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Kurzfassung

In den letzten fünfzig Jahren entwickelte sich die klassische Molekülsimulation in ein leistungs¬

starkes Werkzeug zur Untersuchung von biomolekularen Vorgängen auf atomarer Ebene. Dies

wurde ermöglicht durch eine kontinuierliche Entwicklung der Simulationsverfahren und Pro¬

gramme. Im ersten Kapitel wird eine kurze Einführung in die klassische Simulation gegeben,

mit speziellem Augenmerk auf Techniken um den durchsuchten Konfigurationsraum auf rele¬

vante Bereiche einzuschränken und auf die Berechnung von freien Energien aus den Simulatio¬

nen. Als nächstes wird die neueste Version des Groningen Molecular Simulation Programmes

GROMOS 05 vorgestellt. In dieser Version enthält das Programmpacket zwei Varianten des

eigentlichen Simulationsprogrammes: eine erweiterte Version von PROMD, der traditionellen

Simulationsmaschine von Gromos, welche immer noch in Fortran geschrieben ist und das

neu erstellte MD05 in C++. Dieses versucht durch Benutzen objektorientierter und gener-

ischer Programmiertechniken die Modularität und Lesbarkeit des Programmes zu erhöhen. Alle

Simulationsverfahren, welche in den weiteren Kapiteln vorgestellt werden, sind in MD05 inte¬

griert.

In Kapitel 3 wird ein kurzer Überblick über Methoden, welche den Konfigurationsraum ef¬

fizient durchsuchen, gegeben. Danach folgt ein genauerer Blick auf die Berechnung von En¬

tropien im Zusammenhang mit Kopie - Austausch in stochastisch dynamischen Simulationen.

Dies geschieht anhand eines einfachen Testsystems, bei welchem vollständige Abdeckung des

Konfigurationsraumes in Simulationen bei höheren Temperaturen erreicht werden kann. Bei

diesen Temperaturen sollten somit auch die berechneten Eigenschaften unabhängig von der Sim¬

ulationsmethode sein und erwartungsgemäss erfüllte Kopie - Austausch Simulation diese Be¬

dingung. Bei tiefen Temperaturen ist keine vollständige Abdeckung mehr möglich. Kopie -

Austausch Simulation kann unter diesen Umständen effizienter als die standard Simulationsme¬

thode sein. Entropien von Simulationen werden häufig aufgeteilt in Rotations-, Translations¬

und Konfigurationsentropien. Dies wird erreicht durch eine Rotationsüberlagerung der Struk¬

turen vor der Berechnung. Es konnte gezeigt werden, dass gewisse Überlagerungstechniken die

Rotationsentropie bei tiefen Temperaturen gegenüber der Konfigurationsentropie stark bevorzu¬

gen.

Ein Verfahren, um eine fein-körnige (atomistische) und eine grob-körnige Representation
eines Systems zugleich zu simulieren wird in Kapitel 5 gegeben. Der momentane Zustand kann
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X Kurzfassung

durch einen kömigkeits Regler angegeben werden. Es ist möglich, die Körnigkeit während einer

Simulation kontinuierlich von fein-körnig zu grob-körnig und zurück zu ändern, oder auch viele

Kopien gleichzeitig bei unterschiedlicher Körnigkeit zu simulieren und durch Kopie - Austausch

die fein-körnigen Kopien von dem schnelleren Absuchen des Konfigurationsraumes der grob¬

körnigen Kopien profitieren zu lassen.

Ein unterschiedlicher Ansatz, um die Effizienz von Simulationen zu steigern, wird in Kapitel

6 aufgezeigt. Um eine freie Energie Differenz zwischen zwei Zuständen zu berechnen, muss

die Simulation diese beiden Zustände verbinden. Damit dies schneller geschieht, kann man den

Konfigurationsraum, welcher der Simulation zur Verfügung steht, einschränken. Wenn diese

Zwänge so formuliert werden können, dass sie nichts zur potentiellen Energie und den Kräften

in den Endzuständen beitragen, dann bleibt die berechnete freie Energie unabhängig von dem

erzwungenen Pfad, der die Zustände verbindet. Diese Methode ist für Distanz- und Dihedral-

Winkelbeschränkungen ausgearbeitet und wird an der Ionen - Bindung eines zyklischen Peptides

und an der Berechnung der freien Energie Differenz von zwei Zucker Konformationen gezeigt.

Im zweiten Beispiel wird die Methode verglichen mit Resultaten erhalten aus einem Potential

der mittleren Kraft.

Der Simulation auferlegte Zwänge können auch dazu benutzt werden, um experimentell bes¬

timmte Eigenschaften zu reproduzieren. Eine Simulation kann von experimentellen Eigenschaf¬

ten abweichen, wenn das verwendete Kraftfeld nicht für das Problem geeignet ist, oder wenn die

Simulationszeit nicht ausreicht, um alle notwendigen Konfigurationen, die zum experimentel¬

len Resultat beitragen, zu besuchen. Beide Probleme können durch geschickt gewählte Zwänge

verkleinert werden. In Kapitel 7 werden Zwänge vorgestellt, die sich während der Simulation

anpassen. Dies wird durch eine Kombination mit der Technik der örtlichen Erhebung erreicht,

in welcher die potentielle Energie während der Simulation für bestimmte Konfigurationen ange¬

hoben wird. Diese Kombination ergibt zwei Hauptsächliche Vorteile. Erstens ergibt sich durch

die langsame Anpassung der potentiellen Energiefunktion eine minimale Beeinflussung der Sim¬

ulation durch die zusätzlichen Zwänge. Und zweitens wird lokal effizienter nach einer Konfigu¬

ration gesucht, welche die experimentellen Eigenschaften wiedergibt.

In den zwei nächsten Kapiteln werden nicht mehr Zwänge angeschaut, sondern der Simulati¬

on Nebenbedingungen hinzugefügt, welche exakt erfüllt sein müssen. Diese Nebenbedingungen

werden beispielsweise dazu gebraucht, um Bindungen starr zu machen. Es ist nun möglich,

eine zusätzliche Flexibilität einzufügen, mit welcher die starren Bindungslängen sich in einem

gewissen Mass an Veränderungen in der Umgebung anpassen können. Die Methode der flexiblen

Nebenbedingungen wird angewendet in einer Simulation von Neopentan unter hohem Druck und

in einer vergleichenden Studie von Modellen mit unterschiedlicher Behandlung von Bindungen.

Zum Schluss wird in Kapitel 10 auf mögliche zukünftige Entwicklungen von Simulations¬

programmen und effizienten Algorithmen hingewiesen.



Summary

Over the last fifty years, continuous development of simulation algorithms and software has

made classical molecular dynamics simulation into a powerful tool to investigate biomolecular

processes in atomistic detail. After a short introduction of classical simulation with special atten¬

tion to biased sampling of configurational space and some techniques to calculate free energies,

the latest version of the Groningen Molecular Simulation package is introduced:

GROMOS05. In this version, the heart of the package is delivered in two variants. An en¬

hanced version of PROMD, the FORTRAN simulation engine, and MD05, written in C++.

MD05 strives for higher modularity and readability by making use of object oriented features

and generic programming techniques. All algorithms presented in the other chapters are inte¬

grated into MD05.

A brief overview and classification of searching methods is given in Chapter 3 before a closer

look is taken at entropies calculated by replica-exchange stochastic dynamics simulations. For

the simple test system complete sampling of configurational space can be achieved. Therefore

the entropies calculated from standard stochastic dynamics simulations should match the ones

obtained from the replica-exchange simulations. This was found to be true. At low temperature

and incomplete sampling of the configurational space, replica-exchange simulation can be more

efficient if the simulation parameters are carefully selected. The procedure of rotationally fitting

structures to decompose entropy into configurational, translational and rotational entropies has

a significant impact on this decomposition, often disfavouring configurational entropy at low

temperatures.

An algorithm to combine fine-grained (atomistic) simulations with coarse-grained ones is

introduced in Chapter 5. The algorithm allows to either continuously vary the grain-level of

the simulation from fully fine-grained to coarse-grained and back, or, using replica exchange,

simultaneously simulate a system at fine-grained, at coarse-grained and at some intermediate

grain levels. The higher the grain level the bigger the simulation time-step may be, therefore

increasing sampling efficiency. Through replica exchange, the replicas at lower grain-level can

profit from the faster sampling available at the higher levels.

A different way to improve sampling is shown in the next chapter, where the simulation is

restrained to follow a reaction coordinate from a given state A to a state B for obtaining the

free energy difference between these two states. Opposed to standard methods, the restraining

xi
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functions are chosen to have zero potential energy and forces in the end states (A and B). This

permits the calculation of a path independent free energy difference. The method, implemented

in terms of distance and dihedral restraints is applied to ion-complexation in a cyclic peptide and

the calculation of the relative stability of two different chair conformations of a glucopyranoside.

For the second case a comparison with a potential of mean force calculated using dihedral-angle

constraints is given.

Further on, restraints can be used to force a simulation to reproduce experimental data. If

the force field is not well suited to represent a biomolecule or if the simulation time is not long

enough to sample the relevant part of the configurational space, experimental properties might not

be reproduced by simulations. Both problems may be overcome by adding restraints. In Chapter

7 adaptive restraints based on local-elevation simulation are introduced. Adaptive restraints have

two main advantages: First, as the restraint force slowly builds up over the simulation time, and

only if the restraint is not fulfilled, a minimum of force is added, which leads to the least pos¬

sible disturbance of the simulation. Second, as the adaptive restraint is based on local-elevation

simulation, locally enhanced sampling is achieved, until the restraint is fulfilled.

In the next two chapters the focus is no longer on restraints but on constraints. But these are

flexibilized using an approximate, but fast algorithm, which enables simulations to use a compar¬

atively large time-step but still have the constraints slowly adapt to changes in the environment.

Using this technique, fast bond vibrational frequencies can be avoided. The method is applied

to neopentane simulations under high pressure and to a comparative study of different models

of flexibility. In this study, the free energy difference of water and methanol is calculated by

thermodynamic integration.

Finally, in Chapter 10 an outlook of future development with regard to simulation software

and configurational sampling is provided.
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Chapter 1

Introduction

It is a metaphysical doctrine thatfrom the same antecedents fol¬

low the same consequents. No one can deny this. But it is not

much use in a world like this, in which the same antecedents never

again concur, and nothing ever happens twice.

— James Clark Maxwell

Only a limited number of properties of a biomolecular system is accessible to experimental

measurement. Over fifty years ago, this limitation lead to the formulation of a general theoretical

method of calculating the properties of any substance which may be considered as composed

of N interacting individual particles, on a fast electronic computing machine1. Any equilibrium

property of interest < Q > may be calculated by evaluating the phase-space integral of the cor¬

responding microscopic observable <?(r,p)

< q ^ -
I'q(r,V>)exp{-^{T,p)/kBT)drdp

fexp(-!tf(r,p)/kBT)drdp

with #"(r, p) — ^C(p) + 1^(r) the Hamiltonian of the system, using the potential energy of the

system V(r), depending on particle positions r, and the kinetic energy of the system, depending

on the conjugate momenta p of the particles, where r and p represent 3iV dimensional vectors

and kß is Boltzmann's constant. For the 3 dimensional vector of the position and the momentum

of particle /, r( and p( will be used, respectively. As it is evidently impractical to carry out this

integral for more than a couple of particles using standard numerical integration techniques, the

Monte Carlo (MC) method2 was applied. The Monte Carlo method fills the gap between classical

mechanics (of few particles) using ordinary differential equations and statistical mechanics (of

very many particles) using the theory of probabilities. By studying a great, but by no means

1



2 Chapter 1. Introduction

exhaustive, number of possible states {r,p} chosen at random, the average value < Q > of

property Q may be determined, with probability and accuracy dependent on the number of states

considered. The computational procedure is the following: Given an ensemble of particles with

positions r(n) and momenta p(n), random processes are initiated which lead to new states {r(n +

l),p(n+ 1)}. Repeating the procedure Nmc times leads to an ensemble of states, according to

given probability distributions for each of the random processes. The essential feature of the

method is that it avoids dealing with multiple integrations, but instead samples a single chain of

events. The generated states can be used in statistical studies of a property Q

1 Nmf

<0>^7^£</(r("),p("))- <L2>

Comparison to Equation 1.1 shows, that instead of generating all states (or a number of random

states) and weighting those by exp(—9{(r(n),p(n))/kBT), here, the states are weighted evenly.

Therefore, they need to occur with a probability proportional to exp(—2{(r(n),p(n))/kBT) in

the generated ensemble of states. This may be achieved by introducing an acceptance criterion

for each move from state {r(n),p(n)} to {r(n+ l),p(n + 1)} based on the potential energy

difference AE = V(r(n + 1)) - *^(r(n)). If AE < 0, i.e., if the move would bring the system

to a state of lower energy, it is allowed. Otherwise, the move is only allowed with a probability

of exp(—AE/kßT) and the total kinetic energy ^C(p) of the system at a given temperature is

constant. This conditional acceptance of a (Monte Carlo) move is usually refered to as the

Metropolis criterion.

In the Monte Carlo method the moves of the particles are artificial. Therefore only the av¬

erage of a property Q is meaningful, not the time-series of the microscopic observable *y(r,p).

Exchanging the artificial Monte Carlo moves by an integration of the classical equations of mo¬

tion (see Section 1.2) leads to physical moves of the particles in a molecular dynamics (MD)

simulation3. Thermodynamic averages of a property Q can be estimated in molecular dynamics

simulations by taking advantage of the identity of the ensemble average with the time average

over an infinite period (given quasi-ergodicity of the system4'5) and by approximating the infinite

time average by the average over a finite period T obtained from a simulation:

<Q>~^I q(r(t),p(t))dt. (1.3)
T Jo

Reaching long enough simulation times T to converge the average using molecular dynamics

simulations is often problematic. Therefore, the convergence behaviour of any calculated prop¬

erty has to be investigated.

First molecular dynamics simulations were done almost fifty years ago, using hard spheres6,
later elastic spheres7, but several years passed until a Lennard-Jones liquid8 and liquid water9

were simulated. In 1977, for the first time a protein was simulated using the molecular dynam¬

ics method10, initiating the field of biomolecular simulation and changing the rigid picture of

proteins into one of dynamic motion
' '.
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Over the years, tremendous progress has been made with respect to simulation methods, sys¬

tem sizes and simulation time lengths12-18. Still, a number of problems remain to be solved18.

Developing a highly accurate force field (the interaction potential energy function V(y)) is ex¬

tremely difficult. First, the potential energy of a system is the sum over a huge number of indi¬

vidual terms. To achieve overall high accuracy, the accuracy of the individual terms needs to be

orders of magnitude higher. Second, force-field development has to take into account entropie

effects to produce a meaningful ensemble of states at non-zero temperature. But even with a

perfect force field, the problem of searching or sampling the energy hypersurface, of which the

dimensionality is given by the number of degrees of freedom present in the system, remains. The

motions along these degrees of freedom show a variety of characteristics, from highly harmonic

to anharmonic, chaotic and diffusive. Moreover, correlations are present that cover a wide range

of time- and spatial scales, from femtoseconds and tenths of nanometers to milliseconds and mi¬

crometers. The energy hypersurface is therefore a very rugged surface. This makes the search

for the global energy minimum, or rather the search for those regions that contribute most to the

free energy of the system a daunting if not impossible task. To alleviate this problem, a huge

amount of methods exists to bias the sampling towards interesting regions of the (free) energy

hypersurface (see Section 1.3).

Quite apart from the afore mentioned problems, there is still the difficulty of comparing

properties obtained from simulations to experimental data18. An experimental measurement

of a quantity Q yields an average < Q > of a distribution over molecules and time. Upon the

averaging, the detailed information on the distribution is lost, and very different distributions may

yield the same average. The average of property Q as given in Equation 1.1 is the expectation

value of the corresponding microscopic observable <7(r,p), in other words the integral over the

phase-space of q(r,p) multiplied by the probability of the state {r,p}, which is given, for the

canonical ensemble at a volume V and a temperature T, by

P (rn) =
exp(-M{r,p)/kBT)

_

exp(-M(T,p)/kBT)
Wn,PJ

fexp(-ti(r,p)/kBTdrdp hMZ(N,V,T)
' K }

where h is Planck's constant and Z(N, V, T) is the canonical partition function, defined as

Z(N,V,T) = pj^ fexp(-!H(r,p)/kBT)dTdp, (1.5)

and the factor N\ is only present in case the particles are indistinguishable. In the experimentally

important isothermic-isobaric ensemble the partition function is given as

Z(N>P>T) = yj^Jexp(-mr,P)+pV)ßBT)drdpdV (1.6)

and the corresponding phase-space probability also depends on the volume

P (rn\
exp(-(fK(r,p)+pV)/kBT)

P^r,p) =

Vh3NNlZ(N,P,T)
• (L7)
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Straightforward integration of the equations of motion in molecular dynamics simulations

leads to microcanonical ensembles. Extensions of the formalism exist to carry out simulations

in the canonical or isofhermic-isobaric ensemble as well (see Section 2.4.2, "Thermostat al¬

gorithms" and "Barostat algorithms"). The instantaneous pressure in a molecular dynamics

simulation is computed as19

<P=X~V~\X-<W) (1.8)

where

z/=i

and

are the instantaneous kinetic energy and virial tensors. In the special case of a pairwise-additive

interaction term 1^>(r), the virial contribution is

with rij — r( — Vj and f,,jj the pairwise force from interaction term 1^(r) exerted by atom j on

atom /.

Whenever simulations and experiments are compared, the results of these comparisons may

be classified as follows18'20"24. If agreement between simulation and experiment is obtained,

this may be due to the following reasons: The simulation adequately reflects the experimental

system. Or, the property examined is insensitive to the details of the simulation. Variation of

the simulation parameters would not change the agreement. Or, a compensation of errors has

occurred. If only a few, global or system properties for a system with very many degrees of

freedom are calculated and compared, this situation can easily emerge. If no agreement between

simulation and experiment is obtained, this may be due to one or both of the following reasons:

The simulation does not reflect the experimental system. The theory or model is incorrect, or

the simulated property is not converged, or the software is at fault or incorrectly used. Or, the

experimental data are incorrect. Therefore, comparisons of simulation results with experimental

data have to be carefully analysed not to draw any wrong conclusions.

In the next section, the heart of a molecular dynamics simulation, the force field and the equa¬

tions of motion, will be introduced, followed by a brief description of various methods to bias

sampling of conformational space and finally by an explanation of methods for the determination

of free energy differences using molecular dynamics simulations.
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1.1 Force field

A force field used in classical molecular dynamics simulations specifies the functional form

of V(r) and also the (most often empirical) parameters used to model a given (biomolecular)

system. Together with the GROMOS software package the GROMOS force field has been

developed since the early 1980's, when a first set of (non-bonded) parameters was specified25.
Since then, the force field has been improved continuously26-32. The most recent refinement31

was based primarily on reproducing the free enthalpies of hydration and apolar solvation for a

range of small compounds, and led to the parameter sets 53A5 (for pure liquids) and 53A6 (in

aqueous solution).

To specify the functional form of the GROMOS force field, it is common to distinguish

physical (atomic) interactions and special (non-physical) interactions

<]/(r) = i/P^s (v) + <ppecM (r). (1.12)

The special interactions include, among others, restraints applied to the system (see Section 1.3).

The physical interaction terms themselves can be divided into the bonded and the non-bonded

interactions,

q/phys^ = ybon^ + ynbnn^ (1.13>

where the bonded interactions are the sum of bond, bond-angle, harmonic (improper) dihedral

angle and trigonometric (torsional) dihedral angle terms. The non-bonded interactions are the

sum of van der Waals (Lennard Jones) and electrostatic (Coulomb with Reaction Field) interac¬

tions between (in principle) all pairs of atoms.

In the following sections, these interaction terms are defined and the corresponding expres¬

sions for the force on a particle /

f/ = -|.^(r) (1.14)
or,

and the virial contribution (according to Equation 1.10) are given.

1.1.1 Bonded interaction terms

Covalent bond interaction

For the covalent bond interaction, two different functional forms are present in GROMOS. The

standard functional form is quartic:

Nb ,

^bond(r) = l-Kbk(hl-hlf. (1.15)

The actual bond length of the kfh bond between atoms k\ and ki with positions r*, and r*2 is

given by bk = \rhk2\ = y/fk~j~Tk~k~2 where r^ - r*,
-

r^. Kbk is the force constant and b0k the
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ideal length of bond k. The forces on atom k\ and ki from bond k are

f^ = -Khk{bl-bl)rk[kl (1.16)

i°»d = -Kbk(bl~bl)rklkx (1.17)

The (atomic) virial contribution from bond k is

Alternatively, a harmonic functional form may be used for the covalent bond terms:

Nh 1
yharmbond^ = £ ^harm ^ _^j2 ^ (1 j Q)

with the harmonic bond force constant K^arm, and the harmonic forces from bond k on the atoms

k[ and &2

ffczn»W = „ghatm (bk_b ) I*lh_ (J 20)
1 * l1"^!

fharmbond = _Rhairm ^_ ^j J^ (L21)
I r^2^1 I

The (atomic) virial contribution remains unchanged:

çytfbond = [fharmbond g, ^. (] ,22)

Covalent bond-angle interaction

The covalent bond-angle bending interaction reads

jangle{r) = £ „

^^ _^^2 ^
(L23)

fe=l
Z

where the bond-angle k is defined by the atoms k\, ki and £3 and given by

ek = arccos (^'r^\ (L24)

The forces from bond-angle k are

Ç^ = -k {œsQk-c0SQ )(^ Ih^cosQk)-L- (1.25)
1 Vlr*3A2| lr/tife2l / Ityfcl

Ç^' = -k {cosek-cosQ0k)(^-^cosQk)-^- (1.26)
3 VlrM2l |l>3fc2| / |*V2|

tangle
„

wangle *angle ,\ ^~i\

kj k\ &3 '

and the (atomic) virial contribution is

yçvle =
\

(fn8le ^^ +f^le ^^ (, 2g)
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covalent harmonie (improper) dihedral-angle interaction

The term in the interaction function that represents the harmonic, so-called improper (out-of-

plane, out-of-tetrahedral configuration) dihedral-angle bending interaction reads

* 1

improper{r) = £
„

^ _ ^ }2 ^ (, 29)
k=\

Z

with the (improper) dihedral-angle k defined by the atoms k\ ,^2^3 and k^27, and Ç* as

Ci = sign(C,k)arccos (
m7 "

, ) (1.30)
I Tmj 11 ?nk I

with

rmj = nlk2xrk3k2i (1-31)

r«* = n3k2 x rk3kAi (1.32)

sign((,k) = «gnfaj^-r,,*). (1.33)

The forces from the improper dihedral-angle k on atoms k\, &2, £3 and £4 are given as

^proper = _K^k_^ImA^ (L34)
r;
mj

/improper
_

„ ,<- <- ^ l^^L /I ?<;\

improper / *"&ifc-> '^kski ,
\
« r^j^ '^kik2f /i oz-\

Ijt2
- I 3

— -111/^ -J ^4' U~^

\ k3k2 / hh

improper = _% _^ _ ^ ^
(L3?)

and its (atomic) virial contribution is

^w/w/^ =
1

(f^ gjr^^ +fi3 (gr^ +f,4 ®rfc4fc2). (1.38)

covalent trigonometric (proper) dihedral-angle torsion interaction

The term in the interaction function that represents the trigonometric dihedral-angle torsion in¬

teraction reads

Vdihedral(r) = X% f1 +cos{hk)cos(mk$k)), (1.39)
/t=i

with parameters Ö* = 0 or K and mn = 1,2,..,6. The torsion angle §k is given as

<|>jt = sign(^k) arccos I
"" /w )

,
(1.40)

V \rim\\Tln\)
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where

*im = IV2 2 *3*2> (L41)

rfc3*;2

Tin = -rk3k4~\ ~2 r*3*2> (f-42)

rfc3^2

sign(tyk) = sign (rk]kl (vhk2 x r^ )). (1.43)

The forces from the dihedral-angle torsion k on atoms £1, £2,£3 and ^4 are

fdihedral K n*
dcOs(mkfa) ( TIn Vim \ 1

ULUA\\)k \\lln\ \lim\ / \lim\

C- =

-^cos^-^^i^h-^cos^)^. (1.45)
dcos(mktyk) ( rim

_

rtn

dcostyk \\rim\ |r/„|"""T'ty \r[n\

fdihedral
_

l rk\k2 'rk3k2 .
\

„ rkjk4 ' rfc3fc2 f /i ^/r\

^2
~

^5~
X J **1 ^ *4' U '

\ hh / kjk2

fdihedral = .^ _^ _^ (L47)

and ft-"Ai"'*<l>*) is tabulated for the possible values of mk21. The (atomic) virial contribution from

the dihedral-angle torsion k is

ha fdihedral I aiihedral .> _ , fdihedral <-> _ . fdihedral <* ». \ /1 /I QA

W* =2V'tl <2)r*l*2+t*3 <^r*3*2+t*4 ®rM2j' VL4»)

1.1.2 Non-bonded interaction terms

The GROMOS force field has been parametrised using a pair-wise Lennard-Jones type interac¬

tion function for the van der Waals interactions

**V)= S ^-% C49)

pairs«,/ u u

with C12, and Q, dependent on parameters Cnk and Cek specified for all types of atoms, using

geometric combination rules25

Ci2,7 = JCn.Cn, (1-50)

C6„ = y/C6lC6j (1.51)

and a Coulombic term representing electrostatic interactions

yc(r)= y _^L_L (1.52)

pairs ij
7
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where eo is the dielectric permittivity of vacuum, £1 the relative permittivity of the medium

in which the atoms are embedded and qk the partial charges of the atoms. The value of ei is

standardly set to 1. In addition to the direct Coulombic interactions, a reaction-field contribution

Vrf{r) to the electrostatic interactions may be calculated, representing the interaction of atom i

with the induced field of a continuous dielectric medium outside a cutoff distance Rrf due to the

presence of atom ß3

n/rf(r)= y W ~sc^\ (1.53)W
f*. ,47te0£i R3f

pairs i,j
v L rf

where

r =

(2ei-2e2)(l+ic/?,/)-e2(id?,/)2
^rf

(e1+2e2)(l+KRrf) + z2(KRrf)2
V' )

and t2 and K are the relative permittivity and inverse Debye screening length of the medium out¬

side the cutoff sphere defined by Rrf, respectively. And finally, a distance-independent reaction-

field contribution, which ensures that the electrostatic energy is zero for atoms separated by a

distance equal to the cutoff distance Rrf

pa£,-,/TO»e' R'f

The forces from the non-bonded interaction term tUnbm{r) = Vu + Ve + 1/rf + Vrfc on atoms

i and j are

ybon = ^^_^+^/J_+^ (L56)
bon

_

I 12C'2.j 6C^j
|
Mj

v
r\j 4 47te0e

fibon = _fnbon^ (1 5?)

and the virial contribution from the atom pair /, j is

1iffon = lr!bon®Tij. (1.58)
J 2

1.2 Equations of motion

If a system of N particles is represented by the (time-independent) Hamiltonian function

#(r,p) = 3Ç(p) + V(r), (1.59)

where $C(p) = X/Li pf/^tm is the kinetic energy of this system and m,- the mass of particle /, its

equations of motion are given as

±r, =
»> (..60)

dt dpi

4, = -^>. (..6.)
dt dvi
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In the special case of a Cartesian coordinate system Equations 1.60 and 1.61 correspond to

Newton's equations of motion

—ti = mjxpi (1.62)
dt

fp,- = ft = -^(r). (1.63,

As the Hamiltonian function #"(r, p) represents the total energy of the system and (in its

time-independent form) its time-derivative is zero

|#(r,p) =

jt (3C(P) + 1>(r)) = 0> (I-«)

the total energy of the system is conserved.

To devise a numerical integration scheme for the equations of motion, several approaches

may be employed. One common technique develops solutions using the Taylor series expansion

of the positions and momenta at t + At about t. Careful consideration of the resulting functional

form allows the time reversal symmetry of the equations of motion to be preserved34"36 and an

accuracy of second order in Ar. A different approach based on an evolution operator formulation

of classical mechanics was formulated in the last decade37'38, also shown in a recent review15.

The equations of motion may be cast in the general form

—x — iLx (1.65)
dt

where x is the phase space vector {r, p} and iL is the Liouville operator given by

./,= {...,#} = £—.—--—— = £ ^ +fr . (1.66)
JT[ \dp« 3r,- drt dpi J £[ \mi 3r/ dp,-J

Equations of type 1.65 have the formal solution

x(t)=exp(ib)x(0), (1.67)

which is the starting point for the derivation of numerical integration procedures. The unitary

operator exp(itt) is the classical propagator and its exponential is defined as a series expansion

exp(iLt) = 1 + ill - -L2t2 +... (1.68)

If the classical propagator can be rewritten as the sum of two parts, iL = iL\ + iLi, such that the

action on x(0) can be evaluated analytically for each part, practical numerical integrators can be

generated. This may be achieved by the following procedure. First, the classical propagator can

be rewritten using the Trotter theorem into

exp{ih) = exp ((iLi + il2)t) = lim ( exp I —— j exp (
-y- J exp I -J- J j . (1.69)
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Then defining t/P = At allows the approximations

exp(iLAt) « exp(iL2At/2)exp(iL]At)exp(iL2At/2) + 0(At3) (1.70)

P

exp(iLPAt) « Ylexp(iL2At/2)exp(iLiAt)exp(iL2At/2) + 0(At2). (1.71)

Finally, with the obvious choices

N
n ?)

^m; dVi

N d
iU. = !>;*-> (L72)

analytical evaluation of the individual parts of the propagator is possible and the velocity Verlet39

integrator is obtained15:

n(t + At) = ri(t)+AtVi(t) + £-ti{t), (1.73)
2m;

Yi(t+At) = V|-(0 + ^-(f/(0+f.-(' + ^))> d-74)
2m;

with the velocity of particle i given as v; = p;/m;. This approach can be easily extended to

treat systems with multiple time scales of motion, as has been shown in methods using reference

system propagation algorithms (RESPA37).
The leap-frog integrator35

rt{t + At) = r,-(r) + v;(f + -A/)A/ + 0(Ar!), (1.75)

\i(t + ^At) = v((r-iA/)+mr'f;A/ + 0(Ar3), (1.76)

can be shown to be equivalent to the velocity Verlet algorithm40,41. As the velocities are known

only at time points intermediate to those where the positions (and thus the potential energy) are

known, they have to be recalculated through

yi(t) = Uyi(t-\M)+yi(t + lAt))+~(fi(t-At)-fi(t + At))- + 0(At4). (1.77)
2 \ 2 2/16 m;

Usually, only the first term of the series is used, as this one is readily available during simulation.

1.3 Biased sampling and free energy determination

Complete conformational sampling of the phase-space of biomolecules is almost never feasi¬

ble, especially as many properties depend upon a balance between specific intramolecular so¬

lute - solute and intermolecular solute - solvent interactions. Then explicit solvent molecules
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are required, increasing the computational costs of a simulation tremendously, due to the much

increased number of interaction pairs, and due to the need of additional averaging over many

solvent configurations.

From Equation 1.1 and Equation 1.4 follows that the expectation value < Q > of a property

Q is, in the canonical ensemble, given by

<Q>= Jq(r,p)PNVT{r,p)drdp. (1.78)

This implies that there are regions of the phase-space which contribute more to the average

of Q than others, according to their probability ifyy7-(r,p), unless there are very many states

with low probability (of which the statistical-mechanical definition of the entropy42^6 provides

a measure: S — kBln(W) with W being the thermodynamic probability of the macro-state, i.e.

the number of micro-states by which the macro-state may be realised). Therefore, it seems

possible to devise methods to sample only the more relevant parts of the vast phase-space, thereby

increasing the efficiency of the simulation. From the various possible ways18'47 to enhance

searching or sampling of phase-space, only methods using molecular dynamics will be discussed

here.

First, it is important to determine the degrees of freedom necessary to be present explicitly

during the simulation. If it is possible to treat subsets of the degrees of freedom present in an

effective, averaged way, the cost of a simulation might be reduced significantly. If molecules or

molecular fragments can be treated as single particles or beads, whose motion is simulated using

a simple force field describing inter-bead interactions with a smooth and short-ranged interaction

energy function, the efficiency can be orders of magnitude higher than that of corresponding

atomistic level simulations, at the expense of the loss of atomic detail and some accuracy48"52.
Such a reduction of degrees of freedom from an atomistic level model is called coarse-graining.

Details of the implementation of a recently proposed coarse-grained model53 are given in Section

2.4.2, "Coarse-grainedsimulation".

Often, it may be of interest to fix a subset of degrees of freedom to specified values and only

evolve the remaining degrees of freedom according to the equations of motion. This constraining

of N- degrees of freedom can be introduced into the Hamiltonian of a system using Lagrange's

method of undetermined multipliers

#(r,p) = 3C(p) + ^(r) + X Xk8k(r) (1.79)
k=l

with

gk(T)=qk(r)-q°k=0, (1.80)

where for holonomic constraints the microscopic observable qk only depends on the particle

positions r and g° is the ideal constraint value. This additional term in the Hamiltonian leads to



1.3. Biased sampling and free energy determination 13

the constraint forces

fConstr = _^Xkd_gk{rh (L81)
k=\

Bri

and the Lagrange multipliers can be determined by enforcing the new position to satisfy the

constraint condition (Equation 1.80)

rt(t + At) = r?nconstr(t + At) + tm7]At2fcionstr{t)
g(r(t + At)) = 0

The positions rfncrmxtr(t + At) are the unconstrained positions, obtained by a (leap-frog) integra¬

tion step only using the unconstrained forces

dr;

A well known example using this approach to introduce distance constraints (and bond-angle

constraints) into molecular dynamics simulations is the Shake algorithm54. A variant of this

algorithm to constrain dihedral angles is given in Section 6.6.2.

If two macro-states of a system can be distinguished by a different value of < Q >v where

the index s indicates averaging over all micro-states belonging to the corresponding macro-state,

< Q > is called an order parameter of the transition from one state to the other. An order pa¬

rameter is distinct from a reaction (or transition) coordinate, as it does not describe a detailed

(microscopic) path from one state to the other, but merely characterises a configuration as be¬

longing to a certain state or a transition. The difference in the Helmholtz free energy A (in the

canonical ensemble)

AS{N,V,T) = -kBTln(Zs(N,V,T)) (1.84)

or the Gibbs free enthalpy G (in the isothermic-isobaric ensemble)

Gs(N,V,T)=As(NXT)+pV = -kBTln(Zs(N,PlT)) (1.85)

with Zy the partition function of state s, between two macro-states a and h is related to the

equilibrium constant Kab = Nb/Na with Na and Nb the number of conformations belonging to

states a or b, respectively, as follows

&Aab = -l/kBTln(Kab). (1.86)

In this manner, a simulation that sufficiently samples both macro-states A and B and also the

transition between those two states can be used directly to determine the relative free energy of

these states (using free energy either for the Helmholtz free energy or the Gibbs free enthalpy,

depending on which ensemble is generated in the simulation). This direct-counting approach

has been used in a extended-Lagrangian scheme called ^-dynamics55 to calculate series of free

energy differences.

(1.82)
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For many cases, the occurrence of a transition between the two states is too infrequent to ap¬

ply direct counting and the transition has to be considered as a rare event. Sampling of rare events

occurring at time scales much longer than the duration of a numerical simulation is only possible

if the transition is forced during the simulation time. This implies some form of interference

with the dynamics of the system. Several approaches are available14. Specifying both the initial

and final state in terms of some order parameter and sampling the trajectories connecting them,

so-called transition path sampling56, may be least intrusive. Recently, an improvement of the

method for rate constant calculation called transition interface sampling has been introduced57

and reviewed58.

The free energy difference of two states may also be obtained by calculating the work neces¬

sary to get from state a to state b59

AAah = Wab = jTV^(r,p)\ dr. (1.87)

As the Helmholtz free energy as well as the Gibbs free enthalpy are state functions and therefore

path independent, one is free to choose any order parameter of the transition to define a path from

a tob

Wah = fQb/^tt(r,p)\ dq, (1.88)

where <
... >a means the ensemble (or time) average of a system with a constrained microscopic

observable q. If the system contains other constraints than the constrained order parameter defin¬

ing the transition path, Equation 1.88 contains additional correction factors60.

If the two states are not distinguished by an order parameter but rather by a different Hamilto¬

nian a similar approach may be taken. First, a transition path leading from Hamiltonian ^ of

state a to the Hamiltonian ty °f state b is defined

#(r,p,X) = (1 -X)^(r,p) + W&(r,p), (1.89)

using a coupling parameter A,61'62. Setting X = 0 corresponds to state A, while a X value of

1 represents state B. At intermediate A,-values the Hamiltonian is a linear combination of the

two states. Using either Equation 1.84 or Equation 1.85 yields the thermodynamic integration

formula

M^^^M^. (1.90)

The free energy difference can now be calculated numerically by changing A, during one simula¬

tion (or many short simulations63-65) or by numerically integrating over the ensemble averages

obtained at different A.-values using many simulations.

A general improvement of the searching properties of a molecular dynamics simulation may

be achieved by the local elevation technique66. The technique of conformational flooding is

based on the same idea67 and the so-called meta-dynamics method is basically another form
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of local elevation68'69. The local elevation method improves sampling by adding a memory-

dependent repulsive potential energy term to the interaction function, which penalises re-visiting

of conformations encountered before. To determine whether a conformation has been visited

before, it is (coarsely) represented in terms of dihedral angles, but the method may be formulated

using other degrees of freedom as classification criterion as well. Due to combinatorial explosion,

enhancing the sampling is limited to a relatively small set of dihedral angles. In Chapter 7 a new

method to use the local elevation technique in biomolecular structure refinement is introduced.

Sampling may be substantially enhanced, without introducing any (non-dynamical) bias, us¬

ing the replica-exchange method70"72 (or a closely related method developed independently73).
The replica-exchange method is also known as multiple Markov chain method74 and parallel

tempering75. Details of the method can be found in recent reviews76'77 and its implementation

into GROMOS is given in Section 2.4.2, "Replica-exchange simulation ". In the method, a number

of non-interacting replicas of the original system are propagated at different temperatures (or us¬

ing different Hamiltonians), either by Monte Carlo or molecular dynamics simulation methods78.

Every few steps, pairs of replica may be interchanged, with an exchange probability related to

their difference in potential energy. The method has been widely applied, including applica¬

tions to the polypeptide folding problem79"86. However, as the number of degrees of freedom

of the system increases, the required number of replicas also greatly increases, which reduces

the efficiency of the method substantially when large systems are simulated. A combination of

the replica-exchange method with generalized ensemble algorithms, which might alleviate this

problem, has been reviewed recently87.

1.4 Deterministic chaos

In the past decades a large amount of publications and books were written on the topic of chaos

and nonlinear dynamics. For this introduction, some were considered especially helpful88"90.
Chaos originally meant the infinite empty space which existed before all things, which during

the Roman era changed to mean the original crude shapeless mass into which the Architect

of the world would introduce order and harmony. Modern usage of the term chaos denotes a

state of disorder and irregularity. Classical mechanics are deterministic. One would think that

deterministic equations of motion lead to a regular behaviour of the system in time. But already

at the beginning of the century, Poincaré discovered that certain mechanical systems governed

by Hamilton's equations of motion could display chaotic motion91.

// we knew exactly the laws of nature and the situation of the universe at the

initial moment, we could predict exactly the situation of that same universe at a

succeeding moment. But even if it were the case that the natural laws had no longer

any secretfor us, we could still only know the initial situation approximately. If that

enabled us to predict the succeeding situation with the same approximation, that is
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all we require, and we should say that the phenomenon had been predicted, that it

is governed by laws. But it is not always so; it may happen that small differences

in the initial conditions produce very great ones in the final phenomena. A small

error in theformer will produce an enormous error in the latter. Prediction becomes

impossible, and we have the fortuitous phenomenon.
— Henri Poincaré92

Still, over half a century passed until with the discovery by Edward Norton Lorenz (born

1917) the phenomenon became more than a mere curiosity. Lorenz found that even a simple

set of three coupled, first order, nonlinear differential equations can lead to completely chaotic

trajectories93, hence deterministic chaos. Lorenz called this sensitive dependence on the initial

conditions the butterfly effect, because the outcome of the equations, which, in a crude way,

describe the flow of air in the earth's atmosphere, could be changed by a butterfly flapping its

wings.

Introduction of the notion of chaos has impact on many areas of physics. An interesting ex¬

ample is the connection between chaotic dynamics and statistical mechanics. The second law of

thermodynamics (jj^S > 0 for isolated systems) leads to irreversibility. This poses a significant

problem to classical physics, as irreversibility implies a preferred direction of time (for a macro¬

scopic system). But the laws of classical dynamics do not change when the direction of time is

reversed. Ludwig Eduard Boltzmann (1844 - 1906) proposed a statistical model which accu¬

rately predicts macroscopic values of thermodynamic quantities and explained irreversibility on

a simple model system, albeit relaying on a (statistical) assumption94 (a similar but mathema¬

tically simpler treatment is provided by Baker95). The assumption necessary in Boltzmann's

treatment may be explained physically and for simple cases even proven through the introduc¬

tion of chaotic dynamics. A simple way to proceed from simple statistical assumptions to the

laws of thermodynamics was proposed in 1928 by Gilbert Lewis and Joseph Mayer96'97.
Boltzmann's assumption states that in a dilute gas, where only binary collisions occur (to

simplify the mathematics, not strictly necessary), there should be molecular chaos. Molecular

chaos (also referred to as "Stosszahlansatz") is defined as a loss of correlation between positions

and velocities. One can think of molecular chaos represented by a macro-state corresponding to

an average over nonessential or unmeasurable micro-states. To introduce molecular chaos into

the simple model of a dilute gas, he assumed that after collisions particles loose all memory of

their previous velocities. Therefore, velocity and position become uncorrelated with each other,

and knowledge only of the distribution of velocities remains. This assumption also contains an

implicit reference to the sequence of events (collisions) and in that manner direction of time, and

with that it explains irreversibility in Boltzmann's statistical model.

With the discovery of chaotic behaviour it was possible to show for a hard sphere gas that

the trajectories of particles with only small differences of initial positions diverge exponentially

with time (on average)98, making a prediction of the trajectories impossible. Therefore, chaotic
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dynamics may provide a mechanism for justifying statistical mechanics.

With the link between chaotic dynamics and statistical mechanics established, the predictive

powers of molecular dynamics simulations stand to question. As long as a simulation of a true

macro-state (containing a large number of micro-states) is impossible, a thoughful selection of

initial states seems mandatory to obtain trajectories that represent a physical situation, because

this selection will determine the subspace of phase space that is sampled. Often, it can be shown

that a specific property of interest converges to the same value over a simulation, even if different

initial conditions are used.

On the other hand, chaotic behaviour may lead to mixing (correlation functions decay to zero

in the infinite time limit), which in turn assures quasi-ergodicity (phase space averages can be

replaced by time averages).

Chaotic dynamics do not necessarily contradict Pierre-Simon de Laplace's (1749 - 1827)

view of causal determinism99-100 (and translated101). Problematic is rather whether it is possi¬

ble to determine all properties of any given state perfectly, which is necessary for a long-term

prediction, or just approximately. This was expressed in 1860 by James C. Maxwell (1831 -

1879)102.

It is a metaphysical doctrine thatfrom the same antecedents follow the same conse¬

quents. No one can deny this. But it is not much use in a world like this, in which the

same antecedents never again concur, and nothing ever happens twice.

The physical axiom which has a somewhat similar aspect is "that from like an¬

tecedentsfollow like consequents". But here we have passedfrom sameness to like¬

ness, from absolute accuracy to a more or less rough approximation. There are

certain classes ofphenomena, in which a small error in the data only introduces a

small error in the result, the course ofevents in these cases is stable. There are other

classes ofphenomena which are more complicated, and in which cases instability

may occur, the number of such cases increasing, in an extremely rapid manner, as

the number ofvariables increases.

— James Clark Maxwell
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1.5 Outline

In Chapter 2 an overview of the next version of GROMOS: GROMOS05 will be given, with

special emphasis on MD++, the new MD-engine written in C++. MD++ has been written with

special attention to modularity and simplicity. This eased the implementation of the algorithms

proposed in subsequent chapters tremendously.

The next chapter will provide a review of the various searching and sampling methods avail¬

able today, providing an introduction to the sampling techniques used in Chapter 4, 5, 6 and

7. Specifically, in Chapter 4 the residual influence on entropy of elevated temperature in the

history of any replica in the replica-exchange method will be investigated, and in Chapter 5 a

combination of coarse-graining and fine-graining using the replica-exchange method to improve

sampling will be presented.

Sampling restrained to a transition path in between two states, but without restraining the end-

states themselves is the focus of Chapter 6. Restraints have also been used to keep properties

in a simulation close to experimental values as is done in biomolecular structure refinement.

Restraining the simulation but also enhancing sampling as long as the restraints are not fulfilled

yet seems to be important to satisfy 3/-value restraints. A combination of local-elevation with

7-value restraining accomplishing this will be shown in Chapter 7.

Finally, in the next two chapters a fast, but approximate way of using constraints, with added

flexibility, instead of restraints is introduced and the free energy differences of a change from

water to methanol using either a (hard) constrained or a flexible constrained or a fully flexible

(similar to restrained) model for the bonds between the atoms are compared.

At last, the thesis will be concluded by a short outlook.
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Chapter 2

The Gromos software for biomolecular

simulation: GromosOS

2.1 Summary

The latest version of the Groningen Molecular Simulation program package, GROMOS05 is pre¬

sented. It has been developed for the dynamical modelling of (bio)molecules using the methods

of molecular dynamics, stochastic dynamics, and energy minimisation. An overview of GRO-

MOS05 is given, highlighting features not present in the last major release, GROMOS96. The

organisation of the program package is outlined and the included analysis package GROMOS++

is described. Finally, some applications illustrating the various available functionalities are pre¬

sented.

27
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2.2 Introduction

Starting with GROMOS80, the Gromos program package has been developed over the past 25

years to facilitate research efforts in the field of biomolecular simulation in a university envi¬

ronment. The Gromos software was and is meant for use in a scientific environment, which

may be characterised by a continuously changing flow of users, who either wish to investigate
and implement new simulation algorithms or intend to carry out applications of simulation in a

variety of fields, ranging from polymers, glasses and liquid crystals to crystals and solutions of

biomolecules (proteins, nucleic acids, saccharides and lipids). To this purpose Gromos has been

developed based on the following principles: (/) transparency of the code, making modifications

easy, (ii) modular architecture, so that only parts of it need be modified for the implementation

of new functionalities designed by users, (Hi) independence of the simulation code and the force

field, and (iv) independence of the simulation code and the computer hardware.

Figure 2.1: Distribution of GROMOS licences.

The major releases of the GROMOS software are GROMOS871'2 developed at the University
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of Groningen, Gromos963,4 developed at ETH Zürich, and now GROMOS05. GROMOS has

found widespread use (hundreds of licences in over 57 countries on all continents except Antarc¬

tica, see Figure (2.1)), triggered by the fact that it has been designed for ease of extendability

and that the complete source code is made available to research establishments for a nominal

fee5. The program code has been further developed in the group for computational chemistry

at ETH Zürich (Switzerland) throughout the recent years, leading now to a new major release,

GROMOS05. The enhancements were governed by the following criteria: (1) interest of our

research group6, (2) ease of use, (3) extendability, (4) demonstrated usefulness or efficiency

of new methods, (5) well-defined and correct formulae and algorithms, and (6) computational

efficiency. The second critérium led to a complete rewrite of the setup and analysis tools, now

contained in the GROMOS++ setup and analysis subpackage, written in C++. The third critérium

led to a rewrite in C++ of the MD engine, the part that carries out molecular dynamics (MD) or

stochastic dynamics (SD) simulations as well as energy minimisations (EM), into a new program

called MD++. In parallel, the original FORTRAN version of the MD engine, PROMD, was further

developed to introduce many new features (some of which are not yet available in MD++). On

the long term (beyond GROMOS05), MD++ will entirely replace PROMD.

In the next sections the main features of GROMOS05 are described. In Section 2.3 new

functionalities with respect to GROMOS96 are highlighted and in Section 2.4 follows the algorith¬

mic description of selected new functionalities. In Section 2.5, the organisation of the code is

discussed and an overview of the programs present in the GROMOS++ analysis subpackage is

provided. In Section 2.6, examples of applications are reported for some of the newer features.

Section 2.7provides a summary and conclusions.

In this thesis the focus is on the features and implementation of MD++, more details regard¬

ing PROMD are provided elsewhere7.

2.3 Overview of functionalities

Here, the main features of the two MD engines available in GROMOS05, PROMD and MD++

are described. These two programs share most of the basic functionalities, but still differ in a

number of aspects.The FORTRAN MD engine (PROMD) retains all features of the GROMOS96

release and adds a number of new functionalities. The C++ MD engine (MD++) contains most

of the GROMOS96 features (except four-dimensional and path integral simulations), a subset of

the new functionalities recently introduced into PROMD (since the GROMOS96 release), and

some new features of its own.

A non exhaustive list of the features included is:

• Molecular dynamics (MD), stochastic dynamics (SD) simulation and energy minimisation

(EM; steepest descent or conjugate gradient);
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• Periodic boundary conditions (vacuum, rectangular, truncated octahedral or triclinic compu¬

tational box; possibility of performing multiple-unit-cell simulations);

• Temperature control (constraining, weak coupling, Nosé-Hoover or Nosé-Hoover chain;

possible coupling of different subsets of degrees of freedom to separate temperature baths);

• Pressure control (weak coupling or Andersen-Parrinello-Rahman: isotropic, partially an¬

isotropic and fully anisotropic coordinate scaling; atom-based or group-based pressure

definition);

• Long-range electrostatic interactions: straight cutoff truncation, truncation with Poisson-

Boltzmann reaction field (RF) correction and lattice-sum (LS; PROMD only; details provi¬

ded elsewhere7) methods, including Ewald summation and particle-particle-particle-mesh

(P3M);

• Charge-group based or atom-based cutoff for the non-bonded interactions;

• Grid based pairlist construction;

• Non-physical interactions: atom-position, atom-distance, dihedral-angle, NOE and J-value

restraints as well as atom-position and atom-distance constraints (SHAKE, M-SHAKE,

LINCS), hidden (distance and dihedral angle) restraints (see Chapter 6) and adaptive (J-

value) restraints (see Chapter 7);

• Enhanced sampling: local elevation MD, replica exchange MD (REMD), multigraining

(see Chapter 5) and umbrella sampling;

• Calculation of free energy changes based on the coupling parameter (X) approach using

thermodynamic integration, slow-growth or one-step perturbation, possibly including soft¬

core nonbonded interactions;

• Path integral simulation (Promd only);

• MPI and OMP parallelisation;

A number of the new features introduced in GROMOS05 are discussed in Section 2.4.2. Pre¬

existing features have been described in details elsewhere3'4. The functionalities of the pre- and

post-processing programs contained in GROMOS++ are discussed in Section 2.5.3. A complete

description of the available features will be included in the new Gromos manuals.



2.4. Algorithms 31

2.4 Algorithms

2.4.1 MD algorithm

The complete MD algorithm based on the leap-frog scheme as implemented in GROMOS is the

following3. Given initial atomic positions and velocities, which satisfy any given geometrical

constraints:

1. Save positions (reset atomic coordinates into the reference computational box in case of

periodic boundary conditions) and velocities for later analysis.

2. Remove centre of mass motion (if required).

3. Calculate (unconstrained) energies, forces and virial contribution from the potential energy

function (using the nearest image convention in case of periodic boundary conditions).

Save these.

4. Enforce any given position constraints by resetting the forces and velocities of positionally

constrained atoms to zero.

5. Update the velocities using the leap-frog scheme.

6. Apply temperature coupling (constraining, weak coupling, Nosé-Hoover or Nosé-Hoover

chain) by scaling the atom velocities.

7. Update the positions using the leap-frog scheme.

8. Enforce distance constraints (using SHAKE, M-SHAKE or LINCS) both for positions and

velocities, and calculate the corresponding forces and virial contribution. Save these.

9. Calculate the kinetic energy and temperature (possibly on the basis of separate subsets of

degrees of freedom).

10. Calculate the pressure (atom-based or group-based pressure definition).

11. Apply pressure scaling (weak coupling or Parrinello-Rahman) by scaling atomic positions

(isotropic, partially anisotropic or fully anisotropic scaling).

12. Update the coupling parameter X for (free energy) simulations involving X changes (slow

growth).

13. Calculate total energies, averages and fluctuations. Save these.

This sequence is repeated for the required number of simulation steps.
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2.4.2 New features

Spatial boundary conditions

Spatial boundary conditions are defined by the shape, size and orientation of the simulated sys¬

tem, and the nature of the boundary to its surroundings. The GROMOS05 implementation (both

PROMD and MD++) admits four types of boundary conditions: (/) vacuum boundary conditions;

(ii) periodic boundary conditions based on a rectangular box; (Hi) periodic boundary conditions

based on a truncated-octahedral box; (iv) periodic boundary conditions based on a triclinic box.

In the three latter cases, the system is confined to a (reference) computational box that is sur¬

rounded by an infinite number of periodic copies of itself.

When periodic boundary conditions are applied, the shape, size and orientation of the compu¬

tational box must be defined. For rectangular and triclinic periodic boundary conditions, this is

done by specifying the three edge vectors a, b and c (defining a right-handed coordinate system)

of the reference computational box. For a truncated-octahedral box, these vectors correspond

instead to the edges of the cube based on which the truncated octahedron is constructed. In

practice, the three vectors are specified by their lengths a, b and c, the box angles a (between

a and b), ß (between a and c) and y (between b and c) they define among each other (all in the

range ]0;jt[), and the three Euler rotation angles <|>, 9 and \|/ (the two former ones in the range

] — 7u;7t], the latter one in the range [—n/2;n/2]) characterising the orientation of the box relative

to the reference right-handed Cartesian coordinate system (ex,ey,ez). To define the Euler angles,

the three edge vectors are used to define a box-linked right-handed Cartesian coordinate system

(ey,ey,ez/) in the following way: (!) the x'-axis is chosen along and in the direction of a; (ii) the

/-axis is chosen orthogonal to a in the plane defined by a and b, and oriented in the direction

of b; (///) the z'-axis is chosen orthogonal to both a and b, and oriented in the direction of c.

The reference coordinate system can be rotated onto the box-linked coordinate system by the

following series of rotations: (/) a rotation by an angle § around the z-axis; (ii) a rotation by an

angle 6 around the new y-axis; (Hi) a rotation by an angle \j/ around the new x-axis. The angles

<)), 0 and \\f thus represent the three Euler rotation angles in a zyx or yaw-pitch-roll convention.

The use of a rectangular or truncated-octahedral box requires a = ß = y = n/2 and is restricted

to non-rotated boxes with <|) = 0 = \|/ = 0. The use of a truncated-octahedral box also requires

a = b = c. In the case of vacuum boundary conditions, the system is non-periodic, and a, b and

c need not be specified.

Based on a general triclinic box in an arbitrary orientation, the position of an atom may

be specified through coordinates r = (x,y,z) within the reference Cartesian coordinate system

(ex,ey,ez), or through oblique fractional coordinates x = (u,v,w) with reference to the box-edge

vectors. The two types of coordinates are related by

r = Lx, (2.1)

where the matrix L contains the components of a, b and c in the reference Cartesian coordinate
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system as its columns. The box volume is

V = |L| . (2.2)

This matrix can be decomposed as

bx cx \

ay by cy — RS, (2.3)

*z bz cz /

where the orthogonal transformation matrix R (rotation between reference and box-linked Carte¬

sian coordinate systems) is given by

(cos0cos<))
sin\|/sin0cos()) —cos\|/sin<|) cosysin0cos(|)-l-sin\j/sin<|) \

cos0sin(|) sinysin0sin()) + cosvj/cos<j) cos\)/sin0sin(|) — sin\j/cos<|) , (2.4)

-sin0 sin\ycos0 cos\)/cos0 /

and the transformation matrix S (between box-linked Cartesian coordinates and oblique frac¬

tional coordinates) is given by

a /?cosy ccosß \

0 èsiny csinßcosö , (2.5)

0 0 csinßsinö /

with

_
cos a - cos ß cos y

cosö=
, „ , ,

8e0;it . (2.6)
sinßsiny

As shown by Bekker8, a simulation performed in a truncated-octahedral box can equivalently

be performed in a special type of triclinic box, by applying an appropriate coordinate transfor¬

mation. A possible choice for the edges a,, b, and ct of the transformed triclinic box is

a, =a , b, = (l/2)(a + b + c) and c, = (l/2)(-a-b + c) . (2.7)

The corresponding box-edge lengths, box angles and Euler angles are at = a,bt = ct = (y/3/2)a,
a, - acos(-l/3) « 109.5", ßf = acos(~l/^3) « 125.3°, y, = acos(l/V3) « 54.8°, fy = Bt = 0,

and \|/f ~ 45". The mapping of atomic coordinates within a truncated-octahedral box to atomic

coordinates within the transformed triclinic box is performed by applying shifts along the af, ht

and cf vectors. This formalism is applied for the generalisation of grid-based pairlist algorithms

(see Pairlist construction) and lattice-sum electrostatics (details elsewhere7) to truncated-octahe¬

dral boxes. Because the truncated-octahedral case can always be mapped to the triclinic case,

subsequent sections will only discuss the case of the triclinic box.
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Multiple-unit-cell simulations

Within the GROMOS05 implementation (both PROMD and MD++), it is possible to simulate a

periodic computational box (rectangular or triclinic only) consisting of multiple periodic copies

of a smaller unit cell (referred to here as subcells). This option may be useful when trying to

simulate a single unit cell of a crystal that is too small to allow for the application of a reasonably

large cutoff value. The number of subcell boundaries along the three box-edge vectors a, b and

c are Ma, Mb and Mc, so that the total number of subcells IsM = Ma-Mb-Mc.

In MD++ only a single subcell is simulated. Just for the non-bonded interaction calcula¬

tion the subcell is multiplied to construct the full reference cell. Energies, forces and virial

contributions need only be calculated for atoms inside this reference subcell, but these atoms are

interacting with all other atoms in the full cell. Because of that, less (non-bonded and covalent)

interactions than in the full reference cell simulation have to be calculated and the positions (and

velocities) in the subcells are always exactly periodic.

Note that the removal of the center of mass motion (see Section 2.4.2, "Rigid-body motion "),

whenever required, is applied to charge groups and solvent molecules gathered in the individual

subcells.

Rigid-body motion

The laws of classical mechanics lead to two conserved quantities (besides the total energy): (/)

the linear momentum p^. of the system, and (ii) the angular momentum hsys of the system

around its center of mass. In simulations under periodic boundary conditions, the two quantities

refer to the infinite periodic system. However, in this case, if the linear momentum pbox of the

computational box is also conserved, the corresponding angular momentum hbox is not (because

correlated rotational motions in two adjacent boxes exert friction on each other, leading to an

exchange of kinetic energy with the other degrees of freedom of the system). Furthermore, the

quantity LVJi. must vanish (because overall uniform rotation of the infinite periodic system would

lead to non-periodic centrifugal forces). When SD is applied instead of MD, the presence of

random and frictional forces couple the system (or box) linear and angular momenta with the

other degrees of freedom of the system, so that these quantities are no longer conserved. The

inclusion of special (unphysical) forces, such as atom-position restraining or constraining forces

on a subset of atoms in the system, may also lead to non-conservation of these quantities. The

above observations9 are summarised in Table 2.1.

The physical properties of a molecular system are independent of psys (or pi}OX). However, for

MD simulations under vacuum boundary conditions, they depend on L,^, because the rotation

of the system leads to centrifugal forces. For these reasons, in the GROMOS05 implementation,

the constraint psys = 0 (or pbox = 0) may be imposed at each timestep throughout any simu¬

lation. In addition, the constraint Lsys = L"yv, where L^ is a user-specified reference value,

may be imposed throughout any MD simulation (Promd only), or L.VJ.V may be constrained to
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method boundary psys phox LS7,. Lbox Nr

MD vacuum conserved conserved 6

MD periodic infinite conserved zero coupled 3

SD vacuum coupled coupled 0

SD periodic infinite coupled zero coupled 0

Table 2.1: Properties ofmomenta associated with rigid-body motions in MD or SD simulations

under vacuum or periodic boundary conditions. The quantities considered are: psys and pbox

(linear momentum of the overall system and the computational box), Lsys and Lbr)X (angular

momentum of the overall system and the computational box), and Nr (number of uncoupled

degrees offreedom associated with rigid-body motions).

0 (MD++), under vacuum boundary conditions. These two constraints will in particular prevent

the progressive accumulation of kinetic energy into the uncoupled degrees of freedom due to

applying a thermostat by velocity scaling (see Section 2.4.2, "Instantaneous temperature and

pressure") and numerical errors, giving rise to the well-known (and quite unpleasant) "flying ice

cube problem"9"11. As an alternative, in MD++ roto-translational constraints12 may be applied

to the solute molecule(s) during the simulation.

Instantaneous temperature and pressure

The instantaneous observables T and T, the time averages of which determine the system macro¬

scopic temperature T and pressure tensor P, are not uniquely defined9'13-16. Acceptable alter¬

native definitions differ by any quantity with a vanishing equilibrium average. Note, however,

that the corresponding equilibrium fluctuations depend on the specific definition chosen for the

instantaneous observable.

In the GROMOS05 implementation (both PROMD and MD++), the instantaneous tempera¬

ture T is defined using the (atom-based) internal kinetic energy of the system, as9

r=-^-JC, (2.8)
kBNdf

where kß is Boltzmann's constant, N^t the number of internal (unconstrained) degrees of free¬

dom of the system and % its instantaneous internal kinetic energy. The word "internal" is used

here to exclude possible contributions from the degrees of freedom that are "external", i.e. un¬

coupled from the system in terms of kinetic energy exchange17. In MD simulations, these are the

degrees of freedom associated with the system (or box) rigid-body translation and, under vacuum

boundary conditions, system rigid-body rotation (see Section 2.4.2, "Rigid-body motion"). The

number of internal degrees of freedom is thus calculated as three times the total number Af of
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atoms in the system, minus the number Nc of geometrical constraints, minus the number Nr of

external degrees of freedom (2.1), i.e.

Ndf=3N-Nc-Nr. (2.9)

The instantaneous internal kinetic energy is defined as

3C=^I>/r?, (2.10)

where the internal (also called peculiar) velocities r, are obtained from the real atomic velocities

f" by excluding any component along the external degrees of freedom (it is assumed that the

velocities rf are already exempt of any component along possible geometrical constraints). Due

to the constraints imposed in the GROMOS05 implementation on the system total linear and

angular momenta (see Section 2.4.2, "Rigid-body motion"), the internal velocities only differ

from the real ones when MD is applied under vacuum boundary conditions with a non-zero

angular momentum. In this case, one has

r/ = r?-lä(OL^x(r?-r£M), (2.11)

where x"cu is the (constant) coordinate vector of the system center of mass, L"
.
the (constant)

system angular momentum about the CM, and Iq^ is the (configuration-dependent) inertia tensor

of the system relative to the CM. The latter quantity is defined as

ïcM(r°) = i^(rf-r^)®(rf-r^M), (2.12)
«=i

where a <g> b denotes the tensor with elements p, v equal to a^by.
In the GROMOS05 implementation (both PROMD and MD++), the instantaneous pres¬

sure tensor !P is related to the group-based virial and group-based internal kinetic energy ten¬

sor of the system. The word "group-based" refers to a pressure definition excluding virial

and kinetic-energy contributions within user-specified groups of (covalently-finked) atoms15, l6.

These groups will be referred to as virial groups. Single atoms can be used as virial groups, in

which case an atom-based pressure definition is recovered. The average pressure is not affected

by the specific choice of groups, but the pressure fluctuations are. In practice, atom grouping
is used to reduce these fluctuations. The pressure is only calculated for systems under peri¬

odic boundary conditions. Note also that the contribution of special (non-physical) forces (e.g.

atom-position or atom-distance restraining) to the pressure is not included.

The instantaneous atom-based pressure tensor is computed as

ft = %)(!£-%?) (2-13)
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where

3Ç = \ttmiii®ti, (2.14)

and

^ = *l|^ (2-15)

are the instantaneous atom-based internal kinetic energy and virial tensors, V and U being the

instantaneous volume and total potential energy of the system, L the matrix defined by Equa¬

tion (2.3) and r, the internal velocities introduced above. The corresponding isotropic (scalar)

quantities are related to the tensor quantities through

3C*=Tr[3Ç*], W*=Tr[W*] and T = (l/3)Tr[£*] , (2.16)

where Tr returns the trace of a matrix, JC is equivalent to % in Equation (2.10) and W* is

defined as

^=^w <2-17)

It is possible to show that18'19: (i) the contribution to the atom-based virial tensor of a po¬

tential energy term that solely depends on the scalar products or determinants defined by a set

of interatomic vectors is symmetric; (ii) the contribution to the atom-based virial tensor of a

potential energy term that solely depends on the angles defined by a set of vectors is (in ad¬

dition) traceless. The first observation implies that all covalent (bond-stretching or constraint,

bond-angle bending, proper and improper dihedral-angle) and pairwise non-bonded force-field

terms lead to a symmetric contribution to the atom-based virial. The second observation implies

that covalent bond-angle bending as well as proper and improper dihedral-angle (but not bond-

stretching or constraint and pairwise non-bonded) terms lead to a traceless contribution to the

atom-based virial (i.e. no contribution to the scalar atom-based pressure). However, these results

are generally not valid for the corresponding group-based tensor (see below).

In the special case of a pairwise-additive interaction term Up depending on minimum-image

interatomic distances and without explicit dependence on the box dimensions (bond-stretching or

constraint and pairwise non-bonded terms; but not reciprocal-space lattice-sum interactions15'16),

Equation (2.15) leads to a virial contribution

^ = 4£Ir/v7®r/y (2-18)
i j>i

where r(J — r, — r, is the vector connecting j to /, r,-y the corresponding minimum-image vector

and Fpjj the pairwise force exerted by atom j on atom i. This equation is easily generalised

to interaction terms involving more than two atoms (bond-angle bending, proper and improper
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dihedral- angle terms; see Section 1.1). The atom-based virial contribution of all covalent (in¬

cluding bond constraints) and non-bonded (excluding reciprocal-space lattice-sum inseractions)

terms is calculated using Equation (2.18) or one of its generalisations.

The GROMOS05 implementation (both PROMD and MD++) includes the possibility of us¬

ing a group-based pressure definition (corresponding to any arbitrary repartition of subsets of

covalently-linked atoms into virial groups ), instead of the atom-based one. In this case, the

intra-group contribution to the kinetic energy as well as the contribution of intra-group forces to

the virial are removed from the pressure definition (which affects the fluctuations of this quan¬

tity, but not its average value). As shown elsewhere15,16 (the equations reported therein should

be altered by halving the virial and replacing r,-y by -r/y* to match the present conventions), the

group-based virial tensor can be calculated from the corresponding atom-based tensor by adding

a simple correction term which depends on the overall atomic forces and on the submolecule

definitions. More precisely, the group-based virial tensor is given by

W/=W>* + I]TF/a®d/a, (219)
1

la

where /a denotes atom a in the virial group /, F/a the overall force on atom la, and d/« the co¬

ordinate vector of atom la relative to the center of mass of the gathered virial group / containing

this atom. The "gathered" representation of the virial group is generated by following the atoms

as they drift throughout the periodic system. The group-based pressure tensor is then calculated

as

where JC is the group-based internal kinetic energy tensor, defined as

1 Ns (N»(I) \
_1

fNa(f) \ (Na(l) \

K =

ö I Imi) Xmiti ® Imiti > (2-21)
11=\ \a=\ J \a=\ J \a=l /

where Ns is the number of submolecules and Na(I) the number of atoms in submolecule /.

Although the atom-based pressure tensor ft is typically symmetric, this is generally not

the case for the group-based pressure tensor fP (although the anti-symmetric contribution to this

tensor should vanish upon time averaging). When applying a barostat algorithm (see Barostat

algorithms), the antisymmetric component of fB_ should induce an overall rotation of the compu¬

tational box (which would alter the box angular momentum), while the symmetric component

results in a deformation of the box (which conserves the box angular momentum). In practice, the

overall rotation of the box is rather a nuisance, and is avoided by symmetrising the tensor (fP —>

(l/2)[y + /y]) prior to application of the barostat algorithm20, where the "t" pre-superscript

indicates the transpose of the matrix.



2.4. Algorithms 39

Thermostat algorithms

MD simulation relies on integrating the classical (Newtonian) equations of motion for a molecu¬

lar system and thus, samples a microcanonical (constant-energy) ensemble by default. However,

for compatibility with experiment, it is often desirable to sample configurations from a canonical

(constant-temperature) ensemble instead. A modification of the basic MD scheme with the pur¬

pose of maintaining the temperature constant (on average) is called a thermostat algorithm .
Note

that in contrast, SD automatically generates a canonical ensemble, at a temperature determined

by the balance between the magnitudes of the random and frictional forces.

In the GROMOS05 implementation (both PROMD and MD++), four different thermostat

algorithms are available: (i) temperature constraining (Woodcock thermostat21); (ii) temper¬

ature relaxation by weak-coupling (Berendsen thermostat22); (Hi) temperature relaxation by

an extended-system method (Nosé-Hoover thermostat23-24); (iv) temperature relaxation by the

Nosé-Hoover-chain thermostat25. In all cases, the instantaneous temperature T is calculated

as described in Section 2.4.2, "Instantaneous temperature and pressure", and relaxed towards a

temperature T0 associated with the heat bath to which the system is coupled. The three latter algo¬

rithms also involve the specification of the characteristic time X for this relaxation. All the above

thermostat algorithms rely on a scaling of the atomic velocities after each integration timestep.

This scaling should only operate on the internal velocities, excluding any component along the

external degrees of freedom (Section 2.4.2, "Instantaneous temperature and pressure"). Due

to the constraints imposed in the GROMOS05 implementation on the system total linear and

angular momenta (Section 2.4.2, "Rigid-body motion"), the internal velocities only differ from

the real ones when MD is applied under vacuum boundary conditions. In this case, the velocity

scaling is applied on the internal velocities r, and the real velocities rf can be recovered through

the inverse of Equation (2.11), namely

*? = r,+£i(OI^x(i?-i^). (2.22)

When simulating molecular systems involving distinct sets of degrees of freedom with ei¬

ther (/) very different characteristic frequencies or (ii) very different heating (or cooling) rates

caused by algorithmic noise (e.g. electrostatic cutoff, application of atom-distance constraints),

the joint coupling of all degrees of freedom to a single thermostat may lead to different effective

temperatures for the different sets of degrees of freedom (due to a too slow exchange of kinetic

energy). A typical example is the so-called "hot solvent - cold solute problem" in simulations of

macromolecules. Because the solvent is often more significantly affected by algorithmic noise

(heating due to the use of an electrostatic cutoff), the coupling of the whole system to a single

thermostat may cause the average solute temperature to be significantly lower than the average

solvent temperature. In the GROMOS05 implementation (both PROMD and MD++), this prob¬

lem may be alleviated by separately coupling different subsets of degrees of freedom (e.g. solute,

counter-ions, co-solvent and solvent) to different independent thermostats.
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The prototype of most isothermal equations of motion is

ri(t)=mr[Fl(t)-y(t)ti(t). (2.23)

The function y(t) controls the heat exchange between the system and the heat bath. A negative

value indicates that heat flows to the system, while a positive value indicates a heat flow in the

opposite direction. Practical implementations of Equation (2.23) rely on the stepwise integration

of Newton's second law (Equation (2.23) with y(t) = 0), altered by the scaling of the atomic ve¬

locities after each iteration step. In the context of the leap-frog integrator26 used in GROMOS05,

this can be written as

ri(t + ^-) = X(t;At)tli(t + ^-) = X(t;At)[ri(t-j)+m;lFi(t)At], (2.24)

where X(t; At) is a time- and timestep-dependent velocity scaling factor. Imposing the constraint

X(t;0) = 1, one recovers Equation (2.23) in the limit of an infinitesimal timestep At, with

dX(t;At)
7(0 <2-25>

d(At)

The Woodcock thermostat21 (also known as temperature constraining thermostat; see also

the Hoover-Evans thermostat27,28) aims at fixing the instantaneous temperature T exactly at the

reference heat-bath value T0, without allowing for any fluctuations. In this case, the quantity

X(t;At) in Equation (2.24) is found by imposing T(t + y ) = jf~T0, leading to

"J

Mt;At) = [J- ^4r]1/2 • (2.26)

where T'(t + y ) is the temperature evaluated from the velocities r'(r + y ) in Equation (2.24).

The corresponding quantity y(t) in Equation (2.23) is given by

y(t) = (gkBT0)-l24ti(t)-Fi{t). (2.27)

Although g = Nm- seems to be the obvious choice, it turns out that g = N^f— 1 is the appropriate

one for the algorithm to generate a canonical distribution of configurations (though obviously not

of momenta) at temperature T09,23'21. The reason is that constraining the temperature effectively

removes one degree of freedom from the system. Note, however, that the absence of kinetic

energy fluctuations may lead to inaccurate dynamics, especially in the context of the microscopic

systems typically considered in simulations.

The Berendsen thermostat22 (also known as weak-coupling thermostat) aims at relaxing the

instantaneous temperature T to the reference heat-bath value T() based on a first-order (weak-

coupling) scheme with a characteristic time xB, i.e. as

<T(t)=TB-1[T0-T(t)]. (2.28)
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In this case, the quantity X(t;At) in Equation (2.24) is found by imposing T(t + y) = T(t -

y ) +iß
'
Atjf- [T0 - T(r - y )], where in principle g = Ndf, leading to

df J

rrr(t^AL) ntJ" ~ ^(l ~ T))
^ 1 /2

X(t;Al) = \I[t 2/+T-'Af-g |V ;

LT(r + T)
e

7'(f + f) J

r ^//f l '/2
- {l+x^A/t^L-l]} • (2.29)

In GROMOS05, the algorithm is implemented following the second (approximate) expression.

For either of the two expressions, the corresponding quantity y(t) in Equation (2.23) is given by

^r^iér11' a30)

In practice, %B is used as an empirical parameter to adjust the strength of the coupling to the heat-

bath. In the limit xB = Af, the Berendsen algorithm is equivalent to the Woodcock algorithm

(and thus generates a canonical distribution of configurations, but not of momenta). In the limit

xB —» oo7 the thermostat becomes inactive and the Newton equation of motion is recovered (which

samples a microcanonical ensemble). However, except in the former limit (and only for the

configurational part), the ensemble generated by the Berendsen equations of motion is not a

canonical ensemble29.

The Nosé-Hoover thermostat23,24 aims at relaxing the instantaneous temperature T to the

reference heat-bath value T„ based on an extended-system approach with a characteristic time

Xnh- In the original Nosé algorithm30, the real system is extended by addition of an artificial

(Ndf+ i)th (positive) dynamical variable s (associated with a "mass" Q > 0 as well as a ve¬

locity s), that plays the role of a time-scaling parameter. Through an appropriate choice for

the extended-system Lagrangian, a microcanonical MD trajectory in the extended-system can

be mapped onto a canonical trajectory in the real system. However, the Nosé thermostat leads

to sampling of the real-system trajectory at uneven time intervals, which is quite impractical.

This inconvenience is alleviated by rewriting the equations of motion in terms of the real-system

variables, as was later shown simultaneously by Nosé23 and Hoover24. In the Nosé-Hoover al¬

gorithm, the quantity y(t) in Equation (2.23) is not uniquely determined by the instantaneous

microstate of the system, but is a dynamical variable which derivative is determined by this

instantaneous microstate through

^-^l^"0, <2'31)

where the effective coupling time %nh is related to the (less intuitive) effective mass Q in the

Nosé thermostat through

-CNH = (NdfkBT0)-i/2Q'/2. (2.32)
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When y is negative, heat flows from the heat bath into the system due to Equation (2.23). When

the system temperature increases above T0, the time derivative of y becomes positive in Equa¬

tion (2.31) and the heat flow is progressively reduced (feedback mechanism). Conversely, when y

is positive, heat is removed from the system until the system temperature decreases below T0 and

the heat transfer is slowed down. In practice, Equation (2.31) is discretised (based on the sim¬

ulation timestep At) and integrated simultaneously with the equations of motion for the atomic

coordinates and velocities based on the leap-frog scheme.

It can be proven9,24 that the Nosé-Hoover equations of motion sample a canonical ensemble

(in both coordinates and momenta) provided that g ~ Ndr and that x^h is finite, this irrespective

of the actual value of Xnh and of the initial conditions for the atomic velocities and for the y

variable.

In practice Xnh is used as an empirical parameter to adjust the strength of the coupling to

the heat-bath. Too large values of x^h (loose coupling) may cause a poor temperature control

(the limiting case of the Nosé-Hoover thermostat with x^h —» °° and y(0) = 0 is MD, which

generates a microcanonical ensemble). On the other hand, too small values (tight coupling) may

cause high-frequency temperature oscillations leading to the same effect.

The Nosé-Hoover-chain thermostat25 aims at relaxing the instantaneous temperature T to

the reference heat-bath value TC) based on a chain of successive thermostat variables. In this case

the single thermostat variable y of the Nosé-Hoover scheme is replaced by a chain of variables

applying a thermostat to each other in sequence. This algorithm has been introduced to alleviate

the two main drawbacks of the Nosé-Hoover algorithm: (/) the presence of temperature oscil¬

lations, and (ii) the non ergodicity of the sampling for small or stiff systems, or systems at low

temperatures24,31"36. The GROMOS05 implementation follows the formalism described in the

original article25.

Barostat algorithms

For compatibility with experiment, it is often desirable to sample configurations from the isother-

mal-isobaric ensemble (constant temperature and pressure). Thermostat algorithms have been

described above (Section 2.4.2, "Thermostat algorithms"). A modification of the basic MD

scheme with the purpose of maintaining the pressure constant (on average) is called a barostat

algorithm.

The use of a barostat is only applicable to simulations under periodic boundary conditions. In

the GROMOS05 implementation (both PROMD and MD++), the various options for the varia¬

tions of the box parameters (and the associated scaling of atomic coordinates) involved in the use

of a barostat are: (/) no variations of the box parameters; (ii) isotropic scaling, i.e. identical rel¬

ative variations of the box-edge lengths only; (///) partially anisotropic scaling, i.e. independent
relative variations of the box-edge lengths only; (iv) fully anisotropic scaling, i.e. independent
variations of all box parameters (box-edge lengths, box angles and Euler angles). For a truncated-
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octahedral box, only the first two options are allowed. For a rectangular box, only the first three

options are allowed. For a triclinic box, all options are allowed. In the latter case, variations

in the box shape are accompanied by variations in the box Euler angles, so as to guarantee that

the barostat does not introduce a rigid - body rotational component to the box orientation. Note,

however, that the location of the box center of mass is affected by any type of coordinate scaling.

Two different barostat algorithms will be available (/) pressure relaxation by weak-coupling

(Berendsen barostat22); (ii) pressure relaxation by extended-system method (Andersen-Parrinello-

Rahman barostat23'30'37^2; implementation in progress).

Pairlist construction

The evaluation of the non-bonded interactions in Gromos relies on the application of the twin-

range method43^6. The GROMOS05 implementation (both PROMD and MD++) of this ap¬

proach includes an increased amount of flexibility, and relies on the definition of: (/) a short-

range pairlist distance Rp; (ii) a corresponding cutoff distance Rp < Rp (optional); (Hi) a lower-

bound for the intermediate-range pairlist distance Rs; (iv) a corresponding cutoff distance Rs > Rx

(optional); (v) an upper-bound for the intermediate-range pairlist distance R[\ (vi) a correspond¬

ing cutoff distance R[ < R[ (optional); (vii) a short-range pairlist update frequency A^; (viii)

an intermediate-range pairlist update frequency A7/. Short-range interactions are computed ev¬

ery timestep based on a short-range pairlist containing pairs in the distance range [0;/?p], or

a filtered subset of this list corresponding to pairs currently (i.e. at the given timestep) in the

distance range [0;/?^]. The short-range pairlist is reevaluated every Ns timesteps. It can be

generated either on the basis of distances between charge-groups (groups of covalently linked

atoms defined in the system topology) or of distances between individual atoms. In the former

case, the filtering (based on the distance Rp) may be based either on distances beween charge-

groups or on distances between atoms. In the latter case, only atom-based filtering is possible.

Intermediate-range interactions are computed every A7/ timesteps based on all pairs in the dis¬

tance range [RS;R[], or a filtered subset of these pairs in the distance range [RX;R[] at the time

of the evaluation of these interactions. Only an atom-based filtering is possible here, and it

is only meaningful when the initial set of pairs is generated on the basis of distances between

charge-groups. The energy, forces and virial contributions associated with intermediate-range

interactions are assumed constant between two updates (i.e. during A7/ steps).

The evaluated interaction includes Lennard-Jones and electrostatic components. The lat¬

ter component may include a reaction-field contribution (Section 2.4.2, "Reaction-field electro¬

statics") or the real-space contribution to a lattice-sum method (details elsewhere7). Note that

the real-space contribution to a lattice-sum method may only be computed within the short-range

contribution to the interaction.

The pairlist construction may be performed in four different ways: (i) using the standard

double-loop algorithm included in the GROMOS96 program3 (merely extended to include the
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possibility of an atom-based cutoff and of filtering); (ii) using an optimised version which im¬

proves processor cache usage (details elsewhere7); (Hi) using a grid-based pairlist algorithm

introduced recently47 (PROMD only); (iv) using a slight variation of the above grid-based algo¬

rithm47 which permits easier parallelisation and avoids periodicity corrections during the inter¬

action evaluation (MD++ only).

Grid-based pairlist construction. PROMD includes a recently introduced47 grid - based pair-

list algorithm that permits the fast construction of cutoff-based non-bonded pairlists in molecu¬

lar simulations under periodic boundary conditions based on an arbitrary box shape (rectangular,

truncated-octahedral or triclinic). The key features of this algorithm are: (/) the use of a one-

dimensional mask array (to determine which grid cells contain interacting atoms) that incorpo¬

rates the effect of periodicity, and (ii) the grouping of adjacent interacting cells of the mask array

into stripes, which permits the handling of empty cells with a very low computational overhead.

Testing of the algorithm on water systems of different sizes (containing about 2000 to 11000

molecules) has shown that the method: (0 is about an order of magnitude more efficient com¬

pared to a standard (double-loop) algorithm, (ii) achieves quasi-linear scaling in the number of

atoms, (Hi) is weakly sensitive in terms of efficiency to the chosen number of grid cells.

MD++ includes a slightly modified version of this grid-based pairlist algorithm extending

on ideas similar to those of a published pairlist algorithm48'49. Grid-based pairlist algorithms

are more efficient than a standard double loop pairlist generation because only a reduced set of

neighbouring atoms is considered to determine whether the atom-pair is within the cutoff dis¬

tance. Within this scheme of a grid-based pairlist algorithm, additional efficiency advantages

may be realised. First, nearest image calculations for atom-pairs can be avoided. Second, the

virial can be calculated from the total force on the atoms instead of computing the contribution

of each pair. And third, the atoms may be ordered in memory, therefore allowing linear access

during the pairlist generation and force calculations. In the first step, the system gets extended

on all sides by the cutoff - distance, where the additional atom or charge-group positions are

obtained by simple shifts of the original positions by the lattice vectors. At the same time the

grid-cell index of each charge-group (or atom) is calculated. As second step, the atom positions

are reordered according to their (or the corresponding charge-group's) grid-cell index and the

starting index of each grid-cell is stored. Using this information plus a one-dimensional interac¬

tion mask containing the offsets of all grid-cells within cutoff distance of the current grid-cell,

a short-range pairlist of (contiguous) ranges of atoms is generated, where (for a charge-group

based cutoff criterion) complete charge-group pairs are excluded if they contain excluded atom

pairs. The long-range interactions (energies and forces) are calculated directly during the pairlist

generation. Finally, the short-range interactions are calculated and the missing interactions be¬

tween atom pairs in previously excluded charge-groups are added.

The virial tensor is calculated from a sum of contributions of all atom pairs, which leads

to the following expression compatible with a grid-based pairlist generation (comparable to a



2.4. Algorithms 45

published virial tensor calculation )

^=11 Z vy(/,A)r(7,0fi7,, (2.33)

i=\j=\k=-n

where

rm = r« ~ rh = r< - ry -1* (2,34>

and tk is the vector to shift ry from the central compuational (k = 0) box to one of its 26 direct

neighbours (k = -13, ...,0,..., 13; including also the central box itself with t^=o = 0). To include

each interaction only once, the weight factor w(ijk) is defined using the grid-cell index g(i) of

atom i (and the grid-cell index g(jk) of atom j shifted by tk)

1 'f J?(r,-) < g(rjk) or g(n) = g(rjk) and i < j

w(hJk) = { andriJk < Rp (2.35)

0 otherwise

Using Equation 2.34 the expression for the virial tensor (Equation 2.35) can be rewritten to

N N 13

^ = IX I w(ij-k)ri®fijk +
i=lj=lk=-l3

N N 13

SES *>(i>jk)Tj®fjki+
i=iy=iit=-i3

N M 13

ESS w(iJk)tk®tjki
/=iy=u=-i3

= A +B + C. (2.36)

Exchanging i and j in the second term (B) leads to

5= XI I w(Lk)n®tikj, (2-37)
y=l(=lit=,-i3

and reordering the two summations gives

fi=li I n(hk)n®tikj- (2-38)
,= iy=lfc=-13

And therefore adding up /\ and B yields

Af Af 13

A+B = S S S w^^r/tgf^+wCy,/*)^-®^ (2.39)

(=iy=l/t=-13

Af Af 13

= 5>®X S w(l,;jfc)f/yt+w(y,lifc)f^, (2.40)
(=1 y=i/fc=-i3
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where the latter part is identical to the total force on atom i

ff=t X w(ijk)fijk+w(j,ik)fhj. (2.41)

y=ifc=-i3

Using that, Equation 2.39 simply is

Af

A+£=£r/®f;. (2.42)
;=i

The remaining third term from Equation 2.36 term C (the periodicity correction)

C=XX X (iJk)tk®hi (2.43)

is easily calculated from the forces on the atoms in the previously extended areas around the

central computational box

Af

I

as given by

C= X ^®XfA- (2-45)
*=—13 7=1

In summary, the contribution to the virial tensor due to the nonbonded interactions may be calcu¬

lated outside of the inner loop (the loop over all atom-pairs within the cutoff) through Equations

2.42 and 2.45,

N

i=i

13 Af

X tt®Xf./V (2-46>
*=-13 ;=1

In the framework of the grid-based pairlist algorithm using an extended system, the total forces

f; on atom i and the partial forces fyt on the atom shifted by t* are readily available. Because of

the ordered memory layout of the atoms and because of storing ranges of interacting atoms in the

pairlist (where the exclusions have been removed already), automatic vectorization of the code

is possible.

A comparison of the overall efficiency of GROMOS96 (standard double loop pairlist construc¬

tion and an optimized version that improves processor cache usage) with MD++ is given in

Table 2.2; timings are given for complete simulations including pairlist construction and force

calculation. The MD++ version was not particularly optimized.
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PROMD MD++

STD OPT STD GRID

alkane single 166 102 214 49 (45)

dual - 61 121 40 (30)

membrane single 67 57 95 55 (47)

dual - 34 60 43 (29)

protein single 175 148 349 140 (123)

dual - 82 187 90 (64)

Table 2.2: Efficiency comparison of GROMOS96 (FORTRAN (PROMD), standard pairlist al¬

gorithm (STD) and pairlist algorithm with optimised cache usage (OPT)) and MD++ (C++;

standardpairlist algorithm (STD) and grid-based pairlist algorithm (GRID)). As test systems liq¬

uid alkane (23328 solute atoms, 9.4 x 9.4 x 9.4 nm cubic box), a membrane (6656 solute atoms,

7383 solvent (SPC water) atoms, 6.2 nm x6.2 nm x6.9 nm rectangular box) and a protein (2445

solute atoms, 47472 solvent (SPC water) atoms, 7.9 nm x 7.9 nm x 8.3 nm rectangular box) were

used. All calculations were done on a dual processor AMD Athlon MP 248 PC (2000 MHz pro¬

cessorfrequency, 512 KB cache, 2 GB RAM). The efficiency was measured running on a single

processor and running in parallel on both processors, 250 simulation steps for the alkane and

membrane system, 100 steps for the protein. All numbers are in seconds. Eor the grid based

MD++ simulations, time spent in the nonbonded interaction calculation is indicated in brackets.

Reaction-field electrostatics

When cutoff truncation is applied to the Coulombic interactions within a molecular system, the

mean effect of the omitted electrostatic interactions beyond the (long-range) cutoff distance Ri

(Section 2.4.2, "Pairlist construction") may be approximately reintroduced through a so-called

reaction-field correction term50"53. This approximation relies on assuming that the medium be¬

yond the cutoff sphere of each particle (i.e. beyond a specified distance Rrf, typically set equal

to /?/) is a linearised-Poisson-Boltzmann continuum characterised by a relative dielectric permit¬

tivity 8 and an inverse Debye screening length K. In the present context, these two parameters

may be combined into an effective permittivity53

P

-[ii (KRRff 1
r Oâl\£rf — * + V/ „—n~\
e-

U-4/)

L 2(xRRF + l)\

In the GROMOS05 implementation (both PROMD and MD++), the corresponding overall
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electrostatic energy (Coulomb plus reaction-field term) is then written54

qfB¥RF =
_LJv V

an (--l ,
2(egf-l) rtJ 3eRF

f

—2

v"1 v i 2(e/fF —1) ri, 3erf 1
+X X Wi

i j>i,jeexä(D V2e^ + 12/?3F 2eRF + lRRF

1 3eRF 1

2 2eÄF + l^ÄF
[X«?-^(Z*)2]L (2-48)

where e„ is the permittivity of vacuum, r,7 is the minimum-image vector corresponding to

r,-y = r, — Tj, and excl(i) denotes the exclusion list of atom / (including its first and second cova¬

lent neighbours; the distance between any two excluded atoms is assumed to be smaller than R[).

Note that current simulation programs (e.g. GROMOS963 and GROMACS55) typically restrict

the implementation of the reaction-field method to the first term in Equation (2.48). The second

term is explicitly included here because excluded neighbours should only be exempted from the

direct (Coulombic) interaction and not from the solvent-mediated (reaction-field) interaction54.

The form of the third term has been chosen for consistency in the context of small molecules

(compared to the cutoff radius and box size). For such a small molecule (or ion) gathered by pe¬

riodicity around its center, r(/- can be replaced by r(-y and the cutoff truncation involved in the first

summation of Equation (2.48) can be omitted. In this case, it can be shown54 that the reaction-

field contribution to 1I^^+RF for a neutral molecule matches the correct Onsager expression for

the solvation of a dipolar molecule in a spherical cavity56 (for K = 0). For a monoatomic ion,

the last term can also be shown54 to represent a (first-order) correction to the error in solvation

free energy caused by the use of effective (non-Coulombic) interactions. Intuitively, this last

term may be interpreted as the reversible work required to individually charge the atoms when

they are at infinite separation. This contribution only affects the energy of the system, but does

not induce atomic forces. However, it may be essential to include it in free-energy calculations

involving alterations of the atomic partial charges and comparisons between different media (e).

Replica-exchange simulation

To obtain canonical distributions for complex molecular systems, efficient sampling of the confi¬

gurational space is necessary. Finding the global minimum on the typically rough potential en¬

ergy landscape of a peptide or protein is likewise difficult. In recent years, the replica-exchange
method57"62 (also known as parallel tempering62) has received much attention. A number of

non-interacting replicas are simulated simultaneously at different conditions (e.g. different tem¬

peratures). After a given simulation time, an exchange between two replicas is attempted, fol¬

lowed by another (individual) simulation period. The method has been applied to biomolecular
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systems63"66, using Monte-Carlo techniques and molecular dynamics (REMD) to propagate the

individual replicas. The probability of each states = (r,p) in the canonical ensemble at temper¬

ature T is proportional to the weight factor

W(x)=exp{-ptH(r,p)). (2.49)

where H is the Hamiltonian and ß = \/kBT, kB being Boltzmann's constant. The weight factor

for the global state X determined by the states of the M replicas is the product of the single

weights, i.e.

WREM(X) = exp
I - X ß.-#fa, p,-) J (2.50)

After a fixed number of MD integration steps, a Monte-Carlo (MC) exchange between two

replicas is attempted (changing from state X to state X'). In order to sample canonical ensembles

at each temperature, the detailed balance condition on the transition probability w(X — X')

WREM(X)w(X - X') = WREM(X')w(X' -X) (2.51)

has to be fulfilled. This can be satisfied, for instance, by the usual Metropolis criterion

v(X :X')-W{X^X,) { 1 forA-°' (252)

P[X

X ] ~
w(X' -+X)-\ exp(-A) for A > 0

' ^^

with

A=(ß/-ßy)(t/(ry)-f/(r/)). (2.53)

where U(r) is the potential energy associated with the configuration r. If the exchange was

succesful, the momenta of the exchanged replicas are scaled to correspond to their new tempera¬

tures.

An extension of the replica-exchange method to sample the isothermal-isobaric ensemble has

been suggested67. In this case, an additional term incorporating the pressure and volume change

appears in the exchange probability

A = (ß,- - ß;)(ü(ry) - U(rt)) + (frPi - VjPj)(Vj - Vt). (2.54)

Unfortunately, the application of the method to explicit solvent simulations, though success¬

ful for small systems, is rather difficult68"74. Since the exchange probability between two states

decreases with increasing system size, explicit-solvent simulation requires many more states

(replicas) separated by small temperature differences. This problem may be alleviated by not ex¬

changing a thermodynamic property like the temperature between the replicas, but rather altering

specific interactions75"77. Then, the replicas are distinguished by their Hamiltonians

Hifapü^Kipu + Uiin) (2.55)
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using for each replica a different potential energy function [/,-. In MD++ the different Hamilto-

nians Hi are defined using a coupling parameter X and a perturbation topology. The replica with

Xi = 0 corresponds to state A (normal topology) in a perturbation simulation, the replica at Xi = 1

to state B (fully perturbed state; with, e.g. scaled down non-bonded or bonded interaction terms.

The other replicas are distributed in between these two (0 < X, < 1 ).

Inserting the individual //» into Equation (2.50), leads to

WREM(X) = exp
I
- X ß«ff,-(r/, Pi) J ,

(2.56)

and, using the detailed balance criterion (Equation (2.51)) to

MX ,,YV wv*^*')-f 1 forA^0' (257)

P{X

X)-w(X'^X)-\ exp(-A) for A>0
' (M)

with

A = Vi(Ui(rj) - l//(r/)) - hMrj) - Uj(n)). (2.58)

where the potential energy of the two configurations r,- and ry needs to be evaluated twice, with

Hamiltonians if, and Hj.
The replica exchange method was implemented in MD++ based on sockets and TCP as com¬

munication protocol. A server distributes the short MD runs corresponding to the different repli¬

cas to a (dynamical) number of clients. After the given number of simulation steps has been

carried out, the client reports back to the server the final (potential) energies (evaluated using the

Hamiltonian Hi and the Hamiltonian Hj (if different), the server then calculates the switching

probability p(i —> j), draws a random number and, if the switch is successful, exchanges the

states. As soon as a client is free, the next replica gets assigned to it.

Replicas can differ in the temperature and in the coupling parameter X. A replica-exchange

state consists of replicas for all possible X,- values at each temperature 7} (M = A\ • NF replicas).

The Monte-Carlo exchange attempt is alternated between exchanges of (neighbouring) X's and

temperatures T.

Coarse-grained simulation

Most molecular simulations are making use of atom-level (AL) models. This limits the time

scale of such simulations for solvated macromolecules to the nanosecond range. Longer time

scales can be reached by treating molecules or molecular fragments as single particles or beads,

whose motion is simulated using a simple force field describing inter-bead interactions. When

the energy function of such a coarse-grained (CG) model is chosen to be smooth and short-

ranged, the efficiency of CG simulations can be orders of magnitude (103 — 105) higher than

the corresponding AL simulations, be it at the expense of the loss of atomic detail and some

accuracy78-82.
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A recently proposed CG model83 for liquid simulations has the same functional form as

the Gromos force field3'84, except for the use of a switching function85 for the non-bonded

Lennard-Jones and electrostatic interactions at distances just below the cutoff distance. This

CG model was implemented into GROMOS05 (MD++ only), however with a slightly different

switching function, because the GROMACS one85 appeared to be discontinuous and led to non-

conservation of energy in MD simulation.

In the absence of switching, the non-bonded interaction energy between particles i and j can

be written as (r/y = r,- — ry)

V(Tij)= X Va(Tij)= X cAM (2-59)

«=1,6,12 oc=l,6,12

Oa(r) = r~a (2.60)

47r,£o£i

c6 = -4Eijofj = -C6(i,j)

en = +4Eij<3ij =+Ci2(iJ) (2.61)

where standard notations for atomic charges (qt) and van der Waals interaction parameters (C(,

and C12) have been used. In the CG model all non-bonded interactions are smoothly switched

to zero over the range [RSW,RC], where Rsw denotes the start of the switching and RL the cut-off

radius. In this model83 one has Rc — \.2nm and Rsw =0nm for the Coulomb interaction and

R$w = 0.9 nm for the van der Waals interactions. The non-bonded interaction energy function

including switching reads for the three terms in Equation (2.59)

( <&a(r) r<Rsw

*aW= Oa(r)+Sa(r) Rsw < r < Rc (2.62)

I 0 r>Rc

Requiring that the functions Sa{r) switch the energy, the force and the derivative of the force

smoothly (without discontinuities) to zero at r = Rc, yields the conditions

Sa(Rsw) = Sa(Rsw) — Sa(Rsw) ~ 0 (2.63)

and

&a(Rc) = <(Rc) - <bi(Rc) = 0
- (2.64)

The conditions of Equation (2.63) are satisfied by a fourth-degree polynomial

Sa(r) = ~±A(r~Rsw)3~-\B(r~Rsw)4-C. (2.65)

with (r= |r|)

and
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The conditions Equation (2.64) determine the constants

a[(a+l)R,w-(a + 4)Rc

Rc ~(Rc — Rsw)
(2.66)

B =

g[(a+i)/?,w-(« + 3)/?,]

ä°+2(äc-j?w)3

C = ^-^A(RC-Rswf-\B(RC-R,sw)4 . (2.68)

The expression for the shifted or switched force on particle i by particle j for the three non-

bonded interaction terms V„(r,-y) is then

4(ri7) = —Ir^^r = -'««to^ - (2-69)

with

and

K(r) r < Rsw

K(r)={ <(/)+4(r) Äw<r<Äc , (2.70)

0 r>Rc

Sa(r) = -A(/-Äw)2-Ä(r-Äw)3 . (2.72)

We note that the switched potential energy determined by Equation (2.62) and forces from

Equation (2.69) are only correct for a distance dependence of the potential energy function of the

form of Equation (2.60). So, it cannot be used in the presented form if the soft-core interaction

or reaction-field forces as defined in Gromos are to be used.

Free-energy through one-step perturbation

The calculation of relative binding free energies of many ligands to a common receptor is of

relevance for drug design and screening puposes, and for obtaining a better understanding of in¬

teractions governing molecular complexation in general. The one-step perturbation technique86
allows for the calculation of a great many relative free energies from a single simulation of a

(not necessarily physically meaningful) reference state87"94. The idea behind the method is to

simulate a judiciously chosen reference compound R generating an ensemble of structures that

contains conformations representative for many physically relevant compounds. The free energy

difference between any real ligand A and the reference compound R can be obtained from the

perturbation formula

AGAR = AGA - AGR = -kBTln (e-~(HA-HR)/kBT\
^ ^^
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where the angular brackets indicate the ensemble average of the configurations generated in

a simulation of R. Ha and HR are the Hamiltonians for the real compund (A) and the reference

compound (R), respectively. Because this expression involves the difference between two Hamil¬

tonians, only interactions that differ between compounds A and R need to be reevaluated over the

ensemble. This allows for the calculation of thousands94 to millions92 of relative free energies
from a handful of simulations of reference states R.

The success of the method critically depends on the choice of the reference state R, it should

allow wide sampling, but not so wide that insufficient statistics is obtained. One of the key

elements that allow wide sampling is the use of soft-core non-bonded interactions, which allows

for a spatial overlap between these atoms. In GROMOS96, the soft-core non-bonded interaction

was chosen to be of the form3'4'86

vsc(nj) =

teipïi

Su^jWofj + rfjlsuiiJ^Csfj + rfj
iJ

+
Mi

47T.eo£i

lC'frK T~rf

sciUW + U sc(iJ)X2 + R2
rf

Rrf
(2.74)

In GROMOS96 the soft-core parameters Sfj and sc were taken equal for all soft-core atom pairs.
In GROMOS05 (MD++ only) su(i,j) and sc(i,j) are calculated by combining the distinct soft¬

ness parameter specified per atom, allowing fine-tuning of the reference state, i.e.

s(ij)

i(s(i)+s(j)) s(i)?0,s(j)?0

s(i)^0,s(j) = 0

s(i)=0,s(J)ÏO

s(i)=01s(j)=0.

(2.75)

The GROMOS++ post-processing programs pt.top (to generate a real topology from a topo¬

logy and a perturbation topology) and ener (to recalculate the interaction energy of specified

atoms) or m_pt_top and m_ener (to do the same for multiple physical compounds at the same

time), and dg.ener (to calculate the relative free energies) may be used to analyse the reference

state ensemble.

2.5 Code organisation, implementation

2.5.1 MD engine in FORTRAN: PROMD

The FORTRAN MD engine (PROMD) is an enhancement of the GROMOS96 MD engine. It is

written in Fortran77 except for the use of include files and macro preprocessing. Macros are in
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particular used to get rid of unnecessary features (such as four-dimensional simulation, unused

periodicity code or unused perturbation code) so as to improve the performance for specific

applications through the use of a specialised code. To facilitate performance tuning, timing

routines have been included, and the time spent within various components of the program is

reported at the end of each simulation. Major additional algorithmic features (with respect to

GROMOS96) have been described in Section 2.3.

2.5.2 MD engine in C++: MD++

The C++ MD engine (MD++) has been written from scratch. The major motivation was to

further increase the modularity and therefore the extendability of the MD program. The code

is split into two parts, the first one being an MD library containing basic functions necessary to

run an MD simulation, the second one being the actual MD program. This second part is very

small. It is therefore easy to write other specialised MD programs that make use of a subset

of the functions provided in the library or apply them in a different order. The source code of

the library is in turn split up into nine different parts: math, simulation, topology, configuration,

algorithm, interaction, io, util and check (represented as C++ namespaces).

• math contains classes for vectors, matrices and vector arrays, mathematical operations,

physical constants and periodic boundary treatment.

• simulation contains the simulation parameters supplied to run an MD or SD simulation or

an EM.

• topology contains the topology of the simulated system, possibly also including a pertur¬

bation topology.

• configuration contains the state of a system: its coordinates, velocities, forces, restraints

data and so on.

• algorithm contains classes that use information from simulation and topology to act upon

a configuration. All steps during an MD or SD simulation or EM can be carried out using

an algorithm.

• interaction contains the largest algorithm: the energy, forces and virial evaluation. Here,

all interaction terms and their parameters are defined. Because of its size, interaction is a

seperate part, though it formally belongs to algorithm. The interaction part is further split
into bonded, nonbonded and special interactions.

• io contains classes to read in or write out information. All file access is block oriented and

human readable.
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• util contains a few extra classes that are necessary to set up a simulation but which do not

exactly belong to it. Parsing of command line arguments, generation of initial velocities or

setting of debug levels are examples of classes found herein.

• check contains test routines. Testing includes the automatic calculation of energies under

different conditions as well as the calculation of forces, virial tensor and energy A,-deriva-

tives and their comparison to values obtained by finite difference calculations.

One step of an MD or SD simulation or EM consists of several Algorithms (Figure (2.5.2))

applied to the Configuration in the right order.

class Algorithm!

public :

Algorithm ( string name) : name(name) {}

"Algorithm () {}
virtual int in i t (Topology & topo ,

Configuration & conf
,

Simulation & sim) = 0;

virtual int apply (Topology & topo,

Configuration & conf,

Simulation & sim) = 0;

string name;

};

Figure 2.2: Interface ofthe Algorithm class.

The Algorithm_Sequence class (Figure 2.5.2) is a container for all these algorithms. When

a simulation is set up, they are inserted in the correct order into the Algorithm_Sequence. Dif¬

ferent groups of algorithms (like temperature couling algorithms) correspond to the Strategy

pattern95 of software engineering. Before the start of a simulation, all algorithms will be ini¬

tialised (by calling the init ( ) function). During an MD step (Algorithm-Sequence : : run ( ) ),

the algorithms are applied (by calling Algorithm: : apply ( ) ). The forcefield itself is also an

algorithm, which, when applied, calculates the energies, forces and virial contribution of all

force-field terms for the complete system. The force-field terms themselves are Interaction

classes. The Forcefield is therefore a container to store the different Interaction objects (in

analogy to the Algorithm_Sequence and Algorithm classes). When the force field is applied,
it calls calculate.interactions ( ) on all interaction objects. There are distinct interaction
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class Algorithm_Sequence : public vector<Algorithm *> {

public :

Algorithm_Sequence() ;

"Algorithm () ;

int in it (Topology & topo,

Configuration & conf,

Simulation & sim) ;

int run(Topology & topo,

Configuration & conf
,

Simulation & sim) ;

Algorithm * algorithm ( stri ng name);

};

Figure 2.3: Interface ofthe Algorithm-Sequence class.

objects for the covalent interactions (bond-length, bond-angle, improper-dihedral and torsional-

dihedral interactions), the non-bonded interactions (pairlist construction, long-range interactions

and short-range interactions) and the non-physical interactions (atom-position, atom-distance,

dihedral-angle, NOE or J-value restraints). It is very easy to add a custom Interaction class to

calculate a non-standard interaction.

The classes corresponding to the steps in the MD, SD or EM algorithm are shown in Table

2.5.2 and an overview of the (non-bonded) interaction classes is given in Figure 2.4.

The Nonbonded-Sets contain independent subsets of the non-bonded interactions. Their

calculate-interactions ( ) method may be called in parallel (using either shared or dis¬

tributed memory parallelisation). The Nonbonded-Sets share (through the Nonbonded.Interaction)

a pairlist construction algorithm, which they call to create the part of the complete pairlist rel¬

evant to them. These different parts of the pairlist stay together with the Nonbonded_Set and

need never be assembled into the complete pairlist. To gain flexibility, the calculation of the in¬

dividual atom - atom pair interaction is further split up into a Nonbonded-Outerloop (loops over

the atom - atom pairs), a Nonbonded-Innerloop (prepares the parameters necessary to calculate

the interaction) and a Nonbonded_Term (calculates the atom - atom pair interaction energy, force

and virial contribution). The Storage class provides directly accessible (local) memory for each

Nonbonded_Set.
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1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

Write position and velocity components.

Remove centre of mass motion.

Calculate (unconstrained) forces and energies

from the potential energy function

(using nearest image convention

in case of periodic boundary conditions).

Save these.

Satisfy position constraints.

Update the velocities using the leap-frog scheme.

Apply temperature coupling

(weak coupling or Nose-Hoover(-chains)).

Update the positions using the leap-frog scheme.

Satisfy distance constraints

(using SHAKE, M-SHAKE or LINCS).

Calculate temperature(s).

Calculate pressure.

Apply pressure scaling (weak coupling).

Update lambda and topology for

slow-growth simulations.

Calculate total energies, averages and fluctuations.

Save these.

Out_Trajectory

Remove_COMJVIotion

Forcefield

BondJnteraction

AngleJnteraction

Improper_Dihedral-Interaction

DihedralJnteraction

NonbondedJnteraction

Position_Restraints_Interaction

Distance-Restraints-Interaction

NOE_RestraintsJnteraction

JValue_Restraints Jnteraction

Position_ConstraintsJnteraction

Leapfrog_

Veloc i ti es

Berendsen_Thermostat

NoseJ-Ioover.Thermostat

LeapfrogPositions

Shake

MShake

Lines

TemperatureXalculation

Pressure_Calculation

BerendsenJîarostat

Slow_Growth

Energy.Calculation

Table 2.3: Classes corresponding to MD algorithm steps.

Efficiency

The main goal for writing a new C++ MD engine was to further improve on modularity (using
some object-oriented features) and extendability (using clear and common interfaces between the

modules). Nevertheless, a simulation code has to be reasonably efficient to be of practical use.

The complete code is written in standard C++96, no language extensions or machine-specific

parts are used anywhere, resulting in a highly portable program. This means that the compiler
has to do all machine specific optimisations. We believe that the absence of any machine specific

parts of code, which require duplication to be able to run on different machines, facilitates future
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Forceficld

applyO

Interaction

calculateinteractionsO

A
>

Bond Interaction

Angle Interaction

Improper Interaction

Dihedral Interaction

Nonbonded Interaction

calculate_interactionsO
Nonbonded Set

calculateinteractionsO

Storage
forces

energies
virial tensor

pairlists

PairlistAlgorithm

applyO

Nonbonded_Outerloop
loop over pairlist

loop over 1,4 interactions

Standard_Pairlist_Alg Gridbased Pairlist Alg

Nonbonded_Innerloop
prepare LJ parameters,

charges,

Nonbonded Term

calculate energy and force
Coarse Grained Term

Figure 2.4: Illustration of the Interaction classes in MD++. The red arrows de¬

note a is-a relationship, the black arrows has-a. All Interaction classes inherit from

Interaction and, therefore, can be stored in the Forcefield, which is a vector of

Interaction classes. The Nonbonded-Interaction consists of a PairlistJVlgorithm (ei¬

ther a Standard-PairlistJVlgorithm or a Grid.PairlistJVlgorithm) and (depending on

parallelisation) one or more Nonbonded-Sets. Those, in turn, consist of Storage (to locally

store forces, energies, virial tensor and pair lists) and an Outerloop (to calculate the interac¬

tions). The Outerloop relies on the Innerloop and on Term to calculate the interactions.

modification. Furthermore, current compilers are getting ever better at producing fast programs,

making use of the specific features available on the machine.

In the inner loops of the interaction calculation, templates are used to generate specialised

code. There are, for instance, specialised periodicity classes for the different implemented types

of periodic boundary conditions (vacuum, rectangular, truncated octahedral and triclinic). The

Innerloop methods are called with the boundary type as a template argument. Thus the compiler
will generate a different specialised version of the inner loops for different boundary conditions
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automatically. In the same manner, the interaction function term of the non-bonded interaction

can also be chosen (e.g. with or without switching function for non-bonded interactions) without

any if statement required in the compiled inner loop. An example code fragment is shown in

Figures 2.5 and 2.6. The same technique is used to implement perturbation simulations and

different definitions of the virial tensor.

Some algorithms do rely on information from the previous integration step. To help imple¬

menting those kind of algorithms, the complete current and old state (positions, velocities, forces,

energies, restraint and constraint data, averages, and so on) of the simulation are stored. During
the leap-frog algorithm, the current state becomes the old state and the updated information is

stored in the new current state. This transfer is done by a simple (and fast) pointer exchange.
This slightly increases memory usage (but the required space is still small compared to that used

to store the pairlists).
A comparison of the efficiency of the C++ code with respect to the GROMOS96 MD engine

(in FORTRAN) is given in Table (2.2). This comparison shows that MD++, using the standard

pairlist algorithm (std) is approximately a factor two slower than Gromos96 (standard pairlist

algorithm), improved algorithms (like a grid-based pairlist construction) may have a large impact

on the performance reducing the time spent to two third for the membrane and even by a factor of

three for the protein system. Note that the optimised pairlist construction algorithm implemented
in the Fortran MD engine (PROMD) only benefits from more efficient processor cache usage

but still scales as 0(N2) with system size. Still, for the systems tested here, it achieves equal
overall efficiency as the 0(N) scaling grid-based pairlist algorithm in MD++. The future will

show whether the improved extendability of MD++ will, through improved algorithms, lead to a

faster C++ code than the Fortran (PROMD) code or whether slightly inferior performance is

the price to pay for a more structured code layout.

Debugging information

It is often difficult to figure out what is going on during an MD or SD simulation or an EM

and many users tend to use the program as a black box. MD++ tries to improve this situation

by enabling the user to select a tuneable amount of information to be printed out during the

simulation. Every (output or debugging) message is associated with a debugging level, and the

message is printed only if the requested debugging level is high enough. Additionally, every

code section belongs to a module and a submodule. Different debug levels can be specified for

all combinations of modules and submodules. In that way, fine grained control is achieved on

how much information from which part of the MD++ code should be printed.

Parallelisation

Computationally, the interaction calculation is by far the most expensive part of an MD or SD

simulation or an EM, while the non-bonded interactions constitute the bulk of the effort. Again,
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enum boundary-type {vacuum, rectangular, triclinic};

template<boundary_type boundary>
class Periodicity ;

templateo

class Periodicity <vacuum>{
public :

void nearest_image (Vec const & vl
,
Vec const & v2

,

Vec & v3) ;

};

templateo

class Periodicity <rectangular >{
public :

void nearest Jmage (Vec const & vl
,
Vec const & v2

,

Vec & v3);

};
// and similar ones for triclinic or

// truncated octahedral boundary conditions

template<boundary_type boundary>
class Interaction{

public :

virtual int calcul ate.interac tions (

Topology const & topology ,

Configuration & configuration ,

Simulation const & simulation){

Vec v ;

Periodicity <boundary>

periodicity (configuration . current () . box) ;

periodicity . nearest_image(

configuration .
current () .pos(0) ,

configuration . current() .pos(l) ,

v);

// and so on

}

};

Figure 2.5: Specialised code generation using templates.
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int main(int arge, char **argv){

Interaction <rectangular> interaction ;

interaction
. calculate.interactions (

topology, configuration, simulation);

return 0;

}

Figure 2.6: Using the periodicity class.

MD++ is focused on achieving parallelisation without complicating the code. The non-bonded

interaction is split up into Nonbonded_Sets, each containing its own storage space for a pairlist,

energies, forces, and virials. In this way, the standard code is ready for shared and distributed

memory parallelisation without any need for code duplication. If the system is using distributed

memory, the (updated) positions have to be copied from the master to all other processes be¬

fore the next interaction calculation. While composing the pairlist in parallel, only a subset of

atoms is considered per process, so that each processor creates its own partial and local pairlist.
The interactions are calculated from this partial pairlist and stored in local arrays. This ensures

synchronisation for shared memory machines and replicated data parallelisation for distributed

memory systems. After the partial interaction calculations have finished, the energies, forces,

and virials of all non-bonded sets are summed up and stored in the Configuration of the mas¬

ter process.

MD++ can use OpenMP97 for shared memory and MPI98 for distributed memory parallelisa¬
tion. Reasonable parallelisation (using a small number of parallel processes) can be achieved

with only a few lines of code (almost) completely separate from the non-bonded routines (see
Table (2.2)). In the pairlist generation, each process only creates a partial pairlist for specified
(central) atoms (or grid-cells if a grid-based pairlist construction is used). These partial pairlists
are then used in the force calculation within the same process. This way, only the final, total

forces need to be summed up over all the processes. Using these forces, the master process per¬

forms the integration step and then the positions of the atoms are updated in all processes and the

next force calculation (using the previously generated pairlists or doing a complete update) can

start.
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2.5.3 Analysis modules: GROMOS++

All the Fortran analysis programs of Gromos96 have been rewritten in C++. They accept a

standard set of command line arguments to specify input. It is easy to add new analysis programs

using the functionality provided within the GROMOS++ library. Following is a short description
of the existing programs.

Setup of simulations (pre-processing)

• make.top builds a topology from a building block sequence.

• com_top combines two topologies.

• con_top converts topologies to a different force-field parameter set.

• red-top reduces topologies by specified parts.

• pt-top combines topologies with perturbation topologies to produce new topologies or

perturbation topologies.

• pert_top creates a perturbation topology to perturb specified atoms to dummies.

• check_top checks topologies for common mistakes.

• pdb2g96 converts a pdb (Protein Data Bank) structure into GROMOS coordinates.

• build-box builds a simulation box containing N molecules at a specified density.

• ran-box builds a simulation box containing N molecules at a specified density, placing
and orienting them randomly.

• bin^box builds a simulation box containing a binary mixture at a specified density.

• simJDOx puts a simulation box around a molecule and fills it with solvent molecules from

an equilibrated solvent configuration.

• ran.solvation builds a simulation box around a molecule and fills it randomly with sol¬

vent molecules.

• check_box checks box properties (size).

• copy_box multiplies a box in any direction.

• explode increases inter-molecule distances to vacuum conditions.

• cry applies rotations and translations to a system to create a crystal unit cell.
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• ion replaces a specified number of solvent molecules by ions.

• geh generates hydrogen atom coordinates for a molecule.

• gca generates atomic Cartesian coordinates from a set of internal coordinates.

• mk-script prepares an MD, SD or EM job script.

Analysis of trajectories (post-processing)

• tstrip removes solvent from a trajectory.

• filter filters out specified atoms from a trajectory.

• cog calculates centre of geometries for specified atoms.

• tser calculates time series of specified properties (distances, angles, torsions, order para¬

meters, etc.).

• tcf calculates time correlation functions of time series.

• dist calculates distributions of specified properties.

• ditrans monitors dihedral-angle transitions.

• propertyrmsd calculates root-mean-square differences for a set of properties.

• dipole calculates dipole moments with respect to the centre of molecules.

• rmsd calculates atom-positional root-mean-square differences between structures.

• rmsf calculates atom-positional root-mean-square fluctuations for specified atoms.

• ene_ana calculates averages, fluctuations and error estimates for energies, pressure and

volume.

• epsilon calculates the dielectric permittivity for liquids.

• visco calculates the shear viscosity of liquids.

• rgyr calculates the radius of gyration.

• rdf calculates the radial distribution function for selected atoms.

• mdf gives the time series of the closest particle index to a selected atom.

• iTLwidom performs widom particle insertion.
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• sasa calculates the solvent accessible surface area (SASA) for a specified part of a molecule.

• hbond analyses hydrogen bonding.

• dssp analyses secondary structure elements.

• prep_noe prepares for an NOE calculation.

• noe calculates NOE distances.

• postjnoe analyses NOE distances.

• oparam calculates order parameters for lipids in membranes.

• nhoparam calculates N-H order parameters.

• diffus calculates the diffusion coefficient of specified atoms.

• rmsdmat calculates the rmsd between all structure-pairs in a trajectory.

• cluster analyses an rmsd-matrix to separate the structures into clusters.

• postcluster analyses the cluster output for lifetimes, folding pathways and central-

member structures.

• iondens calculates ion densities.

• edyn performs an essential dynamics analysis.

• rot_rel calculates the rotational relaxation time for solvent molecules.

• ener calculates any energy for a system.

• espmap calculates the vacuum electrostatic potential on a grid around selected molecules

of a given configuration from the partial charges in the topology.

Miscellaneous

• frameout converts trajectories into other formats or extracts snapshots from trajectories.

• inbox puts the solute into the centre of the box.

• atominfo prints (topological) information on specified atoms.

• shake_analysis analyses a specified configuration.

• cmt-list lists atoms within a specified distance from a given atom.
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2.6 Examples of application

2.6.1 Local-elevation simulation of glucose

The technique of local-elevation (LE) MD has been developed to enhance the searching of the

configurational space of a molecule by progressively elevating the local potential energy of

the configurations that are visited during an MD trajectory99. The total potential energy func¬

tion consists of two terms, the standard physical terms VPhys (r(/)) and the local-elevation term

Vz,£(r(r),f) which depends also explicitly on the time t. When the molecule is trapped in a

low energy basin of the potential energy hypersurface, the LE algorithm gradually elevates the

bottom of this basin using additional Gaussian-shaped energy functions, which will eventually

force the molecular system out of the basin into a neighbouring basin of the energy hypersurface.

In this way, the energy surface is much more efficiently sampled than using standard MD. For

low-dimensional systems LE-MD will lead to a flat potential energy as soon as all parts of the

LE configuration space have been visited99. If

Vphys(r(t)) + VLE(r(t),t) (2.76)

is flat after a (long) time t[, by construction of the local-elevation potential energy term, VEE(r,ti)

represents the negative of the free-energy surface or potential of mean force for the LE degrees

of freedom of the molecule.

LE-MD was already implemented in GROMOS963,4. Here, we illustrate its sampling efficien¬

cy using as an example the conformational sampling of a glucose molecule (Figure (2.7)) sol-

vatedinSPC water100.

4C1

Figure 2.7: Glucose molecule with atom numbering
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The time course of the six exocyclic torsional dihedral angles of the sugar ring are shown for

a standard MD and for LE-MD simulation in Figure (2.8).

In the standard MD at 300 K and 1 atm, no conformational transitions are observed on a 1 ns

timescale, while the LE-MD simulation with an energy weight factor that is raised by 2kJmol~x

every time a configuration is revisited already leads to a first conformational transition after

200/75. After 500 ps many transitions are observed, indicating that the potential energy surface

Equation (2.76) is becoming flat, the free-energy surface can then be obtained in the form of

-VLE(r,t> [000ps).

2.6.2 Replica-exchange simulation of butane

500 butane molecules, all in trans-configuration have been simulated at 273 K. The force constant

of the torsional angle has been increased by a factor 3. The time to reach the equilibrium state

of gauche and trans butane can be determined by monitoring the width of the torsional-angle

distribution. The potential energy barrier between the trans and the gauche configuration is too

high (?a 18kJ/mol) to overcome at 273 K
.
REMD is applied to increase the sampling of config¬

urational space at 273 K. To this effect, 11 replicas of the system with changed torsional-angle

force constants (scaled by 1.0, 0.9, 0.8,0.75, 0.7, 0.65, 0.6, 0.55, 0.5, 0.45 and 0.4, respectively)

were simulated simultaneously. Every 0.5 ps, an exchange between two neighbouring replicas

was attempted. Figure (2.9) shows the path in X - space for all replicas. The overall exchange

probability during the simulation was 0.25. The time series of the root-mean-square deviation

(rmsd) from the

average of the torsional angle of all butane molecules is depicted in Figure (2.10). The larger

the rmsd is, the more torsional angle transitions from trans to gauche have happened. Through

replica exchange, also the simulation running at X = 0 contains butane molecules in gauche

conformation, unlike the simulation carried out without replica exchange. Note that the rmsd

is dependent on the width of the valleys, so it is dependent on the force constant. This in turn

means that the equilibrium value of the rmsd is different for the different replicas.

2.6.3 Coarse-grained simulation of alkanes

Coarse-grained (CG) models allow for much more efficient sampling of the molecular configu¬

rational space than atomic-level (AL) models (at the expense of loss of atomic detail). Yet a CG

model should be able to reproduce the properties of an AL model, assuming that the latter is cor¬

rect. To illustrate this requirement for CG models, some properties (conformational distributions

and configurational entropies) of n-alkanes in the liquid phase101 have been compared. The main

results are summarised here in the context of hexadecane, where the AL model was the standard

GROMOS 45A3 force field102 and the CG model the one discussed before83. For the AL model

128 hexadecane molecules were simulated at 323 K and 1 atm in a periodic box over 25 ns. For
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Figure 2.8: Time course ofthe six torsional dihedral angles of the glucose ring as obtainedfrom

standard MD (A) and local-elevation (LE-) MD (B). The LE weightfactor was ElJ = 2kJmol~]

and the four torsional angles C(l)-C(2)-C(3)-C(4), C(2)-C(3)-C(4)-C(5), C(3)-C(4)-C(5)-0(5)

and C(5)-0(5)-C(l)-C(2) were chosen as LE degrees offreedom.
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Figure 2.9: REMD of liquid butane, starting from an all trans configuration of the torsional

angle. The path in X - spacefor the 11 replicas (starting at X values 0.0, 0.1, 0.2, 0.25, 0.3, 0.35,

0.4, 0.45, 0.5, 0.55 and 0.6) is shown. Exchanges were attempted every 0.5 ps, in total 250. The

overall exchange probability was 0.25.

the CG model 512 molecules were simulated over 1000 ns under the same conditions. In the AL

model, a hexadecane molecule consists of a linear chain of 16 united atoms. In the CG model,

four united atoms are represented by one bead, so that hexadecane consists of 4 beads. In order to

compare AL configurations of united atoms with CG configurations of beads, the AL trajectories

were mapped to the CG level by considering only the centres of mass of the four united atoms

that represent one bead at the CG level. This mapping of the atomic level onto the coarse-grained

level is indicated by the symbol MAP.

Figure (2.11 ) shows the distribution of the values of the two pseudo bond angles and the one

pseudo torsional angle of the hexadecane molecules at the CG level for the MAP (grey) and CG

(black) trajectories.

The difference in torsional-angle distribution can be explained from the absence of torsional

potential energy terms in the CG model83. Table (2.4) shows the configurational entropies of the

four united atom fragments of the hexadecane molecules at the atomic level (AL) and at the CG
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Figure 2.10: Simulation ofliquid butane, startingfrom an all trans configuration ofthe torsional

angle. The time series ofthe root-mean-square deviation (rmsd)from the average torsional angle

is shown. The bold black line depicts the rmsd in the standard MD simulation. No broadening

ofthe distribution is visible. The bold red line denotes the rmsd ofthe replica at X, = 0.0 (corre¬

sponding to the standard MD simulation). Clearly, the relaxation towards the equilibrium state

is muchfaster using the replica-exchange method than in the standardMD simulation. The other

lines denote the other replicas (at 0.0 <X,< 1.0), many ofthem reaching their equilibrium state

already after about 50 ps.

level (MAP), together with those obtained from the CG simulations (CG). At the CG level the

configurational entropies of MAP and CG models agree very well, to within 2 Jrnol" ' K~ '.

These data illustrate that the CG model83 is able to reproduce the properties of the GROMOS

AL model rather well.
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Figure 2.11: Bond-angle (A-B-C, B-C-D) and torsional dihedral angle (A-B-C-D) distributions

at the coarse-grained level. Grey: A-D are centres ofmass offragments consisting offour united

atoms as obtained from AL trajectories. Black: A-D are beads of the CG model obtained from

CG simulations.
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fragment AL MAP CG

A 211 133 131

B 209 111 110

C 209 111 110

D 211 133 131

Table 2.4: Configurational entropy (in J K~l mol~ ) of the four (A-D) hexadecane fragments

that correspond to thefour beads ofthe coarse-grained (CG) modelfor hexadecane in the liquid

phase. AL: atomic - level entropies; MAP: fragment entropies from the AL trajectories; CG:

bead entropies from the CG trajectories.

2.6A One-step perturbation calculations on the free energy of ligand bind¬

ing to the estrogen receptor

The one-step approach to calculate relative free energies of complexation or ligand binding is

particularly efficient when many structurally not too different ligands are to be considered. Pre¬

viously91, the Gibbs free energy of binding for 17 polychlorinated biphenyls to the estrogen

receptor were calculated from two MD simulations of an unphysical reference compound, one

when bound to the protein and one free in solution. Here, the efficiency of the one-step technique

is illustrated by calculating more than 2000 binding free energies from the two simulations.

Figure (2.12) shows the biphenyl ligand with the 9 atoms that are made soft atoms in the

unphysical reference state. At these nine soft sites, five different real substituents (H, F, CI, Br and

CH3) can be placed, yielding 59 - 1 = 1953124 relative binding energies for the ligands. Here,

we calculated free energies for all possible polyfluorinated, polychlorinated, polybrominated,

and polymethylated ligands (in total 4 • 29 — 1 = 2047 relative free energies) from one simulation

of the free ligand in water and one bound to the estrogen receptor. For every class of substituted

biphenyl ligands, the three best binding structures are depicted in Figure (2.12). (We note that the

binding affinity of the polybrominated biphenyls might be underestimated by the choice of the

reference state: the soft-core atoms chosen have smaller van der Waals radii than the Bromine

atoms.)

This application illustrates the efficiency of the one-step perturbation technique for screening

purposes in drug design.

2.6.5 Other applications

Gromos can be used for molecular modelling of any type of molecular system. Below, a number

of applications are mentioned, which, for convenience have mainly been taken from our own

more recent work.
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Figure 2.12: Polysubstituted byphenyls. Soft-core sites in the reference state are indicated as

spheres. Of the 4 29 real ligands for which the relative free energy of binding to the estrogen

receptor were calculated, the ones with lowestfree energy of binding (in kJmol~l ) are shown.

The structural stability of proteins103-109, peptides110"117, sugars92-118 and DNA119-120 as

function of their composition, chain lengths and solvent environment or temperature and pres¬

sure can be studied. Solvation, both in pure solvents and in mixtures can be investigated in atomic

detail121"124. Motional properties, NMR coupling constants and dielectric relaxation times can

be analysed104' 125~127. 3J-coupling constants, NOE's and NMR order parameters and CD spectra

can be compared to experimental values128"132. Gromos can also be used for structure refine¬

ment of biomolecules based on NMR data133"135. Molecular host-guest complexes can be studied

in terms of structural properties and free energy and entropy of binding90'91'93' 136~138. Polypep¬

tide (un)folding equilibria can be simulated in atomic detail139"144. Biochemical reactions can

be mimicked in QM/MM simulations, in which interfaces to quantum chemistry software have

to be used145"147.

A variety of types of molecules have been simulated: proteins, DNA, RNA, saccharides,
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lipids and a range of solvents: water, DMSO, methanol, chloroform, carbontetrachloride, acetoni-

trile and mixtures of these and other cosolvents such as urea148"151. Also membranes and mi¬

celles have been simulated using GROMOS152"157.

2.7 Conclusions

The Gromos software for biomolecular simulation has been extended with new functionality

and extended analysis possibilities and put partially into C++, which makes extension of functio¬

nalities easier. GROMOS05 comes with the latest fhermodynamically calibrated GROMOS force-

field parameter sets 45A3/4 and 53A5/6, which are suitable for a broad range of molecular

systems. The source code of Gromos is obtainable for a nominal fee5 and should allow both

methodological investigations and structural, dynamical and energetic explorations of biomole¬

cular systems which may lead to an enhanced understanding of the properties of such systems.
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Chapter 3

On searching in, sampling of, and

dynamically moving through

conformational space of biomolecular

systems: a review

3.1 Summary

Methods to search for low-energy conformations, to generate a Boltzmann-weighted ensemble

of configurations, or to generate classical-dynamical trajectories for molecular systems in the

condensed liquid phase are briefly reviewed with an eye to application to biomolecular systems.

After having chosen the degrees of freedom and method to generate molecular configurations, the

efficiency of the search or sampling can be enhanced in various ways: (i) efficient calculation of

the energy function and forces, (ii) application of a plethora of search enhancement techniques,

(iii) use of a biasing potential energy term, and (iv) guiding the sampling using a reaction or

transition pathway. The overview of the available methods should help the reader to choose the

combination that is most suitable for the biomolecular system, degrees of freedom, interaction

function, and molecular or thermodynamic properties of interest.
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3.2 Introduction

Computer modeling of (bio)molecular systems has become a standard technique to study and

describe the properties and behaviour of such systems in terms of interactions between atoms

or electrons of atoms. Although quantum mechanics governs these interactions, it can only be

used to model a very limited number of degrees of freedom of a biomolecular system due to

the complexity of the algorithms to solve the (time-dependent) Schrödinger equation. Leaving

processes such as electron or proton transfer or processes that involve making or breaking of

covalent bonds aside, classical mechanics offers a good approximation of quantum mechanics,

e.g. for processes such as polypeptide folding, molecular complexation, partitioning of molecules

between different environments and the formation of molecular aggregates (e.g. membranes) out

of mixtures. Here we only consider molecular systems that are described in terms of a classical

Hamiltonian

^(P,q) = ^(p,q) + ^(p,q), (3-D

which depends on the q
= (qi,q2,---,qNdf) generalised coordinates and p

= (p[,P2,-~,PNdf)
conjugate momenta of the chosen Njf degrees of freedom. The kinetic energy term is denoted

by $C(p,q) and the potential energy one by V(p,q). The classical-mechanical equations of

motion are then

d
_

a#(p,q)
dtqi

~

-^dp-— I-1'2'"'^'

d 9#(p,q) . . -

AT „9.

JtPi
=

^—
i =

l,2,..,^. (3.2)

When using Cartesian coordinates, q
= x, and assuming that the potential energy is independent

of the momenta, one has

*(p.*) = x|p. <3-3>
j=i zmi

and Equations 3.2 reduce to Newton's equations of motion

d X' 3

where we have indicated the mass governing the motion of the i-th degree of freedom by m,-. The

interaction function

^(x) = ^(x],x2l.^xNdf) (3.5)

is an effective interaction: it describes the interaction between explicitly treated degrees of free¬

dom averaged over the omitted atomic or electronic degrees of freedom.

Because biomolecular modeling involves microscopic systems at non-zero temperatures T,

the basic theory to describe such a system is quantum or classical statistical mechanics. Conse¬

quently, the state of a biomolecular system is characterised by a statistical-mechanical ensemble
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of configurations. At fixed particle number, volume and temperature this is a canonical ensemble,

in which the weight of a molecular or system configuration is given by the Boltzmann factor

where kB denotes Boltzmann's constant. This implies that the equilibrium properties of the

system are determined by those parts of configuration space, for which ^(x) is minimal. There¬

fore, one of the basic challenges to biomolecular modeling is to develop methodology to effi¬

ciently search the biomolecular energy surface ^(x) for regions of low energy. The statistical-

mechanical nature of this search problem implies that it cannot be reduced to the problem

of finding the global (energy) minimum of the multi-dimensional function 1^(x). Statistical-

mechanically the free energy

F^U-TS, (3.7)

composed of an energetic contribution U and an entropie contribution —TS, is minimal, not the

energy U. The entropy is a measure of the extent of configurational space (x) accessible to the

molecular system at a given temperature T. Figure (3.1) illustrates that lowest energy does not

necessarily mean lowest free energy. Two parts of configurational space xi and X2 may have

U(xi) « U(x2), whereas F(x\) > F(x2) due to S(x\) « S(x2) at the given temperature T.

This means that searching for and finding the global energy minimum for a biomolecular system

is meaningless when its entropy accounts for a sizable fraction of its free energy.

When considering methods to generate molecular configurations we distinguish three types

based on the characteristics of the set of generated configurations:

1. Methods that generate a series of non-related low-energy configurations.

2. Methods that generate a properly (Boltzmann) weighted set of configurations.

3. Methods that generate a (classical) dynamical trajectory of configurations, which are more¬

over properly (Boltzmann) weighted.

Methods of type 1 should only be used for zero entropy systems, whereas methods of types 2

and 3 yield proper ensembles, so can be used to compute thermodynamic and other equilibrium

properties. Only methods of type 3 yield information on dynamical properties of the system.

Generally, modeling of a molecular system involves four choices.

1. Which degrees of freedom are explicitly modeled, i.e. treated in expressions (3.5) and

(3.6).

2. Which interaction function or force field 1^(x) is used to calculate the potential energy of

the system and the forces along the explicitly treated degrees of freedom.
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energy

U(x)

coordinate x

Figure 3.1: Energy (U) - entropy (S) compensation atfinite temperature T

3. Which algorithm is used to search for those parts of configurational space for which V(x)
is minimal (type 1), or to sample (type 2) or simulate (type 3) the motion along the degrees

of freedom.

4. How are the spatial boundaries of the system modeled and which thermodynamic boundary

conditions are used.

Biomolecular systems have a density comparable to solids or liquids, but lack the symmetry or¬

dering of the former. They constitute a many-particle system for which no simple reduction to

a few degrees of freedom is possible: one is faced with an essential many-particle problem, the

solution of which can only be adequately described by numerical simulation. The four choices

mentioned all have an impact on the accuracy and efficiency of the modeling. It is the purpose of

this article to consider the choices to be made from the view-point of accurately and efficiently

generating low-energy configurations or ensembles or trajectories for biomolecular systems. Be¬

cause of the great variety in methods and applications in the literature, we only classify and

mention the available methods, with references, and do not review their applications. The classi¬

fication given may help the reader to find his or her way in the jungle of methods and to choose

a combination of methods and techniques that suits his or her purpose best.
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3.3 Choice of degrees of freedom

Generally, biomolecular systems are composed of more atoms than can be reasonably modeled

on a computer. Depending on the property of interest, the essential degrees of freedom are to

be identified and explicitly treated. The remaining ones are then omitted and their effect upon

the interaction between or along the explicitly treated ones is included in an averaged manner in

the function 1^(x). For example, in structure refinement of proteins, solvent degrees of freedom

are generally omitted1'2, although it is experimentally known that protein structure is sensitive to

solvent composition. Polypeptide folding or protein-ligand complexation is sometimes modeled

without explicitly treating solvent degrees of freedom3'4. This enables fast simulation, because

the number of solvent degrees of freedom is generally much larger than that of the solutes, but

limits the accuracy5 and applicability of such implicit solvation models. For example, complex

enthalpy - entropy compensation effects can not be captured6.
On the other hand, implicit treatment of aliphatic hydrogen atoms by using united —CHn-

(n= 1,2) and —CHj atoms in simulation of systems that contain many of such moieties, like

lipid mixtures and membranes, saves easily a factor of four to nine in computing effort, which

is dominated by the computation of non-bonded forces. Yet, no loss in accuracy is observed

when comparing properties calculated using all-atom versus united-atom models7-8. The use of

united atoms is an example of the technique of coarse-graining: groups of atoms, molecules or

fragments of molecules are treated as single particles or beads, whose motion is simulated using

a single coarse-grained (CG) force field describing inter-bead interactions. When the energy

function 1^(x) of such a coarse-grained model is chosen to be smooth and short-ranged, the

efficiency of coarse-grained simulations can be orders of magnitude higher than the correspon¬

ding fine-grained (FG) simulations, be it at the expense of the loss of atomic detail and some

accuracy9-13. Recently, it has been proposed to combine fine-grained and coarse-grained models

in one simulation, while the contribution of the two grain levels to the interaction between the

atoms or beads is governed by a grain level parameter X. This allows for a continuous switching

between grain levels, which can in turn be exploited in the replica-exchange technique to enhance

the sampling at the various X-values14'15.

The performance of a CG model in practical applications depends on the chosen coarse-

graining procedure: (i) the model resolution (how many FG particles are mapped onto one CG

bead), (ii) the mapping procedure (how the CG bead positions are defined in terms of the FG

atom positions), (iii) the form of the energy function 1^(x) of the CG Hamiltonian, and (iv) the

experimental and / or FG simulation properties against which the CG model parameters were

optimised.

The number of degrees of freedom to be simulated can also be reduced by constraining those

which are characterised by high-frequency motions that are not influencing the properties of

interest. For molecular systems one may think of bond-length and bond-angle degrees of free¬

dom16. Holonomic (time-independent) constraints can be implemented in two ways: (i) by for-
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mulating Lagrange equations of motion in generalised (e.g. torsional angle coordinates1''
,
or

(ii) by formulating these equations in Cartesian coordinates (e.g. using Newton's equations (3.4))

and then using Lagrange multipliers to satisfy the constraints for each configuration genera¬

ted19'20. When considering branched polymers, the choice of internal coordinates (bond lengths,

bond angles, and torsional angles) to serve as generalised coordinates seems to be natural, be¬

cause they allow for constraining bond lengths and angles by simply omitting them from the

equations of motion. However, the equations of classical dynamics (3.2) expressed in internal,

generalised coordinates q
= 6

i*(ft,<fe,...,e^)-|>y(^e,)2
NdfNdj ,, \ / j \

are considerably more complex than when expressed in Cartesian coordinates, Equation (3.4).

They contain two additional summations over the number of degrees of freedom and two additio¬

nal quadratic (i.e. non-linear) terms in the generalised velocities. Equation (3.8) has been

presented in different forms1'2'17'18'21"25, and the coefficients atj, bij, and Cijk depend on the

atomic masses and the molecular topology of the polymer considered. Simulation of a pro¬

tein through Equation (3.8) requires a much larger computational effort than simulation through

Equation (3.4), since at each time step a set of N^f non-linear equations is to be solved. One

iteration to this end may take as much computational effort as the calculation of all forces and

energies, thereby doubling the overall computational expense2. Therefore, the use of Cartesian

coordinates, i.e. Newton's equations of motion in combination with Lagrange multipliers to

impose constraints is recommended26.

An extension of the concept of a (hard) constraint is a flexible, or soft or adiabatic constraint,

in which the length of a constrained distance is not a constant through the simulation, but varies

per time step without involving kinetic energy27"29. This eliminates the high-frequency motions

in the system, while keeping the constrained degrees of freedom flexible.

The number of degrees of freedom can also be kept low by choosing appropriate periodic

boundary conditions. When simulating a spherical solute, use of a more spherically shaped

configurational periodic box instead of the standardly used cubic or rectangular periodic box may

considerably reduce the number of solvent molecules needed to fill the space left after insertion

of the solute in the box. For a spherical solute the number of atomic degrees of freedom can be

reduced by at least one quarter in this way30.

N,* d2Qj
dt7



3.4. Types of searching methods 93

3.4 Types of methods to search, sample or dynamically move

through configuration space

A variety of search, sampling or simulation methods is available, each with its particular strengths

and weaknesses, depending on (i) the form of the function V(x), and (ii) the number and types of

degrees of freedom of the system. These methods are based on the use of molecular coordinates

q or x as variables. For methods that use as variables other quantities than molecular coordinates

we refer to Section 3.9. Two basic types of methods can be distinguished, systematic search and

heuristic search.

Systematic or exhaustive search methods scan the complete or a significant fraction of the

configuration space of the molecular system. Particular subspaces can be excluded from the

search without loss in the quality of the solution found, thanks to rigorous arguments that these

subspaces can not contain the desired solution31. Such arguments are based on a priori knowl¬

edge, often of physical or chemical nature, about the structure of the space or energy func¬

tion or hypersurface to be searched. Systematic search techniques can only be applied to small

molecules involving only a few degrees of freedom32"36
,
because of the exponential growth of

the required computing effort as function of the number of degrees of freedom included in the

search.

Heuristic search methods, although visiting a tiny fraction of the configuration space, aim at

generating a possibly representative (in the Boltzmann weighted sense) set of system configura¬

tions. These methods may generally be divided into two or three types.

1. Non-step methods, in which a series of system configurations is generated, which are in¬

dependent of each other. One example is the so-called distance geometry metric matrix

method37,38
, which, for a search problem that can be cast into a distance based form,

generates, at least in principle, an uncorrected series of random configurations. Another

example is based on the technique of threading39'40, in which linear combinations of parts

of protein structures as obtained from a protein structure data bank are used to generate

novel possible protein structures .

2. Step methods that build a complete molecular or system configuration from configurations

of fragments of the molecule or system in a step-wise manner. Examples are the build¬

up procedure of Scheraga42'43, combinatorial build-up methods that make use of dynamic

programming techniques44 and Monte Carlo (MC) chain growing methods45-46, such as

the so-called configurational bias Monte Carlo (CBMC) technique47.

3. Step methods, such as energy minimisation (EM), Metropolis Monte Carlo (MC), molec¬

ular dynamics (MD) and stochastic dynamics (SD)48, that generate a new configuration

of the complete system from the previous configuration. These methods can be classified

according to the way in which the step direction and step size are chosen, see Figure (3.2):
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(a) according to the energy 1/(x), (b) according to the gradient of ^(x), (c) according to

the curvature of V(x), (d) at random, and (e) according to a memory of the path followed

so far. Energy minimisation can be based on only energy values and random steps (sim¬

plex methods), or on energy and energy gradient values (steepest-descent and conjugate-

gradient methods), or on second-order derivatives of the energy (Hessean matrix meth¬

ods). In MC methods the step direction is taken at random, and the step size is limited by

the Boltzmann acceptance criterion: when the potential energy of the system changes by

AV < 0, the step in configuration space is accepted while for AV > 0, the step is accepted

with probability exp(-AV/kBT). In MD simulation the step is determined by the force,

the negative of the local gradient dV(x)/dx, and by the inertia of the degrees of freedom,

which serves as a short-time memory of the path followed so far. In SD simulation a ran¬

dom component is added to the force, the size of which is determined by the temperature

of the system and the atomic masses and friction coefficients. In the potential-energy con¬

tour tracing (PECT) algorithm49'50 and in the potential-energy annealing conformational

search (PEACS) algorithm51 the energy values are monitored and kept constant (PECT)

or annealed (PEACS) in order to locate saddle points and pass over these. The catalytic

tempering MC algorithm52 is based on similar ideas. In MD and SD memory is built into

the trajectory through inertial effects. Information on the history of the system can also

be included in the force by averaging previous forces53-57. There exists a large variety

of search procedures based on stepping through configuration space using a combination

of the five mentioned basic elements energy, gradient, Hessean, randomness and memory,

combined in one way or the other58.

The efficiency of search methods for biomolecular systems is severely restricted by the nature

of the energy hypersurface 1^(x) that is to be explored to find low energy regions. Due to the

occurrence of a multitude of high energy barriers between local minima, the radius of conver¬

gence of the step methods is generally very small. Therefore, a variety of techniques have been

developed to enhance the search and sampling power of searching methods. These are reviewed

in Section 3.6.

3.5 Techniques to speed up a simulation

For a system containing Af atoms, the number of pairwise non-bonded interactions equals N(N —

l)/2. The computing time for the calculation of all these interactions is proportional to N2.

However, generally not all these interactions need to be computed. Different types of atomic

interactions have different spatial ranges. The electrostatic interaction between two charges is

proportional to a--1, where r is the distance between the charges. The dipolar interaction is of

shorter range, that is, proportional to r~3. The van der Waals interaction is of still shorter range,

proportional to r~6, only the first and second neighbour shells contribute significantly to the inter-
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Determinants of

step direction and

size

Method to

generate

configurations

energy: V{x)

gradient: -dV/dx

2nd derivative: d2VIdxdx'

random:

memory:

EM

MC

MD

> SD

PECT, PEACS

Figure 3.2: Heuristic methods to search configuration spacefor configurations x with low energy

1/(x). EM: energy minimisation, MC: Monte Carlo, MD: molecular dynamics, SD: stochastic

dynamics, PECT: potential energy contour tracing, PEACS: potential energy annealing confor¬

mational search.

action. In this situation the application of a cut-off radius beyond which no detailed atom-atom

interactions are taken into account, but only represented in a mean-field, e.g. a reaction-field,

sense, is appropriate. Once the nearest neighbours are found, which is an operation proportional

to Af59"61, the computation of the non-bonded interaction becomes proportional to N as well.

Because electrostatic interactions are long-ranged, so-called particle-particle-particle-mesh tech¬

niques have been introduced61 to compute these efficiently62. The computational effort scales

with NlogN due to the use of fast Fourier transform techniques63. An alternative is to approx¬

imate the medium beyond a given cut-off distance Rrf from a specific atom or molecule by a

dielectric continuum of permittivity £r/64 and ionic strength Z,-/65.
The length of the integration time step At is in MD or SD simulation limited by the highest

frequency (ymax) motions occurring in the molecular system,

^«Vra^ = T. (3.9)

For a precise integration of the equations of motion, condition (3.9) must be satisfied. However,

it may be that one is only interested in some average properties of the system. If those are

not essentially dependent on ensemble fluctuations, the time step At may be lengthened beyond
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condition (3.9).

In biomolecular systems three frequency ranges can be distinguished:

1. high-frequency bond-stretching forces f^ with an approximate oscillation or relaxation

time xhf of about 10.A,

2. low-frequency long-range Coulomb forces ft with x1* ~ 1000/s or larger, and

3. the remaining intermediate-frequency forces ff with %lf fa 40fs.

The contribution of these different forces to the atomic trajectories may be integrated using three

different time steps, each satisfying condition (3.9) with the appropriate relaxation time x. When

applied to bond-stretching forces, such a multiple-time-step (MTS) integration scheme30-66 saves

a factor two to three in computing effort66"69. When applied to the long-range Coulomb forces,

the so-called twin-range method saves about a factor of five to ten due to the fact that the eval¬

uation of these forces dominates the force calculation30,70'71. The same kind of reasoning may

also be applied to Monte Carlo simulations72'73.

A few other numerical and conceptual tricks that may be used to speed-up a simulation are

discussed elsewhere74.

3.6 Search and sampling enhancement techniques

In Figure (3.3) three general types of search and sampling enhancement techniques are distin¬

guished.

1. Deformation or smoothening of the potential energy hypersurface in order to reduce bar¬

riers.

(a) Generally, a smoothening of the potential energy function 1^(x) allows for a faster

search for its minima. This technique has been applied to different problems, such

as structure determination based on X-ray diffraction or NMR spectroscopic data,

conformational search and protein structure prediction. In method la of Figure (3.3)

the electron density of a biomolecular crystal is smoothened by the omission of high-

resolution diffraction intensities when backcalculating the electron density from these

through Fourier transforms. This smoothening enhances the radius of convergence of

the structure refinement.

(b) When building protein structure from atom-atom distance data obtained from NMR,

the convergence of the configurational search process is enhanced by gradually intro¬

ducing distance restraints that connect atoms at longer distance along the polypeptide

chain in the potential energy function. This is called a variable-target function me¬

thod75.
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(c) The hard core of atoms, i.e. the strong repulsive interaction between atoms overlap¬

ping with each other, is responsible for many barriers on the energy hypersurface of

a molecular system. These barriers can be removed by making the repulsive short-

range interactions between atoms soft76"79. Soft-core atoms smoothen the energy

surface and led to strongly enhanced sampling80.

(d) In the diffusion-equation based deformation methods,80,81 the deformation of the en¬

ergy surface driving a simulation is made proportional to the local curvature (second

derivative) of the surface, which leads to a preferential smoothening of the sharpest

peaks and valleys of the surface and very efficient search. The potential energy sur¬

face can be deformed in a great variety of ways. The corresponding search or sam¬

pling algorithms sail under an equally wide variety of names: potential-scaled MD82,

stochastic tunneling83,84, q-jumping85, Nose-Hoover deformation86.

(e) Incorporation of information on the energy hypersurface obtained during the search

into the potential energy function is another possibility to enhance sampling. Once

a local energy minimum is found, it is removed from the energy surface by a suit¬

able local deformation of the potential energy function. This idea is the basis of the

deflation method87 and the local-elevation search method88, which was recently also

called meta-dynamics89. The method of conformational flooding90 is based on the

same idea. Other variations can be found as well91-92.

(f) Another way to introduce a memory into the search is the use of a potential en¬

ergy term which is a running average over the atomic trajectories or ensemble gen¬

erated so far, rather than its instantaneous value53. Application of this type of time-

dependent or ensemble-dependent restraints in protein structure determination based

on NMR or X-ray data leads to much enhanced sampling of the molecular configu¬

ration space93,94.

(g) Barriers in the energy hypersurface can be circumvented by an extension of the di¬

mensionality of the configuration space beyond the three Cartesian ones. The tech¬

nique of energy embedding95 locates a low-energy conformation in a high-dimen¬

sional Cartesian space and gradually projects this conformation to three-dimensional

Cartesian space while perturbing its energy and configuration as little as possible.

Variations on the original procedure have been proposed96-99. Dynamic search me¬

thods can also be used in conjunction with an extension of the dimensionality. By

performing MD in four-dimensional Cartesian space, energy barriers in three-dimen¬

sional space can be circumvented100 and free energy changes calculated101.

(h) A long used standard technique to smoothen the energy surface is to freeze the

highest-frequency degrees of freedom of a system through the application of con¬

straints19' 1()2. Bond-length constraints are standardly applied in biomolecular simu¬

lation and allow for a four times longer time step size16'102-103. High frequency
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motion elimination can also be achieved through flexible constraints
.

(i) A coarse-graining of the molecular model9-13, which involves a reduction of the num¬

ber of interaction sites, generally leads to a smoothening of the energy surface. This

may allow the use of simulation time steps that are much (factor of 15) longer than

the ones used in fine-grained (atomic) simulations104.

2. Scaling ofsystem parameters can also be used to enhance sampling.

(a) The technique of simulated temperature annealing105 involves simulation or search

at a high temperature T followed by gradual cooling. By raising the temperature, the

system may more easily surmount energy barriers, so a larger part of configurational

space can be searched. The technique of simulated temperature annealing has been

widely used in combination with MC, MD and SD simulation. An example of poten¬

tial energy annealing can be found in51. The so-called J-walking algorithm106 also

uses temperature variations to enhance the sampling.

(b) One way of keeping a constant temperature in a simulation is to use an additional

equation that linearly couples the actual temperature T(t) to a reference or heat-bath

temperature TrefUri

jT(t)=xT\Tref-T(t)), (3.10)

the coupling strength being determined by the coupling time Xt- When choosing

this parameter close to the time step (Xt > At), the kinetic energy or velocities are

enhanced when the system's potential energy increases and the velocities are reduced

in low potential energy regions. This enhances the sampling.

(c) Scaling of atomic masses can be used to enhance sampling. In the classical parti¬

tion function and in case no constraints are applied, the integration over the atomic

momenta can be carried out analytically, separately from the integration over the

coordinates. Thus, the atomic masses do not appear in the configurational integral,

which means that the equilibrium (excess) properties of the system are independent

of the atomic masses. This freedom can be exploited in different ways to enhance

the sampling. By increasing the mass of specific parts of a molecule, their relative

inertia is enhanced, which eases the surmounting of energy barriers108-109, and may

allow for longer time steps. A reduction of the mass of the solvent molecules has

been shown to lead to enhanced sampling of the folding/unfolding equilibrium of a

polypeptide in explicit solvent simulation110. The canonical adiabatically free energy

sampling (CAFES) algorithm also exploits inertia to speed up the occurrence of rare

events111.

(d) Enhanced sampling by a mean-field approximation is obtained by separating the

biomolecular system into two parts, A and B, each of which moves in the average
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field of the other. The initial configuration of the system consists of Na identical

copies of part A and NB identical copies of part B, where the positions of correspond¬

ing atoms in the identical copies may be chosen to be identical. The force on atoms

in each copy of part A exerted by the atoms in all copies of part B is scaled by a fac¬

tor Ng ', in order to obtain the mean force exerted by part B on the individual atoms

of part A. The force on atoms in each copy of part B exerted by the atoms in all

copies of part A is scaled by a factor N^ ', in order to obtain the mean force exerted

by part A on the individual atoms of part B. The forces between the different copies

of part A are zero, and so are the forces between the different copies of part B. The

MD simulation involves the integration of Newton's equation of motion, f = ma, for

all copies of parts A and B simultaneously. Thus one obtains Na individual trajecto¬

ries of part A in the mean field of part B and vice versa. This comes at the loss of

correct dynamics: Newton's third law, f^ß = -îBa is violated. The technique only

enhances efficiency when the system is partitioned into parts of very different sizes,

e.g. size (A) « size(B) and the bigger part is represented by one copy: NB = 1.

Locally enhanced searching and sampling (LES) procedures based on a mean-field

approximation have been proposed in different forms'
.

Multi-copy simulation with a given relation between the copies can also be used to enhance

searching and sampling.

In the mean-field approach sketched before multiple copies of a part of the system were

simulated. This idea has been used in different ways to enhance searching and sampling,

see Figure (3.3).

(a) In genetic algorithms118 a pool of copies of the biomolecular system in different

configurations is considered and new configurations are created and existing ones

deleted by mutating and combining (parts of) configurations according to a given set

of rules.

(b) In the so-called replica-exchange algorithm multiple copies of the system are simula¬

ted by MC, MD or SD, each at a distinct temperature. From time to time copies

at adjacent temperatures are exchanged using an exchange probability based on the

Boltzmann factor (3.6). This leads in the limit of infinite sampling to Boltzmann-

distributed (canonical) ensembles for each temperature119. So-called multi-canonical

algorithms are a generalisation of this procedure120. This type of algorithm has been

used to simulate proteins in vacuo"9. The inclusion of solvent degrees of free¬

dom may impair the efficiency of the algorithm121. Dynamical information is lost

in the exchanges. A variety of schemes of this type has been recently proposed:

generalised-ensemble algorithms120'122, local and partial replica-exchange123, paral¬

lel replica method124, combinations of parallel tempering, multi-canonical and multi-
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pie histogram methods125, and broad-histogram MC126'127.

(c) The so-called SWARM type of MD128 is based on the idea of combining a collec¬

tion or swarm of copies of the system each with its own trajectory into a cooperative

multi-copy system that searches configurational space. To build such a cooperative

multi-copy system, each copy is, in addition to physical forces due to 1^(x), subject

to (artificial) forces that drive the trajectory of each copy toward an average of the

trajectories of the swarm of copies, in analogy to the fact that intelligent and efficient

behaviour of a whole swarm of insects can be achieved even in the absence of any par¬

ticular intelligence or forethought of the individuals. SWARM-MD is less attracted

by local minima and is more likely to follow an overall energy gradient toward the

global energy minimum. Other multi-copy methods can be found129"131.

Techniques to enhance the searching and sampling power of simulation methods

/. Deformation or smoothening of the potential energy surface

a. omission of high-resolution structure factor data in structure refinement based on X-ray diffraction data

b. gradual introduction of longer-range distance restraints in variable target structure refinement based on

NMR NOE data

c. softening of the hard core of atoms in the non-bonded interaction (soft-core atoms)
d. reduction of the ruggedness of the energy surface through a diffusion-equation type of scaling

e. avoiding the repeated sampling of an energy well through local potential energy elevation or

conformational flooding
f. softening of geometric restraints derived from experimental (NMR, X-ray) data through time-averaging of

these

g. circumvention of energy barriers through an extension of the dimensionality of the Cartesian space (4D-

MD)
h. freezing of high-frequency degrees of freedom through the use of constraints

i. coarse-graining the model by reduction of the number of interaction sites

//. Scaling of system parameters
a. temperature annealing
b. tight coupling to heat bath

c. mass scaling
d. mean-field approaches

///. Multi-copy searching and sampling
a. genetic algorithms
b. replica-exchange and multi-canonical algorithms
c. cooperative search: SWARM

Figure 3.3: Techniques to enhance the searching and sampling power of simulation methods.

For details see text of Section 3.6.

The overviews of Figures 3.2 and 3.3 are meant to offer a hand when choosing a combination

of search or sampling methods with various enhancement techniques that will be appropriate to

model the particular system and energy function of interest, leading to an efficient calculation of

the requested properties.
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3.7 Biasing the search, sampling or simulation

The search or sampling enhancement methods discussed in the previous section did so without

a particular bias being imposed on the molecular system. However, if the particular barriers of

the potential energy function or hypersurface that block access to low-energy parts of the surface

can be identified, this knowledge can be put into the form of a biasing potential energy term to

be added to the Hamiltonian, which will guide the trajectory in a required direction. A variety of

such biased searching or sampling methods exists.

Since high-frequency motions are generally not of great interest, one may bias an MD simula¬

tion in the direction of slower modes by filtering out the high frequencies from the spectrum

during a simulation132"134.

Another possibility is to bias the motion in an MD simulation in the direction of the prin¬

cipal components as obtained from the trajectory so far90'135-137. This bias should enhance the

exploration of larger amplitude modes of the molecular system. Yet another method couples

the collective modes of a system to a bath of higher temperature than the other modes138. This

enhances the sampling along the collective modes.

Recently, a method to enhance sampling of rare events was proposed, which makes use of

distance or torsional-angle restraints to overcome an energy barrier separating two metastable

states, or to stabilise a transition state between the two metastable states139. The latter states are

not subject to restraints, which allows one to determine the free energy difference between the

two metastable states without the need to choose a physically realistic pathway connecting them.

3.8 Sampling or simulation along pathways

Dynamical processes in biomolecular systems may occur on time scales far beyond the ones that

are accessible through standard MD simulations. If these processes are intrinsically slow, i.e.

require an extensive sampling of configuration space, not much can be done to speed up their

simulation without destroying the dynamics of the system. If, however, these processes are rare,

i.e. they do not occur often, but when occurring they are fast, there are possibilities to enhance

the sampling of these rare processes. Generally they are characterised by the need to pass over a

high-energy barrier separating two meta-stable states.

The oldest approach to sample transitions is to define a reaction coordinate or transition

pathway and to sample along this path using a biasing potential energy term and umbrella sam¬

pling140. A variation using MD is so-called targeted MD141"143. A more sophisticated metho¬

dology is transition path sampling, which finds transition pathways for infrequent events and

requires no knowledge of the transition mechanism or transition state, only the end states need

be defined144,145. Although this method is more powerful than traditional reaction-coordinate

sampling, the requirement of a proper definition of the two end states restricts its applicability.
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The method and its applications have been recently reviewed145'146. A novel extension is called

transition interface sampling147.
Other methods to determine and sample transition pathways are the finite temperature string

method, which generates a tube in configuration space between the end states, inside which

conformational changes occur with high probability. This leads to an increased rate of occurrence

of the rare transitions148'149. A minimum-energy path of a transition can be obtained through the

nudged elastic band method150"153.

An alternative way to speed up rare events was called "hyper-MD"154,155. It uses a biasing

potential to guide the dynamics away from the end states. Yet another scheme is called coarse

MD156.

3.9 Use of other than spatial molecular coordinates when

searching or sampling

The methodology discussed in the previous sections is based on the use of molecular spatial

coordinates as variables which are sampled. This approach is widely used, but may not lead to

effective solutions when the energy hypersurface is characterised by extremely high potential

energy barriers separating different tightly packed, low energy conformations. Problems of this

type are the docking of inhibitor or substrate molecules into an active site of an enzyme or the

prediction of dominant side-chain conformations of amino acid residues in mutated proteins. For

such cases one may use a rather different search and sampling technique, in which not only the

molecular coordinates x serve as variables, but also the Boltzmann probability Pa of occurrence

of a molecular conformation xa,

e-V{xa)/kBT
(3.11)

The computational problem is now to minimise the average potential energy

(E)=^PaV(xa) (3.12)
a

subject to condition (3.11). That is, one wishes to find a Boltzmann distributed ensemble of

configurations for a very high-dimensional and complex interaction function ^(x). Since the

average energy < E > in (3.12) depends on both, conformational coordinates xa and conforma¬

tional probabilities Pa, four types of search or optimisation algorithms to obtain a set of (xaiPa)
values that represent a Boltzmann ensemble may be distinguished58.

1. Conformational coordinates xa are treated as variables, probabilities Pa implicitly satisfy

(3.11). This is the classical conformational search problem as discussed in the previous
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sections, in which the molecular coordinates xa are changed according to classical (con¬

stant T) mechanics (MD) or using a Markov probability chain (MC) such that the proba¬

bilities Pa automatically satisfy (3.11).

2. Multiple conformations xa are used simultaneously, but kept fixed (oq, a2,0C3,...), proba¬

bilities Pa are treated as variables, which follow from (3.11). This approach works when

the relevant conformations xotl ,xtt2,... can be easily identified a priori157,158.

3. Multiple conformations xa are used simultaneously as variables that change according to

classical equations of motion, probabilities Pa are treated as parameters that adiabatically

follow the variation of xa according to (3.11). This approach58 has been demonstrated

using a cyclic peptide158.

4. Multiple conformations xa and probabilities Pa are used simultaneously as variables that

change according to classical equations of motion. This is a generalisation of the previous

approach158. The Boltzmann relation (3.11) can be imposed on the variables (xa, Pa) either

in the form of a penalty function for Pa which is added to the standard interaction function

^(xa), or in the form of a constraint to Pa, which is to be satisfied when the equations of

motion for (xa,Pa) are integrated.

3.10 Discussion

An overview of the types of methods that are currently used in biomolecular modeling to search

or sample or dynamically move through the configurational space of a molecular system was

given. Since in general the configurational space is too large to be completely searched or sam¬

pled, the various methods (Section 3.4) and techniques aim at reducing the size of the problem

(Section 3.3), or at using particular algorithms to enhance efficiency (Section 3.5), or at trans¬

forming the problem into a more tractable one for which solutions can be found that are good

approximations to solutions of the original problem (Section 3.6). Generally, saving computa¬

tional effort by the techniques presented has its price: the accuracy of the generated ensemble

or trajectory is decreased depending on the search or sampling enhancement technique used or

depending on the type of degrees of freedom that are omitted from the calculation. Whether

such a loss in accuracy of particular properties is acceptable depends on the goals of a modeling

study. In this respect one may distinguish four different degrees of distortion of the correct result

induced by search or sampling (enhancement) techniques.

1. Techniques that preserve the correct dynamics of the system (no distortion).

2. Techniques that distort the dynamics, but generate a correct Boltzmann ensemble.
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3. Techniques that distort dynamics and ensemble; they only generate an arbitrary collection

of molecular configurations.

4. Techniques that yield neither dynamics nor an ensemble or arbitrary set of molecular con¬

figurations, but only one molecular configuration.

For example, when relative free energies of binding or complexation are to be obtained, correct

dynamics is not required, only a proper ensemble159.

If the biomolecular modeling problem can be formulated in terms of particular conforma¬

tional states, the search and sampling problem is reduced to pathways connecting such (end)

states (Section 3.8) and efficiency may be enhanced using biasing techniques (Section 3.7). For

example, in free energy calculations unphysical pathways may be used to obtain the relative free

energies of two end states159.

The bulk of the methods and techniques that were discussed are based upon variation of spa¬

tial molecular coordinates. Yet methods that use other molecular coordinates have been proposed

and found some use (Section 3.9).

Of the many search and sampling methods and enhancement techniques reviewed a few are

very effective: use of soft-core atoms, local-elevation simulation and its derivatives, replica-

exchange simulation and generalised-ensemble methods. When end states are known, transition

path sampling is a powerful method. For other reviews of search and sampling methodology

we refer to26,58'74'l45, l6°-162. The present one is meant to support the practical biomolecular

modeler when choosing a combination of methods and tricks that will be particularly suited to

the specific problem, i.e. molecular system and properties to be computed, of interest.
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Chapter 4

Investigation of sampling efficiency using

configurational entropy as a measure

4.1 Summary

Configurational entropy calculations were used to measure sampling of phase space of butane in

vacuo. Three different simulation techniques were compared. Monte-Carlo simulations were

used as reference and compared with stochastic dynamics simulations and replica-exchange

stochastic dynamics simulations. Two temperature regimes were investigated. Temperatures

above 250AT where the calculated configurational entropies converged for all simulation techni¬

ques, and temperatures below 200^, where only the configurational entropies from the Monte-

Carlo simulations were converged. Using the replica-exchange method sampling efficiency was

only slightly improved. This was found to be due to a separation of the replicas in two sep¬

arated sets with only little exchange between those. Increasing the switching frequency from

1 ps~l to 100/75"_1 led to marginally better sampling efficiency. The configurational entropy was

calculated using the Schütter method. For comparison, also the configurational entropy of the

dihedral angle was calculated from its probability distribution using Shannon's formula. At low

temperatures, the results obtained from these different calculation methods seemed to diverge.

Using Monte-Carlo simulations in internal coordinates, it could be shown that rotational fitting

of the structures had a significant impact on the configurational entropy calculated by the Schüt¬

ter method. Without applying rotational fitting, Schlitter's configurational entropy corresponds

closely to Shannon's entropy calculated from the dihedral-angle probability distribution.

119
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4.2 Introduction

Computer simulation of biomolecular systems is often limited by the short time-scale that is

achievable, even if using modern computer hardware. Parallelisation of calculations substan¬

tially increases this time-scale. Nevertheless, maintaining a good scaling up to a large num¬

ber of parallel processes requires a highly optimized computational environment and software.

Replica-exchange simulation, which enhances sampling of conformational space by simultane¬

ously simulating a number of independent replicas of a biomolecular system, which only occa¬

sionally letting them interact, scales very well with increasing computational resources while not

requiring extremely efficient communication between the single computational nodes1-10.

In this article configurational entropy is used as a measure of phase-space sampling. First,

simulations at high temperatures were used to confirm that in the event of complete sampling,

configurational entropies calculated from replica-exchange simulations were identical to the ones

calculated using independent simulations. Then, the simulations were repeated at much lower

temperatures and convergence behaviour of their entropy was investigated. Also, the effect upon

sampling efficiency of altering the exchange frequencies used for the replica-exchange simu¬

lations was tested. The calculation of configurational entropies at low temperatures is shortly

investigated as well.

4.3 Method

In a replica-exchange simulation, a number of non-interacting replicas are simulated simultane¬

ously at different conditions (e.g. at different temperatures). After a given simulation time, an

exchange between two replicas is attempted, followed by another (individual) simulation period.

The probability of the global state S' consisting of Ns replicas is proportional to its weight factor

W(S')=exp(-^^sH(r,p)Y (4.1)

with ßj = l/kBTs, kB is Boltzmann's constant and Ts the temperature of replica s. Here, the

notation r = (ri,r2,...,r/v) to indicate a iV-particle configuration with position r; of particle /,

and analogous for the momenta p is used.

After a fixed number of MD integration steps, a MC exchange between two replicas is at¬

tempted (changing from state S' to state 5")- To sample canonical ensembles at each temperature,

the detailed balance condition on the transition probability w(S' — S")

W(S')w(S' - S") = W(S")w(S" -> S') (4.2)

has to be fulfilled. This can be satisfied, for instance, by the usual Metropolis criterion11 for the
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probability p(s' <-> s") of an exchange of the two replicas s' and s",

p(J::Jf)_W(S") HS'^S») f 1 forA<0,
FV ' ;

W(S') w(S"->S') \ exp(-A) otherwise,

with

A=(ßy-ßs-)(£/(ivO-t/(rv')), (4-4)

where U (r) is the potential energy associated with the configuration r. If the exchange was

successful, the momenta of the exchanged replicas are scaled to correspond to their new tempe¬

ratures.

Replica-exchange simulation is used to improve sampling of configurational space of the

lower temperature replicas. While in replica-exchange simulations Newtonian dynamics is clearly

violated at the times of replica exchange, thermodynamic averages do correspond to canonical

ensemble averages. Thermodynamic quantities are determined by energy and entropy of the

system. The energy is directly taken into account by the Metropolis criterion (Equation 4.3),

whereas the entropy is accounted for by the dynamics of the system. As we have just observed,

the dynamics of a replica-exchange simulation do not coincide with those of truly independent

simulations. Therefore, the effects of using the replica-exchange method on the entropy of the

system at the different temperatures were investigated. To calculate the configurational entropy

Schlitter's method was used12.

kfln(det(l
+

^h2>conf = —In [det(l
+

^Dr ) ) , (4.5)

where e is Euler's number, 1 the unit matrix, Dr is the mass weighted covariance matrix

Dr = M'/2C,M'/2 (4.6)

with the mass matrix M, the covariance matrix Cr

Ç^ = ((r-<r>)®(r-<r>)) (4.7)

and with the index r indicating the use of a Cartesian coordinate system. Angular brackets

< Q > denote the time average of a quantity Q. As a comparison, also configurational entropies

from probability distributions of a selected degree of freedom were calculated using Shannon's

formula13

/OD
P(q)ln(P(q))dq, (4.8)

where P(q) is the probability density of a degree of freedom along its coordinate q.
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4.4 Model

To show that configurational entropies calculated from independent and from replica-exchange

stochastic-dynamics simulations are identical in the event of complete sampling of configura¬

tional space, a very simple test system, where complete sampling can be reached easily, was

selected. We chose butane in vacuo. In order to have reasonable exchange probabilities with

temperature differences of 10Ä" or 20K between the replicas 200 non-interacting butanes were

simulated together. Non-interacting means that standard GROMOS 45A3 force field14'15 terms

were used for the intra-molecular interactions whereas no inter-molecular interactions were cal¬

culated. Also the average temperature controlled through coupling to the stochastic temperature

bath is closer to the specified value due to averaging over more degrees of freedom. All simu¬

lations were started from a structure where all 200 butanes are in the rrani-conformation. The

stochastic-dynamics friction coefficients were uniformly set to 6.658 p.?-1 for all atoms, con¬

forming to the diffusion constant obtained from liquid-phase molecular dynamics simulations16.

The total simulation time was Ins, which corresponds to l'000'OOO steps of Ifs length. In

the independent simulations, configurations were saved every Ips for later analysis, in replica-

exchange simulations this was done every 0.2ps. Monte-Carlo simulations were carried out for a

single butane and only for the dihedral-angle degree of freedom, with 50'000 moves per simula¬

tion. The moves involved changing the dihedral angle by a random amount uniformly distributed

in the range from —60 to 60 degrees and were accepted or rejected according to the Metropolis

criterion11. All configurations were saved in Cartesian coordinates for later analysis.

4.5 Results

In Table 4.1 potential energies, configurational entropies calculated using Equation 4.5 (Samf)
and the dihedral-angle configurational entropy (using Equation 4.8, Sfhh) are shown for tempe¬

ratures between 200 A~ and 400^. The convergence behaviour of the configurational entropy can

be seen in Figure 4.1.

One can distinguish three different types of behaviour. The first type applies to tempera¬

tures above 200K, where the configurational entropy obtained from 1 ns of stochastic-dynamics

simulation was converged. The second is exhibited by intermediate temperatures, from 160 A"

to 200A!, and corresponds to non-converged configurational entropies. Extending the simulation

time by a factor of two to three would probably be enough to get the entropies calculated from

these simulations converged as well. Interestingly enough, for the lowest temperature simula¬

tions, the configurational entropies were again converged, though to significantly lower values.

This was due to trapping of the simulation in the local (and in this case also global) minimum

on the (free) energy hypersurface, where the starting configuration was located. This is shown

in Figure 4.2, where a time-series of the dihedral-angle distribution is depicted. In the low
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7P ç c«''

f-'pot Jconf agfa

100 1.0 8.4 29.0

130 1.9 13.6 32.2

160 3.0 26.6 36.5

190 3.9 39.4 38.3

220 4.8 45.4 39.6

250 5.6 51.5 40.6

280 6.5 55.5 41.4

340 8.1 60.6 42.7

400 9.7 65.6 43.7

Table 4.1: Potential energy (Epot in kJmol~x), total configurational entropy (Sconf in

JK~ ' mol" ) and configurational entropy ofthe dihedral angle distribution (Sfhh in JK~lmol~^ )

ofthe independent (Ins) simulations at temperatures between \00K and 400K.

temperature simulations, almost no butane molecules did the transition from trans- to gauche-

conformation.

The configurational entropies Sconf calculated for the butane molecules showed a much

stronger dependence on temperature than the entropy Sdj^ calculated from the dihedral-angle

distributions. Indeed SCOnf seems to be too low at temperatures under 200 A". Using the expres¬

sion for the entropy of a Gaussian probability distribution function

r 1 -A 1 -A
S
gauss

= ~kß / "g 2^ln
r

=e ^dx, (4.9)
J-°° V2kg2 V2na2

the width of this Gaussian distribution corresponding to a given entropy Sgausi can be calculated.

Figure 4.3 shows the Gaussian distributions corresponding to the total configurational entropies

Sconf calculated using Equation 4.5 and the dihedral-angle probability distributions (with their

entropies listed in Table 4.1). They are quite different. To further investigate this troubling

discrepancy, Monte-Carlo simulations of a single butane at low temperature were performed.

These Monte-Carlo simulations were done in internal coordinates, with the dihedral angle as

the only (non-rigid) degree of freedom. A comparison of configurational entropies calculated

from these Monte-Carlo simulations at different temperatures using Equation 4.8 and 4.5 with

and without rotational fitting of the butane molecule to the initial structure is given in Table

4.2. As the Monte-Carlo simulations are carried out in internal coordinates, the first three atoms

of the butane molecule were fixed, only the fourth one was changing. This exactly meets the

condition of "anchored Cartesian" coordinates
'7
and is distinct from rotational fitting18. It seems

that rotational fitting, at low temperatures, leads to overestimation of the rotational entropy and

underestimation of the configurational entropy.
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Figure 4.1: Configurational entropy (Sconf) time-series ofindependent 1 ns stochastic dynamics

simulations of (non-interacting) butane at temperatures between 100A" and400K.

As a first test, a replica-exchange stochastic-dynamics simulation with seven replicas evenly

spaced at temperatures from 280 A" to 400 A* was used to calculate the same properties (results are

shown in Table 4.3). The exchange probabilities between pairs of replicas during the simulation

were between 0.22 and 0.39 and the overlap of the potential energy distributions for the different

temperatures is shown in Figure 4.4. All calculated properties corresponded very well to the

ones calculated from independent simulations and varied only very little for the three different

replica-exchange frequencies of 100ps~l, lps~l and 0.01 ps~l that were used.

Next, a closer look was taken at a replica-exchange stochastic-dynamics simulation using

eleven replicas at temperatures evenly spaced from 100 A" to 200 A". This case should correspond

more closely to applications of more complex systems where incomplete sampling or configu¬

rational trapping is much more likely to occur. For a replica-exchange frequency of \ps~l,
the time-series of replica temperatures is shown in Figure 4.5. It can be clearly seen that the

replicas at 140 A" and above frequently exchanged, and to a lesser extent also the ones below

140 A. But in between these two sets of replicas there were hardly any exchanges observed
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Figure 4.2: Dihedral-angle distributions of independent 1 ns stochastic dynamics simulations

of (non-interacting) butane at temperatures of 100 K, 160 A", 190 A", 220 A", 250 A", and 400K.

Distributions after the first 100 ps shown in black, then cumulative distributions all 100ps in

gray, the last one in red.

at all. This significantly reduced any enhanced sampling one might expect from the replica

exchange simulations as even for the replica at 130K the butanes seem to be trapped in the trans-

conformation (see Figure 4.1). The bigger separation between the replica at 130 A" and the one

at 140A" is visible in Figure 4.6 showing the overlap of the potential energy distributions for the

various replicas. Transition probabilities for this replica-exchange simulation and a second one

using an exchange frequency of 100ps-1 are shown in Table 4.4. Interestingly, this reduction

in exchange probability between 130AT and 140A" is less pronounced for the simulation with

much higher exchange frequency. The exchange probabilities are still fairly low, but because

of the many more exchanges that were tried, still enough of them succeeded to improve the

sampling. In Figure 4.7 the time-series of the configurational entropy for some of the replicas

is plotted. Comparing the entropies to the ones calculated from the independent simulations

(dashed lines), the replica at 100A" showed considerably better sampling. The dihedral-angle

entropy calculated (see Table 4.5) was quite close to the converged one calculated from the
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T Sffl Sconf Sconf (no fit)

100 34.1 17.4 31.9

120 36.3 23.0 37.3

140 38.1 26.3 40.8

160 39.2 28.2 42.8

180 40.3 30.1 44.7

200 41.0 31.4 46.1

Table 4.2: Configurational entropy (in JK mol ) of a Monte-Carlo simulation of a single

butane in vacuo using 50000 moves calculated using the Shannon formula (Equation 4.8) and

the probability density (Sdl£) or using a trajectory of Cartesian coordinates and the Schlitter-

method (Equation 4.5) with rotationalfitting (SCOnf) or withoutfitting (Sconf{no fit)). During the

simulation (and in the trajectory), the first three atoms do not move and the dihedral angle is the

only changing degree offreedom throughout the simulation.

T

100/75"
l

Epot Sconf Sdih

\ps~l

Epot ^conf ^dih

O.ips-1

Epot Sconf ^dih

280 6.4 54.6 41.4 6.4 54.9 41.4 6.4 54.5 41.4

340 8.1 60.3 42.7 8.1 60.6 42.7 8.1 60.2 42.7

400 9.7 65.3 43.7 9.7 65.6 43.7 9.7 65.1 43.7

Table 4.3: Potential energy (Epot in kJmol~ ), total configurational entropy (SCOnf m

JK~ mol~ ) and configurational entropy ofthe dihedral angle distribution (Sdih in JK~1 mol~ '
)

of replica-exchange simulations using seven replicas evenly spaced in temperatures between

280 A" and 400 A" and the indicated exchangefrequencies (100ps~l, 1 ps~], and 0.1 ps~*).

100 110 120 130 140 150 16 170 180 190

I Î Î 1 1 1 I I î 1

freq 110 120 130 140 150 16 170 180 190 200

100 0.06 0.09 0.09 0.14 0.14 0.14 0.21 0.26 0.29 0.32

1 0.09 0.08 0.16 0.09 0.20 0.22 0.18 0.25 0.35 0.31

0.1 0.08 0.10 0.19 0.09 0.13 0.17 0.34 0.29 0.33 0.39

Table 4.4: Exchange probability (p) ofneighbouring pairs ofa replica-exchange simulation with

an exchangefrequency of 100ps~\ 1 ps~l and 10ps~l of(non-interacting) butane using eleven

replicas at temperatures evenly spaced between 100 A" and 200 A".
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Figure 4,3: Dihedral angle distribution of the (Ins) independent stochastic-dynamics simula¬

tions at temperatures between 100 A" and 200K (black lines) and Gaussian distributions corre¬

sponding to the entropies calculatedfor these simulations using the Schütter method.

Monte-Carlo simulation (see Table 4.2). The biggest difference is visible at 160AT where an

almost converged entropy is obtained compared to the much lower and still rising one from the

independent simulation. Interestingly, even the simulation at the highest temperature, 200A",

profited from replica-exchange and showed an entropy representing increased sampling. The

replica-exchange simulation using an exchange frequency of lps~] showed the same improve¬

ments for 160 A" and 200 A", but almost no improvement for 100 A". An additional measure for the

conformational sampling is provided by the width of the dihedral-angle distribution. The time-

series of this width for the replica-exchange simulation using the high exchange frequency is

shown in Figure 4.8. During intervals with frequent exchanges between two replicas the changes

between two consecutive points can be seen as "line splitting". Again, increased sampling at

100 A" is visible, whereas for the replica at 160A" it is not evident in this plot.
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0.008
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potential energy [kJ/mol]

Figure 4.4: Potential energy distributions showing the overlap between the replicas in a

stochastic-dynamics replica-exchange simulation of (non-interacting) butane at seven temper¬

atures evenly spaced between 280K and 400A" and an exchangefrequency of 1 ps~ '.

jpot

\00ps~

àconf
odih

ösh 'pot

1/w"'

Sconf
rdih

0.1 ps~

^pot ^conf
çdih

100 1.1 10.1 29.6 1.0 8.6 29.1 1.0 8.1 28.9

120 1.6 15.5 31.4 1.6 14.2 31.5 1.6 13.5 31.4

140 2.3 23.6 33.6 2.3 27.4 34.7 2.2 21.2 33.5

160 3.0 36.9 36.5 2.9 34.7 36.1 3.0 33.5 36.5

180 3.6 41.8 37.9 3.6 41.7 37.8 3.6 41.0 37.9

200 4.2 44.4 38.8 4.2 44.3 38.7 4.2 43.9 38.9

Table 4.5: Potential energy (Epot in kJmol~l), total configurational entropy (SCOnf in

JK~1mol
~ '

) and configurational entropy of the dihedral angle distribution (S^ff1 in JK~
' mol~1 )

of replica-exchange simulations using seven replicas evenly spaced in temperatures between

100 A" and 200K and the indicated exchangefrequencies (100ps~l, lps~l, and 0.1 ps~*).
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Figure 4.5: Time-series of the temperature the replicas are at during a replica-exchange

stochastic-dynamics simulation using an exchange frequency of lps~^ and eleven replicas

spaced evenly between 100A" and 200 A". Two loosely coupled regimes are identified by rep¬

resenting replicas mostly belonging to the regime with lower temperatures by dashed lines and

the ones mostly belonging to the higher temperature regime by solid lines.

4.6 Discussion

In this work, efficiency of sampling of configurational phase-space for a simple system was in¬

vestigated and compared for independent and replica-exchange stochastic-dynamics simulations.

For high temperatures, when all properties calculated were converged, both techniques result in

identical thermodynamic averages. At low temperatures, replica-exchange simulation is at an

advantage, although sufficiently high exchange-rates need to be achieved. Increased exchange

rates can be obtained by increasing the frequency of exchange trials. Even a quite fast exchange

frequency did not show any adverse effects on the calculated thermodynamic properties.

Rotational fitting is crucial to separate configurational entropy from rotational (and transla-

tional) entropy. It seems, that at least for low temperatures, the procedure by which the rotational

fit is carried out has a significant impact on this separation.
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Figure 4.6: Potential energy distributions showing the overlap between the replicas in a (1 ns)

stochastic-dynamics replica-exchange simulation of (non-interacting) butane at eleven temper¬

atures evenly spaced between 100A and 200K and an exchange frequency of lps~l. The two

regimes separated by a small exchange probability are shown using dashed lines for ensembles

belonging to the lower temperature one and solid linesfor the others.

For real replica-exchange simulations careful analysis of the exchange probabilities and of

separation of replicas into less exchanging subsets is necessary to avoid being caught unaware in

a local-minimum trap. Nevertheless, replica-exchange simulation showed significantly improved

sampling of conformational space for the simple test system at low temperatures.
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Figure 4.7: Time-series of the configurational entropy of a stochastic-dynamics replica-

exchange simulation of (non-interacting) butane using an exchange frequency of 100ps~ and

eleven replicas spaced evenly between 100K and 200K (solid lines). Results from independent

stochastic-dynamics simulations at 100 A", 160 A", and 200K are shown using dashed lines.
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Figure 4.8: Time-series of the root-mean-square deviation (rmsd) from the average dihedral

angle for the 200 non-interacting butanes from independent stochastic dynamics simulations

(dashed lines) at 100A" (black), 160K (orange), and at 200K (maroon) and from a replica-

exchange stochastic-dynamics simulation using an exchange frequency of 100ps~[ and eleven

replicas at temperatures spaced evenly between 100A" and 200A" (solid lines).
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Chapter 5

Multigraining: an algorithm for

simultaneous fine-grained and

coarse-grained simulation of molecular

systems

5.1 Summary

A method to combine fine-grained and coarse-grained simulations is presented. The coarse¬

grained particles are described as virtual particles defined by the underlying fine-grained parti¬

cles. The contribution of the two grain levels to the interaction between particles is specified by

a grain-level parameter X. Setting X = 0 results in a completely fine-grained simulation, whereas

X = 1 yields a simulation governed by the coarse-grained potential energy surface with small

contributions to keep the fine-grained covalently bound particles together. Simulations at differ¬

ent X-values may be coupled using the replica-exchange molecular dynamics method (REMD)

to achieve enhanced sampling at the fine-grained level.

135
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5.2 Introduction

Most molecular simulations are making use of atom-level (fine-grained) models. This limits the

time scale of such simulations for solvated macromolecules to the nanosecond range. Longer

time scales can be reached by treating molecules or molecular fragments as single particles or

beads, whose motion is simulated using a simple force field describing interbead interactions.

When the energy function of such a coarse-grained model is chosen to be smooth and short-

ranged, the efficiency of coarse-grained simulations can be orders of magnitude higher than that

of corresponding fine-grained simulations, be it at the expense of the loss of atomic detail and

some accuracy1"5.
A recently proposed coarse-grained (CG) model6 for lipid simulations has the same func¬

tional form as the GROMOS force field7 except for the use of a switching function8 for the non-

bonded Lennard-Jones and electrostatic interactions at distances just below the cutoff distance.

This model has been implemented into the GromosOS simulation package9-1 ', using a slightly

different switching function.

The coarse-grained model has been designed for speed, accuracy, applicability and versatility,

where the accuracy is maximized by matching coarse-grained results to fine-grained (FG) simu¬

lations as much as possible6. In Figure 5.1 the mapping between the fine-grained (atomistic) and

coarse-grained models of hexadecane is shown. Four fine-grained particles may be represented

by one coarse-grained particle, located at the centre of mass of the fine-grained particles. One

coarse-grained water particle represents four fine-grained water molecules.

The similarity of the coarse-grained and the fine-grained models, in terms of force-field in¬

teraction functions and structures suggests, that a combination of the two models into one simu¬

lation may be feasible. This would allow for a continuous switching between CG and FG levels

of modelling, which would enable both relaxation of large molecular systems and sampling of

slow processes with concurrent FG representation of the results.

In the next section a method to combine coarse-grained and fine-grained simulations is pre¬

sented, followed by results obtained from liquid octane simulations. In the end, merits and

shortcomings of the method are discussed.

5.3 Method

5.3.1 Multi-graining Hamiltonian using mapping of coarse-grained parti¬

cles onto fine-grained ones

Classical molecular dynamics (MD) simulations are represented by the Hamiltonian

H(r,p)=K(p) + U(r), (5.1)
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Figure 5.1: Hexadecane is shown in afine-grained and in a coarse-grained representation. Four

united atoms (CHj, or CH2) ofthefine-grained molecule correspond to one coarse-grained alkane

particle, andfourfine-grained water molecules are represented byjust one coarse-grained water

particle. The mapping is defined by taking the centre ofmass of the fine-grainedparticles.
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where we have used the short-hand notation r = (ri, r2,..., rjv) to indicate a TV-particle configu-
2

ration with r, the position, p/ the momentum and m* the mass of particle i, K = 2Zf=\ j^j.
me

kinetic energy and U(r) an interaction energy term representing the interactions between the

particles. Generally, one can distinguish between (i) interactions of particles with covalent link¬

age, i.e. bonds, bond angles and dihedral angles, referred to as bonded interactions, and (ii)

interactions between all atom pairs, i.e. the Coulombic interaction and the van der Waals interac¬

tion, referred to as non-bonded interactions. In a multi-grained simulation, the interaction energy

term consists of four individual terms:

i the fine-grained bonded interactions u^bonded(r^),

ii the fine-grained non-bonded interactions ufg'nonb(r-fg),

ifi the coarse-grained bonded interactions

U^honded(rcs), and

iv the coarse-grained non-bonded interactions jjcg-'nonb(Tcg), with r?8 representing the Nfg fine¬

grained and rc's the Ncg coarse-grained particle positions.

The aim of this work is to introduce a parameter X to this interaction energy term which allows

for a continuous change from a fine-grained to a coarse-grained simulation. To this effect, first

the j = 1,..., Nc§ coarse-grained particle positions rlf are defined in terms of fine-grained particle

positions:

Nf

rf = 8,irfs) = 1 jmj £ mpr?, (5.2)

where q runs over all Nj8 fine-grained particles with mass ntq that are mapped (through their

centre of mass) to the coarse-grained particle j (with mass mc,s). Thus, the coarse-grained particle

positions are not independent dynamical variables. Again, we use below the short-hand notation

g(rf*) = (g](r^)1g2(r^):...1gN^(rfn)-
Combining the single interaction energy terms given above using the grain-level parameter X

and Equation 5.2 into a multi-grained interaction energy term yields

Umg(r^;X) - uf^bonded(rfs;X) + (1-X)Ufg>nonb(rfg;X) +

XUc^bonded(g(rf^X)+XUc^mmh(g(r^y,X). (5.3)

Here, the individual interaction energy contributions are defined as functions of X as they may

include X-dependent force constants or soft-core interactions9'10'12. Clearly, at X = 0, standard

fine-grained simulations are recovered, whereas setting A, = 1 results in a coarse-grained simula¬

tion with the addition of bonded interactions holding the underlying particles of the fine-grained
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model together and a slightly different inertia of the coarse-grained particles. From Equation 5.3

the forces on the q = l..N^ fine-grained particles are given by

f(W = -^f-^iv^X)
= ffg^nded^h.^ + (j _ l)ff^nonb^.^ +

X J (f5^^(r^;X)+f/'to^(r^;X)) ^8j(rh)
= ih,honded (pfg.^ + fi- X)ffq^nonb(r^ ; X) +

Ncg fg

X X (ff'nonh(rt;s;X) + ff>bonded(rC8;X)) %&aj (5.4)

where

ffwonh^fg.^ = %-Uf**°*b(Tf*\\),
or1/

tfg,bonded^fg.^ = ^rUf*>bonded(Tf8;\),
OTq8

fWonb^.^ = _JLUcs,nonh,rcg.X^

f^bonded(rc*;X) = -^clUcg'bonded(TC8\X), (5.5)
3 dry

and bqj is 1 if the fine-grained particle q is one of the defining particles (through the mapping of

Equation 5.2) of the coarse-grained particle j and 0 otherwise.

In Figure 5.2 the algorithm of a single (leap-frog13) integration step during a multi-grained

simulation is depicted. The left hand side represents the fine-grained level (using a fine-grained

topology and fine-grained particles with positions rp and momenta p{s), the right hand side

corresponds to the coarse-grained level (with coarse-grained topology and configuration rf).
During the integration step, first the coarse-grained positions are updated from the fine-grained

positions using the virtual-grain definition (usually defined as one coarse-grained particle being

the centre of mass of a given number, e.g. four, of fine-grained particles, see Equation 5.2).

Then, energies and forces are calculated at both levels, using the respective parts of the interaction

energy terms (Ufg(rfg;X) and Uc'8(rcs; X)). Afterwards, the potential energy of the multi-grained

simulation is calculated from the individual terms and the fine-grained forces are augmented

by the coarse-grained ones according to Equation 5.4 (last term), weighted by the grain-level

parameter X. Finally, the fine-grained particle positions and momenta are propagated forward in

time using the leap-frog integration scheme.
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Multigraining MD

fine-grained
topology,

configuration. r,fl

coarse-grained
topology,

configuration r^

1. update coarse-grained

configuration (using virtual-

grain definition)

2a calculate A-dependent

energies and forces

(according to coupling

parameter A)

2b calculate A-dependent

energies and forces

(according to coupling

parameter A)

3 distribute forces from coarse¬

grained on fine-grained particles

using virtual-gram definition g(r'fl)
and add potential energy terms

4a. propagate velocities

and positions using the

leap-frog scheme

4b propagate velocities

and positions of non-

mapped solvent particles

using the leap-frog
scheme

Figure 5.2: The algorithmic sequence ofoperations during one (leap-frog) integration step ofa

multi-grained simulation is shown. The left half corresponds to operations applied to the fine¬

grained part of the simulation, the right half to operations acting on the coarse-grained part.

Twice during the integration step, one switches between the two grain levels. First, the coarse¬

grained particle positions are computed from the fine-grained ones (step 1). Then, forces and

energies calculated in the coarse-grained representation are distributed back onto the underly-

ing fine-grained particles (step 3). Step 4b is only carried out for non-mapped coarse-grained

particles.
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Using this procedure, it is possible to smoothly change from a fine-grained simulation into

a coarse-grained one and back. Therefore, a technique to achieve fast equilibration of a fine¬

grained system would consist of increasing X to 1, equilibrating at the coarse-grained level, and

then, in the end reducing A to 0 again. An example of this technique is given in the second part

of Section 5.4.

5.3.2 Replica-exchange multigraining simulation

The full strength of the multigraining method lies in its combination with replica exchange

MD (REMD14"23; also known as parallel tempering). This method has been generalized24"26
to simulate a set of Ns replicas, each governed by a different Hamiltonian H(r^8,s,p^8,s;Xs) with

s
— l..Ns, and with r^,ç the (fine-grained) positions, p^ the (fine-grained) momenta, and Xs the

X of replica s. The probability of the global state S' consisting of the Ns replicas is proportional

to its weight factor

W(S') = exp
(- X ß#(r^v,p^s;Xs) j ,

(5.6)

with ß = 1/kßT, kß is Boltzmann's constant and T the temperature. To sample canonical ensem¬

bles for all the different Hamiltonians H(rf^s,pf^s;Xs) even if from time to time two replicas are

exchanged, the criterion of detailed balance has to be fulfilled for the replica exchanges. Detailed

balance, with w(S' — S") the transition probability from (global) state S' to state S", and s', s"

the indices of the two replicas in S' that are exchanged to obtain S" from S', is given as

W(S')w(S' - S") = W(S")w(S" - S'). (5.7)

This condition can be satisfied through the usual Metropolis criterion27 for the probability p(s' <->

s") of an exchange of the two replicas s1 and s",

n(,':,^)_W^S")
=

w(-S'^S") { 1 fbrA<0,
PK' L }

W(S') w(S"-^S') \ exp(-A) otherwise,

with

A = ß (ums(vfs'"J';Xs') - Um8(rf^s'; A*' ) ) -

ß (um8(^s";Xs") - Um8(rf^';Xs")^) . (5.9)

Note that before every exchange attempt, the potential energy Ums(rf8;X) has to be evaluated

for both replicas at both Xs and Xs values of the coupling parameter X.

While it is not possible to simulate very large systems using this method, as all the fine¬

grained degrees of freedom are, irrespective of the value of X, explicitly treated, the fine-grained
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simulation of the replicas at A = 0 can benefit from the faster sampling obtained in the coarser-

grained simulation of the replicas at larger A. Coarse graining a simulation enhances the sampling

in two ways. First, by smoothening out the potential energy landscape transitions from one

local minimum into another one get more likely. Second, this smoother potential energy surface

allows the time-step to be increased by a factor of 15 to 20 for typical coarse-grained models

of condensed phase molecular systems. As the fine-grained bonded interactions are retained

even at high A values (more weight for coarse-grained forces), just increasing the time-step in a

multigraining simulation is not possible. Therefore, multiple time-stepping is used to separate

the often calculated, but computationally cheap fine-grained bonded forces from the expensive

nonbonded ones28.

5.3.3 Multi-graining Hamiltonian with partial mapping of coarse-grained

particles onto fine-grained ones

The coarse-grained model used here6 maps (usually) four fine-grained particles (united atoms

or molecules) on one coarse-grained particle. That way, simple alkanes and even more complex

lipids can be represented at coarse grain level and defining the coarse-grained particles as vir¬

tual particles using fine-grained positions is straightforward. This approach does not work for

solvent molecules such as water, as one coarse-grained solvent represents many (usually four)

fine-grained solvent molecules, which may diffuse away from each other. There are (at least)

three ways to overcome this problem.

First, the most simple technique would be to hold four fine-grained solvent molecules to¬

gether by using (four to six) loose distance restraints between them. Then, the coarse-grained

solvent particle could still be mapped on the centre of mass of the restrained solvent molecules.

This approach has not been investigated further yet, as minimal impact on the fine-grained sim¬

ulation was a priority throughout this work.

In a second approach, fine-grained and coarse-grained solvent particles could be treated in¬

dependently corresponding to a configuration defined by (r^^1 irsolvfs,rra/"<Ä,rs"/v'*), where

rsoiu^ is mapped onto jsoiuf*^ but fiais* is not mapped onto rsolvfl<. In other words, the non-

mapped solvent particles are treated as additional degrees of freedom in the Hamiltonian. For

these non-mapped solvent particles the coarse-grained interaction function of Equation 5.3 depen¬

ding on the fine-grained solvent degrees of freedom (with configuration rsalv A) is set to zero,

jjcg,bonded,sohfz / <rfg\ o(rso/|;/Ä); A) = 0

jjCg^onbM^^tS^g^'l^YX) = 0, (5.10)

and the degrees of freedom for the non-mapped coarse-grained solvent particles (with configura-
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tion xsolVK) are added to the multigraining Hamiltonian (Equation 5.1)

*-" - I %fJr (M»

d/v'''V0/vCS;A) = XUC8>n(mh(rsolvCli;X). (5.12)

During propagation of the system, also the positions and velocities of these yvw//s coarse-grained

solvent particles need to be updated, as indicated in step 4b of Figure 5.2.

For the non-mapped fine-grained degrees of freedom there is no coarse-grained potential

energy term to be calculated (Equation 5.10), which makes steps 1, 2b and 3 in Figure 5.2 su¬

perfluous for the non-mapped fine-grained solvent-particles. For the non-mapped coarse-grained

degrees of freedom, steps 1 and 3 in Figure 5.2 are superfluous as well, but the coarse-grained

interaction has to be calculated (step 2b) and positions and velocities of the coarse-grained sol¬

vent particles need to be propagated (step 4b). This implies that at A = 1, the fine-grained non-

mapped solvent is only affected by (jfsandedtrsoivft.^^ ln otner wor(is, the solvent molecules

are in free-flight. This may be a serious problem in replica-exchange simulations as, at A = 1 a

fine-grained solvent molecule might overlap with any other (fine-grained or coarse-grained) par¬

ticle. This in turn means that the difference in grain-level A between two neighbouring replicas

(at high A-values) must be very small. Still, a successful example of this approach used for a fast

equilibration at the fine-grained level of alkanes in water is given in the next section.

Of course it would be possible to keep a small amount of the fine-grained nonbonded inter¬

action Tj^nonbonded(rsolvfR;X) present even at the fully coarse-grained level; if only just enough

of the van der Waals interaction is retained to keep the fine-grained solvent particles from over¬

lapping, the impact on the coarse-grained simulations will be negligible. Note that perfect coarse-

graining at A = 1 is not a requirement for a correct fine-grained simulation at A = 0 (even within

the replica-exchange framework).

The third approach is a variation on the second one. Instead of keeping fine-grained (van der

Waals) interactions present at the completely coarse-grained level (A = 1), it is possible to define

an attractive r~6 interaction between all fine-grained non-mapped solvent particles on the one

hand and all non-mapped coarse-grained solvent particles on the other. The advantage of this

approach is, that even without a direct mapping, fine-grained water would occupy approximately

the same space as coarse-grained water at any value of the grain-level parameter A.

Here, we only apply the second approach for treating solvent degrees of freedom.

5.4 Results

A system of 128 octane molecules was simulated using periodic boundary conditions. The start¬

ing configuration was separated into two layers, the first 64 octanes belonging to the lower, the
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last 64 octanes to the upper layer. During the simulations the degree of mixing between the two

layers was monitored.

Fine-grained simulations were carried out for 500 ps using GROMOS0511 with the Gromos

45A329 force-field parameter set, an integration time-step of 2 fs, at constant volume and a

temperature of 300 K (weakly coupled30; T — 0.1 ps). Centre of mass translation was strictly

removed1 ', covalent bond energies and forces were calculated using a harmonic potential energy

function (GROMOS8731 ), and a triple range cutoff scheme was applied with a short range cutoff

of 0.8 nm, a long range cutoff of 1.4 nm and a reaction-field dielectric permittivity e of 1.0.

Coarse-grained simulations were carried out for approximately 500 ps using GROMOS05

with the coarse-grained model developed recently by Marrink et al.6, an integration time-step

size of 30 fs, at constant volume and at a temperature maintained at 300 K by weak coupling

(t = 0.1 ps) to a temperature bath. Centre of mass translation was strictly removed, bond energies

and forces were calculated using, in accordance to the coarse-grained model, e = 20, a harmonic

potential energy function (GROMOS87), and the Lennard-Jones potential energy was smoothly

shifted to zero at a cutoff of 1.2 nm.

In Figure 5.3 the average over all molecules of the z-component of the position of every fourth

octane atom (fine-grained) or of every first octane atom (coarse-grained) belonging initially to

the upper or lower layer are shown. The potential energy hypersurfaces governing the diffusion

controlled mixing of the two octane layers seem to be quite equivalent for the fine-grained and the

coarse-grained models, considering their similar mixing behaviour. Of course, the fine-grained

one is rougher on a small time scale, so that a much shorter integration time-step of 2 fs had to

be used, compared to the 30 fs time-step in the coarse-grained simulation. Therefore, the latter

one relaxes computationally at least 15 times more efficiently.

The same system was also simulated multi-grained using the grain level parameter A in a

replica-exchange MD framework. 24 replicas were used with the following A values: 0.00,0.08,

0.14, 0.20, 0.25, 0.30, 0.34, 0.38, 0.42, 0.46, 0.50, 0.54, 0.58, 0.62, 0.66, 0.70, 0.74, 0.78, 0.82,

0.86, 0.90, 0.93, 0.96 and 1.00. In this setup, the average over time and pairs of replicas of the

switching probability was 26%, ranging from 8% up to 42% for the different pairs of A-values.

All replicas were started from an identical structure and for the first 20 exchange trials, switching

between replicas was prohibited. In between two exchange trials, the replicas were independently

evolved for 500 steps, using a time-step size of 2 fs for A < 0.55,10 fs for 0.55 < A < 0.9, 20 fs

for 0.90 < A < 1.00 and 30 fs for A = 1.00. In other words, at least 1 ps of independent evolution

separated the exchange trials. Figure 5.4 shows the grain-level (A) time-series of each replica.

The 10 replicas with initially the lowest A-values are marked with bold lines, a couple of interest¬

ing ones in colour. As the simulated system is relatively simple and all replicas are starting from

the same configuration, it happens twice that a number of replicas are very close in potential

energy. In this case, the Metropolis criterion (Equation 5.8) yields nearly 100% exchange prob¬

ability, therefore these two intervals are marked by numerous replica exchanges. Additionally,

due to the artificial setup of the computational box with separation of the octane molecules into
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time [ps]

Figure 5.3: The average over all molecules ofthe z-component of thefourth atom (fine-grained)

or thefirst atom (coarse-grained) ofthe octane molecules belonging to the (initially) upper layer

and the ones belonging to the (initially) lower layer versus time during an MD simulation of500

ps length are shown. Black lines correspond to thefine-grained, blue lines to the coarse-grained

simulation.

two layers, the system is not at equilibrium at the start of the simulations. Therefore, it is to be

expected that the total potential energy will decrease slightly during the simulation. As this hap¬

pens faster for the more coarse-grained replicas, they are likely to switch with more fine-grained

replicas, explaining why most of the initially fine-grained replicas end up at high grain-level at

the end of this short REMD simulation.

Figure 5.5 shows the average over all molecules of the z-component of the position of every

fourth octane atom (using the atomistic representation) during the REMD simulation. The black

line and the dashed black line correspond to molecules of the replicas at grain-level A = 0.0

initially in the upper and lower layers respectively, the blue lines to molecules of the replicas at

A = 1.0 initially in the upper and lower layers respectively. The lower panel indicates successful

replica exchanges involving the replicas at A = 0.0, where the starting grain-level of the replica

with which the switch is made, is indicated in some cases. Using this method, equilibration of
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Figure 5.4: Time evolution of the grain-level (A) ofthe 24 replicas during 300 replica exchange

steps of a multi-grained REMD simulation of octane. The 10 replicas with initially the lowest

X-values are marked by bold lines, selected interesting replicas by coloured lines.

the two layers, at fine-grained level, can be achieved within 100 ps, even though in the first 20

ps, no exchanges are allowed. At coarse-grained level this fine-grained time period corresponds

already to 1.5 ns of simulation.

As a second example, 25 hexadecane molecules were simulated in SPC water32. The sys¬

tem was simulated multi-grained at grain-level A = 1.0. Fine-grained and coarse-grained solvent

particles were not mapped, but 875 of the latter were added to the multi-grained Hamiltonian as

described in Equations 5.11 and 5.12. Rectangular periodic boundary conditions were applied.

The temperature of the solutes and the solvent were separately maintained at 300 K by weakly

coupling to a temperature bath, while the volume of the box was fixed. The GROMOS 45A329

parameter set was used for the fine-grained model, the coarse-grained model corresponded to

that of Marrink et al.6. Multiple time-stepping28 was used with a short time-step of 2 fs for the

fine-grained bonded interactions and a large time-step of 30 fs for the coarse-grained interac¬

tion terms. Two configurations, frames 40 (8 ps) and frame 125 (25 ps) were selected to serve as

starting points for independent short multi-grained simulations, continuously changing the grain-
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Figure 5.5: The average over all molecules ofthe z-component ofthefourth atom (using thefine¬

grained representation ofthe multi-grained system) ofthe octane molecules belonging (initially)

to the upper layer and the ones belonging (initially) to the lower layer versus replica exchange

trials during a REMD simulation covering 300 exchange trials (500 steps per trial) are shown.

Black lines correspond to the replicas at grain-level A = 0.0 (FG), blue lines to the replicas at

A = 1.0 (CG). In the lower panel, successful exchanges ofthe replicas atX = 0.0 are indicated

andfor some, the original (starting) grain-level ofthe exchange-partner replica is indicated.

level from 1.0 to 0.0 within 0.5 ps, with an integration time-step of 2 fs. In Figure 5.6 snapshots

of the system are depicted. From left to right, the starting structure in its multi-grained repre¬

sentation, then frame 40 and 125 in the coarse-grained representation, and finally the end-state

(100 ps), with the aggregated hexadecanes again in multi-grained representation are shown. In

the middle, the final conformations after the short multi-grained simulations in which the grain-

level was changed from 1.0 to 0.0 are shown. These conformations may now be used for further

fine-grained simulation and analysis.
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Figure 5.6: Multi-grained simulation of25 hexadecanes in explicit SPCiZ water. The first snap¬

shot shows the multi-grained representation of the starting structure, then, in the top row, frame

40 (8ps) and 125 (25 ps) in coarse-grained representation and, to the right, thefinal, aggregated

configuration is shown. Fromframe 40 and frame 125, short (0.5 ps) multi-grained simulations

changing the grain-levelfrom 1.0 (CG) to 0.0 (FG) were done and theirfinal configurations are

shown in fine-grained representation.

5.5 Discussion

A method to couple simulations at fine-grained and at coarse-grained level was presented. At

100% fine-grained level (grain-level parameter A = 0.0), a standard fine-grained simulation is

retained, whereas at the coarse-grained level (A — 1.0), in addition to the potential energy terms

from the coarse-grained model, the fine-grained particles, which are covalently bonded together,

must be kept together. The advantage of a large integration time-step at coarse-grained level

may, nevertheless, be maintained by using a multiple time-step approach (such as reversible

RESPA28).
The method may be used to achieve fast equilibration, in a fashion similar to simulated an¬

nealing, by increasing the grain-level (A), simulating the now coarse-grained system and then

decreasing the grain-level again to the fine-grained level.

A second application is in replica-exchange simulations, where the grain-level parameter A

is used to distinguish between the different replicas. It was shown that fast equilibration at the

fine-grained level can be reached, and additionally, predictions of the long term behaviour of the

system may be extracted from the simulations at high grain-level.

Note that using this method, there is no need to reconstruct fine-grained particle positions
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from coarse-grained ones and all movements are governed by a (time-independent) Hamiltonian.

The disadvantage is, that the system size limit due to fine-grained modelling is not circumvented

with this method. But, sampling of the configurational space is greatly enhanced by replica

exchange using replicas governed by a smoother potential energy surface (coarse-grained) and

therefore simulated with a much larger time-step size.

Suggestions of how to overcome the difficulties induced by the diffusive nature of solvent

molecules in a multi-grained simulation have been made and are currently investigated.
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Chapter 6

Sampling of rare events using hidden

restraints

6.1 Summary

A method to enhance sampling of rare events is presented. It makes use of distance or dihedral-

angle restraints to overcome an energy barrier separating two metastable states or to stabilize a

transition state between the two metastable states. In order not to perturb these metastable end

states themselves, a prefactor is introduced into the restraining energy function, which smoothly

increases the weight of this function from zero to one at the transition state or on top of the

separating energy barrier and then decreases the weight again to zero at the final state. The

method is combined with multi-configurational thermodynamic integration and applied to two

biomolecular systems which were difficult to treat using standard thermodynamic integration.

As first example the free energy difference of a cyclic a-aminoxy-hexapeptide-ion complex upon

changing the ion from Cl~ to Na+ was calculated. A large conformational rearrangement of the

peptide was necessary to accommodate this change. Stabilizing the transition state by (hidden)

restraints facilitates that. As second example the free energy difference between the 4C\ and

the 'C4 conformation of ß-D-glucopyranoside was calculated. In unrestrained simulations the

change from the 4C\ into the
'
C4 conformation was never observed, because of the high energy

barrier separating the two states. Using (hidden) restraints, the transition from the AC\ into the

1C4 state and back could be enforced without perturbing the end states. As comparison, for the

same transitions the potential of mean force as obtained by using dihedral-angle constraints is

provided.

153
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6.2 Introduction

Computer simulation is increasingly used to investigate in atomic detail dynamic molecular pro¬

cesses. Atomistic molecular dynamics (MD) simulations of systems comprising tens to even

hundredths of thousands of atoms are nowadays possible covering nanoseconds to microsec¬

onds. Yet, conformational changes in biomolecules, ligand binding or structural organization

occur roughly in the millisecond range, while protein folding may take up to minutes. This

means that these interesting events in biomolecular systems are often not or only rarely observed

in MD simulations. Therefore, methods to enhance the sampling of these rare events during an

MD simulation have been developed over the years1"3. Often, one is only interested in a few

selected degrees of freedom of the system under the average influence of the many other degrees

of freedom. Then, statistical mechanics provides means of expressing the average dependence

of the degree of freedom of interest on the residual degrees of freedom in the form of a poten¬

tial of mean force (PMF)4. The potential of mean force can be defined as minus kßT times the

logarithm of the probability that the system is found at a specific position along the degree of

freedom under investigation (at temperature T and with kn being the Boltzmann constant), and

it can be interpreted as a projection of the free energy on one (or more) coordinates or degrees of

freedom of interest.

Using MD simulation, the potential of mean force may be calculated by constraining the

system to a specified point along the investigated degree of freedom and calculating the average

value of the constraint force magnitude5"7. Another way to calculate a potential of mean force is

by using umbrella sampling8. Sampling is biased towards otherwise unfavorable regions of the

configurational space by performing simulations with an additional artificial biasing potential

energy term, the so-called umbrella potential. The resulting probability distribution from the

simulation of the unphysical system can be corrected afterwards to yield the probability distri¬

bution of the corresponding physical, unbiased, system. The biasing potential may be used to

focus sampling in a specific region, a so-called window, along the degree of freedom for which

the potential of mean force is to be determined. By performing multiple simulations with shifted

focuses, the complete degree of freedom can be sampled segment by segment. Each segment of

the potential of mean force calculated from a different window, has an arbitrary offset. To obtain

the resulting, continuous potential of mean force, the segments must be matched. A third method

to determine a potential of mean force is a combination of the two mentioned above: the biasing

force is measured from which the PMF can be constructed9.

All three ways to calculate the potential of mean force, which may then be integrated to

get the free energy difference between two states, the so-called end states, on the degree of

freedom considered, suffer from the disadvantage, that the biasing or restraining (or constraining)

potential energy term is also applied in the two end states. This may lead to artifacts in the relative

free energies, as no longer the difference between two unrestrained metastable states, but only the

difference between two restrained states is calculated. In other words, the free energy difference
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will depend on the degree of freedom or pathway considered, which requires this pathway to be

a good approximation of true pathways.

In this work we propose a combination of multi-configurational thermodynamic integration

with the use of a biasing potential energy term, but without restraining the end states. This

makes the end states pathway independent, which allows one to choose an unphysical pathway

that enhances the sampling. In the next section, the method is explained, followed by an imple¬

mentation using distance restraints and one using dihedral-angle restraints. Two examples will

be given: first, in a cyclic ot-aminoxy-hexapeptide-ion complex the ion is changed from an anion

into a cation, resulting in a large conformational change of the peptide; second, the free energy

change of a transition of ß-D-glucopyranoside from the AC\ to the lC^ conformation is calculated.

The work is concluded by a short discussion. In the Appendix the formulae to obtain a potential

of mean force using distance or dihedral-angle constraints are presented.

6.3 Method

If a molecular system exhibits two (meta) stable states which are connected by a transition path

that is only very rarely sampled during an MD simulation10, it may be efficient to forcefully

propagate the system from one end state to the other along this transition path. To be able to

calculate an unperturbed relative free energy of the one state with respect to the other it is of

advantage not to put any external forces or restraints on the system when being in these two end

states. Therefore, the following general restraint formulation is proposed to enforce a transition

from state A to B without influencing the end states:

cçrestr^ = ^n+m^n ( { _ ^m ^(r; X), (6.1 )

where 1^,.(r; A) is a A dependent (restraining) potential energy term which enforces the (smooth)

transition of the system from state A into state B along the pathway A = 0 to A = 1. The weight

factor (2"+mA"(l — X)m) applied to the restraining potential energy term V^tr *s shown in Figure

6.1.

The relative free energy AGba of state B with respect to state A may be calculated using the

(multi-configurational) thermodynamic integration method1
'
(reviewed elsewhere12,13)

with H being the Hamiltonian of the system, which also includes the restraining potential energy

term t]/restr. The ensemble (or time) average of the derivative of the Hamiltonian with respect to

A, (^), is calculated for a given number N\ of fixed A values using A^ MD simulations, while

the integration is carried out numerically afterwards.
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The A derivative of the restraining term 1/restr is

dX
(nXn-l(l-X)m-mXn(l-X)m-1) l/^tr(r;X) +

Xn(l-Xr^elr(v;X)

and the force is

f; =~V^(r;A) = ~2n+mXn (1-X)m ^V*ftr(r;X),

(6.3)

(6.4)

where r denotes a configuration of the system and r, the coordinates of particle i. The method

may be used with any kind of restraining potential energy function 1/restr(r;X). The following

two sections show distance and dihedral-angle restraints as examples.



6.3. Method 157

6.3.1 Distance restraints

A distance restraint k between atoms k\ and k2 may be formulated using a harmonic potential

energy function. In practice, it is often necessary to smoothly linearize the potential energy

function beyond a specified distance rfin to avoid very high energies and extremely steep slopes,

-Ktist(\rk\-4 + l/2rl)rl N<rJ-r?
lin

lf(r) = l/2JKf (\rk\ - r«)2 r? - 4 < |r*| < r° + r?fa (6.5)

Uff(l^|-^-l/2r«7>L N^'L

where K^uf is the force constant of the restraint, rk = rkl — rk2 is the vector connecting particle

k2 to particle k\ and the restraint is linearized for distances larger than rfin.
If the distance restraint should drive the system (in a controlled way) from a state A to a state

B, the restraint parameters have to change along this path. This change of restraint parameters

along the path described by A can be formulated as

<5H^) = V2((1-A)^ (6.6)

for the harmonic part and as

<rA>^) = C (0 -Wi +M*) (\rk\ - (1 - X)riA - Xr°kB - içrg,) 4 (6-7)

for the linearized part (with Ç = -1 if |r^ | < rf - rfln and Ç = 1 if |rk \ > r°k + r°/w) using a restraint

length in state A of rfc' and in state B of rfc' and corresponding force constants ^ and K.%. The

force in the harmonic part is

t
—

ajdisres^B'~\
t. _

__^ vharmk \r,k)

= - ((1 - A)^ +Uf) (|r,| - (1 - A)r°/A - Ar«'5) ^(fc, - ô,*2) (6.8)
^ ' ^ lrfcl

and in the linearized part

'* = -^<r^(r;A) = -Ç ((1 - A)^ + Atff) 4^(5^-5^), (6.9)

where ö is the Kronecker delta.

Finally, to use the thermodynamic integration formula (6.2), the derivative of the distance

restraint with respect to integration variable A needs to be known:

dO>*>= W (^-^)(|r,|-(l-A)^-^°'S)2 +dX

k2((1-A)^ + A^)(|r,|-(1-A)^-Ar;

(r^-rJ^V (6.10)
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and

§tf5r"<r.x>= ç( (*f-*f)(N-(i-x)^-^-jWt.)'a,+

((l-mi +^)rl(r^-rfB)\ (6.11)

An example of using distance restraints in a relative free energy calculation is given in Section

6.4.

6.3.2 Dihedral-angle restraints

Many structural differences of biomolecules are related to different dihedral angles, an example

being the y and 0 angles in peptides14. Similar to distances, dihedral angles may be restrained

using a harmonic potential (for a dihedral k specified by the atoms k\ - k2 - kj, - k$)

( -If(% + 1/2C)C A** < "C
^dihres^)=) l/2Kf»(A^ -C<^*<C (6-12)

( <'>^-l/2C)C Afc>C

with Kfh the restraining force constant, 0^ the angle to restrain to and A$k = 0* - 0" + 2mz,

where n is chosen such that 0 is within the range [0JJ*0*, §ax + 2k] and assuming that 0^ is chosen

within the same range. Using this dihedral-angle restraint formulation, 0"* determines at which

position the direction of the rotation around the dihedral angle, caused by the restraint potential

energy function, inverses. By aligning §ax to the highest potential energy barrier for the rotation

around the dihedral angle, it is possible to avoid pushing against this barrier, by rotating the other

way instead.

Similar to distance restraining a A dependence can be introduced to enforce conformational

sampling along a pathway from state A to state B

<ZT(W = 1/2 ((1 -\)4 + \Kl) (A0a)2, (6.13)

using

A0R = «t»* - ( 1 - K)<fkA - M>r + 2/iTC, (6.14)

and

with Ç = -1 if A0a < —$in and Ç = 1 if A$kx > 0^n for the linearized part of the restraint. The

parameter 0** is kept constant along the path, assuming that common maximum values of the
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restraining potential energy terms in states A and B can be found. The force in the harmonic part

of the restraining potential energy function is

,
_

_

d
ydihres^B dA0a <%

'' ~

9A0a *""»•* 30* drt

= -((l-^+Uf)^^, (6.16)

and in the linear part

f. - _<i/d:
d „A///!^v,ABdA0a90fc

aA0a "'"* 80fc 3r/

o <*<!>*
= -((l-A)/^ + A*f)Ç0L^ (6.17)

with ^ equivalent to the expression used for the (physical) dihedral-angle potential energy

term15"17.

Finally, the A derivative of the restraint is given by

a

^&* =i( (Kf-<)(A0a)2 +

2 (( 1 - X)KAk + XKÎ) A0a (^ - 0?fî) ), (6-18)

and

h<SrM =c( (^-^)(CA0a-i/20n,) +
3A

;i-A)^ + A^f)c(0^-0^)). (6.19)

6.4 Applications

In this section, results from studies on two types of problems are shown. First, a cyclic aminoxy-

hexapeptide showing the interesting possibility to bind anions and (less tightly) also cations was

investigated. When changing from binding an anion to binding a cation, the structure of the

peptide has to change dramatically. Standard simulation techniques fail to reproduce this confor¬

mational change on a time-scale accessible to MD simulations. Second, the relative stability of

chair conformations ('C4 and 4C\) of a hexopyranose was investigated. During a standard MD

simulation, not enough transitions between the two conformations occur to accurately calculate

their free energy difference.

The two systems have in common that standard simulation does not appropriately sample

the part of the phase space important to calculate the free energy differences between different
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metastable conformations of the systems. But, while in the former system the complex between

ion and peptide becomes instable upon (alchemically) changing from a cation to an anion and

therefore needs stabilization of the transition state, the latter system needs to be forced over the

barrier separating conformation A from B, i.e. needs destabilization of the transition state. Both

requirements may be fulfilled by adequately choosing (hidden) restraints.

6.4.1 Conformations of a cyclic aminoxy-hexapeptide upon binding cations

and anions

Recently, a cyclic D,L-a-aminoxy-hexapeptide with the sequence (D)-Leu - (L)-Phe - (D)-Leu -

(L)-Phe - (D)-Leu - (L)-Phe was synthesized and its properties investigated18 as part of a study

of the functions of foldamers, that is, of oligomers of unnatural peptide moieties that fold into

well-defined secondary structures19"22. Cyclic D,L-a amino acid peptides and ß3-amino acid

peptides have been found to self-assemble into nanotubes and function as transmembrane ion

channels23"28, while a-aminoxy acids, as backbone analogue of ß-amino acids, can form an

eight-membered intramolecular hydrogen bonded ring29,30, and, as oligomers 1.8s helices. The

cyclic peptide with its small pore size was expected to bind ions. The carbonyl groups may

coordinate with cations, whereas the amide hydrogen atoms may form hydrogen bonds with

anions (see Figure 6.2). Experiments found only halide ions, but not alkali metal ions, to bind to

the cyclic hexapeptide18.
Here, conformational changes of the hexapeptide upon changing the complexated ion from

Cl~ to Na+ were investigated, using the multi-configurational thermodynamic integration method.

The complex was simulated by integrating Newton's equation of motion based on the leapfrog

scheme31 in explicit chloroform solvent32, at a temperature of 300 K (maintained by separate

weak coupling33 of solute and solvent to a temperature bath with %t = 0.1 ps), and constant

pressure of 1 atm (%p = 0.5ps, kf = 4.575 10~4(kJmor1 nm~3)~[, using isotropic coordinate

scaling33). Bond lengths were constrained using the SHAKE algorithm34 with a relative geomet¬

ric tolerance of 10~4. A triple range cutoff-scheme35 was used with a short cutoff of 0.8 nm and

a long cutoff of 1.4 nm, and a reaction-field approximation36 (erf — 4.81) was applied. Center

of mass translation was removed. For interaction parameters the GROMOS 45A317,37 parameter

set of the GROMOS force field38 was used together with some special aminoxy parameters39. In

Figure 6.2 configurations of the hexapeptide complexing a chloride and a sodium ion are shown.

The ensemble average of the partial derivative of the Hamiltonian with respect to the (alche¬

mical) A-dependent pathway from C/~ to Na+ and backwards is depicted in Figure 6.3 and

the (numerically) integrated free energy differences AC are given in Table 6.1. In Figure 6.4,

showing the averages of the distances between the backbone carbonyl oxygen and amid hydrogen

atoms and the ion during the thermodynamic integration, the problems arising in the absence of

distance restraints (panels A and B) are evident. Instead of undergoing the change necessary

to switch between the cation and anion complexing conformation, the ion is just expelled from
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Figure 6.2: Configurations ofthe cyclic aminoxy-hexapeptide complexed with Cl (A) and with

Na+ (B)from MD simulations in (explicit) chloroform.

the peptide. On typical MD simulation time-scales, the ion will not find its way back to form a

stable complex. Therefore, without distance restraints, no reliable free energy difference can be

obtained. The hidden restraints could be successfully applied to stabilize an otherwise unusable

transition path and to calculate a free energy difference between the two states (panels C and D).

process hidden restraints unrestrained

CI' -> Na+

Na+ -» cr

-149 ±16

150 ±13

134 ±10

245 ±11

Table 6.1: Numerically integrated free energy difference AG, in kj/mol, obtained by multi-

configurational thermodynamic integration of the cyclic aminoxy-hexapeptide ion complex in

chloroform, where the ion was changedfrom Cl~ to Na+ and back. Averages ( |f- ) were ob¬

tained from 250 ps of simulations (after 50 ps of equilibration) at 11 discrete X values. Error

estimates resultfrom block averaging and extrapolating the block length to infinity .

6.4.2 Relative stabilities of hexopyranose in 4Ci vs. C4 conformation

A new GROMOS force-field parameter set, 45A4, has become available for explicit solvent (wa¬

ter) simulations of hexopyranose-based carbohydrates41. It was obtained according to the fol-
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Figure 6.3: Average derivative ofthe Hamiltonian with respect to the (alchemical) pathway pa¬

rameter X, obtainedfrom 250 ps simulations (after 50 ps equilibration) at 11 discrete X values

for the cyclic aminoxy-hexapeptide ion complex in chloroform. In the upper half (panels A and

B) resultsfrom unrestrained simulations are shown, the lower half(panels C and D) represents

simulations including hidden restraints. On the left side (panels A and C) thermodynamic inte¬

gration along X representing a changefrom Cl~ (X = 0) to Na+ (X = 1) was carried out, whereas

the right side (panels B and D) corresponds to the reverse transformationfrom Na+ (X = 0) to

CI (X=l).

lowing procedure: (1) reassigning the atomic partial charges based on a fit to the quantum-

mechanical electrostatic potential around a trisaccharide; (2) refining the torsional potential

energy function parameters associated with the rotations of the hydroxymethyl, hydroxyl, and

anomeric alkoxy groups by fitting to corresponding quantum-mechanical profiles for hexopyrano-

sides; (3) adapting the rotational potential energy function parameters determining the ring con¬

formation so as to stabilize the (experimentally predominant) 4Q chair conformation (Figure

6.5).

In unrestrained simulations, starting from the lC^ conformation, isomerisation to the dom¬

inant 4Ci conformation occurred within at most 2 ns. Starting from the 4Ci conformation, no

isomerisation occurred during 5 ns41. To calculate the free energy difference between the two
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Figure 6.4: Average distances between the ion and the six carbonyl oxygen atoms (in red) and the

six amide hydrogen atoms (in black) ofthe cyclic aminoxy hexapeptide ion complex are shown,

obtainedfrom 250ps simulation (after 50ps equilibration) at 11 discrete X values during a multi-

configurational thermodynamic integrationfrom Cl~ (A — 0) to Na+ (A = 1) (left side, panels A

and C) and backwards from Na¥ (X — 0) to Cl~ (A = 1) (right side, panels B and D), without

restraints (panels A and B) and with (hidden) restraints (panels C and D).

conformations hidden (dihedral-angle) restraints were applied to force a transition from 4Ci to

*C4- The restraints were applied to the ring dihedral angles, with reference values 0()'A and 0°'iJ in

the two end states 4Ci and *C4 according to Table 6.2. The atom numbering is specified in Figure

6.6. During the isomerization, the dihedral angles will go through the syn conformation (torsional

dihedral angles of 0°). Therefore, the maximum value of the restraining potential energy function

was set to be reached at 0j^a* = —180". 200 ps of MD simulations (including first 50 ps of equili¬

bration) were performed in explicit SPC water42, at 11 discrete A values (A = 0.0,0.1,0.2,..., 1.0).

The exponents m and n of the hidden restraints in Equation 6.1 were chosen as m = 2 and n = 2,

and the force constants Kdlh = lOkJ/rad2 with all six individual weight factors equal to 1.0.

A temperature of 300 K (separate coupling of solute and solvent, Xj — 0.1 ps) and pressure of

1 atm (Xp ~ 0.5ps, Kp = 4.57510~4 (kJmol~lnm~3)~l using isotropic scaling of coordinates)

were maintained by weak coupling33, bond lengths were constrained using the SHAKE algo-
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Figure 6.5: 4Ci (A) and ^C$ (B) conformations of $-D-glucopyranoside.

dihedral angle 4c, !c4

o5 - C, - C2 - c3 52 -50

c, - c2 - c3 - c4 -57 55

c2 - C3 - C4 - c5 49 -57

c3 - C4 - C5 - Os -40 50

c4 - c5 - o5 - Q 43 -50

C5 - o5 - c, - c2 -47 52

Table 6.2: Values (in degrees) ofthe six dihedral angles ofthe sugar ring in $-D-glucopyranoside

for the C\ and the C4 conformations. The atom names are specified in Figure 6.6.

rithm34 (with a relative geometric tolerance of 10~4) and nonbonded interactions were handled

using a triple-range cutoff scheme35. Within a short-range cutoff radius of 0.8 nm, the inter¬

actions were evaluated every time step based on a pairlist recalculated every five time steps.

The intermediate-range interactions up to a long-range cutoff radius of 1.4 nm were evaluated

simultaneously with each pairlist update, and assumed constant in between. To account for elec¬

trostatic interactions beyond the long-range cutoff radius, a reaction-field approximation36 was

applied, using a relative dielectric permittivity of 66 for the solvent43.

Figure 6.7 shows the average values of the dihedral angles in the sugar ring at the 11 discrete
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Figure 6.6: Atom numbering ofthe $-D-glucopyranoside.
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A values and the corresponding derivative of the Hamiltonian is depicted in Figure 6.8.

Figure 6.7: Average values of the ring dihedral angles (see Table 6.2) during a multi-

configurational thermodynamic integration of $-D-glucopyranoside in explicit SPC water with

150 ps simulation (and 50 ps equilibration) at each discrete X point. The dihedral-angle aver¬

agesfor a changefrom the 4C\ (X — 0) to the
'
C4 (A = 1) conformation are indicated by circles,

connected with dotted lines, the onesfor the backward changefrom the ^4 to the 4C\ conforma¬

tion are indicated by crosses. The order ofthe dihedral-angles as given in Table 6.2 corresponds

to the colors black, red, green, blue, yellow and indigo.

Using thermodynamic integration (Equation 6.2), the free energy difference between the two

conformations is calculated to be 4.6 ±3.4 kJ/mol for the change from 4Ci to lC^ and —5.6±2.5

kJ/mol backwards. The (internal) potential energy difference between the two conformations had

been calculated to be 35 kJ/mol41, so interactions with the solvent and entropy are lowering the

difference significantly.

For comparison, the potential of mean force of the transition from the 4Ci to the '
C4 state of

the ß-D-glucopyranoside was also calculated using dihedral-angle constraints (Figure 6.9). The

ring dihedral angles (see Table 6.2) were changed linearly with the pathway parameter A and

51 discrete A-points were used. At each A point a short equilibration (5ps) was followed by (at
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Figure 6.8: Average derivative of the Hamiltonian with respect to the pathway coordinate X

during a multi-configurational thermodynamic integration of $-D-glucopyranoside in explicit

SPC water with 150 ps simulation (after 50 ps equilibration) at each discrete X point. The

dashed line with bold error bars corresponds to a conformational change from 4C\ (X — 0) to

*C4 (A = 1), the dotted line and thin error bars to the reverse isomerization.

least) 50/?s of simulation over which the contributions of the constraint forces to the potential

of mean force (see Appendix, Equation 6.59) were averaged. The iterative procedure applied to

solve the coupled equations with terms up to eighth power in A generally converges well, even

in case the dihedral constraints form a cycle (in the sugar ring). But for specific values of the

dihedral angle (90°, 180°, 270° and 360°), the linearized equations for the Lagrange multipliers

(Equation 6.58) yield 4's that are close to zero. In those cases, the iterative procedure to solve

for the constraint forces does not converge. Therefore, no mean force could be calculated for A-

values 0.48,0.50 and 0.52. Integrating the potential of mean force leads to a relative free energy

difference between the 4C| and the lC^ state of 8.6 ± 10.2 kJ/mol. Almost twice the amount

of simulation time was spent to get this potential of mean force compared to the simulations

using dihedral-angle restraints. Yet, the curve is quite rough and the uncertainty is quite high.

Therefore it is not possible to estimate the influence the constraining of the end-state has on the
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Figure 6.9: Potential of mean force with respect to the pathway coordinate X of ß-Z)-

glucopyranoside (X = 0: 4C\ and A — 1 :
'
C4) in explicit SPC water with constrained dihedral

angles (see Table 6.2), with (at least) 50 ps simulation (after 5 ps equilibration) at each discrete

X point (in total 48 points). No mean force could be calculated for X-values of 0.48, 0.50 and

0.52 because the Lagrange multipliers lk ofthe dihedral-angle constraints approach zero and the

iterative solution »/"Equation 6.58 does not converge.

final result.

6.5 Discussion

Calculating relative free energies between pairs of different (meta)stable states may be quite de¬

manding. On the one hand, the two states may be separated by high potential energy barriers

which have to be overcome. On the other hand, very extensive sampling may be necessary to

have sufficient data on both states. Both problems can be mediated by applying restraints. But

at the same time, the end states of the thermodynamic integration may be influenced by the re¬

straints, making the free energy difference between the end states dependent on the path chosen.
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This pathway dependence can be avoided by the use of hidden restraints which are characterized

by zero restraining energy and forces in the end states. Using hidden distance restraints, the

relative free energy difference of changing from an anion to a cation in a cyclic D,L-oc-aminoxy-

hexapeptide - ion complex, accompanied by large structural changes in the peptide, could be cal¬

culated by guiding the simulation along a transition path. Application of hidden dihedral-angle

restraints enforced the isomerization of a ß-D-glucopyranoside from a 4C| to a
'
C4 conformation

and backwards. The former conformational change (from the more to the less stable structure),

was not observed during 5 ns of unrestrained MD simulations.

Additionally, harmonic dihedral-angle restraints have been enhanced by an additional para¬

meter 0J** to define the angle with maximum restraint potential energy. Using this parameter,

the direction of rotation around the dihedral angle can be controlled.

In contrast to standard potential of mean-force calculations4'44"47, hidden restraints allow

relative free energy calculations of unrestrained end states, which makes the results independent

of the pathway chosen. As the restraints are only used to guide the simulation and most of

the time only with weak influence, the simulated system retains a certain flexibility around the

specified transition path. On the other hand, if a steep barrier must be crossed, the system will

first lag behind the pathway parameter A, then suddenly cross the barrier and catch up. During

the leap over the barrier, no equilibrium (average) derivative of the Hamiltonian with respect to

A can be obtained. This can be seen by peaks or jumps in the free energy derivative and by large

root-mean-square deviations (or error estimates) of its average values at discrete A points. This

problem may be alleviated by lowering the high barriers that separate the two states during the

thermodynamic integration, if the force-field terms contributing to these energy barriers can be

identified.

The potential of mean force obtained using dihedral-angle constraints of the transition of ß-D-

glucopyranoside from the state 4Ci to
'
C4 was compared to the A-derivative of the Hamiltonian in

multi-configurational thermodynamic integration using hidden restraints. Using hidden restraints

was straightforward, whereas dihedral-angle constraining turned out to be difficult because the

iterative procedure to obtain the Lagrange multipliers that determine the contributions of the

constraint forces to the potential of mean force does not converge for all dihedral-angle values.

Also, even though more simulation time was spent, the error estimates40 are considerably larger.

We conclude that use of hidden restraints constitutes an efficient means to obtain free energy

differences between states that are rarely sampled in unrestrained simulations.

6.6 Appendix

A potential of mean force can alternatively be obtained by constraining the system to a partic¬

ular A-value, calculating the derivative of the free energy with respect to A (dF/dX) from the

constraint forces (f ) and repeat this for the range of A-values connecting states A and B of the
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system. Below we present expressions for dF/dX and f when applying distance constraints5 or

dihedral-angle constraints.

6.6.1 Distance constraints

A set of k ~ 1,2,..,NC distance constraints between atoms with positions rkl and rkl can be

written as

Ok(r;rlk2(X)) ^ x\kl - (^(X))2 = 0, * = 1,2, ..,NC (6.20)

where r^ = r*,
—

rk2, k
= (k\ ,k2), and the distance

fyfc = kjt,jt2| = {(xkl ~xk2)2 + (ykl -yk2)2 + (zk} -Zk2)2y ,
(6.21)

is constrained to the A-dependent value

in which r0^ is the distance constraint value in state A and rk'^ that in state B. Furthermore, we

use the notation r = (ri,r2,...,r#) for a configuration of A7 atoms. The use of v2,
k

to define the

constraint ak in Equation 6.20 instead of rk]kl leads to simpler equations to obtain the constraint

forces and their contribution to the potential of mean force.

Newton's equations of motion for Af atoms with masses m, including a potential energy func¬

tion ^(r) and the constraints ak multiplied with the Lagrange multipliers lk(t) are

md~iK = ~è; r(r)+iw^M.^))), i=i,2,.,m (6.23)

The Lagrange multipliers lk(t) are to be determined such that the condition given in Equation

6.20 is satisfied. The first term on the right in Equation 6.23 represents the unconstrained force

f?c(f) derived from the interaction function 1^(r) and the second term represents the (yet un¬

known) constraint force ff(f),

* dok(r;r(l k(X))

= -2^(bik]-6ik2)lk(t)rklk2(t). (6.24)

k=\

The leap-frog scheme31 to integrate Newton's equations of motion using a timestep At yields for

the unconstrained positions at time /„ + At,

rfr(tn + At) =n(tn) +M(tn- At/2)At + m^fîc(tn)(At)2, (6.25)
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where the atomic velocities are indicated by vz-. The constrained positions at time tn + At are

related to the constraint forces through

Ti{t„ + At) = rfc(tn + At)+m;lf-;(tn)(At)2,

and should satisfy the constraint Equation 6.20,

Ck(r(tn + At);r°kik2(X)) = 0, *=1,2,..,WC

which yields the following equations for the Lagrange multipliers lk(t„),

rgXt, + A*) -2m,-1 (A/)25#=1(5M,, - BkM)le{tn)rW(tn)

r-(^±AO±2mfc-21(A02I^,(ô^1'-Sfc2,20^(^)rfclv(^)

"(l-^;t+^°;y2=0 A = l,2,..,^.

(6.26)

(6.27)

l2

(6.28)

This is a set of Nc quadratic equations in the Nc unknowns lk(tn). It can be solved by linearization

(neglect of terms quadratic in lk(tn)) followed by matrix inversion or by sequentially solving the

linearized equations for each constraint omitting the coupling between the different constraints

(equations), and iterating through all the equations until the lk(tn) converge to a consistent value.

The latter method is used in the procedure SHAKE34. The quadratic, decoupled equation for the

Lagrange multiplier lk(tn) is

rkiClk2(tn + At)-lk(tn)2(At)2(mk]l +mk^)vhk2(tn)

Ï-W1+V
0,B

%k2

i2

0. (6.29)

After linearization one finds

h{tn) =

'
î î \ °4 , i 0,S

kik2 ^2('n + A')

-4(At)Hmkll +m^)rk]k2(tn)-Tfik2(tn + Aty
(6.30)

the Lagrange multipliers at timestep tn.

The derivative of the free energy F(X) with respect to A for a system including distance

constraints is
5

dF dK
t

dV a ^, . 0 ....

dX dX dX dX
(6.31)

k=\

The symbol < ... >^ denotes an ensemble average over the constrained simulation at the value

A. The first term on the right contains the possible contribution of the kinetic energy K(p;r), the
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second the contribution of the unconstrained interaction terms and the third the contribution of

the constraint forces, which can be expressed for the k-th constraint as

dFHX)
dX -2<k>irtk2(X)(r%2-rl?k2). (6.32)

The total contribution of the Nc constraints to the potential of mean force is then

Ü
= Y lfm. (6.33)

dX ^ dX

6.6.2 Dihedral-angle constraints

For dihedral-angle constraints, the derivation of the expressions for the constraint forces F and

their contribution dFc/dX to the free energy F(X) follows the same lines as that for the distance

constraints. However, due to the not very simple dependence of a dihedral angle 0/t(r) upon the

positions rkl, rkl, rki and rk4 of its four constituting atoms k\, k2, £3 and £4 (i.e. k\—k2—k^,— £4),

the formulae become much more complicated.

Expressions for §k(rkl, rk2, r^, r*4) can be found in the literature15"17,

0, = sign($k)arccos (^'n^) ,
(6.34)

where

rk5k2=rk]k2xrk3k2, (6.35)

and

sign($k) = sign(rklk2 rk(ih), (6.37)

following the IUPAC-IUB convention48. Since 0 < arccos < tc, we have

-7i < 0jt < 7t. (6.38)

Because of the occurrence of the arccos function in the definition of the dihedral angle 0& the

constraints are to be formulated in terms of cos(§k). The occurrence of the square root functions

in the distances |r&5&2| and \rkbki\ in the denominator of Equation 6.34 suggests that the use of

cos2(§k) will simplify the expressions. Thus, we consider a set of Nc dihedral-angle constraints

Ok(Ur)^0k(X))=cos2(^k(r))-cos2(^k(X))=0, *=l,2,..,tfr (6.39)

where the angle 0/t(r) is constrained to the A-dependent value

^(A) = (l-A)0^±A0j's, (6.40)
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in which 0^ is the 0^-value in state A and 0^' that in state B.

Newton's equations of motion for N atoms become

m'^P~ =

'Wi V{T) + ? W^Mr);^)) ) ,
i = 1,2, ..,tf (6.41)

where the Lagrange multipliers lk(t) are to be determined such that the condition given in Equa¬

tion 6.39 is satisfied. The second term on the right in Equation 6.41 represents the (yet unknown)

constraint forces,

W _^waafc(0,(r);0O(A))
k=\

Nr

dri

+ £ lk(t)2cos($k)sin($k)~^. (6.42)
k=\

Expressions for ^ can be found in the literature too15 17,

O\^k)k2I
iki T~ 12 ^5^2

\rk*k5K21

+^ik2

-8/fc3

^k\k2 ' ^k3k2

\rkT,k2\

^"ki,k4 ' ^k3k2
|r,

,
12

I * k3k21

-1

- 1

^^2 I
,

*"^3^4
' ^3^2 I ^3^2

[2 ^5^2 "'
I |2

\rk5k2\

\rk3k2

\Tk6ki\

\rk^k2\ Irfcfifc3
rkf,k3

12 *%

I
_ ,

r*i*2'r*3*2 Wzl
.

2rM.i"r .

|2 î |2r*5*2

l^^l lr^5^2l

_2 lr%^2l

\rk6k3\

(6.43)

To shorten the expressions we denote the four terms in Equation 6.43, apart from the Kronecker

delta's, by a*,, a^2, a^, and aki, respectively. Then we have

Nc

Ç(0 = £ h{t)sin(2$k(t) [5ft, ajt, (f) + o/jt2a*2(0 + Ô//t,a*3(0 H-S^a^f)]. (6.44)

Jt^i

The leap-frog scheme yields the unconstrained positions rfc(tn + At) from Equation 6.25. The

constrained positions r/(f„ + Ar) are related to the constraint forces (Equation 6.44) through

Equation 6.26 and should satisfy the constraint Equations 6.39,

cos2(Q>k(r(tn + At))-cos2($(X))=0, k = 1,2,..,AT,,

or using Equation 6.34,

'

rhh(tn + At)- rkbk3 (tn + At)
n 2

(6.45)

_|rjtsjt2 (tn + Af) I |r^3 (tn + At) |
cos2($(X))=0. (6.46)
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Since rksk2(t„ + At) and rkfjkli(tn + At) are each quadratic in the Lagrange multipliers lk(t„), both

the numerator and the denominator of the left term in Equation 6.46 contain powers of up to

eight of the lk(tn). Thus a set of Nc equations consisting of terms containing up to powers of

eight of the unknowns lk(tn) is to be solved. As for the case of distance constraints this is

achieved by linearizing the equations for each constraint, omitting the coupling between the

different constraints (equations), and iterating through all Nc equations until the lk(tn) converge

to a consistent value.

Using Equations 6.26 and 6.44 we find for the k-th constraint

rk]k2(tn + At) = rflk2(t„ + At)

+lk(tn)sin(2$k(tn))(At)2 (mkilakl(tn)~mk2]ak2(tn)^ (6.47)

and likewise for rk3kl(tn + At) and rk3k4(tn + At). Building the cross products in Equations 6.35

and 6.36 and linearizing the resulting expressions yields

rk5k2(tn + At) = rflk2(tn + àt)xr%k2(tn + At)

+lk(tn)sin(2$k(tn))(At)2

rfiki(tn + At) x (m£*k,(tn)-m£*k2(tnj)\ (6.48)

or using a shorter notation b^^ (tn + At) for the last factor

rkik2(tn + At) = r^2(r„ + A0xr^2(fM + A0

+lk(tn)sin(2^k(tn))(At)2bklk2k3(tn,tn + At), (6.49)

and

ïW^+Af) =

or using the shorter notation

r^tn + At)

*k3k2(tn + M)xr%kA(tn + At)

+lk(tn)sin(2Q>k(tn))(At)2
l

rW"+A/) X [mk3 *k3(tn)-mk4 Ak4(tn)

rth ('« + A*) x (>%V3 (h) ~ mk2l»k2 (tn)

rr3k2(tn + ti)xruklk4(tn + ti)

+lk(tn)sin(2$k(tn))(àt)2bk2k3k4(tn,tn + At).

(6.50)

(6.51)
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|rjtsji2(f,,-l-Af) {r"kc[k2(tn + At)xrtc3k2(tn + At)y

+2lk(tn)sin(2§k(tn))(At)2

(rfikz(tn + At) x r^2(tn + At)) bklhk3(tn + At)

and

\rk6k3(tn + At)\2 = {4'3k2(tn + At)xr%k4(tn+At))
+2lk(tn)sin(2$k(tn))(At)2

{^k^n + ^Xr^tn^At^-h^^tn+At).

The linearized denominator of the first term in Equation 6.46 is then

\rksk2(tn + ist)\2\vk^i(t„ + At)\2 =

(r^2(^ + A0 xr^2(^ + A0)2(r^2(^ + A0 xr^4(r„ + A0)2
+2/Jt(f„)sm(20fc(f„))(A/)2

Kk2(tn + to)xr%k2(tn + At)f

Kk2(tn + ti) x r%k4(tn+At)) bk2k3k4(tn,tn + At)

+ {43k2(tn + &)xr%k4(tn + At))2

Kk^n +^Xr^tn +At^-b^k^tn + At)

(6.52)

The scalar product in the numerator of the first term in Equation 6.46 becomes after linearization

rk5k2(tn+At) rkek3(tn + At) =

(r^2 (tn + A*) x rgfc(/„ + At)) (rj^(tn + At) x r^(tn + At))

+lk(tn)sin(2tyk(tn))(At)2

Kk2(tn + &) xrg^ + Af)) bk2hk4(tmtn + At) +

(r%k2(tn + At) x r^4(tn + Af)) • bklklk3(tn,tn + Ar)

or in a shorter notation

r*s*j (tn + Af ) • rkek3 (tn + At) = ck[k2k3k4 (ta + At)

+lk(tn)sin(2$k(tn))(At)2dklk2kik4(tn,tn+ At).

The square becomes after linearization

(r*3fc2(fn + Af) -iV^-l-Af)) = (Ckik2k3k4(tn + ^t)f

+2lk(tn)sin(2§k(tn))(At)2cklk2k3k4 (t„ + At)dkïk2hk4 (t„,tn + Af).

The factors in the denominator of the first term in Equation 6.46 become

(6.53)

(6.54)

(6.55)

(6.56)

(6.57)
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Finally, the equation for the Lagrange multiplier of the k-th constraint becomes

k(tn) cos2(4(X)) «,2(fw + Af) xr^2(f„ + Af))2

(rgt2('» +^ x r^4(f„ + Af))2 - (chk2k3k4(tn + At))2

2sin(2§k(tn))(At)2 ck{k2k3k4(tn + At)dk[klk3k4(tn^ At)

-cos2($(X))

((rt<;k2(tn + At)xr%k2(tn + At))2

(rfc3fc2(^ + Af)xr^4(fn + Af))-b/t2^4(f„,f„+Af)

+(r^2(fw + Af)xr^4(frt + Af))2

(r^2(f„ + Af) x ruk^2(tn + Af)) • bklk2k3(tn,tn + Af)) (6.58)

The derivative of the contribution of the constraint forces to the free energy for the k-th

constraint becomes

dF^ = <lk>xsin(2$(X)) ($*-0^) . (6.59)

We note that the expressions given in this Appendix for the application of dihedral-angle con¬

straints are different from the formalism presented in49, which is based on matrix inversion.
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Chapter 7

Adaptive restraints using local-elevation

simulation

7.1 Summary

Introducing experimental values as restraints into molecular dynamics (MD) simulation to bias

the values of particular molecular properties, such as nuclear Overhauser effect intensities or

distances, dipolar couplings, V-coupling constants, chemical shifts or crystallographic structure

factors, towards experimental values is a widely used structure refinement method. Because

multiple torsion angle values 0 correspond to the same -V-coupling constant and high-energy

barriers are separating those, restraining V-coupÜng constants remains difficult. A method to

adaptively enforce restraints using a local elevation (LE) potential energy function is presented

and applied to V-coupling constant restraining in an MD simulation of hen egg-white lysozyme

(HEWL). The method succesfully enhances sampling of the restrained torsion angles until the

37 experimental V-coupling constant values are reached, thereby also improving the agreement

with the 1630 experimental NOE atom-atom distance upper bounds. Afterwards the torsional

angles 0 are kept restrained by the built-up local-elevation potential energies.
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7.2 Introduction

Experimental techniques such as X-ray diffraction and NMR spectroscopy are widely used to

derive structural information from molecules in solution, solid state or in crystal form. These

experimental methods have in common that the values of observable quantities are averages over

time and over an ensemble of molecules. It may even not be possible to come up with a single

physically plausible structure or conformation reproducing all experimental values1,2. Therefore,

the corresponding properties of an MD simulation should be calculated as time averages and

when restraints are applied, those should reproduce the experimental values on average3. The

latter can be achieved by adding a penalty function Vrestr to the physical force field Vphys of the

MD simulation4,

V(r(t)) = Vphys(r(t)) + Vrestr(r(t))1 (7.1)

using a penalty function vrestr of the form5

Vrestr(r(t))= S l/2Kkir(qk(r(t))--qtf(qk(r(t))-q(l) ,
(7.2)

k=\

where q(r(t)) may be a weighted average during the simulation3 and q(r(t)) is any of the above

mentioned observables6. By introduction of the first quadratic factor of Equation 7.2, the func¬

tional form given here avoids generating large artificial structural fluctuations, as observed when

using standard time-averaging V-value restraints7,8.

The V-coupling constants are usually calculated using the Karplus relation9

J(Q(r(t)))=acos20+bcosB+c1 (7.3)

where 0 is the torsion angle defined by the four covalently bound atoms that determine a par¬

ticular V-coupling constant. This relation is of approximative nature and the constants a, b and

c are generally calibrated by fitting measured V-values for molecules whose dihedral angles

are known from crystal structures10-13 or infered from NMR data14. Since this Karplus relation

is multi-valued for almost all except the very large and very small V values and the average

V(0(r)) is very nonlinear with respect to the average in 0, restraining using a standard penalty

function may lead to unrealistic results5,6,8. Moreover, high-energy barriers between different

conformations or 0-angle values may inhibit a proper sampling of the various 0-angle ranges that

contribute to the measured averaged V-values. These features of the relation between V-values

and dihedral angles have made their use in biomolecular structure refinement problematic. Here

a solution to this problem is proposed.

In the next section, the new restraining method is explained, followed by an application of

V-value restraining to hen egg-white lysozyme and by a short discussion.
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7.3 Theory

During a molecular dynamics simulation, the current (instantaneous) and average V-coupling

constants can be monitored. For this, the V-values are expressed in terms of dihedral angles 0

that are defined by non-hydrogen atoms of the molecule. Such an angle 0 differs by a phase shift

Ô from the angle 0 (0 = 0 + Ô15,16). The average is calculated using an exponentially decaying

memory function, which results in a larger impact of recent V-values on the average,

J(t,t) = -, \
,,

fexp(--^\j(t')dt' (7.4)
x l-exp(-t/x).k V T /

with x the memory relaxation time (which determines how fast the memory decays) and V(f )

the calculated V-value at time f3,7. If the average (Equation 7.4) and the experimental V-value

do not match, a local (limited range) potential energy term for the dihedral angle corresponding

to the particular V-coupling constant is introduced and increased in size until the dihedral angle

changes value. In other words, as long as the calculated and experimental V-values do not match,

the dihedral angle is forced away from the range of values that were sampled up till now in the

simulation. This idea derives from local-elevation (le) search17 in which the potential energy of

already visited parts of configuration space is raised in order to avoid repetitive sampling of the

same parts of configuration space in the simulation.

The mathematical and algorithmic formulation of the proposed method is the following.

Whenever the simulated average of the V-value and the current V-value do not fulfill the exper¬

imental observation, the force constant of a penalty function, acting on the torsion angle 0 and

its current value 0(f), is increased. The restraining potential energy function of a given (k-th)

V-value is a sum of Nie (local) terms

V/~(^(r(0)) = Xvi?(«|)t(0), (7.5)

i=\

where, as in local-elevation conformational search17, Gaussian functions centred at 0^ are used

as (locally active, i.e. only around 0°) penalty terms:

V£(fo(r(0)) = KJmw^(t)exp (- (0*(f) -0°.)2/2(A00)2) , (7.6)

where w^h(t) is the weight of the t'-th penalty function and KJres the penalty function force

constant. The centres 0^ of the Gaussian functions v/f are equally distributed over the range of

possible values of 0fc (0jjj. = 2ni/Nie with / = l,...,Nie), and the width is given by A0° = 2n/Nie.

The weight of the penalty function is accumulated during the simulation according to

w+fe(f) = f"1 jT \{riml (JMr(t')))-4f (7(<$>k(r(t>)))-4)2dt>, (7.7)
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using a biquadratic term5 (J($k(t)) ~ tffÇï^dt)) ~ tf)2 to determine whether the V-value

deviates from the experimentally observed one (7°) with 0,(r(f)) being the torsion angle corres¬

ponding to the V-coupling constant Jk and Ö the Kronecker delta, which is defined using finite

differences:

fl if02.-A0o/2<0,(f)<0°. + A0°/2
%(f)C \ o otherwise.

Equation 7.7 ensures that the conformation is pushed away from 0°. unless either the average

7(0,(f)) or the current value 7(0,(f)) are close to the experimental one, which leads sooner or

later to an average close to the experimental 3Jk-value Jk.
It is straightforward to calculate the force resulting from VkJres on particle q:

Contrary to the original local-elevation method17, using penalty functions to enforce restraints

does not suffer from combinatorial explosion with increasing number of local-elevation degrees

of freedom, as all restraints are treated independently.

In practice, flat bottom restraining can be achieved by only increasing the penalty function

force constants w^,k!(t) if the V-value deviates more than a given value A/0 from the experimental

value J?. For the instantaneous factor of the penalty function this leads to

C (7(<M0) -J°k -A/0)2 for7(0,(f))>7O + A/°

VinxtJrest(J(<bk(t)))=l (J(<$>k(t))-J(k] + AJ0)2 for 7(0,(0) < 7°-A/0 (7.10)

[ 0 otherwise,

and accordingly for the time-averaging factor

( (7(0,(f))-7°-A70)2 for7(0fc(f))>7° + A7°

V^7r^(7(0,(f)))={ (7(0*(f))-7O + A7°)2 for7(0,(f))<7°-A70 (7.11)

7.4 Methods and results

The protein hen egg-white lysozyme was recently used to validate18,19 the GROMOS15,16'20

53A6 force field21, and the 45A3 parameter set22. Using unrestrained MD simulations with

explicit solvent, out of a hundred Vaß-coupling constants, 31 showed a deviation from the ex¬

perimental value23 which was higher than 2 Hz, 11 a deviation higher than 3 Hz19.

Here only a subset of 37 Vaß-coupüng constants that were assigned stereospecifically23,
which can therefore be used in V-value restraining, were considered (see Table 7.1).
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residue v° residue v°

name number proton name number proton

Val 2 ß 10.8 Phe 3 ß3 3.0

Cys 6 h 11.5 His 15 ß2 11.2

Asp 18 ß3 11.0 Tyr 20 ß3 11.7

Tyr 23 h 10.9 Asn 27 ß2 10.3

Val 29 ß 11.1 Cys 30 ß2 5.3

Phe 34 ß3 5.0 Asn 39 ß2 4.5

Thr 40 ß 4.5 Thr 43 ß 3.7

Asn 46 ß3 4.7 Thr 47 ß 2.6

Asp 48 ß2 2.6 Thr 51 ß 9.3

Asp 52 ß2 11.6 Tyr 53 ß2 10.4

Asn 59 ß2 5.4 Arg 61 ß3 10.8

Asp 66 ß3 4.5 Thr 69 ß 9.3

Leu 75 ß3 2.1 Asp 87 ß2 5.1

lie 88 ß 4.5 Thr 89 ß 9.5

Val 92 ß 10.1 Cys 94 ß2 4.0

Val 99 ß 6.3 Val 109 ß 8.0

Thr 118 ß 4.2 Asp 119 ß2 4.9

Trp 123 ß2 10.6 Ile 124 ß 4.6

Cys 127 ß2 11.6

Table 7.1: Subset of 37 Ja^-coupling constants (in Hz) which could be assigned stereospecif-

ically for hen-egg white lysozyme23 and are used in (local-elevation)3J-value restraining. The

ß2 and p3 protons are defined according to standard rules24. The experimental error is about 1

Hi?3.

We note that it is the %\ side-chain torsional angle that plays the role of the restrained angle

0 in Equations 7.5 to 7.11. Short simulations in vacuo using the X-ray structure as starting con¬

figuration showed 14 V-coupling constants with a deviation higher than 2 Hz. Trying to reduce

the deviation from experiment using V-value restraining was only partially successful. We did

not succeed in finding a good value of the force constant for any one of the restraining methods

(instantaneous, time-averaged or biquadratic restraining penalty function) that would bring all

V-coupling constants close to the experimental values without seriously changing the secondary

structure25. Two issues needed to be addressed: First, to be able to use a minimal restraining

force constant, the latter should be adjusted individually for each V-value restraint. Second, to

reproduce the experimental V-value and escape local minima of the physical or restraint po-



186 Chapter 7. Adaptive restraints using local-elevation simulation

tential energy surface enhanced sampling of the corresponding torsional angle may be required.

Adaptive restraints using local-elevation satisfy both requirements, as the force constant of the

restraining penalty function is, if necessary, slowly built up during the simulation for each re¬

straint. Furthermore, the restraining is achieved by pushing the simulation away from already

visited conformations with V-coupling constants different from the experimental ones. In other

words, sampling is enhanced for dihedral angle degrees of freedom with wrong V-values.

First, the sensitivity of the method with regard to the parameters KJres, A7° and N[e was inves¬

tigated. From a short 100 ps unrestrained simulation of lysozyme in vacuo, using a time step size

of 2 fs and constraining bond lengths by the SHAKE26 algorithm, an average violation of 1630

NOE distance upper bounds19,27 of 0.016 wra and a root-mean-square deviation (RMSD) for the

37 selected Vaß-coupling constants of 3.2Hz were obtained. Then, a total of 36 simulations,

each starting from the X-ray structure and lasting 100ps, with all combinations of values for

KJres = 0.1,0.05,0.01,0.005Hz~4, A7° = 0.5,0.75,1.0Hz and A0° = 30°,20°, 10° (Nle = 12,

18, 36), were used to determine whether significant improvement in the RMSD for the Vaß-
coupling constants could be obtained without disrupting the structure, measured by the average

violation of 1630 experimental NOE distance upper bounds (see Figure 7.1). Colours in the

figure correspond to equal force constants (red for KJres = 0.1 Hz~4, blue for 0.05 Hz~4, yellow

for 0.01 Hz~4 and green for 0.005 Hz~4), and line-styles to an equal number of intervals (solid

for 12 intervals, dashed for 18 and dotted for 36) or local-elevation Gaussians per dihedral angle.

The three values connected by a line use, from low to high V-value RMSD, an allowed deviation

of A7° = 0.577z for the first, A7° = 0.75Hz for the second and A7° = 1.0Hz for the last value.

Using 36 intervals, all simulations did better or equal in NOE violations (the value of the unre¬

strained simulation is indicated by the dotted black line), and even with an allowed deviation of

A7° of 1 Hz, satisfactory 37ctß-coupling constants were obtained. Using sufficiently small force

constants and enough intervals resulted in lower average NOE upper bound violations.

In Figure 7.2 the root-mean-square deviation over the set of 37 selected V-coupling constants

during 100 ns of MD simulation of lysozyme in vacuo is shown. The solid black line, denoting

an unrestrained simulation, shows an increase in deviation from experiment. All other lines

correspond to adaptively restrained simulations, the thin line with a force constant KJres of 0.005

Hz-4 and an acceptable deviation of A7° = 1.0 Hz, the dashed one with a force constant of

0.1 Hz~4 and an acceptable deviation of 0.5 Hz and the dotted on with KJres = 0.05 Hz~4 and

AT0 = 0.15 Hz. All use 36 intervals to discretize 0 (N[e = 36). The time-averaging memory

relaxation time t (Equation 7.4) used in all restrained simulations was 5 ps.7,28 All combinations

of parameters improve the RMSD of the V-coupling constants within the first 30ps. The longer

the simulation is, the lower the force constant KJres may be to perturb the system as little as

possible.

Comparing the evolution of selected angles 0 during the simulation, three observations can

be made: First, when starting from a configuration with a V-coupling constant far from the

experimental value, rotation around the corresponding dihedral angle is immediate. An example
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Figure 7.1: Average ofthe NOE distance upper bound violations as afunction ofthe root-mean-

square deviation (RMSD) of a set of 37 selected (see Table 7.1)
3
J'^-coupling constants from

experimental values23 for different force constants KJres = 0.100,0.050,0.010,0.005 Hz"4 and

different number of intervals N[e = 12,18,36 with corresponding A0° = 30,20,10 degree. On

each line the first value represents an allowed deviation o/A7° = 0.50Hz, the second A7 —

0.75 Hz and the third AT0 = 1.00 Hz. The average NOE bound violation ofthe free simulation is

indicated by the dotted black line. The RMSD ofthe ^J^-coupling constant in thefree simulation

is 3.2Hz..

is shown in Figure 7.3, panel C. The upper half shows the restraining potential energy after 100

ps simulation time, the lower half the time series of the corresponding dihedral angle (black

dots denote the adaptively restrained, red dots the unrestrained simulation). It represents Vaß of

Thr(89), with an experimental value of 7° = 9.5 Hz. The unrestrained simulation results in an

average of 2.5 Hz whereas the adaptively restrained simulation gives 9.9 Hz (see also Table 7.2).

Second, enhanced sampling until the V value matches the experimental data, or permanently,

if the experimental value is an average over two (or more) states, is achieved (panel D: Vaß
of Val(109), experimental: 8.0 Hz, unrestrained: 3.2 Hz, restrained 8.2 Hz; panel B: Vaß of

Thr(69), experimental: 9.3 Hz, unrestrained: 12.5 Hz, restrained 9.8 Hz). And third, if the
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time [psl

Figure 7.2: Root-mean-square deviation (RMSD) ofa set of37 selected (see Table 7.1) Vaß-
coupling constantsfrom experimental values23. The solid line is the root-mean-square deviation

during an unrestrained simulation. All other lines are from simulations making use of local-

elevation adaptive restraints. The thin line denotes use of a force constant KJres = 0.005Hz'4

and an allowed deviation of A7° = 1.0Hz, the dashed line use of a force constant KJres =

0.1 Hz"4 and an allowed deviaton of A7° = 0.5Hz, the dotted line use of a force constant

KJres = 0.05 Hz~4 and acceptable deviation of A7° = 0.75 Hz- All are using N[e — 36 intervals

to discretise 0, corresponding to a A0° = 10°.

37-value is close to the experimental one from the beginning, the corresponding dihedral angle

is kept restrained to its value (panel A: Vaß of Thr(51), experimental: 9.3 Hz, unrestrained 4.3

Hz, restrained: 9.7 Hz). The root-mean-square fluctuation of the torsion angle 0, once the correct

conformation is found, is in the same order of magnitude for the restrained as for the unrestrained

simulations. The time series and final (after 100 ps) restraining potential energy functions for all

37 %\ torsional angles are shown in supplementary information.

Using restraints, the atom-positional root-mean-square deviation from the initial (X-ray)

structure (considering only backbone atoms) decreases from 0.15 nm (unrestrained) to 0.12 nm

in the restrained simulation (see Figure 7.4 and Figure 7.5). The atom-positional fluctuations are
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Figure 7.3: The local-elevation potential energy functions for four selected ^Ja$-coupling
constants at the end of 100ps of an adaptively restrained simulation (KJres = 0.005 Hz~4,

AT0 = 1.0Hz and N[e = 36) are shown (Thr(51), Thr(69), Thr(89) and Val(I09) correspond¬

ing to panel A, B, C and D, upper half). The lower halfdepicts the time series (0.2 ps intervals)

of the corresponding dihedral angle, black points indicate values obtainedfrom the 3J-value

restraining simulation, red points thosefrom an unrestrained simulation. The experimental and

average J-coupling constants are listed in Table 7.2.
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residue V-coupling constant

name number exp unrestr restr

Thr 51 9.3 4.3 9.7

Thr 69 9.3 12.5 9.8

Thr 89 9.5 2.5 9.9

Val 109 8.0 3.2 8.2

Table 7.2: Experimental (exp) iJap-coupling constants (in Hz; error about 1 Hz) and values

obtained from 100ps of unrestrained (unrestr) andfrom 100 ps of restrained (restr) simulation

using adaptive (local-elevation)
3J-value restraints with a set of37 selected (see Table 7.1) Vaß-

coupling constantsforfour residues that show large deviation between the values obtainedfrom

the free simulation and the experimental ones.

comparable. The secondary structure assignment shows no major loss in the overall structure of

lysozyme, even though vacuum boundary conditions were used.

For the restrained simulation (KJres = 0.005 Hz4, A7° = 1.0Hz and Nle = 36), a total of 1630

inter-proton distances corresponding to NOE intensities19,27 have been analysed. We note that

this set was the result of a slight revision19 of a set of 1632 NOE intensities27. These distance

upper bounds include pseudo-atom corrections29 and the distances were determined from the

simulations using r~3 averaging30. Their distribution is shown in Figure 7.6 as distance bound

violations, i.e. distances averaged over the simulation minus the corresponding NMR derived

upper distance bound. This difference can also adopt negative values, which means that in the

MD simulations the inter-proton distance is on average shorter than the upper bound derived

from the NMR experiment. The black bars show the distribution of the simulation using Vaß-
value restraining, red bars show the unrestrained distribution. Different from standard restraining

simulations (using instantaneous or time-averaged V-value restraints) less NOE violations are

observed when using the adaptive (local-elevation) restraining method for VKß-values presented

here.

The dependence of the results on the initial structure of the simulation can be tested by repet¬

itively using adaptive V-coupling constant restraining followed by an unrestrained simulation

period. Figure 7.7 shows that no improvement of the root-mean-square deviation of the V-

values during the unrestrained parts of the simulation is obtained. The simulations were carried

out using a 20 ps and a 40 ps interval (with restraints switched on first, then switched off, etc.).

The RMSD of V-values immediately increases when the restraints are switched off. This may

have two causes. First, even a 40 ps restraining period may not be enough to relax the structure

(in vacuo), or, second, the force field does not properly favour the experimental conformation of

the 37 side-chain angles and needs the adaptive restraining penalty function to correct for this
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Figure 7.4: The time series of secondary structure elements during an unrestrained simulation

oflysozyme is shown.

error.

7.5 Discussion

A new application of the local-elevation simulation technique17 to achieve V-value restraining

was presented. Using this method, it is possible to succesfully restrain V-coupling constants

without destabilising the overall molecular structure. In the example of lysozyme, even an im¬

provement of reproducing experimental NOE distance bounds was observed. It can be applied

to dihedral angles other than %\, for which experimental V-values are available31.

The method achieves selectively enhanced sampling by disfavouring conformations of dihe¬

dral angles with V-coupling constants deviating from experiment. Also, through the slow build

up of the adaptive (local-elevation) potential energy penalty functions, a minimum of interfer¬

ence of the restraints compared to an unrestrained simulation is guaranteed. Furthermore, the

method is not very sensitive with respect to the force constant and number of dihedral-angle in¬

tervals chosen, making it suitable to include V-value restraining in standard biomolecular NMR
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structure refinement.
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Chapter 8

Approximate flexible distance constraints

8.1 Summary

A fast but approximative method to apply flexible constraints to bond lengths in molecular

dynamics simulations is presented and the effects of the approximation are investigated. The

method is not energy conserving, but coupling to a temperature bath results in stable simula¬

tions. The high frequencies from bond-length vibrations are successfully removed from the

system while maintaining the flexibility of the bonds. As a test liquid neopentane is simulated

at different pressures. Energetic and dynamic properties are not affected by the new flexible

constraint simulation method.
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8.2 Introduction

Nowadays large molecular systems can be studied theoretically at atomic detail using molecu¬

lar dynamics (MD) simulations or the Monte Carlo method1. In classical MD simulations the

motion of the particles is governed by Newton's equations of motion. The time step size in MD

simulations is limited by the fastest vibrations in the system, normally bond-length vibrations.

Therefore, it is not surprising that there are quite a few methods available to constrain bonds

to their ideal lengths and thus removing these high frequencies.2"7 Constraining bonds works

rather well, sometimes even for thermodynamic states quite different from the one used in fitting

the bond-length parameters. However, processes and circumstances have been identified where

the flexibility of bonds can be crucial.8,9 This might be especially true upon variation of the

pressure or in close confinements, as for water molecules in an ion-channel.1011 For such cases

water models that include flexibility have been proposed9'12"18. However, flexible models add

very fast vibrations to the system thereby again limiting the time step. In addition, these vibra¬

tions are only loosely coupled to the other degrees of freedom making long equilibration times

necessary.13
To overcome these shortcomings flexible constraint algorithms have been proposed.19,20 Us¬

ing these methods the bond-length distance constraints are (adiabatically) adjusted to their cur¬

rent minimum-energy lengths according to the total energy (or total potential energy, including

the bond-stretching energy) of the system at the current time (step). The methods proposed so

far19,20 require multiple energy evaluations at every time step and thus are an order of magnitude

more time-consuming than hard-constraint algorithms. In this article we propose an approxima¬

tion that leads to a fast flexible constraint algorithm which is as computationally efficient as the

SHAKE method2 to impose hard constraints, and evaluate its effects on the physical properties of

the simulated systems.

In the following sections we will first briefly describe hard constraints and then introduce the

flexible constraint method. Afterwards we apply the method to a very simple test system and

then present the results from simulations of liquid neopentane.

8.3 Hard constraints

Classical MD simulations are governed by a Hamiltonian of type

H(q,p) = ^-^ + U(q) (8.1)

with q and p the positions and momenta of the particles, M the symmetric mass matrix and U a

potential energy function.

When applying constraints to the system using the Lagrange multiplier technique, it is con¬

venient to split the potential energy function U into a part Unc describing the unconstrained
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interactions (dihedral torsion, Lennard-Jones and electrostatic interactions, unconstrained bond

angles, etc.) and a part Uc representing the constraint forces,

V(q) = Unc(q) + Uc(q) (8.2)

Ne

Uc(<ù = XWq) (8.3)
k=\

with

gk(q) = \rk\2~ (40))2 = 0 k=l,2,-,Nc (8.4)

and the Nc Lagrange multipliers Xk determined by the Nc constraint conditions gk(q) = 0. rk is

the vector connecting the atom pair k\ and k2 of constraint k (vk = rk[k2
=

q^,
— qk2) and dk the

(ideal) constraint length.

It is possible to solve for the constraint forces f/ = — ^- 2ZkLi ^k8k(q) using the unconstrained

forces and positions resulting from these forces. A widely used method to this end is the SHAKE

algorithm2. It efficiently accomplishes a solution by decoupling the constraints and linearising

the quadratic equation to solve for the Lagrange multipliers. This procedure is then repeated

until all the constraints are satisfied to the required accuracy. For each iteration, the Lagrange

multipliers are given by

Xk = ;
* ; ^ (8-5)

-4(A*)2 („-!+„-') (rk(t).r»f(t + At))

with the non-constrained or free flight positions at time t + At defined via the leap-frog scheme

through qnc(t + At) = q(t)+mjx (p(t - At/2)At + f"c (t)(At)2) and the non-constrained or free

forces at time t through Fc(t) = -VqUnc(q(t)).

8.4 Flexible constraints

A simple way of implementing flexible constraints is by recalculating the ideal constrained bond

lengths for every constraint at each time step. These new constraint lengths are calculated using

the forces resulting from the interactions of the constrained pair of atoms with all other particles.

In other words the sum of the total energy (Unc) and a hypothetic harmonic bond-stretching

energy Ucons,r = 2^kL\ Ukonstr is minimised with respect to the bond or constraint lengths dk at

each time step. This means that the hypothetical forces from the bond-stretching terms have

to exactly compensate the forces from the real potential energy terms (Unc) acting along the

constraint directions,

Kk(dk-df))=Fk (8.6)
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with Fk the force along constraint k, Kk and dk the force constant and the zero energy distance

of the flexible constraint of the form U[onstr(q) = \Kk (\rk\ - dk)2 and dk the adaptable constraint

length.
The force acting on each constraint k is estimated from the hypothetical change in the con¬

straint length (during unconstrained or free flight) due to the interaction Unc,

Fk ~

Ä72" rk-(At)2mk-[lVqkUnc(q)+

rjtl) (8-7)(At)2mk2lVqk2Unc(q)

with uk =
mk\h the reduced mass of the constraint k, At the time step of the leap-frog discreti-
mk\ ~rmk2

sation, m,- the mass of atom i, and -Vq,Unc the force on atom / due to the unconstrained part of

the potential energy U.

It is possible to also include the change in constraint length due to the kinetic energy term

^prM_1p. To obtain Equation 8.7, the potential energy was split into an unconstrained and a

constrained part and only the former part was used. It is possible to also split the kinetic energy

term in an unconstrained and a constrained part, and then to save the size of the velocity, vk, of

the constraint length change from the previous step. The change in constraint length due to this

(initial) velocity is then subtracted from the total change of the constraint length, leading to a

force on constraint k given by

K = ^(\rk + Atmkilpkl-(At)2mkilVqkUnc(q)-

Atmk2l pk2 + (At)2 m~kl^Mq) | - v* A/ - |r*|) (8.8)

with pi the momentum of atom i and vkAt the change of the length of the flexible constraint k

from the previous (leap-frog) step. Below we formulate the flexible constraint algorithm using

Fk for the external force, but this can also be done with Fk. In the tests the algorithm with F'k has

been used.

It is now easy to calculate from Equation 8.6 the constraint lengths for which the energy

becomes minimal, i.e. for which the hypothetical harmonic constraint forces oppose and com¬

pensate the external forces Fk,

dk=F±+df). (8.9)
&k

This results in the flexible constrained Hamiltonian system
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d
K~

-p = -vqt/«.(q)-vq£A*(0^(q>0
"'

k=i

0 = g'k(q,t) k=\,2,...,Nc

(8.10)

(8.11)

(8.12)

with g'k(q,t) = \rk\2 - dk(t). These modified equations of motion can still be discretised using

the SHAKE method. We note that g'k(q,t) through dk(t) is dependent on the gradient of the non-

constrained potential energy Unc. Therefore, the computation of the Hessean of Unc is required.

As this only involves the non-constrained part of the potential energy, no recalculation of the

constraint lengths during the shake iterations is necessary.

The constraint forces are given by

5(0 = -Vq.ÎA^q,')
k=\

NL

= -2fjXk[rk(t)(dikl-Bik2)-dk(t + At)Vqidk(t+^)] (8-13)

k^\

Using Equation 8.13 the new constrained positions are

Ti(t + At) = if(f+ Aj) - ^- J Xk [rk(t) (bikl-oik2)-dk(t + At)S7qidk(t + to)} (8.14)
mi

k=\

(8.15)

Inserting Equation 8.14 into the constraint conditions Equation 8.12 yields (neglecting terms of

second order in Xk)

0 = (rk(t + At))2-(dk(t + At))2
= (rf(f + A/))2-4(A/)2X*rf(f + Af).

(^/+/n^1)rit(0-rfit(/ + Ar)(OT^1Vqti4(' + A/)-/n^,Vqi24(' +^
-(dk(t + At))2 + 0(X2).

Solving for Xk results in

Xk = ((dk(t + At))2-(rr(t+At))2)

-4(At)24r(t + At)- ((m^1 +m^yk(t)-dk(t + At)

(^"/Vq^^^ + AO-^-'Vq./t^ + A/)))]" (8.16)

This system ofN equations can be solved iteratively using the SHAKE method. It has to be noted

that each constraint update does not only involve the two atoms forming the constraint but also
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all other atoms interacting with these. Because generally all pairs of atoms in the system interact,

all constraints become coupled in this scheme.

Below we investigate the effects of approximating the constraint force due to constraint k on

particle i (Equation 8.13) by

F,(t) = -2Xk(hiM-bUk2)rk(t) (8.17)

neglecting the change of dk(t). This approximation leads to weakly coupled constraint equations

and allows the use of the SHAKE algorithm without any further calculation than adapting the

constraint length dk(t) to the current external forces using Equation 8.9.

A closer look at the neglected term yields

-VqiXk(-(dk(t + &))2) = 2Xkdk(t + At)Vqidk(t + to)

with (using Equations 8.9 and 8.7)

(8.18)

Vqidk(t + &) =

P-k

Kk(Aty

r"kc(t + At)

|*f(' + *)|

Vq, ® (rk(t) - m^ (At)1 V% Unc (q(0) +/%' (&? VqkVnc (q(t))))
n(n

MOI
(Vq/®r^(0) (8.19)

and

if(t + Ai) = rifcl(0 + Pfc1(ï+Aï/2)ifi^,A/-m-i(A/)2Vqti£^(q(0)
-rit2(0-p*i(f + A//2)iii^,A/ + m-1(A/)2Vq42tV(q(0), (8-20)

where the <g> operator denotes the tensor product. To evaluate Equation 8.19 one needs second

derivatives of the potential energy function Unc(q). Equations 8.18 and 8.19 show that a larger

force constant Kk or a smaller reduced mass pk lead to a smaller error of the approximation.

Collecting the gradient terms and the position dependent terms in Equation 8.19 yields

Vq^f+ Aj) -

Vk

Kk(At

rlc(t + At)

+

rf (f + Af)|

Vq, ® (-«*/ (AO2 yqkUnc(q(t))+rn-kl (At)2 V^t/«.(q(f))))
rf(ï + Aï) rk(t)

\t + At)\ \vk(t)\
(Vq;®rfe(/)) (8.21)

This shows that the error in the forces acting on all the atoms interacting with the atoms k\ and

k2 forming constraint k is independent of the size of the time step. If the change in the direction
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r r 2
of the constraint ( t-^t - Ä ) is proportional to (At) ,

also the last term in Equation 8.21, which

involves only the constrained atoms, is time-step independent (which is expected for forces).

The flexible constraint algorithm Equations 8.7 to 8.17 will be stable if the changes in the

constraint lengths dk per time step are smaller than the movement of the atoms induced by the

non-constrained forces. The algorithm may suffer from instability if the constraint forces hap¬

pen to be large and the time step is very small. The large constraint forces Fk will induce,

through Equation 8.9, large adjustments of the flexible constraint lengths dk (regardless of the

time step), while the small time step will induce (much) smaller atomic movements due to the

non-constrained forces. This may happen when a flexible constraint simulation is initialised by

starting from a hard constrained one with large constraint forces.

Using flexible constraints a slight complication arises with respect to the calculation of the

temperature from the kinetic energy in the non-constrained degrees of freedom. As flexible

constraints change with time, there will be (small) velocities along the constraint directions. But

in analogy to hard constraints the flexible constraints are not counted as degrees of freedom.

Therefore, to correctly calculate the temperature of the non-constrained degrees of freedom the

kinetic energy along the flexible constraints is subtracted from the total kinetic energy before

calculating the temperature.

8.5 Numerical experiments

Approximative flexible constraints were implemented in the Groningen Molecular Simulation

package (gromos)21,22. In all simulations the constraints were imposed using the SHAKE

method with a geometric tolerance of 10~6. To prove the correctness of the implementation

free rotors have been simulated. As there is no physical interaction Unc the first term in Equation

8.21 is zero and the size of the second term can be controlled by the speed of the rotation. Table

8.1 shows the results for different rotors and time steps. It can be seen that the simulation is

stable with respect to changes of the time step used in the leap-frog integration if hard or flex¬

ible constraints are applied. The flexible constraint simulation at 0.5 fs illustrates the stability

problems occurring due to the start from a hard constrained position. Furthermore, it is clear

that increasing the force constant of the bond drives the flexible constrained solution towards the

hard constrained solution. Changes of the mass of the atoms are a bit more difficult to interpret

as the initial kinetic energy of the system is different, because no changes to the initial velocities

were made. Therefore, the system is simulated at a different temperature. Not surprisingly, the

energy loss is higher for higher temperature simulations. Not unexpectedly, halving the mass has

the same effect on the average bond length as doubling the harmonic force constant, both in the

unconstrained and in the flexible constrained case.
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method At K mass bond

length

total

energy

energy

loss

[psl [\05kJ-
mol~] nm~2]

[amu] Inm] [kJ/mol] %

0.002 3.35 15.035 0.153098 2.5059 0.004

0.002 3.35 7.518 0.153049 1.2529 0.000

un¬ 0.002 3.35 30.070 0.153195 5.0117 0.020

constrained 0.004 6.69 15.035 0.153049 2.5059 0.012

0.004 13.39 15.035 0.153024 2.5059 0.012

0.008 3.35 15.035 0.153097 2.5059 0.036

hard

constrained

0.002

0.032

15.035

15.035

0.153000

0.153000

2.5059

2.5059

0.000

0.000

0.0005 3.35 15.035 0.153098 2.5059 1.704

0.001 3.35 15.035 0.153098 2.5059 0.128

0.002 3.35 15.035 0.153098 2.5059 0.128

0.002 3.35 7.518 0.153049 1.2529 0.064

0.002 3.35 30.070 0.153194 5.0117 0.253

0.004 3.35 15.035 0.153098 2.5059 0.128

flexible 0.004 3.35 7.518 0.153049 1.2529 0.064

constrained 0.004 3.35 30.070 0.153194 5.0117 0.253

0.004 6.69 15.035 0.153049 2.5059 0.064

0.004 13.39 15.035 0.153049 2.5059 0.032

0.008 3.35 15.035 0.153098 2.5059 0.132

0.008 6.69 15.035 0.153049 2.5059 0.068

0.008 13.39 15.035 0.153025 2.5059 0.036

0.016 3.35 15.035 0.153096 2.5059 0.128

0.032 3.35 15.035 0.153097 2.5059 0.128

Table 8.1: Free rotor. Average bond length, average total energy and energy loss as function of

time step At, force constant K of the harmonic bond interaction, and masses of the two atoms.

All simulations were in a (dynamic, for the unconstrained simulation) equilibrium state after

1 ps and covered at least lps. The constraints were imposed using the SHAKE method2 with

a geometric tolerance of 10~6. Total energy at start was 2.5059kJ/mol for an atom mass of

15.035araw, 1.2529 kJ/molfori.5115 amu and 5.0\ 11 kJ/molfor 30.010amu.
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8.5.1 Ethane collision in the gas phase

A simulation of a collision between two ethane molecules was performed. At the start one

ethane is aligned parallel to the y-axis with one of its atoms at the origin. The distance between

the united C//3 atoms is equal to the ideal bond length and the atoms are at rest. The second

molecule lies on the x-axis at a distance of 1.2nm with its bond at the ideal value. It moves

toward the first ethane at a speed of 2.0nm/ps. All atom masses and the two bond force constants

and bond lengths are equal. The two ethanes interact according to a Lennard-Jones interaction

using the 45A3 parameter set of the GROMOS force field23. The system was simulated using

unconstrained bonds and using flexible bond constraints. From Figure 8.1 one can see that

the flexible constrained simulation reproduces the average bond lengths of the unconstrained

simulation without the fast bond oscillations observed in the latter. After the collision the ethanes

start spinning. In both simulations one can see the increased (average) bond length due to the

internal (rotational) kinetic energy of the molecules.
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Figure 8.1: Ethane bond lengths as afunction oftime during a collision oftwo ethane molecules.

Atomic masses are 15amu, the ideal bond lengths are 0.153nm and the harmonic bondforce

constant is 3.35 ]05kJmoT

of2nmps~l towards it.

1
nm . Initially ethane I is at rest and ethane 2 moves with a velocity
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8.5.2 Neopentane liquid

Molecular dynamics simulations were carried out for liquid neopentane. The system consists of

512 molecules in a cubic periodic box. At 1 atm neopentane has a melting point of 256.75 K and

a boiling point of 282.63 K. The density at 298 K and increased pressure is 0.5852 g/ml. The

simulations were performed at 273 K and a pressure of 1 kbar as well as at a pressure of 5000

kbar. Weak coupling to temperature and pressure baths24 with a coupling constant of 0.5 ps for

pressure coupling and 0.1 ps for temperature coupling was applied. The pressure was calculated

through a molecular virial unless specified otherwise.

First, the energy conservation as a function of the time-step size has been investigated (Figure

8.2). The drift in total energy for the simulations using flexible constraints results in larger

fluctuations. Nevertheless the algorithm is fairly stable towards an increase in time-step size

(even up to 19 fs for these short simulations of 20ps), whereas hard constraints result in a SHAKE

error at a time-step size of 15 fs. For the unconstrained simulation a time-step size of 1 fs is just

acceptable, one should rather use only 0.5 fs even for a system consisting of only quite heavy

atoms. Results from longer constant temperature simulations using flexible constraints are also

shown. Up to a time-step size of 2fs the fluctuations in total and kinetic energy are comparable

to those for the hard constrained simulations. Larger time-steps lead through the coupling with

the temperature bath to larger fluctuations of the total energy, altough these are reduced for larger

time-step sizes (6 to Sfs). Systems with more variety in the degrees of freedom might suffer less

from this side effect of the use of flexible constraints.

For the following liquid neopentane simulations a time-step size of 1 fs was used which is

clearly fine for flexible constrained and hard constrained simulations. Also the unconstrained

simulation trajectories obtained proved to be stable.

The non-bonded interactions were treated with a triple range cutoff scheme with a short

cutoff of 0.8nm and a long cutoff of 1.4wn. The pairlist was updated every five time steps. All

parameter values were taken from the 45A3 GROMOS force field.

Table 8.2 gives an overview of the energetic properties of the different simulations. From

Table 8.3 one can see the effect the flexible constraints have on the internal kinetic energy. For

this set of degrees offreedom the temperature is about 5 to IK lower than the average temperature

of all degrees of freedom.

The thermostat tries to compensate the continuous loss and increases in this process the tem¬

perature of the translational (com) degrees of freedom by 10 to 14K.

The density (Figure 8.3) converges within the first 20ps and is stable for the rest of the

simulation. When applying flexible constraints the translational kinetic energy of the neopen¬

tane molecules is on average higher than in an unconstrained (or hard constrained) simulation,

because internal motion is suppressed. This leads to a higher pressure and, as the pressure is

weakly coupled to a reference value, in the end to a lower density. To further investigate the sen¬

sitivity of the pressure calculation in regard to the treatment of the bonds, simulations at 1 and at
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p — 1 kbar p = SWmkbar

method energy average rms error average rms error

energy fluctuation estimate energy fluctuation estimate

\kJ/moi\ [kJ/mol] \kJ/mol] [U/mot] [kJ/mol] | kJ/mol]

total 4108 114 9 1609 63 8

un¬ kinetic 8692 77 1 8684 86 2

constrained potential -4584 126 8 -7074 102 6

bonded 5740 143 9 5770 137 10

nonbonded -10324 129 16 -12845 154 15

total -532 74 6 -3018 90 8

hard- kinetic 6388 48 1 6387 64 1

constrained potential -6920 87 6 -9404 105 8

bonded 3427 68 4 3441 74 4

nonbonded -10348 99 9 -12844 135 11

total -584 67 8 -3351 48 5

kinetic 6316 123 2 6268 62 2

flexible- potential -6994 140 9 -9784 78 5

constrained bonded 2871 126 9 2825 47 4

nonbonded -9865 68 10 -12609 68 6

constraint 94 5 1 164 5 0

Table 8.2: Average energies and energy fluctuations of liquid neopentane obtainedfrom 200 pi'

MD simulations at 273 K and different pressures. Constraints were imposed with a geometric

tolerance of IO-6. The error estimate is calculated according to Allen and Tildesley1'.

p = 1kbar /'
- 5000kbar

method temperature average rms error average rms error

temperature fluctuation estimate temperature fluctuation estimate

[K] IK] [K] IK] IK] [K]

un¬ total 272.2 2.4 0.04 272.0 2.7 0.07

constrained com 273.3 5.5 0.2 273.3 7.7 0.4

int/rot 272.0 3.2 0.06 272.0 3 5 0.07

hard- total 272.8 2.1 0.03 272.8 2.7 0.03

constrained com 273 1 5.1 01 273.1 6.9 0.2

int/rot 272.8 2.8 0.05 272.6 3.5 0.06

flexible- total 269.8 5.3 0.09 267 7 2.7 0 08

constrained com 283.5 5.2 0.4 286.7 6.8 0.3

int/rot 264.6 7.3 0.2 260.6 3.2 0.1

Table 8.3: Average, root-mean-square fluctuation, and error estimate of the total temperature,

the centre ofmass translational temperature, and the internal and rotational temperature ofthe

neopentane molecules at different pressuresfrom 200ps ofMD simulation.
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Figure 8.2: Total energy and kinetic energy root-mean-squarefluctuations from 20 ps of micro-

canonical MD simulations at 273 K temperature and 1 kbar pressure as a function of the time-

step size. Total energy fluctuations are denotedfor unconstrained simulations by a solid line, for

hard constrained simulations by a dash - dotted line, forflexible constraints by a thick dashed

line. Kinetic energy fluctuations are denotedfor unconstrained simulations by a dashed line, for

hard constrained simulations by a dash - double - dotted line, forflexible constrained simulations

by a dotted line. For comparison the results of 50ps of constant - temperature (273 K) MD

simulation at 1 kbar pressure withflexible constraints using different time-step sizes are indicated

by circles (total energyfluctuations) and diamonds (kinetic energyfluctuations).

SOOOkhar using either harmonic bonds, hard constraints or flexible constraints with a molecular

virial or an atomic virial have been carried out. One can easily see that the average pressure

does not depend on whether a molecular virial or an atomic virial is used. Due to possibly quite

large forces during the initial period of a flexible constraints run (and back-coupling through box

size changes due to weak pressure coupling), the flexible constraint simulations had to be started

from pre-equilibrated structures (using first 1 ps of hard constrained, constant pressure and then

1 ps of flexible constrained, constant volume simulation). It seems that for the flexible constraint

runs the pressure is a bit higher and the density therefore a bit lower when using an atomic virial
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than when using a molecular one.
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Figure 8.3: Density of liquid neopentane at T = 273 K and different pressures. Panels a and b

show simulations at a pressure of 1 kbar, panels c and d at a pressure of p = 5000kbar. The

panels on the left (a and c) show data obtained from simulations using a molecular virial, for

the ones on the right (b and d) the data has been obtained using an atomic virial. A solid

line means full flexible bonds, a dotted line stands for hard constraints and a dashed line for

flexible constraints. The starting structures of the constrained simulations have already been

equilibrated.

There is not much change in the average bond length due to the increased pressure (Table

8.4). For the unconstrained simulation the average bond length decreases by 0.14 %, for flexible

constraints the decrease is 0.07 %. The difference might arise from a slightly changed distribution

of the kinetic energies over the degrees of freedom (favouring the translational over the internal

/ rotational ones), from the different density and from the approximation made in calculating the

flexible constrained bond lengths. To further investigate this deviation, the total forces on the

atoms (not including the bond terms) were projected on the bonds for the different simulation

algorithms (see Figure 8.4). One can see that the force acting on the bonds is much higher in

unconstrained simulations than when applying hard constraints. As flexible constraints adapt to

the environment, these forces get even smaller for them. This means that the force constant of

the bond interaction term used to determine the flexible bond lengths has to be lowered to obtain
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similar results as in unconstrained simulations for the (average) bond lengths. To demonstrate

this a short (50ps) flexible constrained MD simulation at 273^ and 5000kbar pressure using

half the force constant for the bond interaction term was carried out. The bond lengths shown in

Table 8.4 and Figure 8.5 are in good agreement with those of the corresponding unconstrained

MD simulation (with a bond length decrease of 0.15 % for the flexible constrained simulation)

and display smaller fluctuations.

unconstrained flexible constrained

Ikbar 5000kbar 1 kbar 5000kbar

K 1/2 K

bond length [nm] 0.153000 0.152781 0.152984 0.152877 0.152756

rms fluctuation 10~3 • [nm] 2.460 2.673 0.524 0.682 1.203

bond energy [kJ/mol] 2294 2521 96 164 258

Table 8.4: Average bond lengths and bond energies for liquid neopentane obtained at 273 K

and different pressures from 200ps ofMD simulation. For comparison also the values obtained

from a 50ps flexible constrained MD simulation at 273 K temperature and 5000kbar pressure

with half the force constant for the bond potential energy term used to determine the flexible

constrained bond lengths are shown in the right most column.

The average bond length does not change much for the low pressure simulation when using

flexible constraints with an atomic virial. This again shows that the difference in density does

not have a significant effect on the bond lengths.

In Figure 8.6 the bond-stretching and bond-angle bending vibrational spectra of liquid neo¬

pentane are displayed. The higher-frequency vibrations of the bond lengths vanish when apply¬

ing flexible constraints. The change of the bond lengths follows adiabatically the unconstrained

forces and therefore the lower bond-stretching frequency (at 11 ps~l) corresponds to the bond-

angle bending frequency. The modulation of the bond-angle bending vibration (at 41 ps~l) by

the bond-length change also disappears when applying flexible constraints. As in this simple sys¬

tem now all internal molecular degrees of freedom have the same frequencies, coupling between

these is to be expected. Especially for the high pressure simulation this can be confirmed from

the spectrum.

From the bond-length distributions (Figure 8.7) one can see a slight shift of the maximum

towards shorter bond lengths at increased pressure. The width of the distribution increases with

pressure. Both phenomena are reproduced when using flexible constraints. When applying flex¬

ible constraints the width of the distributions is reduced compared to unconstrained simulation,

as expected.

A look at the radial distribution functions (Figure 8.8) shows that the changes in the bond-
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Figure 8.4: Average of the projection of the total force (excluding the bond term) on the bonds

during lps of simulation of liquid neopentane at 273K temperature and 5000kbar pressure.

The solid line denotes an unconstrained, the dotted line a hard constrained and the dashed line

a flexible constrained MD simulation.

length distributions do not have any visible influence on the radial distributions.

Using the flexible constraint algorithm the diffusion coefficients (Table 8.5) are in the same

range as the diffusion coefficients calculated from the hard constrained and the unconstrained

simulations. The value obtained for hard constraints at high pressure is not completely con¬

verged.

8.6 Discussion

A fast but approximate algorithm to impose flexible constraints on bonds or atom-atom distances

has been proposed. The method was shown to remove the fast frequencies of the bond vibrations

from the system while still letting the bond lengths adapt to the environment. It could also

qualitatively reproduce the changes in the bond-length distribution when higher pressure was
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Figure 8.5: Bond-length distribution in liquid neopentane from 50ps MD simulation at 273 K

and 5000kbar pressure. The solid line denotes a unconstrained, the dotted line a flexible con¬

strained MD simulation.

p = 1 kbar p =5000kbar

D D

10-6[cm2/s] 10"6[c-m2/i']

unconstrained 40.8 1.6

hard constrained 44.3 0.9

flexible constrained 37.7 1.5

Table 8.5: Diffusion coefficient of liquid neopentane at 273 K and different pressures. The diffu¬

sion coefficient has been calculated using the mean-square displacement of the molecules over

300ps.
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frequency [ps frequency [ps J

Figure 8.6: Bond-stretching vibrational spectrum of liquid neopentane from 200 ps MD simu¬

lation at 273 K at low (lkbar) pressure (a) and at high (5000kbar) pressure (b). Bond-angle

bending vibrational spectrum at low pressure (c) and at high pressure (d). Solid lines denote an

unconstrained, dashed lines a flexible constrained simulation.

applied. Due to the approximations made to obtain a fast algorithm, the algorithm reproduces

only 50 % of the expected change of the average bond length (as compared to the non-constrained

simulation). This can be compensated by the use of a lower force constant in the bond-energy

term acting along the flexible constraint. The energy loss caused by the approximation Equation

8.17 can be counteracted using weak coupling to a temperature bath with standard coupling

parameter values. However, because of the energy flow, equipartition of the kinetic energy among

the degrees of freedom is not exactly fulfilled anymore. This affects the value of the pressure

and, if pressure coupling is activated, the density.

Previously, alternative algorithms to impose flexible constraints have been proposed1920,
which were computationally an order of magnitude more expensive than the standard hard con¬

straint or unconstrained algorithms and therfore less suitable for practical work. In contrast,

the flexible constraint algorithm proposed here is as costly as the hard constraint and uncon¬

strained algorithms, but suffers from minor inaccuracy due to its non-conservation of energy,

which makes it, for other reasons, also less suitable for practical work.
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Figure 8.7: Bond-length distributions in liquid neopentanefrom 200ps MD simulation at 273 K.

Thick lines denote unconstrained, thin lines flexible constrained simulations. Solid lines: p —

1 kbar, dashed lines: p — 5000 kbar.
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8.8 Appendix

Here we present the equations for the exact flexible constraints algorithm. The SHAKE method

determines the constraint force f[ on atom i from

0= (r[(t + At) + (At)2(mk-^k](t,Xk)+mk-X(tM))) ~4(t + At), (8.22)
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Figure 8.8: Radial distribution functions for liquid neopentane from 200ps ofMD simulation

at 213K. a) and b) are at p = 1 kbar, c) and d) at p = 5000kbar. a) and c) show the radial

distributionfunction of the central carbon atom with respect to all other central carbon atoms,

b) and d) of the central carbon atom with respect to all the methyl groups in the system. The

solid line denotes the unconstrained, the dotted line the hard constrained and the dashed line the

flexible constrained system.

with the unconstrained or free flight positions r^c(r + At) denoted as r'k(t + At) in the first itera¬

tion. For each following iteration r'k(t + At) is updated towards the (final) constrained positions

rk(t + At). The exact constraint forces due to constraint k are given from Equations 8.13 and
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8.21 as

m = -2Xk (8a, -8gt2)rk(0-
dk(t + At)pk

Kk(At)2

Vqi®^mki\At)2VqkUnAq(t))+mk-2\At)2Vqk2Unc(q(t)))) j^-
rf(f + Af)

(t + At)\

(Vqi®rk(tj)
4c(t + At) rk(t)

IrpXt + At)] \rk(t)\
i=l,2,...,N. (8.23)

The positions are updated according to these forces and the calculation is iterated for all con¬

straints until the change in the constraint forces per iteration approaches zero (because the change

in Xk per iteration is going to zero).

If we assume a potential energy term Unc that consists of a sum of pair-wise interactions

^(q(0) = XX«(qiX0-qK0) = il«(M0) = IS".7(')> (8-24)

the second derivatives of an interaction term ua are
v

Vq; ® Vq!UU = Vqj <g> WqjUtj = -Vq, ® VqjUij -Vq/®VqiMi7. (8.25)

If we further assume that there is no interaction between the two atoms k\ and k2 forming con¬

straint k, the forces (fk and t°k ) of the constraint k on these two atoms can be written as

fj(t) = ~2Xk (8/,*, -Sl,k2)*k(t)-
dk(t + At)pk

Kk(At)2

Ô/,*iVV%®V<ï*i X m*ij(0
j^k[,k2

\ rnc

"#*i,*2 / lr*

2if(r + Af)

+ (8/,jt, -8/,/t2)
r^C + A/) r*(r)

|rf(r + Ar)| MOI,

The forces from the constraint k on all other atoms j ^k\,k2 are

dk(t + àt)pk

(t + At)\

I = k\,k2. (8.26)

Ç(0 = -2A*
Kfc

+VV1*. ® Vqt, "*!,;(') " Wfc21V% ®Vq*2M*2,./(0
rf'C + A/)

;(? + A0|
(8.27)
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Using these forces in Equation 8.15 yields

0 = (rk(t + At))2-(dk(t + At)):
'jftMAA 2(to)2h (r

(A
dk(t + At)pk

rk(t + At) = ( rk(t)
mk. Kk(At)

( \ rnc(/
r"c(f

+ AQ

+ A0|

r?(t + At) Tk(t)
rJlC (t + At)\ \rk(t)\

,
2(AQ% ( dk(t + At)pk

mkl \ Kk(At)2

2 r?(t + At)
+<Vq,20Vq,2( J uk2j(t))(At) |rr(, + A0|Jj^kl M

rf(t + bt) vk(t)

\rf(t + At)\ \rk(t)\
(dk(t + At)Y

and after simplification

(8.28)

0 = \rk(t + At)-2Xk(Atf

mk[ +mk2 MO -

dk(t + At)pk ( ^(t + At) rjl(0

Kk(At)2 \rf(t + At)\ MO

dk(t + At)pk rffr + AQ

Kk |if(f + A/)|

('n*12V<l*1®Vq*1 S ^.j(0+^;22Vq,2®Vq,2 X Mt2jy(0

(dk(t + At)f

+

(8.29)
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And finally solving for Xk and neglecting terms of second order in Xk results in

2N

Xk = \(dk(t+At)Y-[rk(t + At

-4(ti)2rk(t + At) V+"W

Tk(t)
dk(t + At)pk ( rf(t + At) rk(t)

Kk(At)2 ;(f + A/)| MOI

dk(t + At)pk r^fr + AQ

Kk \rnc(t + At)\

(^2Vq„®VqA, X ukuj(t)+m-k2Vqk2^qk2 £ uk2j(t)

We obtain the following exact flexible constraints algorithm:

(8.30)

1. calculate (unconstrained) forces Vqiw(/- and Hessean Vq, ® Vq/w;y from positions q(0-

2. calculate free flight or unconstrained velocities \nc(t + At/2) and positions qnc(t + At) via

the leap-frog scheme.

3. update the constraint lengths dk(t) according to Equation 8.9.

4. while constraints are not satisfied,

4.1 for all constraints:

4.1.1 calculate Xk according to Equation 8.30.

4.1.2 update the positions of the atoms involved in the constraint using the constraint

forces given in Equation 8.26.

4.1.3 update the positions of all other atoms using the constraint forces given in Equa¬

tion 8.27.

5. back-calculate the velocities from the constrained positions.

6. continue simulation with t = t + At from Step I.

The approximate flexible constraints algorithm is obtained from the exact one by omitting the

calculation of the Hessean in step 1, using Equation 8.16 in step 3 and omitting step 4.1.3 com¬

pletely. If we want to achieve conservation of energy no velocity-dependent terms are allowed in

the potential energy function. It is possible to use only the unconstrained forces to determine the
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flexible bond lengths, ignoring the velocity terms. This means that the constraint length will not

change (become longer) due to spinning of a constraint. This results in

j Uk

(At)2Kk
rk - (At)2mkilVqkUnc(q) + (Atfm^ V^t/«,(q)| " M +4) • <8-31)

The energy conservation of the free rotor, two colliding ethane molecules on a line and the

two orthogonal colliding ethanes is shown in Table 8.6, last column.

unconstrained hard constrained flexible constrained

approximate exact

system using F'k using Fk using Fk

free start 2.50584 2.50585 2.50425 2.50585 2.50585

rotor end 2.50584 2.50585 2.50425 2.50585 2.50585

loss 0.0 0.0 0.0 0.0 0.0

% 0 0 0 0 0

w 0 0 -0.0015 0 0

linear start 30.0693 30.0693 30.0693 30.0693 30.0693

collision end 30.0693 30.0693 29.9378 29.9377 30.0594

loss 0.0 0.0 0.132 0.132 0.010

% 0 0 0.4 0.4 0.03

w 0 0 0.0420 0.0079 0.0081

orthogonal start 60.1304 60.1304 60.1304 60.1304 60.1304

collision end 60.1304 60.1304 60.0777 60.0767 60.1281

loss 0.0 0.0 0.0527 0.0537 0.0023

% 0 0 0.09 0.09 0.004

w 0 0 -0.0004 -0.0016 -0.0028

Table 8.6: Energy conservation ofthe different algorithms in simple test cases. Three versions of

theflexible constraint algorithm were tested. The approximate version based on Equation 8.8 and

on 8.7, and the exact version only using Equation 8.7for theflexible constraintforces. Test cases

were afree rotor, a collision of two ethanes moving on a line towards each other at equal speed,

and a collision of two ethanes perpendicular towards each other moving such that the second

one collides with the lower united atom of the first ethane (see Figure 8.1). The values are in

kJmol~ '. The simulations were performedfor a 2000 steps with a timestep-size of0.001 ps.

Even if there are no velocity dependent terms in the potential energy function, the algorithm

will lead to (small) velocities along the constraints during the simulation (whenever a constraint

length changes). The work resulting from these velocities can be estimated by
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Pk dk(t + At) - dk(t
wk =

TT
Ai MOI

pfcl (t + At/2) - pkl (t - At/2) pk2 (t + At/2) - ph (t - At/2)

mk. mkl
rk(t) (8.32)

From Table 8.6 one can see that the work done while quasi-adiabatically changing the con¬

straint lengths will be missing from the system.
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Chapter 9

Free energy calculations using

flexible-constrained, hard-constrained and

non-constrained MD simulations

9.1 Summary

A comparison of different treatments of bond-stetching interaction in molecular dynamics simu¬

lation is presented. Relative free energies from simulations using rigid bonds maintained with

the SHAKE algorithm, using partially rigid bonds maintained with a recently introduced flexi¬

ble constraints algorithm, and using fully flexible bonds are compared in a multi-configurational

thermodynamic integration calculation of changing liquid water into liquid methanol. The for¬

mula for the free energy change due to a changing flexible constraint in a flexible constraint

simulation is derived. To allow for a more direct comparison between these three methods, three

different models for water and methanol were used: a flexible model (simulated without con¬

straints and with flexible constraints), a rigid model (simulated with standard hard constraints),

and a third model (simulated with flexible constraints and standard hard constraints) in which

the ideal or constrained bond lengths correspond to the average bond lengths obtained from a

short simulation of the unconstrained flexible model. Comparison of the relative free energies

obtained from these simulations shows that the particular treatment of the bonds is of minor influ¬

ence, whereas the relative free energy difference and the barrier to be overcome in the alchemical

change of water to methanol between the various models is sizeable.
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9.2 Introduction

With the advance in computational power simulation of liquids and solutions of biomolecules

has become feasible1. Newton's equations of motion for ten thousends of particles are integrated

forward in time using finite difference algorithms such as the leap-frog one2. This requires an

integration time step At which is about an order of magnitude smaller than the shortest oscilla¬

tion time period in the molecular system. Therefore, bond vibrations with a time period of about

10 - 30/'i- usually limit the size of the time step, which is standardly chosen as 0.5 fs3. Elimina¬

tion of these fast oscillations through the application of hard constraints, e.g. using the SHAKE

algorithm4, allows for a longer time step of about 2/s3'5. Although hard constraints are likely

to be a more faithful representation of the quantum-mechanical nature of the bond-stretching vi¬

brations than a classical-mechanical harmonic (or quartic) oscillator, as used in non-constrained

simulations, they do not allow for a change in bond lengths during a simulation. However, in

some processes a change in average bond lengths, e.g. under the influence of pressure, may play

an essential role and should therefore be possible in a simulation. To this end flexible-constraint

algorithms have been proposed6-8. Using these methods the bond-length distance constraints are

(adiabatically) adjusted to their current minimum-energy lengths according to the total energy

(or total potential energy) of the system at the current time (step). Generally, these methods6'7

require multiple energy evaluations at every time step, which makes them an order of magnitude

more expensive than hard-constraint algorithms. However, using a reasonable approximation

this disadvantage could be overcome and a fast flexible-constraint algorithm obtained8.

One of the most important quantities that can be obtained from simulations are relative free

energies. To predict ligand binding or (relative) stabilities of biomolecules their relative free

energy has to be known. Over the last decades many methods to access these free energy dif¬

ferences by molecular dynamics simulations have been developed9'10 as the calculation of the

absolute free energies of systems comprising more than a handful of degrees of freedom seems

unfeasible1 '. Here, the formulae to obtain free energy differences from flexible-constraint sim¬

ulations in which bond-length parameters are changed between the two end states, are derived.

As an example of their application, the influence of the treatment of bond lengths on the (ex¬

cess) free energy difference between water and methanol was investigated. Both for water and

methanol, two flexible and a rigid model were used in the calculations.

9.3 Method

The free energy difference between state A and state B of a system can be determined through

multi-configurational thermodynamic integration12
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2wi,-(Ä.)where #(p, r; X) = 5C(p; X) + <V(r, X) is the Hamiltonian of the system with X(p; ty = X£L

the kinetic energy and V(r; A,) an interaction energy term representing the interactions between

the particles, r = (ri,r2,..,r#) is indicating the N-particle configuration with r,- the position, p,

the momentum and m; the mass of particle i, and X is a coupling parameter (alchemically) con¬

necting state A and state B. If one is interested in the excess free energy, then only the second

term in the Hamiltonian representing the interactions between the particles is used,

fB /ww
I\=a \ dX

\/~<exc dX. (9.2)

Often, it is the relative excess free energy of two states which is experimentally available.

To compare the influence of different treatments of bonds on the free energy, the change

of liquid water into liquid methanol using the coupling parameter approach was simulated with

the Gromos13"15 software for two flexible and a rigid model of water and of methanol. The

contributions to the X-derivative of the Hamiltonian of the pairwise nonbonded interaction energy

term1

Vnh(r;X)= X XnVrf(rlj;B;l-X) + (l-X)nVif(rij;A;X) (9.3)

pairs;,;'

with

V!f(rir,X;X') =

au(i,j)(X')2C^(iJ)^A

Cf2(iJ)

aw(;j)(V)2cf26(;,;)+^
-ÇsM +

47t£o£|

\CrfT- ~ 2Crf
\

ac(i,j)(Vf + rfy (ac(iJW)2+R}f
3/2 Rrf

(9.4)

7

where Cf2(i,j), C$(i,j), Cf2(i,j), and C$(i,j) are the Lennard-Jones parameters for state A and

state B for the pair of particles ij, qf, q^, qf and qB: the respective charges and OLrj(i,j) and

ac(ij) the Lennard-Jones and Coulomb soft-core interaction function parameters, and

->x

Cf2(,(iJ)
CUiJ)/C*(i,j) if

0

c$(U)*o
otherwise,

(9.5)

is given by

dVnb

~dX~ (r;X) = X nXn-lVif(ru;B;\-X)+X>
pairs;,;

n^-Xr-W^^A-^ + ^-X)

W[jb(rir,B;l-X)
dX

dVf(ny,A;X)
dx

(9.6)
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with

W$(rir,X;X>)
dX

-2VfaLy(/,y)Cf26(/,y)

au(i,j)(X')2Cxnb(iJ) + r%

2C?2(iJ)

^^(/,;)(V)2Cf26(/,y) + /-6.

^X'^ac(i,j)

-<%(i,j)
u

47ceo£i dX

1 ±C i-r2-
>.rf'ij

[<*c(i, J) (^')2 + r2j)
V2

(oc(i, j) (V)2 + R2f)5/2 )
and with

is

dVbond(v;X)
_
^ 1

dX 4(<+A(<-<))(<-<

(< +M< -<)) ((MO)2 " « +M< "<))'

(<« -<) ((MO)2 - «+Hti -<)Y

(9.7)

(9.8)av_r i for x' = x

dX~\ -1 for X' = (l-X).

The contribution from the A-dependent quartic bond potential energy term13

^"nd(v;X) = ]^((l-A)/^+A<) ((MO)2" ((1 - A)< + AZ>*)2) (9.9)

(9.10)

for Nf, bonds with force constants K$ and^ and bond lengths b^ and Öq for state A and state

ß, respectively. The current bond length bn(t) is |rè(r)| = |r/,,j<,2(?)| = Ir^ff) - rh2(t)\ for the

bonded particles h\ and b2.

When yvc- constraints are applied using Lagrange multipliers lk in a simulation, these appear

formally as parameters in the Hamiltonian,

Nc

#(r,p;A) = XfaA.) + ^(r;A) + £ lk(t;X)ok(r;X),
k=\

with the constraint equations

o*(r;A) ^ r2 - (r0k(X)f = r2~ ((1 -A)^ + XrQkBf = 0,

(9.11)

(9.12)



9.3. Method 229

where rk = r^ = r*,
- rkl and r°kA and rk'B are the constraint distances in state A and state B,

respectively. Thus the (changing) constraints also contribute to the free energy derivative16

— Xk(f,X)ak(r;X) = 2,afc(r;A) ^ +h(t^)—^—
'k=\

•X4(/;A)rO(A)(rr-rr)
k=\

(9.13)

A complete derivation is given elsewhere13,16'17.

The recently introduced flexible constraint algorithm8 uses time-dependent constraint lengths.

Adding an additional dependence on A, to these constraint lengths leads to the following con¬

straint expression

G>k(r;X) ^ rk(t)2 - (r(k(t;X))2

Fk(t;X)
= n(t)

04
+ (1-A)r^ +K

,o,a 0, (9.14)

where ^(t; X) is the (current) constraint distance under influence of the (external) force Fk (t;X) on

constraint k with force constants Kk and Kk accounting for the flexibility and the ideal constraint

lengths r°kA and r°'ß for states A and B, respectively. The external force on constraint k is given

as8

Fk(f,X) = ^Mr^O+A/v^ +A^-tA^K^A))-1^-^;^
~^k%(t + to/2) + (At)2(mk2(X))-'^-(]/(r,X)
-Atvk(t-At/2)~ rk(t) 1, (9.15)

where pk(X) = mk[(X)mkl(X)/(mk{(X) +mk2(X)) and the superscript "uc" indicates quantities

resulting from an unconstrained step. The masses mkl(X) and mk2(X) are defined as mjt(A) —

(1 -X)m^ +Xmf. The contribution to the A-derivative of the Hamiltonian can be calculated

(using Equation 9.14) as

J^f>(aK(r;A)
Nc

^
, dlk(t;X) do'k(r;X)

2^ok(r,X) +k(t,X)-
BX

-22ur.X)«r.X)(l%$ + ±ftX)
N

X
k=\

(9.16)
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with

and

dX
ft*)^-'!*,

3 *<'*>=-*(,*)*?"**
2

.

(Kk(V)-l^Fk(t;X).

(9.17)

(9.18)
dX Kk(X)

KV' J(Kk(X))2
' ^ "

dX

As the external force Fk(t;X) might arise from an interaction energy function which is by itself

dependent on A it may have a non-zero (A-) derivative. Here, we only consider the case of the

external force being completely determined by the nonbonded interaction function 1^"*(r; A), but

it is straightforward to add contributions of other interaction functions to the A-derivative. We

get

dX
Fk(t;X)

PkÇX) o

(At)2 dX
rk(t) +At^(t + At/2) - (At)2(mk] (*,))-! JL^(r;X) -

drfc.

AtyZ(t + At/2) + (At)2(mk2(X)) Vnb(r;X)

Atvk(t-At/2)- rk(t) +

dn2

Fk(t;X) (At)2 d

(At)2 pk(X) 3A
Vkß)

with

^(X) wm'!kâ+niz^
KW)2

'

K2(A))2

The derivative of the length of the unconstrained (free-flight) position

^(t + At)\ = A|r,(0+A^v^ + Ar/2)-(A?)2Kl(A))-'^-^(r;A)
Aty%(t + At/2) + (At)2(mk2(X))-l^Vnh(r-,X)

(9.19)

(9.20)

(9.21)

is obtained from the square root of the sum of the squared components (a = x,y,z) of this (un¬

constrained position) vector

r?(t + At)\ = ~J X (/&(* + *))'3A1 K v ' n dX
(9.22)

a—x,y,z

Carrying out the derivation leads to

8

dX
K'(t + At)\

1

rf(r + A/)|
a

S (At)2U%(t + At)
a—x,y,z

(+t^KW)"' +KW)^t

(9.23)
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where r]h = -^ l/nh(r; X) was used and with

aI^W1 = al,a -AK + Amf) (mt(X)Y
mf-né). (9.24)

The force from the pairwise nonbonded interaction function term (consisting of a Lennard-Jones,

a Coulomb and a reaction-field term) resulting from the interaction between particles i and j

(Equation 9.3) is

^ = _ /.8*y(yi-x) + (i _ ^.gffyxA (9.25)

with

3<^f(r,7;X;A') -6rf

3r,
azjM(A')2Cf26(/,7) + ^

2Cf2(^./)

au(/,7)(A02Cf26(/,y) + 4)
Cx(iJ) lu

4TCoei

1
+

Crf(hj)
\

'MUWr + tf'2 (vc(ijW)2+Rrf)V2J
r-,j. (9.26)

This finally leads to the A-derivative of the forces in Equation 9.23

d
inb,i/

dX •'
-nX

„_,^f(^;ß;i ^)_ria^f(r;./;ß;i~A)

3r; dx 3r;

.dVMru-AX) d o^b(nr,A;X)

+n(l-X)n~l
1J \^ --(1-X)n-^

lJ ;'7
, (9.27)

3r/ dX dr{
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with

aMJi»(r„*V)
= _6rtj{_2)^u{iJ)(V?cL{.j) + rf^dX drt

dX'
2X'—aLI(iJ)Cx26(i,j)

dX

lCn(JJ') rx(. ,.Ar
au(iJ)(X')2CU^J) +^

L6[hJ) ij

erfj

au(iJ)(^)2Cf26(i,j) + rl

2Cf2(iJ)(-l) (au(iJ)(X')2Cx26(iJ) + rt^

(au(iJ)Cx26(iJ)2X'~yu-

Crf(-\) {ac(hm)2+R2f)~512 (vc(iJ)2X^ Hr;7,(9.28)

and with

(9.29)

(9.30)

aVf 1 for A' = A

BX
~

\ -1 for A'-(l-A).

Finally, the contribution from particle j is the opposite of the one from particle /

d dlff(ru;X;X>)
_

d 9^f(r0-;X;V)
dX Br/ dX drt

9.4 Molecular models and computational procedure

The difference in (excess) free energy of liquid water and liquid methanol was calculated using no

constraints for the bond-lengths (unconstrained simulation, uc), hard constraints (he) or flexible

constraints (fc). To compare the three different methods three distinct models for water and

methanol were used. The first models were the standard rigid models for the two liquids (models

R). For water the SPC model18 and for methanol the B3 model19 were used. From those models,

flexible ones were constructed, using standard (GROMOS 45A320) force constants (models FF).

Finally, for direct comparison of the flexible-constraint and hard-constraint methods a third set of

models (FR) was used where the constraint lengths correspond to the average distances measured

from a short (10/w) unconstrained simulation (simulation parameters as given below) using the
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flexible (FF) models. To allow an easier comparison of the models, the H-O-H or CH3-O-H

bond-angle were replaced by an additional CH3-H or H-H bond. The parameters for the water

and methanol models are summarised in Table 9.1.

molecule H-O-X

water (X — H)i methanoKX = CHj)

SPC/R SPC/FF SPC/FR MeOH/R MeOH/FF MeOH/FR

(Ci2(o))i 1.6227 1.5917 1.6227 1.5250

(c6(0))i 0.05116 0.05116 0.05116 0.0476

(C,2(JC))J 0.0 0.0 0.0 4.400

(C«W)J 0.0 0.0 0.0 0.0942

qo -0.S2 0.78 -0.82 -0.674

qH 0.41 0.39 0.41 0.408

qx 0.41 0.39 0.41 0.266

KOH 4.637 4.637 - 3.1380 3.1380

Kox - 4.637 4.637 - 3.3472 3.3472

Khx - 4.637 4.637 - 3.1380 3.1380

doH 0.1 0.1 0.1022 0.1 0.1 0 1031

dox 0.1 0.1 0.1022 0.153 0.153 0.1535

dHX 0.1633 0.1633 0.1624 0.2077 0.2077 0.2072

Table 9.1: Parameters of the three modelsfor liquid water: standard rigid'8 (SPC/R), flexible21

(SPC/FF) and flexible (SPC/FR) using ideal bond-length and angle distances corresponding to

the average distancesfrom a short simulation using theflexible model, and ofthe three modelsfor

liquid methanol: standard rigid19 (MeOH/R), flexible (MeOH/FF) andflexible (MeOH/FR) using

ideal bond-length and angle distances corresponding to the average distancesfrom a short sim¬

ulation using the flexible model. Distances (d) in nm, force constants (K) in IO5 kJmol~{ nm'2,

charges (q) in e, and Lennard-Jones parameters (C\2)ï in 10~3 (kJmolnmX2Y and (Co)2 in

(kJmolnm6) 2. The Lennard-Jones parametersfor hydrogens are zero.

To determine the free energy difference between water and methanol using the different mod¬

els, multi-configurational thermodynamic integration was used for the flexible model (FF) using

unconstrained and flexible constrained MD, for the rigid model (R) using hard constrained MD

and for the rigid model with distances according to the averages of the flexible model (FR) us¬

ing hard constrained and flexible constrained MD simulations. A cubic box containing 1000

molecules was simulated using periodic boundary conditions at a temperature of 300^ main¬

tained by weak temperature coupling22 (%r = 0.1 ps) and at a pressure of 1 atm maintained by

weak pressure coupling22 (xF = 0.5ps, KT = 4.575 10~4 (kJmorxnm~^)~l, using isotropic scal¬

ing of the coordinates). If required, constraints were enforced with the SHAKE algorithm4 or with

the flexible constraints algorithm8 with a relative geometric tolerance of 0.0001. Nonbonded in¬

teractions were handled using a triple-range cutoff scheme23. Within a short-range cutoff radius

of 0.8nm, the interactions were evaluated every time step based on a pair-list recalculated every

five time steps. The intermediate-range interactions up to a long-range cutoff radius of 1.4nm
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were evaluated simultaneously with each pair-list update, and assumed constant in between. To

account for electrostatic interactions beyond the long-range cutoff radius, a reaction-field ap¬

proximation24 was applied, using a relative dielectric permittivity of 6625.

For each relative free energy determination, simulations at 101 A-values (evenly spaced from

0 to 1 ) were performed. It turned out that simultaneous growing of methyl groups out of hydro¬

gens throughout the system led very quickly to instability. Trying out different soft-core param¬

eters (from 0.1 to 1.0) au and (from 0.001 nm2 to 0.1 nm2) ccc, shifted the problem with respect

to A but did not solve it. A possible remedy might be to introduce different dependences on A

for selected groups of atoms. We implemented a quadratic dependence on A with one adjustable

parameter 6 for each group of atoms

A"(e) = 0A2 + (l-e)A. (9.31)

When calculating (nonbonded) interactions, for each pair of atoms the corresponding X" is cal¬

culated and used in the energy and force calculation. The A-derivative of the Hamiltonian is

calculated with respect to A" and multiplied by an additional factor,

BV[f(rif,X") d^f(ru;X") dX"
=

d^f(ru;X")
dX

~

dX" dX
~

dX"
((2X-l)Q(iJ) + l). (9.32)

Still, for the extreme case of simultaneously growing a thousand new Lennard-Jones particles

(hydrogen to methyl) evenly spaced throughout the system, the quadratic form of Equation 9.31

does not allow enough variation or the number of atom groups with different A-dependence

required for a stable simulation is too large to be practical.

A second approach to vary A per configuration on a wider A-range turned out to be easier.

Instead of assuming identical soft-core parameters for all particles with changing interactions,

each was assigned a random value from a uniform distribution between 0.1 and 0.5 for au

and between 0.001 nm2 and 0.01 nm2 for occ. Nevertheless, in order to achieve smooth changes

between the single A points in the thermodynamic integration, many more than the usual number

of A points (about 20) were required. In all our simulations, 101 A points were used. We note that

it is in principle possible to close the gaps between the single, discrete A points by slow-growth

simulation, thereby continuously and smoothly changing the A value. But this procedure leads to

non-equilibrium simulation, with the actual configuration constantly lagging behind the current

A value. This drawback is most severe when crossing steep energy barriers, which is exactly

necessary here.

9.5 Results

The derivative of the excess free energy difference with respect to A is shown in Figure 9.1. The

upper half of the table shows the values obtained from changing water into methanol, whereas the
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lower half shows the values obtained by the reverse process, changing methanol into water. There

are significant differences in the convergence behaviour. Whereas the results for the forward

(water to methanol) and backward (methanol to water) process for the R and the FR model are

well within 1 Umol~\ the differences using the FF model are above 2kJmol~{.

The relative free energies and excess free energies of methanol with respect to water for the

three models and different treatments of bonds calculated by numerical integration are shown in

Tables 9.2 and 9.3.

Model uc fc he

H20^ MeOH

R - - -4.14

FF -11.56 -5.60 -

FR - 2.55 -1.80

H20^ MeOH

R -
- -5.04

FF -13.54 -7.62 -

FR - 1.94 -2.36

Table 9.2: Relative free energy, f < dH/dX >x dX, of methanol with respect to water using

the rigid models (R), the flexible models (FF), or the third models (FR) with ideal or con¬

straint distances corresponding to simulation averages of the flexible models, and using un¬

constrained (uc), flexible constrained (fc), or hard constrained (he) simulation, obtained from

multi-configurational thermodynamic integration using 101 X-points, either startingfrom water

(upper half) orfrom methanol (lower half). Values are given in kJmol~K Errors are estimated

using extrapolation of block averages26.

The experimental value for the relative excess Gibbs free energy of methanol with respect to

water, calculated27'28 from molar volumes of the vapor and the liquid29, is 6.2/:/mo/-1. This

value is much better reproduced by the FR model than by the other two models. Using an

identical bond treatment, the excess relative free energy changes between the models by about

2.5 to SkJmol1, whereas changing the bond treatment using an identical model only results in

changes of up to 4kJmol~l.

In Figure 9.2 the densities during the thermodynamic integration simulations are shown. For

all models and simulation methods the densities reached a minimum at intermediate A values,

when the particle cores are at maximum softness. This suggests that the Coulomb part of the

nonbonded interaction function was too soft compared to the van der Waals part. In other words,

the tendency of the particles to overlap with each other due to a soft Lennard-Jones interaction

which would lead to an increase in the density was more than compensated by the reduced



236 Chapter 9. Free energy calculations using flexible constraints

Figure 9.1: Derivative ofthe excess Gibbsfree energy difference, < dV/dX >x, with respect to X

during multiconfigurational thermodynamic integration ofchanging water (X + 0) into methanol

(X = 1) using the flexible models (FF, black symbols), the rigid models (R, red symbols), and the

third models (FR, blue symbols) with distances corresponding to averages of the flexible one.

At each of the 101 points 10ps of simulation time were used to average over. Unconstrained

simulations are represented in the top panel, hard constrained ones in the middle panel, and

flexible constrained ones in the bottom panel. Valuesfrom the alchemical change of water into

methanol are represented by diamond symbols, valuesfor the reverse changefrom methanol into

water by square symbols.
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Model uc fc he

H20 - MeOH

R - - 2.70

FF -1.07 1.23

FR - 9.36 5.04

H20 <- MeOH

R - - 1.80

FF -3.13 -0.80

FR - 8.76 4.48

Table 9.3: Relative excess free energy, f < dV/dX >x dX, of methanol with respect to water

using the rigid models (R), the flexible models (FF), or the third models (FR) with ideal or

constraint distances corresponding to simulation averages of the flexible models, and using un¬

constrained (uc), flexible constrained (fc), or hard constrained (he) simulation, obtained from

multi-configurational thermodynamic integration using 101 X-points, either startingfrom water

(upper half) or from methanol (lower half). Values are given in kJmol~K Errors are estimated

using extrapolation ofblock averages26.

attraction due to soft electrostatics.

Looking at the densities of the different the thermodynamic integration simulations shows

clearly where the process changing water into methanol deviates from its reverse process of

changing methanol into water. From this, it is obvious that results belonging to the FF model are

not yet converged, the ones from the R model are much closer to convergence, but only the FR

model seems to be really converged. This agrees with the differences found between the excess

free energies of the forward and their reverse processes.

To obtain better results, simulations have to be prolonged for selected A values, until the

densities obtained at one A value converge.

9.6 Conclusion

A comparison between different treatments of bond lengths with regard to their influence on

relative free energies of liquid water and methanol was presented. The different bond-length

treatments included flexible (unconstrained) bonds, rigid (hard constrained) bonds and flexible

constrained bonds, in which the constrained bond length is adapted to the current environment.

To make this comparison, a flexible model (FF) for water and one for methanol as well as a rigid

model (R) for each of the two liquids were used. In addition to those, a third pair of models
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Figure 9.2: Densities during multiconfigurational thermodynamic integration ofchanging water

(X + 0) into methanol (A = 1 ) using the flexible models (FF, black symbols), the rigid models (R,

red symbols), and the third models (FR, blue symbols) with distances corresponding to averages

of the flexible one. At each of the 101 points 10ps ofsimulation time were used to average over.

Unconstrained simulations are represented in the top panel, hard constrained ones in the middle

panel, andflexible constrained ones in the bottom panel Valuesfrom the alchemical change of

water into methanol are represented by diamond symbols, values for the reverse change from

methanol into water by square symbols.
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(FR)was introduced in which the ideal or constrained bond lengths were set to the average bond

lengths obtained from short unconstrained simulations using the flexible models (FF). Use of

flexible constraints (fc) or hard constraints (he) led to similar relative free energies (model FR),

while changing from an unconstrained (uc) simulation to a flexible constrained (fc) one using

the flexible model (FF) had a smaller but still measurable effect. A comparison of the relative

free energies obtained for the three models shows much larger differences. Apparently, a small

change in molecular geometry (R to FR) leads to about 2.5 kJmol~[ change in excess free energy.

A small change in nonbonded parameters leads, as expected, to an even larger change of about

%kJmol~x. The calculated excess (Gibbs) free energy difference of liquid methanol and water

for the adapted (non-standard) rigid model (FR) was closest to the experimental value. These

comparisons have to be taken as a first estimate, as the values obtained with the FF model are

clearly not converged yet, and also the ones using the R model may still need to be improved

using longer simulations.
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Chapter 10

Outlook

A long time has passed since the first molecular dynamics simulation in 19591. From being a

curiosity in the beginning2, simulation has become a valuable tool in increasing the understand¬

ing of atomistic processes3 and is reaching predictive powers. The appeal of classical molecu¬

lar dynamics simulation is rooted in the balance it achieves between accuracy, system size and

(sampling) time scale. These three factors together determine the computational cost of the sim¬

ulation. With the tremendous increase of computational power over the last decades it stands

to reason whether classical simulation still meets the demands of the researchers or whether

other methods with a different balance between the three components will become favoured. Ar¬

guably most focus is on accuracy. Apart from being heavily dependent on the quality of the force

field used, classical simulations are unable to treat electronic degrees of freedom. As could be

shown recently, this sets a limit on the accuracy any force field may achieve4. Adding electronic

polarization in a mean-field approximation may help5, but is still not the same as treating elec¬

tronic degrees of freedom explicitly as in mixed quantum-classical or Car-Parrinello simulations

(CPMD). Still, there are many areas where accuracy might not be the biggest problem but system

size and sampling time are the issues, as in protein folding, protein or lipid aggregation studies

or simulations of complex mechanisms in cells like transport through membranes. For these

kind of system sizes or sampling times, the quality of current force fields is still unknown. It

might well be that through assessing force-field quality especially in long time-scale simulations

noticeable improvements are still possible. One important example of such a process is the cur¬

rent investigation of the stability of a-helices versus ß-sheets of model peptides. Sometimes it

might be very hard or even impossible to come up with unique force-field parameters which are

truly transferable among the huge variety of biomolecules used in todays simulations. Restrain¬

ing a simulation to reproduce known experimental data might yield better overall behaviour and

therefore increase the likelihood of accurate predictions on yet unknown properties or parts of

the systems under investigation. Structure predictions using incomplete experimental data might

profit substantially from an algorithm as the one presented in Chapter 7 where restraining is

combined with a method to enhance sampling. If the aim is to simulate even bigger systems for
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still longer time molecular dynamics simulation may still be the method of choice. The emerging

coarse-grained models promise to make simulations of systems with up to a million of particles

for microseconds reality. Nevertheless, these models work best for large numbers of identical,

simple molecules. Careful selection of the subset of degrees of freedom to retain in future models

of more complex molecules like peptides is necessary. Techniques that combine the fine-grained

with the coarse-grained world like the one shown in Chapter 5 may help to benefit from the im¬

mensely faster sampling of configurational space available for the coarse-grained models while

still being able to profit from specific atomistic interactions of the fine-grained representation.

Computer simulation is mainly limited by the available computational resources. Even with

the tremendous increase those have seen over the years its appetite is not nearly satisfied nor

likely to be in the near future. With the stagnation in the increase of clock speeds of processors a

new trend to enhance performance is reemerging: parallelization. Within the next years as many

as eight computational cores might be running in a standard desktop machine, leaving room for

up to 32 cores for double or even quadruple processor server systems. With this development

parallelization of simulation algorithms will be more and more important. Techniques that profit

from simultaneous simulation of multiple copies of a system like replica-exchange simulation

will benefit immensely, not the least because of the ease of implementation of this technique.

Nevertheless, classic simulation algorithms and existing data structures need to be reevaluated in

terms of scalability to parallel environments. The high level of modularity and the encapsulation

used in GROMOS05 described in Chapter 2, together with the very simple but still reasonably

efficient MPI (distributed memory) and OpenMP (shared memory) parallelization, will hopefully

provide a useful framework for future development.

Man muss nicht alle Berge ebnen wollen.

German proverb
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