this system is asymptotically
stable by our assumptions on M2, C2 and K2. There-
fore, assumption (A3) is also satisfied for system (14).

3 Main result: global existence of an exact
reduced-order model

To state our main result formally, we first define the
following functions for all (x, ẋ, t) ∈ D0 :
H0(x, ẋ, t) = ∂x G0(x, ẋ, t)ẋ + ∂ẋ G0(x, ẋ, t)

×P1 (x, ẋ, G0(x, ẋ, t), 0, t; 0) + ∂t G0(x, ẋ, t),

G1(x, ẋ, t) = − [Dη P2 (x, ẋ, G0(x, ẋ, t), 0, t; 0)]−1

×Dẏ P2 (x, ẋ, G0(x, ẋ, t), 0, t; 0) H0(x, ẋ, t)

− [Dη P2 (x, ẋ, G0(x, ẋ, t), 0, t; 0)]−1

×Dε P2 (x, ẋ, G0(x, ẋ, t), 0, t; 0) ,

H1(x, ẋ, t) = ∂x G1(x, ẋ, t)v + ∂ẋ G1(x, ẋ, t)

×P1 (x, ẋ, G0(x, ẋ, t), 0, t; 0) + ∂t G1(x, ẋ, t).

(17)

With these quantities, we have the following result:

Theorem 1 Under assumptions (A1)–(A3) and for ε >

0 small enough:

(i) The mechanical system (1) admits an exact
reduced-order model satisfying the requirements
(R1)–(R2).

(ii) The reduced-order model is given by

ẍ − P1 (x, ẋ, G0(x, ẋ, t), 0, t; 0)
= ε
[

Dη P1 (x, ẋ, G0(x, ẋ, t), 0, t; 0) G1(x, ẋ, t)

+ Dẏ P1 (x, ẋ, G0(x, ẋ, t), 0, t; 0) H0(x, ẋ, t)

+Dε P1 (x, ẋ, G0(x, ẋ, t), 0, t; 0)
]

+O(ε2) (18)
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624 G. Haller, S. Ponsioen

for all (x, ẋ, t) ∈ D0.
(iii) If M1(x, η, ε) is smooth in ε at ε = 0, then the

multiplication of (18) by M1 gives a form of the
reduced-order model that does not require the
inversion of M1:

M1 (x, G0(x, ẋ, t), t; 0) ẍ

−Q1 (x, v, G0(x, ẋ, t), 0, t; 0) = O(ε). (19)

(iv) Reduced-order models (18)–(19) describe the
reduced flow on a 2s-dimensional invariant man-
ifold Mε(t) along which positions and velocities
in the stiff degrees of freedom are enslaved to those
in the slow degrees of freedom via

y = εG0(x, ẋ, t) + ε2G1(x, ẋ, t) + O(ε3),

ẏ = εH0(x, ẋ, t) + ε2H1(x, ẋ, t) + O(ε3). (20)

(v) The x(t) components of the trajectories of system
(1) synchronize with appropriate model trajecto-
ries xR(t) of (18) or (19) at an exponential rate.
Specifically, let q(t) = (x(t), y(t)) be a full tra-
jectory of system (1) such that at a time t0, the
initial position q(t0) is close enough to the slow
manifold carrying the reduced-order model. Then
there exists a trajectory xR(t) of the reduced-order
model (18) or (19) such that∣∣∣∣
(

x(t) − xR(t)
ẋ(t) − ẋR(t)

)∣∣∣∣

≤ C

∣∣∣∣∣∣∣∣

⎛
⎜⎜⎝

x(t0)−xR(t0)
ẋ(t0)− ẋR(t0)

1
ε

y(t0)−G0 (xR(t0), ẋR(t0), t)+O(ε)

ẏ(t0)−εH0 (xR(t0), ẋR(t0), t)+O(ε2)

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣
e−

Λ
ε

(t−t0),

t > t0, (21)

where Λ > 0 can be selected as any constant
satisfying

max
j∈[1, f ], (x,ẋ,t)∈D0

Re λ j (x, ẋ, t) < −Λ < 0,

with λ j (x, ẋ, t), j = 1, . . . , f , denoting the
eigenvalues of the associated linear system (75).
The constant C > 0 generally depends on the
choice of Λ but is independent of the choice of the
initial conditions q(t0) and q̇(t0).

Proof See “Appendix 1”. ��
In Fig. 3, we illustrate the geometric relation between
the reduced model flow on the slow manifold to gen-
eral trajectories of the full system, as described by
Theorem 1.

x

x

( y, y)

xR(t),xR (t)( )

q(t),q(t)( ) = x(t), y(t),x(t), y(t)( )

0

Fig. 3 Reduced-order model trajectory (xR(t), ẋR(t)) as a pro-
jection from the slow manifold Mε(t) to the space of the
(x, ẋ) variables. Other nearby trajectories converge to the slow
manifold exponentially fast, and hence their projection on the
(x, ẋ) space synchronizes exponentially with trajectories of the
reduced-order model

Remark 2 If the left-hand side of reduced-order model
(18) has structurally stable features (cf. Guckenheimer
and Holmes [14]), then, for ε > 0 small enough, these
features persist smoothly under the addition of theO(ε)

terms of the right-hand side, and hence an explicit com-
putation of these terms is not necessary. For instance, if
system (18) has a single attracting fixed point or peri-
odic orbit over the compact domain D0, then either of
these features is robust without the explicit inclusion
of the O(ε) and higher-order terms on its right-hand
side. If, however, system (18) is conservative, then the
inclusion ofO(ε) terms is necessary to obtain a robust,
dissipative reduced-order model. If theO(ε) terms are
also conservative, then explicit evaluation of theO(ε2)

is required following the expansion scheme used in the
proof of Theorem 1.

Remark 3 The synchronization expressed by (21)
means that both positions and velocities predicted by
reduced-order model (18) are relevant for the observed
system dynamics as long the time t > t0 is selected
from the domain T . This time-domain is unbounded
(i.e., T = R) for mechanical systems with explicit
periodic and quasiperiodic time dependence. For the
case of temporally aperiodic time dependence, the
times allowed in (21) are restricted to the finite interval
T = [a, b].

O(ε2) is required following the expansion scheme
used in the proof of Theorem 1.
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Exact model reduction by a slow–fast decomposition 625

Example 5 (Partially stiff weakly nonlinear system
with parametric forcing) We recall that the partially
stiff system (14) in Example 4 satisfies assumptions
(A1)–(A3) and hence admits an exact, global reduced-
order model. The form of the function G0 from (15)
is

G0(x, ẋ, t) = K −1
2 [ f2(t) − S2(x, 0)] . (22)

The mass matrix M1 is independent of ε, and hence
equivalent form (19) of the reduced-order model
applies and gives

M1 ẍ + C1 ẋ + K1x + S1
(

x, K −1
2 [ f2(t) − S2(x, 0)]

)
= f1(t) + O(ε).

The leading-order terms in expressions (20) for the
slow manifold are

y = εG0(x, ẋ, t) + O(ε2)

= εK −1
2 [ f2(t) − S2(x, 0)] + O(ε2),

ẏ = εH0(x, ẋ, t) + O(ε2)

= εK −1
2

[
ḟ2(t) − ∂x S2(x, 0)ẋ

]+ O(ε2).

If f (t) is periodic or quasiperiodic in time, then we
have the synchronization estimate (21) for all times
t > t0. Specifically, any Λ > 0 can be selected such
that −Λ < 0 is a strict upper bound on the real part
of the spectrum of the oscillatory system (16). We note
that if we had assumed a non-stiff coupling of the form
S1 (x, y) in Example 4, then assumptions (A1)–(A4)
would still have been satisfied, but the reduced model
would simplify to

M1 ẍ + C1 ẋ + K1x + S1 (x, 0) = f1(t) + O(ε),

uncoupling completely from the stiff modes at leading
order. Convergence estimate (21) would remain valid
in this case, too.

4 The boundary of the domain of model reduction

In the examples we have discussed so far, the domain
D0 could be selected arbitrarily large. Thus, a reduced-
order model exists over arbitrarily large (x, ẋ, t) values
in these problems, as long as ε is kept small enough. In
general, however, D0 will have a nonempty boundary
∂D0 over which reduced-order model (18)–(19) cannot
be further extended.

Such non-extendibility of the reduced-order model
domain arises from a break-down in the solvability of

algebraic equation (7) for the critical manifold. By the
implicit function theorem, this occurs along points sat-
isfying

det
[
∂η P2(x, ẋ, G0(x, ẋ, t), 0, t; 0)] = 0,

(x, ẋ, t) ∈ ∂D0. (23)

In the generic case, this determinant becomes zero at
points where ∂η P2 has a single zero eigenvalue, i.e.,

rank
[
∂η P2(x, ẋ, G0(x, ẋ, t), 0, t; 0)] = f − 1,

(x, ẋ, t) ∈ ∂D0. (24)

Under further nondegeneracy conditions (see., e.g.,
Arnold [2]), a fold develops in the critical manifold
along ∂D0, i.e., M0 ≡ M+

0 ceases to be a locally
unique graph over the (x, ẋ, t) variables. As we pass
from M0 to the newly bifurcating critical manifold
branchM−

0 , thematrices A(x, ẋ, t) and B(x, ẋ, t) vary
smoothly in their arguments, given that one manifold
branch is smoothly connected to the other one along
a fold. Under nondegeneracy condition (24), precisely
one eigenvalue of the matrix B(x, ẋ, t) will cross zero
in the passage fromM+

0 toM−
0 along the critical man-

ifold. In this case, the graph segment η = G−
0 (x, ẋ, t)

describing the bifurcating branch M−
0 (9) violates

assumption (A2). As a consequence, the folded slow
manifold branchM−

ε perturbing fromM−
0 is unstable

and hence irrelevant for reduced-order modeling.
In summary, unlike in the setting of the local con-

struction of spectral submanifolds near equilibria (cf.
Haller and Ponsioen [15]), a folding invariant mani-
fold arising in SFD is not a technical limitation to over-
come when one is in pursuit of a more global reduced-
order model. Rather, a fold in the slow manifold over
the plane of slow variables signals precisely the limit
beyondwhich no reduced-ordermodel satisfying (R1)–
(R2) exists in a given part of the phase space.

Example 6 (Partially stiff weakly nonlinear system
with parametric forcing) Consider now the multi-
degree-of-freedom mechanical system

M1 ẍ + C1 ẋ + K1x + S1
(

x,
y

ε

)
= f1(t),

εM2 ÿ + C2 ẏ + 1

ε
K2y + S2

(
x,

y

ε

)
= f2(t), (25)

with the same variables, matrices and functions used in
Example 4, except that here the coupling function S2
also has a stiff dependence on the y variables. We then
obtain
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626 G. Haller, S. Ponsioen

P1(x, ẋ, η, ẏ, t; ε)

= −M−1
1 [C1 ẋ + K1x + S1 (x, η) − f1(t)] ,

P2(x, ẋ, η, ẏ, t; ε)

= −M−1
2 [C2 ẏ + K2η + S2 (x, η) − f2(t)] .

Thus, assumption (A1) is satisfied again. Condition
(23) in this case gives

det
[

M−1
2

(
K2 + ∂y S2 (x, η)

)] �= 0.

By the non-singularity of M2, this latter condition is
equivalent to

det
[
K2 + ∂y S2 (x, η)

] �= 0.

For instance, when S2 has only quadratic terms, then
this last condition can always be written as

det [K2 + Πx + Φη] �= 0, (26)

where Π and Φ are 3-tensors of appropriate dimen-
sions. Suppose now, for simplicity, that Φ ≡ 0, the
master variable x is a scalar (m = 1), and Π ∈ R

f × f

is nonsingular. Requirement (26) then becomes

det
[
Π−1K2 − (−x)I

]
�= 0, (27)

which implies that −x cannot be an eigenvalue of
Π−1K2. Consequently, condition (27) fails along the
domain boundary

∂D0 =
{
(x, ẋ, t) : ∃ j : x = −λ j (�(x, ẋ, t) : ∃ j :

x = −λ j (Π
−1K2)

}
,

with λ j (Π
−1K2) denoting the j th real eigenvalue of

the matrix Π−1K2.
To illustrate the geometry of the critical manifold

in a simple case, we let s = f = 1 and select the
parameters, the coupling and the forcing terms as

K2 = 4, S2(x, η) = x2 + 4η2, f2(t) = sin t,

so that the equation P2(x, ẋ, η, 0, t; 0) = 0 takes the
form

4η + x2 + 4η2 − sin t = 0. (28)

This equation is solved by η = x = t = 0 and hence
the setD0 is nonempty. The boundary ∂D0, defined by
conditions (23)–(24), satisfies

det
[
∂η P2(x, ẋ, η, 0, t; 0)] = ∂η P2(x, ẋ, η, 0, t; 0)

= 4 + 8η = 0 ⇐⇒ η = −1

2
,

∂η det

[
∂η P2

(
x, ẋ,−1

2
, 0, t; 0

)]
= 8 �= 0,

where the second condition here is the classic non-
degeneracy condition for fold bifurcations in the one-
dimensional case (cf. Arnold [2]). Substitution of η =
− 1

2 into Eq. (28) gives an explicit definition for ∂D0 in
the (x, ẋ, t) space as

∂D0 =
{
(x, ẋ, t) : x2 = 1 + sin t

}
. (29)

A direct solution of Eq. (28) through the quadratic for-
mula confirms that the zero set

η = G±
0 (x, ẋ, t) = −1 ±√1 − (x2 − sin t)

2
,

(x, ẋ, t) ∈ D0 =
{
(x, ẋ, t) : x2 < 1 + sin t

}

indeed ceases to be a graph and develops a fold singu-
larity along ∂D0. The stability of the two branches of
G±

0 (x, ẋ, t) can be determined by calculating (9) along
both branches:

A±(x, ẋ, t) = M−1
2 C2,

B±(x, ẋ, t) = −M−1
2

(
4 + 8G±

0 (x, ẋ, t)
)

= ∓4
√
1 − (x2 − sin t).

Therefore, the critical manifold

M+
0 = {(x, ẋ, t) ∈ D0 : η = G+

0 (x, ẋ, t)
}

satisfies assumptions (A1)–(A3) but develops a fold
overD0 along the boundary curve ∂D0 defined in (29).
The additional branch

M−
0 = {(x, ẋ, t) ∈ D0 : η = G−

0 (x, ẋ, t)
}

emanating from the domain boundary ∂D0 is unstable,
as its associated constant-coefficient linear system (cf.
assumption (A2)), given by

M2u′′ + C2u′ − 4
√
1 − (x2 − sin t)u = 0,

is unstable. We show the stable and unstable critical
manifolds, as well as the domain boundary ∂D0, in
Fig. 4.

5 Approximate SFD near equilibria: Static
condensation and modal derivatives

Here we show that at least two formal reduction proce-
dures used in structural dynamics, modal condensation
and the method of modal derivatives, can be mathe-
matically justified when the conditions (A1)–(A3) of
the SFD are satisfied. In this case, these two proce-
dures turn out to provide local first- and second-order
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Exact model reduction by a slow–fast decomposition 627

Fig. 4 The stable critical
manifold branch M+

0 and
the unstable branch M−

0 for
nonlinear mechanical
system (25) with
s = f = 1. Also shown is
the domain boundary ∂D0
along which the fold in the
critical manifold M0
develops

∂

approximations, respectively, to a slow manifold Mε

emanating from an equilibrium point of the unforced
mechanical system.

To show this, we also assume the following:

(A4) Independence of critical manifold of the slow
velocities: The relation

∂ẋ Q2(x, ẋ, η, 0, t; 0) ≡ 0, (30)

holds, i.e, the function P2 has not explicit dependence
on the slow velocities ẋ for ε = 0 and ẏ = 0.

We further assume that the domain D0, over which
the graph η = G0(x, ẋ, t) is defined, contains the line
x = 0 of the (x, ẋ, t) parameter space, i.e,

(A5) Critical manifold contains an unforced fixed
point: We assume

{(x, ẋ, t) : x = 0, ẋ = 0} ⊂ D0. (31)

This condition is satisfied, for instance, when (1) is a
weakly nonlinear system whose unforced part admits
a fixed point at q = (x, y) = 0. The implications of
assumptions (A4)–(A5) for the geometry of the critical
manifold are illustrated in Fig. 5.

Static condensation (Geradin and Rixen [13]) is a
linear reduction procedure applied to a q = (x, y) par-
tition of the degrees of freedom in system (1) near an
equilibrium point. In this reduction method, the inertial
terms and velocities are simply ignored in the linearized

(t)

η

Fig. 5 The geometry of the critical manifold M0(t) under
assumptions (A3)–(A4) at an arbitrary time t

equation for the y degrees of freedom.The resulting lin-
ear algebraic equation is solved for y, and the result is
substituted for y in the x equations, yielding a single
second-order differential equation in the x variables.

The method of modal derivatives (Idelsohn and Car-
dona [16],Rutzmoser et al. [24],WuandTiso [28]) con-
siders a similar q = (x, y) partition of coordinates near
an unforced equilibrium and seeks a quadratic invariant
manifold tangent to an eigenspace of the linearized sys-
tem. The main assumption is that along this quadratic
manifold, the y coordinates can be written as purely
quadratic functions of the x coordinates, with the coef-
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628 G. Haller, S. Ponsioen

ficients of these quadratic forms collected in an appro-
priate modal derivative tensor.

The above two reduction methods can be justified in
our present setting as follows:

Proposition 1 Under assumptions (A1)–(A5):

(i) The expressions derived for the slow manifold
Mε(t) in (20) satisfy

G0(x, ẋ, t) = Γ (t) + Φ(t)x + (Θ(t)x) x

+O
(
|x |3
)

, (32)

where the function Γ (t) is the solution of the equa-
tion P2(0, Γ (t), 0, t; 0) = 0, and the two-tensor
Φ(t) and the three-tensor Θ(t) satisfy
Φ(t) = − [

∂η P2
]−1

∂x P2
∣∣∣
x=0,η=Γ (t),ẏ=0,ε=0

,

Θ(t) = − 1

2

[
∂η P2

]−1
[
∂2xx P2

+
(
2∂2xη P2 + ∂2ηη P2Φ(t)

)
Φ(t)

]∣∣∣
x=0,η=Γ (t),ẏ=0,ε=0

.

(33)

(ii) Assume that P2(x, ẋ, η, 0, t; 0) has no explicit
time dependence and (x, y) are modal coordi-
nates for the linearized system at (x, y) = 0, i.e.,

∂t P2(x, ẋ, η, 0, t; 0) ≡ 0,

∂x P2(0, 0, 0, 0, t; 0) = 0,

∂η P1(0, 0, 0, 0, t; 0) = 0.

We then obtain

Γ = 0, Φ = 0,

Θ = −1

2

[
∂η P2(0, 0, 0, 0, t; 0)]−1

× ∂2xx P2(0, 0, 0, 0, t; 0). (34)

(iii) Under the conditions of statement (ii), a linear-in-
x and zeroth-order-in-ε approximation to Mε(t)
yields the modal-condensation-based reduced
model

ẍ − P1 (x, ẋ, 0, 0, t; 0) + O(ε, |x |3) = 0 (35)

for the dynamics on Mε(t)
(iv) Under the conditions of statement (ii), a quadratic-

in-x and zeroth-order-in-ε approximation toMε(t)
yields the modal-derivative-based reduced-order
model

ẍ − P1 (x, ẋ, (Θ(t)x) x, 0, t; 0) + O(ε, |x |4) = 0

(36)

for the dynamics on Mε(t), with Θ(t) generally
referred to as the modal derivative tensor.

Proof See “Appendix 2”. ��
Remark 4 Combining statement (iii) of Theorem 1
with Proposition 1 gives that if M1(x, η, ε) is smooth
in ε at ε = 0, then the static-condensation-basedmodel
(35) is equivalent to

M1 (x, 0; 0) ẍ − Q1 (x, ẋ, 0, 0, t; 0) + O(ε, |x |3)
= 0, (37)

and the modal-derivatives-based reduced model (36) is
equivalent to

M1 (x, (Θx) x; 0) ẍ − Q1 (x, ẋ, (Θx) x, 0, t; 0)
+O(ε, |x |4) = 0. (38)

Remark 5 The unevaluated higher-order O(|x |3) and
O(|x |4) terms in Eqs. (37) and (38) generally do not
remain uniformly small over the full model reduction
domainD0. Rather, one can only use the leading-order
model terms in these equations reliably as long as the
slow coordinates are rescaled as x = 3

√
εξ and x =

4
√

εξ , respectively. In that case, (37) and (38) can be
re-written as

M1 (ξ, 0; 0) ξ̈ − Q1
(
ξ, ξ̇ , 0, 0, t; 0)+ O(ε) = 0,

(39)

M1 (ξ, (Θξ) ξ ; 0) ξ̈ − Q1
(
ξ, ξ̇ , (Θξ) ξ, 0, t; 0)

+O(ε) = 0, (40)

respectively. One can then arguably focus on the ε-
independent leading-order terms for ε > 0 small
enough.The static-condensation- andmodel-derivative-
based reductions are, therefore, justified in order
O( 3

√
ε) and O( 4

√
ε) neighborhoods of the x = 0 equi-

librium, respectively, provided that the assumptions of
Proposition 1 are satisfied.

Example 7 (Localized reduced-order model for a stiff,
weakly nonlinear system with parametric forcing) We
now reconsider the multi-degree-of-freedom mechani-
cal system (14) and assume that

f2(t) ≡ 0, (41)

i.e., that the external forcing on the stiff degrees of
freedom vanishes. Using the results from Example 6,
we have

P1(x, ẋ, η, ẏ, t; ε)

= −M−1
1 [C1 ẋ + K1x + S1 (x, η) − f1(t)] ,

P2(x, ẋ, η, ẏ; ε) = −M−1
2 [C2 ẏ + K2η + S2 (x, η)] .

As already discussed in Example 6, conditions (A1)–
(A3) are satisfied and hence Theorem 1 guarantees a
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Exact model reduction by a slow–fast decomposition 629

slow manifold and determines its reduced dynamics.
Assumption (30) is clearly satisfied, as P2 does not
depend on ẋ . Assumption (31) also holds, as one sees
from the expression for G0 in (22). Since P2 has no
explicit time dependence, the static condensation and
modal derivative formulas in (83) apply and take the
specific form

Γ ≡ 0, Φ ≡ 0,

Θ = −
[
−M−1

2 K2

]−1 [−M−1
2 ∂2xx S2(0, 0)

]

= −K −1
2 ∂2xx S2(0, 0). (42)

Therefore, in a neighborhood of the origin, the reduced-
order formulation (39) applies and statement (iii) of
Proposition 1 justifies the static-condensation-based
reduced model

M1ξ̈ + C1ξ̇ + K1ξ + S1 (x, 0) − f1(t) + O(ε) = 0

as a leading-order reduced model for the dynamics
on Mε(t) in an order O( 3

√
ε) neighborhood of the

unforced equilibrium x = 0. Similarly, statement (iv)
of Proposition (1) justifies the modal-derivative-based
reduced-order model

M1ξ̈+C1ξ̇+K1ξ+S1
(

x,−
[

K −1
2 ∂2xx S2(0, 0)x

]
x
)

− f1(t) + O(ε) = 0 (43)

in an orderO( 4
√

ε) neighborhood of the unforced equi-
librium x = 0.

The above example illustrates how Proposition 1 puts
static condensation and modal derivatives in a rigorous
context under appropriate assumptions. We now also
illustrate, however, that these two intuitive reduction
methods give incorrect results when the assumptions
of Proposition 1 are not satisfied.

Example 8 (Failure of static modal condensation and
model-derivative-based reduction) Consider a two-
degree-of-freedom nonlinear, coupled oscillator sys-
tem with amplitude-dependent damping in the first
mode, given by the equations

ẍ+
(

c1+μ1x2
)

ẋ+k1x + axy + bx3 = 0, x ∈ R,

ÿ + c2 ẏ + k2y + cx2 = 0, y ∈ R. (44)

Note that the linearized system at the (x, y) = (0, 0)
equilibrium is in modal coordinates. For c2 > c1,
we obtain slower linear amplitude decay in the two-
dimensional modal subspace of the x variable than in
the modal subspace of the y variable. This suggests
a reduction to a model involving only the slower x
variables. The argument used in Example 1, however,
shows that (44) violates assumption (A3) and hence
Proposition 1 does not apply. The static condensa-
tion procedure, nevertheless, gives the formal reduced-
order model

ẍ +
(

c1 + μ1x2
)

ẋ + k1x + bx3 = 0, (45)

and the method of modal derivates formally gives the
formal reduced model

ẍ +
(

c1 + μ1x2
)

ẋ + k1x +
(

b − ac

k2

)
x3 = 0, (46)

modifying (45) at cubic order only.While a global slow
manifold is not guaranteed to exist in this example,
a unique, two-dimensional analytic invariant manifold
tangent to the subspace of the x variables at the origin
does exist (cf. Haller and Ponsioen [15]). This spectral
submanifold (SSM) offers a mathematically rigorous
process for model reduction in system (44), providing
an exact reduced flow to which (45) and (46) can be
compared. As we show in “Appendix 3”, the reduced
model on the slow SSM is of the form

ẍ +
[

c1 +
(

μ1 − 2ac
(
4c1k1 + k2 (c1 − c2) + 2c1c22 − 6c21c2 + 4c31

)
D

)
x2
]

ẋ

+
[

k1 − 2ac
(
2c21 − 3c1c2 + c22 + 4k1 − k2

)
D

ẋ2
]

x

+
[

b − ac
(
4c41 − 6c31c2 + 2c21c22 + 5c21k2 − c1c2 (2k1 + 3k2) + 2c22k1 + 8k21 − 6k1k2 + k22

)
D

]
x3

+O(4) = 0, (47)
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where

D =
(

c21 − c1c2 + k2
) (

4c21k2 − 8c1c2k1 − 2c1c2k2

+ 4c22k1 + 16k21 − 8k1k2 + k22

)
. (48)

A comparison of the exact reduced model (47) with the
statically condensed version (45) and with the modal-
derivatives-based version (46) shows that the latter two
heuristic reduction methods miss most terms already
in the leading-order (cubic) nonlinearities. Depend-
ing on the specific value of the parameters, the miss-
ing terms can significantly impact the nature of the
reduced dynamics and hence cannot be omitted. We
conclude that neither the Guyan reduction nor the
method of modal derivatives gives correct result in this
general case. Consider, however, now the parameter
range expressed by the scaling

c2 → c2/ε, k2 → k2/ε
2, (49)

i.e., the case when the y-degree of freedom is notably
stiffer and stronger damped as the x-degree of freedom
in system (44). In this parameter domain, system (44)
satisfies the assumptions of Proposition 1 and hence the
approximation to the slow SSM should coincide with
the approximation to the global slow manifold Mε in
this case. Indeed, after the above scaling, formulas (89)
for the constants α, β and γ in “Appendix 3” simplify
to

α = − c

k2
ε2+O

(
ε3
)

, β =O
(
ε3
)

, γ =O
(
ε3
)

,

and hence the exact reduced model (47) simplifies to

ẍ +
(

c1 + μ1x2
)

ẋ + k1x

+
(

b − ac

k2/ε2

)
x3 + O(ε3) = 0, (50)

coinciding with the modal-derivatives-based reduced-
order model (46). This agreement, however, only holds
in slow–fast scaling (49).

Even in the conservative limit, when the SSM is
replaced by a unique, analytic Lyapunov-subcenter
manifold (Kelley [19]), we obtain a conservative limit
of the exact reduced-order model (47) in the form

ẍ +
[

k1 − 2ac

k2 (4k1 − k2)
ẋ2
]

x

+
[

b − ac (2k1 − k2)

k2 (4k1 − k2)

]
x3 + O(x4) = 0, (51)

filled with nonlinear normal modes (periodic orbits).
At the same time, the conservative limit of the static
condensation procedure gives

ẍ + k1x + bx3 = 0, (52)

while the modal derivatives-based reduction (46) gives

ẍ + k1x +
(

b − ac

k2

)
x3 + O(x4) = 0. (53)

Comparing (51) and (53) shows that the method of
modal derivatives gives an incorrect reduced-order
model up to cubic order, unless we have either a = 0
or c = 0. As shown in Fig. 6, error between the actual
actual reduced flow (51) and (53) grows unbounded
in the vicinity of the 2:1 resonance (represented by
k2 = 4k1) between the two natural frequencies of the
undamped limit of system (44). In the limit of an exact
2 : 1 resonance, no invariant manifold tangent to the
x-subspace exists, even though the modal derivative
approach still suggests the existence a bounded reduced
flow on such a manifold.

6 A detailed example: three-degree-of-freedom
system with a pendulum damper

We consider a the system depicted in Fig. 7, with a
mass M hanging on a vertical spring of unstretched
length L and linear viscous damping Ch . The spring
is hardening, with linear stiffness coefficient Kh and
cubic stiffness coefficient Γh > 0. The mass is sub-
ject to downward external periodic forcing of the form
fh(t) = fh0 sinω1t , as well as to gravity whose con-
stant is g. The downward position of the mass from the
unstretched spring position is measured by the coor-
dinate h. The horizontal spring with linear stiffness
coefficient Kd and natural length D is fixed to the sur-
roundings, thereby introducing geometric nonlineari-
ties. Added in this direction is a viscous damper with
damping coefficient Cd and an external periodic force
fd(t) = fd0 sinω1t , both acting in the horizontal direc-
tion.

As indicated in Fig. 7, a pendulum of mass m and
length l is attached to the mass M . The angle of
the pendulum from the vertical is denoted by γ . The
pendulum is also subject to angular viscous damping
with coefficient cp, and to an external periodic force
f p(t) = f p0 sinω2t acting on m in a direction normal
to the pendulum .

The equations of motion for this system are

ml2γ̈ − ml sin γ ḧ + ml cos γ d̈ + cpγ̇

+ mgl sin γ = f p(t)l,
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Fig. 6 Trajectories of cubic modal-derivative-based reduction
(53) (blue) and those of exact cubic reduction (51) (red) to the
unique, 2D analytic invariant manifold over the (x, ẋ) variables.

The remaining parameters are set as k1 = a = b = c = 1.
(Color figure online)

γ

L

l

M

m

h

g fp(t)

d

Kh,Γh, Ch

Kd, Cd

fh(t)

fd(t)cp

D

Fig. 7 Three-degree-of-freedom coupled pendulum

(M + m)ḧ − ml sin γ γ̈ − ml cos γ γ̇ 2 + Chḣ

+ Khh + Kd Q(d, h)h + Γhh3 = (M + m)g

+ fh(t) − f p(t) sin γ,

(M + m)d̈ + ml cos γ γ̈ − ml sin γ γ̇ 2 + Cdḋ

+ Kd (D + d) Q(d, h) = fd(t) + f p(t) cos γ,

(54)

with the geometric nonlinear term Q(d, h)

Q(d, h) =
(
1 − D√

(D + d)2 + h2

)
.

The linearized oscillation frequencies of the uncoupled
springs and of the pendulum are

ωh =
√

Kh

M
, ωd =

√
Kd

M
, ωp =

√
g

l
, (55)

respectively. With the help of these frequencies, we
non-dimensionalize the h and d coordinates, the time
t , and all system parameters by letting

h̃ = h

L
, d̃ = d

D
, t̃ = ωpt,

Δ = l

L
, ρ = D

L
, β = m

M
, Fh(t) = fh(t)

Mg
,

Fp(t) = f p(t)

Mg
, Fd(t) = fd(t)

Mg
, G p(t) = f p(t)

mg
,

πh = Ch

ωp M
, πd = Cd

ωp M
, πp = cp

ωpmL2 ,

qh = ω2
h

ω2
p
, qd = ω2

d

ω2
p
, ah = Γh L2

Mω2
p
,
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which leads to the following definition for the scaled
version of Q(d, h)

Q̃(d̃, h̃) =

⎛
⎜⎜⎝1 − ρ√

ρ2
(
1 + d̃

)2 + h̃2

⎞
⎟⎟⎠ .

Denoting differentiation with respect to the new time t̃
still by a dot, then dropping all the tildes, we obtain the
non-dimensionalized equations of motions

Δ2γ̈ − Δ sin γ ḧ + ρΔ cos γ d̈ + πpγ̇ + Δ2 sin γ

= Δ2G p(t),

(1 + β)ḧ − βΔ sin γ γ̈ − βΔ cos γ γ̇ 2 + πh ḣ

+ qhh + qd hQ(d, h) + ahh3 = (1 + β)Δ

+ Fh(t)Δ − Fp(t)Δ sin γ,

(1 + β)d̈ + β
Δ

ρ
cos γ γ̈ − β

Δ

ρ
sin γ γ̇ 2 + πd ḋ

+ qd (1 + d) Q(d, h) = Fd(t)
Δ

ρ

+ Fp(t)
Δ

ρ
cos γ. (56)

6.1 Two softer degrees of freedom

We are interested in applying the SFD procedure to
system (56) to obtain an exact reduced-order model for
the dynamics. First, we assume that h is a stiff degree
of freedom and (γ, d) represent the softer degrees of
freedom. In that case, using the notation from system
(1), we can write the mass matrix M(q, t; ε) and the
forcing term F(q, q̇, t; ε) as

M(q, t; ε) =
⎛
⎝ Δ2 ρΔ cos xγ −Δ sin xγ

β Δ
ρ
cos xγ 1 + β 0

−βΔ sin xγ 0 1 + β

⎞
⎠ ,

F(q, q̇, t; ε) =

⎛
⎜⎜⎜⎝

−πp ẋγ − Δ2 sin xγ + Δ2G p(t)
β Δ

ρ
sin xγ ẋ2γ − πd ẋd − qd (1 + xd) Q(xd ,

y
ε
) + Fd(t)Δ

ρ
+ Fp(t)

Δ
ρ
cos xγ

βΔ cos xγ ẋ2γ − πh ẏh − qhε
y
ε

− qdε
y
ε

Q(xd ,
y
ε
) − ahε3

( y
ε

)3
+ (1 + β)Δ + Fh(t)Δ − Fp(t)Δ sin xγ

⎞
⎟⎟⎟⎠ .

Here we have introduced the coordinates (x, y) by let-
ting

xγ = γ, xd = d, y = h.

The modified mass matrices Mi and the forcing terms
Qi defined in (5) take the specific form

M1 = M11 − M12M−1
22 M21

=
(

Δ2

1+β

(
1 + β cos2 xγ

)
ρΔ cos xγ

β Δ
ρ
cos xγ 1 + β

)
,

M2 = M22 − M21M−1
11 M12 = 1 + β

1 + β sin2 xγ

,

Q1 = F1 − M12M−1
22 F2 =

[
q1
q2

]

q1 = −πp ẋγ − Δ2 sin xγ + Δ2G p(t)

+ Δ sin xγ

1 + β

[
βΔ cos xγ ẋ2γ − πh ẏ − qhε

y

ε

− qdε
y

ε
Q
(

xd ,
y

ε

)
− ahε3

( y

ε

)3 + (1 + β)Δ

+ Fh(t)Δ − Fp(t)Δ sin xγ

]
q2 = β

Δ

ρ
sin xγ ẋ2γ − πd ẋd − qd (1 + xd) Q

(
xd ,

y

ε

)

+ Fd(t)
Δ

ρ
+ Fp(t)

Δ

ρ
cos xγ

Q2 = F2−M21M−1
11 F1=βΔ cos xγ ẋ2γ −πh ẏ−qhε

y

ε

− qdε
y

ε
Q
(

xd ,
y

ε

)
− ahε3

( y

ε

)3 + (1 + β)Δ

+ Fh(t)Δ − Fp(t)Δ sin xγ

+ (1 + β) β sin xγ

Δ
(
1 + β sin2 xγ

) [−πp ẋγ − Δ2 sin xγ

+Δ2G p(t)
]

− βρ sin xγ cos xγ

1 + β sin2 xγ

[
β

Δ

ρ
sin xγ ẋ2γ − πd ẋd

− qd (1 + xd) Q
(

xd ,
y

ε

)
+ Fd(t)

Δ

ρ

+ Fp(t)
Δ

ρ
cos xγ

]
.

These give the following expression for the function
P1

P1 (x, v, η,w, t; ε) = M−1
1

[
q1s

q2s

]
, (57)
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q1s = −πpvγ − Δ2 sin xγ + Δ2G p(t)

+ Δ sin xγ

1 + β

[
βΔ cos xγ v2γ − πhwh − qhεη

− qdεηQ(xd , η) − ahε3η3 + (1 + β)Δ

+ Fh(t)Δ − Fp(t)Δ sin xγ

]
,

q2s = β
Δ

ρ
sin xγ v2γ − πdvd − qd (1 + xd) Q(xd , η)

+ Fd(t)
Δ

ρ
+ Fp(t)

Δ

ρ
cos xγ ,

with the inverse of M1 given by

M−1
1 = 1

Δ2

[
1 + β −ρΔ cos xγ

−β Δ
ρ
cos xγ

Δ2

1+β

(
1 + β cos2 xγ

)
]

.

The function P2 takes the specific form

P2 (x, v, η,w, t; ε)

= ε

(
1 + β sin2 xγ

1 + β

)(
βΔ cos xγ v2γ − πhwh

− qhεη − qdεηQ(xd , η) − ahε3η3 + (1 + β)Δ

+ Fh(t)Δ − Fp(t)Δ sin xγ

+ (1 + β) β sin xγ

Δ
(
1 + β sin2 xγ

) [−πpvγ − Δ2 sin xγ

+Δ2G p(t)]
− βρ sin xγ cos xγ

1 + β sin2 xγ

[
β

Δ

ρ
sin xγ v2γ − πdvd

− qd (1 + xd) Q(xd , η) + Fd(t)
Δ

ρ

+ Fp(t)
Δ

ρ
cos xγ

])
. (58)

We observe that limε→0 P2 (x, v, η,w, t; ε) ≡ 0,
and therefore assumptions (A1)–(A3) are not satis-
fied without further assumptions on the parameters that
ensure the stiff–soft partition of the coordinates. To this
end, we express the stiffness of the y degree of freedom
by letting

Δ = l

L
= δ

ε
, ρ = D

L
= φ

ε
, qd = ω2

d

ω2
p

= Ω2
d ,

qh = ω2
h

ω2
p

= Ω2
h

ε2
, ah = αh

ε4
,

πh = Ch

ωp M
= μh

ε
, πd = Cd

ωp M
= μd ,

πp = cp

ωpmL2 = cp

ωpm
(

ε
δ
l
)2 = cpδ

2

ωpmε2l2
= μp

ε2
.

(59)

In this parameter range, assumptions (A1)–(A3) are
satisfied, as we show in “Appendix 4”. The reduced
model arising from these calculations is of the form

γ̈ = ω2
p (M + m)

M + m sin2 γ

(
− cp

ω2
pml2

γ̇ − sin γ + f p(t)

mg

)

− ω2
p M cos γ

M + m sin2 γ

(
m

Mω2
p
sin γ γ̇ 2 − Cd

ω2
p Ml

ḋ

− Kd

Mg
d + fd(t)

Mg
+ f p(t)

Mg
cos γ

)
+ O(ε), (60)

d̈ = ω2
p DM

M + m sin2 γ

(
ml

M Dω2
p
sin γ γ̇ 2 − Cd

M Dω2
P

ḋ

− Kdl

MgD
d + fd(t)l

MgD
+ f p(t)l

MgD
cos γ

)

− ω2
p Dm cos γ

M + m sin2 γ

(
− cp

ω2
pm Dl

γ̇ − l

D
sin γ

+ l

D

f p(t)

mg

)
+ O(ε). (61)

We have implemented this model in Mathematica
to show how a general trajectory x(t) of the full sys-
tem is attracted to reduced model trajectories the slow
manifoldMε . A graphical illustration of this behavior
is shown in Fig. 8.

For a numerical illustration of the accuracy of the
reduced model, we choose the following values for the
system parameters:

l = D = 6 m, L = 1 m, M = m = 1 kg,

Kh = 600 N/m, Γh = 0.5 N/m3, Kd = 2 N/m,

Cd = 0.33 · ωp · M kg/s, Ch = 3 · ωp · M kg/s,

cp = 0.33 · ωp · m · L2 (kg · m2)/s, g = 9.81 m/s2,

f p(t) = 0.5 · sin(t) N, fh(t) = fd(t) = 0.5

· sin(3t) N, ε = 1 · 10−8.

We give the full system the initial condition

q0 = (γ0, d0, γ̇0, ḋ0, h0, ḣ0)

= (1.000, 1.200, 0.000, 0.000, 0.08182, 0.005301),

which lies off the slow manifold Mε , then inte-
grate the trajectory starting from this initial condi-
tion in forward time. We track the Euclidean distance
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Reduced Dynamics

(h,h)

(t)

Fig. 8 Illustration of the attracting slow manifold Mε for
mechanical system (56), graphed over the two slow degrees of
freedom xγ and xd and their corresponding velocities. A general
trajectory q(t) is attracted to the slow manifold, synchronizing
exponentially fast with a trajectory of reduced dynamics (dashed
line)

between the fast variables (h(t), ḣ(t)) and the explic-
itly computable slow manifold Mε for the given slow
variables (γ (t), d(t), γ̇ (t), ḋ(t)). When the fast vari-
ables are O(10−5) close to Mε after the time value
t ≥ tε = 15.6 s, we take the point xε(tε) belong-
ing to the full trajectory and use the slow coordinates
(γ (tε), d(tε), γ̇ (tε), ḋ(tε)) of this point as an initial
position for reduced model (60) and (61). Consecu-
tively, we simulate the reduced model in backward and
forward time and compare the results with the results
obtained from the full model (see Figs. 9, 10, 11).

6.2 Two stiffer degrees of freedom

We reconsider here the same mechanical system as
in Sect. 6.1, but assume now that both the d and h
variables represent stiff degrees of freedom, while γ

still describes a softer degree of freedom. In this set-

(a) (b)

Fig. 9 Exponentially fast synchronization of the softer (γ, γ̇ ) coordinates of the full trajectory and of a reduced model trajectory

(b)(a)

Fig. 10 Exponentially fast synchronization of the softer (d, ḋ) coordinates of the full trajectory and of a reduced model trajectory
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Fig. 11 Exponentially fast convergence of the fast coordinate h
along the full trajectory to the same coordinate along a trajectory
of the reduced system

ting, the anticipated slow variable x and fast variable
y = (yd , yh) are defined as

xγ = γ, yd = d, yh = h,

We express the stiffness of the y degree of freedom by
letting

Δ = l

L
= δ

ε
, qh = ω2

h

ω2
p

= Ω2
h

ε2
,

qd = ω2
d

ω2
p

= Ω2
d

ε2
, ah = αh

ε4
,

πh = Ch

ωp M
= μh

ε
, πd = Cd

ωp M
= μd

ε
,

πp = cp

ωpmL2 = cp

ωpm
(

ε
δ
l
)2 = cpδ

2

ωpmε2l2
= μp

ε2
.

(62)

As we show in “Appendix 5”, assumptions (A1)–(A3)
are satisfied in the parameter regime represented by the
above scaling for 0 < ε 	 1. In the scaled variables,
we have

M1 = δ2

ε2 (1 + β)
.

Thus, the mass matrix M1 associated with the slow
degree of freedom is not differentiable at ε = 0. There-
fore, only the more general form (18) of the reduced
model is applicable, giving

ẍ = P1 (x, ẋ, G0(x, ẋ, t), 0, t; 0) + O(ε)

= −μp

δ2
ẋ − sin x + G p(t) + O(ε).

Scaling back to the original time, we conclude that at
leading order, the exact reduced-order model on the

two-dimensional, attracting slowmanifoldMε is given
by

ẍ + μp

δ2
ẋ + sin x = G p(t) + O(ε),

or, equivalently,

ml2 ẍ + cp ẋ + mgl sin x = f p(t)l + O(ε). (63)

As for the example treated in Sect. 6.1, we illustrate
numerically that trajectories of the full system synchro-
nize exponentially fast with those of the reduced-order
model. For the parameter values

l = 6 m, L = 3 m, M = 0.25 kg, m = 0.5 kg,

Kh = 2000 N/m, Γh = 0.5 N/m3, Kd = 280 N/m,

Cd = 3 · ωp · M kg/s, Ch = 3 · ωp · M kg/s,

cp = ωp · m · L2 (kg · m2)/s, g = 9.81 m/s2,

f p(t) = 0.6 · sin(ωpt), fh(t) = fd(t) = 0,

ε = 1 · 10−8,

and the initial condition,

x0 = (γ0, γ̇0, h0, d0, ḣ0, ḋ0)

= (1.000, 0.000, 0.002842, 0.02296, 0.0005551,

−0.002546),

we illustrate the convergence of the trajectory to a tra-
jectory of the reduced model on the slow manifold in
Fig. 12). The target model trajectory was identified as
earlier in the soft–soft–stiff version of the same exam-
ple.

7 Conclusions

We have developed a methodology for exact model
reduction in multi-degree-of-freedom mechanical sys-
tems with softer and stiffer degrees of freedom. This
SFD approach allows for a systematic identification of
parameter regimes inwhich an attracting slowmanifold
exists. On this invariant manifolds, the stiff variables
are enslaved to the remaining softer variables.

We have derived explicit expressions for the slow
manifold and for the first two orders of the reduced
flow on this manifold. The latter formulas provide a
mathematically exact reduced-order model with which
trajectories of the full system synchronize at an a priori
predictable exponential rate. We have also identified a
domain boundary over which the slow manifold gener-
ically loses its stability and hence the dynamics on it no
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Fig. 12 Instantaneous projection of the slow manifold Mε

for the periodically forced, stiff-stiff–soft mechanical system at
t = 20 s. a A trajectory of the full system is launched at the initial
condition x0 = (1.000, 0.000, 0.002842, 0.02296, 0.0005551,
−0.002546) and integrated in forward time. Displayed in red
is the h component of the corresponding full system trajectory

that converges to the slow manifold and synchronizes with the
reduced-order model (dashed), shown up to time tε = 15.6 s.
b Convergence of the horizontal coordinate d (red) to the slow
manifold, synchronizing with the dynamics of the reduced-order
model (dashed). (Color figure online)

longer serves as a reduced-ordermodel for themechan-
ical system.

Slow–fast reduction has previously been carried out
with varying levels of mathematical rigor in several
specific mechanical model problems (see the Intro-
duction for a review). Our contributions here are: (i)
explicit conditions underwhich an attracting slowman-
ifold in guaranteed to exist in a general, multi-degree-
of-freedom mechanical system; (ii) readily applicable
general formulas for reduced-order models on such
manifolds. All these results follow from the application
of classic results from geometric singular perturbation
theory (see, e.g., Fenichel [7], Jones [18]).

We have found that the SFD conditions yield
reduced-order models that satisfy the basic require-
ments (R1)–(R2) we have formulated for a mathemat-
ically exact model reduction procedure. As we has
shown explicitly in Sect. 5, the formal methods of
static condensation and modal derivatives in structural
dynamics can only be justified if the conditions of SFD
are satisfied. When these conditions do not hold, the
reduced-order models produced by these methods are
inaccurate or even qualitatively incorrect.

Importantly, the SFD approach does not require the
explicit identification of eigenfrequencies and normal
modes for a linearized system, which is a numeri-
cally costly undertaking for high-degree-of-freedom
systems. Instead, the SFD can be carried out based on
a general identification of stiffer and softer vibratory
modes, without an explicit decoupling of these modes.

This flexibility for the method enables its application
in structural vibrations problems such as those includ-
ing forced and damped beams (cf. Jain et al. [17] for
a detailed example involving the von Kármán beam
model).

An extension of the SFD methodology to stiff–soft
continuum vibrations described by partial differential
equations should also be possible through an appro-
priate extension of the necessary geometric singular
perturbation results to infinite dimensions (see, e.g.,
Menon and Haller [23]).

Acknowledgements We would like to thank Paolo Tiso,
Daniel Rixen and Shobhit Jain for useful conversations and for
their insights on the subject of this paper.

Appendix 1: Proof of the main result

First-order autonomous form

By the nondegeneracy of M , the matrices M11 and M22

are necessarily invertible, which enables us to split (1)
in the form[

M11 − M12M−1
22 M21

]
ẍ = −F1 − M12M−1

22 F2,[
M22 − M21M−1

11 M12

]
ÿ = −F2 − M21M−1

11 F1.

The nondegeneracy of M also implies that the two
matrices on the left-hand side of this system must be
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Exact model reduction by a slow–fast decomposition 637

invertible, leading to the explicit second-order dynam-
ical system

ẍ = M−1
1

(
x,

y

ε
, t; ε

)
Q1

(
x, ẋ,

y

ε
, ẏ, t; ε

)
,

ÿ = M−1
2

(
x,

y

ε
, t; ε

)
Q2

(
x, ẋ,

y

ε
, ẏ, t; ε

)
, (64)

with Mi and Qi defined in (5).
In order to convert this system into a first-order

autonomous system, we first introduce a phase vari-
able ϕ ∈ C such that

C =

⎧⎪⎪⎨
⎪⎪⎩

S1, Mi , Qi are periodic in t,
T

k, Mi , Qi are quasiperiodic with
k independent frequencies in t,

[a, b], Mi , Qi are aperiodic in t.

We then let

v = ẋ, w = ẏ,

and rewrite Eq. (64) as a first-order autonomous system
on the extended phase space P = R

s × R
s × R

f ×
R

f × C in the form

ẋ = v,

v̇ = M−1
1

(
x,

y

ε
, ϕ; ε

)
Q1

(
x, v,

y

ε
,w, ϕ; ε

)
,

ẏ = w,

ẇ = M−1
2

(
x,

y

ε
, ϕ; ε

)
Q2

(
x, v,

y

ε
,w, ϕ; ε

)
,

ϕ̇ = ω,

where

ω =

⎧⎪⎨
⎪⎩

ω1, C = S1,

(ω1, . . . , ωk) , C = T
k,

1, C = [a, b].

Timescale separation

Up to this point, the splitting q = (x, y) has been
arbitrary. We now seek conditions under which the x-
degrees of freedom serve as coordinates for a reduced-
ordermodel. For such a reduced-ordermodel to capture
effectively the long-term system dynamics, we require
the y variables to become enslaved to the x variables
and to the phase variable ϕ over a timescale that is
an order of magnitude faster than the characteristic
timescale of the reduced-order model (cf. the require-
ment (R2) in the Introduction). To this end, we intro-
duce a characteristic fast timescale τ by letting t = ετ,

with small, non-dimensional parameter 0 < ε 	 1.

Denoting differentiation with respect to τ by prime,
we obtain the rescaled equations

x ′ = εv,

v′ = εM−1
1

(
x,

y

ε
, ϕ; ε

)
Q1

(
x, v,

y

ε
,w, ϕ; ε

)
,

ϕ′ = εω,

y′ = εw,

W ′ = εM−1
2

(
x,

y

ε
, ϕ; ε

)
Q2

(
x, v,

y

ε
,w, ϕ; ε

)
.

(65)

In this new scale, the evolution in the (y, w) vari-
ables should be taking place at an O(1) speed with
respect to ε, whereas the (x, v) variables should expe-
rience an O(ε) rate of change. By the structure of sys-
tem (65), this timescale separation will only arise if
we localize y by letting y = εη. With this scaling, we
obtain the equations

x ′ = εv,

v′ = εM−1
1 (x, η, ϕ; ε) Q1 (x, v, η,w, ϕ; ε) ,

ϕ′ = εω,

η′ = w,

w′ = εM−1
2 (x, η, ϕ; ε) Q2 (x, v, η,w, ϕ; ε) . (66)

To ensure that w also varies at O(1) speeds for small
enough ε, the function εM−1

2 (x, η, ϕ; ε) Q2(x, v, η,

w, ϕ; ε) must have a smooth, O(1) limit as ε → 0.
We, therefore, must require the function

P2 (x, v, η,w, ϕ; ε)

= εM−1
2 (x, η, ϕ; ε) Q2 (x, v, η,w, ϕ; ε)

to have a smooth limit at ε = 0, defined by a smooth
function

P2(x, v, η,w, ϕ; 0) := lim
ε→0

P2 (x, v, η,w, ϕ; ε) (67)

on an open and bounded subset of the extended phase
space P . In order to be able to carry out a perturbation
argument from this limit, we also require that

P1 (x, v, η,w, ϕ; ε) = M−1
1 (x, η, ϕ; ε) Q1 (x, v, η,w, ϕ; ε)

has a similar smooth limit at ε = 0, defined as

P1 (x, v, η,w, ϕ; 0) := lim
ε→0

P1 (x, v, η,w, ϕ; ε) .

With these quantities and assumptions, (66) becomes

x ′ = εv,

v′ = εP1 (x, v, η,w, ϕ; ε) ,

ϕ′ = εω,

η′ = w,

w′ = P2 (x, v, η,w, ϕ; ε) . (68)
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Existence of a critical manifold

We want to ensure the existence of a reduced-order
model in which the (η(t), w(t)) dynamics can be
uniquely expressed, at least for large enough times, as
a function of the (x(t), v(t)) dynamics and the time t .
In geometric terms, this amounts to the existence of an
invariant manifoldMε that is a graph over the (x, v, t)
variables and attracts all nearby solutions of the full
system.

We require our reduced model to be smooth in ε,
which is equivalent to requiring a smooth limitM0 =
limε→0 Mε for the invariant manifold in the ε = 0
limit of system (68). This limiting systemcanbewritten
as

x ′ = 0,

v′ = 0,

ϕ′ = 0,

η′ = w,

w′ = P2 (x, v, η,w, ϕ; 0) . (69)

In this limit, therefore, (x, v, ϕ) ≡ (x0, v0, ϕ0)plays
the role of a constant parameter vector. Any trajectory
of the fast dynamics

η′ = w,

w′ = P2 (x0, v0, η,w, ϕ0; 0) , (70)

therefore, gives rise to a (2s+1) -dimensional invariant
manifold for the full system. Along nontrivial trajecto-
ries of (70), however, the fast (η, v) variables change
and hence are not uniquely enslaved to (x0, v0, ϕ0),
as required for the smooth limit of a reduced-order
model. Consequently, only invariant manifolds arising
from fixed points of (70) can be considered as limits of
reduced-order models.

Such fixed points of (70) form a set

M0 = {(x, v, η,w, ϕ) ∈ P : w = 0,

P2 (x, v, η,w, ϕ; 0) = 0} .

To be a limit of a slow manifold carrying a reduced-
order model,M0 must be a smooth graph over an open
domainD0 ⊂ R

m ×R
m ×C of the space (x, v, t) vari-

ables. By the implicit function theorem, this is equiva-
lent to the requirement that

det
[
∂η P2 (x, v, η, 0, ϕ; 0)] �= 0, (71)

should hold at all points (x, v, η,w, ϕ) ∈ M0. This
condition ensures that if M0 is nonempty, then it is

a 2s + 1 dimensional differentiable manifold that can
locally be expressed as a smooth graph
(

η

w

)
=
(

G0(x, v, ϕ)

0

)
, (x, v, ϕ) ∈ D0 (72)

with the functionG0 : D0 → R
f satisfying the identity

P2 (x, v, G0(x, v, ϕ), 0, ϕ; 0) = 0. (73)

We refer to the part ofM0 satisfying (71) as the critical
manifold associated with the limiting system (69). In
our discussion of assumption (A2), we use the term
critical manifold for the t = const. times sliceM0(t)
of M0.

Stability of M0

The critical manifold must be normally attracting to
persist as an attracting invariant slow manifold in the
full system (68). The stability type ofM0 can be iden-
tified by analyzing the linearization of the fast flow (70)
at the fixed points forming M0.

The stability of the manifold M0 at the fixed point
family (η0, w0) = (G(x0, v0, ϕ0), 0) of the decoupled
equations is governed by the eigenvalues of the Jaco-
bian

J =
[

0 I
∂η P2 ∂w P2

]
(x,v,η,w,t;ε)=(x0,v0,G0(y0,w0,ϕ0),0,ϕ0;0)

.

(74)

The matrix J has eigenvalues with strictly negative
real parts precisely when the fixed point of the linear
vibratory system

u′′ − ∂w P2 (x0, v0, G0(x0, v0, t0), 0, ϕ0; 0) u′

− ∂η P2 (x0, v0, G0(x0, v0, ϕ0), 0, ϕ0; 0) u = 0

(75)

is asymptotically stable for the parameter values
(x0, v0, ϕ0) ∈ D0, which is guaranteed by assump-
tion (A3). In that case, a compact subset of the crit-
ical manifold M0 is a compact normally hyperbolic
invariant manifold with boundary when (x0, v0, ϕ0) is
restricted to a domain with a smooth boundary. (In case
of C = [a, b], one has to select a and b as smooth
functions of (y0, t0) to eliminate non-smooth corners
in ∂M0. This can always be done without loss of gen-
erality.)
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Existence of a slow manifold

Under the above conditions, the results of Fenichel
[7] guarantee for full system (68) the existence of an
attracting slow manifoldMε that is O(ε) Cr -close to
M0, and hence continues to be a graph of the form(

η

w

)
=
(

Gε(x, v, ϕ)

εHε(x, v, ϕ)

)

=
(

G0(x, v, ϕ) + εG1(x, w, ϕ) + O(ε2)

εH0(x, v, ϕ) + ε2H1(x, v, ϕ) + O(ε3)

)
,

(x, v, ϕ) ∈ D0,

with appropriate smooth functions Gε and Hε . The
relation η′ = w in (68) imposes the relationships

d

dτ

[
G0(x, v, ϕ) + εG1(x, v, ϕ) + O(ε2)

]

= εH0(x, v, ϕ) + ε2H1(x, v, ϕ) + O(ε3),

d

dτ

[
εH0(x, v, ϕ) + ε2H1(x, v, ϕ) + O(ε3)

]
= P2 (x, v, Gε(x, v, ϕ), εHε(x, v, ϕ), ϕ; ε) .

Carrying out the differentiation in these two equations
gives(
ε∂x G0 + ε2∂x G1

)
v

+
(
ε∂vG0 + ε2∂vG1

)
P1 (x, v, Gε, εHε, ϕ; ε)

+
(
εω∂ϕG0 + ε2ω∂ϕG1

)
+ O(ε3)

= εH0 + ε2H1 + O(ε3),(
ε2∂x H0 + ε3∂x H1

)
v

+
(
ε2∂v H0 + ε3∂v H1

)
P1 (x, v, Gε, εHε, ϕ; ε)

+
(
ε2ω∂ϕ H0 + ε3ω∂ϕ H1

)
+ O(ε4)

= P2 (x, v, Gε(x, v, ϕ), εHε(x, v, ϕ), ϕ; ε) .

WeTaylor-expand these two equations, then equate the
O(ε) and O(ε2) terms in the first equation, as well as
O(ε) terms in the second equation, to obtain

H0(x, v, ϕ) = ∂x G0(x, v, ϕ)v

+ ∂vG0(x, v, ϕ)P1 (x, v, G0(x, v, ϕ), 0, ϕ; 0)
+ω∂ϕG0(x, v, ϕ),

H1(x, w, ϕ) = ∂x G1(x, v, ϕ)v

+ ∂vG1(x, v, ϕ)P1 (x, v, G0(x, v, ϕ), 0, ϕ; 0)
+ω∂ϕG1(x, v, ϕ)

+ ∂vG0(x, v, ϕ)
(
∂η P1 (x, v, G0(x, v, ϕ), 0, ϕ; 0)

× G1(x, v, ϕ)

+ ∂w P1 (x, v, G0(x, v, ϕ), 0, ϕ; 0) H0(x, v, ϕ)

+ ∂ε P1 (x, v, G0(x, v, ϕ), 0, ϕ; 0)) ,

G1(x, v, ϕ) = − [Dη P2 (x, v, G0(x, v, ϕ), 0, ϕ; 0)]−1

× Dw P2 (x, v, G0(x, v, ϕ), 0, ϕ; 0) H0(x, v, ϕ)

− [
Dη P2 (x, v, G0(x, v, ϕ), 0, ϕ; 0)]−1

× Dε P2 (x, v, G0(x, v, ϕ), 0, ϕ; 0) .

In terms of the original variables, therefore, the slow
manifold satisfies

y = εG0(x, ẋ, t) + ε2G1(x, ẋ, t) + O(ε3),

ẏ = εH0(x, ẋ, t) + ε2H1(x, ẋ, t) + O(ε3),

where the functions H0, G1 and H1 are those listed in
(17).

The reduced flow on the slow manifold

The slow manifold Mε attracts all nearby solutions;
thus, the reduced flow on Mε will serve as the type
of reduced-order model we have been seeking to con-
struct (cf. requirement (R1) in the Introduction). The
reduced equations onMε can be written by restricting
the (x, v, φ) components of our system (68) to Mε ,
which yields

x ′ = εv,

v′ = εP1 (x, v, G0(x, v, ϕ), 0, ϕ; 0)
+ ε2

[
Dη P1 (x, v, G0(x, v, ϕ), 0, ϕ; 0) G1(x, v, ϕ)

+ Dw P1 (x, v, G0(x, v, ϕ), 0, ϕ; 0) H0(x, v, ϕ)

+ Dε P2 (x, v, G0(x, v, ϕ), 0, ϕ; 0)] + O(ε2),

ϕ′ = εω.

In the original set of coordinates, this reduced flow can
be written as in Eq. (18).

Using the definition of P1, we find that if M1(x, G0

(x, ẋ, t), t) has a smooth limit at ε = 0, then the
reduced equation can be multiplied by M1(x, G0(x, ẋ,

t), t) to yield the leading-order equivalent form of (18)
as given in Eq. (19).When necessary, theO(ε) terms in
(19) can also be computed from the formulas we have
given above.

Convergence to the reduced trajectories

By the invariant foliation results of Fenichel [7], for
small enough ε and for motions close enough to the
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critical manifold, the y(t) component of all solutions of
Eq. (1) synchronizes exponentially fast with solutions
of reduced-order model (18).

Specifically, the local stable manifold W s
loc(Mε)

is foliated by an invariant family of class Cr stable
fibers f s(p). This (2s + dim C)-parameter fiber fam-
ily is parametrized by the base points p ∈ Mε of
the fibers. Each fiber is a class Cr−1 manifold whose
dimension is 2 f . The invariance of the fiber family
means that for the flow map Fτ : P → P of system
(68), we have

Fτ
(

f s(p)
) ⊂ f s(Fτ (p))

for all τ > 0. Furthermore, the trajectory of the
reduced flow through a fiber base point p attracts expo-
nentially all trajectories that cross the fiber f s(p).
Specifically, if p = (xR(τ0), vR(τ0), ϕR(τ0)) and
(x(τ0), v(τ0), ϕ(τ0), η(τ0), w(τ0)) ∈ f s(p), then for
all τ values satisfying

(x(τ ), v(τ ), ϕ(τ ), η(τ ), w(τ)) ∈ W s
loc(Mε),

we have the estimate∣∣∣∣∣∣∣∣∣∣

⎛
⎜⎜⎜⎜⎝

x(τ ) − xR(τ )

v(τ ) − vR(τ )

ϕ(τ) − ϕR(τ )

η(τ ) − ηR(τ )

w(τ) − wR(τ )

⎞
⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣

≤ C

∣∣∣∣∣∣∣∣∣∣

⎛
⎜⎜⎜⎜⎝

x(τ0) − xR(τ0)

v(τ0) − vR(τ0)

ϕ(τ0) − ϕR(τ0)

η(τ0) − ηR(τ0)

w(τ0) − wR(τ0)

⎞
⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣
e−Λ(τ−τ0),

τ > τ0. (76)

Here Λ > 0 can be selected as any constant satisfying

max
j∈[1,2 f ], (x,v,ϕ)∈D0

Re λ j (x, v, ϕ) < −Λ < 0,

with λ j (x, v, ϕ), j = 1, . . . , 2 f , denoting the eigen-
values of the Jacobian J , or equivalently, of the asso-
ciated linear system (75). The constant C > 0 depends
on Λ but is independent of the choice of the fiber base
point p and the times τ and τ0.

By the form of system (68), we have |ϕ(τ) − ϕR(τ )|
= |ϕ(τ0) − ϕR(τ0)|. This is only consistent with (76),
if ϕ(τ0) ≡ ϕR(τ0), which implies that the fibers f s(p)

are necessarily flat (i.e, constant) in the coordinate ϕ.

Using this fact in (76) and passing back to the original
coordinates gives

∣∣∣∣∣∣∣∣

⎛
⎜⎜⎝

x(t) − xR(t)
ẋ(t) − ẋR(t)

1
ε

y(t) − 1
ε

yR(t)
ẏ(t) − ẏ(t)

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣

≤ C

∣∣∣∣∣∣∣∣

⎛
⎜⎜⎝

x(t0) − xR(t0)
ẋ(t0) − ẋR(t0)

1
ε

y(t0) − 1
ε

yR(t0)
ẏ(t0) − ẏR(t0)

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣
e− Λ

ε
(t−t0), τ > τ0.

Along the reduced flow on the slow manifold Mε ,
the (y, ẏ) variables are enslaved to the (x, v, t) vari-
ables; thus, we can further rewrite this last inequality
as∣∣∣∣∣∣∣∣

⎛
⎜⎜⎝

x(t) − xR(t)
ẋ(t) − ẋR(t)

1
ε

y(t) − Gε (xR(t), ẋR(t), t)
ẏ(t) − εHε (xR(t), ẋR(t), t)

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣

≤ C

∣∣∣∣∣∣∣∣

⎛
⎜⎜⎝

x(t0) − xR(t0)
ẋ(t0) − ẋR(t0)

1
ε

y(t0) − Gε (xR(t0), ẋR(t0), t)
ẏ(t0) − εHε (xR(t0), ẋR(t0), t)

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣
e− Λ

ε
(t−t0),

τ > τ0.

Applying the triangle inequality to the left-hand side
and using the definition of Gε and Hε on the right-hand
side of this inequality proves formula (21).

The validity of requirements (R1) and (R2)

First, the persistence of inflowing, normally attract-
ing, compact invariant manifolds with boundary (cf.
Fenichel [7]) together with statement (ii) of the Theo-
rem prove that requirement (R1) is satisfied.

Second, formula (21) shows that solutions decay to
the slow manifold Mε(t) at an exponential rate of at
least by −Λ/ε. In contrast, any possible exponential
attraction rate generated alongMε(t)may atmost have
an exponent of the order−K +O(ε) for some constant
K > 0. This follows because Eq. (18) is ε-independent
at leading order, and its higher-order terms are smooth
in ε. For small enough epsilon, we have

−Λ/ε 	 −K + O(ε),

and hence the transverse decay rates to the manifold
are much larger than any possible tangential decay rate
along the manifold. This proves that requirement (R2)
holds for Mε(t) for ε > 0 small enough, completing
the proof of statement (i) of the Theorem.
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Appendix 2: Proof of Proposition 1

We start by noting that, as a consequence of assumption
(30), the graph

η = G0(x, t)

of the critical manifold M0 depends only on the slow
positions x and the time t . Near the unperturbed equi-
librium, M0(t) can therefore be approximated by its
Taylor expansion with respect to x . Specifically, we
have

η = G0(x, t)

= G0(0, t) + ∂x G0(0, t)x

+1

2

(
∂2xx G0(0, t)x

)
x + O

(
|x |3
)

. (77)

Differentiation of the implicit equation P2

(x, G0(x, t), 0, t; 0) = 0 with respect to x gives

∂x P2 + ∂η P2∂x G0 = 0. (78)

Substitution of (77) into(78) and setting x = 0 yields

∂x G0(0, t) = − [∂η P2
]−1

∂x P2

∣∣∣
x=0,η=G(0,t),ẏ=0,ε=0

,

where the inverse of ∂η P2(x, G0(x, t), 0, t; 0) is guar-
anteed to exist by assumption (A3).Differentiating (78)
once more in x gives

∂2xx P2 +
(
2∂2xη P2 + ∂2ηη P2∂x G0

)
∂x G0

+ ∂η P2∂
2
x G0 = 0,

enabling us to express the three-tensor ∂2xx G0(0, t) as

∂2xx G0(0, t) = − [∂η P2
]−1

×
[
∂2xx P2 +

(
2∂2xη P2 + ∂2ηη P2∂x G0

)
∂x G0

]∣∣∣
x=0,η=G(0,t),ẏ=0,ε=0

.

(79)

Therefore, with the help of formulas (30), the critical
manifoldM0 canbewritten near the origin as a smooth,
codimension-2 f graph of the form

M0(t) = {(x, ẋ, η, ẏ, t) ∈ P : η = G0(x, t) = Γ (t)

+Φ(t)x + (Θ(t)x) x + O
(
|x |3
)

, ẏ = 0
}

, (80)

where

P2(0, Γ (t), 0, t; 0) = 0,

Φ(t) = − [∂η P2
]−1

∂x P2

∣∣∣
x=0,η=Γ (t),ẏ=0,ε=0

,

Θ(t) = −1

2

[
∂η P2

]−1
[
∂2xx P2

+
(
2∂2xη P2 + ∂2ηη P2Φ(t)

)
Φ(t)

]∣∣∣
x=0,η=Γ (t),ẏ=0,ε=0

,

(81)

as claimed in statement (i) of the Proposition. These
expressions in (81) can then be used in the reduced-
order models (18)–(19) to obtain more specific local
approximations to the reduced dynamics, in case a
global expression for the critical manifold is not explic-
itly available. Specifically, (18) can be localized near
x = 0 as

ẍ − P1 (x, ẋ, [Γ (t) + Φ(t)x + (Θ(t)x) x] , 0, t; 0)
+O(ε, |x |3) = 0. (82)

Under the further assumptions in statement (ii) of
the Proposition, we have the following simplifications
in formulas (81):

Γ (t) ≡ 0, Φ(t) ≡ 0,

Θ(t) ≡ −1

2

[
∂η P2(0, 0, 0; 0)

]−1
∂2xx P2(0, 0, 0; 0).

(83)

Substituting these quantities into (82) and truncating
the expression forM0(t) at linear and then at quadratic
order proves the leading-order forms of the reduced
equations in statements (iii) and (iv) of the Proposi-
tion, respectively. To obtain the order of the error terms
in these equations, note that if x and y are modal coor-
dinates of the linearized system, then we have

P1(x, ẋ, η, ẏ, t; ε) = P1(x, ẋ, η, 0, t; 0) + O(ε)

= P1(x, ẋ, 0, 0, t; 0) + O(|x | |η|) + O(ε). (84)

Substitution of η = 0+O(|x |2) and η = (Θ(t)x) x +
O(|x |3), respectively, into the O(|x | |η|) term in (84)
then proves the order of the higher-order terms, as listed
in statements (iii) and (iv) of the Proposition.

Appendix 3: Details for Example 8

For the system

ẍ+
(

c1+μ1x2
)

ẋ+k1x + axy + bx3 = 0, x ∈ R,

ÿ + c2 ẏ + k2y + cx2 = 0, y ∈ R, (85)

we consider reduction by static condensation via the
linear change of variables(

x
y

)
= U x̂, U =

(
1
0

)
, x̂ ∈ R. (86)
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Dropping the tilde from x̂ and substituting y = 0 from
(86) into the first equation of (44) gives statically con-
densed model (45).

Next, applying the idea of modal derivatives, we
seek a quadratic invariant manifold of form (32), with
the coefficients computed in the unscaled variables as

Φ = 0,

Θ = −1

2

[
∂y

(
c2 ẏ + k2y + cx2

)]−1

×
[
∂2xx

(
c2 ẏ + k2y + cx2

)]∣∣∣
x=0,y=0,ẏ=0

= − c

k2
. (87)

Substitution of y = Θx2 into the first equation of
(44) gives the modal-derivatives-based reduced-order
model (46), representing only a slight correction to
(45) at cubic order. All this appears reasonable at this
point, with the statically condensed system (45) offer-
ing a leading-order model that is subsequently refined
at cubic order by the modal derivatives approach in
(46).

At the same time, there exists a slow spectral sub-
manifold (SSM), the unique smoothest, nonlinear con-
tinuation of the y = 0 modal subspace of the equi-
librium. This unique, two-dimensional analytic invari-
ant manifold is tangent to the modal subspace of the
x-degree of freedom at the origin (cf. Haller and Pon-
sioen [15]). The slow SSM, therefore, can locally be
written as a two-dimensional invariant graph (y, ẏ) =
(g1(x, ẋ), g2(x, ẋ)) = O

(
x2, x ẋ, ẋ2

)
over (x, ẋ), as

originally envisioned by Shaw and Pierre [25]. Differ-
entiating the general form

y = g1(x, ẋ) = αx2 + βx ẋ + γ ẋ2 + O (3) (88)

of such an invariant graph twice in time, with ẍ substi-
tuted from the first equation of system (44), we obtain

ÿ = −k1(2α − 2γ k1 − βc1)x2

−[2βk1 + c1 (2α − 2γ k1 − βc1)

+2 (β − 2γ c1) k1]x ẋ

+ [(2α − 2γ k1 − βc1) − 2c1 (β − 2γ c1)
]

ẋ2

+O (3) .

A comparison of this differential equation with the
second equation of system (44), with y and ẏ substi-
tuted from (88), leads to the linear system of algebraic
equations

⎛
⎝ k2 − 2k1 k1 (c1 − c2) 2k21
2 (c2 − c1) k2 − 4k1 + c21 − c1c2 2k1 (3c1 − c2)

2 c2 − 3c1 k2 − 2k1 + 4c21 − 2c1c2

⎞
⎠

⎛
⎝ α

β

γ

⎞
⎠ = −

⎛
⎝ c
0
0

⎞
⎠

for the unknown coefficients α, β and γ in expression
(88) of the slow SSM. The solution of this system of
equations is given by

α = − c

D

(
4c41 − 6c31c2 + 2c21c22 + 5c21k2 − c1c2 (2k1 + 3k2)

+ 2c22k1 + 8k21 − 6k1k2 + k22
)
,

β = −2c

D

(
4c1k1 + k2 (c1 − c2) + 2c1c22 − 6c21c2 + 4c31

)
,

γ = −2c

D

(
2c21 − 3c1c2 + c22 + 4k1 − k2

)
, (89)

with

D =
(

c21 − c1c2 + k2
) (

4c21k2 − 8c1c2k1 − 2c1c2k2

+ 4c22k1 + 16k21 − 8k1k2 + k22

)
. (90)

With these coefficients, substitution of (88) into the
first equation of system (44) gives the exact reduced
system on the slow SSM, up to cubic order, in the form

ẍ +
[
c1 + (μ1 + aβ) x2

]
ẋ +

(
k1 + aγ ẋ2

)
x

+ (b + aα) x3 + O (4) = 0.

Substitution of formulas (89) into this last equation
gives final form (47) of the exact reduced model on
the SSM.

Appendix 4: Details for Sect. 6.1

For the parameter range described by scalings (59), we
take the ε → 0 limit in the expressions for P1 and P2

in (57)–(58). We then obtain

P1 (x, v, η, w, t; 0) =
[

p01
p02

]
,

p01 = 1 + β

δ2

(
−μpvγ − δ2 sin xγ + δ2G p(t) (91)

+ δ sin xγ

1 + β

[
βδ cos xγ v2γ − μhw − Ω2

h η − αhη3

+ (1 + β)δ + Fh(t)δ − Fp(t)δ sin xγ

])

− φ

δ
cos xγ

(
β

δ

φ
sin xγ v2γ
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− μdvd − Ω2
d (1 + xd) Q0(xd) + Fd(t)

δ

φ

+ Fp(t)
δ

φ
cos xγ

)
,

p02 = − β

δφ
cos xγ

(
−μpvγ − δ2 sin xγ + δ2G p(t)

+ δ sin xγ

1 + β

[
βδ cos xγ v2γ − μhw − Ω2

h η − αhη3

+ (1 + β)δ + Fh(t)δ − Fp(t)δ sin xγ

])

+ 1

1 + β

(
1 + β cos2 xγ

)(
β

δ

φ
sin xγ v2γ

− μdvd − Ω2
d (1 + xd) Q0(xd) + Fd(t)

δ

φ

+ Fp(t)
δ

φ
cos xγ

)
, (92)

P2 (x, v, η, w, t; 0) =
(
1 + β sin2 xγ

1 + β

)(
βδ cos xγ v2γ

− μhw − Ω2
h η − αhη3 + (1 + β)δ

+ Fh(t)δ − Fp(t)δ sin xγ

+ (1 + β) β sin xγ

δ
(
1 + β sin2 xγ

) [−μpvγ − δ2 sin xγ + δ2G p(t)
]

− βφ sin xγ cos xγ

1 + β sin2 xγ

[
β

δ

φ
sin xγ v2γ

− μdvd − Ω2
d (1 + xd) Q0(xd) + Fd(t)

δ

φ

+ Fp(t)
δ

φ
cos xγ

])
,

where Q0(xd) is defined as

Q0(xd) =
(
1 − 1

1 + xd

)
, xd > −1.

We observe that both P1 and P2 continue to be smooth
in ε at the ε = 0 limit, thereby satisfying assumption
(A1).

For the critical manifold defined through the rela-
tionship η = G0(x, v, t) in assumption (A2), we have
the equation

P2 (x, v, η, 0, t; 0) = 0 ⇐⇒ Ω2
hη

+αhη3 = T (x, v, t),

where

T (x, v, t) = βδ cos xγ v2γ + (1 + β)δ

+ Fh(t)δ − Fp(t)δ sin xγ + (1 + β) β sin xγ

δ
(
1 + β sin2 xγ

)

×
[
−μpvγ − δ2 sin xγ + δ2G p(t)

]

− βφ sin xγ cos xγ

1 + β sin2 xγ

[
β

δ

φ
sin xγ v2γ − μdvd

−Ω2
d (1+xd) Q0(xd)+Fd(t)

δ

φ
+Fp(t)

δ

φ
cos xγ

]
.

Using the cubic formula, the real root of this equation
can be expressed explicitly as

η = G0(x, v, t)

= 3

√√√√T (x, v, t)

2αh
+
√

T 2(x, v, t)

4α2
h

+ Ω6
h

27α3
h

− 3

√√√√−T (x, v, t)

2α
+
√

T 2(x, v, t)

4α2
h

+ Ω6
h

27α3
h

,

assuming that Ω2
h and αh are greater than zero.

Oscillatory system (9) determining the stability of
the critical manifold takes the specific form

A(x, v, t) = −∂w P2 (x, v, G0(x, v, t), 0, t; 0)

=
(
1 + β sin2 xγ

1 + β

)
μh, (93)

B(x, v, t) = −∂η P2 (x, v, G0(x, v, t), 0, t; 0)

=
(
1 + β sin2 xγ

1 + β

)(
Ω2

h + 3αhG2
0(x, v, t)

)
.

(94)

The equilibrium solution of the unforced linear oscil-
latory system (9) is, therefore, always asymptotically
stable, given that

μh > 0, β > 0, Ω2
h > 0, αh > 0.

We conclude that assumptions (A1)–(A3) hold, and
hence a global reduced-order model (18) exists over
the slow variables in the specific form

ẍ =
⎡
⎣

1+β

δ2
(
1+β sin2 xγ

)A − φ cos xγ

δ
(
1+β sin2 xγ

)B
1

1+β sin2 xγ
B − β cos xγ

φδ
(
1+β sin2 xγ

)A

⎤
⎦+ O(ε),

where

A(xγ , ẋγ ) = −μp ẋγ − δ2 sin xγ + δ2G p(t),

123



644 G. Haller, S. Ponsioen

B(xγ , xd , ẋγ ) = β
δ

φ
sin xγ ẋ2γ − μd ẋγ − Ω2

d xd

+ Fd(t)
δ

φ
+ Fp(t)

δ

φ
cos xγ .

Scaling back to the original time and substituting the
physical parameters back into the non-dimensionalized
equations, we obtain that the exact reduced-order
model on the slow manifold of form (60)–(61).

Appendix 5: Details for Sect. 6.2

Here we verify assumptions (A1)–(A3) in detail for the
fast–fast–slow setting treated in Sect. 6.2. To make the
horizontal spring stiff, we choose its length as D =
L , so that the original equations of motion (54) now
become

ml2γ̈ − ml sin γ ḧ + ml cos γ d̈ + cpγ̇

+ mgl sin γ = f p(t)l,

(M + m)ḧ − ml sin γ γ̈ − ml cos γ γ̇ 2 + Chḣ

+ Khh + Kd Q(d, h)h + Γhh3 = (M + m)g

+ fh(t) − f p(t) sin γ,

(M + m)d̈ + ml cos γ γ̈ − ml sin γ γ̇ 2 + Cdḋ

+ Kd (L + d) Q(d, h) = fd(t) + f p(t) cos γ,

with

Q(d, h) =
(
1 − L√

(L + d)2 + h2

)
. (95)

The linearized oscillation frequencies of the uncou-
pled springs and pendulum remain the same as in (55).
We adopt the same scaling as in Sect. 6.1, except thatwe
now scale the d coordinate with the unstretched length
L of the vertical spring. Denoting differentiation with
respect to the new time t̃ still by a dot, then dropping
all the tildes, we obtain the non-dimensionalized equa-
tions of motions

Δ2γ̈ − Δ sin γ ḧ + Δ cos γ d̈ + πpγ̇

+Δ2 sin γ = Δ2G p(t),

(1 + β)ḧ − βΔ sin γ γ̈ − βΔ cos γ γ̇ 2 + πh ḣ + qhh

+ qd hQ(d, h) + ahh3 = (1 + β)Δ + Fh(t)Δ

− Fp(t)Δ sin γ,

(1 + β)d̈ + βΔ cos γ γ̈ − βΔ sin γ γ̇ 2 + πd ḋ

+ qd (1 + d) Q(d, h) = Fd(t)Δ + Fp(t)Δ cos γ.

In the notation used for system (1), we now have

M(q, t; ε) =
⎛
⎝ Δ2 −Δ sin x Δ cos x

−βΔ sin x 1 + β 0
βΔ cos x 0 1 + β

⎞
⎠ ,

F(q, q̇, t; ε)

=

⎛
⎜⎜⎜⎜⎝

−πp ẋ − Δ2 sin x + Δ2G p(t)

βΔ cos x ẋ2 − πh ẏh − qhε
yh
ε

− qdε
yh
ε

Q(
yd
ε

,
yh
ε

) − ahε3
( yh

ε

)3
+(1 + β)Δ + Fh(t)Δ − Fp(t)Δ sin x

βΔ sin x ẋ2 − πd ẏd − qd
(
1 + ε

yd
ε

)
Q(

yd
ε

,
yh
ε

) + Fd(t)Δ + Fp(t)Δ cos x

⎞
⎟⎟⎟⎟⎠ ,

with the parameter ε > 0 yet to be determined based
on the assumptions of the SFD approach. Note that the
mass matrix above is not symmetric due to the scalings
we have employed, but it is, nevertheless, nonsingular,
as we generally assume in this paper.

With the above quantities at hand, we obtain the
modified mass matrices Mi and the forcing terms Qi

defined in (5) in the specific form

M1 = M11 − M12M−1
22 M21 = Δ2

1 + β
,

M2 = M22 − M21M−1
11 M12

=
(
1 + β cos2 x β sin x cos x
β sin x cos x 1 + β sin2 x

)
,

Q1 = F1 − M12M−1
22 F2 = −πp ẋ − Δ2 sin x

+Δ2G p(t) + Δ

1 + β
sin x

[
βΔ cos x ẋ2 − πh ẏh

− qhε
yh

ε
− qdε

yh

ε
Q
( yd

ε
,

yh

ε

)
− ahε3

( yh

ε

)3

+ (1 + β)Δ + Fh(t)Δ − Fp(t)Δ sin x

]

− Δ

1 + β
cos x

[
βΔ sin x ẋ2 − πd ẏd

− qd

(
1 + ε

yd

ε

)
Q
( yd

ε
,

yh

ε

)
+ Fd(t)Δ

+ Fp(t)Δ cos x

]
,

123



Exact model reduction by a slow–fast decomposition 645

Q2 = F2 − M21M−1
11 F1 =

⎡
⎢⎢⎢⎣

βΔ cos x ẋ2 − πh ẏh − qhε
yh
ε

− qdε
yh
ε

Q(
yd
ε

,
yh
ε

) − ahε3
( yh

ε

)3 + (1 + β)Δ

+ Fh(t)Δ − Fp(t)Δ sin x − β
Δ

πp sin x ẋ − βΔ sin2 x + βΔ sin xG p(t)

βΔ sin x ẋ2 − πd ẏd − qd
(
1 + ε

yd
ε

)
Q(

yd
ε

,
yh
ε

) + Fd(t)Δ + Fp(t)Δ cos x
+ β

Δ
πp cos x ẋ + βΔ sin x cos x − βΔ cos xG p(t)

⎤
⎥⎥⎥⎦ .

We therefore obtain

P1 (x, v, η,w, t; ε) = 1 + β

Δ2

[
−πpv − Δ2 sin x

+Δ2G p(t) + Δ

1 + β
sin x

[
βΔ cos xv2 − πhwh

− qhεηh − qdεηh Q(ηd , ηh) − ahε3η3h

+ (1 + β)Δ + Fh(t)Δ − Fp(t)Δ sin x

]

− Δ

1 + β
cos x

[
βΔ sin xv2 − πdwd

− qd (1 + εηd) Q(ηd , ηh) + Fd(t)Δ + Fp(t)Δ cos x

]]
,

P2 (x, v, η,w, t; ε) = εM−1
2

⎡
⎢⎢⎢⎢⎣

βΔ cos xv2 − πhwh − qhεηh − qdεηh Q(ηd , ηh) − ahε3η3h + (1 + β)Δ

+ Fh(t)Δ − Fp(t)Δ sin x − β
Δ

πp sin xv − βΔ sin2 x + βΔ sin xG p(t)

βΔ sin xv2 − πdwd − qd (1 + εηd) Q(ηd , ηh) + Fd(t)Δ + Fp(t)Δ cos x
+ β

Δ
πp cos xv + βΔ sin x cos x − βΔ cos xG p(t)

⎤
⎥⎥⎥⎥⎦ ,

where M−1
2 is equal to

M−1
2 = 1

1 + β

[
1 + β sin2 x −β sin x cos x

−β sin x cos x 1 + β cos2 x

]
.

Recall that ε > 0 has been a completely arbitrary
small parameter so far. We now need to define ε in a
way that assumptions (A1)–(A3) are satisfied. Since

at present we have limε→0 P2 (x, v, η,w, t; ε) ≡ 0,,
these assumptions will not hold. We can only satisfy
(A1)–(A3) by making the system parameters appropri-
ate functions of ε.

With the parameter choices listed in (62), we have

P1 (x, v, η,w, t; ε) = 1 + β

δ2

[
−μpv − δ2 sin x

+ δ2G p(t) + δ

1 + β
sin x

[
βδ cos xv2 − μhwh

−Ω2
h ηh − Ω2

d ηh Q(ηd , ηh) − αhη3h + (1 + β)δ

+ Fh(t)δ − Fp(t)δ sin x

]

− δ

1+β
cos x

[
βδ sin xv2−μdwd − Ω2

d

ε
(1 + εηd)

× Q(ηd , ηh) + Fd(t)δ + Fp(t)δ cos x

]]
,

P2 (x, v, η,w, t; ε) = M−1
2

⎡
⎢⎢⎢⎢⎢⎣

βδ cos xv2 − μhwh − Ω2
hηh − Ω2

d ηh Q(ηd , ηh) − αhη3h + (1 + β)δ

+Fh(t)δ − Fp(t)δ sin x − β
δ
μp sin xv − βδ sin2 x + βδ sin xG p(t)

βδ sin xv2 − μdwd − Ω2
d

ε
(1 + εηd) Q(ηd , ηh) + Fd(t)δ + Fp(t)δ cos x

+β
δ
μp cos xv + βδ sin x cos x − βδ cos xG p(t)

⎤
⎥⎥⎥⎥⎥⎦

.

where M−1
2 remains unchanged.
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Noting that

lim
ε→0

Ω2
d

ε
(1 + εηd) Q(ηd , ηh) = lim

ε→0

Ω2
d

ε
(1 + εηd)

(
1 − 1√

(1 + εηd)2 + (εηh)2

)

= lim
ε→0

Ω2
d (1 + εηd)

(√
(1 + εηd)2 + (εηh)2 − 1

)

ε
√

(1 + εηd)2 + (εηh)2
= lim

ε→0

f (ε)

g(ε)
= lim

ε→0

∂ε f (ε)

∂εg(ε)

= lim
ε→0

Ω2
d ηd

(√
(1 + εηd) 2 + (εηh)2 − 1

)
+ Ω2

d (1 + εηd)

((
(1 + εηd)ηd + εη2h

) (
(1 + εηd)2 + (εηh)2

)− 1
2

)

√
(1 + εηd)2 + (εηh)2 + ε

(
(1 + εηd)ηd + εη2h

) (
(1 + εηd)2 + (εηh)2

)− 1
2

= Ω2
d ηd ,

we conclude that both P1 and P2 continue to be smooth
in ε at the ε = 0 limit, thereby satisfying assumption
(A1).

For the critical manifold defined through the rela-
tionship η = G0(x, v, t) in assumption (A2), we have
the equations

P2 (x, v, η, 0, t; 0) = M−1
2

⎡
⎢⎢⎢⎢⎣

βδ cos xv2 − Ω2
hηh − αhη3h + (1 + β)δ + Fh(t)δ

−Fp(t)δ sin x − β
δ
μp sin xv − βδ sin2 x + βδ sin xG p(t)

βδ sin xv2 − Ω2
d ηd + Fd(t)δ + Fp(t)δ cos x

+β
δ
μp cos xv + βδ sin x cos x − βδ cos xG p(t)

⎤
⎥⎥⎥⎥⎦ =

[
0
0

]
.

Since M−1
2 is invertible, the critical manifold can be

found by solving the following equations for ηh and
ηd :

Ω2
h ηh + αhη3h = Th(x, v, t) = βδ cos xv2

+ (1 + β)δ + Fh(t)δ − Fp(t)δ sin x

− β

δ
μp sin xv − βδ sin2 x + βδ sin xG p(t),

Ω2
d ηd = Td(x, v, t) = βδ sin xv2 + Fd(t)δ

+ Fp(t)δ cos x + β

δ
μp cos xv + βδ sin x cos x

−βδ cos xG p(t).

The real roots of these two equations can be expressed
explicitly as

ηh = 3

√√√√Th(x, v, t)

2αh
+
√

T 2
h (x, v, t)

4α2
h

+ Ω6
h

27α3
h

− 3

√√√√−Th(x, v, t)

2α
+
√

T 2
h (x, v, t)

4α2
h

+ Ω6
h

27α3
h

,

ηd = Td(x, v, t)

Ω2
d

,

assuming that Ω2
h ,Ω2

d and αh are greater than zero.
The stability of this critical manifold is determined by
the associated oscillatory system (9), whose coefficient
matrices now take the specific form

A(x, v, t) = −∂w P2 (x, v, G0(x, v, t), 0, t; 0)
= 1

1 + β

[
1 + β sin2 x −β sin x cos x

−β sin x cos x 1 + β cos2 x

] [
μh 0
0 μd

]
,

B(x, v, t) = −∂η P2 (x, v, G0(x, v, t), 0, t; 0)
= 1

1 + β

[
1 + β sin2 x −β sin x cos x

−β sin x cos x 1 + β cos2 x

]

×
[

Ω2
h + 3αhη2h 0

0 Ω2
d

]
.

Consequently, the equilibrium solution of the unforced
linear oscillatory system (9) is always asymptotically
stable, given that
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Exact model reduction by a slow–fast decomposition 647

μh >0, μd >0 β > 0, Ω2
h >0, Ω2

d >0, αh > 0.

We conclude that assumptions (A1)–(A3) hold, and
hence a global reduced-order model exists over the
softer variables (x, v, t) ∈ D0 = R × R × S1.
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