ETHzürich

Optical efficiency and gain dynamics of ultrafast semiconductor disk lasers

Conference Poster

Author(s): Alfieri, Cesare G.E.; Waldburger, Dominik; Link, Sandro; Golling, Matthias; [Keller, Ursula](https://orcid.org/0000-0002-1689-8041) D

Publication date: 2017-05

Permanent link: <https://doi.org/10.3929/ethz-b-000230061>

Rights / license: [In Copyright - Non-Commercial Use Permitted](http://rightsstatements.org/page/InC-NC/1.0/)

swiss scientific initiative in health / security / environment systems

MIXSEL2 RTD 2013 **FIRST 1111111111111111**

Center for Micro- and Nanoscience

Optical efficiency and gain dynamics of ultrafast semiconductor disk lasers [1] C. G. E. Alfieri, D. Waldburger, S. M. Link, M. Golling, F. Emaury and U. Keller ETH Zurich, Institute for Quantum Electronics, Ultrafast Laser Physics [1] C. G. E. Alfieri et al., Optics Express **25**, 6402-6420 (2017)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Semiconductor disk lasers (SDLs) Gigahertz oscillator technologies

Conclusions

 E_{c}

EXAMPLE 19 CONTROLLER SUBJECT SERVICES AND SERVICE SERVICES AND SERVICE SERVICES AND SERVICE SERVICES AND SERVICES 200 fs 1 W 1 GHz 4.4 kW 200 fs 1 W 1 GHz 4.4 kW ultimate goal: Efficient sub-100-fs SDLs with multi-kW pulse peak power for supercontinuum spectroscopy

200 fs 1 W 1 GHz 4.4 kW

SEmiconductor Saturable Absorber **Mirror**

> **pulse duration and chirped pulse formation power rate power pulse duration power rate power pulse duration power rate power next steps: Development of QD gain materials**

Outlook

Quantum well model

[2] F. Voigt, F. Emaury et al., submitted to Biomedical Opt. Express (2017) [3] S. M. Link et al., accepted in Science (2017)

Gain and efficiency calculation

Trade-offs of ultrafast SDLs

SESAM

- \rightarrow Straight cavity for simplified
- **repetition rate scalability**
- ➡ Monolithic design
- ➡ DBR + single **fast** saturable absorber
- ➡ Initiates and stabilizes modelocked operation

+

In sub-200-fs regime:

- ➡ **Power limitations: average output power < 1 W**
- ➡ **Multi-pulsing instabilities at high pump power**
- ➡ **Low efficiency, typically < 1%**

To understand the observed trade-offs and overcome them, we developed a **quantum well (QW) model based on rate equations** [4]

E

E

E

Three time scales involved:

Intraband: τ**intra ≈ 300 fs** Interband: τ**life ≈ 150 ps** Diffusion: τ*^c* **≈ 1-3 ns**

}

Fundamental problems related to the carrier dynamics in the saturable gain quantum wells?

Applications

Vertical External Cavity Surface Emitting Laser

Diode pumped, passively modelocked VECSELs and MIXSELs

Microscopy^[2] Femtosecond Micromachining Telecommunication Comb metrology and spectroscopy^[3] **Femtosecond Micromachining**

MIXSEL Modelocked Integrated External-Cavity Surface Emitting Laser

➡ DBR for pump light

 $0 \xrightarrow{\text{1}} \text{2}$

GaAs \Box AlAs \Box AlGaAs \Box GaAsP \Box Gain QW \Box Abs. QW \Box SiO₂

=

Two mechanisms decrease the net gain for energetic short pulses:

- ➡ Spectral hole burning (SHB)
- ➡ Two-photon absorption (TPA)

Longer stretched pulses (same spectrum) experience significantly higher VECSEL gain saturation fluence

- F_0 = pulse fluence maximizing R_{cav} . **SDLs modelock close to** F_0
- **OC** = *R*cav 100% cavity losses = **available output coupling ratio**

The QW model can quantitatively predict this behaviour.

Cavity reflectivity simulations

Solutions for higher efficiency

• **Increased** *F***0**: no SHB

- **Decreased OC:** more losses in fast SESAM (recovery in \approx 2 ps)
- **No fast SESAM required** for ps pulses

• **Gain saturation** due to SHB is limiting power scaling **more than TPA**

• High VECSEL gain "opens" a **net gain window** after a short pulse if the SESAM recovery is too slow

} **To improve performance: increase** *F***0 and OC**

VECSEL

- ➡ Distributed Bragg reflector (DBR)
- \rightarrow Active region
- ➡ **Low dispersion** antireflection (AR) section

[4] M. Mangold et al., Opt. Express 22(5), 6099–6107 (2014) [5] D. Waldburger et al., Optica 3(8), 844–852 (2016)

There is still room for significant improvement in ultrafast SDL technology

- ➡ SDLs are limited by spectral hole burning effects in the gain QWs
- ➡ Efficiency scaling is prevented by the short carrier lifetime in the QWs
- ➡ Chirped pulse formation can provide **higher pulse energies** when combined with a slow absorber
- ➡ Efficiency is increased by **longer carrier lifetimes**
	- **Epitaxial improvement** of the gain structures
	- ➡ New gain materials based on **intrinsically slower quantum dots** (QDs)
- ‣ The captured carriers **decay to the bottom of the band** (τ**intra**)
- The carriers continuously recombine via **spontaneous recombination** (τ_{life})
	- ‣ The modelocked pulse is amplified via stimulated recombination of the carriers at

the bottom of the band

- ‣ The pulse creates a **spectral hole** at the bottom of the band ‣ If the pulse is shorter than τ**intra**, the gain is **saturated** fast since the
	- carriers in the reservoir cannot be used

 Short pulses saturate the gain at low pulse energies

Semiconductor based:

✓ Compactness + Wavelength versatility + Cost efficiency + Mass scale production

96

2 4 6 8

 $|1890$ fs:

10

2 4 6 8

Fluence $[\mu J/cm^2]$

100

2 4 6

*R***cav** = reflectivity seen by the pulse after a cavity roundtrip, before output coupling (OC)

- ➡ **Ti:Sapphire**: best performance for *f*rep < 10 GHz
- ➡ Diode pumped solid state lasers (**DPSSLs**): tens of kW of peak power, sub-100-fs pulses
- ➡ **SDLs**: **highest peak power for** *f***rep > 10 GHz** [4]
- ➡ **sub-200-fs MIXSELs**
- ➡ **sub-100-fs VECSELs** [5] with **kW-level** pulse peak power **in the 1 µm emission range**

