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In a nonlinear oscillatory system, spectral
submanifolds (SSMs) are the smoothest invariant
manifolds tangent to linear modal subspaces of
an equilibrium. Amplitude–frequency plots of the
dynamics on SSMs provide the classic backbone
curves sought in experimental nonlinear model
identification. We develop here, a methodology to
compute analytically both the shape of SSMs and
their corresponding backbone curves from a data-
assimilating model fitted to experimental vibration
signals. This model identification utilizes Taken’s
delay-embedding theorem, as well as a least square
fit to the Taylor expansion of the sampling map
associated with that embedding. The SSMs are
then constructed for the sampling map using the
parametrization method for invariant manifolds,
which assumes that the manifold is an embedding of,
rather than a graph over, a spectral subspace. Using
examples of both synthetic and real experimental
data, we demonstrate that this approach reproduces
backbone curves with high accuracy.

1. Introduction
Modal decomposition into normal modes is a powerful
tool in linear system identification [1], but remains

2017 The Authors. Published by the Royal Society under the terms of the
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inapplicable to nonlinear systems due to the lack of a superposition principle. Various nonlinear
normal mode (NNM) concepts nevertheless offer a conceptual simplification in the description of
small-amplitude nonlinear vibrations.

For conservative oscillatory systems with no resonance, the Lyapunov subcentre-manifold
theorem [2] guarantees the existence of a unique, analytic surface of periodic orbits that is tangent
to any selected two-dimensional modal subspace (or eigenspace) of the linearized system at the
equilibrium. Each periodic orbit in such a subcentre manifold is an NNM by the classic definition
of Rosenberg [3]. By contrast, Shaw & Pierre [4] call the subcentre manifold itself an NNM.

Shaw & Pierre [4] also extend the latter view to dissipative systems, envisioning NNMs as
invariant manifolds tangent to modal subspaces of an equilibrium point (see the reviews in
[5–9]). As observed recently, however, by multiple authors [10–12], such invariant manifolds are
non-unique even for linear systems, let alone for nonlinear ones. Formal Taylor expansions and
operational numerical procedures do nevertheless yield approximate invariant surfaces in most
problems. This effectiveness of the Shaw–Pierre approach has inspired its formal extension to
invariant manifolds modelled over multiple modes [13], as well as to time-dependent invariant
manifolds under external harmonic forcing [14,15].

In a recent mathematical treatment, Haller & Ponsioen [12] unites the Rosenberg and Shaw–
Pierre NNM concepts for dissipative systems under possible time-dependent forcing. In this
setting, a NNM is a near-equilibrium oscillation with finitely many frequencies. This NNM
concept includes the trivial case of an equilibrium with no (i.e. zero) oscillation frequencies;
Rosenberg’s case of a periodic orbit; and the case of a quasi-periodic oscillation with finitely
many rationally independent frequencies. Haller & Ponsioen [12] then define a SSM as the
smoothest invariant manifold tangent to a spectral subbundle along an NNM. For a trivial
NNM (equilibrium), a spectral subbundle is a modal subspace of the linearized system at
the equilibrium, and hence an SSM is the smoothest Shaw–Pierre-type invariant manifold
tangent to this modal subspace. Similarly, for periodic or quasi-periodic NNMs, an SSM is the
smoothest invariant manifold among those sought formally in time-dependent extensions of the
Shaw–Pierre surfaces (figure 1).

Here, we adopt the above distinction between NNMs and SSMs and restrict our attention to
SSMs of trivial NNMs (i.e. zero-amplitude periodic orbits). Even in this simplest setting, it is not
immediate that a single smoothest invariant manifold tangent to a modal subspace of the fixed
point actually exists. This question, however, is positively answered under certain conditions by
the abstract invariant manifold results of Cabré et al. [16], as explained by Haller & Ponsioen
[12]. These results also provide a computationally efficient way of computing SSMs using the
parametrization method (cf. [17] for a general introduction).

The reduced dynamics on a single-mode SSM gives an exact nonlinear extension of the linear
dynamics of the modal subspace to which the SSM is tangent. This extension is characterized by
a backbone curve, i.e. a graph expressing the instantaneous vibration amplitude as a function of the
instantaneous vibration frequency along the SSM.

Without specific concern for SSMs, backbone curves have been approximated operationally in
a number of numerical studies. One approach assumes that the mechanical system is conservative
apart from a weak damping term that is a linear (or at least odd), position-independent function
of the velocities. In such a system, a periodic forcing producing a 90◦ out-of-phase response
preserves exactly a periodic orbit (i.e. Rosenberg’s NNM) of the conservative limit [18,19]. The
systematic construction of external forcing that yields the required 90◦ phase lag for various
frequencies is usually referred to as the force appropriation method. In practice, force appropriation
involves a tedious tuning process that also suffers from unintended interactions between a shaker
and the nonlinear system.

To expedite the backbone curve construction, one may locate a single high-amplitude periodic
NNM from force appropriation, then turn off the forcing, and identify, by signal processing, the
instantaneous amplitude–frequency relation of the decaying vibration as the backbone curve.
Usually referred to as the resonance decay method, this process tacitly assumes that the decaying
vibrations closely follow a Lyapunov subcentre manifold of the conservative limit. In our
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Figure 1. The three main types of NNMs (trivial, periodic and quasi-periodic) and their corresponding SSMs (autonomous,
periodic and quasi-periodic). The NNMs are, or are born out of perturbations of, a fixed point. The SSMs are, by contrast, the
smoothest invariantmanifolds tangent to a subbundle along theNNMwhose fibres are close to a specificmodal subspace Ej1 ,...,jq
of the linearized system. Here, the indices j1, . . . , jq refer to an arbitrary selection of q two-dimensionalmodal subspaces of the
linearized system (cf. [12] for more details). (Online version in colour.)

terminology, the assumption is that the analytic subcentre manifold of the conservative limit
perturbs smoothly to a unique SSM under small enough damping. While this statement seems
exceedingly difficult to establish mathematically, it appears to hold true for small enough viscous
damping [18,20]. Therefore, under weak viscous damping, the resonance decay approach gives
consistent results for SSMs, provided that the decaying vibrations are close to the (yet unknown)
SSM. Small errors in this initialization are expected to be persistent for fast SSMs, i.e. SSMs tangent
to the modal subspaces with higher damping. This is because the off-SSM components (errors) in
the initial conditions decay much slower than the in-SSM components (useful signal), which adds
substantial inaccuracy to the backbone curve construction.

A third approach to backbone-curve construction uses time-dependent normal forms to
construct approximate reduced-order nonlinear models of the system near each natural
frequency. The backbone curve is then obtained approximately by the method of harmonic
balance applied to the reduced model under resonant parametric forcing [10]. An advantage of
this method is its ability to deal with internal resonances, producing intricate multi-dimensional
backbone surfaces. The underlying assumption for all this is that the higher-order normal form
terms coupling the reduced model to the remaining degrees of freedom are small, and that the
oscillations have small enough amplitudes for the harmonic balance method to be reasonably
accurate. A further important assumption is that an exact nonlinear model for the system is
available for the purposes of computing a normal form. This tends to limit the practical use of this
approach to simple geometries and materials.

In summary, several methods for numerical or experimental backbone-curve construction
are available, but all make assumptions limiting their range of applicability. These assumptions
include small, position-independent and linear viscous damping; small enough oscillation
amplitudes; an accurate initial knowledge of the SSM; and yet unproven results on the smooth
persistence of Lyapunov subcentre manifolds as SSMs under non-zero damping.

Here, we develop a backbone-curve identification method that addresses most of the above
challenges. We infer backbone curves directly from the dynamics on the SSM, without making
any assumption on the type and magnitude of the damping, or relying on any (yet unproven)
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relation between dissipative NNMs and the Lyapunov subcentre manifold of the conservative
limit. We focus on SSMs of equilibria and hence assume no external forcing throughout the
paper. As input, we assume that tracks of decaying vibration data are available in the vicinity
of N natural frequencies. We simultaneously assimilate all these data into a nonlinear discrete
mapping model of the near-equilibrium dynamics of the system. We then construct backbone
curves analytically from the nonlinear dynamics on the SSMs of this discrete mapping.

The term resonance in this paper will always refer to algebraic conditions among eigenvalues
of the equilibrium, and hence is unrelated to external forcing. Specifically, an internal resonance
will refer to integer linear combinations of eigenvalues inside a spectral subspace E tangent to an
SSM through a fixed point. Similarly, an external resonance will refer to integer linear combinations
of eigenvalues inside a spectral subspace E with eigenvalues outside E . External resonance
conditions turn out to determine the existence of an SSM, while internal resonances dictate the
dynamics within the SSM, and hence govern the form of the backbone curve associated with
the SSM.

We illustrate the generality and accuracy of this approach on two examples. Our first example
is a two-degree-of-freedom nonlinear mechanical system, for which we perform both an analytic
and a data-assimilating construction of the backbone curves for comparison. Our second example
is a clamped–clamped beam experiment [21], in which we determine the first three SSMs
simultaneously from measurements of decaying vibration signals.

2. Set-up
We start with an n-degree of freedom, autonomous mechanical system of the general form

M(q)q̈ − f (q, q̇) = 0, f (0, 0) = 0, (2.1)

where the mass matrix M(q) ∈ R
n×n and its inverse M−1(q) are of class Cr, with r ≥ 1, in the

generalized coordinate vector q ∈ R
n. The forcing vector f (q) ∈ R

n is also Cr in its arguments,
containing all conservative and non-conservative autonomous forces, both linear and nonlinear.

Beyond taking non-negative integer values, the smoothness parameter r is also allowed to
be r = ∞ (arbitrarily many times differentiable functions) or r = a (analytic functions, i.e. C∞
functions with a convergent Taylor expansion in a complex neighbourhood of (q, q̇) = (0, 0)). The
degree of freedom n ≥ 1 is allowed to be arbitrarily high and may also be in principle infinity
(continuum vibrations), although some of our assertions about properties of the solutions would
need to be verified on a case-by-case basis in the infinite-dimensional setting. By the formulation
in (2.1), q ≡ 0 is an equilibrium point for the system.

The equivalent first-order form of the differential equation (2.1) is obtained by letting x =
(q, q̇) ∈ R

2n, which leads to

ẋ = F (x), F (0) = 0, F (x) =
(

q̇
M−1(q)f (q, q̇)

)
, (2.2)

where F (x) ∈ R
2n is Cr in its arguments. The solutions x(t) of (2.2) give rise to the flow map

Ξ t : x0 �→ x(t),

where x0 = x(0).
The linearization of (2.2) at the equilibrium point x = 0 is given by

ẋ = Ax, A = DF (0), (2.3)

where symbol D stands for differentiation, We assume that A has n pairs of complex conjugate
eigenvalues λ1, λ̄1, . . . , λn, λ̄n, satisfying

Reλn ≤ · · · ≤ Re λ1 < 0, (2.4)
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and hence the equilibrium point is linearly asymptotically stable. This context is relevant for
underdamped structural vibrations, in which the nonlinear system (2.1) is known to have a stable
equilibrium, but the exact nature of its nonlinearities is unknown.

Note that vanishing linearized frequencies (i.e. rigid-body modes for the linearized system in
the absence of damping) pose no problem for our forthcoming analysis, as long as these modes
are linearly damped, as ensured by our main assumption (2.4).

3. Sampled nonlinear vibrations
To reduce the complexity of the flow mapΞ t in our analysis, we will focus on temporally sampled
approximations to Ξ t. Iterating such discrete approximations, one can still reproduce the main
features of the nonlinear dynamics at regular time intervals. Constructing the sampled dynamics
via a stroboscopic (or Poincaré) map is, however, only feasible when the full dynamical system
(2.1) is precisely known, and hence trajectories from arbitrary initial conditions can be generated.
In practice, this is generally not the case.

Instead, we seek to reconstruct a sampled representation of Ξ t from a limited number of
observations of trajectories. The scalar observable along trajectories can be, for instance, a position
or a velocity coordinate of a certain material point of the mechanical system (2.1). We denote this
observable by ϕ(x) : R

2n → R, i.e. as a scalar function of the state variable x alone. We then build
a new state vector ξ ∈ R

2ν out of 2ν subsequent observations along trajectories of (2.1) by letting

ξ =Φ(x), Φ(x) := (ϕ(x),ϕ(ΞT(x)), . . . ,ϕ(Ξ2ν−1
T (x))) ∈ R

2ν , ν ≥ 1. (3.1)

We have selected the dimension of ξ to be even (i.e. 2ν) to ensure basic spectral compatibility
between the dynamics of ξ and the dynamics of x, as discussed in more detail below.

A sampling map F can be defined as the discrete mapping advancing the current 2ν
observations by one, i.e. from the observation vector Φ(x) to the observation vector Φ(ΞT(x)).
Specifically, we define the mapping F : R

2ν → R
2ν via the relation

ξ k+1 := F(ξ k) = Fk(ξ0), k ∈ N, ξ0 =Φ(x0), (3.2)

or, equivalently, as
Φ ◦ ΞT = F ◦Φ. (3.3)

By construction, the x = 0 equilibrium point of system (2.1) is mapped into a fixed point ξ0 =
Φ(0) of the sampling map F under Φ. If necessary, we shift the ξ coordinates as ξ → ξ − ξ0 to
achieve ξ0 = 0. Therefore, without loss of generality, we may assume

F(0) = 0. (3.4)

As a consequence, whenever ϕ ∈ Cr holds, a Taylor expansion of F at the origin must be of the form

F(x) =
r∑

|m|=1

amξ
m1
1 · · · · · ξm2ν

2ν + o(|x|r) =
r∑

|m|=1

amξ
m + o(|x|r) (3.5)

for appropriate coefficient vectors am ∈ R
2ν and integer index vector m = (m1, . . . , m2ν ) ∈ N

2ν ,
whose norm we measure as |m| =∑2ν

i=1 mi. We have used here the short-hand notation ξm =
ξ

m1
1 · · · · · ξm2ν

2ν .

4. Delay embedding
The definition (3.2) does not immediately clarify the relation between the dynamics of the flow
mapΞT and the dynamics of the sampling map F. The Takens Embedding Theorem [22], however,
guarantees that such a relationship exists on invariant manifolds of generic flow mapsΞT, at least
for generic observables ϕ, as long as the sample length 2ν is long enough.

Specifically, if W is a compact, d-dimensional inflowing-invariant manifold [23] of system (2.1)
and 2ν ≥ 2d + 1 holds, then the set of function pairs (ΞT,ϕ) for which Φ(W) is diffeomorphic to
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W is open and dense in the product space Dr(W) × Cr(W, R). Here, Dr(W) denotes the space of Cr

diffeomorphisms of W, and Cr(W, R) denotes the space of Cr scalar functions defined on W, with
both spaces endowed with the Cr topology.

Takens’s theorem can further be strengthened [24,25] when ΞT has only a finite number
of periodic orbits of periods less than 2ν, with all periodic orbits admitting distinct Floquet
multipliers. In this case, for any ΞT, there is an open and dense set of observables ϕ ∈ Cr(W, R)
such that Φ is an embedding of W into R

2ν . This version of the theorem is particularly helpful in
our setting, as close enough to its asymptotically stable equilibrium at x = 0, the flow mapΞT will
have no periodic orbits. Therefore, it is enough for us to require the observable ϕ to be generic,
without having to assume anything further forΞT. This simplification holds true on any extended
neighbourhood of the origin that has the required low number of nondegenerate periodic orbits
discussed above.

For such generic observables, Φ(W) ⊂ R
2ν is a diffeomorphic copy of the invariant manifold

W ⊂ R
2n. Importantly, Φ(W) is then an invariant manifold for the discrete dynamical system (3.2)

by definition. On this invariant manifold, the map F is conjugate to the flow map ΞT by formula
(3.3), which can now be rewritten as

F =Φ ◦ ΞT ◦Φ−1 :Φ(W) →Φ(W) (4.1)

given that Φ is a diffeomorphism onto its image.
Consequently, any coordinate-independent dynamical feature of ΞT will be shared by the

mapping F. This will be a crucial point in our strategy to build a faithful reduced-order model
for system (2.1). Specifically, we will use an experimentally observed scalar ϕ to approximate the
Taylor expansion (3.5) of the mapping F.

Our focus here is the reconstruction of the dynamics of F on two-dimensional invariant
manifolds W tangent to two-dimensional modal subspaces of the linearized flow map DΞT(0) at
the equilibrium point. We thus have d = 2, and hence the minimal dimension for the embedding
space R

2ν required by Takens’s theorem is 2ν ≥ 5, implying ν ≥ 3 (For our first example of a
two-degree-of-freedom model in §9a, a comparison with exact analytic computation shows that
a reconstruction with ν = 2 already suffices, but this cannot be generally guaranteed.)

The tangent space T0W of W at the origin is a two-dimensional invariant subspace for DΞT(0).
Specifically, T0W is the modal subspace corresponding to a pair of complex conjugate eigenvalues
(μ�, μ̄�) = (eλ�T, eλ̄�T), where (λ�, λ̄�) are eigenvalues of A, ordered as in (2.4). The conjugacy
relationship (4.1) and formula (3.4) then imply that (μ�, μ̄�) are also eigenvalues of the linearized
sampling map DF(0) at ξ = 0, i.e. we have

{μ�, μ̄�} = {eλ�T, eλ̄�T} ⊂ Spect{DF(0)}, (4.2)

where Spect{DF(0)} denotes the spectrum (i.e. set of eigenvalues) of the Jacobian matrix DF(0).

5. Spectral submanifolds of the sampling map
The linearized sampled dynamics near the fixed point ξ = 0 is governed by the Jacobian A = DF(0)
of the sampling map F. We assume that this Jacobian is diagonalizable and collect its complex
eigenvectors in a matrix V ∈ C

2ν×2ν . Introducing the new coordinate y ∈ C
2ν via the relation

ξ = Vy, (5.1)

we obtain the transformed form of (3.2) as

yk+1 =Λyk + G(yk), Λ= diag(μ1,μ2, . . . ,μ2ν ) = V−1AV

and μ2l = μ̄2l−1, l = 1, . . . , ν,

}
(5.2)

where G(y) are nonlinear coupling terms with DG(0) = 0. If, specifically, the lth linear mode of
system (2.1) is brought to the standard form

η̈l + 2ζlωlη̇l + ω2
l ηl = 0,
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with the damping ratio ζl < 1 and undamped natural frequency ωl ∈ R, then we obtain

λl, λ̄l = −ζlωl ± i
√

1 − ζ 2
l ωl

and hence the eigenvalues of A and Λ can be expressed as

μl, μ̄l = e−ζlωlTe±i
√

1−ζ 2
l ωlT. (5.3)

We recall that if the sampling map F was constructed from observables along a two-
dimensional invariant manifold W of system (2.2), then Λ has a complex conjugate pair of
eigenvalues related to a pair of eigenvalues of A through the relationship (4.2). In particular,
W is tangent to an underdamped modal subspace E of the equilibrium y = 0 corresponding to the
eigenvalue pair μ�, μ̄� for some � ∈ [1, 2n − 1], as implied by assumption (2.4).

The existence of a two-dimensional invariant manifold W tangent to a two-dimensional
spectral subspace E of the linearized system (2.3) was first envisaged in the seminal work
of Shaw & Pierre [4], and then extended to more general settings by the same authors and
collaborators ([5–9] for reviews). On closer inspection, one finds that such invariant manifolds
indeed exist under certain non-resonance conditions, but are non-unique and may have a low
order of differentiability [10–12].

Following Haller & Ponsioen [12], we address this uniqueness and smoothness issue with
the help of the following definition.

Definition 5.1. A spectral submanifold (SSM) W(E) corresponding to a spectral subspace E of the
operator A is an invariant manifold of F with the following properties:

(i) W(E) is tangent to E at y = 0 and has the same dimension as E ;
(ii) W(E) is strictly smoother than any other invariant manifold satisfying (i).

If it exists, an SSM serves as the unique nonlinear equivalent of the modal subspace E to the
nonlinear system (2.2). By definition, all other invariant manifolds tangent to the same modal
subspace have fewer derivatives, and hence any high-enough order Taylor expansion is only valid
for the SSM.

Haller & Ponsioen [12] has pointed out that the more general and abstract results of Cabré et al.
[16] imply the existence of SSMs for F under appropriate conditions on the spectrum of A. Below,
we recall these results stated specifically in the context of the sampling map F. We note that by
the conjugacy relation (4.1), the existence of a two-dimensional SSM for the sampling map F is
equivalent to the existence of a two-dimensional SSM for the mechanical system (2.2), as long as
the observable ϕ is generically chosen.

We start by considering a two-dimensional eigenspace E ⊂ C
2ν of the linearized sampling map

A, corresponding to the eigenvalue pair μ�, μ̄�. We define the relative spectral quotient σ (E) as the
positive integer

σ (E) = Int
[minj�=�,�+1 log |μj|

log |μ�|
]

∈ N
+. (5.4)

For the linearized sampling map A (2.3), the constant σ (E) is the integer part of the ratio of the
strongest decay rate towards the spectral subspace E to the decay rate along E . This integer ratio
turns out to control the smoothness of the SSM W(E), as we shall see shortly.

We assume now that
σ (E) ≤ r, (5.5)

i.e. the degree of smoothness of the sampling map F is at least as high as the relative spectral
quotient of the modal subspace E . Finally, we assume that no low-order external resonance
conditions hold between the eigenvalues μ�, μ̄� inside E and the remaining eigenvalues of A
outside E

μ
s1
� μ̄

s2
� �=μj, ∀ j �= �, �+ 1, 2 ≤ s1 + s2 ≤ σ (E). (5.6)

We then have the following existence and uniqueness result for SSMs of the sampling map.
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Theorem 5.2. Assume that conditions (5.5)–(5.6) are satisfied. Then, the following statements hold.

(i) There exists an SSM, W(E), for the nonlinear sampling map F, that is tangent to the invariant
subspace E at the ξ = 0 fixed point.

(ii) The invariant manifold W(E) is class Cr smooth and unique among all two-dimensional, class
Cσ (E)+1 invariant manifolds of F that are tangent to E at ξ = 0.

(iii) The SSM W(E) can be viewed as a Cr immersion of an open set U ⊂ C
2 into the phase space C

2ν

of F via a map
W : U ⊂ C

2 → C
2ν , W(U) = W(E). (5.7)

(iv) There exists a Cr polynomial map R : U → U such that

F ◦ W = W ◦ R, (5.8)

i.e. the dynamics on the SSM, expressed in the coordinates z = (z�, z̄�) ∈ U , is given by the
polynomial mapping R. This polynomial mapping only has terms up to order O(|z|σ (E)).

(v) If, for some integer j0 ≥ 2, all internal non-resonance conditions

μ
s1
� μ̄

s2
� �=μ�,μ�+1, j0 ≤ s1 + s2 ≤ σ (E) (5.9)

hold within E , then the polynomial R in (5.8) can be selected to contain only terms up to order
j0 − 1.

(vi) If the observable ϕ used in the construction of the sampling map F is generic, then a two-
dimensional SSM, W(E), tangent to the subspace E at x = 0 exists for the original system
(2.2). The invariant manifold W(E) shares the properties (i)–(v) of W(E) due to the conjugacy
relationship (4.1).

Proof. As explained in detail by Haller & Ponsioen [12], the proofs of statements (i)–(v) follow
from a direct application of the more general Theorem 1.1 of Cabré et al. [16] on invariant
manifolds tangent to spectral subspaces of arbitrary dimension, for mappings defined on Banach
spaces. Statement (vi) can be concluded by invoking the strengthened version of Taken’s theorem
[24,25] that we recalled in §4, and then interpreting the resulting structures of the Poincaré map
ΞT for the flow map of (2.2). �

Remark 5.3. Theorem 5.2 generally applies to any type of mechanical system of the form
(2.1) and hence makes no specific assumption on the form or the magnitude of the damping,
as we mention in the Introduction. If, however, the linearization of system (2.1) satisfies the
classic proportional damping hypothesis, we can use (5.3) to rewrite the relative spectral quotient
defined in (5.4) as

σ (E) = Int
[maxj�=�,�+1ζjωj

ζ�ω�

]
. (5.10)

In this case, the expressions in the external non-resonance conditions (5.6) for E take the specific
form ⎛

⎝ (s1 + s2)ζ�ω�

(s1 − s2)ω�
√

1 − ζ 2
� mod

2π
T

⎞
⎠ �=

⎛
⎝ ζjωj

ωnj

√
1 − ζ 2

j mod
2π
T

⎞
⎠ , 2 ≤ s1 + s2 ≤ σ (E),

where mod denotes the modulo operation that takes sampling into account. In the limit of zero
damping, an external resonance for E means that a frequency ωj outside E is an integer multiple
of the frequency ω� inside E .

Statements (iii)–(v) of theorem 5.2 imply that, unlike in the Shaw & Pierre [4] construction, the
SSM inferred from the results of Cabré et al. [16] is not assumed to be a graph over the subspace
E in the phase space of F. This allows W(E) to be constructed on larger domains on which it can
produce folds over E . This parametrization approach to SSM construction was also rediscovered
recently by Cirillo et al. [11] under the assumption that the flow is analytically linearizable near
the fixed point x = 0. Analytic linearization does not allow for any resonance in the spectrum
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of A and, in return, transforms the full dynamics of the mapping F into that of Λy. In the case
of a near-resonance—which arises for all weakly underdamped modes, as we shall see below—
analytic linearization can therefore only be constructed on a very small domain near the fixed
point. This disallows the type of direct identification of nonlinear terms that we discuss next.

6. Dynamics on spectral submanifolds: backbone curves
Since |μ�|< 1 holds by assumption (2.4), we find that, strictly speaking, the internal non-
resonance condition (5.9) is always satisfied for non-zero damping.

As seen in the construct of Cabré et al. [16], however, even an approximate resonance μs1
� μ̄

s2
� ≈

μj causes the near-identity transformation (ξ�, ξ̄�) �→ (z�, z̄�) to have small denominators, limiting
the existence of this transformation to a tiny neighbourhood of the ξ = 0 fixed point. Since our
interest here is to obtain an approximation of the dynamics of F on a sizeable neighbourhood
of the fixed point within the SSM, we do not insist on the removal of approximately resonant
terms in the (z�, z̄�) coordinate system. Rather, we observe that, for small damping ratios (i.e. for
|μ�| ≈ 1), the low-order near-resonance relationships

μ2
�μ̄� ≈μ�, μ�μ̄

2
� ≈ μ̄� (6.1)

are always satisfied, and hence the minimal possible integer j0 satisfying (6.2) (with �= replaced
with �≈) is j0 = 1. Accordingly, the approximately failing resonance conditions in (5.9) prompt us
to seek R (cf. statement (iv) of theorem 5.2) as a cubic polynomial of the form

R(z) =
(
μ�z� + β�z2

� z̄� + · · ·
μ̄�z̄� + β̄�z�z̄2

� + · · ·

)
. (6.2)

Introducing polar coordinates z = ρ eiθ , we can further transform (6.2) to the real amplitude–
phase components

ρ� �→ ρ�|μ� + β�ρ
2
� | (6.3)

and

θ� �→ θ + arg(μ� + β�ρ
2
� ). (6.4)

Equation (6.4) then provides an instantaneous frequency of nonlinear oscillations, with the
instantaneous oscillation amplitude governed by equation (6.3). Given that the sampling period
we have used is T, the leading-order approximation of the instantaneous oscillation frequency
in the original nonlinear system (2.2) is

ω(ρ�) = arg(μ� + β�ρ
2
� )

T
. (6.5)

We take the instantaneous leading-order amplitude of the corresponding trajectories of (2.2) to
be the norm of z(ρ�, θ�) = (ρ� eiθ� , ρ� e−iθ� ) in the original ξ coordinates. A nominal instantaneous
amplitude Amp(ρ) of the vibration can then be calculated from (5.1) as the L2-norm of the norm
of z(ρ�, θ�) in the original ξ coordinates

Amp(ρ�) =
√

1
2π

∫ 2π

0
|VW(z(ρ�, θ�))|2 dθ . (6.6)

Here, the linear map V is the one appearing in (5.1), and the mapping W in the one appearing
in (5.7).

Definition 6.1. We call the parametrized curve

B� = {ω(ρ�), Amp(ρ�)}ρ�∈R+ ⊂ R
2 (6.7)

the backbone curve associated with the nonlinear dynamics on the SSM, W(E).

 on November 2, 2017http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


10

rspa.royalsocietypublishing.org
Proc.R.Soc.A473:20160759

...................................................

The key to the computation of the backbone curve (6.7) is, therefore, the computation of the
single complex coefficient β� and of the mapping W(z). This is because both the eigenvalue μ�
and the sampling time T are already assumed to be known.

Remark 6.2. It is often desirable to translate the ϕ-based backbone curve B� defined in (6.7) to
a backbone curve observed directly for a given mechanical coordinate qj. When the observable
is an invertible function of such a qj, that is, ϕ(q, q̇) = ϕ(qj), we can use the inverse, defined by
qj =P(ξ ) =P(ϕ(qj)). Also note that, by the definition of the observable space, coordinates of ξ are
just sampled values of the same observed quantity. Therefore, when calculating an amplitude,
it is reasonable to consider just a single component of ξ , for example, ξ1. With this in mind,
we consider P functions in the particular form P(ξ ) =P(ξ1). As a result, the observed amplitude
in the qj mechanical coordinate can be computed as

Amp(ρ�) =
√

1
2π

∫ 2π

0
|P(VW(z(ρ�, θ�)))|2 dθ .

To compute the complex parameter β in equation (6.5), we need to solve (5.8). To this end, we
seek the Taylor series coefficients of the jth coordinate functions, Wj(z) ∈ C, j = 1, . . . , 2ν, of the
mapping W(z) up to third order. Similarly, we seek the third-order Taylor coefficient β� ∈ C of the
polynomial mapping R(z) defined in (6.2). All these unknowns should be expressed in the end as
functions of the jth coordinate functions Gj(y) ∈ C, j = 1, . . . , 2ν, of the nonlinear part G(y) of the
transformed sampling map F. The relevant Taylor expansions are in the general form

Gj(y) =
∑

|m|≥2

gm
j ym, m ∈ N

2ν , gm
j ∈ C, j = 1, . . . , 2ν (6.8)

and

Wj(z) =
∑
|s|≥1

ws
j zs, s ∈ N

2, ws
j ∈ C, j = 1, . . . , 2ν. (6.9)

In expressing the solutions of (5.8) in terms of these coefficients, we will use the shorthand
notation (p@j) for an integer multi-index whose elements are zero, except for the one at the jth
position, which is equal to p

(p@j) :=
(

0, . . . , 0
j−1

, p
j
, 0

j+1
, . . . , 0

)
∈ N

2ν .

We will also concatenate this notation to refer to multi-indices whose entries are zero except at
prescribed locations

(p@j1, q@j2) :=
(

0, . . . , 0
j1−1

, p
j1

, 0
j1+1

, . . .··· , 0
j2−1

, q
j2

, 0
j2+1

, . . .··· , 0

)
∈ N

2ν .

For j1 ≡ j2 = j, we let

(p@j, q@j) := ((p + q)@j) =
(
. . . , 0

j−1
, p + q

j
, 0

j+1
, . . .···

)
∈ N

2ν .

With all this notation, we obtain the following result.

Theorem 6.3. Suppose that the assumptions of theorem 5.2 hold but with the strengthened version

μ
s1
� μ̄

s2
� �≈μj, ∀ j �= �, �+ 1, 1 ≤ s1 + s2 ≤ σ (E) (6.10)
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of the external non-resonance condition (5.6). Then, for any j ∈ [1, 2ν], the jth coordinate function Wj of the
mapping W and the cubic Taylor coefficient β� of the conjugate map R are given by the following formulae:

w(1,0)
j = δj�, w(0,1)

j = δj(�+1),

w(2,0)
j =

g(2@�)
j

μ2
� − μj

, w(1,1)
j =

g(1@�,1@(�+1))
j

μ�μ̄� − μj
, w(0,2)

j =
g(2@(�+1))

j

μ̄2
� − μj

,

w(3,0)
j =

∑2ν
q=1(1 + δ�q)g(1@�,1@q)

j w(2,0)
q + g(3@�)

j

μ3
� − μj

,

w(0,3)
j =

∑2ν
q=1(1 + δ(�+1)q)g(1@(�+1),1@q)

j w(0,2)
q + g(3@(�+1))

j

μ̄3
� − μj

.

and

w(2,1)
j = (1 − δj�)

×
∑2ν

q=1[(1 + δ�q)g(1@�,1@q)
j w(1,1)

q + (1 + δ(�+1)q)g(1@(�+1),1@q)
j w(2,0)

q ] + g(2@�,1@(�+1))
j

μ2
�μ̄� − μj

,

w(1,2)
j = (1 − δj(�+1))

×
∑2ν

q=1[(1 + δ�q)g(1@�,1@q)
j w(0,2)

q + (1 + δ(�+1)q)g(1@(�+1),1@q)
j w(1,1)

q ] + g(2@(�+1),1@�)
j

μ�μ̄
2
� − μj

,

β� =
2ν∑

q=1

[(1 + δ�q)g(1@�,1@q)
� w(1,1)

q + (1 + δ(�+1)q)g(1@(�+1),1@q)
� w(2,0)

q ] + g(2@�,1@(�+1))
� .

Proof. For the proof, see the electronic supplementary material, section A. �

Remark 6.4. Theorem 6.3 only provides the solution of the homological equation (5.8) up to
cubic order. This equation, however, can be solved by symbolic computations up to any order
for the Taylor coefficients of the functions W and R. For instance, up to quintic order, the near-
resonance conditions (6.1) imply the general form

R(z) =
(
μ�z� + β�z2

� z̄� + γ�z3
� z̄

2
� + · · ·

μ̄�z̄� + β̄�z�z̄2
� + γ̄�z2

� z̄
3
� + · · ·

)

for the polynomial conjugate dynamics on the SSM E . The coefficient γ� as well as the quartic
and quintic terms of W can be found recursively from equation (5.8), following the procedure
outlined in the electronic supplementary material, section A. The sampling map restricted to the
SSM W(E) can be written in polar coordinates up to quintic order as

ρ� �→ ρ�|μ� + β�ρ
2
� + γ�ρ

4
� | (6.11)

and
θ� �→ θ + arg(μ� + β�ρ

2
� + γ�ρ

4
� ), (6.12)

yielding the instantaneous oscillation frequency in the original nonlinear system (2.2) as

ω(ρ�) = arg(μ� + β�ρ
2
� + γ�ρ

4
� )

T
. (6.13)

The formulae (6.6) and (6.13) then give a refined, quintic approximation for the backbone curve
B�. The same procedure applies to further, higher-order approximations of B�.

Remark 6.5. The external non-resonance condition (5.6) of theorem 6.3 only excludes quadratic
and higher-order resonances. As a result, for overdamped SSMs E with eigenvalues μ�,μ�+1 ∈ R,
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condition (5.6) would still technically allow for a 1 : 1 external resonance (characterized by s1 = 1
and s2 = 0) with an eigenvalue μj ∈ R outside E . In our setting, however, the damping is assumed
weak and hence an approximate 1 : 1 external resonance μ� ≈μj implies an approximate external

2 : 1 resonanceμ2
�μ

1
�+1 ≈μj, resulting in small denominators for w(1,2)

j and w(2,1)
j in the statement of

theorem 6.3. The strengthened non-resonance condition (6.10) serves to exclude this case, as well
as other cases of near-resonance that create non-zero but small denominators for the coefficients
in theorem 6.3. Although technically non-zero, such small denominators are undesirable as they
may significantly decrease the phase space domain on which the formulae of the theorem give a
good approximation for the underlying SSM and its reduced dynamics. One may improve this
approximation by adding the resonant mode with frequency ωj to the original spectral subspace
E , whose dimension then becomes four. The general results described by Haller & Ponsioen [12]
can then be used to derive expressions for the corresponding enlarged (four-dimensional) SSM
W(E) and the reduced dynamics it carries.

7. Reconstruction of the sampling map from data
In an experimental setting, backbone-curve identification via theorem 6.3 requires the fitting of a
model of F to observations using an appropriate set of basis functions. Owing to the polynomial
form (3.5) of F, the required basis functions are precisely vector-valued monomials of the variables
ξ1, . . . , ξ2ν not including constant terms. The lack of constant terms follows from the assumption
(3.4), which can always be satisfied by an appropriate shift of coordinates, if necessary.

For the polynomial-based model-identification for F, we employ a nonlinear autoregressive
model (NAR) [26]. We order all integer vectors m up to order |m| = r (i.e. all index vectors in the
leading-order Taylor expansion (3.5)) into a series {ml} so that

mv ≺ mw ⇐⇒ mv
j ≤ mw

j , j = 1, . . . , 2ν.

We can then write the yet unknown, rth-order Taylor expansion of F in the compact form

F(ξ ) = Kψ(ξ ) + r(ξ ), ψl(ξ ) = ξml
, (7.1)

where K ∈ R
2ν×N is a rectangular matrix, to be determined by minimizing the residual term r(ξ ) ∈

R
2ν on assimilated data in the �2-norm.

The input data to be assimilated into the NAR model consists of P sequences of Mp > 2ν-

long observations, {ξp
k}

Mp−2ν
k=0 , p = 1, . . . , P, with each observation sequence {ξp

k}
Mp−2ν
k=0 defined as

in (3.1). The �2-norm of r(ξ ) on {ξp
k}

Mp−2ν
k=0 over all P observation sequences is then given by

Err =
P∑

p=1

Mp−2ν∑
k=0

|r(ξp
k)|2 =

P∑
p=1

Mp−2ν∑
k=0

|Kψ(ξp
k) − ξ

p
k+1|2.

The matrix K that minimizes this norm is obtained by solving the equation dErr/dK = 0 for K.
This classic computation yields K = QP−1, where

P =
P∑

p=1

M−1
p

Mp−2ν∑
k=0

ψ(ξp
k)ψ�(ξp

k)

and

Q =
P∑

p=1

M−1
p

Mp−2ν∑
k=0

ξ
p
k+1ψ

�(ξp
k)

with � denoting the transposition. With this notation, the reconstructed nonlinear sampling map is

F̃(ξ ) = QP−1ψ(ξ ), (7.2)

which we will use instead of the exact sampling map F in our analysis.
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Assimilating multiple measurement sequences (i.e. using P> 1) generally reduces the effect
of zero-mean additive noise on the model reconstruction. More importantly, using measurements
from vibrations decaying near P natural frequencies of interest allows us to build a single reduced-
order discrete model map F̃ that simultaneously captures nonlinear behaviour near all these
natural frequencies. The choice of the �2 optimization above was mostly dictated by convenience;
in some situations, minimization of r(ξ ) in the �1 or �∞ norms might be more beneficial.

Since we do not know the invariant manifold W(E) exactly, we will construct (7.2)
from observed nonlinear vibration decay measurements initiated along two-dimensional
modal subspaces of DΞT(0). In practice, these subspaces can be approximated from linear
modal analysis.

8. Summary of spectral submanifold-based backbone-curve identification
algorithm

We now briefly summarize the steps in the approach, we have developed in the preceding
sections:

1. Fix a generic scalar observable ϕ(q, q̇) and a sampling time T> 0 for the mechanical
system (2.1). Also fix an integer ν ≥ 3 as the number of SSMs to be identified for system
(2.1). Finally, select an integer r = max |m| for the maximum degree of the polynomials
used in the construction of the NAR model (7.1) for the sampling map F̃(ξ ) with ξ ∈ R

2ν .

2. Collect P sequences of Mp-long observations, {ξp
k}

Mp−2ν
k=0 , by letting

ξ
p
k = (ϕ(q(kT), q̇(kT)), . . . ,ϕ(q((k + 2ν − 1)T), q̇((k + 2ν − 1)T))),

p = 1, . . . , P, k = 0, . . . , Mp − 2ν.

3. Compute the approximate 2ν-dimensional sampling map F̃(ξ ) from formula (7.2).
4. Transform F̃(ξ ) to its complex diagonal form (5.2).
5. Using theorem 5.2, compute the leading-order Taylor coefficients of the mapping W(z�)

and the leading-order polynomial coefficient β� for each SSM, W(E), provided that the
non-resonance condition (5.6) holds.

6. Calculate the backbone curve B� defined in (6.7) for W(E). Higher-order approximations
to B� can be computed similarly, as summarized briefly in remark 6.4.

This algorithm provides the simplest possible first-order approach to SSM-based backbone curve
reconstruction. This simplest approach does not fully exploit the uniqueness class Cσ (E)+1 of
W(E), as guaranteed by theorem 5.2. To obtain higher precision approximations to B�, one must
derive higher-order Taylor coefficients of W(z�) and β� from the invariance condition (5.8), which
we do not pursue here.

9. Examples
We now demonstrate the application of SSM-based model reduction and backbone-curve
reconstruction in two examples. First, we consider a two-degree-of-freedom damped, nonlinear
oscillator model to benchmark data-based SSM reconstruction in a case where analytic,
model-based computations are also possible. Second, we use vibration decay data from an
oscillating beam experiment to illustrate the direct computation of backbone curves B� from an
experimentally reconstructed sampling map F̃.

(a) Modified Shaw–Pierre example
We slightly modify here the two-degree-of-freedom oscillator studied by Shaw & Pierre [4]
by making the damping matrix proportional to the stiffness matrix in the linearized problem.
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The first-order equations of motion we study are

ẋ1 = v1,

ẋ2 = v2,

v̇1 = −cv1 − k0x1 − κx3
1 − k0(x1 − x2) − c(v1 − v2)

and v̇2 = −cv2 − k0x2 − k0(x2 − x1) − c(v2 − v1).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(9.1)

We first calculate SSMs and backbone curves for this system using a formulation for
continuous dynamical systems, as described in the electronic supplementary material, section B.
We then emulate an experimental sampling of the vibrations of system (9.1) and reconstruct SSMs
and backbone curves from the sampled data using the discrete methodology described in §§3–7.

System (9.1) is analytic, hence we have r = a in our notation. The natural frequencies and
damping ratios are

ω1 =
√

k0, ω2 =
√

3k0, ζ1 = c

2
√

k0
and ζ2 =

√
3c

2
√

k0
,

yielding the complex eigenvalues

λ1,2 = − c
2

± i

√
k0

(
1 − c2

4k0

)
and λ3,4 = −3c

2
± i

√
3k0

(
1 − 3c2

4k0

)
,

where we have assumed that both modes are underdamped, i.e. c< 2
√

k0/3.
For the corresponding two-dimensional modal subspaces E1 and E2, remark 5.3 gives

σ (E1) = Int
[

Re λ3

Re λ1

]
= Int

[(√
3c/2

√
k0

)√
3k0

(
c/2
√

k0

)√
k0

]
= 3

and

σ (E2) = Int
[

Re λ1

Re λ3

]
= Int

⎡
⎣

(
c/2
√

k0

)√
k0(√

3c/2
√

k0

)√
3k0

⎤
⎦= 0.

Therefore, in electronic supplementary material, section B, theorem 1, there exist two-
dimensional, analytic SSMs, W(E1) and W(E2) that are unique among C4 and C1 invariant
manifolds tangent to E1 and E2, respectively, at the origin.

By the analytic calculations detailed in the electronic supplementary material, section C, we
obtain the corresponding backbone-curve parametrizations

ω(ρ1) = 1
2

(√
4k0 − c2 + 3κ√

4k0 − c2
ρ2

1

)
, Amp(ρ1) ≈ 2ρ1

and

ω(ρ2) = 1
2

(√
3(4k0 − 3c2) +

√
3κ√

4k0 − 3c2
ρ2

2

)
, Amp(ρ2) ≈ 2ρ2.

To determine these backbone curves for the damping and stiffness values c = 0.003, k0 = 1
and κ = 0.5, we emulate a hammer experiment that gives an initial condition in the modal
subspaces E1 and E2 to the full nonlinear system. The precise initial conditions of the two decaying
signals are

x(1)(0) = 1√
3

(2, 2, 0, 0)T ∈ E1, x(2)(0) = 1
3

(−2, 2, 0, 0)T ∈ E2. (9.2)

We sample the solutions starting from these points 8000 times with the sampling interval T = 0.8.
In terms of our notation, we, therefore, have P = 2, M1 = M2 = 8000. As observable, we choose the
velocity of the first mass was i.e. let ϕ(x) = v1, to emulate an experimental procedure that renders

 on November 2, 2017http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


15

rspa.royalsocietypublishing.org
Proc.R.Soc.A473:20160759

...................................................

forcing frequency (rad s–1)

0

0.2

0.4

0.6

0.8

1.0

m
ax

|v
1|

continuation
O(5) NAR
O(3) VF

0.90 0.95 1.00 1.05 1.10 1.70 1.72 1.74 1.76 1.78 1.80
forcing frequency (rad s–1)

0

0.2

0.4

0.6

0.8

1.0(a) (b)

Figure 2. Backbone curves and forced response of themechanical system (9.1) for the first (a) and second (b) natural frequency.
Blue curves show forced responses of the lightly damped system c = 0.0005. Red continuous lines show the fifth-order
backbone curves recovered from our algorithm by sampling two freely decaying trajectories with initial conditions (9.2). Green
dashed lines show theO(3) analytic calculation of the same backbone curves using the electronic supplementary material,
Theorem S2. (Online version in colour.)

only velocities (as in our second example below). As the minimal embedding dimension for the
sampling map F̃(ξ ), Step 1 of the algorithm in §8 gives 2ν = 6. In the present example, however,
we know that E1 and E2 are properly embedded already in the four-dimensional system (9.1), and
hence we select 2ν = 4 instead.

The red curve in figure 2 shows a closed-form quintic computation (cf. remark 6.4) of the
backbone curves B1 and B2 from the data-assimilating discrete algorithm described in §8. The
two trajectories used as inputs for this algorithm were launched from the initial conditions (9.2).

For comparison, the green dashed line in the same figure shows a cubic analytic computation
of the backbone curves based on the continuous-time (vector-field) formulation we have given
in the electronic supplementary material, section B, theorem 2. Finally, we have used numerical
continuation [27] at various amplitudes of forcing to find periodic orbits for low damping with
c = 0.0005. The resulting periodic response amplitudes are shown in figure 2 in blue as functions
of the forcing frequency. The O(5) backbone curve fits remarkably well with the peaks of the blue
curves, especially considering that these backbone curves were computed from just two sampled
trajectories. The robustness of the backbone curves is also noteworthy, given that the blue curves
were obtained for substantially lower damping values.

(b) Clamped–clamped beam
We now test the trajectory-data-assimilating backbone-curve reconstruction algorithm of §8 on
experimental data obtained from the vibration tests described in [21]. We show the experimental
device, a beam clamped at both ends, in figure 3.

The data comprise freely decaying velocity signals measured at the midpoint of the beam
with initial conditions selected near three assumed SSMs. These initial conditions were obtained
experimentally by force appropriation (cf. the Introduction). The decaying signals were initialized
at maximal response amplitudes obtained from single-frequency force appropriation. Three
signals were assimilated, corresponding to each natural frequency, which gives P = 3 in our
notation. Each signal was resampled with time period T = 0.97656 ms. The lengths of the three
signals were M1 = 3892, M2 = 2458 and M3 = 1055 samples.

The second mode was not analysed in [21], because the node of this mode is precisely at
the midpoint of the beam, which can significantly deteriorate measurement accuracy. We list the
natural frequencies identified from the NAR model in table 1. In the last row of the same table,
we also show the spectral quotients obtained from formula (5.10) for the three modes.
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L = 228 mm

W = 12 mm

magnetic driver force transducer

Figure 3. The experimental set-up for constructing backbone curves for a clamped–clamped beam. Adapted from [21]. (Online
version in colour.)

Table 1. Natural frequencies and damping ratios for the first threemodes of the clamped–clamped beam as determined by our
algorithm. Also shown are the spectral quotients σ (El). Theωl values are close to those linearly identified in [21], but the ζl
values aremarkedly different. The nonlinearmodel identification used here does not need to capture these linearized parameter
values with the same accuracy as a purely linear analysis would. We only present the nonlinear identification results here for
completeness.

mode l = 1 l = 2 l = 3

ωl (Hz) 47.4921 167.1512 368.4577
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ζl 0.1833 0.0183 0.0019
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ (El) 0 2 12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Based on table 1, theorem 5.2 gives a unique SSM W(E1) within the class of C1 manifolds.
This is because the first mode represents the fastest decaying linear subspace of oscillations,
admitting a unique nonlinear continuation in the form of the fast SSM W(E1). The second
(slow) SSM W(E2) and the third (intermediate) SSM W(E3) are only unique among C3 and C13

invariant manifolds tangent to the spectral subspaces E2 and E3, respectively. This suggests that
backbone reconstruction techniques that do not consider the smoothness of the underlying SSM
are expected to show greater uncertainty for the second and the third mode.

We seek to obtain an NAR model for the delay embedding of all three modes in table 1.
This means we have ν = 3, and hence the required minimal dimension of the reconstructed
nonlinear sampling map F̃(ξ ) is 2ν = 6. We employ a third-order polynomial model (r = 3) in the
NAR model of §7. Accordingly, we construct the dynamics on the three SSMs up to cubic order
(cf. formula (6.2)), with the Taylor coefficients of W and R computed from the formulae given
in theorem 6.3.

Figure 4 shows the results of our computations. To be consistent with Ehrhardt & Allen [21],
we compute the response amplitudes by dividing the available instantaneous velocity amplitudes
with their corresponding instantaneous frequencies. This simple devision, therefore, represents
the function P from the observable space to the relevant coordinate space (cf. remark 6.2). The
resulting backbone curve of the first SSM matches well previous results. This is expected, because
this SSM is the most robust among the three SSMs considered here (unique already among C1

invariant manifolds tangent to the spectral subspace E1). The kink at about 90 Hz appears to be
an artefact of O(3) model fitting. Higher-amplitude results for this SSM (not shown) are even less
reliable because of the relative sparsity of the data there.

There is no comparison available from Ehrhardt & Allen [21] for the second backbone curve,
but the backbone curve we compute for this case is consistent with the instantaneous amplitude–
frequency data (green) inferred from decaying vibrations.

For the third SSM, there is a noticeable offset between the force appropriation result and
the rest of the curves. Our calculations, however, match closely the instantaneous amplitude–
frequency data, with the backbone curve obtained from resonance decay. Capturing the
SSM corresponding to this mode uniquely would theoretically require a high-order, O(13)
approximation. This, however, would be unfeasible given the limited amount of data available.
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Figure4. Backbone curves for thefirst (a), second (b) and third (c) natural frequencies of a clamped–clampedbeam. Solid lines:
backbone curves computed from a data-assimilating cubic-order SSM reduction, as summarized in §8; Dashed lines: backbone
curves obtained from individual decaying signals using a Hilbert transform approach [28]. Circles: force-appropriation results
using stepped sine forcing. Diamonds: Instantaneous amplitude–frequency curves inferred from decaying vibration data by
calculating zero crossings of the signal to estimate vibration period. Apart from the solid lines, all data were obtained directly
from the experiments of Ehrhardt & Allen [21]. (Online version in colour.)

10. Discussion
We have developed a method to extract two-dimensional SSMs and their associated backbone
curves for multi-degree-of-freedom nonlinear mechanical vibrations. We computed the SSMs
explicitly as two-dimensional invariant manifolds of a low-order, discrete model system fitted
to sampled trajectory data. Restricted to the SSMs, this model is guaranteed to be conjugate to the
full mechanical system by the classic Takens embedding theorem, as long as the data assimilated
into the model is from a generic observable.

We have illustrated the power of this approach by calculating backbone curves of the
reconstructed dynamics on the SSMs in two examples. In our first example, a two-degree-of-
freedom analytic model, we verified the trajectory-data-based backbone-curve computation via
an analytic calculation of the same curve for the full, continuous-time system, as well as by
numerical continuation. In our second example, we compared the data-assimilated construction
of the backbone curves with various experimentally inferred curves and found close agreement.

To obtain SSMs and their reduced dynamics analytically, we use the parametrization method
in [16], which is generally not limited to a small neighbourhood of a fixed point. In addition,
the parametrization method allows for the presence of resonances or near-resonances that
unavoidably arise in underdamped oscillations (cf. equation (6.1)). This is in contrast with
parametrized SSM constructions based on Sternberg’s analytic linearization theorem (cf. [11])
that exclude any resonance in the linearized spectrum. When applied in the near-resonant
case, the domain of validity of the analytic linearization and the manifolds construction
is, therefore, exceedingly small. In addition, reliance on analytic linearization excludes the
possibility of extracting backbone curves, which arise from the nonlinear dynamics on the
reconstructed SSM.

The parametrization method enables us to identify SSMs with high accuracy on larger
domains, even from relatively low-amplitude trajectory samples, as long as we use high-
enough order in the approximations for the SSMs and its reduced dynamics. This high-enough
order ensures the accurate interrogation of nonlinearities even from low-amplitude signals. In
our examples, a fifth-order computation yielded remarkably accurate results even for higher-
amplitude ranges of the backbone curve, while a third-order computation was effective for
lower-amplitude backbone-curve ranges.

Our algorithm is designed so that an arbitrary number of decaying vibrations can be
assimilated into the underlying reduced-order discrete NAR model. Unlike normal forms derived
specifically for given modes of interest, our model incorporates the dynamics of all modes of
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interest simultaneously. This should make the reconstructed sampling map F̃ an ideal tool for use
in model-based control.

We also envisage a closed loop identification of SSMs and backbone curves, similar to control-
based continuation techniques [29]. In this case, a measure of invariance derived from equation
(5.8) would serve as a test functional.
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