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Subspace clustering refers to the problem of clustering unlabeled high-dimensional data points into a union
of low-dimensional linear subspaces, whose number, orientations and dimensions are all unknown. In
practice, one may have access to dimensionality-reduced observations of the data only, resulting, e.g., from
undersampling due to complexity and speed constraints on the acquisition device or mechanism. More
pertinently, even if the high-dimensional data set is available, it is often desirable to first project the data
points into a lower-dimensional space and to perform clustering there; this reduces storage requirements
and computational cost. The purpose of this article is to quantify the impact of dimensionality reduction
through random projection on the performance of three subspace clustering algorithms, all of which are
based on principles from sparse signal recovery. Specifically, we analyze the thresholding based subspace
clustering (TSC) algorithm, the sparse subspace clustering (SSC) algorithm and an orthogonal matching
pursuit variant thereof (SSC-OMP). We find, for all three algorithms, that dimensionality reduction down
to the order of the subspace dimensions is possible without incurring significant performance degradation.
Moreover, these results are order-wise optimal in the sense that reducing the dimensionality further leads
to a fundamentally ill-posed clustering problem. Our findings carry over to the noisy case as illustrated
through analytical results for TSC and simulations for SSC and SSC-OMP. Extensive experiments on
synthetic and real data complement our theoretical findings.

Keywords: subspace clustering; dimensionality reduction; random projection; sparse signal recovery.

1. Introduction

One of the major challenges in modern data analysis is to find low-dimensional structure in large high-
dimensional data sets. A prevalent low-dimensional structure is that of data points lying in a union
of (low-dimensional) subspaces. The problem of extracting such a structure from a given data set can
be formalized as follows. Consider the (high-dimensional) set Y of points in R

m and assume that
Y = Y1 ∪ . . . ∪ YL, where the points in Y� lie in a linear subspace S� of R

m. The association of the
data points to the sets Y�, the orientations, dimensions and the number of subspaces S� are all unknown.
The problem of identifying the assignments of the points in Y to the Y� is referred to as subspace
clustering [34] or hybrid linear modeling and has applications, inter alia, in unsupervised learning,
image representation and segmentation, computer vision and disease detection.

In practice, one may have access to dimensionality-reduced observations of Y only, resulting, e.g.,
from “undersampling” due to complexity and speed constraints on the acquisition device or mechanism.
More pertinently, even if the data points in Y are directly accessible, it is often desirable to work on
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DIMENSIONALITY-REDUCED SUBSPACE CLUSTERING 247

a dimensionality-reduced version of Y as this reduces data storage cost and leads to computational
complexity savings. The idea of reducing computational complexity through dimensionality reduction
appears, e.g., in [32] in a general context, and for subspace clustering in the experiments reported in
[9,38]. Dimensionality reduction also has a privacy-enhancing effect in the sense that no access to the
original data is needed for processing [25].

Dimensionality reduction will, in general, come at the cost of clustering performance. The purpose
of this article is to analytically characterize this performance degradation for three subspace clustering
algorithms, namely thresholding-based subspace clustering (TSC) [16], sparse subspace clustering (SSC)
[8,9] and SSC-orthogonal matching pursuit (SSC-OMP) [7]. The common theme underlying these
three algorithms is that they apply spectral clustering to an adjacency matrix constructed from sparse
representations of the data points, obtained through a nearest neighbor search in the case of TSC, through
�1-minimization for SSC, and through OMP in the case of SSC-OMP. While there are numerous further
approaches to subspace clustering (see [34] for an overview), we chose to study TSC, SSC and SSC-OMP,
as they belong to the small group of subspace clustering algorithms that are computationally tractable
and succeed provably under non-restrictive conditions [7,9,16,28,29,37]. Specifically, the results in
[16] for TSC, and in [28,29] for SSC show that TSC and SSC can succeed even when the subspaces
S� intersect. The corresponding proof techniques, together with analytical performance guarantees for
SSC-OMP developed in this article, form the basis for our analytical characterization of the impact of
dimensionality reduction on subspace clustering performance.

1.1 Formal problem statement and contributions

Consider a set of N data points Y ∈ R
m, and assume that Y = Y1 ∪ . . . ∪ YL, where the points

y(�)

i ∈ Y�, i ∈ {1, . . . , n�}, lie in a d�-dimensional linear subspace of R
m, denoted by S�. The assignments

of the points in Y to the sets Y�, the subspaces S�, and the number of subspaces L are all assumed
unknown. Traditional subspace clustering operates on the data Y with the goal of segmenting it into the
sets Y�. Here, we assume, however, that clustering is performed on a dimensionality-reduced version
of the points in Y . Specifically, we employ the random projection method [32] by first applying the
(same) realization of a random projection matrix Φ ∈ R

p×m (typically p � m) to each point in Y to
obtain the set of dimensionality-reduced data points X . Then, we declare the segmentation obtained
by operating on X to be the segmentation of the data points in Y . The realization of Φ does not need
to be known. There are two sources of error that determine the performance of this approach, first,
the error that would be obtained even if clustering was performed on the high-dimensional data set Y
directly, second, and more pertinently, the error incurred by operating on dimensionality-reduced data.
The former is quantified for TSC in [16], for SSC in [28,29], and for SSC-OMP this article develops
corresponding new results. Characterizing the error incurred by dimensionality reduction analytically
is the main contribution of this article.

While it is conceivable that TSC, which is based on thresholding inner products, exhibits graceful
performance degradation as the data set’s dimensionality is reduced through random projection, this is
far from obvious for the �1-minimization based SSC algorithm and the iterative SSC-OMP algorithm. We
prove our main results by first deriving conditions for TSC, SSC and SSC-OMP to ensure correct clus-
tering of dimensionality-reduced data. While these conditions are general, they only become amenable
to insightful interpretation once particularized for a random data model, also used in [16,28], that takes
the subspace structure of the data set into account. The resulting clustering conditions make the impact
of dimensionality reduction explicit, and reveal a tradeoff between the affinity of the subspaces S� and
the amount of dimensionality reduction possible. Specifically, we find that all three algorithms succeed
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248 R. HECKEL ET AL.

provably under quite generous conditions on the relative orientations of the subspaces S�, provided that
the dimensionality is reduced no more than down to the largest subspace dimension dmax = max� d�.
As the computational complexity associated with the construction of the adjacency matrix is essentially
linear in the dimension of the ambient space, m, for all three algorithms, random projection reduces
the complexity of this step by a factor of m/dmax. These complexity savings translate into, possibly
significant, run-time savings for the overall clustering algorithms (which include the spectral clustering
step), in particular when m is sufficiently large relative to N .

We study the impact of noise—added to the high-dimensional data points—on clustering perfor-
mance. For TSC, we derive a clustering condition which quantifies the tradeoff between the affinity of
the subspaces S� and the amount of dimensionality reduction possible, as a function of noise variance.
Specifically, this condition allows us to conclude that TSC succeeds provably provided that—as in the
noiseless case—the dimensionality is reduced to no more than down to the largest subspace dimension
dmax, and the noise variance is sufficiently small. An approach akin to that used for TSC can be applied
to establish a similar clustering condition for SSC-OMP. The corresponding technical details are, how-
ever, significantly more involved and cumbersome. We therefore decided not to state the formal result.
Regarding SSC, we remark that Wang et al. [36] reported deterministic clustering conditions for the
Lasso-version of SSC [29] applied to dimensionality-reduced noisy data. However, the corresponding
results [36, Lemma 16, Theorem 18] make the critical assumption of the signal part of the projected
noisy data being normalized, whereas the noise component remains un-normalized. It is difficult to see
how one would realize this in practice, unless the noise realization is known perfectly, in which case
the noise component could be removed which would take us back to the noiseless case. The results
in [36] for noisy data therefore appear to be of limited practicality. While the statements in [36] may
be particularized to the noiseless case, we note that corresponding results appeared in the conference
version [17] of this article before the publication of [36].

We note that our results, both for the noiseless and the noisy case, apply even when the vectors in
the subspaces S�, collectively across �, span the ambient space R

m. This follows from our clustering
conditions depending on the pairwise affinities between subspaces only, and pairwise affinities changing
only moderately if the dimensionality is reduced down to no more than the order of the individual
subspace dimensions.

Another popular dimensionality reduction method is principal component analysis (PCA). However,
when used in the context of subspace clustering, PCA, in general, affords dimensionality reduction down
to the dimension of the union

⋃
� S� of the subspaces S� only, as opposed to the order of the dimensions

of the individual subspaces. To see this, consider the L subspaces of dimension one that correspond to the
standard basis in R

m, i.e., the �th subspace is spanned by the vector e� given by [e�]� = 1 and [e�]i = 0, for
i �= �. Assuming that each of the data points in the data set under consideration, denoted by Y ∈ R

m×N ,
lies in one of these L subspaces, the corresponding sample covariance matrix YYT has non-zero entries
only in its first L main diagonal entries. The first L principal components are therefore given by the
vectors e�. Reducing the dimensionality of the data set to below L will result in certain data points being
mapped to zero (owing to the orthogonality of the e�). Moreover, PCA has computational complexity
O(Nm2 + m3), while random projection through Gaussian matrices and fast random projection matrices
[1] has complexity O(pmN) and O(log(m)mN), respectively, and is therefore computationally much
less demanding. This is an important aspect as computational complexity is a major motivation for
dimensionality reduction.

1.2 Notation

We use lowercase boldface letters to denote (column) vectors and uppercase boldface letters to designate
matrices. The superscript T stands for transposition. For the vector x, xq denotes its qth entry and xS
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DIMENSIONALITY-REDUCED SUBSPACE CLUSTERING 249

is the subvector of x with entries corresponding to the indices in the set S. For the matrix A, Aij

designates the entry in its ith row and jth column, AS the matrix containing the columns of A with
indices in the set S, ‖A‖2→2:= max‖v‖2=1 ‖Av‖2 its spectral norm, σmin(A) its minimum singular value,

and ‖A‖F :=(
∑

i,j |Aij|2)1/2 its Frobenius norm. If A has full column rank A†:=(AT A)
−1AT stands for

its (left) pseudoinverse, and for A with full row rank, A†:=AT (AAT )
−1 is the (right) pseudoinverse. The

identity matrix is denoted by I. log(·) refers to the natural logarithm, arccos(·) is the inverse function of
cos(·), and x ∧ y denotes the minimum of x and y. The set {1, . . . , N} is written as [N]. The cardinality
of the set S is designated by |S| and its complement is S. N (μ, Σ) stands for the distribution of a
real Gaussian random vector with mean μ and covariance matrix Σ . We write X ∼ Y to indicate that
the random variables X and Y are equally distributed. For notational convenience, we use the following
shorthands: max� for max�∈[L], maxk �=� for maxk∈[L] : k �=�, and maxk,� : k �=� for maxk,�∈[L] : k �=�. The unit sphere
in R

m is S
m−1:={x ∈ R

m : ‖x‖2 = 1}. A subgraph H of a graph G is said to be connected if every pair
of nodes in H can be joined by a path along edges with nodes exclusively in H. A subgraph H of G is
called a connected component of G if H is connected and if there are no edges between nodes in H and
the remaining nodes in G.

2. A brief review of TSC, SSC and SSC-OMP

We next briefly summarize the TSC [16], SSC [8,9] and SSC-OMP [7] algorithms. All three algorithms
apply normalized spectral clustering [35] to an adjacency matrix A built by finding a sparse represen-
tation of each data point in terms of the other data points. Specifically, TSC is based on least-squares
representations in terms of nearest neighbors, while SSC and SSC-OMP construct A by finding sparse
representations via �1-minimization and OMP, respectively. Note that the focus in [16] is on a version
of TSC that uses a spherical distance measure between data points instead of least-squares regression
coefficients to determine the entries of A. The analytical results presented here apply to both versions of
TSC. We decided, however, to explicitly work with the least-squares version as this formulation better
elucidates the sparsity aspect and thereby the relationship to SSC and SSC-OMP.

In order to emphasize that we consider the three algorithms applied to dimensionality-reduced data,
their descriptions will be in terms of the dimensionality-reduced data set X ⊂ R

p. We furthermore
assume that an estimate L̂ of the number of subspaces L is available. The estimation of L from X is
discussed later. We also note that the formulations of the TSC and SSC-OMP algorithms below assume
that the data points in X are of comparable �2-norm. This assumption is relevant for Step 1 in both
cases and is not restrictive as the data points can be normalized prior to clustering.

The TSC algorithm: Given a set of N data points X in R
p, an estimate of the number of subspaces

L̂, and the parameter q (the choice of q is discussed below), perform the following steps:
Step 1: For every xj ∈ X , find the set Sj ⊂ [N]\{j} of cardinality q defined by∣∣〈xj, xi

〉∣∣ ≥ ∣∣〈xj, xk

〉∣∣ , for all i ∈ Sj and all k /∈ Sj,

and let zj be the coefficient vector corresponding to the minimum least-squares representation of xj in

terms of xi, i ∈ Sj. Specifically, set (zj)Sj = arg minz

∥∥∥xj − XSj z
∥∥∥

2
(if multiple solutions exist, choose,

e.g., the z with minimum �2-norm), and (zj)Sj
= 0. Construct the adjacency matrix A according to

A = Z + ZT , where Z = abs([z1 . . . zN ]) and abs(·) takes absolute values element-wise.
Step 2: Apply normalized spectral clustering [26,35] to (A, L̂).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/6/3/246/3070510 by U
niversity of Zurich user on 08 M

arch 2022



250 R. HECKEL ET AL.

The SSC algorithm: Given a set of N data points X in R
p and an estimate of the number of

subspaces L̂, perform the following steps:
Step 1: Let X ∈ R

p×N be the matrix whose columns are the points in X . For every xj ∈ X
determine zj as a solution of

minimize
z

‖z‖1 subject to xj = Xz and zj = 0. (2.1)

Construct the adjacency matrix A according to A = Z + ZT , where Z = abs([z1 . . . zN ]).
Step 2: Apply normalized spectral clustering [26,35] to (A, L̂).

The SSC-OMP algorithm: Given a set of N data points X in R
p, an estimate of the number of

subspaces L̂, and a maximum number of OMP iterations smax, perform the following steps:
Step 1: For every xj ∈ X , find a sparse representation of xj in terms of X \{xj} using OMP as

follows: Initialize the iteration counter s = 0, the residual r0 = xj, and the set of selected indices Λ0 = ∅.
For s = 1, 2, . . . perform updates according to

Λs = Λs−1 ∪ argmax
i∈[N] : i �=j

|〈xi, rs−1〉| (2.2)

rs = (I − XΛs X
†
Λs

)xj (2.3)

until rs = 0 or s = smax (when the maximizer in (2.2) is not unique, select any of the solutions). With the
number of OMP iterations actually performed denoted by send, set (zj)Λsend

= X†
Λsend

xj, (zj)Λsend
= 0,

and construct the adjacency matrix A according to A = Z + ZT , where Z = abs([z1 . . . zN ]).
Step 2: Apply normalized spectral clustering [26,35] to (A, L̂).

All three algorithms have an estimate of the number of subspaces, L̂, as input parameter. This estimate
can be generated from the adjacency matrix computed in Step 1 of the algorithms (note that L̂ is needed
only in Step 2) through the eigengap heuristic [35], or it can be made available through prior knowledge
on the clustering problem at hand. For expositional simplicity, we decided to consistently treat L̂ as
an input parameter. The eigengap heuristic is based on the insight that the number of zero eigenvalues
of the normalized Laplacian of the graph G with adjacency matrix A, henceforth simply referred to
as “the graph G”, is equal to the number of connected components of G [30]. Formally, denoting the
eigenvalues of the normalized Laplacian of G by λ1 ≤ λ2 ≤ . . . ≤ λN , the eigengap heuristic computes
L̂ = arg maxi∈[N−1](λi+1 − λi).

Let the oracle segmentation of X be given by X = X1 ∪ . . .∪XL. If each connected component in
the graph G corresponds exclusively to points from one of the sets X�, spectral clustering will deliver the
oracle segmentation [35, Proposition 4] and the clustering error (CE), i.e., the fraction of misclustered
points, will be zero. Since conditions guaranteeing zero CE are inherently hard to obtain, we will work
with an intermediate, albeit sensible, performance measure, also employed in [7,16,28,29]. Specifically,
this measure, termed the no false connections property, declares success if the graph G has no false
connections, i.e., if each xj ∈ X� is connected to points in X� only, for all �. Guaranteeing the absence
of false connections, does, however, not guarantee that the connected components of G correspond to
the X�, as the points in a given set X� may form two (or more) distinct connected components in G.

To counter this problem, sufficiently many entries in each row/column of the adjacency matrix A
have to be non-zero. Specifically, for the subgraphs of G corresponding to the X� to be connected,
each row/column of A corresponding to a point in X� needs to have between O(log n�) and O(n�)
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DIMENSIONALITY-REDUCED SUBSPACE CLUSTERING 251

non-zero entries. As the solutions z to arg minz

∥∥∥xj − XSj z
∥∥∥

2
are typically dense, TSC is likely to select a

representation of xj in terms of points in X�\{xj} with on the order of q non-zero coefficients. Choosing
q large enough therefore ensures sufficient connectivity of the graph G generated by TSC. On the other
hand, taking q to be large increases the probability of false connections. The performance guarantee
we obtain for TSC therefore requires q to be sufficiently small relative to the n�. For SSC and SSC-
OMP, the number of non-zero entries in each row/column of A turns out to be tied to d�, rather than
n�. To see this, suppose that both algorithms exclusively select data points from X�\{xj} to represent
xj. Moreover, assume that the X� are non-degenerate in the sense that, indeed, d� points are needed to
represent xj ∈ X� through points in X�\{xj}; this precludes, e.g., that X� contains multiple copies of
the same data point. The OMP algorithm in SSC-OMP then terminates after min(d�, smax) (recall that
d� = dim(S�)) iterations for xj ∈ X�, and hence results in exactly min(d�, smax) non-zero entries in the
corresponding column of Z (recall that A = Z+ZT ). For SSC, we simply note that d� points are enough
to represent xj ∈ X� through other points in X�, and we cannot guarantee more than d� non-zero entries
in the corresponding column of Z, in general. This will lead to insufficient connectivity for SSC and
SSC-OMP when d� is not in the range O(log n�)–O(n�). The problem is exacerbated when the data set is
degenerate. To counter insufficient connectivity in SSC, a modification which adds an �2-penalty to the
cost function in (2.1) was proposed in [9, Section 5]. Such a modification is not known for SSC-OMP,
and this may be considered a limitation of SSC-OMP.

We remark that TSC and SSC-OMP can be made essentially parameterless, like SSC. Specifically,
a procedure for choosing the TSC parameter q in a data-driven fashion is described in [15], and for
SSC-OMP we can get rid of the parameter smax by stopping the OMP step once the �2-norm of the
residual rs falls below a threshold value.

3. Main results

We start by specifying the statistical data model used throughout the article. The subspaces S� are
taken to be deterministic and the points within the S� are chosen randomly. Specifically, the ele-
ments of the set Y� in Y = Y1 ∪ . . . ∪ YL are obtained by choosing n� points at random according
to y(�)

j = U(�)a(�)

j , j ∈ [n�], where the columns of U(�) ∈ R
m×d� form an orthonormal basis for the

d�-dimensional subspace S�, and the a(�)

j are i.i.d. uniform on S
d�−1. As the U(�) are orthonormal, the

data points y(�)

j are distributed uniformly on the set {y ∈ S� : ‖y‖2 = 1} = S� ∩ S
m−1, which avoids

degenerate situations where the data points lie in preferred directions. To see why such degeneracies can
lead to ambiguous results, consider a two-dimensional subspace and assume that the data points in this
subspace are skewed towards two distinct directions. Then, there are two sensible segmentations. One
is to assign the points corresponding to each direction to separate clusters, the other to assign all points
to one cluster.

The dimensionality-reduced data set X ⊂ R
p is obtained by applying the (same) realization of a

random matrix Φ ∈ R
p×m (p ≥ max� d�) to each point in Y . The elements of the sets X� in X =

X1 ∪ . . . ∪ XL are hence given by x(�)

j = Φy(�)

j , j ∈ [n�]. We take Φ as a random matrix satisfying the
following concentration inequality

P
[∣∣‖Φx‖2

2 − ‖x‖2
2

∣∣ ≥ t‖x‖2
2

] ≤ 2 e−c̃t2p, ∀ t > 0, ∀x ∈ R
m, (3.1)

where c̃ is either a numerical constant or a parameter mildly dependent on m. Random matrices satisfying
(3.1) realize, with high probability, linear embeddings in the sense of the Johnson–Lindenstrauss (JL)
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Lemma, see, e.g., [32], [10, Section 9.5]. The JL Lemma says that every set of N points in Euclidean
space can be embedded in an O(ε−2 log N)-dimensional space without perturbing the pairwise Euclidean
distances between the points by more than a factor of 1 ± ε. A similar statement on random projections
preserving affinities between subspaces—as defined in (3.2)—is used in our proofs. Specifically, we show
that randomly projecting a set of d-dimensional subspaces into p-dimensional space does not increase
their pairwise affinities by more than const.

√
d/p, with high probability (cf. (B.8)). The concentration

inequality (3.1) holds, inter alia, for matrices with i.i.d. subgaussian1 entries [10, Lemma 9.8]; this
includes N (0, 1/p) entries and entries that are uniformly distributed on {−1/

√
p, 1/

√
p}. Such matrices

may, however, be costly to generate, store and apply to high-dimensional data points. In order to reduce
these costs, structured random matrices satisfying (3.1) (with c̃ possibly mildly dependent on m) were
proposed in [1,21]. For example, the structured random matrix proposed in [1] (and described in detail in
Section 5) satisfies (3.1) with c̃ = c2 log−4(m), where c2 is a numerical constant [21, Proposition 3.2], and
can be applied in time O(m log m) as opposed to time O(mp) for the realizations of general subgaussian
random matrices.

The clustering performance guarantees we obtain below are all in terms of the affinity between the
subspaces Sk and S� defined as [28, Definition 2.6], [29, Definition 1.2]

aff(Sk , S�):= 1√
dk ∧ d�

∥∥U(k)T
U(�)

∥∥
F
. (3.2)

Note that 0 ≤ aff(Sk , S�) ≤ 1, with aff(Sk , S�) = 1 if Sk ⊆ S� or S� ⊆ Sk and aff(Sk , S�) = 0 if
Sk and S� are orthogonal to each other. Moreover, we have

aff(Sk , S�) =
√

cos2(θ1) + · · · + cos2(θdk∧d�
)/
√

dk ∧ d�, (3.3)

where θ1 ≤ · · · ≤ θdk∧d�
are the principal angles between Sk and S� [12, Section 6.3.4]. If Sk and

S� intersect in t dimensions, i.e., if Sk ∩ S� is t-dimensional, then cos(θ1) = · · · = cos(θt) = 1, and
hence aff(Sk , S�) ≥ √

t/(dk ∧ d�). The affinity between subspaces plays an important role in subspace
classification [27] as well, see [19, Theorems 2 and 3].

We start with our main result for TSC.

Theorem 3.1 Choose q such that q ≤ min� n�/6. If

max
k,� : k �=�

aff(Sk , S�) +
√

11√
3c̃

√
dmax√

p
≤ 1

15 log N
, (3.4)

where dmax := max� d� and c̃ is the constant in the concentration inequality (3.1), then the graph
G obtained by applying TSC to X has no false connections with probability at least 1 − 7N−1

−∑L
�=1 n� e−c(n�−1), where c > 1/20 is a numerical constant.

Our main result for SSC is the following.

1 A random variable x is subgaussian [10, Section 7.4] if its tail probability satisfies P[|x| > t] ≤ c1 e−c2 t2
for constants

c1, c2 > 0.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/6/3/246/3070510 by U
niversity of Zurich user on 08 M

arch 2022
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Theorem 3.2 Let ρ�:=(n� −1)/d�, � ∈ [L], ρmin:= min� ρ� ≥ ρ0, where ρ0 > 1 is a numerical constant,
and pick any τ > 0. Set dmax := max� d� and suppose that

max
k,� : k �=�

aff(Sk , S�)+
√

28dmax+8 log L+2τ

3c̃p
≤
√

log ρmin

65 log N
, (3.5)

where c̃ is the constant in (3.1). Then, the graph G obtained by applying SSC to X has no false
connections with probability at least 1 − 4 e−τ/2 − N−1 −∑L

�=1 n� e−√
ρ�d� .

Finally, for SSC-OMP we obtain the following statement.

Theorem 3.3 Let ρ�:=(n� − 1)/d�, � ∈ [L], ρmin:= min� ρ� ≥ ρ0, where ρ0 > 1 is a numerical
constant, and pick any τ > 0. Set dmin:= min� d�, dmax:= max� d�, and suppose that Φ has (in addition
to satisfying the concentration inequality (3.1)) a rotationally invariant distribution, i.e., ΦV ∼ Φ for
all unitary matrices V ∈ R

m×m. If

max
k,� : k �=�

aff(Sk , S�) +
√

28dmax + 8 log L + 2τ

12c̃p

√
dmax

dmin
≤ 3

200

√
log ρmin

log N
, (3.6)

where c̃ is the constant in (3.1), then, irrespectively2 of the choice of the maximum number of OMP-
iterations smax, the graph G obtained by applying SSC-OMP to X has no false connections with
probability at least 1 − 4 e−τ/2 − 4N−1 −∑L

�=1 n� e−√
ρ�d� .

The proofs of Theorems 3.1–3.3 are provided in Appendices A, B and C, respectively, and are
established by first deriving deterministic clustering conditions that are then evaluated for our statistical
data model.

Theorems 3.1 and 3.2 essentially say that even when p is on the order of dmax, TSC and SSC succeed
(in the sense of the no false connections property being satisfied) with high probability if the affinities
between the subspaces S� are sufficiently small and if X contains sufficiently many points from each
subspace. The same conclusion applies to SSC-OMP provided that the term

√
dmax/dmin is not too large,

which is the case if the dimensions d�, � ∈ [L], of the subspaces are of the same order. This condition
is satisfied in many practical applications, such as, e.g., for the face clustering and the handwritten digit
clustering problems described in Section 5. We believe the occurrence of the factor

√
dmax/dmin in (3.6)

to be an artifact of our proof technique. Also note that Theorem 3.3 imposes more restrictive conditions
on Φ than Theorems 3.1 and 3.2, namely the distribution of Φ has to be rotationally invariant. This is a
technical condition and it is not implied by (3.1). Examples of rotationally invariant matrices satisfying
(3.1) include matrices with i.i.d. N (0, 1/p) entries.

Theorems 3.1–3.3 apply even when the union of the subspaces S� equals the ambient space R
m.

This follows by virtue of our clustering conditions depending only on the pairwise affinities between
subspaces, and pairwise affinities changing only moderately if the dimensionality is reduced down to
no more than the order of the individual subspace dimensions. In contrast, results on the performance

2 While the statement holds irrespectively of smax, recall from Section 2 that choosing smax too small may result in too few
non-zero entries in A for successful clustering.
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of subspace clustering algorithms available in the literature often assume the subspaces to be indepen-
dent3 [34]. Now, it turns out that if the S� collectively span R

m, the corresponding subspaces after
dimensionality reduction cannot be independent.

Theorems 3.1–3.3 show that for all three algorithms, p may be taken to be linear (up to log-factors)
in dmax. We can therefore conclude that the dimensionality of the data set Y can be reduced down to the
order of the largest subspace dimension without affecting clustering performance significantly. This has
important practical ramifications as, for all three algorithms, the computational complexity associated
with the construction of the adjacency matrix is essentially linear in the dimension of the ambient space
the data points “live in”. To get an idea of the resulting overall complexity savings, let us consider the
TSC algorithm and assume that the (high-dimensional) data set Y ⊂ R

m is projected down to R
p, with

p = O(dmax log2(N)), via a Gaussian random projection; this choice of p guarantees, by Theorem 3.1,
that clustering performance is not affected significantly by dimensionality reduction. The complexity
associated with the construction of the adjacency matrix for TSC is given by the cost of computing
the inner products between all pairs of data points, and is therefore O(mN2) for the original data set
Y ⊂ R

m and O(pN2) for the projected data set X ⊂ R
p. Adding the cost for applying the Gaussian

random projection results in an overall cost of O(pN2) + O(pNm) = O(dmax log2(N)N(N + m)) for
building the adjacency matrix associated with X . The resulting complexity savings for TSC are therefore
given by O(min(m, N)/(dmax log2(N))). The absolute run-time savings are even more pronounced for
SSC-OMP and SSC, as the corresponding costs for building the adjacency matrix are larger than O(mN2).
Further gains can be obtained by employing fast random projections (FRPs) [1].

Dimensionality reduction affects the computational cost associated with the construction of the
adjacency matrix only. The spectral clustering step, which when naı̈vely implemented has complexity
O(N3), may be the dominating factor in the overall computational cost, in particular when m is small
relative to N3. Notwithstanding, dimensionality reduction can still lead to significant total run-time
savings. Our numerical results in Section 5 demonstrate this for SSC. To see savings on the same order
for SSC-OMP and TSC, we would have to consider problems with N small relative to m.

The probability lower bounds in Theorems 3.1–3.3 are independent of p and m, and require the total
number of data points N to be large in absolute terms in order to ensure a success probability close to
one.

Theorems 3.1–3.3 are order-optimal in the following sense. If dimensionality is reduced to below
dmax, then, in general, there are points from different subspaces that are projected into the same lower-
dimensional subspace, which renders the resulting clustering problem fundamentally ill-posed. To see
this, take d� = d, for all �, and assume that p ≤ d. Next, note that the (randomly projected) points X�

lie in the column span of ΦU(�). As U(�) is a basis for the d�-dimensional subspace S� ⊂ R
m, the span

of ΦU(�) is R
p, for all �, and therefore all points in the projected data set X = X1 ∪ ... ∪ XL lie in the

same p-dimensional subspace, which renders the clustering problem ill-posed.
While our results pertain to the particular data model used in this article, the qualitative conclusions

we draw remain valid under much more general conditions. Specifically, any model that has the data
points spread out sufficiently on the subspaces S� would lead to similar conclusions. In particular, we
could take the vectors a(�)

j to be independent zero-mean Gaussian with (full-rank) covariance matrices
Σ (�). The corresponding analytical results would then additionally depend on the spreads of the singular
values of the Σ (�); larger spreads would correspond to a harder clustering problem, reflected in a more
stringent clustering condition which would necessitate the affinities to be smaller.

3 The linear subspaces S� are said to be independent if the dimension of their (set) sum is equal to the sum of their dimensions.
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DIMENSIONALITY-REDUCED SUBSPACE CLUSTERING 255

We next compare the clustering conditions (3.4)–(3.6) in Theorems 3.1–3.3 with their counterparts
for clustering of the original, high-dimensional data set Y . Specifically, such reference conditions can
be found in [16, Theorem 2] for TSC and in [28, Theorem 2.8] for SSC, but do not seem to be available
for SSC-OMP for the statistical data model considered in this article. However, setting Φ = I in the
proof of Theorem 3.3, we can easily get a reference condition for SSC-OMP. Rather than providing the
details of this simple modification, we refer the reader to the proof in [31, Chapter 4].

Corollary 3.1 Let ρ�:=(n� − 1)/d�, � ∈ [L], and suppose that ρmin:= min� ρ� ≥ ρ0, where ρ0 > 1 is
a numerical constant. If

max
k,� : k �=�

aff(Sk , S�) ≤
√

log ρmin

64 log N
, (3.7)

then the graph G obtained by applying SSC-OMP to the original, high-dimensional data set Y has no
false connections with probability at least 1 − 2N−1 −∑L

�=1 n� e−√
ρ�d� .

We conclude that for all three algorithms, the impact of dimensionality reduction is essentially
quantified through a term proportional to

√
dmax/p that adds to the maximum affinity between the

subspaces S� in the clustering conditions (3.4)–(3.6). These clustering conditions nicely reflect the
intuition that the smaller the affinities between the subspaces S�, the more aggressively we can reduce
the dimensionality of the data set without compromising clustering performance.

As the result in Corollary 3.1 is new, a few comments on its relation to existing results, specifi-
cally those in [7] and [37], are in order. Corollary 3.1 imposes less restrictive conditions on the relative
orientations of the subspaces than [7, Theorem 3], [37, Theorem 2, Corollary 1], but makes stronger
assumptions on the data model. The result in [37, Theorem 3] applies to subspaces with random orien-
tations, and therefore does not allow for statements involving subspace affinities. We refer the reader to
the thesis [31, Section 4.1] for a more detailed comparison of Corollary 3.1 above to [7, Theorem 3].
Finally, numerical results corroborating the fundamental nature of the clustering condition (3.7) can be
found in [31, Section 5.1].

4. Impact of noise

In many practical applications, the data points to be clustered are corrupted by noise, typically modeled
as additive Gaussian noise. Additionally, in practice, the subspace model will, in general, not be an exact
fit for the data at hand, so that additive noise can be seen as modeling this deviation. In this section,
we study the interplay between dimensionality reduction and additive noise for the TSC algorithm.
Specifically, we let the high-dimensional data points be corrupted by Gaussian noise according to

ỹ(�)

i = y(�)

i + e(�)

i ,

where e(�)

i ∼ N (0, (σ 2/m)I), and assume, as before, that y(�)

i is drawn i.i.d. uniformly from the inter-
section of the d�-dimensional subspace S� with the unit sphere. The dimensionality-reduced noisy data
set X̃ ⊂ R

p is obtained by applying the same realization of the random projection matrix Φ ∈ R
p×m to

all (noisy) data points ỹ(�)

i . The elements of the sets X̃� in X̃ = X̃1 ∪ . . . ∪ X̃L are hence given by

x̃(�)

j = Φ(y(�)

i + e(�)

i ), j ∈ [n�]. (4.1)
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Theorem 4.1 Choose q such that q ≤ min� n�/6, and let m ≥ 6 log N . If

max
k,� : k �=�

aff(Sk , S�) +
√

11√
3c̃

√
dmax√

p
+ σ(1 + σ)

√
6√

c̄ log N

√
dmax√

p
≤ 1

15 log N
, (4.2)

where dmax := max� d� and c̄ := min(6, c̃) with c̃ the constant in the concentration inequality (3.1),
then the graph G obtained by applying TSC to X̃ has no false connections with probability at least
1 − 14N−1 − 2N e−m −∑L

�=1 n� e−c(n�−1), where c > 1/20 is a numerical constant.

Theorem 4.1 states that in the noisy case—just as in the noiseless case—TSC succeeds for p order-
wise as small as dmax, provided that the affinities between the subspaces S� are sufficiently small and
X̃ contains sufficiently many points from each subspace. More specifically, comparing the noiseless
clustering condition (3.4) to (4.2), we can see that the impact of noise is simply to add the offset
σ(1+σ)

√
6√

c̄ log N

√
dmax√

p to the LHS of the clustering condition. For fixed σ , owing to the factor
√

dmax/p, the

impact of noise on the effective affinity as quantified by the LHS of (4.2) becomes more pronounced
when the dimensionality is reduced more aggressively.

Theorem 4.1 continues to hold
(

with c̄ in the term σ(1+σ)
√

6√
c̄ log N

√
dmax√

p replaced by a numerical constant,

and e−m in the success probability replaced by e−p
)

, if noise ẽ(�)

i ∼ N (0, (σ 2/p)I) is added after

random projection according to x̃(�)

j = Φy(�)

i + ẽ(�)

i . This is not surprising, as the absolute amount of

noise injected remains the same, i.e., E

[∥∥∥ẽ(�)

i

∥∥∥2

2

]
= E

[∥∥∥e(�)

i

∥∥∥2

2

]
= σ 2.

We finally note that an approach similar to that used for TSC can be applied to extend our result
for SSC-OMP to the noisy case resulting in clustering conditions analogous to those for TSC. The
corresponding technical details are, however, significantly more involved and cumbersome. We therefore
decided not to state the formal result. We expect that a similar result can be proven for (a robust version
of) SSC as our simulation results in Section 5.1.2 indicate that the qualitative behavior of all three
algorithms in the presence of noise is essentially identical, and, in addition, is qualitatively accurately
predicted by Theorem 4.1.

5. Numerical results

We evaluate the impact of dimensionality reduction on the CE, i.e., the fraction of misclustered points,
for TSC, SSC and SSC-OMP applied to synthetic data as well as to publicly available standard data sets
widely used in the subspace clustering literature. Specifically, we consider the problems of clustering
faces, handwritten digits and gene expression data. All three algorithms, TSC, SSC and SSC-OMP, were
observed to tolerate massive dimensionality reduction in all experiments. While our sufficient conditions
for the no false connections property to hold do not allow to infer performance differences between the
three algorithms, the algorithms’ performance ranking varies across datasets, and no single algorithm
is found to uniformly outperform the others. We also compare the algorithms in terms of their running
times on a PC with 32 GB RAM and 8-core Intel Core i7-3770K CPU clocked at 3.50 GHz.

TSC and SSC-OMP were implemented in Matlab following the specifications in Section 2. For SSC,
we used the Matlab implementation provided in [9], which is based on Lasso (instead of �1-minimization)
and uses the alternating direction method of multipliers. Code to reproduce the experiments in this section
is available at http://www.nari.ee.ethz.ch/commth/research/. Information on the number of Monte Carlo
runs used in our experiments is contained in this code.
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DIMENSIONALITY-REDUCED SUBSPACE CLUSTERING 257

Unless stated otherwise, we select the Lasso parameter λ in SSC from the set {0.001, 0.002,
0.004, 0.008, 0.01, 0.02, 0.04, 0.08, 0.1, 0.2} such that the lowest CE is obtained on the original high-
dimensional data set Y . The parameters q and smax for TSC and SSC-OMP, respectively, are chosen in
an analogous manner from the set {2, 4, . . . , 18}.

As projection matrices we consider i.i.d. N (0, 1/p) Gaussian random matrices (referred to as GRP)
and FRP matrices [1] given by the real part of FD ∈ C

p×m, where D ∈ R
m×m is diagonal with main

diagonal elements drawn i.i.d. uniformly from {−1, 1}, and F ∈ C
p×m is obtained by choosing a set

of p rows uniformly at random from the rows of an m × m discrete Fourier transform matrix. In all
experiments, the dimensionality-reduced data set X is obtained by applying the (same) realization of
either a GRP or an FRP matrix to all data points in Y . The FRP can be implemented efficiently by
premultiplying Y by D and then applying the fast fourier transform (FFT) to each data point. With
regards to storage space, we note that the FRP only requires the storage of a binary m-dimensional
vector (namely the diagonal entries of D), in contrast to mp real numbers for GRPs.

5.1 Synthetic data

5.1.1 Comparison of TSC, SSC and SSC-OMP We use the data model described in Section 3 with
m = 215 =32,768 and generate L = 3 subspaces S� of R

m of dimension d = 20 at random such that
every pair of subspaces intersects in at least r dimensions; this implies aff(Sk , S�) ≥ √

r/d, for all
k, � ∈ [L], k �= �. More specifically, we take the basis matrices to be given by U(�) = [U Ũ(�)], where
U ∈ R

m×r and the Ũ(�) ∈ R
m×(d−r), � ∈ [L], are chosen uniformly at random among all orthonormal

matrices of dimensions m × r and m × (d − r), respectively. We sample n� = 80 data points, for each
� ∈ [L], resulting in a total of N = 240 data points.

In Fig. 1, we plot the CE as a function of p for TSC, SSC and SSC-OMP applied to the dimensionality-
reduced data set X with r = 4 and r = 8. Fig. 2 shows the running times corresponding to the application
of the FRP and the GRP matrix to the (entire) data set Y along with the running times of the clustering
algorithms alone.

The results show, as predicted by Theorems 3.1–3.3, that TSC, SSC and SSC-OMP, indeed, succeed
provided that

√
d/p is sufficiently small. Specifically, we observe a transition to CE ≈ 0 for p between

20 and 100. As the subspaces S� are of dimension 20, this corroborates the fact that the dimensionality
of the data can be reduced down to the dimension of the subspaces without compromising clustering
performance significantly. Equivalently, we accomplish a dimensionality reduction by a factor of about
1600–320.

For all three algorithms, the numerical results further confirm the tradeoff between the affinities of
the S� and the amount of dimensionality reduction possible as quantified by the clustering conditions
(3.4)–(3.6). Specifically, the CE increases as r and hence aff(Sk , S�) increases. In this example, SSC
consistently outperforms TSC and SSC-OMP, albeit at the cost of significantly longer running time
(see Fig. 2). While the running time of SSC exhibits very pronounced increasing behavior in p, that of
SSC-OMP shows much less pronounced increases, and that of TSC does not increase notably in p. It is
furthermore interesting to see that the clustering performance is essentially identical for FRP and GRP.
This is remarkable as the application of FRP requires only O(m log m) operations (per data point) and
therefore its running time does not depend on p. Application of the GRP, in contrast, requires O(mp)

operations (per data point), which results in a running time that is linear in p.

5.1.2 Impact of noise In the next experiment, we study the interplay between noise and dimensionality
reduction. We use the data model described in Section 3 with m = 100 and generate L = 2 orthogonal
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Fig. 1. CE for synthetic data as a function of p using GRP (left) and FRP (right). Recall that for r = 4 and r = 8, we have
aff(Sk , S�) ≥ √

1/5 and aff(Sk , S�) ≥ √
2/5, respectively, for all k, � ∈ [L], k �= �.

Fig. 2. Running times (in seconds) for clustering synthetic data.

subspaces S� of R
m of dimension d = 10. This ensures that the affinity between the subspaces equals 0

(fixing the affinity to some other constant would not change the qualitative conclusions). We generate the
noisy data set Ỹ by sampling n� = 30 points from each of the two subspaces and adding N (0, (σ 2/m)I)
noise according to ỹ(�)

i = y(�)

i +e(�)

i . Fig. 3 shows the CE as a function of
√

d/p and σ for dimensionality
reduction via GRP.

The clustering condition in Theorem 4.1 guarantees that TSC succeeds as long as
√

d/p(c1 +
σ(c2 + σ)) ≤ c3, where c1, c2, c3 are independent of d, p, m and σ 2. In order to find out whether this
sufficient condition for the no false connections property to hold predicts the fundamental clustering
behavior qualitatively correctly, we test whether a phase transition, separating the region where clustering
succeeds from that where it fails, indeed, occurs at

√
d/p(c1 + σ(c2 + σ)) = c3. (5.1)
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Fig. 3. CE (color coded) as a function of
√

d/p and σ for L = 2 subspaces of R
100 with aff(S1, S2) = 0 (top row) and

aff(S1, S2) = √
1/5 (bottom row). The black lines correspond to the curve

√
d/p(c1 + σ(c2 + σ)) ≤ c3 for suitably chosen

constants c1, c2, c3, and roughly separate the success regions from the failure regions.

To this end, we fit (5.1) manually—by choosing c1, c2, c3—to the plots in Fig. 3 and observe that the
answer is in the affirmative. Moreover, our numerical results show that the phase transition behavior
of SSC and SSC-OMP is essentially identical to that of TSC, which provides evidence for SSC and
SSC-OMP behaving similarly to TSC in the noisy case.

5.1.3 Dimensionality reduction when the union of the subspaces equals the ambient space As noted in
Section 3, Theorems 3.1–3.3 and Theorem 4.1 indicate that dimensionality reduction down to the order
of the subspace dimensions is possible even when the union of the subspaces S� equals the ambient
space. To verify this observation empirically, we perform the following experiment. We draw a random
Gaussian matrix V ∈ R

200×200. With probability one, the columns of V span R
200. We then extract the

200 × 20 matrices V(�) from V according to [V(1) . . . V(10)] = V, and let the subspace S� be given by
the span of V(�), � = 1, . . . , 10. This guarantees that the union of the S� is R

200. Note, however, that the
affinities between pairs of the resulting subspaces will be small with high probability. We again use the
data model described in Section 3 and sample n� = 60 points on S� ∩ S

d�−1, for all � ∈ [L], to obtain
a data set Y with a total of N = 600 points. We select the values for q, λ and smax that yield the lowest
CE for the majority of values for p.

Fig. 4 shows the CE as a function of p for TSC, SSC and SSC-OMP. The CE starts to be non-zero for
p < 60 for TSC and SSC-OMP, and for p < 40 for SSC. We therefore conclude that the dimensionality
can, as indicated by Theorems 3.1 and 4.1, indeed, be reduced quite significantly, even when the union
of the subspaces equals the ambient space.
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Fig. 4. CE as a function of p for a union of L = 10 subspaces; this union equals the ambient space R
200.

5.2 Clustering faces

We next evaluate the impact of dimensionality reduction in the problem of clustering face images taken
from the Extended Yale B data set [11,24], which contains 192 × 168 pixel (m = 32,256) frontal face
images of 38 individuals, with 64 images per individual, each acquired under different illumination
conditions. The motivation for applying subspace clustering algorithms to this problem stems from
the insight that the vectorized images of a given face taken under varying illumination conditions lie
approximately in a nine-dimensional linear subspace [3]. Each nine-dimensional subspace S� would
then contain the images corresponding to a given person.

We generate Y by first selecting a subset of L = 2 individuals uniformly at random from the set of
all
(38

2

)
pairs and then collecting all images corresponding to the two selected individuals. In Fig. 5, we

plot the corresponding CE and the running times as a function of p. Again, for each p, the CE and the
running times are obtained by averaging over 500 problem instances generated by randomly choosing
100 instances of Y and 5 realizations of the projection matrix per chosen data set Y . In contrast to the
preceding experiment, here, SSC-OMP consistently outperforms TSC and SSC. For all three algorithms,
the dimensionality of the data can be reduced by a factor of about 100 without notably increasing the CE.
Note, however, that in this experiment the dimensionality cannot be reduced as aggressively as in the
preceding synthetic data experiment. Specifically, here the data points lie in nine-dimensional subspaces
and dimensionality reduction by a factor of 100 corresponds to p ≈ 322. One possible explanation
for this observation is that the principal angles between the subspaces spanned by the face images of
different subjects are typically small (see [9, Section 7]), which means that the subspace affinities in this
data set are large. Another possible explanation is that the data points only approximately lie in nine-
dimensional subspaces. The conclusions regarding running times and choice of the random projection
matrix are analogous to those reported for synthetic data above.

5.3 Clustering handwritten digits

In this experiment, we investigate the impact of dimensionality reduction in the context of clustering
images of handwritten digits. We use the MNIST data set [23] containing 10,000 images of (horizontally
and vertically) aligned handwritten digits of size 28 × 28 pixels (m = 784). The motivation for employ-
ing subspace clustering in this context stems from the observation that vectorized images of different
handwritten versions of the same digit tend to lie near a low-dimensional subspace [14].
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Fig. 5. CE and running times (in seconds) for clustering L = 2 faces from the Extended Yale B data set.

Fig. 6. CE for handwritten digits 2, 4 and 8 from the MNIST data set.

We generate the data sets Y by selecting 250 images (out of 1000) uniformly at random from each
of the sets corresponding to the digits 2, 4 and 8. There is no specific reason for our choice of the digits 2,
4 and 8; other combinations of three digits yield similar results. However, some combinations of digits
are more difficult to cluster than others, e.g., 1 and 7 are “closer” (in terms of the affinities between the
subspaces the corresponding images approximately lie in) than 1 and 8; clustering 1 and 7 therefore
typically results in a larger error than clustering 1 and 8. The results depicted in Fig. 6 show that the
dimensionality of the data set can be reduced from m = 784 to p = 200, i.e., by a factor of 3.9, without
notably increasing the CE incurred by TSC and SSC. For sufficiently large p, TSC yields a slightly lower
CE than SSC. SSC-OMP is outperformed considerably by the other two algorithms.

5.4 Clustering gene expression data

Finally, we consider clustering of gene expression level data—originating from different types of cancer
cells—according to cancer type. This problem is of significant practical relevance as it helps, inter alia,
to identify genes that are involved in the same cellular process [20]. The use of subspace clustering in
this context was suggested in [20]. We use the publicly available Novartis multi-tissue data set from
the Broad Institute Cancer Program database [5]. This data set contains the 1000-dimensional gene
expression level data of n = 103 tissue samples taken from L = 4 different cancer types. In order to
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Fig. 7. CE for gene expression level data of L = 4 cancer types (left). Singular values of data matrices corresponding to a single
cancer type (right).

illustrate that the gene expression level vectors of a single cancer type, indeed, lie near a low-dimensional
subspace, we plot, in Fig. 7, the singular values of the data matrices corresponding to a single cancer
type. We observe that the singular values decay rapidly and for every cancer type, more than 94%
of the energy of the corresponding data vectors is concentrated in a six-dimensional subspace of the
1000-dimensional ambient space.

We cluster all n = 103 available samples. The CE obtained by averaging, for each p, over 200
realizations of the random projection matrix is shown in Fig. 7. For p ≈ 100, which corresponds to
dimensionality reduction by a factor of 10, the CEs of TSC and SSC are comparable to those obtained
when operating on the original high-dimensional data set. SSC is seen to consistently (across p) perform
best, followed by TSC and SSC-OMP. As in previous experiments the CEs observed for GRP and FRP,
for each of the three algorithms, are virtually identical.
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Appendix A. Proof of Theorems 3.1 and 4.1

The proof idea for Theorem 3.1 is to turn the effect of the random projection into an additive perturbation
and to show that this perturbation is small for all values of p down to the order of dmax. In the noisy
case, addressed by Theorem 4.1, we have an additional perturbation due to noise. We detail the proof
of the more general Theorem 4.1 below, and explain in Appendix A.3 the simple changes that yield
Theorem 3.1. The proof of Theorem 4.1 follows closely that of [16, Theorem 3], which quantifies the
performance of TSC under additive Gaussian noise alone. We therefore elaborate only on the steps that
are new relative to [16] and encourage the interested reader to consult [16] for the arguments not repeated
here.

The graph G obtained by applying TSC to the dimensionality-reduced noisy data set X̃ has no false
connections, i.e., each x̃(�)

i is connected to points in X̃� only, if for each x̃(�)

i ∈ X̃� the associated set Si

corresponds to points in X̃� only, for all �. This is the case if

z(�)

(n�−q) > max
k �=�,j

z(k)

j , (A.1)

where z(k)

j :=∣∣〈x̃(k)

j , x̃(�)

i

〉∣∣ and z(�)

(1) ≤ z(�)

(2) ≤ · · · ≤ z(�)

(n�−1) are the order statistics of {z(�)

j }j∈[n�]\{i} and maxk �=�,j

denotes maximization over k ∈ [L], k �= �, and over the indices j of the corresponding points x̃(k)

j ∈ X̃k .

Note that, for simplicity of exposition, the notation z(k)

j does not reflect dependence on x̃(�)

i . The proof

is established by upper-bounding the probability of (A.1) being violated for a given data point x̃(�)

i . A
union bound over all N points x̃(�)

i , i ∈ [n�], � ∈ [L], then yields the final result. We start by setting

z̄(k)

j :=
∣∣∣〈y(k)

j , y(�)

i

〉∣∣∣, where y(k)

j = U(k)a(k)

j are the original data points in the (high-dimensional) space R
m,

and noting that z(k)

j =
∣∣∣〈x̃(k)

j , x̃(�)

i

〉∣∣∣ =
∣∣∣〈y(k)

j , y(�)

i

〉
+ e(k)

j

∣∣∣, where we defined the “distortion”

e(k)

j :=
〈
Φỹ(k)

j , Φỹ(�)

i

〉
−
〈
y(k)

j , y(�)

i

〉
=
〈
(ΦTΦ − I)y(k)

j , y(�)

i

〉
+
〈
Φy(k)

j , Φe(�)

i

〉
+
〈
Φe(k)

j , Φy(�)

i

〉
+
〈
Φe(k)

j , Φe(�)

i

〉
=
〈
U(�)T

(ΦTΦ − I)U(k)a(k)

j , a(�)

i

〉
︸ ︷︷ ︸

ē(k)
j

+
〈
ΦTΦy(k)

j , e(�)

i

〉
+
〈
e(k)

j , ΦTΦy(�)

i

〉
+
〈
ΦTΦe(k)

j , e(�)

i

〉
︸ ︷︷ ︸

ẽ(k)
j

. (A.2)
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Here, the term ē(k)

j accounts for the perturbation caused by random projection, and ẽ(k)

j corresponds to
the perturbation caused by noise. The probability of (A.1) being violated can now be upper-bounded
according to

P

[
z(�)

(n�−q) ≤ max
k �=�,j

z(k)

j

]
≤ P

[
z̄(�)

(n�−q) ≤ 2

3
√

d�

]
+ P

[
max
k �=�,j

z̄(k)

j ≥ α

]
+ P

[
max

(j,k)�=(i,�)

∣∣e(k)

j

∣∣ ≥ ε

]
, (A.3)

where we set

α:=4
√

6 log N√
d�

max
k �=�

1√
dk

∥∥∥U(k)T
U(�)

∥∥∥
F
, ε:= β√

d�

δ + β
2σ(1 + σ)√

m
δ′ (A.4)

with β:=√6 log N , δ:=
√

28dmax+8 log L+8 log N√
3c̃p

and δ′:=
√

6m
c̄p , and assumed

α + 2ε ≤ 2

3
√

d�

. (A.5)

We refer the reader to [16, Proof of Theorem 3, Equation (40)] for an explanation of the steps leading
to (A.3) (while [16, Equation (40)] is not completely equivalent to (A.3), the steps leading to (A.3) are
essentially identical). Resolving the assumption (A.5) leads to

max
k �=�

1√
dk

∥∥∥U(k)T
U(�)

∥∥∥
F

+ δ

2
√

log N
+ σ(1 + σ)

√
6d�

c̄p log N
≤ 2

3 · 4
√

6 log N
,

which is implied by (4.2) (using that
√

28dmax + 8 log L + 8 log N/
√

log N ≤ √
44dmax, because

log(L)/ log(N) ≤ 1, dmax ≥ 1, and log N > 1 for N ≥ 3). With ε as defined in (A.4), and the tri-
angle inequality, it follows that max(j,k)�=(i,�)

∣∣e(k)

j

∣∣ ≥ ε implies that either max(j,k)�=(i,�)

∣∣ē(k)

j

∣∣ ≥ β√
d�

δ or

max(j,k)�=(i,�)

∣∣ẽ(k)

j

∣∣ ≥ β 2σ(1+σ)√
m δ′, or both. Therefore, by a union bound argument

P

[
max

(j,k)�=(i,�)

∣∣e(k)

j

∣∣ ≥ ε

]
≤ P

[
max

(j,k)�=(i,�)

∣∣ē(k)

j

∣∣ ≥ β√
d�

δ

]
+ P

[
max

(j,k)�=(i,�)

∣∣ẽ(k)

j

∣∣ ≥ β
2σ(1 + σ)√

m
δ′
]

. (A.6)

Here, the first and second term on the RHS of (A.6) correspond to the perturbation caused by random
projection and by noise, respectively. As established in Sections A.1 and A.2, these terms can be upper-
bounded by 4

N2 and 2 e−m + 7
N2 , respectively, which yields

P

[
max

(j,k)�=(i,�)

∣∣e(k)

j

∣∣ ≥ ε

]
≤ 4

N2
+ 2 e−m + 7

N2
. (A.7)

The remaining terms on the RHS of (A.3) are upper-bounded as shown in Steps 3 and 2 in [16, Proof of
Theorem 3], respectively, using standard concentration of measure results, according to

P

[
z̄(�)

(n�−q) ≤ 2

3
√

d�

]
≤ e−c(n�−1)
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and

P

[
max
k �=�,j

z̄(k)

j ≥ α

]
≤ 3N−2,

where c > 1/20 is a numerical constant, and we employed the assumption n� ≥ 6q, for all �.
With (A.7) we thus get that (A.1) is violated with probability at most e−c(n�−1) + 2 e−m + 14N−2.

Taking the union bound over all points x(�)

i , i ∈ [n�], � ∈ [L], finishes the proof.

A.1 Perturbation caused by random projection

We next show that the first term on the RHS of (A.6) is upper-bounded by 4/N2. This term corresponds
to the perturbation caused by random projection. For notational convenience, we set Bk,� =
U(�)T

(ΦTΦ − I)U(k) and note that

P

[
max

(j,k)�=(i,�)

∣∣ē(k)

j

∣∣ ≥ β√
d�

δ

]
= P

[
max

(j,k)�=(i,�)

∣∣∣〈Bk,�a
(k)

j , a(�)

i

〉∣∣∣ ≥ β√
d�

δ

]

= P

⎡⎣ ⋃
(j,k)�=(i,�)

{∣∣∣〈Bk,�a
(k)

j , a(�)

i

〉∣∣∣ ≥ β√
d�

δ

}⎤⎦
≤ P

⎡⎣ ⋃
(j,k)�=(i,�)

{∣∣∣〈Bk,�a
(k)

j , a(�)

i

〉∣∣∣ ≥
∥∥∥Bk,�a

(k)

j

∥∥∥
2

β√
d�

}
∪
{∥∥∥Bk,�a

(k)

j

∥∥∥
2
≥ δ

}⎤⎦
≤ P

⎡⎣ ⋃
(j,k)�=(i,�)

{∣∣∣〈Bk,�a
(k)

j , a(�)

i

〉∣∣∣ ≥
∥∥∥Bk,�a

(k)

j

∥∥∥
2

β√
d�

}
∪ {∥∥Bk,�

∥∥
2→2

≥ δ
}⎤⎦ (A.8)

≤ P

[
max

k

∥∥Bk,�

∥∥
2→2

≥ δ

]
+

∑
(j,k)�=(i,�)

P

[∣∣∣〈Bk,�a
(k)

j , a(�)

i

〉∣∣∣ ≥
∥∥∥Bk,�a

(k)

j

∥∥∥
2

β√
d�

]
(A.9)

≤ 2 e−τ/2 + N2 e− 6 log N
2 = 4

N2
, (A.10)

where (A.8) follows from
∥∥∥Bk,�a

(k)

j

∥∥∥
2

≤ ∥∥Bk,�

∥∥
2→2

, (A.9) is by the union bound, and (A.10) follows

from (B.8) in Appendix B with τ = 4 log N and Proposition A.1 below with a = a(�)

i , b = Bk,�a
(k)

j ,

d = d� and β = √
6 log N .

Proposition A.1 (E.g., [33, Example 5.25]) Let a be uniformly distributed on S
d−1 and fix b ∈ R

d .
Then, for β ≥ 0, we have

P

[
|〈a, b〉| >

β√
d

‖b‖2

]
≤ 2 e− β2

2 .
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A.2 Perturbation caused by noise

In this section, we deal with the perturbation caused by noise. Specifically, we establish that the second
term on the RHS of (A.6) satisfies

P

[
max

(j,k)�=(i,�)

∣∣ẽ(k)

j

∣∣ ≥ β
2σ(1 + σ)√

m
δ′
]

≤ 2 e−m + 7

N2
. (A.11)

For notational convenience, we set ȳ(k)

j = ΦTΦy(k)

j and drop the indices i and � to write y = y(�)

i ,

ȳ = ȳ(�)

i , e = e(�)

i . We first note that{
max

(j,k)�=(i,�)

∣∣ẽ(k)

j

∣∣ ≥ β
2σ(1 + σ)√

m
δ′
}

=
⋃

(j,k)�=(i,�)

{∣∣ẽ(k)

j

∣∣ ≥ β
2σ(1 + σ)√

m
δ′
}

⊆
⋃

(j,k)�=(i,�)

{∣∣∣〈ȳ(k)

j , e
〉∣∣∣ ≥ β

σ√
m

δ′
}

∪
{∣∣∣〈e(k)

j , ȳ
〉∣∣∣ ≥ β

σ√
m

δ′
}

∪
{∣∣∣〈ΦTΦe(k)

j , e
〉∣∣∣ ≥ β

2σ 2

√
m

δ′
}

, (A.12)

⊆ {∥∥ΦTΦ
∥∥

2→2
≥ δ′} ∪

⋃
(j,k)�=(i,�)

[{∣∣∣〈ȳ(k)

j , e
〉∣∣∣ ≥ β

σ√
m

∥∥∥ȳ(k)

j

∥∥∥
2

}
∪
{∣∣∣〈e(k)

j , ȳ
〉∣∣∣ ≥ β

σ√
m

‖ȳ‖2

}

∪
{∣∣∣〈ΦTΦe(k)

j , e
〉∣∣∣ ≥ β

σ√
m

∥∥∥ΦTΦe(k)

j

∥∥∥
2

}
∪
{∥∥∥e(k)

j

∥∥∥
2
≥ 2σ

}]
. (A.13)

Here, (A.12) follows from the triangle inequality. To verify (A.13), consider the first event in (A.12) and
note that {∣∣∣〈ȳ(k)

j , e
〉∣∣∣ ≥ β

σ√
m

δ′
}

⊆ {∥∥ΦTΦ
∥∥

2→2
≥ δ′} ∪

{∣∣∣〈ȳ(k)

j , e
〉∣∣∣ ≥ β

σ√
m

∥∥∥ȳ(k)

j

∥∥∥
2

}
. (A.14)

To see this, simply take the complement of (A.14) according to

{∥∥ΦTΦ
∥∥

2→2
< δ′} ∩

{∣∣∣〈ȳ(k)

j , e
〉∣∣∣ < β

σ√
m

∥∥∥ȳ(k)

j

∥∥∥
2

}
⊆
{∣∣∣〈ȳ(k)

j , e
〉∣∣∣ < β

σ√
m

δ′
}

,

where we used ∥∥∥ȳ(k)

j

∥∥∥
2
=
∥∥∥ΦTΦy(k)

j

∥∥∥
2
≤ ∥∥ΦTΦ

∥∥
2→2

∥∥∥y(k)

j

∥∥∥
2
= ∥∥ΦTΦ

∥∥
2→2

.

Treating the second and the third event in (A.12) similarly establishes (A.13). A union bound argument
now yields

P

[
max

(j,k)�=(i,�)

∣∣ẽ(k)

j

∣∣ ≥ β
2σ(1 + σ)√

m
δ′
]

≤ P
[∥∥ΦTΦ

∥∥
2
≥ δ′] (A.15)

+
∑

(j,k)�=(i,�)

P

[∣∣∣〈ȳ(k)

j , e
〉∣∣∣ ≥ β

σ√
m

∥∥∥ȳ(k)

j

∥∥∥
2

]
(A.16)
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+
∑

(j,k)�=(i,�)

P

[∣∣∣〈e(k)

j , ȳ
〉∣∣∣ ≥ β

σ√
m

‖ȳ‖2

]
(A.17)

+
∑

(j,k)�=(i,�)

P

[∣∣∣〈ΦTΦe(k)

j , e
〉∣∣∣ ≥ β

σ√
m

∥∥∥ΦTΦe(k)

j

∥∥∥
2

]
(A.18)

+
∑

(j,k)�=(i,�)

P
[∥∥∥e(k)

j

∥∥∥
2
≥ 2σ

]
(A.19)

≤ 2 e−m + 6N e− β2
2 + N e− β2

2 . (A.20)

To get (A.20), we upper-bounded the terms on the RHSs of (A.15)–(A.19) as follows. For the RHS of
(A.15), we note that

P
[∥∥ΦTΦ

∥∥
2
≥ δ′] ≤ 2 e−m,

which is a consequence of Theorem B.2 stated in Appendix B below. Specifically, with 1 ≤
√

6m
c̄p , which

follows from c̄ = min(6, c̃) ≤ 6 and p ≤ m, both by assumption, we have

P

[∥∥ΦTΦ
∥∥

2→2
≥
√

24m

c̄p

]
≤ P

[∥∥ΦTΦ
∥∥

2→2
≥ 1 +

√
6m

c̃p

]

≤ P

[∥∥ΦTΦ − I
∥∥

2→2
≥
√

6m

c̃p

]
(A.21)

≤ 2 e−m, (A.22)

where (A.22) is by Theorem B.2 (with t = √
2m). To establish (A.21), first note that

∥∥ΦTΦ − I
∥∥

2→2
≤ δ′

(with δ′ =
√

6m
c̄p ) implies σmax

(
ΦTΦ

) ≤ 1 + δ′, which in turn is equivalent to
∥∥ΦTΦ

∥∥
2→2

≤ 1 + δ′. We

can therefore conclude that
∥∥ΦTΦ

∥∥
2→2

≥ 1 + δ′ implies
∥∥ΦTΦ − I

∥∥
2→2

≥ δ′.
The terms inside the sums on the RHSs of (A.16)–(A.18) were upper-bounded by applying Lemma

A.1 stated below. Specifically, we note that
〈
ȳ(k)

j , e
〉 ∼ N (0, σ 2

∥∥ȳ(k)

j

∥∥2

2
),
〈
e(k)

j , ȳ
〉 ∼ N (0, σ 2

∥∥ȳ
∥∥2

2
), and〈

ΦTΦe(k)

j , e
〉 ∼ N (0, σ 2

∥∥ΦTΦe(k)

j

∥∥2

2
), where y(k)

j , ȳ, and ΦTΦe(k)

j , respectively, can be regarded as fixed,

and we used β = √
6 log N ≥ 1√

2π
, as N ≥ 1.

Lemma A.1 ([22, Proposition 19.4.2]) Let x ∼ N (0, 1). For β ≥ 1√
2π

, we have

P[x ≥ β] ≤ e− β2
2 . (A.23)

Finally, to upper-bound the terms inside the sum in (A.19), we used [16, Eq. (51)]

P
[∥∥∥e(k)

j

∥∥∥
2
≥ 2σ

]
≤ e− β2

2 . (A.24)
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A.3 Proof of Theorem 3.1

The proof of Theorem 3.1 is obtained from the proof of Theorem 4.1 by noting that in the noise-free
case (i.e., σ = 0), the perturbation caused by noise satisfies ẽ(k)

j = 0, rendering the second term on the
RHS of (A.6) void. Finally, we remark that the assumption 6 log N ≤ m is not needed in the noise-free
case as it is involved only in establishing (A.11), which is void here.

Appendix B. Proof of Theorem 3.2

We first note that the data points in X� can be written as x(�)

j = V(�)a(�)

j , j ∈ [n�], where the a(�)

j are
i.i.d. uniform on S

d�−1, and V(�):=ΦU(�) is a basis for the d�-dimensional subspace of R
p containing the

points in X� (V(�) has full column rank with high probability, which follows from (B.7) as a consequence
of the concentration inequality (3.1)). For the case where the V(�) are orthonormal bases, a sufficient con-
dition for successful clustering was derived by Soltanolkotabi and Candès [28, Theorem 2.8]. However,
owing to the projection Φ, the V(�) = ΦU(�) will in general not be orthonormal. We will therefore need
the following generalization of [28, Theorem 2.8] to arbitrary bases V(�) for d�-dimensional subspaces
of R

p.

Theorem B.1 Suppose that the elements of the sets X� in X = X1 ∪· · ·∪XL are obtained by choosing
n� points at random according to x(�)

j = V(�)a(�)

j , j ∈ [n�], where the V(�) ∈ R
p×d� have full rank, and

the a(�)

j are i.i.d. uniform on S
d�−1. Assume that ρ� := (n� − 1)/d� ≥ ρ0, for all �, where ρ0 > 1 is a

numerical constant, and let ρmin := min� ρ�. If

max
k,� : k �=�

1√
dk

∥∥∥V(�)†
V(k)

∥∥∥
F

≤
√

log ρmin

64 log N
, (B.1)

where V(�)† = (V(�)T V(�))
−1

V(�)T
is the (left) pseudoinverse of V(�), then the graph G with adjacency

matrix obtained by applying SSC to X has no false connections with probability at least 1 − N−1 −∑L
�=1 n� e−√

ρ�d� .

Proof. See Appendix B.1. �

We now detail how Theorem 3.2 follows from Theorem B.1. Specifically, we will show that (3.5)
implies (B.1) with probability at least 1 − 4 e−τ/2, which, when combined with the probability bound
in Theorem B.1 via a union bound yields the final probability estimate in Theorem 3.2, and thereby
concludes the proof.

We start filling in the details by showing how (3.5) implies (B.1). The LHS of (B.1) can be upper-
bounded as follows

1√
dk

∥∥∥V(�)†
V(k)

∥∥∥
F

= 1√
dk

∥∥∥(V(�)T
V(�)

)−1
V(�)T

V(k)

∥∥∥
F

≤
∥∥∥(V(�)T

V(�)
)−1
∥∥∥

2→2

1√
dk

∥∥∥V(�)T
V(k)

∥∥∥
F

(B.2)

≤
∥∥∥(V(�)T V(�)

)−1
∥∥∥

2→2√
dk

(∥∥∥U(�)T
U(k)

∥∥∥
F
+
∥∥∥U(�)T

(ΦTΦ − I)U(k)

∥∥∥
F

)
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≤
∥∥∥(V(�)T

V(�)
)−1
∥∥∥

2→2

(
aff(Sk , S�) +

∥∥∥U(�)T
(ΦTΦ − I)U(k)

∥∥∥
2→2

)
(B.3)

≤ 1

1 − δ
(aff(Sk , S�) + δ) (B.4)

≤ 65

64
(aff(Sk , S�) + δ) ≤

√
log ρmin

64 log N
, (B.5)

where (B.2) follows from ‖AB‖2
F ≤ ‖A‖2

2→2‖B‖2
F , (B.3) is a consequence of ‖B‖F ≤ √

m ∧ n‖B‖2→2,
for B ∈ R

m×n [18, Section 5.6, p. 365], and (B.4) holds with

δ:=
√

28dmax + 8 log L + 2τ

3c̃p
, (B.6)

with probability at least 1 − 4 e−τ/2 (here, τ > 0 is the numerical constant in the statement of Theorem
3.2). Equation (B.4) holds with probability at least 1 − 4 e−τ/2 by

P

[
max

�

∥∥∥(V(�)T
V(�)

)−1
∥∥∥

2→2
≥ 1

1 − δ

]
≤ 2 e−τ/2 (B.7)

and

P

[
max

k,�

∥∥∥U(�)T
(ΦTΦ − I)U(k)

∥∥∥
2→2

≥ δ

]
≤ 2 e−τ/2, (B.8)

both proven below. Finally, to get (B.5) we invoked (3.5) twice, first we used aff(Sk , S�) ≥ 0 and√
log ρmin
log N =

√
log ρmin

log
(∑L

�=1(ρ�d�+1)
) ≤ 1 in (3.5) to conclude that δ ≤ 1/65, i.e., 1

1−δ
≤ 65

64 , and second, we

applied (3.5) straight to upper-bound aff(Sk , S�).
It remains to prove (B.7) and (B.8). For the special case of a Gaussian random matrix Φ, the

probability bounds (B.7) and (B.8) can be obtained using standard results on the extremal singular
values of Gaussian random matrices. For general Φ satisfying the concentration inequality (3.1), the
proofs of (B.7) and (B.8) rely on Theorem B.2 below.

Theorem B.2 ([10, Theorem 9.9, Remark 9.10]) Suppose that the random matrix Φ ∈ R
p×m satisfies

the concentration inequality (3.1), i.e.,

P
[∣∣‖Φx‖2

2 − ‖x‖2
2

∣∣ ≥ t‖x‖2
2

] ≤ 2 e−c̃t2p,

for all t > 0 and for all x ∈ R
m, where c̃ is a constant. Then, for an orthonormal matrix U ∈ R

m×d and
all t > 0, we have

P

[∥∥UTΦTΦU − I
∥∥

2→2
≥
√

14d + 2t2

3c̃p

]
≤ 2 e− t2

2 .
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Additionally, for all t > 0, we have

P

[∥∥ΦTΦ − I
∥∥

2→2
≥
√

14m + 2t2

3c̃p

]
≤ 2 e− t2

2 .

Proof of (B.7): By a union bound argument, we get

P

[
max

�

∥∥∥(V(�)T
V(�)

)−1
∥∥∥

2→2
≥ 1

1 − δ

]
≤

L∑
�=1

P

[∥∥∥(V(�)T
V(�)

)−1
∥∥∥

2→2
≥ 1

1 − δ

]
. (B.9)

Note that
∥∥V(�)T V(�) − I

∥∥
2→2

≤ δ implies σmin

(
V(�)T V(�)

)
≥ 1 − δ, which in turn implies∥∥(V(�)T V(�))−1

∥∥
2→2

≤ 1
1−δ

. We can therefore conclude that
∥∥(V(�)T V(�))−1

∥∥
2→2

≥ 1
1−δ

implies∥∥V(�)T V(�) − I
∥∥

2→2
≥ δ, which can be formalized according to

{∥∥(V(�)T
V(�))−1

∥∥
2→2

≥ 1

1 − δ

}
⊆
{∥∥V(�)T

V(�) − I
∥∥

2→2
≥ δ

}
.

Moreover, we have with δ as defined in (B.6) δ =
√

28dmax+2t2

3c̃p ≥
√

14d�+2t2

3c̃p (2dmax ≥ dmax ≥ d�), with

t2 = 4 log L + τ . Therefore, Theorem B.2 (with U = U(�) and t2 = 4 log L + τ ) yields

P

[∥∥∥(V(�)T
V(�)

)−1
∥∥∥

2→2
≥ 1

1 − δ

]
≤ 2 e−2 log L−τ/2 = 2L−2 e−τ/2 ≤ 2L−1 e−τ/2,

which when used on the RHS of (B.9) establishes (B.7).

Proof of (B.8): Again, by a union bound argument, we get

P

[
max

k,�

∥∥∥U(�)T
(ΦTΦ − I)U(k)

∥∥∥
2→2

≥ δ

]
≤

L∑
k,�=1

P
[∥∥∥U(�)T

(ΦTΦ − I)U(k)

∥∥∥
2→2

≥ δ
]

. (B.10)

We next upper-bound the probabilities on the RHS of (B.10). To this end, let Ũ ∈ R
m×d̃ be an orthonormal

basis for the d̃-dimensional span of [U(�) U(k)] (max(d�, dk) ≤ d̃ ≤ d� +dk). Since ŨŨT is the orthogonal
projection onto span([U(�) U(k)]), we have ŨŨT U(�) = U(�) and ŨŨT U(k) = U(k). Therefore, we get∥∥∥U(�)T

(ΦTΦ − I)U(k)

∥∥∥
2→2

=
∥∥∥U(�)T

ŨŨT (ΦTΦ − I)ŨŨT U(k)

∥∥∥
2→2

≤
∥∥∥U(�)T

Ũ
∥∥∥

2→2

∥∥∥ŨTΦTΦŨ − I
∥∥∥

2→2

∥∥∥ŨT U(k)

∥∥∥
2→2

=
∥∥∥ŨTΦTΦŨ − I

∥∥∥
2→2

,
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where we used
∥∥∥U(�)T Ũ

∥∥∥
2→2

= 1, which holds since U(�) is in the span of Ũ and both U(�) and Ũ are

orthonormal. This finally yields, with δ as defined in (B.6),

P
[∥∥∥U(�)T

(ΦTΦ − I)U(k)

∥∥∥
2→2

≥ δ
]

≤ P

[∥∥∥ŨTΦTΦŨ − I
∥∥∥

2→2
≥
√

28dmax + 8 log L + 2τ

3c̃p

]

≤ P

⎡⎣∥∥∥ŨTΦTΦŨ − I
∥∥∥

2→2
≥
√

14d̃ + 8 log L + 2τ

3c̃p

⎤⎦ (B.11)

≤ 2 e− 4 log L+τ
2 = 2L−2 e−τ/2, (B.12)

where (B.11) follows from 2dmax ≥ d� + dk ≥ d̃, and (B.12) is by application of Theorem B.2 with
U = Ũ and t2 = 4 log L + τ . The proof is concluded by using (B.12) on the RHS of (B.10).

B.1 Proof of Theorem B.1

Theorem B.1 is a generalization of a result by Soltanolkotabi & Candès [28, Theorem 2.8] from orthonor-
mal bases V(�) for d�-dimensional subspaces of R

p to arbitrary bases V(�) for d�-dimensional subspaces.
The proof program essentially follows that of [28, Theorem 2.8]. However, some parts of the gener-
alization are non-trivial. We only detail the arguments that are new relative to [28], and refer to [28]
otherwise.

Throughout the proof, we use the following notation: Let X(�) ∈ R
p×n� be the matrix whose columns

are the points in X�, and note that X(�) = V(�)A(�), where A(�) ∈ R
d�×n� is the matrix with columns

a(�)

i , i = 1, . . . , n�. Set X = [X(1) . . . X(L)] ∈ R
p×N , and let X−i be the matrix obtained by removing

the ith column xi from X. P(X) denotes the symmetrized convex hull of the columns of X (recall that
the columns of X are the points in X ), that is, the convex hull of {x1, −x1, . . . , xN , −xN}. For a convex
body P, its inradius r(P) is defined as the radius of the largest Euclidean ball that can be inscribed in
P, and its circumradius R(P) is defined as the radius of the smallest ball containing P. Finally, the
polar set of K ⊂ R

n is defined as

K ◦ = {y ∈ R
n : 〈x, y〉 ≤ 1 for all x ∈ K }.

B.1.1 A deterministic clustering condition We first establish a deterministic clustering condition.
Specifically, in Theorem B.3 below we present conditions guaranteeing that for xi ∈ X� every solution
of the problem

minimize
z

‖z‖1 subject to X−iz = xi (B.13)

has non-zero entries corresponding to columns of X(�) only. The proof of Theorem B.1 is then obtained
by establishing that these conditions are satisfied with high probability for the statistical data model
in Theorem B.1. We start by introducing terminology needed in the following. Define the primal
optimization problem

P(y, A) : minimize
z

‖z‖1 subject to Az = y,
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DIMENSIONALITY-REDUCED SUBSPACE CLUSTERING 273

with the corresponding dual [4, Section 5.1.16]

D(y, A) : maximize
ν

〈y, ν〉 subject to
∥∥ATν

∥∥
∞ ≤ 1.

The problem (B.13) is then simply P(xi, X−i). The sets of optimal solutions of P and D are denoted by
optsolP(y, A) and optsolD(y, A), respectively. A dual point λ(y, A) is defined as a point in optsolD(y, A)

of minimal Euclidean norm.
We are now ready to state the following generalization of [28, Theorem 2.5] from orthonormal bases

V(�) for d�-dimensional subspaces of R
p to arbitrary bases V(�) for d�-dimensional subspaces.

Theorem B.3 Suppose that the elements of the sets X� in X = X1 ∪ . . .∪XL are obtained by choosing
n� points according to x(�)

i = V(�)a(�)

i , i ∈ [n�], where the a(�)

i are deterministic coefficient vectors and
the V(�) ∈ R

p×d� are deterministic matrices of full column rank. Let L ∈ R
d�×(n�−1) be the matrix whose

columns are the normalized dual points λ̃(a(�)

i , A(�)

−i ) = λ(a(�)

i , A(�)

−i )/
∥∥λ(a(�)

i , A(�)

−i )‖2, where A(�)

−i is the
matrix with columns a(�)

j , j ∈ [n�] \ {i}. If

max
k �=�,j

∥∥∥LT V(�)†
V(k)a(k)

j

∥∥∥
∞

< r(P(A(�)

−i )), (B.14)

then the non-zero entries of all solutions of P(x(�)

i , X−(i,�)) correspond to points in X� only (the columns
of X−(i,�) are the elements in X \ {x(�)

i }).

Proof. The proof relies on the following lemma.

Lemma B.1 ([28, Lemma 7.1], [6]) Let T be a subset of the column indices of a given matrix A. All
solutions c� of P(y, A) satisfy c�

T
= 0, if there exists a vector c such that y = Ac with support S ⊆ T ,

and a (dual certificate) vector ν obeying

AT
S ν = sign(cS) (B.15)∥∥AT

T∩S
ν
∥∥

∞ ≤ 1 (B.16)∥∥AT
Tν
∥∥

∞ < 1. (B.17)

We apply Lemma B.1 with A = X−(i,�), y = x(�)

i , and T the index set corresponding to the columns
of X(�)

−i , and show that there exists a vector c supported on S ⊆ T that obeys x(�)

i = X−(i,�)c, and a
corresponding vector ν that satisfies (B.15)–(B.17). This then implies that the non-zero entries of all
solutions of P(x(�)

i , X−(i,�)) correspond to points in X� only, as desired.
We proceed with the explicit construction of the vector c. Specifically, take c to be a vector that is

zero on T , and whose restriction to the index set T is given by cT ∈ optsolP(x(�)

i , X(�)

−i ). Let S be the

support of cT , and let ν
(�)

i = (V(�)T
)

†
λ

(�)

i , where λ
(�)

i is taken to be a point of minimum �2-norm4 in
optsolD(a(�)

i , A(�)

−i ). The next step is to show that ν
(�)

i ∈ optsolD(x(�)

i , X(�)

−i ), which will eventually allow

4 For concreteness λ
(�)
i is taken to be a point of minimum �2-norm. Note, however, that for the proof to work we may let λ

(�)
i

be an arbitrary point in optsolP(a(�)
i , A(�)

−i ).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/6/3/246/3070510 by U
niversity of Zurich user on 08 M

arch 2022



274 R. HECKEL ET AL.

us to establish that ν(�)

i satisfies the conditions of Lemma B.1. To this end, we first note that x(�)

i = V(�)a(�)

i

yields

optsolD(x(�)

i , X(�)

−i )

=
{

arg max
ν

〈
a(�)

i , V(�)T
ν
〉

subject to
∥∥∥(A(�)

−i )
T
V(�)T

ν

∥∥∥
∞

≤ 1
}

=
{
ν : λ = V(�)T

ν, λ ∈ optsolD(a(�)

i , A(�)

−i )
}

⊇ (V(�)T
)

†
optsolD(a(�)

i , A(�)

−i ),

where the inclusion holds as (V(�)T
)

†
λ is the minimum norm solution to the linear system of equations

λ = V(�)T
ν, but in general not the only solution.

Since P(y, A) is a linear program, strong duality [4, Section 5.2.3] holds (provided that P(y, A) is
feasible) and therefore the optimal objective values of P(x(�)

i , X(�)

−i ) and D(x(�)

i , X(�)

−i ) coincide. It therefore
follows that

‖cT‖1 =
〈
x(�)

i , ν(�)

i

〉
. (B.18)

Since cT ∈ optsolP(x(�)

i , X(�)

−i ) and cT is supported on S, both by assumption, we have x(�)

i = X(�)

−i cT =
(X(�)

−i )ScS, and therefore (B.18) becomes

〈cS, sign(cS)〉 =
〈
(X(�)

−i )ScS, ν(�)

i

〉
=
〈
cS, (X(�)

−i )
T

S ν
(�)

i

〉
. (B.19)

On the other hand, as ν
(�)

i ∈ optsolD(x(�)

i , X(�)

−i ), we have
∥∥∥(X(�)

−i )
T
ν

(�)

i

∥∥∥
∞

≤ 1, which is equivalent to the

following conditions (recall that the set T corresponds to the column indices of X(�)

−i ):∥∥∥((X(�)

−i )S)
T
ν

(�)

i

∥∥∥
∞

≤ 1 (B.20)

∥∥∥((X(�)

−i )T∩S)
T
ν

(�)

i

∥∥∥
∞

≤ 1. (B.21)

As by (B.20) the entries of (X(�)

−i )
T

S ν
(�)

i are bounded in magnitude by 1 and the unique maximizer of
maxa : ‖a‖∞≤1 〈cS, a〉 is sign(cS), it follows from (B.19) that

(X(�)

−i )
T

S ν
(�)

i = sign(cS),

which establishes (B.15).
Thanks to (B.21), (B.16) is satisfied as well. It remains to verify (B.17), which here reads∣∣∣〈x(k)

j , ν(�)

i

〉∣∣∣ < 1, for all k �= �, for all j ∈ [nk]. (B.22)
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With ν
(�)

i = (V(�)T
)

†
λ

(�)

i , by definition, (B.22) becomes∣∣∣∣∣∣
〈

x(k)

j , (V(�)T
)

† λ
(�)

i∥∥∥λ(�)

i

∥∥∥
2

〉∣∣∣∣∣∣ <
1∥∥∥λ(�)

i

∥∥∥
2

, for all k �= �, for all j ∈ [nk]. (B.23)

Since ((V(�)T
)

†
)T = V(�)†

, and x(k)

j = V(k)a(k)

j , (B.23) is equivalent to∣∣∣∣∣∣ λ
(�)

i

T∥∥∥λ(�)

i

∥∥∥
2

V(�)†
V(k)a(k)

j

∣∣∣∣∣∣ <
1∥∥∥λ(�)

i

∥∥∥
2

, for all k �= �, for all j ∈ [nk]. (B.24)

It now follows from λ
(�)

i ∈ optsolD(a(�)

i , A(�)

−i ), which holds by assumption, that∥∥(A(�)

−i )
Tλ

(�)

i

∥∥
∞ ≤ 1.

This, in turn, implies that λ
(�)

i ∈ P◦(A(�)

−i ), where

P◦(A(�)

−i ) =
{

z :
∥∥∥(A(�)

−i )
T z
∥∥∥

∞
≤ 1

}
is the polar set of P(A(�)

−i ) (recall that P(A(�)

−i ) is the symmetrized convex hull of the columns in A(�)

−i ).
Since the inradius and the circumradius of a symmetric5 convex body are related according to [13,
Theorem 1.2]

r(P)R(P◦) = 1,

we get from λ
(�)

i ∈ P◦(A(�)

−i ) that

∥∥∥λ(�)

i

∥∥∥
2
≤ R(P◦(A(�)

−i )) = 1

r(P(A(�)

−i ))
. (B.25)

By (B.25), it follows that (B.24) holds if∣∣∣∣∣∣ λ
(�)

i

T∥∥∥λ(�)

i

∥∥∥
2

V(�)†
V(k)a(k)

j

∣∣∣∣∣∣ < r(P(A(�)

−i )), for all k �= �, for all j ∈ [nk],

which is implied by (B.14). This proves that (B.17) is satisfied as well, thereby concluding the
proof. �

5 A convex body P is called symmetric if x ∈ P if and only if −x ∈ P.
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B.1.2 Evaluating the deterministic clustering condition for the statistical data model Theorem B.1
now follows from Theorem B.3 by establishing that, for our statistical data model, the deterministic
clustering condition (B.14) holds for all pairs (�, i) with � ∈ [L], i ∈ [n�], with high probability.
Specifically, by a union bound argument, we get

P
[
(B.14) is violated for at least one pair (�, i)

]
≤
∑
(�,i)

P

[
max
k �=�,j

∥∥∥LT V(�)†
V(k)a(k)

j

∥∥∥
∞

≥ r(P(A(�)

−i ))

]

≤
∑
(�,i)

(
P

[
max
k �=�,j

∥∥∥LT V(�)†
V(k)a(k)

j

∥∥∥
∞

≥ 16 log N√
d�dk

∥∥∥V(�)†
V(k)

∥∥∥
F

]
+ P

[√
log ρ�

4
√

d�

≥ r(P(A(�)

−i ))

])
(B.26)

≤
L∑

�=1

n� e−√
ρ�d� + N−1. (B.27)

In (B.26), we used that for random variables X and Y , possibly dependent, and constants φ and ϕ

satisfying φ ≤ ϕ, we have

P[X ≥ Y ] ≤ P[{X ≥ φ} ∪ {ϕ ≥ Y}]
≤ P[X ≥ φ] + P[ϕ ≥ Y ] . (B.28)

Specifically, we applied (B.28) with φ = 16 log N√
d�dk

∥∥∥V(�)†V(k)

∥∥∥
F

and ϕ =
√

log ρ�

4
√

d�

, which leads to the

assumption

16 log N√
d�dk

∥∥∥V(�)†
V(k)

∥∥∥
F

≤
√

log ρ�

4
√

d�

, for all k, � : k �= �,

implied by (B.1). To get (B.27) we used that, for all i,

P

[√
log ρ�

4
√

d�

≥ r(P(A(�)

−i ))

]
≤ e−√

ρ�d� (B.29)

and

P

[
max
k �=�,j

∥∥∥LT V(�)†
V(k)a(k)

j

∥∥∥
∞

≥ 16 log N√
d�dk

∥∥∥V(�)†
V(k)

∥∥∥
F

]
≤ N−2, (B.30)

both of which are established next.
The upper bound (B.29) is an application of [28, Lemma 7.4], [2], and makes use of the assumption

(n� − 1)/d� = ρ� ≥ ρ0 > 1. Finally, (B.30) follows from a union bound argument and

P

[∥∥∥LT V(�)†
V(k)a(k)

j

∥∥∥
∞

≥ 16 log N√
d�dk

∥∥∥V(�)†
V(k)

∥∥∥
F

]
≤ (n� + 1) e−4 log N ≤ N−3, (B.31)
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which is a consequence of Lemma B.2 below together with the fact that the normalized dual point

λ̃
(�)

i = λ
(�)

i /
∥∥λ(�)

i ‖2 is distributed uniformly on the unit sphere, as shown in [28, Section 7.2.2, Proof of
Step 2].

Lemma B.2 (Extracted from the proof of Lemma 7.5 in [28]) Let the columns of L ∈ R
d1×n1 be

i.i.d. uniform on S
d1−1, let a be uniform on S

d2−1, and let B ∈ R
d1×d2 . Then, for c ≥ 12, we have

P

[∥∥LT Ba
∥∥

∞ ≥ c√
d1d2

‖B‖F

]
≤ (n1 + 1) e− c

4 .

Appendix C. Proof of Theorem 3.3

The graph G obtained by SSC-OMP has no false connections if for each x(�)

i ∈ X� the OMP algorithm
as detailed in Section 2 selects points from X� only, for all � ∈ [L]. This is the case if OMP selects
points from X� in all iterations s ∈ [send] (we explain below that OMP terminates after send = smax ∧ d�

iterations with high probability for our statistical data model). The OMP selection rule (2.2) implies that
OMP selects a point from X� in the (s + 1)th iteration if

max
k �=�,j

∣∣∣〈x(k)

j , rs

〉∣∣∣ < max
j∈[n�] : j �=i

∣∣∣〈x(�)

j , rs

〉∣∣∣ . (C.1)

Hence, the graph G obtained by SSC-OMP has no false connections if the deterministic clustering
condition (C.1) holds for all send OMP iterations, for all x(�)

i ∈ X�, � ∈ [L]. We will next establish that
(C.1) is satisfied for our statistical data model with probability obeying the bound in Theorem 3.3.

As a vehicle for our analysis, we introduce the reduced OMP algorithm which, to compute sparse
representations of the x(�)

i , has access to the corresponding reduced data sets X� \{x(�)

i } only, instead
of the full data sets X \{x(�)

i }. If, for a given data set X , the residuals computed by reduced OMP,
henceforth denoted by r(�)

s , satisfy (C.1) for all iterations, then the reduced OMP algorithm and the
original OMP algorithm (processing the same data set X ) select exactly the same data points in the
same order and we have rs = r(�)

s for all s ∈ [smax ∧ d�] by virtue of (2.3). We emphasize that for
expositional convenience, the notations r(�)

s and r̃(�)
s do not reflect dependence on i. The motivation for

working with the reduced OMP algorithm is that r(�)
s being a function of the data points in X� only,

conditionally on Φ, is statistically independent of the data points in X\X�. This will allow us to establish
tail bounds for |〈x(k)

j , r(�)
s 〉|, k �= �, j ∈ [nk], using standard concentration inequalities. We proceed to

show that under the assumptions of Theorem 3.3, the reduced OMP residuals r(�)
s indeed satisfy (C.1)

for all � ∈ [L], i ∈ [n�], and s ∈ [smax ∧ d�] with probability meeting the lower bound in Theorem 3.3.
Consider the reduced OMP algorithm for the data point x(�)

i with fixed � ∈ [L] and fixed i ∈ [n�].
We start by noting that the reduced OMP index set Λs is a function of the data points in X� only. After
iteration s, with x(�)

i = ΦU(�)a(�)

i and X(�)

Λs
= ΦU(�)A(�)

Λs
inserted into (2.3), we get r(�)

s = ΦU(�)r̃(�)
s ,

where

r̃(�)
s :=(I − A(�)

Λs
(ΦU(�)A(�)

Λs
)

†
ΦU(�))a(�)

i .

We next establish a lower bound on the RHS of (C.1) and an upper bound on the LHS of (C.1).
To isolate the impact of the different random quantities in the statistical data model, we will introduce
events, upon the intersection of which (C.1) is implied by (3.6) via these bounds. A union bound on the
probability of the intersection of these events then yields the final result.
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We start by lower-bounding the RHS of (C.1) according to

max
j∈[n�] : j �=i

∣∣∣〈x(�)

j , r(�)
s

〉∣∣∣ ≥ 1

4

√
log ρ�

d�

σmin

(
U(�)T

ΦTΦU(�)
) ∥∥r̃(�)

s

∥∥
2

(C.2)

≥ 1

4

√
log ρ�

d�

(1 − δ)
∥∥r̃(�)

s

∥∥
2
, (C.3)

where (C.2) and (C.3) hold on the events

E (�,i)
1 :=

{
max

j∈[n�] : j �=i

∣∣∣x(�)T

j ΦU(�)v
∣∣∣ >

1

4

√
log ρ�

d�

σmin

(
U(�)T

ΦTΦU(�)
)

‖v‖2, ∀v ∈ R
d�

}

and

E2:=
{

min
�

σmin

(
U(�)T

ΦTΦU(�)
)

> 1 − δ
}

, δ ∈ (0, 1),

respectively. Note that r̃(�)
s in (C.2) not being statistically independent of the x(�)

j , j �= i, is not an issue as

we consider (C.2) on the event E (�,i)
1 and the inequality in the definition of E (�,i)

1 applies to all v ∈ R
d� .

Since V(�) = ΦU(�) has full rank on E2, reduced OMP terminates after smax ∧ d� iterations. To see this,
simply note that for V(�) of full rank we need exactly d� points from X�\{x(�)

i } to represent x(�)

i = V(�)a(�)

i

(owing to the fact that the a(�)

j , j ∈ [n�], are i.i.d. uniform on S
d�−1), and thus r(�)

s = 0 after exactly d�

iterations.
We continue by upper-bounding the LHS of (C.1) according to

max
k �=�,j

∣∣∣〈x(k)

j , r(�)
s

〉∣∣∣ = max
k �=�,j

∣∣∣a(k)T

j U(k)T
ΦTΦU(�)r̃(�)

s

∣∣∣
= max

k �=�,j

∣∣∣a(k)T

j U(k)T
U(�)r̃(�)

s + a(k)T

j U(k)T
(ΦTΦ − I)U(�)r̃(�)

s

∣∣∣
≤ max

k �=�,j

∣∣∣a(k)T

j U(k)T
U(�)r̃(�)

s

∣∣∣+ max
k �=�,j

∣∣∣a(k)T

j U(k)T
(ΦTΦ − I)U(�)r̃(�)

s

∣∣∣
< 4(3 log N + log smax) max

k �=�

∥∥∥U(k)T
U(�)

∥∥∥
F√

dk

√
d�

∥∥r̃(�)
s

∥∥
2

+
√

6 log N + 2 log smax

dmin

∥∥∥U(k)T
(ΦTΦ − I)U(�)

∥∥∥
2→2

∥∥r̃(�)
s

∥∥
2

(C.4)

≤ 4(3 log N + log smax) max
k �=�

∥∥∥U(k)T
U(�)

∥∥∥
F√

dk

√
d�

∥∥r̃(�)
s

∥∥
2

+
√

6 log N + 2 log smax

dmin
δ
∥∥r̃(�)

s

∥∥
2

(C.5)
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≤ 1

4

√
log ρ�

d�

(1 − δ)
∥∥r̃(�)

s

∥∥
2
. (C.6)

Here, (C.4) holds on the intersection of the events

E (�,i,s)
3 :=

{
max
k �=�,j

∣∣∣a(k)T

j U(k)T
(ΦTΦ − I)U(�)r̃(�)

s

∣∣∣
≤
√

6 log N + 2 log smax

dmin

∥∥∥U(k)T
(ΦTΦ − I)U(�)

∥∥∥
2→2

∥∥r̃(�)
s

∥∥
2

}
,

E (�,i,s)
4 :=

⎧⎨⎩max
k �=�,j

∣∣∣a(k)T

j U(k)T
U(�)r̃(�)

s

∣∣∣ < 4(3 log N + log smax) max
k �=�

∥∥∥U(k)T U(�)

∥∥∥
F√

dk

√
d�

∥∥r̃(�)
s

∥∥
2

⎫⎬⎭
and (C.5) holds on the event

E5:=
{

max
k,� : k �=�

∥∥∥U(k)T
(ΦTΦ − I)U(�)

∥∥∥
2→2

< δ

}
.

Recall that the notation r̃(�)
s does not reflect dependence on the index i. We do, however, make the

dependence of E (�,i,s)
3 and E (�,i,s)

4 on i explicit.

Finally, setting δ:=
√

28dmax+8 log L+2τ

3c̃p in (C.5), (C.6) follows from assumption (3.6). This is seen as

follows:

max
k �=�

∥∥∥U(k)T U(�)

∥∥∥
F√

dk

+
δ
√

d�

dmin

2
√

6 log N + 2 log smax

≤ max
k,� : k �=�

aff(Sk , S�) + δ

2

√
dmax

dmin
(C.7)

≤ 3

200

√
log ρmin

log N
(C.8)

≤
√

log ρmin

50(log N + (log smax)/3)
(C.9)

≤
√

log ρ�

48(log N + (log smax)/3)
(1 − δ), (C.10)

where (C.8) is by (3.6) and (C.9) follows by noting that (200/3) log N = 50(log N + (log N)/3) >

50(log N + (log smax)/3). Furthermore, we have√
log ρmin

log N + (log smax)/3
≤ 1 (C.11)

as a consequence of ρmin = min�(n�−1)/d� < N/dmin, N ≥ 3, and dmin ≥ 1. Next, (C.11) combined with√
dmin/dmax ≤ 1, maxk,� : k �=� aff(Sk , S�) ≥ 0, and (C.9), implies that δ ≤ 2

50 , which yields 1
50 ≤ 1

48 (1−δ)

and hence establishes (C.10). Finally, (C.6) is obtained by rewriting the relation between the RHS of
(C.7) and (C.10).
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Note that the lower bound (C.3) on the RHS of (C.1) and the upper bound (C.6) on the LHS of
(C.1) are equal; we have therefore established that, for fixed (i, �), r(�)

s obeys (C.1) on E (�,i)
1 ∩E2 ∩E (�,i,s)

3

∩ E (�,i,s)
4 ∩ E5. It finally follows that on the event E�:=⋂�,i,s E (�,i)

1 ∩ E2 ∩ E (�,i,s)
3 ∩ E (�,i,s)

4 ∩ E5, the graph

G obtained by SSC-OMP applied to the full data set X \{x(�)

i } has no false connections. It remains to
lower-bound P

[
E�

]
. Specifically, we have

P
[
E�

] = 1 − P
[

E�

]
≥ 1 − P

[
E2

]
− P

[
E5

]
−

∑
�∈[L],i∈[n�]

(
P
[
E

(�,i)

1

]
+

∑
s∈[smax∧d�]

(
P
[
E

(�,i,s)

3

]
+ P

[
E

(�,i,s)

4

]))

≥ 1 − 4 e−τ/2 −
∑
�∈[L]

n� e−√
ρ�d� − 4

N
, (C.12)

where the last inequality follows from

P
[
E

(�,i)

1

]
≤ e−√

ρ�d� (C.13)

P
[

E2

]
≤ 2 e−τ/2 (C.14)

P
[
E

(�,i,s)

3

]
≤ 2

smaxN2
(C.15)

P
[
E

(�,i,s)

4

]
≤ 2

smaxN2
(C.16)

P
[

E5

]
≤ 2 e−τ/2. (C.17)

Here, (C.17) corresponds to (B.8), while the proofs of (C.13)–(C.16) are presented below.

Proof of (C.13): Since A(�)

−i has full column rank with probability 1, it follows from Lemma C.1 below
that ∥∥∥A(�)T

−i U(�)T
ΦTΦU(�)v

∥∥∥
∞

≥ r(P(A(�)

−i ))

∥∥∥U(�)T
ΦTΦU(�)v

∥∥∥
2

≥ r(P(A(�)

−i )) σmin

(
U(�)T

ΦTΦU(�)
)

‖v‖2,

for all v ∈ R
d� . We therefore have

P
[
E

(�,i)

1

]
= P

[∥∥∥A(�)T

−i U(�)T
ΦTΦU(�)v

∥∥∥
∞

≤ 1

4

√
log ρ�

d�

σmin

(
U(�)T

ΦTΦU(�)
)

‖v‖2

]

≤ P

[
r(P(A(�)

−i )) ≤ 1

4

√
log ρ�

d�

]
≤ e−√

ρ�d� , (C.18)
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where (C.18) follows from (B.29), which uses the assumption (n� − 1)/d� = ρ� ≥ ρ0 > 1.

Lemma C.1 For a matrix A ∈ R
m×n of full column rank and v ∈ R

m, it holds that

∥∥AT v
∥∥

∞ ≥ r(P(A))‖v‖2, (C.19)

where r(P(A)) is the inradius of the symmetrized convex hull P(A) of the columns of A.

Proof. The inequality (C.19) obviously holds for v = 0. Pick any v ∈ R
m\{0} and take ε ∈ (0, 1). Let

η = ε‖v‖2r(P(A)) and assume that v ∈ ηP◦(A) = {z :
∥∥AT z

∥∥
∞ ≤ η}, i.e., v is an element of the

η-scaled version of the polar set P◦(A). Note that η > 0 as ‖v‖2 > 0, ε > 0, and r(P(A)) > 0 thanks
to A having full column rank. It follows from [13, Theorem 1.2] that

‖v‖2

η
≤ R(P◦(A)) = 1

r(P(A))
. (C.20)

Now, owing to η = ε‖v‖2r(P(A)), (C.20) implies that ε ≥ 1, which contradicts ε ∈ (0, 1). It
therefore follows that v ∈ R

m \{ηP◦(A)} for all ε ∈ (0, 1), which in turn implies that
∥∥AT v

∥∥
∞ >

η = ε‖v‖2r(P(A)), for all ε ∈ (0, 1). In particular, letting ε → 1 yields
∥∥AT v

∥∥
∞ ≥ ‖v‖2r(P(A)), as

desired. �

Proof of (C.14): With σmin(A) = ∥∥A−1
∥∥−1

2→2
[33, Section 5.2.1] for a full-rank matrix A ∈ R

m×m, it
follows that

P
[

E2

]
= P

[
min

�

∥∥∥(U(�)T
ΦTΦU(�))

−1∥∥∥−1

2→2
≤ 1 − δ

]
= P

[
max

�

∥∥∥(U(�)T
ΦTΦU(�))

−1∥∥∥
2→2

≥ 1

1 − δ

]
≤ 2 e−τ/2,

where τ > 0 is the numerical constant in Theorem 3.3 and the last inequality is thanks to (B.7).

Proof of (C.15): By the union bound

P
[
E

(�,i,s)

3

]
≤
∑
k �=�,j

P

[ ∣∣∣a(k)T

j U(k)T
(ΦTΦ − I)U(�)r̃(�)

s

∣∣∣
>

√
6 log N + 2 log smax

dmin

∥∥∥U(k)T
(ΦTΦ − I)U(�)

∥∥∥
2→2

∥∥r̃(�)
s

∥∥
2

]
≤
∑
k �=�,j

P

[ ∣∣∣a(k)T

j U(k)T
(ΦTΦ − I)U(�)r̃(�)

s

∣∣∣
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>

√
6 log N + 2 log smax

dk

∥∥∥U(k)T
(ΦTΦ − I)U(�)r̃(�)

s

∥∥∥
2

]
≤
∑
k �=�,j

2

smaxN3
≤ 2

smaxN2
, (C.21)

where (C.21) follows from Proposition A.1 with a = a(k)

j , b = U(k)T
(ΦTΦ − I)U(�)r̃(�)

s and

β = √
6 log N + 2 log smax.

Proof of (C.16): We first show that r̃(�)
s /‖r̃(�)

s ‖2 is distributed uniformly at random on S
d�−1; (C.16) then

follows by application of Lemma B.2.
Recall that we consider reduced OMP, which computes a sparse representation of x(�)

i = ΦU(�)a(�)

i

using the columns of X(�)

−i = ΦU(�)A(�)

−i as dictionary elements, i.e., Λs and r̃(�)
s depend only on the

random quantities ΦU(�), a(�)

i and A(�)

−i . In order to reflect these restricted dependencies, we write r̃(�)
s =

r̃(�)
s (ΦU(�), a(�)

i , A(�)

−i ) and Λs = Λs(ΦU(�), a(�)

i , A(�)

−i ). Here, the first argument specifies the basis matrix
of the data points, the second argument corresponds to the coefficient vector of the data point (in the basis
specified by the first argument) a sparse representation is to be computed for, and the third argument
designates the coefficient matrix of the dictionary elements (again in the basis specified by the first
argument).

We start by showing that the distribution of r̃(�)
s is rotationally invariant. For a deterministic unitary

matrix W ∈ R
d�×d� , we have

Λs(ΦU(�)WT , Wa(�)

i , WA(�)

−i ) = Λs(ΦU(�), a(�)

i , A(�)

−i )

as the x(�)

j can be written as x(�)

j = ΦU(�)a(�)

j = ΦU(�)WT Wa(�)

j .

Using the shorthand notation Λ′
s for Λs(ΦU(�)WT , Wa(�)

i , WA(�)

−i ) and recalling that r̃(�)
s =

(I − A(�)

Λs
(ΦU(�)A(�)

Λs
)

†
ΦU(�))a(�)

i , it follows that

r̃(�)
s (ΦU(�)WT , Wa(�)

i , WA(�)

−i ) =
(

I − WA(�)

Λ′
s

(
ΦU(�)WT WA(�)

Λ′
s

)†
ΦU(�)WT

)
Wa(�)

i

=
(

I − WA(�)

Λs

(
ΦU(�)WT WA(�)

Λs

)†
ΦU(�)WT

)
Wa(�)

i

= W
(

I − A(�)

Λs

(
ΦU(�)A(�)

Λs

)†
ΦU(�)

)
a(�)

i

= Wr̃(�)
s (ΦU(�), a(�)

i , A(�)

−i ).

By rotational invariance of the distributions of a(�)

i , A(�)

−i and Φ (by assumption in Theorem 3.3), we
have Wa(�)

i ∼ a(�)

i , WA(�)

−i ∼ A(�)

−i and ΦU(�)WT ∼ ΦU(�) (because span(U(�)WT ) = span(U(�)) and the
columns of U(�)WT are orthonormal). We therefore get

r̃(�)
s (ΦU(�), a(�)

i , A(�)

−i ) ∼ r̃(�)
s (ΦU(�)WT , Wa(�)

i , WA(�)

−i )

= Wr̃(�)
s (ΦU(�), a(�)

i , A(�)

−i ). (C.22)
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Since (C.22) holds for all unitary matrices W, the distribution of r̃(�)
s is rotationally invariant and

r̃(�)
s /‖r̃(�)

s ‖2 is, indeed, distributed uniformly on S
d�−1. We finally exploit this property of r̃(�)

s to

upper-bound P
[
E

(�,i,s)

4

]
as follows. A union bound over all k, k �= �, yields

P
[
E

(�,i,s)

4

]
≤
∑
k �=�

P

⎡⎣∥∥∥A(k)T
U(k)T

U(�)r̃(�)
s

∥∥∥
∞

≥ 4(3 log N + log smax)

∥∥∥U(k)T
U(�)

∥∥∥
F√

dk

√
d�

∥∥r̃(�)
s

∥∥
2

⎤⎦
≤
∑
k �=�

nk + 1

smaxN3
= N − n� + L − 1

smaxN3
<

N + L

smaxN3
≤ 2

smaxN2
, (C.23)

where (C.23) follows by application of Lemma B.2 with L = A(k), a = r̃(�)
s /‖r̃(�)

s ‖2, B = U(k)T
U(�) and

c = 4(3 log N + log smax).
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