
ETH Library

Benefits in relaxing the power
capping constraint

Conference Paper

Author(s):
Cesarini, Daniele; Bartolini, Andrea; Benini, Luca

Publication date:
2017-09-09

Permanent link:
https://doi.org/10.3929/ethz-b-000224609

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
https://doi.org/10.1145/3152821.3152878

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0001-8068-3806
https://doi.org/10.3929/ethz-b-000224609
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1145/3152821.3152878
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

This is the post peer-review accepted manuscript of:

Daniele Cesarini, Andrea Bartolini and Luca Benini, "Benefits in Relaxing the Power Capping Constraint", 1st

Workshop on AutotuniNg and aDaptivity AppRoaches for Energy efficient HPC Systems (ANDARE’17),
Portland (OR), USA, 2017. doi: 10.1145/3152821.3152878

The published version is available online at: https://ieeexplore.ieee.org/abstract/document/8203471

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

https://ieeexplore.ieee.org/abstract/document/8203471

Benefits in Relaxing the Power Capping Constraint

ABSTRACT
In this manuscript we evaluate the impact of HW power capping
mechanisms on a real scientific application composed by parallel
execution. By comparing HW capping mechanism against static
frequency allocation schemes we proved that application speed
up can be achieved by relaxing the time granularity at which the
power cap is maintained. Enforcing RAPL on a few ms time scale
fails on sharing power budget between more demanding and less
demanding application phases.

KEYWORDS
power capping, DVFS, HPC, RAPL, monitoring, P-states, power
management, hardware performance counters

1 INTRODUCTION
The pace dictated by the Moore’s law on technological scaling
has provided a constant increase in the performance of computing
devices. However with the breakdown of Dennard scaling, this has
come with an increase in the power consumption.

Supercomputers are the cutting edge of computing performance.
Supercomputers integrate hundred thousands of the most powerful
processors and accelerators and they are periodically ranked based
on their peak performance [1]. Until June 2016, every new most
powerful supercomputer in the world (1st in the Top500 list) has
marked an increase in its power consumption. Reaching in 2013,
with Tianhe-2, 17.8 MWatts of IT peak power consumption, which
increases to 24MWatt when considering also the cooling power
[8]. This has set the record for the power consumption of a single
supercomputer installation, reaching the practical limit in power
provisioning which is 20MWatt [3]. The today’s most powerful
supercomputer (Taihulight) consumes 15.4 MWatt underlining the
fact that performance increase are nowadays possible only at a
fix power budget: as a matter of fact supercomputers are power
limited!

To ensure this power budget during design time, it requires
considering the worst-case power consumption of the computing
resources. However supercomputer workloads rarely causes worst-
case power consumption during their life making worst-case design
approaches a bad choice which decreases the average supercom-
puting performance.

Power capping approaches support the design for "the average
power consumption case" by packing more computing capacity,
with a feasible power budget under average workload and dynami-
cally reducing the performance during the execution of workloads
with peak power consumption.

At the basis of these approaches there is the capability of comput-
ing elements in trading off performance to power consumption. This
is down by mean of dynamic power management states. Shutdown
states (ACPI C-states [12]) allow to reduce power consumption
of idle resources. Dynamic and Voltage Frequency states (DVFS)
(ACPI P-states [12]) allow to reduce the power consumption dur-
ing active computation. Dynamic power management policies take
advantages of these HW states to create feedback loops adapting
the performance to workload phases aiming to reduce the energy
consumption or ensure a specific power and thermal budget. Pure
software implementations of these policies have clear software
advantages but need to be executed on the same computational
resources, interrupting the application flow and causing overheads.
Recently vendors have added HW components to implement in
HW these policies allowing a more fine-grain control. Intel Run
Average Power Limits (RAPL) technology can enforce in hardware
a given power limit. This is done exploiting a power sensors and
power management knobs. Current RAPL implementations aim
to enforce a constant power consumption within a 1-46ms time
windows.

However this is far below the timescale of supercomputing cen-
tres where the power budget must be respected in large time win-
dows coming from the power grid and supplier [6, 7]. Differently,
RAPL enforces the power cap for every application phase without
taking into account the real power efficiency of these phases. RAPL
mechanism is quite strong to maintain the assigned power budget
and can produce inefficiency respect to weak strategies targeting
the control of the average system power consumed on longer hori-
zons. In this work we compare RAPL with a policy that maintains
the same power consumption budget for the entire duration of the
application using as simple static assignment of frequencies. This
comparison serves to highlight opportunities for improving RAPL
performance by relaxing the today practice of constraining the
power consumption on a fine-time granularity.

The paper is organized as follows. Section 2, presents related
works, Section 3 characterizes HPC architectures and their power
manager used to power constraint the system. Section 4 defines
our architecture and application targets presenting the monitoring
infrastructure. While section 5 shows the methodology used for
the exploration and our experimental results.

2 RELATEDWORK
Several approaches in the literature have proposed mechanisms
to constraint the power consumption of large scale computing
infrastructures. These can be classified in two main families. Ap-
proaches in the first class use predictive models to estimate the
power consumed by a job before its execution. At job schedule
time this information is used to let enter jobs in the system that
satisfy the total power consumption budget. Hardware power cap-
ping mechanism like RAPL are used to ensure that the predicted
budget is respected during all the application phases and to tolerate
prediction errors in the job average power consumption estimation
[4, 5, 16]. Approaches in the second class distribute a slice of the
total system power budget to each computing element which is
active. The per-compute element power budget is ensured by mean
of hardware power capping mechanism like RAPL. The allocation
of the power consumption budget to each compute nodes can be
done statically or dynamically[9, 13, 15]. It is goal of the run-time
to trade off power reduction with application performance loss. The

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

GEOPM [9] runtime developed by Intel is an open source, plugin
extensible runtime for power management. GEOPM implement a
plugin for power balancing to improve performance in power con-
straint systems reallocating power on sockets involved in the critical
path of the application. Authors in [17] quantitatively evaluated
RAPL as a control system in term of stability, accuracy, settling time,
overshoot, and efficiency. In this work, authors evaluate only the
proprieties of RAPL mechanism without considering other power
capping strategies and how can vary application workload.

3 HPC ARCHITECTURES AND POWER
MANAGEMENT SYSTEMS

3.1 HPC Architectures
HPC systems are composed of tens to thousands computational
nodes interconnected with a low-latency high-bandwidth network.
Nodes are usually organized in sub-clusters allocated at execution
time from the system scheduler according to the user request. Sub-
clusters have a limited lifetime, after which resources are released
to the system scheduler. Users request resources through a batch
queue system, where they submit applications to be executed. Even
a single node can be split in multiple resources shared among users.
The single indivisible units in a HPC machine are CPU, memory
and possibly accelerators (GPGPU, FPGA, Many-core accelerator,
etc.).

HPC software are Single Program Multiple Data (SPMD) ap-
plication, the same application executable is instanced multiple
time on different nodes of the cluster, each instance works on a
partition of the global workload and communicates with other in-
stances to orchestrate next computational steps. For this reason, a
HPC application can be seen as the composition of several tasks
executed in a distributed environment which exchanges messages
among all the instances. Achieving high-performance communica-
tion on distributed applications in large clusters is not an easy task.
The Message-Passing Interface (MPI) runtime responds to these
demands by abstracting the level of network infrastructure using a
simple but high-performance interface for communication that can
scale up on thousands of nodes.

HPCmachines are extremely energy consumers, moreover server
rooms require a proportioned cooling system to avoid overheat-
ing situations. The extreme working conditions of these kind of
machines brings a lot of inefficiencies in terms of energy and ther-
mal control, that turn in computational performance degradation.
Hardware power manager are becoming a fundamental component
to control power utilization using different strategies in order to
reduce energy waste and, at the same time, to assure a safe-thermal
environment.

3.2 Power Management in HPC Systems
Nowadays, operating systems can communicate with different hard-
ware power managers through an open standard interface called
Advanced Configuration and Power Interface (ACPI) [12]. In this
work, we focus on ACPI implementation of Intel architecture, more-
over most of HPC machines (more than 86% in [1]) are based on
Intel CPUs. Intel implements ACPI specification defining differ-
ent component states which a CPU can use to reduce power con-
sumption. Today’s CPU architectures are composed of multiple
processing elements (PE) which communicate through a network
subsystem that interconnect PEs, Last Level Cache (LLC), Integrated
Memory Controllers (IMC) and other uncore components. Intel ar-
chitecture optimizes ACPI using different power saving levels for
cores and uncore components. The ACPI standard defines P-states
to select DVFS operating points targeting the reduction of active

power, while defines C-States the idle power levels. In our work,
we take into account only P-states to manage DVFS control knob,
this because HPC applications do not manifest idle time during the
execution.

P0

P1

P2

P3

…

Highest frequency

Lowest frequency

OS control

P
o

w
e

r
(W

)

Core Voltage (V)

1.2 GHz

2.4 GHz

1.8 GHz

1.5 GHz

2.1 GHz
P0

P1

P2

P3
Pn

…

…

Pn

Figure 1: DVFS levels and Intel P-states

Intel P-States show in figure 1, define a number of levels which
are numbered from 0 to n where n is the lowest frequency and 0
is the highest frequency with the possibility to take advantage of
Turbo Boost technology. Turbo Boost is an Intel technology that
enables processors to increase their frequency beyond the nominal
via dynamic control of clock rate. The maximum turbo frequency is
limited by the power consumption, thermal limits and the number
of cores that are currently using turbo frequency. Since Haswell,
Intel cores allow independent per-core P-State.

3.2.1 Intel Power Management Driver. Intel P-States are man-
aged by a power governor implemented as a Linux kernel driver.
By default on Linux system, Intel architectures are managed by a
kernel module called intel_pstate.

This driver implements a Proportional-Integrated-Derived (PID)
feedback controller. The PID controller calculates an error value
every 10ms as the difference between a desired setpoint and the
measured CPU load in that period. The PID controller acts to com-
pensate this error by adapting the P-State value. The PID internal
parameters are defined with default values by the Intel driver but
can be customized by system administrator.

Inside the intel_pstate driver only two governors are imple-
mented: powersave (default) and performance. We will not describe
in details the operations of these governors because it is outside the
scope of this work, but from a practical point of view, performance
always maintains the CPU at maximum frequency while powersave
can choose a different level depending of the machine workload.
Hence, powersave tries to achieve better energy efficiency while
performance tries to achieve the best performance at the expense
of higher energy consumption.

3.2.2 Linux Power Management Driver. The intel_pstate driver
does not support a governor that allows users to select per-core
fixed frequency. Differently, the default power management driver
of Linux acpi-cpufreq does it. acpi-cpufreq is similar to Intel driver
but implement a large set of governors which implement different
algorithms. The available governors are:

(1) powersave: this governor differently from Intel driver, runs
the CPU always at the minimum frequency.

(2) performance: runs the CPU always at the maximum fre-
quency.

(3) userspace: runs the CPU at user specified frequencies.
(4) ondemand: scales the frequency dynamically according to

current load. It is equivalent to the powersave governor of
Intel driver [14].

(5) conservative: similar to ondemand but scales the frequency
more gradually.

Benefits in Relaxing the Power Capping Constraint

In ourwork, we use userspace governor to select fixed frequencies
for all the duration of our benchmarks.

3.3 Hardware Power Controller

Core

0

Core

1

Core

2

Core

3

Core

4

Core

5

Core

6

Core

7

Last Level Cache

Dram Controllers
Graphic

M
e

m
o

ry
 D

IM
M

 2

M
e

m
o

ry
 D

IM
M

 1

M
e

m
o

ry
 D

IM
M

 0

M
e

m
o

ry
 D

IM
M

 3

M
e

m
o

ry
 D

IM
M

 6

M
e

m
o

ry
 D

IM
M

 5

M
e

m
o

ry
 D

IM
M

 4

M
e

m
o

ry
 D

IM
M

 7

Package Power Plane

Dram Power Plane

PP0/CORE Power Lane

PP1/Graphic Power Lane

Figure 2: Intel RAPL design with the identification of power
domains

Today’s CPU architectures implement reactive hardware con-
troller to maintain the processor always under an assigned power
budget. The HW controller trays to maximize the overall perfor-
mance while constraining the power consumption and maintaining
a safe silicon temperature. Intel architectures implement in its CPU
a hardware power controller called Running Average Power Limit
(RAPL) depicted in figure 2. RAPL is a control system, which re-
ceives as input a power limit and a time window. As consequent,
RAPL continuously tunes the P-states to ensure that the limit is
respected in the specified time window. RAPL can scale down and
up core’s frequencies when the power constraint is not respected
overriding the selected P-states. RAPL power budget and time win-
dow can be configured writing a Machine Specific Register (MSR)
on the CPU. Maximum and minimal values for both power budget
and time window are specified in a read-only architectural register.
Values for both power and time used in RAPL are represented as
multiple of a reference unit contained in a specific architectural
register. At the machine startup, RAPL is configured using thermal
design power (TDP) as power budget with a 10ms time window.
RAPL also provides 32bit performance counters for each power
domain to monitor the energy consumption and the total throt-
tled time. RAPL implements four power domains which can be
independently configured:

(1) Package Domain: this power domain limits the power con-
sumption for the entire package of the CPU, this includes
cores and uncore components.

(2) DRAM Domain: this power domain is used to power cap the
DRAM memory. It is available only for server architectures.

(3) PP0/Core Domain: is used to restrict the power limit only to
the cores of the CPU.

(4) PP1/Graphic Domain: is use to power limit only the graphic
component of the CPU. It is available only for client archi-
tectures due Intel server architectures do not implement
graphic component into the package.

In the experimental result section we focus oue exploration on
the package domain of RAPL controller because core and graphic
domains are not available on our Intel architecture. DRAM domain
is left for future exploration works. We also tried to modify the
time windows of package domain (which can be set in a range of
1ms to 46ms in our target system) to see its impact on application

performance. Our results show that this parameter does not lead to
noticeable changes in the results obtained. For this reason we report
results only for the default 10ms time window configuration.

4 BENCHMARKING SCENARIO
4.1 Architecture Target
In this work, we take as architecture target a high performance
computing infrastructure, which is a Tier-1 HPC system based on
an IBM NeXtScale cluster. Each node of the system is equipped
with 2 Intel Haswell E5-2630 v3 CPUs, with 8 cores with 2.4 GHz
nominal clock speed and 85W Thermal Design Power (TDP, [11]).
As regards the software infrastructure, SMP CentOS Linux distribu-
tion version 7.0 with kernel 3.10, runs on each node of the system.
We use the complete software stack of Intel systems for HPC pro-
duction environment. In particular, we use Intel MPI Library 5.1
as the runtime for communication and Intel ICC/IFORT 16.0 in our
toolchain. This Tier-1 supercomputer is currently classified in the
Top500 supercomputer list [1]. We focus our analysis on a single
node of the cluster.

4.2 Application Target
Quantum ESPRESSO (QE) [10] is an integrated suite of computer
codes for electronic-structure calculations and materials model-
ing at the nanoscale. It is an open source package for research
in molecule dynamics simulations and it is freely available to re-
searchers around the world under the terms of the GNU General
Public License. Quantum ESPRESSO is commonly used in high-end
supercomputers. QE main computational kernels include dense
parallel Linear Algebra (LA) and 3D parallel Fast Fourier Transform
(FFT). Moreover, most of application workload is based on LA and
FFT mathematical kernels which makes our exploration work rele-
vant for many HPC codes. In our tests we use a Car-Parrinello (CP)
simulation, which prepares an initial configuration of a thermally
disordered crystal of chemical element by randomly displacing the
atoms from their ideal crystalline positions. This simulation con-
sists of a number of test that have to be executed in the correct
order.

4.3 Monitoring Framework
In this section, we describe in details the monitoring framework
used to profile the application and the system. Our monitoring
framework is composed to two monitoring tools. The first one can
monitor several hardware performance counters with a regular
time stamping. The second monitoring framework is synchronized
with parallel phases allowing to isolate performance and architec-
tural metrics for each program phase. However, due to the higher
number of monitoring points per time unit it can access to only
on a sub-set of performance counters of the one monitored by sys-
tem monitoring tool. Our monitoring frameworks have a minimal
overhead, less than 1% w.r.t. application execution time.

4.3.1 System-aware Monitoring Tool. We use as system-aware
monitoring tool Examon [2]. This monitoring tool can be used to
read periodically per-core frequency, CPI and scalar/vector instruc-
tions retired. In addition, it can monitor for each socket the DRAM
memory bandwidth and package power consumption using RAPL
performance counters. This monitor is a simple daemon process
that access to the performance counters of the CPU using MSR
read/write operations. The daemon starts at a given Tsamp rate,
in our benchmarks we use a Tsamp of 1 second. Its overhead is
negligible.

P0

Pn

APP MPI Synchronization
Time

Figure 3: Phases of computation and communication identi-
fied by application-aware Monitoring Runtime

4.3.2 Application-aware Monitoring Runtime. We developed a
monitor runtime to extract system information synchronously with
the application flow. The runtime is a simple wrapper of the MPI
library where every MPI function of each process has been en-
closed by an epilogue and a prologue function. We used the MPI
standard profiling interface (PMPI), which allow us to intercept all
the MPI library functions without modify the application source
code. The runtime is integrated in the application at linked time.
Hence, Application-aware Monitoring Runtime is able to extract
information distinguishing application and MPI phases as shows
in figure 3. The monitor runtime uses RDPMC and RDTSC assem-
bly instructions to access respectively the Time Stamp Counter
(TSC) and Intel Performance Monitoring Unit (PMU) counters with
an overhead of few hundreds of cycles for each counter access.
PMU counters are programmable through standard MSR opera-
tions which require administrative permission and are costly in
terms of access overhead. However, the counter value can be read
using the RDPMC instruction directly from user space and with-
out involving syscalls. We programmed per-core PMU registers to
monitor frequency, CPI, and scalar/vector instructions retired. The
monitor runtime can intercept a very high number of MPI calls of
the application, for this reason is not possible to use MSR operations
to access low level performance counters through syscalls, which
cause high-performance penalty.

5 EXPERIMENTAL RESULTS
5.1 Methodology
We run QE-CP with a configuration of 16 MPI processes with a one-
to-one bind to each core of our HPC node. We start by comparing
different configurations of power capping in our test environment.
Initially, we split the power budget in an equal manner on both
sockets, we set 48W on each socket for a global power envelop of
96W. This test shows that core’s frequencies on different sockets
are heterogeneous, suggesting that the two sockets have different
inherit power efficiency. To have the same frequency among all the
cores, the tested computing node needs of 11.31% higher power on
socket 0. As consequent of this result, we run a set of benchmarks
fixing the same frequency for all the cores while monitoring the
power consumption of each socket. We use this per-socket power
budget as power constraint to obtain the same frequency among
all the cores. We execute again the tests using RAPL to impose
these per-socket power caps and leave RAPL decides the actual
frequency.

Table 1 shows the results of our set of experiments using different
levels of power caps. In the first column there are reported the

target frequencies used to extract the power limits specified in the
second column. Second and third columns show the sum of power
consumption of both sockets using DVFS and RAPL mechanisms
for power capping. We can see that the power consumption are the
same, so the power cap is respected and the tests are comparable.
In the frequency columns are reported the average frequencies
for the entire application and among all the cores. These columns
show that RAPL has an average frequency of 11.14% higher than
DVFS but, if we take a look at the execution time (reported in next
columns), DVFS has a lower execution time, in average 2.87% faster
than RAPL. In the next sections we will explore why DVFS power
cap has an lower execution time respect to RAPL which, in contrast,
has a higher average frequency.

5.2 System Analysis
Figure 4 shows a time window of the system-aware monitoring
tool for both the power capping mechanisms while QE-CP iterates
on the same computational kernel. The test reports the case of a
power constraint relative to 1.5 GHz for DVFS and RAPL power
cappers. So, the results are comparable directly.

First of all, we can check the correct behaviors of power cap-
ping logic by looking at the core’s frequencies and package power
consumption (first two top plots). In the DVFS plot on the left part
of figure 4, core’s frequencies are fixed at 1.5 GHz while package
power consumption floats around the average value as effect of the
different application phases. In contrast, RAPL (on the right) main-
tains constant the power consumption for both the sockets while
core’s frequencies changes following the current application phase.
Table 1 reports a similar average power consumption for both the
two cases, thus the power cappers are working as expected. Both
benchmarks show a lower CPI when the memory bandwidth is
low and SIMD instructions retired are high. In these phases, RAPL
has lower frequency than the DVFS case as effect of the higher
power demand of SIMD instructions. On the other hand, RAPL
assigns higher frequencies than DVFS when CPI is high and this
happens when the application is moving data from/to memory as
proved by the high memory traffic/bandwidth reported by the Mem
Ch[GB/s] plot. In these phases, the number of SIMD instructions
retired are lower and, as already pointed out and shown in the
RAPL plot, the core’s frequencies selected by RAPL increases above
average due the higher power budget. However, increasing core’s
frequencies when the application is memory bound does not re-
flect in a consequent performance gain due the higher CPI and
sub-linear dependency of application speed-up with frequency in
these phases.

Hence, DVFS power capper is more efficient of RAPL (shorter
execution time) for two reasons: i) DVFS executes with higher
instruction per seconds when application has high SIMD instruc-
tions density. ii) RAPL instead reduces the core’s frequency in the
same phase to avoid excessive power consumption. On the con-
trary, RAPL increases the frequency during memory bound phases
obtaining a similar average power as the DVFS case.

From the RAPL case (plots on the right), we can also notice that
the time spent to move data from memory to CPUs is higher than
the time spent in computation, because the duration of high SIMD
phases are shorter than the duration of memory traffic and CPI
regions. This behavior entails a higher average frequency for RAPL
power capping respect to DVFS, which is not translated in a shorter
application executing time.

5.3 Application Analysis
In this section, we monitor the system using the application-aware
monitoring runtime. This runtime is able to recognize application

Benefits in Relaxing the Power Capping Constraint

Table 1: Quantum ESPRESSO - Power Capping

Power Frequency Execution Time
DVFS RAPL DVFS RAPL DVFS vs RAPL DVFS RAPL DVFS vs RAPL

1.5 GHz 95.56W 94.81W 1499MHz 1766MHz −15.11% 311.43sec 328.16sec 5.10%
1.8 GHz 111.86W 110.63W 1797MHz 2144MHz −16.22% 274.11sec 274.42sec 0.11%
2.1 GHz 122.87W 120.71W 2094MHz 2323MHz −9.86% 247.60sec 254.59sec 2.75%
2.4 GHz 134.44W 131.32W 2392MHz 2476MHz −3.37% 231.19sec 239.65sec 3.53%

160 170 180 1901.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

Fr
eq

 (G
Hz

)

DVFS

160 170 180 1900
10
20
30
40
50
60

PK
G
Po

we
r (

W
)

Socket 0
Socket 1

160 170 180 1900.0
0.5
1.0
1.5
2.0

CP
I

160 170 180 1900.0
0.5
1.0
1.5
2.0
2.5

SI
M
D
In
st
r

1e10

Socket 0
Socket 1

160 170 180 190
Time (sec)

0
5

10
15
20
25
30

M
em

 C
h
(G

B/
s)

Socket 0
Socket 1

160 170 180 1901.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

RAPL

160 170 180 1900
10
20
30
40
50
60

Socket 0
Socket 1

160 170 180 1900.0
0.5
1.0
1.5
2.0

160 170 180 1900.0
0.5
1.0
1.5
2.0
2.5 1e10

Socket 0
Socket 1

160 170 180 190
Time (sec)

0
5

10
15
20
25
30

Socket 0
Socket 1

Figure 4: Time window of 50 second of the system monitor

phases marked by global synchronization points as depicted in
figure 4. In the figures 5, 6, and 7 are reported the average values
of performance counters of RAPL power capper divided into fre-
quency operational intervals. In figure 5 is depicted the amount of
time for computation (APP) and for communication (MPI) phases.
Figure 6 shows the time gain for the DVFS power capper respect to
RAPL power capper integrated on a given RAPL frequency range.
Values are in seconds. Negative values mean seconds of application
execution time reduction saved by DVFS with respect to RAPL
power capper. Figure 7 shows the values for CPI and SIMD instruc-
tions retired for the same phases that RAPL executes at a given
frequency.

To explain the behaviours that characterizes DVFS and RAPL
power cappers, we need to look at all the three plots together.
Starting from figure 6, we can recognize that in the frequency
interval 1.3 - 1.5 GHz and 1.7 - 1.9 GHz, DVFS power capper obtains
its most speed up. The first gaining interval is justified by the high
number of SIMD instructions retired and by the lower CPI with
respect to other application phases. Indeed from figure 7, we can
notice that most of the SIMD instructions are executed with these
lower frequencies by RAPL.

In the interval 1.7 - 1.9 GHz, the CPI is higher and the SIMD
instructions retired are not negligible. From figure 5, we can rec-
ognize that most the application time is spent in this frequency
range. With a lower SIMD instructions density respect to the 1.3 -
1.5 GHz interval. Hence, high CPI, low density of SIMD instructions
and high frequency suggest memory bound phases as shown by
previous section. Interesting these phases runs at higher frequency

1.2
 - 1

.3
GH
z

1.3
 - 1

.4
GH
z

1.4
 - 1

.5
GH
z

1.5
 - 1

.6
GH
z

1.6
 - 1

.7
GH
z

1.7
 - 1

.8
GH
z

1.8
 - 1

.9
GH
z

1.9
 - 2

.0
GH
z

2.0
 - 2

.1
GH
z

2.1
 - 2

.2
GH
z

2.2
 - 2

.3
GH
z

2.3
 - 2

.4
GH
z
Tu
rbo

0

20

40

60

80

100

120

140

160

Ti
m
e
(s
ec

)

APP
MPI

Figure 5: Sum of MPI and application time grouped by inter-
val frequencies

than the DVFS but leads to a performance penalty. This suggests
side effects of high frequency in terms of memory contentions.

In the interval 2.0 - 2.1 GHz, RAPL has a performance gain with
respect to DVFS. This behavior is explained by the CPI and the
number of SIMD instructions retired during this phase. In this inter-
val, RAPL has a low CPI and does not perform SIMD instructions,

1.2
 - 1

.3
GHz

1.3
 - 1

.4
GHz

1.4
 - 1

.5
GHz

1.5
 - 1

.6
GHz

1.6
 - 1

.7
GHz

1.7
 - 1

.8
GHz

1.8
 - 1

.9
GHz

1.9
 - 2

.0
GHz

2.0
 - 2

.1
GHz

2.1
 - 2

.2
GHz

2.2
 - 2

.3
GHz

2.3
 - 2

.4
GHz

Tu
rbo

−10

−8

−6

−4

−2

0

2

4

Ti
m

e
Ga

in
 (s

ec
)

Figure 6: Time gain of DVFS w.r.t RAPL grouped by interval
frequencies

1.2
 - 1
.3
GH
z

1.3
 - 1
.4
GH
z

1.4
 - 1
.5
GH
z

1.5
 - 1
.6
GH
z

1.6
 - 1
.7
GH
z

1.7
 - 1
.8
GH
z

1.8
 - 1
.9
GH
z

1.9
 - 2
.0
GH
z

2.0
 - 2
.1
GH
z

2.1
 - 2
.2
GH
z

2.2
 - 2
.3
GH
z

2.3
 - 2
.4
GH
z
Tu
rbo

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

CP
I

CPI
SIMD instr

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

SI
M
D
in
st
r

1e11

Figure 7: Average CPI and number of AVX instructions re-
tired on different interval frequencies

so this phase scales its execution with the frequency. RAPL can
dynamically manage the available power budget made available
by the low SIMD instructions and can increase the frequency. This
leads to a consequent performance increment.

In the turbo frequency interval, RAPL performs better than DVFS
as it is a MPI reduction phase where only the root process is active.
During the reduction, all the processes except the root MPI remain
in a barrier to wait the termination of the root. This is explained
by the high MPI runtime time (figure 5) present at this frequency
interval. Hence, RAPL can use the power budget released by the
processes in barriers to speed up the root process leading to a
performance gain.

6 CONCLUSION
In this paper we presented a novel exploration of power capping
mechanisms for power constrained HPC nodes. Differently from

state-of-the-art explorations, we focused our analysis on an explo-
ration of power capping strategies used in real HPC system node.
In details, we explored the characteristics of Intel RAPL and DVFS
power manager during the execution of a real scientific HPC ap-
plication which is performance constrained by the power budget
assigned to the node.

Our exploration explains why RAPL mechanism has an average
performance penalty of 2.87% and up to 5.10% w.r.t. DVFS power
manager, even if RAPL shows a higher average frequency for the
entire application time. This proved that dynamically manage the
available power budget without be aware of the application phases
is not always beneficial from performance point of view. Further-
more, RAPL mechanism always increases the core’s frequencies
during less demanding phases to fill in the available power bud-
get, leading to unnecessary power consumption in memory bound
phases that can cause interference and as consequence performance
loss.

REFERENCES
[1] 2017. TOP500.Org. Top 500 Supercomputer Sites. http://www.top500.org. (2017).
[2] Francesco Beneventi, Andrea Bartolini, Carlo Cavazzoni, and Luca Benini. 2017.

Continuous learning of HPC infrastructure models using big data analytics and in-
memory processing tools. In 2017 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 1038–1043.

[3] Keren Bergman, Shekhar Borkar, Dan Campbell, William Carlson, William Dally,
Monty Denneau, Paul Franzon, William Harrod, Kerry Hill, Jon Hiller, et al. 2008.
Exascale computing study: Technology challenges in achieving exascale systems.
Defense Advanced Research Projects Agency Information Processing Techniques
Office (DARPA IPTO), Tech. Rep 15 (2008).

[4] Andrea Borghesi, Andrea Bartolini, Michele Lombardi, Michela Milano, and Luca
Benini. 2016. Predictive Modeling for Job Power Consumption in HPC Systems.
In International Conference on High Performance Computing. Springer, 181–199.

[5] Andrea Borghesi, Christian Conficoni, Michele Lombardi, and Andrea Bartolini.
2015. MS3: a Mediterranean-Stile Job Scheduler for Supercomputers-do less
when it’s too hot!. In High Performance Computing & Simulation (HPCS), 2015
International Conference on. IEEE, 88–95.

[6] Hao Chen, Michael C Caramanis, and Ayse K Coskun. 2014. The data center as a
grid load stabilizer. In Design Automation Conference (ASP-DAC), 2014 19th Asia
and South Pacific. IEEE, 105–112.

[7] Hao Chen, Michael C Caramanis, and Ayse K Coskun. 2014. Reducing the data
center electricity costs through participation in smart grid programs. In Green
Computing Conference (IGCC), 2014 International. IEEE, 1–10.

[8] Jack Dongarra. 2013. Visit to the national university for defense technology
changsha, china. Oak Ridge National Laboratory, Tech. Rep., June (2013).

[9] Jonathan Eastep, Steve Sylvester, Christopher Cantalupo, Federico Ardanaz, Brad
Geltz, Asma Al-Rawi, Fuat Keceli, and Kelly Livingston. 2016. Global extensible
open power manager: a vehicle for HPC community collaboration toward co-
designed energy management solutions. Supercomputing PMBS (2016).

[10] Paolo Giannozzi, Stefano Baroni, Nicola Bonini, Matteo Calandra, Roberto Car,
Carlo Cavazzoni, Davide Ceresoli, Guido L Chiarotti, Matteo Cococcioni, Ismaila
Dabo, et al. 2009. QUANTUM ESPRESSO: a modular and open-source software
project for quantum simulations of materials. Journal of physics: Condensed
matter 21, 39 (2009), 395502.

[11] Per Hammarlund, Rajesh Kumar, Randy B Osborne, Ravi Rajwar, Ronak Singhal,
Reynold D’Sa, Robert Chappell, Shiv Kaushik, Srinivas Chennupaty, Stephan
Jourdan, et al. 2014. Haswell: The fourth-generation intel core processor. IEEE
Micro 34, 2 (2014), 6–20.

[12] Emma Jane Hogbin. 2015. ACPI: Advanced Configuration and Power Interface.
(2015).

[13] Aniruddha Marathe, Peter E Bailey, David K Lowenthal, Barry Rountree, Martin
Schulz, and Bronis R de Supinski. 2015. A run-time system for power-constrained
HPC applications. In International Conference on High Performance Computing.
Springer, 394–408.

[14] Venkatesh Pallipadi and Alexey Starikovskiy. 2006. The ondemand governor. In
Proceedings of the Linux Symposium, Vol. 2. sn, 215–230.

[15] Osman Sarood, Akhil Langer, Abhishek Gupta, and Laxmikant Kale. 2014. Max-
imizing throughput of overprovisioned hpc data centers under a strict power
budget. In Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis. IEEE Press, 807–818.

[16] Alina Sîrbu and Ozalp Babaoglu. 2016. Predicting system-level power for a
hybrid supercomputer. In High Performance Computing & Simulation (HPCS),
2016 International Conference on. IEEE, 826–833.

[17] Huazhe Zhang and H Hoffman. 2015. A Quantitative Evaluation of the RAPL
Power Control System. Feedback Computing (2015).

http://www.top500.org

