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Diode bumped. passivelv modelocked VECSELSs and MIXSELs Many applications require combinations of high pulse peak power and short
P PECLIIS y femtosecond pulses
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Vertical External Cavity Surface SEmiconductor Saturable Absorber Modelocked Integrated External- = Ti:Sapphire: best performance for frep <10 GHz
Emitting Laser Mirror Cavity Surface Emitting Laser = Diode pumped solid state lasers (DPSSLs): tens of kW of peak power, sub-100-fs pulses
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= Distributed Bragg reflector (DBR) = DBR + single fast saturable = DBR for pump light = SDLs: highest peak power for fep > 10 GHz 4]
= Active region absorber = Straight cavity for simplified = sub-200-fs MIXSELs
- Low_ dispersion antireflection (AR) - Initiate.s and stabilizes modelocked repetition rate scalability = sub-100-fs VECSELSs 5 with kW-level pulse peak power in the 1 um emission range
section operation = Monolithic design
Applications Trade-offs of ultrafast SL J
ST e In sub-200-fs regime:
= Power limitations: average output power<1 W Fundamental prol?lems
related to the carrier
= Multi-pulsing instabilities at high pump power dynamics in the saturable
— _ o o L. : gain quantum wells?
Microscopy2 Femtosecond Micromachining Telecommunication Comb metrology and spectroscopy!! = Low efficiency, typically < 1%
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To understand the observed trade-offs and overcome them, we developed a Two mechanisms decrease the net gain for energetic short pulses: = . optically pumped VECSEL
: - Spectral hole burnlng (SHB) 2 BolongoOdto meas + sim
quantum well (QW) model based on rate equations [4] , > 1045585 e, 1! T
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Three time scales involved: 8102 BN W -
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Fo = pulse fluence maximizing Rcav. SDLs modelock close to Fo : :
oC - R ) .- b ; _ To improve performance: increase Fo and OC
Simulated carrier dynamics in gain QWs = Rcav - 100% - cavity losses = available output coupling ratio
| | | Power limiting effect Multipulse instabilities Chirped pulse formation
» The pump photons are absorbed in the GaAs barriers and create e-/h+ pairs | —— '
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Filled states | - - Gain saturation due to SHB is limiting - High VECSEL gain “opens” a net gain - Increased Fo: no SHB
(carrier reservoir) t 1 1 F | | power scaling more than TPA window after a short pulse if the - Decreased OC: more losses in fast
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» The captured carriers decay to the bottom of the band (Tintra) 3 10 o P i 4"’ S 4k (with slower absorber)
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» The carriers continuously recombine via spontaneous recombination (Tiite) ue - W —————] & \ 2 0 O e S L ® fjv?:h |oi§i£§éuﬂ'; 700 ps
» The modelocked pulse is amplified via stimulated recombination of the carriers at 0.2 4o R S—— .
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» The pulse creates a spectral hole at the bottom of the band To achieve hiaher efficiency:
> If the pulse is shorter than Tintra, the gain is saturated fast since the achieve higner efficiency.
carriers in the reservoir cannot be used ] se durai
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= Chirped pulse formation can provide higher pulse

energies when combined with a slow absorber

= SDLs are limited by spectral hole
burning effects in the gain QWs

next steps: Development of QD gain materials
and chirped pulse formation

= Efficiency is increased by longer carrier lifetimes

= Epitaxial improvement of the gain structures
= New gain materials based on intrinsically slower

quantum dots (QDs)
\_ J

= Efficiency scaling is prevented by the
short carrier lifetime in the QWs

~

ultimate goal: Efficient sub-100-fs SDLs with multi-kW
pulse peak power for supercontinuum
generation and dual comb
spectroscopy

There is still room for significant improvement in ultrafast SDL technology




