ETH zürich

Optical efficiency and gain dynamics of ultrafast semiconductor disk lasers

Conference Poster

Author(s): Alfieri, Cesare G.E.; Waldburger, Dominik; Link, Sandro; Golling, Matthias; Keller, Ursula

Publication date: 2017-05

Permanent link: https://doi.org/10.3929/ethz-b-000230061

Rights / license: In Copyright - Non-Commercial Use Permitted

swiss scientific initiative in health / security / environment systems

MIXSEL2

RTD 2013

Center for Micro- and Nanoscience

Optical efficiency and gain dynamics of ultrafast semiconductor disk lasers C. G. E. Alfieri, D. Waldburger, S. M. Link, M. Golling, F. Emaury and U. Keller ETH Zurich, Institute for Quantum Electronics, Ultrafast Laser Physics [1] C. G. E. Alfieri et al., Optics Express **25**, 6402-6420 (2017)

Eidgenössische Technische Hochschule Zürich **Swiss Federal Institute of Technology Zurich**

Semiconductor disk lasers (SDLs)

Diode pumped, passively modelocked VECSELs and MIXSELs

Semiconductor based:

✓ <u>Compactness + Wavelength versatility + Cost efficiency + Mass scale production</u>

Gigahertz oscillator technologies

Many applications require combinations of high pulse peak power and short femtosecond pulses

VECSEL

Vertical External Cavity Surface **Emitting Laser**

- Distributed Bragg reflector (DBR)
- ➡ Active region
- → Low dispersion antireflection (AR) section

SESAM

SEmiconductor Saturable Absorber Mirror

- → DBR + single **fast** saturable absorber
- ➡ Initiates and stabilizes modelocked operation

MIXSEL Modelocked Integrated External-Cavity Surface Emitting Laser

- ➡ DBR for pump light
- Straight cavity for simplified
- repetition rate scalability
- ➡ Monolithic design

Applications

Femtosecond Micromachining Microscopy^[2]

[2] F. Voigt, F. Emaury et al., submitted to Biomedical Opt. Express (2017) [3] S. M. Link et al., accepted in Science (2017)

Comb metrology and spectroscopy^[3] Telecommunication

- **Ti:Sapphire**: best performance for *f*_{rep} < 10 GHz
- Diode pumped solid state lasers (**DPSSLs**): tens of kW of peak power, sub-100-fs pulses
- SDLs: highest peak power for $f_{rep} > 10$ GHz^[4]
- sub-200-fs MIXSELs
- sub-100-fs VECSELs ^[5] with kW-level pulse peak power in the 1 µm emission range

Trade-offs of ultrafast SDLs

In sub-200-fs regime:

- Power limitations: average output power < 1 W</p>
- Multi-pulsing instabilities at high pump power
- ► Low efficiency, typically < 1%

[4] M. Mangold et al., Opt. Express 22(5), 6099–6107 (2014) [5] D. Waldburger et al., Optica 3(8), 844-852 (2016)

Fundamental problems related to the carrier dynamics in the <u>saturable</u> gain quantum wells?

Quantum well model

To understand the observed trade-offs and overcome them, we developed a quantum well (QW) model based on rate equations ^[4]

Three time scales involved:

Interband: ⊤_{life} ≈ 150 ps Intraband: $\tau_{intra} \approx 300 \text{ fs}$

Diffusion: τ*c* ≈ **1-3 ns**

Gain and efficiency calculation

Two mechanisms decrease the net gain for energetic short pulses:

- ➡ Spectral hole burning (SHB)
- ➡ Two-photon absorption (TPA)

Longer stretched pulses (same spectrum) experience significantly higher **VECSEL** gain saturation fluence

1890 fs:

96

- The captured carriers decay to the bottom of the band (τ_{intra})
- The carriers continuously recombine via spontaneous recombination (τ_{life})
 - The modelocked pulse is amplified via stimulated recombination of the carriers at

The QW model can quantitatively predict this behaviour.

Cavity reflectivity simulations

 R_{cav} = reflectivity seen by the pulse after a cavity roundtrip, before output coupling (OC)

- F_0 = pulse fluence maximizing R_{cav} . SDLs modelock close to F_0
- **OC** = R_{cav} 100% cavity losses = **available output coupling ratio**

• Gain saturation due to SHB is limiting power scaling more than TPA

• High VECSEL gain "opens" a net gain window after a short pulse if the SESAM recovery is too slow

Chirped pulse formation

4 6 8

Fluence [µJ/cm²]

To improve performance: increase *F*₀ and OC

100

- **Increased F**₀: no SHB
- Decreased OC: more losses in fast SESAM (recovery in $\approx 2 \text{ ps}$)
- **No fast SESAM required** for ps pulses

Solutions for higher efficiency

the bottom of the band

- The pulse creates a spectral hole at the bottom of the band
 - If the pulse is shorter than τ_{intra} , the gain is **saturated** fast since the carriers in the reservoir cannot be used

Short pulses saturate the gain at low pulse energies

Conclusions

- SDLs are limited by spectral hole burning effects in the gain QWs
- Efficiency scaling is prevented by the short carrier lifetime in the QWs
- Chirped pulse formation can provide higher pulse energies when combined with a slow absorber
- Efficiency is increased by **longer carrier lifetimes**
 - **Epitaxial improvement** of the gain structures
 - New gain materials based on **intrinsically slower** quantum dots (QDs)

There is still room for significant improvement in ultrafast SDL technology

Outlook

Development of QD gain materials next steps: and chirped pulse formation

ultimate goal: Efficient sub-100-fs SDLs with multi-kW pulse peak power for supercontinuum generation and dual comb spectroscopy