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Quantifying the Impact of Variability and
Heterogeneity on the Energy Efficiency for a
Next-Generation Ultra-Green Supercomputer

Francesco Fraternali, Andrea Bartolini, Carlo Cavazzoni, Luca Benini, Fellow, IEEE

Abstract —Supercomputers, nowadays, aggregate a large number of nodes featuring the same nominal HW components (eg. proces-

sors and GPGPUS). In real-life machines, the chips populating each node are subject to a wide range of variability sources, related

to performance and temperature operating points (i.e. ACPI p-states) as well as process variations and die binning. Eurora is a fully

operational supercomputer prototype that topped July 2013 Green500 and it represents a unique ’living lab’ for next-generation ultra-

green supercomputers. In this paper we evaluate and quantify the impact of variability on Eurora’s energy-performance tradeoffs under

a wide range of workloads intensity. Our experiments demonstrate that variability comes from hardware component mismatches as well

as from the interplay between run-time energy management and workload variations. Thus, variability has a significant impact on energy

efficiency even at the moderate scale of the Eurora machine, thereby substantiating the critical importance of variability management in

future green supercomputers.

Index Terms —Green500, High-Performance Computing, Hardware Variability, Energy-Efficient Software Design, Energy-Aware

Computing, Green Supercomputer, Heterogeneous Supercomputer, Dynamic Resource Management, Hardware Accelerator, DVFS.
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1 INTRODUCTION

W HILE integrated computing architectures are facing

Power/Thermal/Utilization walls that are limiting

the performance benefits of technology scaling, the demand

for more powerful supercomputers continues to increase.

TOP500 rankings in the last twenty years show an ex-

ponential growth of peak performance that is predicted

to enter the ExaFLOPS ( 10
18 ) at the latest by 2023 [2].

Today’s most powerful supercomputer, TaihuLight, reaches

93.01 PetaFLOPS with 15.37 MW of power dissipation

whitout event considering the cooling infrastructure. This

data shows that exascale supercomputers cannot be built

by simply expanding the number of processing nodes and

leveraging technology scaling, as power demand would

increase unsustainably (hundreds of MW of power). Ac-

cording to [4], an acceptable value for an Exascale super-

computer is 20 MW. To reach this target, current supercom-

puter systems must achieve an energy efficiency “quantum

leap”, pushing towards a goal of 50 GFLOPS/W. With the

aim to push supercomputers to improve energy efficiency,

the Green500 list ranks Top500 supercomputers by their

energy efficiency [3]. In contrast with TOP500, the Green500

list looks into an energy efficiency metric, the GFLOPS

per Watt (GOPS/W), for computers “big enough” to be

considered supercomputer-class, i.e. passing the threshold

of being part of Top500. From the Green500 perspective,
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the current fastest supercomputer (TaihuLight) delivers only

6.05 GFLOPS/W. It is clear that the design offuture exascale

machines must take energy efficiency as a primary design

goal and address the challenges coming from power bounds

in direct manner, not just as an afterthought. Variability is

one of the key challenges that must be addressed when

designing a green supercomputer. This is especially true

because energy efficiency boosters like voltage scaling and

aggressive power management have a quite dramatic im-

pact on variability [5], [7]. Process variation is the deviation

of transistor parameters from their nominal design val-

ues, which is caused by both systematic (e.g., lithographic

inconsistencies) and random effects (e.g., varying dopant

concentrations) [25]. Variation effects have been proven to

worsen with the process scaling [7]. After silicon fabrication,

providers use speed binning [6] to cluster in the same

product family devices that share similar performance and

silicon quality and to sell them with the same nominal

speed. Even if this mitigates the end-user product variabil-

ity, in a supercomputer that includes thousands of CPUs of

the same bin the effect of process variability can become

relevant. In addition to process variability, the same device

can operate at different frequency and voltage levels (DVFS,

ACPI states) [9]. The Linux operating system does this

by mean of SW governors. The default one is called “on-

demand” and it adapts the frequency to the CPU load [10].

In Intel machine this governor is called “intel pstate” and

has a similar behavior. Even more than with just advanced

fabrication technologies, green supercomputers will achieve

high energy-efficiency (GFLOPS/Watts) at the architectural

level, by exploiting HW heterogeneity as they embeds in

the computing node parallel accelerators. Looking at the

top 20 most energy efficient supercomputers according to

the June 2016 green500 list, it can be observed that 19 over



20 supercomputers use a heterogeneous design composed

by a data-parallel accelerator (NVIDIA GPU, AMD Firepro,

PEZY-SCnp), while one (TaihuLight) embeds as processing

core a custom designed many-core CPU based on RISC

cores. In addition HW accelerators have the capability of

changing operating state to trade-off performance with

power. This opens interesting design points when a hybrid

workload runs on heterogeneous HW. More than 86% of

TOP500 supercomputers are based on a scalable architecture

where a ”node” is replicated many times and in almost

90% of today’s supercomputers the node embeds x86 CPUs.

Moreover 80% of nodes use Intel Xeon E5 series (36.8%

SandyBridge, 15.2% IvyBridge and 28% Haswell) compo-

nents. Almost the entire TOP500 supercomputers (94.4%)

use Linux O.S. Finally supercomputers run a wide variety

of workloads and scientific computational kernels and thus

are affected by software variability which can impact the

overall energy-performance trade-off.

The Eurora Supercomputer prototype, developed by Eu-

rotech and Cineca [16] has ranked first in the Green500

list in July 2013, achieving 3.2 GFLOPS/W on the Linpack

Benchmark with a peak power consumption of 30.7 KW,

and improving by almost 30% the performance of previ-

ous green supercomputers. Eurora has been supported by

PRACE 2IP project [20] and it serves as testbed for next

generation Tier-0 systems. Its energy efficiency performance

is achieved by adopting a heterogeneous architecture and a

direct liquid cooling system that enables hot water cooling,

that is suitable for hot water recycling and free-cooling

solutions [18]. For its characteristics Eurora is a perfect vehi-

cle for testing and characterizing next-generation “greener”

supercomputers. As the majority of Supercomputers, Eurora

nodes embeds NVIDIA Kepler GPUs and Intel Xeon Phi

accelerators, uses Intel Xeon processors with linux O.S.

1.1 Contributions

In this paper we analyze the impact of different variation

sources (HW and SW) on Eurora in terms of performance

and energy metrics. We show that the whole system has

significant optimizations margins and that optimization has

a sizable impact at the scale of the entire supercomputer.

The main contributions of the paper are:

• We measured up to 15% of energy variation among

nodes at the same operating condition and under

the same workload. This amount of variability is

measured on a relatively small system with just 32

nodes, and thus is expected to increases in larger

systems and more advanced technology nodes.

• In real supercomputer applications we measure 27%

energy saving w.r.t. the default turbo mode for the

CPUs devices and 26% energy saving in the GPUs

accelerators w.r.t. the maximum running frequency.

• We quantify that optimal voltage and frequency op-

erating point selection (VFS) can lead to an energy

saving ranging between 18% and 50% by using the

only CPUs devices and a further 17% energy saving

by extending the optimal VFS selection to the GPUs

accelerators. These results point out that the vast

majority of workloads achieve significantly higher

energy efficiency when they do not run at peak

performance. Hence, new management strategies for

allocating machine resources to workload are needed

for energy-constrained supercomputers at the ex-

pense of pure performance.

• We measure a further improvement up to 6% in the

energy efficiency by applying the optimal VFS on

both CPUs and GPUs on hybrid workloads. Hence,

we further show that to reduce the energy of the

system the highest CPUs and GPUs speed are not

the best option and only an application dependent

operating point configuration for both GPUs and

GPUs gives the best energy efficiency.

1.2 Related Work

In the last decade, variability has been widely studied in

computer-architecture, VLSI and EDA fields on the hard-

ware and software viewpoints. Authors in [29], review the

literature for reliability and process-variation aware VLSI

design to find that the design of reliable circuits with unre-

liable components is a significant challenge that is likely to

remain relevant for all circuit designs from now on. Other

industrial players like TI and IBM adopts reliability-aware

design methodologies at various stages of the design pro-

cess [48]. Authors in [28] show that in order to account for

parameter variations during the design phase, the designers

will endure an average of 11% increase in area. On the

software side, process variation has also been deeply inves-

tigated and several countermeasures and approaches have

been studied and implemented. As an example, authors

in [8], [11] show that operating system can be designed

to take advantage of process variation to differentiate the

peak performance of processing elements while ensuring

the same target lifetime of the device.

In addition, Paterna et al. propose an ILP formulation to

minimize the energy consumption of a multimedia multi-

core platform affected by variability [12], [13]. Sharing the

same assumption Rudi et al. introduced an ILP formula-

tion which can couple thermal prediction with hardware

heterogeneity to optimize the overall system performance

under thermal constraints [23]. The techniques presented

in [32] rely on the characterization of the power consump-

tion measured by B. Balaji et al in [38] that uses detailed

power measurements to show the part to part variability

for a variety of representative single-threaded and multi-

threaded application workloads. Balaji utilizes six Core

i5-540M laptop processors and the Linux userspace CPU

governor to control four out of a total of ten available

frequencies 1.2Ghz (lowest),1.73Ghz, 2.13Ghz and 2.63Ghz

(highest). In the results, they measured processor power

variation of 7-17% depending on configuration and applica-

tion between identical processors at the same frequency of

operation. [38] shows that commercial multiprocessors are

affected by process variability and it is not clear how this

will impact the final performance and energy efficiency of

a large scale HPC system which integrates a large number

of them. Indeed, the exascale system [2] will likely contain

hundreds of thousands of nodes and billion-way parallelism

and authors in [36], [37] are pointing out the importance of

variability modeling for large scale clusters. In particular,

they find that inter-node variability in homogeneous clus-

ters leads to different models and for high-fidelity cluster



power models, the choice of model predictors will vary from

node to node. Indeed, by simply multiplying the power

prediction of a single node with the number of nodes in

a cluster, it could yield to a worst-case dynamic range errors

up to 150%. Increasing system size bring a complementary

challenge on power and energy availability and costs, with

projected systems expected to consume tens of mega-watts

of power [40]. To overcome this problem, Torsten et al.

discuss in [39] existing node power variations in two real

HPC homogeneous systems. They introduce three energy-

saving techniques and quantifies possible savings for each

technique. Energy saving results are based on simulation

and in the best theoretical case a combined savings of the

two best practical techniques show an energy saving o�ust

0.5%.

Hence, to address the mentioned power and energy effi-

ciency problem, authors in [33] and [34] exploit the varia-

tions in manufacturing processes that cause the transistors

on each chip to differ resulting in many-core chips being

inherently heterogeneous. In-fact, due to process variations,

frequency and power consumption profiles of cores can

span a wide range and this make optimal scheduling of

applications under a power budget computationally diffi-

cult. In particular, authors in [33] propose an integer linear

programming (ILP) based approach for selecting optimal

configuration of a chip showing savings in energy con-

sumption on an average of 26% and 10.7% for two HPC

mini-applications. Analogously, [34] proposes a scheduling

framework using ILP, which enables efficient scheduling

based on the application, the properties of the chip, and

power and performance constraints. Results show that their

framework finds configurations that are up to 2.5 times

faster than the ones obtained from simple heuristics. Both

the mentioned works are based on the use of Sniper Multi-

core Simulator [49] for simulating chips with heterogeneity.

Validations of the Sniper simulator [49] against real hard-

ware show average absolute errors within 25% for a variety

of multi-threaded workloads. All these works are based on

simulation results. A detailed assessment of the impact of

variability on power and energy in a real large-scale high-

performance computing (HPC) system is currently missing

in the open literature. In recent times, the new dominat-

ing trend in energy-efficient HPC is toward heterogeneous

architectures coupling processors with accelerators (typi-

cally GP-GPUs). The importance of heterogeneity at the

architectural level is claimed by [35] that stresses the need

for architectures that can tolerate application variability

without performance loss in a Warehouse-Scale Computer

(WSC). Presenting a detailed micro-architectural analysis of

live data-center jobs, measured on more than 20,000 Google

machines over a three year period, and comprising thou-

sands of different applications, [35] found common low-

level functions (datacenter tax), which show potential for

specialized hardware in a future server SoC and making

heterogeneous architectures also beneficial in the server

domain.

To the authors’ knowledge the work presented in this

paper is the first open study on the impact of variability and

heterogeneity on the energy efficiency of a full-scale green

supercomputer. Typically, manufacturers are the only owner

of such information and it is non-trivial to find variability
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Figure 1. Eurora architecture

investigation even on single devices. A similar attempt has

been pursued by the author in [45], but the variability has

been quantified only on general-purpose CPUs and hence,

it is missing the accelerators part to include the whole

supercomputer.

In the remainder of the paper, Section 2 presents an

overview of the Eurora Platform, Section 3 provides a tax-

onomy of the variation sources in a supercomputer system

and Section 4 shows the workloads and tests for our charac-

terization. Finally, Section 5 shows the results obtained and

the conclusions and future work are reported in Section 6.

2 E URORA

The Eurora system consists of a half-rack containing 8

stacked chassis, each of them designed to host 8 node

cards and 16 expansion cards (see Fig. 1). The node card

is the basic element of the system and consists of 2 Intel

Xeon E5 series (SandyBridge) processors and 2 expansion

cards configured to host an accelerator module. One half

of the nodes use E5-2658 processors including 8 cores with

2.1 GHz clock speed (Max Turbo Frequency 2.8 GHz), 20 MB

caches, and 95 W maximum TDP. The rest of the nodes

use E5-2687W processors including 8 cores with 3.1 GHz

clock speed (Max Turbo Frequency 3.8 GHz), 20 MB caches,

and 150 W maximum TDP. The accelerator modules can be

Nvidia Tesla (Kepler) with up to 24 GB of GDR5 RAM and

up to 2 TFlop peak DP and 250 W TDP, or, alternatively,

Intel MIC KNC with up to 16 GB of GDR5 RAM and up to

1.4 TFlop peak DP and 245 W TDP.

Each node of Eurora runs a SMP CentOS Linux distribution

version 6.3. The kernel is configured with NOHZ function

disabled, hyper threading HW support disabled and on-

demand power governor [10]. The linux governor allows

users with specific rights to change at run-time the clock

frequency of each CPU by writing the target frequency value

in the /sys/dev. The clock frequency of GPUs can be scaled

at run-time too by mean of specific APIs of the NVIDIA

driver. This mechanism can be exploited to precisely control

the frequency of the studied system and it has been used to

perform the analysis as described in the following sections.

Eurora interfaces with the world through a dedicated login

node, physically positioned outside the Eurora rack. This

node executes the batch job dispatcher (PBS) [46] and con-

nects to the same shared file system directly accessible from

all the computing nodes. In this paper, we encapsulated our

tests in PBS jobs so that we can exploit the job dispatcher

features to exclusively test all the nodes of Eurora while

running in a production environment. We remark that all

these settings are quite commonplace for high-performance

supercomputers.

Eurora features an integrated and low-overhead monitoring



Figure 2. Relevant Variability Sources in Supercomputers

system made-up by a set of software daemons and parsing

scripts. The SW daemons run periodically (every 5 seconds)

on each node to collect traces of the processing elements

(CPUs, GPUs, Xeon Phy) activity by mean of HW perfor-

mance counters. For each core, the monitoring system gath-

ers values from the Performance Monitoring Unit 1 as well as

the core temperature sensors, and the time-step counter. In

addition, for each CPU it gathers the monitoring counters

(power unit, core energy, DRAM energy, package energy)

present in the Intel Running Average Power Limit (RAPL)

interface. The parsing scripts process off-line the raw log of

the performance counters to generate performance metrics

(CPI, Load, Temperature, Power, etc.) and relate them with

the job running on the node.

3 VARIABILITY IN SUPERCOMPUTERS

In this Section we classify variability sources that impact

supercomputer performance (i.e. power, execution time,

energy). We classify the variability sources from the user-

perspective ( desired vs. undesired) and from their nature

(hardwarevs. software) as shown in Figure 2.

Desired Hardware Variability

The use of different hardware components (e.g. CPU, GPU)

and different operating points (e.g. clock frequency) pro-

duces different and user-expected performance. Hence, we

label both the heterogeneity in the processing elements and

in between the ACPI performance states as desired hardware

variability . Eurora nodes, similarly to others, are built using

different computational units including HW accelerators

and different series of the same CPU family (speed binning).

In particular, as mentioned in Section 2, Eurora is composed

by 32 nodes that use Intel Xeon E5-2658 with 2 Intel Xeon

Phi 5120D, while the remaining 32 nodes that use Intel Xeon

E5-2687 with 2 Nvidia Tesla K20s GPU . Furthermore, both

the aforementioned CPUs and GPUs devices are capable of

scaling their own voltage and frequency by means of O.S.

governors and driver.These knobs can be also used by the

system admin and by the final user to modulate the energy-

performance trade-off. In the Eurora system, the nominal

2.1GHz CPUs can scale their frequencies from 1.2GHz to

2.1GHz with 100MHz step. Instead, the nominal 3.1GHz

CPUs can scale their frequencies from 1.2GHz to 3.1GHz

with 200MHz step. With regard of CPUs, if the fastest

1. i.e. UnHalted Core Cycles, Instructions Retired and UnHalted
Reference Cycles

state is selected, then the turbo mode is enabled and the

HW can overclock the frequency if this is thermally and

power sustainable [15]. To scale the frequency of the GPUs

accelerators, both the memory and the graphics clocks can

be controlled. In particular, the frequency of the memory

clock can be configured to 2600MHz and 324MHz while the

graphic clock can range between 758MHz and 324MHz in

6 steps (758, 705, 666, 640, 614 and 324MHz). The graphic

clock can be configured to the lower value only if the lower

level of the memory clock is selected as well.

Undesired Hardware Variability

By executing the same benchmark on the same family

hardware-nodes, the presence of undesired hardware vari-

ability determines different performance for each node.

Hence, this class groups all the variability sources that

come from non-idealities in chip technology, fabrication and

operation. Due to process variation, ambient conditions and

manufacturing variability, different instances of the same

nominal device operate at different PVT points and ambient

conditions. This may lead to observe different power and

temperature values for different devices (CPUs and GPUs)

of the same family while executing the same workload at

the same operating point.

Desired Software Variability

This class accounts for the fact that different applications

execute different type and number of operations and have

a different usage of resources. This may reflect in a variable

performance and energy consumption and different sensi-

tivity to hardware variability sources.

Undesired Software Variability

This class accounts for all the software fluctuations that

introduce variations in energy and performance of the same

code that runs on the same node multiple times. Those

variation sources include the operating system interference,

external interrupts, the effect of shared resources contention,

etc.

Next Section 4 proposes a methodology for quantifying

the impact of the presented variability sources. Section 5

measures their impact on the CPUs and accelerators of the

Eurora supercomputer.

4 VARIABILITY E XPLORATION METHODOLOGY

We propose a methodology for evaluating and quantifying

the impact of the above mentioned variability sources. Our

methodology is based on a combination of scripts, real ap-

plications and synthetic benchmarks which target different

variability sources. When dealing with undesired variability

sources (the HW and SW) it is necessary to adopt well

controlled benchmarks. Indeed supercomputer applications

are characterized by the composition of several computa-

tional kernels, complex communication patterns and I/O

accesses which may hide the targeted variability. Hence,

in our methodology we introduce on purpose ”synthetic

benchmarks” for two reasons: (i) to measure Hardware and

Software Undesired Variability; (ii) to measure the corner

cases of desired Hardware and Software variability. In our

framework this is done with two synthetic benchmarks, a

CPU bound and a Memory Bound one.

• SYNT CPU : this synthetic benchmark is composed

by a number of threads equal to the number of cores.



Each thread is bound to a specific core with thread

affinity to avoid migrations. Each thread consists

of a loop where an ALU operation is executed on

a circular buffer. At each iteration, a read-write to

an entry of circular buffer is executed that moves

with an incremental step of one cache line. In this

particular case, we used 2
37 iterations and a buffer

dimension of 4KB per core, that fits the L1 cache

emulating a CPU bound application (the L1 size

for both the Intel Xeon E5-Series is 64KB). In fact,

by doing that, the SYNT CPU is capable of hitting

always in the L1 cache.

• SYNT Mem : this benchmark is similar to the SYNT

CPU but it uses a circular buffer of 4MB per thread

and 2
33 iterations. Both the Intel Xeon E5-Series used

for our tests, present a L3 shared cache of 20 MB. As

each thread has its own circular buffer, the overall

memory footprint (32MB) exceeds the L3 size. This

is sufficient to let each memory access miss in the

L1, L2, L3 cache and hit in the DRAM, emulating a

strongly memory bound task execution.

• SYNT GPU : this synthetic benchmark allows to simu-

late a worst-case scenarios for the GPUs devices [22].

This program forks one process for each GPU. Each

GPU process allocates 90% of the free GPU memory,

initializes 2 random 1024*1024 matrices, and con-

tinuously performs efficient CUBLAS matrix-matrix

multiplication routines on them and finally stores

the result across the allocated memory. Both floats

and doubles are tested. In this way, the GPUs are

100% busy while the CPUs remain in idle. Using this

benchmark we can simulate a strong GPUs bound

task execution.

Furthermore, in our methodology we use ”real bench-

marks” to evaluate the effect of desired hardware and soft-

ware variability in practical applications. When dealing with

Desired Hardware Variability, real benchmarks gives us a

realistic and practical evaluation of the metrics involved,

unveiling the behavior of a real application in the range

marked by the synthetic benchmarks. In our methodology

we choose Quantum Espresso (QE) 2. QE is a Computational

Material Science community code, publicly available and

it is one of the currently ”hot applications” for high-end

supercomputers 3. QE main computational kernels include

dense parallel linear algebra and 3D parallel FFT, which

are both relevant in many HPC applications. Hence, QE is

a good candidate to evaluate HPC architectures, and it is

included in many benchmark suites [19].

• QE- Al 2O3 : QE main computational kernels include

dense parallel linear algebra and 3D parallel FFT,

which are both relevant in many HPC applica-

tions. We configure QE to calculate the electronic

structure of the Al 2O3 in 3K points. The code is

parallelized with 16 threads and we configure the

2. Quantum ESPRESSO is an initiative of the DEMOCRITOS National
Simulation Center (Trieste) and ofits partners, in collaboration with
the CINECA National Supercomputing Center in Bologna, the Ecole
Polytechnique Federale de Lausanne, Princeton University, and the
Massachusetts Institute of Technology.

3. www.quantum-espresso.org

GOMP CPU AFFINITY to use all the available cores

within one node.

• QE- SiO 2 : This Quantum Espresso benchmark allows

to calculate the band structure of the Silicon along

the main symmetry. We use QE- SiO 2 as it contains

a larger linear algebras that the Al 2O3 and this can

be better exploited by the QE GPU version which

mostly accelerates the linear algebra but not the FFT

[21]. By using this benchmark in the GPU and CPU,

we are able to compare the performance of the QE-

SiO 2 using only the CPUs and both the GPUs and

CPUs devices. As in previous benchmarks, the code

is parallelized with 16 threads and we configure the

GOMP CPU AFFINITY to use all the available cores

within one node.

• QE GPU : the aim of this benchmark is to exploit the

capabilities of the NVIDIA GPU graphics cards. The

QE GPU uses the Quantum ESPRESSO SiO 2 suite

[21] to exploit new hybrid CPU+GPU high perfor-

mance computing systems. In this way, we are able

to compare the performance of the same benchmark

QE- SiO 2 using only the CPUs and both the GPUs

and CPUs devices.

Desired HW Variability Methodology Calculation :

In addition to the QE CPU and GPU versions, to quantify

this variability source, we have designed a PBS script that

first scales equally the frequencies for all the cores of the

node in which is running and then executes (with N equal

to five in our experiments) the same benchmark. At the

beginning and at the end of each benchmark run, we save

the initial time and the end time. The script iterates these

operations for all the available DVFS states and for all the

benchmarks considered. The script is then executed in all

the nodes of Eurora. Off-line the log information are used

to navigate the traces generated by the Eurora monitoring

framework (Section 2). To verify the Desired HW Variability,

we ran both the synthetic benchmarks and the real applica-

tions.

Desired SW Variability Methodology Calculation :

By using the synthetic and real benchmarks we are able to

precisely define the number and kind of operations executed

for each single test. In this way, we test the Desired Software

Variability by monitoring the different usage of resources

by different software on each test executed. The use of the

systematic benchmarks allow to verify the extreme corner

case usage of the Eurora machine.

Undesired HW Variability Methodology Calculation :

Again, the use of the synthetic benchmarks produce sta-

ble results allowing to separate the different variability-

components. Hence, to calculate the Undesired HW variabil-

ity we run for 5 times the synthetic benchmarks on the all

available nodes while changing the clock frequency for each

run. The average of the 5 runs at each nodes gives a good

understanding of the energy efficiency of the given node.

The difference between all the nodes are then calculated

allowing to extract the only Undesired Hardware Variability

Component.

Undesired SW Variability Methodology Calculation :

To quantify this variability source we executed 5 times

on the same node and for all the nodes the synthetic



benchmarks. In this way, we are able to precisely evaluate

the energy consumed on each node and monitor the only

variations in the nodes due to software fluctuations and

noise.

It is important to mention that we restricted our analysis to

the GPU accelerators only due to the hw limitations of the

Intel Xeon Phi accelerators in scaling the clock frequency.

We leave the analysis of the Intel Xeon Phi accelerator to

future works. Considering these benchmarks and tests, in

Section 5, we quantify the impact of all variability sources

defined in Section 3 in terms of energy/performance.

5 E XPERIMENTAL R ESULTS

This Section presents the results of our analysis which

quantifies the effects of different sources of variability in

the Eurora Supercomputer. In particular, we are going to

present the results obtained for the general purpose pro-

cessing and GPU accelerator units.

5.1 Desired Hardware and Software Variability:

Next paragraph compares the standard operation (i.e turbo

mode) of the two classes of nodes (with 2.1GHz CPUs

and with 3.1GHz CPUs) while in the second paragraph we

conduct a similar analysis for the accelerators units.

5.1.1 General Purpose Processing Units

To evaluate the impact of desired software and hardware

variability on the energy/performance metrics for the dif-

ferent benchmarks, we report in Figure 3 the execution time,

power and energy for the two classes of nodes (with 2.1GHz

CPUs and with 3.1GHz CPUs) at the different DVFS states.

Each dot in the figures reports the average among all the

nodes of the same class and among the five runs of the same

benchmark. Looking at the graphs we can clearly notice that

in all the plots the 2.1GHz nodes lay on top of the 3.1GHz for

all the frequency settings. From the same figure we can see,

as expected, that by lowering the frequencies all the four

different benchmarks decrease their power and increase

their execution time. The energy instead is not monotonic

and behaves differently for the four cases.

Table 1 quantifies for the four benchmarks the en-

ergy/performance improvements when the nodes operates

at the optimal frequency for the energy consumption w.r.t

standard operating conditions (i.e. turbo mode). For the

SYNT CPU , QE- Al 2O3 and QE- SiO 2 the minimum energy

consumption happens at around 2.0GHz, while the SYNT

MEM has minimum energy at the lower frequency. Choos-

ing the optimal frequency for minimum energy leads to

energy savings up to 18% for SYNT CPU and savings of

the 50% for the SYNT MEM benchmark. QE- Al 2O3 instead

saves the 27% while QE- SiO 2 saves the 21%. Furthermore,

from Table 1 we can notice that both the two QE benchmarks

show a behavior similar to the CPU bound benchmark

(SYNT CPU ) and that not only the application matters for

the power and energy consumption but also the data-set

that need to be executed since this could lead to a difference

up to 10% in terms of energy saving between the two QE

benchmarks. Indeed from Figure 6 we can see that the

speed-up due to frequency increase in QE- Al 2O3 saturates

before QE- SiO 2 .

Nodes Optimal [MHz] Ex Time [%] Energy [%]

Frequency Overhead Saving

Benchmark SYNT CPU
2.1GHz 1900 -11 +2

3.1GHz 2000 -70 +18

Benchmark SYNT Mem
2.1GHz 1200 -18 +18

3.1GHz 1200 -23 +50

Benchmark QE Al 2O 3

2.1GHz 1700 -20 +3

3.1GHz 1800 -65 +27

Benchmark QE- SiO 2

2.1GHz 1800 -18 +3

3.1GHz 1800 -79 +21

Table 1
Energy Optimization Margin

To understand why this energy efficiency trade-offs hap-

pens we modeled the power and execution time of Figure

3a,b) with a regression fit. In particular, the regression model

for the power (1) calculates a polynomial curve based on the

input data and returns a matrix describing the curve. The

equation used to model the execution time is shown in (2):

Power = a � x
2
+ b� x + c (1)

E xectionT ime = d/x + e (2)

where: x is the clock frequency; a,b and c are the coeffi-

cients that corresponds to each polynomial value of x while;

d and e are the coefficient used to model the execution time.

After extracting the curves for both power and execution

time of Figure 3a,b) we multiplied the two models to extract

the analytical energy curve. By exploiting iterative methods

we were then able to find the analytical energy minimum

reported in Table 2. Hence, in this way we are capable to

analytically extract the frequency that minimize the energy

for each benchmark.

Nodes Optimal [MHz] a b c

Frequency d e f

Benchmark SYNT CPU
2.1GHz 2000 1.238064e-05 0.005529 48.008

970544.5528 -2.703800959

3.1GHz 2000 01.87949E-05 -0.02 70.429

969715 -1.713393

Benchmark SYNT Mem
2.1GHz 1200 7.756455e-06 0.0219 61.626

228131 326.095

3.1GHz 1200 1.536898e-05 -0.00775 87.093

170744.5744 365.2372204

Benchmark QE Al 2O 3

2.1GHz 1700 1.263489e-05 0.006741 47.916

827629 65.632

3.1GHz 1800 1.765919e-05 -0.0147 67.95

826059 74.215

Benchmark QE SiO 2

2.1GHz 1800 1.75475E-05 -0.0056 59.31

869489 26.970

3.1GHz 1800 1.381937e-05 0.00864 48.59

871497 27.89

Table 2
Energy Minimum by Analytical Model

Looking at Table 2 it becomes clear why the energy

minimum of the benchmarks are located in certain positions

for each benchmark. The reason must be found on the value

of the coefficient d that indicates the slope of the execution
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Figure 3. 3.1GHz nodes vs 2.1GHz nodes - Mean Ex Time, Power, Energy

time while varying the clock frequency. In-fact, from the

Figure 3b) we can notice that the power trend is very similar

and linear for the different benchmarks. On the contrary, the

slope of duration’s is changing. Hence, from our regression

models we expect that the energy minimum is going to

move based on the duration’s slope. This intuition is con-

firmed by the results reported in Table 2: the lower value of

d for the benchmark SYNT Mem compared to the value of

d for the SYNT CPU determines a lower energy minimum

for the SYNT Mem benchmark. Interesting, the SYNT CPU

and SYNT Mem have respectively the higher and the lower

slopes while the Al 2O3 and QE SiO 2 stand in the middle of

the two corner cases.

From the analysis of these results it becomes clear that

the vast majority of workloads achieve significantly higher

energy efficiency when they do not run at peak perfor-

mance. Hence, for energy-constrained supercomputers new

management strategies for allocating machine resources to

workload can be conceived that reward energy efficiency

with respect to pure performance.

Figure 4 shows in details the breakdown of the power

consumption for all the main components of the General

Purpose Processing Units for the CPU benchmarks varying

the frequency of the system. From the analysis of the Figure,

it appears obvious that the power consumption of the mem-

ory of the SYNT Mem benchmark is drastically higher (22%

Power Dram) when compared with the power consumed

by the SYNT CPU benchmark (7% Power Dram). In this

graph we represent with Power TOT the sum of the power

consumed by the package (Power Pkg) and the power

consumed by the memory of the nodes (Power Dram).

It is interesting to notice that for all the benchmarks consid-

ered the power consumption of the node when operating at

the optimal frequency is around 100 watts, which is 3x less

than the TDP. This suggests that designing supercomputers

which operate at the most energy-efficient point does not

only reduces the power bill but also eases the thermal design

which in the case of Eurora would have been downsized up

to a factor of 3x. This has the potential to reduce cooling

infrastructure cost and enabling simplified and yet more

efficient cooling design.

5.1.2 GPU Accelerators

In the second test we have conducted the same analysis

of the previous paragraph, on the nodes equipped with

the General Purpose accelerators (GPUs). Table 3 shows

the different energy/performance metrics in executing the

two benchmarks for GPUs ( SYNT GPU and QE GPU ). The

second and third rows of the table are used to compare the

performance of the same SW benchmark ( QESiO 2 ) while

using different HW components: the only CPUs and the

CPUs+GPUs processors. The values are averaged among

five repetitions of the same workload. Whereas table 3

reports for QESiO 2 the performance and power for both

the case with CPU + GPU and CPU and GPU idle, for

SYNT GPU we report only the case with CPU + GPU as

the benchmark is designed for work with the GPU.

Nodes Power Ex Time Energy
Nodes [W] [s] [KJ]

Benchmark SYNT GPU
3.1GHz 439 175 76.5

+GPU 103+336(GPU)

Benchmark QE CPU ( SiO 2 )(GPU idle)
3.1GHz 271 590 160

+GPU idle 244+27(GPU)

Benchmark QE GPU ( SiO 2 ) (CPU at 3.1GHz)
3.1GHz 306 (+13%) 502 156

+GPU 202+104(GPU) (-15%) (-3%)

Table 3
Desired Hardware Variability Results GPU

From Table 3 we can notice that the use of the GPUs

devices strongly influences the performance and energy of

the benchmark execution. In-fact, even if the use of the

GPUs increase the power consumption, there is an impor-

tant reduction of the execution time up to 15% that bring

the energy consumption to decrease up to 6% with respect

to the execution of the same benchmark with the only CPUs

device. It is important to remember that the QE- SiO 2 is a

real benchmark for which only the 30% of the workload

is managed by the GPUs accelerators. This means that the

QE GPU benchmark is mostly CPU bound and thus a more

GPU friendly code or a better coding can results in larger

speed-ups and energy savings. This can also be noticed

by the comparisons with the SYNT GPU benchmark for

which the GPUs consumes up to 336Watts which is 3x more

than the power consumption of the GPU for the QE- SiO 2

benchmark. Overall, it is important to notice that the energy

efficiency is increased by GPUs even if their utilization

is partial. From our results we can notice that a 30% of

utilization of the GPU is an empirical safe-threshold which

programmers should aim for, to achieve energy-savings in

GPU’s accelerated code. Higher utilization increases the
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Figure 4. 3.1GHz nodes vs 2.1GHz nodes - Mean Power for the main components of the CPU nodes.

energy-gain introduced by the GPU usage.

In Figure 5 we further analyze the performance and

power trade-offs of the GPU nodes by reporting for the

SYNT GPU benchmark its execution time, power and en-

ergy breakdown while vary the frequency selection. Indeed,

also the GPU can scale its own clock frequency indepen-

dently to the CPU clock one. From Figure 5a we can notice

that the execution time increases super-linearly as the GPU’s

clock frequency reduces. The node power consumption de-

creases significantly for the SYNT GPU benchmark, since the

GPU computation and power dominates the entire budget.

When we look at the energy we notice that it decreases

when the GPU clock frequency is decreasing as well, but the

energy minimum is not at the minimum frequency point,

but at an intermediate one. This suggests that the optimal

frequency selection has not a trivial solution also for GPU

accelerators.

To analytically understand where and why the optimal

frequency selection happens we modeled the total power

and execution time of Figure 5a,b) with a regression fit. As

for the CPU Section, the regression model for the power

and the execution time are reported in (1) and (2). After

extracting the two models, we multiplied them to extract

the analytical energy curve. Then, by exploiting iterative

methods we were able to analytically find the frequency

that minimize the energy for each benchmark (Table 4).

Looking at Table 4 it becomes clear why the SYNT GPU

has a higher frequency optimum compared to the QE GPU

benchmark. Again, the reason must be found on the value

of the coefficient d that indicates the slope of the execution

time while varying the clock frequency. In-fact, the slope of

the duration equation is different for the two benchmarks:

Figure 6a) shows that the duration’s slope of the SYNT GPU

is higher compared to the one of the QE GPU benchmark

(Figure 7a)) that instead is almost flat. Hence, from our

regression models we expect that the energy minimum

is going to move based on the duration’s slope. This is

confirmed by the results reported in Table 4: the lower

value of d for the benchmark QE GPU compared to the

value of d for the SYNT GPU determines a lower energy

minimum for the QE GPU benchmark.

To evaluate the impact of DVFS states on the energy

performance metrics of the two GPUs benchmarks, we

report in Figure 6 and Figure 7 the execution time, power

and energy consumption of the SYNT GPU and QE GPU

benchmark at different DVFS states. In addition to changing

the GPUs frequency, we repeated the same test varying also

the frequency of the CPUs device. In this way, we were able

to explore an hybrid CPU+GPU DVFS configuration and

evaluate its impact on the energy-performance trade-off. In

particular, in addition to the GPUs DVFS, we run different

tests changing the frequency of the CPUs to 1200, 2000, 3100

and 3100+turbo(3101) MHz. With the values selected we can

explore all the DVFS CPU’s range including the turbo boost

modality. Each dot in the figures reports the average value

among all the nodes which embeds GPUs and among five

runs for the mentioned CPUs and GPUs frequency.

Optimal [MHz] a b c

Frequency d e f

Benchmark SYNT GPU
614 0.0003243 0.3086208 66.33

274139 -223.73

Benchmark QE CPU
324 -0.0003142 0.48 119.12

30298 451.99

Table 4
Energy Minimum by Analytical Model

Looking at the graphs we can clearly notice that by

changing the CPUs and GPUs frequency we have different

behaviors in the execution time, power and energy con-

sumption due to the different nature of the two presented

benchmarks. In particular, the SYNT GPU is a GPU bound

benchmark and the frequency variation of the CPUs is not

altering its execution time as we can see from Figure 6a.

Instead, from Figure 6b we can see that the power is affected

by the CPUs frequency and by decreasing the CPUs speed

we significantly reduce the overall power and total energy

consumption (Figure 6c). It results that the minimum CPU’s

frequency leads to the minimum overall power and energy

consumption. If we look at the GPU frequency we can

notice instead that even if the benchmark is GPU centric the

maximum energy efficiency is not achieved at the maximum

frequency nor at the minimum one. The optimal frequency

is obtained with minimum CPU frequency and intermediate

GPU frequency. To the best of authors knowledge, this is

the first work in showing the evidence that consensus in the

DVFS policy for the accelerator and host processor can lead

to significantly higher energy saving with respect to state-

of-the-art accelerator agnostic power management policies.

Hence, from the analysis of these results we clearly notice

that it is possible to achieve significantly higher energy

efficiency by not running the SYNT GPU benchmark at peak

performance.

Figure 7 shows the results of the same analysis applied to
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Figure 5. 3.1GHz+GPU nodes - Mean Ex Time, Power, Energy for all the components of the GPU nodes.

the QE- SiO 2 benchmark and shows significantly different

trade-offs. Here the execution time strongly depends on

both the GPUs and CPUs clock frequencies used, confirm-

ing the hybrid nature of the QE GPU benchmark which

contains both GPUs and CPU centric computational phases.

Figure 7a reports the execution time of the benchmark for

the different configurations of the CPU’s and GPU’s clock

frequency. From the same figure we can notice that the

execution time is more sensitive to the CPU clock frequen-

cies underlying a dominant effect of the use of the CPUs

in the QE GPU benchmark. A similar behavior is present

in Figure 7b which shows the power consumption of the

QE GPU benchmark. Also in this case the power increases

mostly as effect of CPU’s frequency variations. Finally in

Figure 7c we can see the effects of the CPU and GPU

frequency variation for the overall energy consumption of

the QE GPU benchmark.

Interestingly, even if this benchmark has a clear dominance

of the CPU load in the power and execution time and

thus is significantly different from the previous SYNT GPU

benchmark, the minimum energy efficiency as well as the

best energy efficiency trade-offs are achieved with an in-

termediate value for the CPUs frequency. As a matter of

fact, also in this case we show that to reduce the energy of

the system the highest CPUs and GPUs speed are not the

best option and only a careful analysis of the benchmark

determines the best choice.

Table 5 quantifies for the two benchmarks the en-

ergy/performance improvements when the GPUs and both

the CPUs+GPUs processors operate at the optimal fre-

quency w.r.t standard operating conditions (i.e. turbo mode

for CPUs and GPUs running at the maximum frequencies).

Numbers in brackets reports the optimal frequency calcu-

lated with the polynomial regression model. By selecting

the optimal GPU frequency while maintaining the standard

CPUs operating mode to achieve the minimum energy

consumption leads to energy savings up to 6% for SYNT

GPU and savings up to 13% for the QE GPU benchmark.

If we consider an holistic DVFS policy which exploits at

the same time the CPU and GPU DVFS capabilities we can

increase the energy savings for the SYNT GPU benchmark

up to 17% and up to 26% for the QE GPU benchmark.

As a matter offact there is a large opportunity for today’s

and future heterogeneous supercomputer to increase their

energy efficiency by leveraging synergies in between the

CPU and GPU and the accelerator’s power management

policy.

Optimal Ex Time [%] Energy [%]
Frequency [MHz] Overhead Saving
Benchmark SYNT GPU [CPU F MAX - GPU F OPT]

3101CPU+614GPU -21 +6

Benchmark QE- SiO 2 GPU [CPU F MAX - GPU F OPT]
3101CPU+324GPU -11 +13

Benchmark SYNT GPU [CPU F OPT - GPU F OPT]
1200CPU+614GPU -23 +17

Benchmark QE GPU [CPU F OPT - GPU F OPT]
2000CPU+324GPU -64 +26

Table 5
Energy Optimization Margin GPU

5.2 Undesired Hardware Variability

Whereas the previous explorations were conducted consid-

ering the average among the different nodes of the same

class HW, in the following analysis we will compare the

energy/performance metrics of single nodes. To improve

the quality results for each node and for each benchmark

we consider average of the five runs.

5.2.1 General Purpose Processing Units

In the following analysis we focus only on the synthetic

benchmarks as they highlight the corner cases and are char-

acterized by lower variability among repetitions (Table 6).

Figure 8 for each node and benchmark ( SYNT CPU , SYNT

MEM and IDLE ) shows on the x-axis the average total

power consumption and on the y-axis the average core

temperature. From the figure we can notice that both the

CPUs have a similar thermal resistance. This is expected

as they share the same packaging solution and cooling

solution. Furthermore, from the same plot we can notice

two important effects: first, for each benchmark the power-

to-temperature relation is linear. This means that positive

feedback loop in between the absolute temperature and the

materials resistance are negligible in a real setup in the range

of allowed operating temperatures.

Secondly, different benchmarks when consuming a simi-

lar amount of power, have different impact on the core tem-

perature. This can be clearly see by the different slopes for

the different benchmarks plots. This suggests that thermal

management needs to be done based on actual temperature

measurements and cannot be performed based only on the

core power consumption. In addition to that we notice that

nodes of the same class at the same DVFS level shows

significantly different thermal/power behavior. Moreover,

the effects of variability on thermal resistance grows at

higher power consumption. This is also the condition at

which temperature becomes more critical. Furthermore, as
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Figure 8. Average CPU Temperature

it can be expected, even if SYNT MEM has a higher power

consumption than SYNT CPU due to DRAM power its core

temperature is significant lower ( ≈ 5
oC ).

Figure 9a and 9b visually quantify the effect of process

variability among Eurora nodes. As highlighted previously,

in Figure 3 the energy consumption has a minimum at a

lower frequency than the maximum one. This is true for all

the nodes. In the same figure we can see that different nodes

show a significant variability on energy consumption that

carries over all DVFS operating points along the different

DVFS values. Figure 9c quantifies the maximum variation

between all nodes of the same class at the different frequen-

cies while executing the same benchmark. We can notice that

the energy variation is totally due to the power variation as

the execution time variation is negligible. Energy variation

can reach almost 9% and its average is a non-negligible 7%.

Figure 10a and 10b show the Eurora Energy map trend for

the memory bound benchmark. Here we can see an outlier

(node57). This node has DRAM clock half of the other nodes

one even ifit is nominally the same. This is the reason why

the outlier was not present in Figure 9a and 9b. We re-

moved this node in Figure 10c that quantifies the maximum

variation between all the nodes of the same class at the

different frequencies while executing the same benchmark.

From the plot we can see that memory bound applications

incur in higher variability w.r.t CPU bound ones, with peak

variation of 15% and average of 8%. This can be explained

by higher sensibility to the DRAM variability. It must be

noted that this value are computed on 32 nodes and thus are

expected to increases in larger systems and more advanced

technology nodes.

5.2.2 GPU Accelerators

In this section we focus only on the synthetic GPU bench-

mark as it is characterized by lower variability among

repetitions (Table 7). Figure 11a and 11b visually quantify

the effect of process variability among the Eurora nodes

equipped with GPUs. As mentioned in the Desired Hard-

ware Variability Section, Figure 6 shows the energy con-

sumption, revealing a minimum that does not match the

maximum frequency available. This happen within all the

nodes running the SYNT GPU benchmark. By the analysis

of Figure 11a and 11b we can see that different nodes show

a significant variability on energy consumption that carries

over all DVFS operating points along the different DVFS

values. Moreover, Figure 11c quantifies the maximum vari-

ation between all nodes at the different frequencies while

executing the same benchmark. These results show that the

energy variation is totally due to a power variation between

the nodes as the execution time variation is always very

low compared to the power variation. Also by using GPUs

device the Energy variation can reach almost 9% and its

average is a non-negligible 6.9%.

Thus our measurements show that, even in today’s tech-

nology, node-to-node variability cannot be neglected and
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according to all technology projections, it will increase as

we move to scaled-down nodes. Hence variability manage-

ments in software (e.g. through proper workload allocation

and scheduling by a variability-aware job dispatcher) will

become a necessity for future Exascale systems.

5.3 Undesired Software Variability

This accounts for the operating system and system interfer-

ences. We evaluated it by launching several times the same

benchmark on the same hardware node.

5.3.1 General Purpose Processors Units

In Table 6 we quantify the percentage of the variability

between five different runs on the same Eurora nodes using

only CPUs.

Nodes Power[%] Ex Time[%] Energy[%]
Benchmark SYNT CPU

2.1GHz 0.23 0.04 0.24

3.1GHz 0.97 2.21 1.77

Benchmark SYNT Mem

2.1GHz 0.41 1.27 1.20

3.1GHz 0.70 1.55 1.36

Benchmark QE- Al 2O 3

2.1GHz 0.36 0.99 1.05

3.1GHz 1.93 6.40 4.70

Table 6
Software Variability Results

In Table 6 we can notice that synthetic benchmarks

show less SW variability as their computational patterns

are simpler and more regular. QE- Al 2O3 shows instead a

significantly higher SW variability up to 5% in terms of

energy consumption. This should be considered as unavoid-

able process noise and managed properly when design-

ing feedback-based energy management techniques using

model-predictive formulations.

5.3.2 GPU Accelerators

In Table 7 we quantify the percentage of variability between

five different runs on the same Eurora nodes equipped

with GPUs accelerators. Similar consideration as for the

CPU - GPU Freq[%] Power[%] Ex Time[%] Energy[%]
Benchmark SYNT GPU [CPU F MAX - GPU F MAX]

3101CPU+758GPU 1.02 0.03 1.02

Benchmark QE GPU [CPU F MAX - GPU F MAX]
3101CPU+758GPU 1.68 1.06 1.31

Benchmark SYNT GPU [CPU F MIN - GPU F MAX]
1200CPU+758GPU 0.75 0.61 1.07

Benchmark QE GPU [CPU F MIN - GPU F MAX]
1200CPU+758GPU 1.13 0.43 1.38

Table 7
Software Variability Results GPU

Table 6 can be noticed looking at Table 7. The QE GPU

benchmark shows higher SW variability almost up to 2%

in terms of power consumption. However, in this case

the SW variability is more similar between the two GPU

benchmarks, showing that the GPUs device are less affected

from undesired software variability.

Summing up, we believe that SW variability should be

a strong driver to derive programming guidelines and APIs

for better controlling it and avoiding its blowup in future

exascale systems.

6 C ONCLUSION

As a result of our analysis we derive design guidelines

for future heterogeneous supercomputers based on large

numbers of nodes hosting general purpose processors and

parallel accelerators:

1) General purpose processors: for a given process

technology and processor family, high-speed de-

vices are less energy efficient than the slow ones.
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Figure 11. Energy Map SYNT GPU Results

Moreover, we discover that the majority of work-

loads achieve higher energy efficiency when they

do not run at peak performance. Thus, green super-

computers should either be designed with a small

portion of high clock frequency processors w.r.t low

speed ones to sustain sporadic CPU bound jobs

or use only high-speed processors if peak parallel

performance is at absolute premium, but down-

clocking them for the vast majority of real-life work-

loads.

2) We found out that in real applications, GPUs

can effectively reduce the energy consumption of

the overall benchmark even when partially used.

We empirically found out an energy-efficient safe

threshold for code usage of the GPU of the 30%,

percentage at which the GPU accelerated version of

the code start to gain energy efficiency with respect

to the CPU one.

3) We quantified the impact of combined CPUs and

GPUs dynamic voltage and frequency scaling in real

HPC workload. We discover that there is a large

opportunity for today’s and future heterogeneous

supercomputer to increase their energy-efficiency

by leveraging synergies in between the host’s and

the accelerator’s power management policy.

4) We show that (i) in real scenario for a large

set of workload and power levels the power-to-

temperature relation is linear, suggesting that ther-

mal resistance of the materials involved is not in-

fluenced by the absolute temperature; (ii) different

benchmarks which consume a similar amount of

power have different core temperatures. This sug-

gests that thermal control cannot be performed by

solely monitoring and controlling the power con-

sumption, i.e. thermal control done by mean of

power capping is sub-optimal; (iii) different nom-

inally equal nodes have different package thermal

resistance, and that the impact of thermal resistance

variability grows at higher power consumption.

This leaves opportunities for self-calibrating ther-

mal controllers.

5) In addition to thermal variation there is a significant

node-to-node energy variability, which is totally

induced by a power consumption variability. We

measured an energy variation on the CPUs up to 9%

which increases to the 15% in DRAM centric bench-

marks and the 9% for GPUs centric benchmarks.

This result shows that todays supercomputer can

benefit from system-level variability-aware resource

management solutions. Their impact will become

more relevant in future installations, as variability

is foreseen to worsen as the technology scales.

6) We introduced a specific methodology to quan-

tify variability sources that allowed to measure up

to 5% of variability on the energy consumption

of multiple run of the same real supercomputer

benchmark (QE) on the same node with controlled

operating point. This variation is 3 times larger

than the one present in synthetic benchmarks. This

should be considered as unavoidable process noise

and managed properly when designing feedback-

based energy management techniques using model-

predictive formulations.

As a final remark, we believe that variability monitoring in-

frastructure and closed loop variability management will be

essential tools to build sustainable future supercomputers.

Our future work will focus on building a scalable observa-

tion and control infrastructure for future exascale machines

featuring hundreds of thousands of heterogeneous comput-

ing nodes.
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