mzuriCh ETH Library

GPUguard: Towards supporting
a predictable execution model for
heterogeneous SoC

Conference Paper

Author(s):
Forsberg, Bjorn; Marongiu, Andrea; Benini, Luca

Publication date:
2017

Permanent link:
https://doi.org/10.3929/ethz-b-000222912

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
https://doi.org/10.23919/DATE.2017.7927008

Funding acknowledgement:
688860 - High-Performance Embedded Real-time Architectures for Low-Power Many-Core Systems (SBFI)

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0001-8068-3806
https://doi.org/10.3929/ethz-b-000222912
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.23919/DATE.2017.7927008
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

GPUguard: Towards Supporting a Predictable
Execution Model for Heterogeneous SoC

Bjorn Forsberg!

Andrea Marongiu'-2
! Swiss Federal Institute of Technology Ziirich

Luca Benini-2

2 University of Bologna

{bjoernf, a.marongiu, lbenini}@iis.ee.ethz.ch

Abstract—The deployment of real-time workloads on commer-
cial off-the-shelf (COTS) hardware is attractive, as it reduces
the cost and time-to-market of new products. Most modern
high-end embedded SoCs rely on a heterogeneous design, cou-
pling a general-purpose multi-core CPU to a massively parallel
accelerator, typically a programmable GPU, sharing a single
global DRAM. However, because of non-predictable hardware
arbiters designed to maximize average or peak performance, it
is very difficult to provide timing guarantees on such systems.
In this work we present our ongoing work on GPUguard, a
software technique that predictably arbitrates main memory
usage in heterogeneous SoCs. A prototype implementation for
the NVIDIA Tegra TX1 SoC shows that GPUguard is able to
reduce the adverse effects of memory sharing, while retaining a
high throughput on both the CPU and the accelerator.

I. INTRODUCTION

In recent times it has become possible to perform heavy
computations in a small power envelope through the integra-
tion of high-performing low-power accelerators on SoCs. As
embedded SoCs are typically constrained in their area and
power budgets, it is advantageous to share hardware compo-
nents among several computational units. Thus, accelerated
SoCs are typically designed as heterogeneous systems, sharing
an off-chip (DRAM) memory. However, shared hardware
resources are subject to contention when accessed by multiple
devices, leading to variance in their access times.

In real-time systems, timing correct behavior must be en-
sured under all conditions. This leads to over-provisioning of
the hardware to account for access time variability, causing
poor utilization. On the other hand, the small-scale production
of hardware capable of providing hard real-time guaran-
tees typically drives costs well beyond those of their mass-
produced general purpose counterparts. Because of this, the
ability to deploy real-time workloads on commercial off-the-
shelf (COTS) hardware becomes attractive.

As has been shown in several previous publications [1],
the deployment of high-level software arbitration mechanisms
can enable the execution of real-time workloads on COTS
hardware. This paper presents our ongoing work in designing
and implementing GPUguard, a high-level software abstrac-
tion layer which isolates access to shared DRAM in a hetero-
geneous GPU+CPU SoC (NVIDIA Tegra TX1) by enforcing
time-separation between main memory access phases of CPU
and GPU. To the best of our knowledge, GPUguard is the
first scheme to apply such an approach in the context of
commercial and large-volume heterogeneous SoC.

Experiments conducted on a prototype implementation of
GPUguard show that the proposed scheme is able to deliver
comparable throughput on both the CPU and GPU, while
decreasing the memory latency variance.

II. ARCHITECTURAL TEMPLATE

In the targeted heterogeneous SoC, the CPU is a multi-core
processor with core-local private caches, and a shared last level
cache (LLC). The GPU consists of one or more clusters of
simple cores, with access to a per-cluster software managed
scratchpad memory. Cores belonging to the same cluster can
communicate via the shared scratchpad memory or the use
of cluster-local barriers. Communication via cores in different
clusters can only be done via the shared DRAM. All clusters
within the GPU share a LLC. Within the cluster, cores may be
sharing a single program counter, thus executing in lock-step.

Communication between the GPU and CPU complex can
only be performed via the shared DRAM, thus the GPU is
not capable of triggering CPU-side interrupts. Lastly, all hard-
ware managed caches are managed by best-effort replacement
policies, and their behavior inherently difficult to predict.

III. BACKGROUND AND RELATED WORK

The Predictable Execution Model (PREM) [2] is designed
to isolate access to shared main memory in multi-core CPUs.
This is achieved by partitioning programs into contention-
sensitive memory and contention-free computation phases, and
scheduling these such that two memory phases are never
executed in parallel. By scheduling only a single memory
phase at a time, contention for memory is effectively avoided.
This allows a system designer to tightly bound memory
access latencies, leading to shorter worst-case execution times
(WCET) and better use of the hardware. GPUguard is inspired
by the PREM approach of separating programs into compute
and memory phases, and uses the phase cycling of GPU
programs as basis for system-wide memory scheduling.

Extensions to the original PREM paper have mostly focused
on multi-core CPUs [3]. PREM for heterogeneous SoCs has
only been studied from the angle of WCET modeling [4].

A. Warp specialization

To realize PREM, applications must be divided into separate
compute and memory phases. On GPUs, there exists a notion
of division into PREM-like compute and memory phases in
the staging of data through the local scratchpad. Typically, this

method is employed in programs with data re-use to avoid ex-
pensive re-fetching. It has been shown that GPU programs can
be rewritten into two separate parts that individually handle
these phases through warp specialization [5]. In the original
work this is used to dedicate a subset of the GPU threads
to emulating DMA engines to improve memory throughput.
In the context of GPUguard, warp specialization provides
a mechanism to further isolate the memory and compute
phases into individually schedulable units. Furthermore, it also
enables fine-tuning memory and compute phase lengths by
decoupling the allocation of memory and compute threads.

B. MemGuard

PREM on heterogeneous architectures must also provide
isolation between CPU and GPU. On multi-core CPUs, Mem-
Guard [6], enforces per-core or per-task bandwidth bud-
gets, and can be employed to prevent the CPU from us-
ing main memory during GPU memory phases. MemGuard
uses performance counters to detect when a core overruns
its memory budget, at which point a high-priority throttle
thread is scheduled, thus pre-empting the running task. The
throttle thread performs busy waiting, and thus ensures that no
further memory accesses are generated. At preset intervals the
memory budget is renewed, and the throttle thread is put back
to sleep. Through the use of performance counters, tasks may
continue to execute when the memory bandwidth is throttled,
as long as they keep hitting in the local cache. Furthermore, no
program changes are necessary to support legacy applications,
as the budgeting mechanism is managed on a higher system
level. In this work, in combination with the PREM phase
divisioning between CPU and GPU, we use the MemGuard
bandwidth limiting mechanism for internal bandwidth control
on the CPU. To achieve this, we put the bandwidth budget
renewal of MemGuard under the control of GPUguard.

IV. GPUGUARD

A. Time-sharing memory access between CPU and GPU

While it is possible to choose either the CPU or the GPU
as the controlling party, GPUs generally do not contain event
mechanisms such as interrupt lines. Their only way to react
to external events, such as a CPU synchronization, is to resort
to expensive polling. Therefore, GPUguard controls access
to the shared global DRAM based on the natural shifting
in phases of the GPU program, i.e., when the scratchpad
memory has been filled or the computations on that data
completed, respectively. It is beneficial to switch at these
border regions, since interruptions in the memory phase would
stall the execution of the program.

The ability to independently allocate compute and memory
threads, as provided by the warp specialization approach,
provides a mechanism to balance the length of the corre-
sponding phases. To provide guarantees on available memory
access windows the lengths of the intervals are kept constant
by enforcing the upper bound on the execution time of the

phases!. This is in line with previous PREM approaches.

B. Memory bandwidth control mechanism

The matching of PREM-phases to the memory-compute
cycling of warp-specialized applications implicitly ensures
that the GPU application does not perform memory accesses
outside its memory phase. The CPU on the other hand has no
such mappings, and thus another mechanism must be put in
place to ensure that memory access isolation is upheld.

In the light of extending PREM, the CPU can locally use
the traditional CPU-only implementation of PREM [2] to
schedule tasks. Thus, during the GPU compute phases, the
memory phases of CPU applications would be scheduled, and
the computation deferred to the GPU memory phase, and the
isolation properties would be upheld. This requires that the
CPU-side programs conform to the PREM phase division. The
full formalization of this approach is left as future work.

To support legacy applications without modification, GPU-
guard can be coupled with MemGuard by allowing the CPU to
freely access global memory (i.e., no LLC miss limits) during
the GPU compute phases, and once the GPU switches into
memory mode, a bandwidth limitation is put in place using
the MemGuard performance counter mechanism. This means
that the CPU program can continue to execute as long as
it keeps hitting in the local caches, while still supporting a
preset amount of global loads until the bandwidth limit put
in place by MemGuard is reached. By combining these two
mechanisms, the isolation property is once again upheld. In the
following sections, we assume that the MemGuard mechanism
is used on the CPU, and that the bandwidth renewal process is
under the control of GPUguard. This is reflected by Sleep in
Fig. 1, which gives an overview of the GPUguard prototype.

C. Global memory-compute phase synchronization

To schedule access windows to the global memory, GPU-
guard employs a synchronization scheme: On every phase
change the GPU writes a sync flag (Sync, Fig. 1) into a
segment of memory visible to both CPU and GPU. After this,
the GPU stalls until the flag has been unset, which signifies
that the phase shift has been acknowledged by the CPU. To
ensure that the CPU can execute jobs in parallel, the CPU
is not polling for the GPU sync flag, but only acts on the
synchronization once the preset length of the GPU phase has
passed. This is achievable through the use of timer interrupts
(Timer, Fig. 1). The CPU acknowledges the synchronization
once the MemGuard bandwidth limitation is in place (Wake,
Fig. 1), to ensure that the CPU is effectively hindered from
overrunning its budget.

The interval during which a processing unit experiences
one memory and one compute phase is referred to as the
GPUguard period. The period is assumed to be defined at
a per-kernel granularity, and thus does not change during the
GPU-side execution.

"While double buffering is better for performance, single buffering provides
the clearest division of memory and compute phases, and is the favored
buffering technique for GPUguard. However, for compute bound applications,
it may be possible to perform double buffering as well.

‘ User CUDA/GPUguard program ‘

[}

8

4 | }

g

3 | GPUguard API | ‘ CUDA Runtime APl ‘
| GPUguard LKM 10CTL | ‘ CUDA Driver 10CTL ‘

u, X

g

2

A

s

8

=3

H HRTIMER_EnterCompute

= g

z e

5

4

Memory -CI)r-np-ut.e. tSync

?Sync
GPU === === ===
CPUF-eeeaaaaa

Execution

Fig. 1. An architectural overview of the implemented GPUguard.

V. EVALUATION

GPUguard is evaluated on the NVIDIA Tegra TX1 [7], a
state-of-the-art COTS heterogeneous SoC. We quantify the
different sources of overhead, and validate that GPUguard
reduces the variability in memory access times.

A. Prototype implementation

We have implemented an evaluation prototype of GPU-
guard, split into a Linux loadable kernel module (LKM)
and an API implemented in CUDA. Since GPUguard relies
on warp specialization for the separation of compute and
memory phases, the GPU-side API presents a similar interface
as CudaDMA [5]. On the CPU, a call to the non-blocking
HostSync () function starts the synchronization mechanism
within the LKM. The non-blocking nature of the call allows
the CPU to continue local execution while the kernel is
running, as it would in any legacy CUDA program.

To ensure that the execution of the compute phases only
rely on local resources, the memory phase will pre-fetch the
required input data into the scratchpad memory, or shared
memory in CUDA terminology. On the targeted platform, this
amounts to 48K B of memory per thread block. GPUguard
targets heterogeneous SoC without discrete memories, thus
all copy operations can be instantiated from the GPU itself,
and are subject to the GPUguard orchestrated memory access
schedule. Fig. 1 shows the implemented prototype.

B. OS and hardware characterization

To gain an understanding of the overheads imposed by the
synchronization scheme, we have characterized the three main
sources of overhead: First, the GPU synchronization overhead
is amount of time the GPU stalls while waiting for the syn-
chronization acknowledgment from the CPU. Second, the CPU
synchronization overhead is the degradation in performance
experienced on the CPU due to the frequent interrupts induced
by the synchronization. Third, the period overhead is the cost

|:| Interrupt 5.6 Hs .Wake thread 7.4 HUs

.Sync 0.5 s .Context switch 20 Hs
\ J

Y
GPU overhead 13.5 Hs
\ v
Y
CPU overhead 35.5 Hs
Fig. 2. Measured latencies of the different steps involved in performing a

synchronization.

100%

Il

0%

100%

50%
OCPU Memory phase

OCPU Compute phase
ECPU Overhead

L] 0%
o o

(=
oo

2801 |
3201 |
3601 |
400

Period (us)

Fig. 3. The division of CPU phases under different period lengths in relation
to the CPU synchronization overhead.

of stalls due to bad matches between the GPUguard periods
and the actual execution time of the GPU phases.

As an initial characterization of both the CPU and GPU
synchronization overheads, the time required for all synchro-
nization steps were measured. This includes the Linux timer
interrupt latency? (interrupt), the memory latency for writing
the synchronization flags (sync), the time it takes to wake the
throttle thread (wake), and the cost of context switching to the
throttle thread once it has been scheduled (context switch). The
results are presented in Fig. 2.

To evaluate the CPU overhead, we created a synthetic
benchmark which only performs synchronizations, and mea-
sured the available processing and memory time on the CPU.
For this experiment, we assign 50% of the memory bandwidth
to the CPU. However, as the results in Fig. 3 shows, the
actual un-throttled memory time available to the CPU is only
about 40%, and decreases with the period length. This is
because a shorter period implies more interrupts and more
context switches, which is the source of CPU overhead. As
GPUguard only throttles the memory bandwidth, a compute-
intensive CPU task can continue execution during the entire
period, as long as it does not require main memory access.
On the other end of the spectrum, a memory-intensive CPU
task will be subject to bandwidth throttling during the CPU
compute phase, and in the extreme case it will be stalled
until the next CPU memory phase. Thus, depending on the
compute-to-communication ratio of the CPU tasks, and the
bandwidth limit put in place through the MemGuard throttling
mechanism, the available time for performing useful work for
a specific task will be somewhere between these two extremes.

The GPU overhead, presented in Fig. 2, is smaller than
that of the CPU, as the GPU does not perform any additional
operations once the synchronization is done. However, as
the waking of the throttle thread is done before the CPU

2Mainline Linux provides no guarantees on interrupt latency, although there
are patches [8] that aim to provide this.

200
m— Copy-in + Copy-out

0 150 Copy-in
-- -
= 100
-
E 50 o8
= n-----l-u------_----
0+
5 10 15 20 25 30
Memory warps
Fig. 4. The time required to fill, and fill + empty, the scratchpad memory

on the GPU using different numbers of memory warps.

& =
E
g o
w
(=)
I T T T T T 1
2800 000 3200 3400 3600 3800 4000
g g
=)
3
g =
w
(=]
I T T T T T 1
2800 3000 3200 3400 3600 3800 4000
Fig. 5. The distribution of execution times for the Matrix Multiplication

kernel under contention. The top histogram shows the variance in the baseline
CUDA version, and the bottom one shows the variance when GPUguard is
used to orchestrate memory accesses.

acknowledges the GPU, it is included in the GPU overhead.

The final source of overhead is due to the over-dimensioning
of the GPUguard period. This overhead appears when the
GPUguard period is longer than the actual execution time of
the GPU phases, causing the GPU to stall while waiting for the
CPU to enter the synchronization phase. To gain an insight into
the optimal length for the GPU memory period, we measured
the time required to populate the scratchpad memory using
different amount of memory warps. We also measured the
time to both populate and evict the scratchpad data, as this
constitutes typical program behavior. The measured times are
presented in Fig. 4. For most warp configurations, the time
required to fill the shared memory is in the range where the
CPU-side experiences heavy degradation due to synchroniza-
tion overhead, see Fig. 3. This means that memory bound
programs, i.e., programs that perform extensive searching or
data traversal in relation to the length of the computation
phase are susceptible to stalls. However, many classical GPU
applications, such as BLAS (Basic Linear Algebra Subroutine)
kernels, are compute intensive, and thus not affected by this
limitation. We therefore employ a compute heavy program,
matrix multiplication, a BLAS3-type kernel for the initial
evaluation of GPUguard.

C. GPU Performance and Predictability characterization

To evaluate the achieved reduction in memory access time
variance, we have implemented a GPUguard enabled version
of matrix-matrix multiplication, a BLAS3 kernel. This is
compared to a baseline version taken from the CUDA samples
provided by NVIDIA. Matrix Multiplication has a compute to
communication ratio of 2n? / 3n2, ie., the computation part
is cubic in the input size, while the communication is only

quadratic. Thus, as the input size increases, the computational
work increases asymptotically faster than the memory require-
ments, leading to fewer synchronizations due to the scratchpad
memory size. Furthermore, we set the CPU bandwidth limit
to zero during the GPU memory phases, thus stalling all
memory accesses from the CPU until the end of the phase.
This represents the maximum achievable isolation and the best
case for increasing timing predictability.

We execute the baseline and GPUguard-enabled kernels
over several iterations under memory contention generated by
the CPU, and plot their execution time distributions in Fig. 5.
As can be seen in the figure, the execution time variance in
the GPUguard enabled versions of the BLAS kernels is near
zero, in contrast to the baseline implementations. In addition
to this, the execution time of the GPUguard-enabled kernel is
within the range of execution times exhibited by the CUDA
baseline implementation.

VI. CONCLUSION

We have presented GPUguard, a PREM-like method of
dividing GPU programs into contention-sensitive memory and
contention-insensitive computation phases, and mechanism for
globally scheduling these to minimize memory interference
between the GPU and CPU. We have characterized the main
overheads as well as performed an initial validation of the
reduction in memory access time variability. The source code
will be available as part of the Hercules 2020 EU-project [9].

Our future work will focus on designing and implement-
ing more lightweight synchronization schemes, more relaxed
memory phase isolation policies, and the mathematical formal-
ization of the approach. We will also implement a compiler to
automate the creation of GPUguard-enabled programs.

Lastly, we are also looking into using hardware-level throt-
tling in the memory controller, which promises much lower
CPU-side overheads compared to Linux software solutions.

VII. ACKNOWLEDGMENT

This work has been supported by the EU H2020 project
HERCULES (688860).

REFERENCES

[1] S. Girbal et al. Deterministic platform software for hard real-time systems
using multi-core COTS In Digital Avionics Systems Conference (DASC), 2015
IEEE/ATAA 34th, 2015.

[2] R. Pellizzoni et al. A Predictable Execution Model for COTS-Based Embedded
Systems In 17th IEEE Real-Time and Embedded Technology and Applications
Symposium, Chicago, IL, pp. 269-279. 2011.

[3] A. Alhammad et al. Time-predictable execution of multithreaded applications on

multicore systems Proceedings of the conference on Design, Automation & Test

in Europe. 2014.

P. Burgio et al. A memory-centric approach to enable timing-predictability within

embedded many-core accelerators In Real-Time and Embedded Systems and

Technologies (RTEST), 2015 CSI Symposium on. 2015.

[5] M. Bauer et al. CudaDMA: optimizing GPU memory bandwidth via warp
specialization SC ’11 Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis. 2011.

[6] H. Yun et al. MemGuard: Memory bandwidth reservation system for efficient

performance isolation in multi-core platforms Real-Time and Embedded Technol-

ogy and Applications Symposium (RTAS), 2013 IEEE 19th, Philadelphia, PA, pp.

55-64. 2013.

Jetson TX1 Embedded System Developer Kit

jetson-tx1-dev-kit.html

[8] Real-time Linux Wiki https://rt.wiki.kernel.org/index.php/Main_Page

[9] The Hercules Project, http://hercules2020.eu/

[4

[7

http://www.nvidia.com/object/

