mzuriCh ETH Library

Scale dependence and collinear
subtraction terms for Higgs
production in gluon fusion at N3LO

Journal Article

Author(s):
Buehler, Stephan; Lazopoulos, Achilleas

Publication date:
2013-10

Permanent link:
https://doi.org/10.3929/ethz-b-000227205

Rights / license:
Creative Commons Attribution 4.0 International

Originally published in:
Journal of High Energy Physics 2013(10), https://doi.org/10.1007/jhep10(2013)096

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.



https://doi.org/10.3929/ethz-b-000227205
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/jhep10(2013)096
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

PUBLISHED FOR SISSA BY €} SPRINGER

<y

RECEIVED: August 5, 2013
ACCEPTED: September 7, 2013
PUBLISHED: October 16, 2013

Scale dependence and collinear subtraction terms for
Higgs production in gluon fusion at N3LO

Stephan Buehler and Achilleas Lazopoulos

Institute for Theoretical Physics, ETH Zurich,
8098 Zurich, Switzerland

E-mail: buehler@itp.phys.ethz.ch, lazopoli@phys.ethz.ch

ABSTRACT: The full, explicit, scale dependence of the inclusive N3LO cross section for sin-
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kernels with lower-order partonic cross sections. We provide results for all convolutions of
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1 Introduction

During the past year both multi-purpose experiments at CERN’s Large hardon collider
(LHC), CMS [1] and Atlas [2], have observed a new boson with a mass of about 125 GeV,
which is strongly believed to be the long-sought Higgs boson. The couplings of the new
boson to Standard Model (SM) particles are currently compatible to the SM predictions
with a minimal Higgs sector. Nevertheless, effects from physics beyond the Standard Model
(BSM) may reside in small deviations of the couplings from the SM values, effects that
will be, to a certain extent, accessible with the increased statistics and energy reach of the
LHC high energy run starting in 2015.

The dominant production mode for the Higgs boson at the LHC is gluon fusion, ac-
counting for about 90% of the total production cross section at the observed mass of about
125 GeV. Indeed, the Higgs boson has, up to now, been observed in channels in which
its production is gluon induced. Next-to-leading order (NLO) QCD corrections for gluon
fusion, in the five-flavour heavy-quark effective theory (HQET) were computed at the be-
ginning of the 1990s [3, 4]. Since then NLO corrections in the full theory including top-mass,
and top-bottom interference effects were calculated by [5-9], and next-to-next-to-leading
order (NNLO) corrections in HQET by [10-12]. Electroweak corrections are also available
at the NLO level [13-16], and so are mixed QCD-EW corrections [17], and EW corrections
to higgs plus jet including top and bottom quark contributions [18]. Recently the NNLO



cross section for gluon induced higgs production in association to a jet was calculated,
in a way that also allows for differential distributions to be produced [19]. All available
fixed order contributions to Higgs production via gluon fusion were recently included in the
program iHixs [20], which, moreover, allows for the incorporation of BSM effects through
modified Wilson coefficients within the effective theory approach. The latter has been
explicitly shown to be an excellent approximation for Higgs masses below the top-antitop
threshold [21-23], and even more so for the Higgs boson at 125 GeV. Despite these advances
and due to the slow perturbative convergence of the gluon fusion cross section, the remain-
ing uncertainty due to variation in renormalisation and factorisation scale still amounts to
about ~ 9% for a 125 GeV Higgs boson at the LHC with 8 TeV centre-of-mass energy.

Beyond fixed order, threshold resummation has been performed to NNLL accuracy by
traditional resummation methods [24] leading to a ~ 7.5% uncertainty [25], and within
the SCET framework [26-28] leading to a ~ 4% scale uncertainty. The latter is generally
considered too optimistic.

Information from the LHC high energy and high luminosity data set is projected to
allow the determination of the Higgs couplings with precision of ~ 10% or better [29-31].
This uncertainty includes experimental systematics and statistics, but also errors from
the determination of parton distribution functions and of the strong coupling, as well as
theory systematics, the latter being the limiting factor in several cases. It is evident that a
prerequisite to this goal is the reduction of the theory scale uncertainty to the ~ 5% level
or lower. The question arises then, whether computing the cross section to the next order
in perturbation theory, N3LO, within the EFT approach, an admittedly formidable task,
would achieve this goal.

Information about certain N®LO contributions has been available for several years.
The three-loop, virtual contributions have been calculated and were part of the full N3LO
Higgs decay to gluons in [32]. However, disentangling the pure virtual contributions from
this computation is not possible. The quark and gluon form-factors are known up to three-
loop order [33-36]. In [37] the soft ‘plus’-contributions to the N3LO cross section were
derived using mass factorisation constraints. This allowed the authors of [37] to derive a
soft approximation of the N®LO cross section whose renormalisation scale dependence is
rather mild, resulting in 4% renormalisation scale uncertainty (keeping the factorisation
scale equal to the Higgs mass). Recently further attempts to modify the resummation
procedure such that its prediction at fixed order better matches the threshold and high
energy limits of the known fixed order results, were made [38], resulting in another soft
approximant with a scale uncertainty of 7%. It still remains true that without the full
N3LO expression, it is difficult to judge which of these prescriptions is closer to reality.

Recently, some new ingredients of the full N3LO cross section have appeared. In [39,
40], the real-virtual and double-real master integrals of the NNLO cross section have been
calculated to higher orders in €. In [41], the convolutions of collinear splitting kernels with
lower-order partonic cross sections have been computed, which is also an ingredient for our
result and has been re-derived in this work. Very recently, the soft limits of all master
integrals appearing in triple-real radiation corrections (i.e. the emission of three additional
partons) have been worked out [42].



In this paper, we compute the full dependence of the N3LO cross section on the factori-
sation and renormalisation scales, which can be obtained from lower-order results. Further-
more, we provide the soft limits of all convolutions that we calculated, which may become
useful when expanding the full N3LO corrections around threshold. In section 2 we review
how the dependence on factorisation and renormalisation scales enters higher-order calcu-
lations. In sections 3 and 4 we list the splitting kernels and partonic cross sections needed
for our results and present the method used to compute their convolutions, respectively.
In section 5 we give results for the estimated scale uncertainty of the N®LO gluon fusion
cross section and conclude in section 6.

2 Sources of explicit scale dependence

Predictions for observable quantities in quantum field theory are independent of arbitrary
scales, when calculated at all perturbative orders. The scale dependence of all predictions is
an artefact of the truncation of the perturbative series, and is usually considered a measure
of the effect of missing higher orders in any given computation. This dependence occurs
explicitly, through terms in the final result that depend on logarithms involving the scale,
and implicitly, through the running of a; and the evolution of the parton distribution
functions. In this section we describe the occurrence of the explicit scale dependence.
Let us, for the moment, introduce only one scale,

for = pf = jL. (2.1)
In dimensional regularisation the scale p appears during renormalisation, when the bare
coupling is replaced by the renormalised one,

e’YE €
olB) s g () (M) Za. (2.2
where we have chosen the MS-scheme. Z, is the renormalisation constant of the strong
coupling,

Bo | o 58 B 3 85 TBoBr P 4
Zo=1— — - - = - = e (@] , 2.
a(p) ; +a“(p) 2 o +a’(p) 3 + o 3 + O(a”) (2.3)
and the factor of ;%€ ensures that the coupling and thus the action remain dimensionless

in D = 4 — 2¢ dimensions as well. We define a(u) = aslp) throughout the paper.

™
Divergences, of UV or IR nature, manifest themselves as poles in the regularisation

parameter €. The leading divergences, e 2", ..., e "1 for the n-th order correction, vanish,

among real and virtual contributions, after renormalisation counter terms are included. The

™. vanish

remaining poles of the UV-renormalized partonic cross section, starting from e~
only after subtraction of collinear counterterms.
Specifically, let us denote by &;; the partonic cross section after renormalisation® (which

still contains divergences of infrared (IR) origin),

R 11 _
Oij = |: /[d(I)] Z ‘M‘Q + UV ounterterms (2.4)
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'Note the 1/z factor in the definition of &;; that is necessary to make eq. (2.6) work.



The expansion of &;; can be written as

G :Z% Z“ Z_: o7 et (2.5)

where we have written explicitly the pole coefficients at every order in a and the associated
logarithms Ly = log(u?/s). The relation of 6;; to the total, inclusive cross section is given
by convolution with the parton distribution functions, f;j(z), and the collinear counter
terms, I';;(x), by

o(r)=7(fi ® Ty ® 61 © T)' @ fi)(7), (2.6)
where summation of repeated indices is implied and 7 = m3 /S with S the total centre-of-
mass energy of the collision.

The convolution is defined by

1
(Fa)) = [ dady 1) o(0) Sy —2), (2.7)
and the collinear counter term reads
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The PZ(J ") are the Altarelli-Parisi splitting kernels which govern the emission of collinear
partons (see section 3.2).

Within the renormalized N"LO partonic cross section, ¢;;, the logarithmic dependence
on the scale u arises when residual poles of order up to e =" are multiplied with the expansion

of the factor p2¢/s¢ (the s~¢ originating from the d-dimensional phase-space measure),

2¢ 2 2 2 3 2
B H € 2 (M € 3(H 4
= 1+ elog (s) + Bl log <s> + 5 log <s) + O(€). (2.9)
These poles are required to cancel against the poles from the collinear counter terms convo-
luted with lower order partonic cross sections, see eq. (2.6) and (2.8). This requirement fixes

(nr)

the coefficients &ij for —n — 1 < r < 0 which are also the coeflicients of the logarithmic
terms. In summary, all contributions to the N"LO cross section that are proportional to
a power of log(u?/s) can be obtained from calculating the convolutions of splitting kernels
and lower-order, N™<"LO partonic cross sections.

The computation of all combinations of splitting kernels and partonic cross sections

relevant for the N3LO corrections to the gluon fusion process is the main work of this



publication. We calculate also all pieces of higher orders in e that will add to the finite
part of the N3LO corrections (but not necessarily to the scale dependent parts).

With the pole cancelation achieved, let us now define the finite, mass-renormalised
partonic cross section

aij(p,2) = (T @ Tt @ 6w)(2) (2.10)

with 6%, now explicitly dependent on log(u?/s). Alternatively, the relation above can be

inverted,
6ij(2) = Tk @ Tyj @ o) (2) (2.11)

and solved for the highest order of o one is interested in. For example, at NLO, this yields
(using T\ (2) = §;;0(1 — 2))

o) =6 -TiV @al) ~T\) o). (2.12)
This step-by-step procedure provides an additional test on the lower-order cross section,
since a mistake in their mass-renormalisation will result in uncancelled poles at a higher
order. We provide results in this framework, i.e. our convolutions involve splitting kernels
and the finite partonic cross section o;;.

We can, then, set ;1 = py and use the renormalisation group equation for the strong
coupling constant,

da() | ) )
log(12) B(p)a(p) with  B(p) = —gﬂnasﬂ(u) (2.13)

to change the scale at which ay is evaluated in oy (pr, fif, 2).
The third-order expansion of a(sf) in terms of a(su,) reads

a(py) = alpr) + a’ (1r) BoL + a3(#r) [ﬁlL + BSLQ]

Fa ()| oL+ Dol + GIP| + O(e), (214)

with L = log(,ug/,u%).

The explicit logarithm L essentially counters the running of the coupling constant up
to the order considered, such that the effect of varying the unphysical scales is weakened
for higher orders in perturbation theory, i.e. the perturbative series is converging to its
all-order value, as can be seen by taking the total derivative of the partonic cross section,

dO’ij(/’L) N 80’Z‘j(ﬂ) 8Uij(ﬂ) 8a(u) - 5
dlog(p?)  Olog(p?) + da(p) Olog(p?) O(a’). (2.15)
B(wa(p)

If there are more scale dependent quantities entering the cross section, such as running
MS-masses, their scale translations have to be included as well. The full dependence on
the scale p will, by construction, be of the next order in a once again.



3 Ingredients

From the previous section, we conclude that we need the following ingredients to obtain
all convolutions required for the N3LO gluon fusion cross section:

e The LO partonic cross section through O(e?).
e The NLO partonic cross section through O(€?).

e The NNLO partonic cross section through O(e).

e The LO splitting kernels Pg((g)), Pg(g), Pég), Pq(g).

e The NLO splitting kernels Pg(;), Pg(,}), Pq(gl), Pq(;), Pq(;), Pq%) (where ¢ # Q # q).
e The NNLO splitting kernels Pg(g) and Pg(g) (owing to the fact that at LO, only the

gg-channel is nonzero).

3.1 Partonic cross section

We work in the effective five-flavour theory with the top quark integrated out. This ap-
proximation has been shown to be very good (less than 5%) for light Higgs masses, as
can be seen by comparing the NLO results in effective and full six-flavour theory and by
studying the importance of 1/m; corrections of the effective NNLO cross section [22, 23].
We expect this behaviour to persist at N3LO.

The effective Lagrangian describing the interaction between gluons and the Higgs boson
is given by

Lop= 0P go o (3.1)
4v e

where G, denotes the gluonic field-strength tensor. The Wilson coefficient C7 which
starts at O(a) has been computed perturbatively to four-loop accuracy [43, 44| in the SM
as well as to three-loop accuracy for some BSM models [45-47]. Through O(a*), the Wilson
coefficient in the SM reads

_ o) L P A _fr, !
Cr = 5 {1+a(,u) 1 +a“(p) 283 +16Lt+NF 96+3Lt

6865 77 1

3 2 2
+a - L — —I?\N
(1) [( 31104 ' 17287 18 t) !

(22, 55, 40291 110779
327t T 547 T 90736 13824 )T

2892659 897943 209 1733

iy
a2 T oere G et o

Lt] + O(a4)} : (3.2)

with L; = log(u?/m?). Ng denotes the number of light flavours set to 5.
The above expression denotes the renormalised Wilson coefficient, which is related to the
bare one through the renormalisation constant,

P = Zu(u) Ci(p), (3.3)



with
Zl(u)=1:1—aﬂ°+a2(f§—%>+a3(—ﬁg+2ﬁofl—ﬁ>, (3.4)

1 - W € €3 € €
€

where we have suppressed the scale dependence of the strong coupling constant.
The partonic cross section for the production of a Higgs boson through gluon fusion
can then be cast in the form

aij(z) = 01200 Z &gl’m)(z)a"em (35)
n,m=0
where we kept the squared Wilson coefficient factorised and pulled out all dimensionful
prefactors, such that the e’-piece of the leading order cross section becomes just
~(0,0
500 (2) = 61g0540(1 — 2). (3.6)
(n,m)

All convolutions calculated in this work are done using the o, j and from here on, the

term “cross section” will refer to these objects.

The sole dependence of the LO cross section on € is an overall factor of (1—¢)~! =
Y02, €" from averaging over the D-dimensional polarisations of the initial gluons. Thus,
the LO partonic cross section through O(e?) is trivially found to be

0™ (2) = 6148540(1 - 2), (3.7)

for allm=0,...,3.

At NLO, the dependence on ¢ is still fairly simple. There are only two master integrals
and they are easily computed to all orders in e.

The NNLO cross section through O(€) necessitated the knowledge of the 29 master
integrals to sufficiently high order in €. The double-virtual master integrals can be found
in work on the two-loop gluon form factor [48-50]. The real-virtual and double-real master
integrals were computed by two groups independently during the last year [39, 40]. The
expression for the bare NNLO cross section in terms of master integrals was kindly provided
to us by an author of [11].

In general, the partonic cross sections consist of three types of terms, delta-, plus- and
regqular terms.

~(n,m n,m n,m),k n,m
57 (x) = alP™ (1 —2) + 3 b D1 2) + () (3.8)
k

k
where the plus-distribution Dg(1 — z) = [W] . is defined via its action on a test

function f(z) with a finite value at = 1,
1 1 aok(1 _
[ aemit—a) st = [ () - ). (39)

The full expressions for the partonic cross sections through NNLO can be found in the
ancillary files accompanying this arXiv publication. They agree with the ones given in [41]
after compensating for the factor of 1/z that was not included in that publication.



3.2 Splitting kernels
The splitting kernel

Pyj(x) =y a" P{(x) (3.10)
n=0

describes the probability of a parton j emitting a collinear parton i carrying a fraction z
of the momentum of the initial parton. The splitting kernels are known up to three loops
(Pi(f)) and may all be found in [51, 52].

Note some different conventions that we use, though. Since \gg chose to expand all our

results in @ = 2= as opposed to ¢ as in [51, 52|, our kernels P

the reference by a factor of (i)nﬂ.
)

differ from the ones in

Also, since by Pyy’ we mean the emission of a single quark of a given flavour, we differ
from the expression in [51, 52] which parametrises the emission of any quark, by a factor
of ﬁ

Furthermore, there is also a conventional difference to the splitting kernels used in [41].
The authors of that publication use the quark-quark splitting kernel as defined in eq. (2.4)
of [51]. This kernel, which we shall denote by P,, is used in the DGLAP evolution of pdfs.
To compute all contributions to the N3LO gluon fusion cross section, we have to distinguish
different initial-state channels such as ¢g (quark-antiquark), ggq (identical quarks) and ¢@
(quarks of different flavour) which are convoluted with different combinations of pdfs.
Thus, for channel-by-channel collinear factorisation, we require the three distinct, flavour-
dependent quark-quark kernels

Pagr Fegr Py, (3.11)

which describe the emission of an identical quark, the emission of an antiquark of the same
flavour, and the emission of a quark or antiquark of a different flavour, respectively. The
latter two kernels vanish at the one-loop order, Pq(g) =0= Pq(%) but are nonzero for higher
orders. In the notation of [52], this corresponds to the kernels P, , and F,z,. The relation
between P, and our kernels is given by

Pyg = Pyg+ Pyg+2(Np — 1) Pyq . (3.12)

We are not aware of results in [41] that involve the flavour-dependent quark-quark kernels.

We close this section by giving the expressions for the four LO splitting kernels. For

the lengthy higher-order kernels, we again refer to the machine-readable files accompanying

this publication. The two NNLO kernels were taken from [53] in Form format and then

translated to MAPLE input. Their regular parts were tested against the Fortran routine
in [53], and their §(1 — z) and D, (1 — z) parts were checked against [51].

Pég)(x) = Boé(1—x)+ 3<D0(1 —z)+z(l—z)—-2+ i) . (3.13)
PO (z) = gH(‘;_:“’)Q (3.14)
Pl (x) = 3(9«“2 +(1-2)%). (3.15)
PO(z) = 6(1 —z) + §(2D0(1 —z)—1—=x), (3.16)



4 Computation of the convolutions

In this section we will describe the method we used to compute the convolutions of split-
ting kernels and partonic cross sections that are needed to cancel collinear divergences at
N3LO. Let us remark that our method is different from the technique used in [41], where the
convolutions were calculated in Mellin space (where convolutions turn into ordinary multi-
plications) and the problem was essentially the calculation of the inverse Mellin-transform.

In the following, we restrict ourselves to a single convolution. Since the convolution
product is associative, any multiple convolution appearing in the N3LO cross section can
be obtained by repeating the steps using the result of the first convolution and the next
convolutant. As already mentioned, both the splitting kernels and the partonic cross
sections consist of three types of terms, delta-, plus- and reqular terms.

50 () = al " )+ Z b " D1 — ) + e (@), (4.)

) ]

P (@) = AT 6(1 ) +ZB "Di(1—2) + C (), (4.2)
(n,

ij
times polynomials in x or factors of 1/x and 1/(1 — x). Harmonic polylogarithms are a

where the regular pieces c; )( ) and C’Z(]" ) (x) consist of harmonic polylogarithms (HPLs)

generalisation of the ordinary logarithm and the classical polylogarithms,

log(x / and  Liy(z )_/ ), (4.3)

where Lij(z) = —log(1 — z). HPLs can be defined recursively via the integral

H(ay,az,...,an;2) = / dtfa, (t)H(ag, ..., an;t), a; € {—1,0,1}, (4.4)
0

with ) 1 1
foi(z) = T2’ f0($)=57 filz) = T2 (4.5)

and in the special case where all a; = 0, the HPL is defined as

H(T,: 2) = %log”(z) . (4.6)

For more comprehensive information about harmonic polylogarithms, we refer to [54—60].
Any convolution involving a delta function trivially returns the other convolutant
(whether it be another delta function, a plus distribution or a regular function),

1

1
(6® f)(z) = /0 dady §(1 — ) f(y)d(ay — z) = /0 dyfWsy—2) = f(z).  (47)

Convolutions involving two plus-distributions are more involved, yet no integral actually
has to be solved. We comment on their calculation and list results for the required plus-plus
convolutions in appendix A.



For the remaining two types of convolutions, we end up with an actual integral that
we need to compute,

1 1 z
(Dn @ f)(2) :/0 dwdyDn(l—x)f(y)5(ﬂfy—Z)=/ den(l—fﬂ)f(x)

0 a0 ) s
1 1
(o0 = [ deduf@aiter -2 = [ ar(2)1 (1.9

Note the boundary term we pick up when evaluating a plus-distribution in an interval
which is different from (0, 1).

Even though we know, from the denominator-structures appearing in the integrals,
that our final result can only consist of HPLs (times polynomials in z and factors of % or
ﬁ), we have to step into the realm of multiple polylogarithms (MPLs) in intermediate
steps of the calculation. MPLs are defined analogously to HPLs, but allow for any complex
number in the index vector instead of only {—1,0,1} in the HPL case. Recursively,

G(z2,...,Zn;t)
t—CL‘l

G(z1,22,...,2n;2) = / dt , {z;} € C and G(z)=1. (4.10)
0

Specifically, a MPL may be a function of multiple variables that appear anywhere in the

index vector (x1,...,x,). The relation to HPLs reads
H(alw"?an;m) = (—1)kG(CL1,...,CLn;IL‘), {al} € {_1’071}7 (411)
where £ is the number of +1 indices in (ai,...,ay). This sign difference is due to the

fact that HPLs historically use %_t as the weight function when adding a +1 to the index
vector.

For more detailed information on multiple polylogarithms, see references [61-63] and
references therein. Note that the order of the MPLs indices is often reversed. We follow
the convention of [63].

The subsequent steps to solve the integrals are as follows:

1. We first remap the integral by x — 1 — z, such that the integration region becomes
(0,1 —2).

2. HPLs with argument 1 —x and % have to be written as a combination of MPLs
with the integration variable x as their argument, or no z-dependence at all. For

H(1;1fx> — —log <1 - 1;) — log (1—1_116;2>
— log(1 — z) — log ((1—z)<1 _ 1fz>>

=G(l;2) —G(l;2) — G(1 — z2), (4.12)

example,

,10,



where we've used that G(a;b) = log (1 — g) for a # 0. For MPLs of higher weights,
one can find these translations by using the recursive definition of MPLs and changing
variables in the integration. This becomes very tedious, though, so it proved to be
more practical to use the symbol formalism developed in recent years [59, 63-65] and
to follow the method presented in appendix D of [42]. For technical details, we refer
the reader to said appendix.

3. We are left with integrals of a single MPL with argument x times factors of z*

(k>—-1)or ﬁ, which can all immediately be solved via the MPLs recursive defini-

tion and integration by parts.

4. At this stage, all integrations have been performed. The result still contains MPLs
where the variable z appears multiple times in the argument vector. Using the
techniques from appendix D of [42] again, we can rewrite all the expressions in HPLs.

5. The final numerical check on the result consists of the comparison of the original
integral using Mathematica’s numerical integration (using the package HPL [57, 58] to
evaluate the HPLs numerically) and our final expression, using Ginsh, the interactive
frontend of the computer algebra system GiNaC [56], for a random value of z.

The full set of convolutions can be found in machine-readable form (both MAPLE and

MATHEMATICA) in the ancillary files accompanying this arXiv publication. They were all

compared analytically in MATHEMATICA to the expressions given in [66], and complete

agreement was found for all convolutions. For convolutions involving the two-loop quark-

quark splitting kernels Pq(q), Pq(;) and Pq(éz), the results had to be combined according to
q. (3.12) to find equality.

4.1 Soft expansion of the convolutions

While the full N3LO corrections to the gluon fusion cross section may still be out of reach
for the time being, a description in the soft limit could be feasible already in the close future.
Note that this was the sucession at NNLO, as well, where the expansion of the cross section
up to O((1—2)19) [10, 67] was published before the full computation [11, 12]. The numerical
agreement between the two computations proved to be excellent, so, anticipating the same
behaviour at N3LO, the soft expansion of the N3LO corrections would be a very important
result to obtain. The first pure N>LO piece of the third order soft expansion, the soft
triple-real emission contribution, has recently been published [42].

In the limit z — 1, the partonic cross section (and all convolutions contributing to it)
can be cast in the following form (suppressing partonic indices)

2n—1 2n—1 oo
g (2) = a1 - 2) + Z bmMED, (1 = 2) Z Zc Nog(1 — 2)F (1 — 2).
k=0 k=0 (=0

(4.13)
We thus need to expand the regular part as a polynomial in (1— z), times log(1 — z) terms.
We proceed as follows:

— 11 —



1. We define 2/ = 1 — 2. Thus, our expressions now consist of HPLs with argument
1 — 2/ times powers of 2. The desired limit is 2’ — 0.

2. We want to rewrite the HPLs with argument 1 — 2’ as MPLs with argument 2/, which
results in changing the array of indices from {—1,0,1} to {0, 1,2}, as can be easily
seen by taking the integral definition eq. (4.10) for z; € {—1,0,1} and changing
variables ¢ — 1 —t. The rewriting is achieved once again with the techniques from
appendix D of [42].

3. The expansion of any MPL in its argument is straightforward, since there is a con-
nection between MPLs and multiple nested sums [61],

) x xq?
Li o) = 30 T 3 I g
A 1

Tbkzl

where the translation from MPLs to nested sums is given by

G(0,...,0,1,0,...,0,ak-1,...,0,...,0,a1; z))
~—— ~——

N——
mk—l mk,1—1 m1—1
kv az as ag—1 1
= (—1)" Lim,....m, (,,..., , , Tk (4.15)
ap a2 Q-2 Qk—1

The specific form of the MPL on the left-hand side of the equation above can be
obtained via the scaling property, G(z1,...,2n;2) = G(Ax1, ..., ATy, A2), where \ #
0 # x,. MPLs with a rightmost index of 0 must be rewritten using the shuffle
product, e.g.

G(a,0;z) = G(0;2)G(a; x) — G(0,a;z) = log(x)G(a;x) — G(0,a;z), (4.16)

until all rightmost zeroes have been turned into explicit logarithms. The remaining
MPLs can then be safely translated to nested sums.

The crucial point is that the variable x; only appears in the outermost sum in
eq. (4.14), while the inner nested sums only depend on the x;-j, which in our case are
the indices a; € {0,1,2}. We thus easily obtain the desired expansion when we just
truncate the sum over ny in eq. (4.14) at the highest power of 2’ we are interested in.

4. The validity of the soft expansions of the convolutions was checked numerically for
some small values of 2’. All soft expansions of the convolutions up to O ((1 — 2)12)
can be found in the ancillary files accompanying this arXiv publication.

5 Numerical results for the gluon fusion scale variation at N3LO

The total cross section for Higgs production through gluon fusion at N3LO depends on the
factorisation and renormalisation scales explicitly, through logarithmic terms that have
been derived in this work, and implicitly through the p, dependence of o, and the puy
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Figure 1. Relative difference of the NNLO gluon fusion cross section evaluated with NLO and
NNLO parton distribution functions as a function of the scale p for the three most commonly used
pdf providers at the 8 TeV (a) and 14 TeV (b) LHC.

dependence of the parton distribution functions. In principle N>LO parton distribution
functions should be used, but in practice, not only are they not available (nor will they
be in the near future), but also their deviation with respect to the NNLO pdfs? available
is expected to be very small. This expectation is based on studying the relative difference
of the NNLO cross section evaluated once with NNLO pdfs and once with NLO ones, as
depicted in figure 1, where the quantity

g g

NNLO‘ _ NNLO|
NLO pdf NNLO pdf

oNN

o = x 100% (5.1)

LO
‘NNLO pdf

is plotted for three different pdf providers, and the pdf sets are DGLAP-evolved according
to their respective order. The value for as(myz) has been chosen equal for both orders,
to isolate the impact of the different order in the pdf fits and evolution. The left panel
shows the results for the LHC at 8 TeV centre-of-mass energy, the right one for the 14 TeV
LHC. We observe that in the case of the MSTW2008 [68] pdf sets (our default choice)
the numerical difference between NLO and NNLO sets is very small. It stays below the
per mille level for scales above p ~ my /10 in the 8 TeV case and is less than half a per
cent for 14 TeV centre-of-mass energy. The NNPDF23 [69] and CT10 [70] sets generally
sport bigger differences between NLO and NNLO pdfs, at the level of at most two per
cent. More importantly, all three providers exhibit a flat behaviour of the difference in
the interval [my /4, mp] we use to determine the scale uncertainty of our hadronic cross
sections, meaning that the choice of using NLO or NNLO DGLAP running does not affect
the quoted scale uncertainty of the NNLO cross section significantly. We have verified
that that the impact of using NLO or NNLO pdfs is at most a two per mille difference in
the NNLO scale uncertainty for all three pdf providers. Based on these observations and

2Note that most NNLO pdf sets available are actually not entirely consistent at the NNLO QCD accuracy
level, as most of the global fits include hadronic jet data, for which the theory calculation is only available
at NLO QCD up to now.
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the assumption that due to perturbative convergence, the impact of the next order in the
DGLAP running will be smaller yet again, we deduce that estimating the scale dependence
of the N3LO cross section by using NNLO pdfs is a good approximation.

On the other hand, the full, implicit, u, dependence through ay, can only be estimated

once the N?LO matrix elements are known, and in particular the coefficients® a3 30k

ij 0 Vi
and cz(?’o)(z) in eq. (3.8). Of these contributions only the bg),o),k are known, from mass
factorisation constraints [37]. The question, then, arising is whether we can anticipate the
scale uncertainty at N>LO with the information currently available.

To this end we parametrize the unknown delta and regular coefficients by a scaling

factor K times the corresponding NNLO coefficients:

oM =KkalV,  fefied” (@) =K(fiehed” ). (5.2)
There is no a priori reason why the scaling factor for the delta and the regular terms should

be the same. However, it turns out that the numerical impact of the delta coefficient ag”o)
is negligible (for scaling coefficients that do not break by orders of magnitude the pattern
observed from lower orders), in contrast with the coefficient of the regular part, so we adopt
here a common scaling factor to keep the parametrisation simple. For the same reason we
use the same K scaling coefficient for all initial state channels.

A loose argument about the size of K can be derived if one assumes a good perturbative
behaviour at y, = p1y = mpy where all other terms of order a® vanish. Since a(mg) ~ 1/30
one expects K not to be much larger than 30. For comparison, the corresponding rescaling

factors between NNLO and NLO are

fo® fo @ clg” agy”
a0 ™ 30, a0 ™ 1.5, (5.3)
fg ® fg ® cqq Qgg

for my, = 125 GeV and py = p, = my,. In what follows we study the inclusive cross section
as a function of the scales, in the HQET approach, rescaled with the exact leading order
cross section. We use the framework of the iHixs program [20] a Fortran code which con-
tains the complete NNLO cross section for gluon fusion in HQET. The coupling s was run
to four-loop order according to eq. (2.13), while for the parton distributions, the MSTWO08
NNLO set was used. Furthermore, to cross-check our results, a second implementation
was programmed in C++, where the convolutions of splitting kernels and partonic cross
sections were performed numerically. For both codes, the numerical evaluation of HPLs
was performed using the library CHAPLIN [60]. The two implementations agreed for all
parameter configurations that were tested.

In figure 2, the different orders of the hadronic gluon fusion cross section for the 8 TeV
LHC and a Higgs mass of 125GeV, along with several N®LO approximants for various
numerical values of K are plotted as a function of the renormalisation scale .., while the
factorisation scale is fixed to py = my. Note that the convolutions of splitting kernels and
partonic cross sections do not enter in this plot, since they are proportional to log(,uf[ /m?).
The p, scale variation for LHC with 14 TeV centre-of-mass energy is shown in figure 3. The

3Note that we define the coefficients b;; of the plus terms to be independent of z. This implies that the

(n.m) () contain terms with the logarithms log(z) and log(1 — z).

regular terms ¢;;
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Figure 2. Scale variation of the different orders of the gluon fusion cross section at 8 TeV. py is
fixed to my, and only p,. is varied. The scaling coefficient K is varied from 0 to 40 to estimate the
impact of the unknown N®LO contributions.

iy scale dependence, shown in figure 4 for 8 TeV centre-of-mass energy, is, as expected,
extremely mild, in accordance with what is observed at NNLO.

Figures 5 and 6 display the overall scale dependence, with both scales set to be equal
and varied simultaneously. We note that the curves for the approximate N3LO cross sec-
tion with various Ks spread widely in the low scale region, i.e. for p < 30 GeV. This is
not unreasonable, though, as in this regime, the unknown N3LO contributions that are
neglected become much more important due to the running of ag. Indeed, at the lowest
renormalisation scale considered, p = my/16 ~ 7 GeV, the coupling becomes as big as
as =~ 0.2, i.e. we are barely in the perturbative regime. The term

2
o430 2 460 log (2 ) o2 m) (54)
which is supposed to cancel the implicit logarithms in the running of a, and which becomes
large and negative, thus pulls the curve down for small scales, and is canceled by the cur-
rently unknown contributions whose magnitude is small at p,, = my, but is greatly enhanced
due to ay at small p,-. It can hardly be overemphasised that the above prescription does not
represent a proper calculation of the N3LO matrix elements, but just a way of parametris-
ing their unknown numerical importance. Once the height of the N3LO curve at (g, i f) =
(1,1) is set, the shape of the full curve only depends on lower order cross sections (which
we know exactly), the running of ag and the parton distribution functions, respectively.
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Figure 3. Scale variation of the different orders of the gluon fusion cross section at 14TeV. py is
fixed to my, and only g, is varied. The scaling coefficient K is varied from 0 to 40.
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Figure 4. Scale variation of the different orders of the gluon fusion cross section at 8 TeV. In (a) p,.
is varied along the z-axis, while the bars represent variation of py around the central value my, /2.
In (b) p, is fixed to my and only pf is varied. The scaling coefficient K is varied from 0 to 40.

As mentioned above, the unknown, numerically important coefficient functions c{(fgo) (2)
contain logarithmic contributions that are singular at threshold, log(1 — z), contributions
that are regular and contributions that are singular at the opposite, high energy limit
log(z). The leading and several, but not all, subleading threshold contributions are asso-
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Figure 5. Scale variation of the different orders of the gluon fusion cross section at 8 TeV. i
and p, are varied simultaneously. The scaling coefficient K is varied from 0 to 40 to estimate the
impact of the unknown N®LO contributions.

ciated with multiple soft emissions and can be recovered by resummation techniques. The

authors of [37] have used the expressions for bg,,o),k:

that they have derived to perform a soft
approximation in Mellin space, resulting in a N3LO approximant with a scale uncertainty
of ~ 4%. Recently, the authors of [38] estimate cg;’o)(z) by interpolating in Mellin space,
between the soft approximation (that captures threshold logarithms) and the BFKL limit
(that captures high energy log(z) terms). This approach matches the NNLO cross section
neatly, and results in an approximant for the N®LO with a scale uncertainty of 7% if the

scale is varied in the interval [my,/2,2my,] (or smaller, if the interval chosen is [my, /4, mp)).

Indeed, by comparing our results for the ji,-dependence of the N3LO cross section for
the dominant gluon gluon initial state, with the numbers obtained via the recently released
numerical program gghiggs [38], we find agreement between the two curves when setting
K to 25, as is displayed in figure 7.

While it is plausible that the leading logarithmic contributions, being threshold en-
hanced, capture the bulk of the cross section, it is unclear whether the unknown subleading
contributions, as well as the non-logarithmic terms, are really negligible. Their importance
certainly rises for the LHC at 14TeV, as the luminosity function suppresses the region
away from threshold less, resulting in more phase space for real radiation. One might,
therefore, want to be conservative about their magnitude, and hence on the size of the
scale uncertainty to be anticipated before the full N3LO result is available. Table 1 shows
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Figure 6. Scale variation of the different orders of the gluon fusion cross section at 14 TeV. pif
and p, are varied simultaneously. The scaling coefficient K is varied from 0 to 40.

the estimates for various values of the rescaling factor K, covering the range from relatively
mild to extremely strong N3LO corrections, resulting in scale uncertainties varying from
2% to as large as 8% or more. The scale uncertainties cited here are evaluated by varying
the scales in the interval [my /4, mp)].

The choice of the central scale around which the variation is performed has been an
issue of debate lately, since different choices result in slightly different scale uncertainty
estimates but also in different central values for the cross section. The choice is largely ar-
bitrary, but various indications (like improved perturbative convergence, typical transverse
momentum scales for radiated gluons, average Higgs transverse momentum etc.) point to
a central scale choice that is lower than the traditional one at my, closer to my/2. An
alternative indication comes from the considerations of [71], where it is argued, looking at
examples from jet physics, that a reasonable indication would be the position of the saddle
point in a contour plot of the cross section as a function of y, and py. In figures 8 and 9
we show such contour plots for Higgs production at LO, NLO, NNLO and N3LO (for three
values of the parameter K). In the cases where a saddle point exists, its position points
indeed to lower scale choices, and in the cases without a saddle point the plateau region
is also located in lower scales. Given the extremely mild factorisation scale dependence,
the saddle point or plateau region is largely determined by the u, plateau in all previous
figures.
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Figure 7. Scale variation of the different orders of the gluon fusion cross section at 8 TeV. py is
fixed to my, and only pu, is varied. K is varied from 0 to 30. Only the gg channel is plotted, and
compared to the results obtained with [38].

Order Cross section [pb] o/oxnLO /010
LO 10.31 72917 0.51 1.00
NLO 17.41 t22:6% 0.86 1.69
NNLO 20.27 T55% 1.00 1.97
N3LO (K=0) 18.53 T12% 0.91 1.80
N3LO (K=5) 19.23 T9-3% 0.95 1.87
N3LO (K=10) 19.92 *0.0% 0.98 1.93
N3LO (K=15) 20.62 7917t 1.02 2.00
N3LO (K=20) 21.31 29% 1.05 2.07
N3LO (K=30) 22.70 T6-2% 1.12 2.20
NLO (K=40)  24.09 710,0% 1.19 2.34

Table 1. Cross sections and scale uncertainties for the 8 TeV LHC. The central scale choice is
Wy = pg = mp/2, and uncertainties are found by varying the two scales simultaneously by a factor

of two.
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Figure 8. 2-D contour plots of the LO, NLO and NNLO cross section at the 8 TeV LHC. The
value on the contours is the cross section in picobarns. Our preferred central scale choice is located
at (—1,—1).
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Figure 9. 2-D contour plots of the approximated N®LO cross section at the 8 TeV LHC. The value
on the contours is the cross section in picobarns. Our preferred central scale choice is located at
(—1,-1).

6 Conclusions

In this work we have presented all convolutions of lower-order partonic cross sections and
splitting kernels that contribute to order a® to Higgs production in gluon fusion. The
results agree with the ones previously published in [41]. Apart from the full expressions,
we also provide all convolutions expanded around threshold, as the full N3LO corrections
in this limit seem to be feasible in the near future.

We have also anticipated the scale dependence of the N3LO gluon fusion cross section,
into which the calculated convolutions enter. As is the case at NNLO, the factorisation
scale dependence is extremely mild, at the per mille level or below. The overall scale
uncertainty is driven by the renormalisation scale variation. The definite uncertainties
depend on the size of the missing pure N3LO contributions. Scanning over a reasonable
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range for these contributions, we find that in the residual scale uncertainty can vary from
2%-8% depending on the magnitude of the hard real corrections, whose computation is,
to our view, a prerequisite for a solid estimate of the N®LO scale uncertainty.
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A Convolutions of two plus-distributions

In the convolutions needed for collinear counterterms we face the problem of convolutions
involving one or more plus-distributions. Here, we demonstrate how to obtain all convolu-
tions containing two plus-distributions.

(Da(1=2)@Dp(1—)) () = /Oldxdy[log(l—w)”]+[log(1_y)m

- ]+5(:cyz) (A.1)

To find these convolutions for all values of m and n, we consider the following convolution
integral:

1
Ip(2) == /0 dr dy(1 — )71 (1 — ) 715 (ay — 2). (A.2)

We use the delta function to get rid of x and then remap the integral onto the unit interval:

! 1 Z i —1+Dbe ! —ae —1+4ae —1+be
Iab(2>=/ dy(l—y> (1—y)~ '+ :/ dyy *(y — 2)7To(1 — y) 71

Yy z
1
_ /O (1= 2)[z + (1= 2)A] AL = 2)] %1 = 2)(1 = A)] 1+

1
= (1 - z)"Hlatbre / AN [z + (1 — z) AN~ 1rae(q — )~ 1Hbe
0
1
= (1 — z)~MHathe / AN[(1 — ) + 2\ 72N Fbe (1 — )1t
0

= (1 — 2) @+ Bae, be) o Fy (ae, be, (a + b)e; 1 — z) . (A.3)

In the second to last step, we mapped A — 1 — A and in the last step, the Euler definition
of the hypergeometric function was used,

1
B(b,c —b)oF1(a,b,c;z) = / dea® ' —2) "t (1—zz) ~9 (A.4)
0 Ne—
(1—-z)+(1—2)z
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where B(z,y) denotes the Euler Beta-function. On the other hand, we may also directly
expand the integrands in I, in terms of a delta function and a tower of plus-distributions,

TLp(2) = /01 dz dy(é(la; ?) 4 3 (“;!)npnu - x)>

n>0

x <6(1be) + ) (Z);an(l - y)> d(xy — 2)

m>0

_6(1-2) " 1 Z MDn(l —2) ! Z (ae)nDn(l — 2)

abe? ae n! be n!
n>0 n>0

+ > W(Dn(l — 1)@ Dp(1—9))(2). (A.5)
n,m>0

When we now expand the first term of eq. (A.3) in the same way,

(11— ot U2 A @ENI Ty gy, (A.6)

n!

and expand the Beta-function and the 9 F} (using the MATHEMATICA Package HypExp [72])
in € as well, we can equate the two sides order by order in e.
The double and single poles cancel and for O(€?) we find the equation

2
(Do(1 — z) ® Do(1 —y))(2) = —%5(1 —2)+2Dy(1 —2) — lfg_(zz) : (A7)
Higher orders in € of the equation contain more than one plus-plus-convolutions, but they
can be isolated by extracting the corresponding coefficient of a and b. To find the expression
for the convolution (Dy,(1—2) @D, (1—y))(2), one has to take the O(e""™a™b™) coefficient
of the equation, or equivalently the O(e"™a™b") coefficient since the expressions are
symmetric in a and b.
In this way, we found all the plus-plus convolutions needed for this work, which are
listed here for completeness.

(Do ® Do) (2) = —7;25(1 )4 2Di(1— ) - 08®) (A.8)

1—=z2

Dy Di)(e) = Goo(1 = 2) = = Dy(1 = 2) + Sy(1 — ) — BB )
4
(DO & Dg)(z) = %55(1 - Z) + %Dg(l - Z) - 7;22)1(1 - Z) + 2C3 Do(l - Z)

_log(2) log?(1 — 2)

- (A.10)
(D1 (= Dl)(z) = —;:0(5(1 — Z) +D3(1 — Z) — 7'(;2)1(1 — Z) + 2(3 Do(l — Z)
~log(2) iofl(l —z) log(lz)_Lizg(z) N 2L13§ZE; (3 (A1)
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(Do ® D3)(2) = 6¢50(1 — 2) + 294(1 —2) - 3292(1 — )

31—z
+Mﬂma—z»—gbmr—>—b“”?§f :
2 7'('2
o a):) = (1465 - T2 o1 - )+ 22ul1 - 2) - T Pal1 - )

(A.12)

Li3(1 - 2)
1—2

[2 log(z)log?(1 — 2)

4
™
+6<3 Dl(l — Z) — %Do(l — Z) +

log(1 — z)(Li3(2) — ¢3) | log(2)
1-— 2 =+ 1—-=2
—log®(1 — 2) — 7;2105:{(1 —z) 4+ 2log(1 — 2z)Lig(1 — 2)

+4

+2Lig(1 — 2) — 2@,] (A.13)

(Do @ Da)(2) = —%5(1 _ 4 ?735(1 _ - 2%7)3(1 2
+12§3 Dg(l — Z) — 41%2)1(1 - Z) + 24(5 Do(l — Z)
~ log(z) logh(1 — 2) (A14)
1—-=2

6 7T2
(1o Pa)(z) = (36 - 575 )30 = 2) 4 3P0 - 9) - D1 - 2)

4
126, Dy(1 — 2) — SDi (1~ 2)(186 — 7Gs)Do(1 — 2)

1 7t w?log?(1 — 7 log*(1 — 2)
——|3log*(1 — 2)]1 1 —

+1_Z[3og( 2)log?(z) + log(z (5 5
—log?(1 — 2) + 3log?(1 — 2)Lia(1 — 2) + 6log(1 — 2)Liz(1 — z)
—6Lig(1 — 2) — 6¢3log(1 — z)> +12H(0,0,1,0,1; 1 — 2)
+24H(0,0,0,1,1;1 — 2) + 6log?(1 — 2)(Liz(2) — (3)

+3log(1 — 2)Li3(1 — 2) — 6Lia(1 — 2)Liz(1 — z)} (A.15)

The above expressions agree with the ones given in [41] (eq. (22)) and [73] (eq. (C.28)—
(C.31)). For the cases Dy @ D,,, the combination of harmonic polylogarithms given in the
references collapses to the single term —log(z)log™(1 — 2)/(1 — z2).

B Ancillary files

Here we briefly describe the files accompanying the publication. All files are available both
in MAPLE (file.mpl) and MATHEMATICA (file.m) format.

~(n)

1. sigma.mand sigma.mpl: contain the partonic cross sections ¢;;” through the respec-

tive order in € needed for the N3LO cross section. There are ﬁve different partonic
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channels (gg, qg, qq, qq and ¢Q, where ¢ # @ # ¢). Only the gg channel contains
terms of soft origin (§(1 — x) and D, (1 — x) terms). They are denoted by d1(1-x)
and DD(n,x), respectively.

Harmonic polylogarithms are denoted by H, and can be cast in the form used by
the package HPL [57, 58] via the MATHEMATICA replacement rule Hla__,x_] ->
HPL [{a},x].

. convolutions.m and convolutions.mpl: contain the 80 convolutions of splitting

kernels and partonic cross sections required for the N3LO cross section, to the re-
spective order in € needed. The names of the convolutions are simply the concate-

) (0)

nation of all ingredients. The convolution Pg(g ® Pg(g) ® 044 for example is called

pegglpgqOsigmalgg.
All expressions are given in terms of soft terms like 6(1 — x) and D,,(1 — z), where
present, and HPLs for the regular parts.

convolutions_softlimit.m and convolutions_softlimit.mpl: contain the same
80 convolutions, but the regular parts are expanded in the variable xp = 1 — = as
described in section 4.1. The names are prepended by a capital S in this file, e.g.

SpgglpgqOsigmalgg for the soft limit of the convolution Pg((g)) ® Pég) ® &ég).

. splittingkernels.m and splittingkernels.mpl: contain the twelve spltting ker-

nels listed in section 3, in the conventions given in section 3.2. Furthermore, the
intermediate double and triple convolutions among one-loop and two-loop kernels
are provided, as well. All expressions are given in terms of soft terms like 6(1 — x)
and D, (1 — x), where present, and HPLs for the regular parts.
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