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Abstract

As the number of consumer computing devices at our disposal has grown, we find
ourselves in situations where we have access to more than a single device. Even though
people have started using multiple devices both sequentially and in parallel, applica-
tions and operating systems offer limited support for these scenarios. Support is often
limited to data synchronisation via the cloud or restricted to devices from the same
manufacturer. The research community has been exploring how applications could
adapt to the set of devices at hand and has devised new cross-device interaction tech-
niques. Frameworks and tools have been developed for designing and prototyping such
cross-device applications. However, less attention has been paid to what is needed to
go beyond research prototypes and to engineer products.

In this thesis, we investigate how we can support the development of cross-device
applications across the whole engineering lifecycle from design, prototyping, and im-
plementation to testing, debugging, and usage analysis. We start with an analysis of
existing cross-device research as well as general purpose developer tools for the whole
engineering lifecycle. We focus on tools for working with web technologies as we have
chosen to use the web as a foundation for this thesis due to its cross-platform nature.
We then introduce a set of novel tools for cross-device engineering that implement the
requirements we identified in the analysis.

For the design and prototyping phase, we contribute MultiMasher, a visual tool for
creating functional cross-device mashups. The tool allows developers and designers to
experiment with cross-device ideas based on existing applications without the need to
write code.

The implementation phase is addressed with XD-MVC, a cross-device library. XD-
MVC consists of a layered architecture to provide various levels of support. At the
lower end, a JavaScript API offers basic functionality such as connection management,
state synchronisation, and device roles. At the other end of the spectrum, we offer high
level components for device pairing and UI distribution based on patterns.

XD-Tools offers support for informal testing and debugging. It caters to the need
of being able to test and debug many different device combinations and easily switch
between different ones. This is achieved both with the integration of real devices as
well as the emulation of devices on the developer machine. At the same time, the
tool alleviates the issues of fragmentation of the code across devices by aggregating
information for existing debugging tools such as the console.

Formal, automated testing is addressed with XD-Testing. It allows developers to
write parametrised UI tests in a new domain specific language. These tests can be
repeated across multiple device combinations to test functionality independent of the
set of devices used. At the same time, a developer can use explicit device selectors to
test the distribution of the UI for a given device combination.
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Finally, we contribute XD-Analytics for usage analysis across multiple devices. We
introduce a set of metrics that are of particular interest in cross-device scenarios. We
have implemented these metrics in a prototype and discuss how we used the tool to
track the introduction of a cross-device feature in an existing application.

To evaluate our tools, we have implemented a number of sample applications and
conducted case studies as well as user studies.



Zusammenfassung

Da die Anzahl der Geräte mit Rechenleistung wie Mobiltelefone und Tablets gewach-
sen ist, befinden wir uns immer häufiger in Situationen, in denen wir Zugang zu mehr
als einem einzigen Gerät haben. Auch wenn einige Nutzer bereits angefangen haben,
mehrere Geräten sowohl nacheinander als auch parallel zu benutzen, bieten Anwendun-
gen und Betriebssysteme eine begrenzte Unterstützung für diese Szenarien. Die Un-
terstützung ist oft auf die Datensynchronisation über die Cloud oder auf Geräte des
gleichen Herstellers beschränkt. Die Forschungsgemeinschaft hat untersucht, wie sich
Anwendungen an die eingesetzten Geräte anpassen können und hat neue geräteüber-
greifende Interaktionstechniken entwickelt. Für das Entwerfen und Prototyping solcher
geräteübergreifenden Anwendungen wurden bereits Frameworks und Tools entwickelt.
Was benötigt wird, um über Forschungsprototypen hinauszugehen und Produkte zu
entwickeln, hat hingegen weniger Aufmerksamkeit erfahren.

In dieser Arbeit untersuchen wir, wie wir die Entwicklung von geräteübergreifenden
Anwendungen über den gesamten Entwicklungszyklus von Design, Prototyping und Im-
plementierung bis hin zu Testen, Debugging und Nutzungsanalyse unterstützen können.
Wir beginnen mit einer Analyse der vorhandenen geräteübergreifenden Forschung sowie
generellen Entwicklertools für den gesamten Entwicklungszyklus. Wir konzentrieren
uns auf Tools für die Arbeit mit Web-Technologien, da wir das Web wegen seiner platt-
formübergreifenden Natur als Grundlage für diese Arbeit gewählt haben. Wir stellen
anschliessend eine Reihe von neuartigen Tools für die geräteübergreifende Entwicklung
vor, welche die in der Analyse identifizierten Anforderungen implementieren.

Für die Design- und Prototyping-Phase tragen wir MultiMasher bei, ein visuelles
Tool zur Erstellung von funktionalen geräteübergreifenden Mashups. Das Tool ermöglicht
Entwicklern und Designern, mit geräteübergreifenden Ideen zu experimentieren unter
der Verwendung bestehender Anwendungen und ohne Code zu schreiben.

Die Implementierungsphase wird mit XD-MVC, einer geräteübergreifenden Soft-
warebibliothek, angesprochen. XD-MVC besteht aus einer geschichteten Architektur,
um dem Entwickler verschiedene Ebenen der Unterstützung zu bieten. Am unteren
Ende bietet eine JavaScript-API grundlegende Funktionalität wie Verbindungsmanage-
ment, Zustands-Synchronisation und Geräterollen. Am anderen Ende des Spektrums
bieten wir Komponenten für Gerätepaarung und Benutzeroberflächen-Verteilung auf
Basis von Mustern an.

XD-Tools unterstützt informelles Testen und Debugging. Es ist darauf ausgerichtet,
viele verschiedene Geräte-Kombinationen testen zu können und leicht zwischen diesen
zu wechseln. Dies geschieht sowohl mit der Integration von echten Geräten als auch
mit der Emulation von Geräten auf der Entwicklermaschine. Gleichzeitig verringert
das Tool die Probleme der Fragmentierung des Codes über mehrere Geräte, indem es
Informationen für vorhandene Debugging-Tools wie die Konsole zusammenfasst.
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Formales, automatisiertes Testen wird mit XD-Testing angesprochen. Es ermöglicht
Entwicklern, parametrisierte Benutzeroberflächen-Tests in einer neuen domänenspezi-
fischen Sprache zu schreiben. Diese Tests können über mehrere Gerätekombinationen
wiederholt werden, um die Funktionalität unabhängig vom eingesetzten Set von Geräten
zu testen. Gleichzeitig kann ein Entwickler explizite Geräte-Selektoren verwenden, um
die Verteilung der Benutzeroberfläche für eine gegebene Gerätekombination zu testen.

Schliesslich steuern wir XD-Analytics für die Anwendungsanalyse über mehrere
Geräte hinweg bei. Wir stellen eine Reihe von Metriken vor, die für geräteübergreifende
Szenarien besonders interessant sind. Wir haben diese Metriken in einem Prototypen
implementiert und diskutieren, wie wir das Tool verwendet haben, um die Einführung
einer geräteübergreifenden Funktion in einer bestehenden Anwendung zu verfolgen.

Um unsere Werkzeuge zu evaluieren, haben wir eine Reihe von Beispielanwendungen
implementiert und Fall- sowie Anwenderstudien durchgeführt.
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1
Introduction

Over 25 years ago Mark Weiser expressed his seminal vision of the computer of the 21st
century [192]. Now, more than a decade into that century, let us examine what parts of
the vision have been achieved, what is still missing, and where we have diverged. Weiser
imagined that computers would become ubiquitous commodity devices that disappear
into the background, rather than being treasured personal devices that command a
user’s attention. Rooms would be filled with a large number (Weiser mentions over
100) of computing devices ready to be used at anyone’s disposal.

These devices would come in different sizes: from inch-scale tabs to foot-scale pads
to yard-scale boards. The devices would need to be aware of their own and the users’
locations, communicate with each other and work together seamlessly. At the same
time, user interaction would be so effortless that users would not consciously interact
with a computer but rather focus on the task at hand which the computer would serve
in the background. Weiser compared this process to writing which is constantly present
in our lives and which transmits information without us having to spend much active
attention on the process of reading.

Weiser identified the need for devices (hardware), software, and network technologies
to fulfil his vision and singled out software and networks as the bigger challenges.
Examining the current state, we can confirm this observation to a large extent. Since
the release of the first iPhone in 2007, smartphones have become mainstream. In terms
of size, these correspond to Weiser’s smallest category, tabs. Smartwatches, which are
increasingly gaining in popularity, would also fall into this category. Tablets on the
other hand could be classified as pads. Smart TVs, interactive whiteboards, (semi-)
public displays are all yard-scale devices. We can summarise that, in terms of hardware,
we have come close to the future that Weiser imagined. However, looking at the how we
use these devices we are still pretty far away. Phones and watches are still very much
personal devices. While tablets and TVs are less personal and often shared within a
household, they are certainly not in the background yet but rather still command our
attention. Furthermore, we are still far away from the number of devices per room that
Weiser envisioned.

1



2 Chapter 1. Introduction

Looking at devices that we do not immediately perceive as computers but that
essentially include a computer, we can also examine smart or connected homes. While
there have been efforts to create smart home technologies, these are still not found in
every household and are mainly heard of when they fail. A recent example for a failure
is an internet-connected pet feeder that stopped dispensing food when a server failed1.
Nest, one of the bigger internet of things companies, has also produced headlines with
failing thermostats2 and shut down services3. On other hand, robot vacuum cleaners
and smart lights have seen more success. These devices are connected to the internet
and can be controlled by the owner through their phone (even remotely) or, in the case
of the lights, detect the presence of the owner based the geolocation of their phone
and switch on or off automatically. However, typically each device needs the owner to
install a new application for controlling it and communication among devices is usually
limited to the phone, which is far from a seamless interaction in the background.

In summary, with the proliferation of smartphones and tablets and the increasing
popularity of smartwatches and smart TVs we are now often surrounded by multiple
computing devices. Nevertheless, in terms of interaction we are not yet where Mark
Weiser imagined we would be as there is still limited communication between devices.
Even though we do have network technology for devices to communicate (for example
Wifi or Bluetooth), they are still predominantly used in isolation or require the user to
manually coordinate interactions. Synchronisation between devices is typically limited
to shared accounts, such as email, or cloud-based services such as Dropbox for files.
Sharing information from one device to another still requires relatively much effort and
people employ workarounds such as emailing themselves information such as links to
web articles. These workarounds are unsatisfactory and studies have revealed a need for
more synchronisation between devices [87, 161, 37]. Despite the limited support, these
studies have detected patterns in how people already use or attempt to use multiple
devices in combination, either sequentially or in parallel.

Facilitating the use of multiple devices in combination can produce benefits to the
user if done well. Different devices have different characteristics. Smaller devices such
as phones are ready to hand, equipped with sensors and touch screens, but their screens
are relatively small. In contrast, devices with larger screens are not mobile and typically
do not have the same range of sensors. In particular, smart TVs are more cumbersome
to interact with via remote controls and interaction with public screens may be even
more limited. Combining these devices, for example a phone with a TV, would lead to
richer input and output capabilities. When no large screens are at hand, for example
when on the go, combining multiple smaller devices such as phones and tablets would
produce increased screen real estate.

Research on multi-device or distributed user interface (DUI) systems has a long
tradition. Smart rooms where display walls, tabletop computers and personal computers
are combined have been proposed as early as the 90s [180, 181, 184]. These systems were

1http://www.dailymail.co.uk/news/article-3714186/Dogs-cats-left-without-food-

remote-smart-feeder-PetNet-fails-dispense-meals-suffering-server-issues.html Ac-
cessed on 11. 08. 2016

2http://www.nytimes.com/2016/01/14/fashion/nest-thermostat-glitch-battery-dies-

software-freeze.html Accessed on 11. 08. 2016
3http://www.wired.com/2016/04/nests-hub-shutdown-proves-youre-crazy-buy-

internet-things/ Accessed on 11. 08. 2016

http://www.dailymail.co.uk/news/article-3714186/Dogs-cats-left-without-food-remote-smart-feeder-PetNet-fails-dispense-meals-suffering-server-issues.html
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http://www.nytimes.com/2016/01/14/fashion/nest-thermostat-glitch-battery-dies-software-freeze.html
http://www.nytimes.com/2016/01/14/fashion/nest-thermostat-glitch-battery-dies-software-freeze.html
http://www.wired.com/2016/04/nests-hub-shutdown-proves-youre-crazy-buy-internet-things/
http://www.wired.com/2016/04/nests-hub-shutdown-proves-youre-crazy-buy-internet-things/


1.1. Motivation 3

typically at a larger scale with a dozen or more devices in a single, specially equipped
room. The set of devices used was relatively static and tailored to the intended use
case.

The advent of mobile phones and tablets has sparked interest in more dynamic multi-
device systems. Proxemic interaction [3, 117] has focused on the interaction between
individual devices and users based on their relative positions. Walking into a room
would activate the system running on the TV. Data could be shared from one device
to another by tilting the first device towards the second one. However, obtaining the
required fine-grained position information requires expensive tracking systems (Vicon)
or at least a specially equipped room (Kinect), making it unsuitable for a wide range
of scenarios where such technology would not be available.

More recently, flexible systems have been explored that, in contrast to those built
for a specific set of devices, adapt to the set of devices at hand. For these systems the
terms cross-device [197] and liquid [129] applications have been used.

Despite over 20 years of research in the area, we have seen only a few cross-device
applications outside academia. When it comes to engineering a product, not a research
prototype that never leaves the lab, there is still limited support in terms of tools for
the usual stages in software development. Most research has focused on the design
and prototyping stage and there are a number of cross-device frameworks to help with
implementation. However, debugging, testing, and analysing the usage of an application
have not received much attention, even though there are challenges specific to cross-
device applications that are not met adequately with existing tools for single device
development.

1.1 Motivation

The goal of this thesis is to investigate how better support could be provided for the
whole development workflow of cross-device applications, starting from design and pro-
totyping to implementation, debugging, testing and analytics.

Rather than trying to impose a new way of working, our aim was to look at how we
could build on existing methods and tools and extend them for cross-device scenarios.
We chose web technologies as a basis for our work since web applications are suppor-
ted on all major mobile and desktop platforms, albeit with minor differences. This
interoperability is a crucial property for viable cross-device applications. Limiting an
application to a subset of platforms would violate the vision of applications that adapt
to the set of devices at hand. Furthermore, web applications require no installation and
are easy to share via URLs, which can also be represented as QR codes or transmitted
easily using Bluetooth or NFC. This simple way of sharing and accessing an application
is an important step towards the effortless computing outlined by Weiser. The altern-
ative, native applications, first need to be installed, for example through an app store,
and thus come with a significant overhead for first time use.

Building fully fledged applications with web technologies is a viable option nowadays.
Writing code that runs on all platforms is more cost-effective than re-implementing
the same applications for different platforms such as Android, iOs, and possibly also
providing a desktop version. Web technologies have come a long way from simple
hypertext documents. Recent and emerging standards make web technologies a strong
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competitor compared to native technologies. Device sensors such as accelerometers
and gyroscopes can now be accessed via JavaScript. All major browsers except Safari
allow the browser to access the camera and Chrome has started to implement an API
for Bluetooth4. These sensors and technologies provide a basis for implementing new
interaction techniques such as mid-air gestures. A whole set of specifications have
been proposed for progressive web apps5. This new class of applications are written
with web technologies but increasingly behave like native applications, if supported
by the browser, delivering push notifications and working even when offline. They
can be installed to the home screen from where they can be launched full screen and
without browser controls so that the application becomes indistinguishable from a native
application to the user.

Crucial for cross-device applications, new communication protocols have been in-
troduced. WebSockets are full-duplex communication between clients and server. The
technology was first introduced in 2010 and is implemented by all major browsers today.
WebRTC is a newer protocol for direct (peer-to-peer) communication between clients.
As of now, it is supported or under development by all major browsers. These technolo-
gies enable the synchronisation between multiple devices that is needed for cross-device
applications.

Since the advent of new interaction modalities (such as touch) and smaller screen
sizes with smartphones and tablets, web developers and designers have searched for
ways to adapt and produce optimal user experiences. Initially, a prevalent technique
was to detect the type of device and have the server deliver a tailored HTML document
to mobile devices. This technique is now increasingly being replaced with responsive
web design. Websites or applications following this approach deliver the same document
to all devices, however, it is written in such a way that it adapts to the device. For
example, flexible grids are used rather than pixel-based layouts to adapt to the screen
size. Furthermore, with media queries, different CSS rules can be applied to different
devices. The HTML5 picture tag allows a developer to provide different versions of
the same image and media queries that specify which version should be used on which
device. For smaller devices such as phones that may also suffer from limited connectivity
or run on expensive data plans, smaller versions of the image can be downloaded, saving
the user time and money. However, these technologies allow a website to adapt to the
device at hand but not to different sets of devices.

In addition to new technologies, a range of tools to support the developers have
been introduced, some directly integrated into the browser. For example, browsers
can emulate the viewport size and pixel density of mobile devices and thus allow the
developer to quickly switch between different models to check the layout. Furthermore,
browsers can also emulate touch input and network conditions, so that a developer can
verify how a fast an application loads on a slow network even when working in perfectly
fast conditions. However, only a single device can be emulated at a time. In order
to debug mobile devices, these can be connected via USB to a developer’s machine.
Using the tools of their desktop browser, the developer can step through the code that
is executed on the mobile device and inspect the run-time state. In addition to tools

4https://developers.google.com/web/updates/2015/07/interact-with-ble-devices-on-

the-web Accessed on 12. 08. 2016
5https://developers.google.com/web/progressive-web-apps/ Accessed on 12. 08. 2016

https://developers.google.com/web/updates/2015/07/interact-with-ble-devices-on-the-web
https://developers.google.com/web/updates/2015/07/interact-with-ble-devices-on-the-web
https://developers.google.com/web/progressive-web-apps/
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built into the browser, there are services that run an application on a diverse set of
real or emulated devices and produce screenshots or execute test suites. For testing
cross-device applications, these services are unsuitable in their current state as they
treat each device in isolation and offer no communication among the devices.

After an application has been deployed, analytics tools such as Google Analytics6

provide insights into the types of devices that are used to access a website. Analytics
can be used to measure business goals and to further improve a website. For example,
an online shop business could detect that more shopping carts are abandoned on mobile
than on desktop devices and start further investigations as to why that is happening. In
2012, Google introduced Universal Analytics with Cross Device reports7 allowing a user
to be tracked across different devices. While these reports can show sequential device
paths, for example that a user started shopping on a mobile device and then checked out
on the desktop, they provide no information about parallel usage of multiple devices.
However, this information is crucial to identify whether a cross-device application is used
as intended. Users might not be aware that an application can be used with multiple
devices or, if the user experience is deficient, stick to a single device. Another possibility
would be that an application has been optimised for a specific device combination, say
TV and phone, but it turns out that it is also used in significant proportions with phone
and tablet. This could prompt an update to the design.

We hope that, with the right tools, developers will be able to build cross-device
applications more easily and of better quality. In the long run, we would like to see
better user experiences that span multiple devices and come a step closer to Mark
Weiser’s vision of seamless interaction with multiple devices.

Our main research questions can be summarised as follows.

• RQ1 How well do existing tools support cross-device development across the
whole development lifecycle?

• RQ2 What are the requirements of tools specific for cross-device development?

• RQ3 Can we provide better tools for cross-device development, in particular for
testing, debugging, and usage analysis?

1.2 Challenges

Two characteristics of cross-device applications cause some of the main challenges in
application development. First, having to address many different possible device com-
binations influences all stages in the workflow from design to analytics. When designing,
an application could be built for some specific device combination(s) or else it could
be designed to be more dynamic and adapt to any given set of devices. Designing an
application that looks good on any given set of devices is even more challenging than
responsive design, which just needs to adapt to a single device. It is not feasible to spe-
cify a concrete design for every possible combination of devices, thus the design stage
needs some way of specifying more general designs that can be applied to a concrete set
of devices. Similarly, it would not be feasible to have different implementations for any

6https://analytics.google.com/ Accessed on 16. 08. 2016
7https://support.google.com/analytics/answer/3234673 Accessed on 16. 08. 2016
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possible device combination. Thus the implementation also needs to be flexible. Bugs
could occur in some device combinations but not others and manually testing all pos-
sible combinations is not a real option. Even testing only a small number of expected
device combinations manually becomes tedious when tests need to be repeated. Finding
out what device combinations are actually used, would provide interesting information
and could feed back into the design process, however, current usage analysis tools do
not report on parallel usage. Finally, these device combinations are not necessarily
static. Devices may join or leave at run time, requiring the application to adapt on the
fly.

Second, the fragmentation of the application across multiple devices also impacts
all stages of the development. During the design stage, the developer has to decide
what parts of the user interface should be displayed on which device. During the
implementation, the fragmentation requires some communication between the devices
for synchronisation. Pressing a button on one device may cause an update on another
device. A developer needs to take this distribution into account. The fragmentation of
the logic across multiple devices also impacts heavily on debugging. It prevents the use
of a single debugger on a single device to sequentially step through the code. Instead,
multiple devices need to be coordinated and the network adds another possible point
of failure. Similarly, for testing, multiple devices need to be coordinated and test cases
must be written so that time for synchronisation between the devices is taken into
account. Finally, usage analysis is also affected by the fragmentation in that multiple
devices must be associated somehow and the visualisation of the tracked data should
reflect the fact that multiple devices were used simultaneously.

1.3 Contribution

To address the challenges outlined in the previous section, we investigated tool support
for all stages of the development process with particular attention given to the later
stages of testing, debugging, and analytics of cross-device applications. While the tools
that we provide are not tightly coupled, they are intended to be used in combination
across the development cycle of an application. This thesis makes five contributions
from prototyping to analytics.

For the design and prototyping stage, we contribute MultiMasher, a visual tool
for creating cross-device mashups. MultiMasher allows existing websites to be mashed
up and re-distributed across multiple devices, so that designers can experiment and
explore new ideas with little effort. MultiMasher produces functional prototypes that
could, for example, be tested with users. The tool is visual and does not require any
programming skills beyond a basic understanding of website structure and events. We
experimented with different architectures for MultiMasher and settled on a centralised
server implementing a remote control metaphor.

For the next phase, the implementation, we contribute XD-MVC, a cross-device
programming framework. With the new web standards outlined above, many building
blocks for web-based cross-device applications are there, however putting them together
can be challenging. Furthermore, developers risk re-inventing the wheel every time they
build a cross-device application without a specialised library or framework, focusing on
the low-level details of juggling the devices rather than application specific behaviour.
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XD-MVC takes over these responsibilities and takes care of the connection management,
data synchronisation, and devices and their roles in the system. XD-MVC consists of
multiple layers and components, the basic layer being JavaScript. This architecture
allows developers to choose the level of support that they need in their implementation
and to work with their preferred MVC framework such as React8 or Angular9. While
the JavaScript layer provides basic support, even more help is available to developers
when they use the provided Polymer10 integration that consists of both visual and
non-visual web components. These components handle common tasks in cross-device
applications such as pairing devices via QR codes or URLs, and give access to the JavaS-
cript functionality in a declarative way. The Polymer integration includes pre-defined
layouts that implement cross-device design patterns such as pagination or the remote
control pattern [138], requiring a developer to write only a few lines of code to distribute
their application across devices. The architecture of XD-MVC is designed to reduce
latency as much as possible while supporting a wide range of devices with its hybrid
architecture. Low latency is important for good user experience across multiple devices
and identified by previous work [197] as a remaining challenge. To improve latency,
XD-MVC builds on direct peer-to-peer connections among devices when supported by
the browser and falls back to communication via a central server when that is not the
case. Our performance tests showed that the first strategy drastically lowers latency
compared to the second approach when the devices are co-located and the server is re-
mote. This is a constellation that we expect to be common, as servers could be hosted
anywhere, while the co-operating devices are expected to be mostly close to the user.
If the communication is going via the server, latency suffers when the server is remote,
however, applications are still usable though not quite as responsive.

The next contribution of this thesis is XD-Tools, a set of tools for debugging and
informally testing cross-device applications. Inspired by existing tools for responsive
design, we created XD-Tools to support the typical programming tasks of composition,
comprehension, and debugging [173]. We give examples of challenges specific to cross-
device development and identify requirements for tools to address these challenges.
As with tools for responsive design, both emulated devices and real devices should
be integrated. However, while responsive development tools treat devices as isolated,
cross-device tools should be aware of the coordination among devices and support it. To
address the challenge of testing and debugging an application that should adapt to many
different device combinations, it should be easy to switch between these combinations.
At the same time, handling all of these devices manually would require a developer to
repeatedly execute connection management tasks, such as pairing devices every time
the application is reloaded. This is a burden that could be taken from the developer by
automating the connection management. Established and much used debugging tools
such as the JavaScript console should be integrated and tailored to the cross-device use
case. Finally, there are a number of record and replay tools (for example Selenium11)
that allow a developer to record user interaction on a device and replay it on the same
or another device. However, they also assume a single device while, in a cross-device
application, interaction may occur on multiple devices. With XD-Tools we created a

8https://facebook.github.io/react/ Accessed on 31.03.2017
9https://angular.io/ Accessed on 31.03.2017

10https://www.polymer-project.org/ Accessed on 31.03.2017
11http://www.seleniumhq.org/ Accessed on 31.03.2017
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prototype implementation to meet these requirements. A preliminary evaluation with
12 developers received enthusiastic feedback.

As a fourth contribution, we address the testing phase with our XD-Testing lib-
rary. Automated testing is considered good practice in software engineering and a
number of testing frameworks, tools, and libraries exist. However, these do not handle
the fragmentation of cross-device applications or take into account that an application
should run on different device combinations. Hence a developer has to manually handle
these challenges when they script tests for cross-device applications. With XD-Testing,
we provide a library that can be used in combination with existing test runners such
as Mocha12. Testing can occur at different levels of granularity. With XD-Testing,
we address end-to-end testing based on the user interface. The system imitates user
interactions, such as clicks, and verifies that the system reacts according to the specific-
ations, for example that a label subsequently shows the correct text. XD-Testing allows
a developer to address devices explicitly based on properties, such as the screen size,
or let the library choose the appropriate device implicitly based on the command to be
executed. Tests can be parametrised with different device combinations and executed
repeatedly. Device combinations can be either hand crafted by the developer to test
a specific set of devices or randomly generated. XD-Testing comes with a visual com-
ponent that displays screenshots recorded during the test execution. A tester can mark
important steps in the execution with checkpoints and a screenshot will be generated
for each. Additionally, failures in a test can be captured and are marked as such. The
visual tool allows a tester to examine visually what happened during a certain test.
In addition, the tool allows multiple recordings to be displayed side by side so that a
tester can compare and contrast the same test when it is executed on different device
combinations, for example a TV and phone compared against a phone and tablet.

Finally, as a fifth contribution, we present XD-Analytics, a system for usage analysis
of cross-device web applications. We introduce a set of metrics of interest in cross-device
scenarios that are not tracked in traditional analytics systems and show how they can
be used to answer interesting questions about cross-device usage. For example, we can
detect if a system is at all used by multiple devices simultaneously and, if so, what
types of devices are used together. We introduce our reference implementation XD-
Analytics that tracks these metrics and report on the results of an in-the-wild study
where we observed the introduction of a cross-device feature in an existing educational
application.

1.4 Thesis Overview

This thesis is structured as follows: Chapter 2 analyses related scientific work and
existing developer tools outside academia. We identify gaps in the existing work that
have not yet been addressed and extract requirements for cross-device tools.

Chapter 3 introduces our approach for prototyping cross-device application based on
mashing up existing single device applications or prototypes. We discuss our visual tool,
MultiMasher, which is based on direct manipulation of UI elements. We discuss two
architectures that we experimented with and reason why the remote control architecture

12http://mochajs.org/ Accessed on 31.03.2017
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was chosen in the end. We report on a technical evaluation based on 50 popular websites
and discuss the system along the dimensions of a conceptual framework [150].

Chapter 4 is dedicated to the implementation stage and introduces our cross-device
framework XD-MVC. We outline the main concepts and its layered modules as well
as the hybrid communication architecture. We report on performance tests for peer-
to-peer and client-server communication and present showcase applications that were
implemented with the framework.

We then go on to the stage of informal testing and debugging in Chapter 5 where we
present XD-Tools. We discuss common developer tasks and the challenges introduced
in a cross-device environment. Based on these tasks and challenges, as well as our own
experiences in developing cross-device applications, we introduce a set of requirements
for testing and debugging cross-device applications. We introduce XD-Tools, our pro-
totype implementing these requirements and report on a preliminary user study with a
dozen developers.

Chapter 6 presents our approach to automated testing. We give a motivating ex-
ample that highlights the challenges in UI testing a cross-device application. We intro-
duce the concept of a device scenario, a combination of devices, that can be used to
parametrise a test case so that it can be executed repeatedly with different combina-
tions of devices. The concepts of our domain specific language (DSL) are introduced as
well as the flow visualiser for application screenshot. In a case study, we demonstrate
how we used the concepts from the DSL to write test cases for existing cross-device
applications and the show the results in the flow visualiser.

We address the usage analysis for deployed cross-device applications in Chapter 7.
We introduce a set of metrics that are of interest in a cross-device context. We explain
how we track these metrics in our reference implementation XD-Analytics and report
on a case where we used the system in an application with over 3000 users.

Finally, we conclude in Chapter 8 with a summary of our contributions for each
stage in the development process. We discuss limitations and some directions for future
work.





2
Background

User interfaces that are distributed over multiple devices have been explored extensively
in prior work. In this chapter, we provide an overview of the field. We start with an ex-
amination of the devices people typically own and how they use them in various settings
such as home and work environments. This analysis identifies issues in how devices are
used in combination with state-of-the-art mainstream software and highlights potential
for cross-device applications. We then present prior work in cross-device systems where
we focus on interaction techniques as well as scenarios and applications in Section 2.2.
In this part, our perspective resembles that of a user of these systems. We demon-
strate what the systems do, how they can be used and the scenarios that they address.
In Section 2.3, we switch over to the perspective of developers and designers of such
systems. We describe how the state-of-the-art in research and industry supports the
development process from design to usage analysis. We close with concluding remarks
in Section 2.4.

2.1 Devices People Own and Use

Many of the older multi-device systems were built for very specific device configurations
and were often equipped with hardware bought for that purpose, for example digital
whiteboards or tabletops [85, 180, 181]. This setup allowed researchers to explore new
ways of working and novel interaction techniques. We take a slightly different approach:
We analyse the set of devices users have access to. So rather than introducing new
devices into users’ lives, we investigate how we can extend the usage of the existing
devices. We start the investigation by answering the following questions based on prior
work: What devices do people have access to and use? How are they used? Are there
any issues, in particular, when multiple devices are used?

11
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2.1.1 Quantity and Types of Devices

The set of devices at a user’s disposal has changed in the last 10 years. The introduction
of the first iPhone in 2007 has led to a rapid dissemination of smartphones. Three years
later, the process repeated with tablets. More recently, smartwatches and internet-
connected TVs are becoming more common. Outside of private homes, advertising
space is increasingly digital as billboards are replaced with public screens. In offices
and schools, wall projectors are part of the standard equipment and digital whiteboards
appear here and there. There are consumer versions of digital tabletops, however, these
devices have seen more limited adoption. As the set of devices that we use is evolving
over time, studies need to be carried out repeatedly to assess the new situation. Another
dimension that needs to be taken into account is the setting. A user does not always
have access to the same fixed set of devices. At work, at home, or on the go are
situations where the set of devices available to the user may vary significantly [149]. A
number of studies have been carried out that either focus on a specific setting in detail
or assess multiple settings.

In 2008, Dearman and Pierce interviewed 27 persons from academia and the IT
industry and found among these participants device collections with 3 to 11 devices,
averaging at nearly 6 devices per person. The authors also included portable media such
as USB disks in this device count, even though these are not interactive by themselves.
Devices were categorised into work/school, home, and intermediary. Participants had,
on average, one computer (laptop or desktop) at home and another one at work/school.
They had a mobile phone and at least one other portable device, mostly cameras and
music players. More than half of participants also had a laptop that was intermediary,
thus moving between home and work. Only two participants had more than one phone
and stated transitioning to a new device as the reason. Another study from 2008 [89]
came to the same number of phones per person

A couple of smartphone generations later, it is nowadays more common for people
to own multiple phones. In a survey that we did in 2015 [39], we found that 47% of
our participants owned more than one phone. The most common explanation given
was that they kept their old phone when they bought a new one. These older devices
could be used in specialised roles [87], for example to increase screen real-estate when
using the current phone. A study by Santosa et al. [161] from 2013 also found increased
numbers of devices, 10.7 on average per person. These included 2.7 smartphones,
tablets, or e-readers. As these mobile devices continue to spread, they increasingly
supersede desktop and laptop computers as main computing devices in the home [95].
The latter are mainly used for specialised tasks such as working from home or playing
certain games, whereas mobile devices are used for web browsing, communication and
watching videos.

Even though users now own or have access to almost a dozen devices, they are
usually not all available at any point in time. For example, when walking in the
hallway at work or during lunch, people have reported to just carry a phone [149].
In our survey [39], we found that roughly one in three does not even carry a phone
in their local work area, a number which goes up to one in two when only looking at
women. We found that almost every participant carried a smartphone during commutes,
however, with almost half of our respondents reporting that they also carry a laptop. To
describe the devices available to a user Oulasvirta et al. [149] have introduced the term
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device configuration and defined it as follows: “the set of devices and non-computational
support artefacts used in a situation, differentiating the active subset (those used at
the moment) and the passive subset (those available in the room but not used).” To
the best of our knowledge, no one has investigated yet the number of public or semi-
public displays encountered by a user throughout their day. Most of these are not
interactive yet and it is unclear whether they should thus be added to a user’s device
configuration. Regardless, analysing the studies introduced so far, we observe that
device configurations vary a lot. Even though these studies report average values, they
also emphasise the variation between participants. There is no such thing as a standard
device configuration that a designer could use as a basis when building a cross-device
application. Even when looking at a single user, the configuration changes as they move
between settings such as home and work.

If we also consider devices available for multi-user cross-device applications the
situation becomes even more complex. Can we simply create the union of the device
configurations of all users to obtain the device configuration of a group? Or are there
devices that are too private to be used in multi-user cross-device applications? While a
TV in a living room is typically perceived as a communal device, phones are considered
more personal and private devices. However, studies have shown that mobile phones
are also often shared [92, 119]. Not surprisingly, trust plays in important role and
sharing occurs most often with a significant other and in the family [119]. Another
factor influencing the willingness to share a mobile phone was presence [92]. People
felt more comfortable sharing their phone if it remained within sight, an effect that
was stronger when the person borrowing the phone was not in the closest circle of
trust. These findings are an indication that phones could be used in multi-user cross-
device applications, especially when the owner does not lose sight of it. However, as
suggested by Karlson et al. in [92], current all-or-nothing security models do not work
very well for phone sharing. As a possible solution, the authors suggest guest profiles
with reduced capabilities that can be accessed quickly. Similarly, one could think of
a shared cross-device mode with increased privacy. For example, notifications could
be suppressed or only show limited information when a device is part of a multi-user
cross-device application.

2.1.2 Usage Patterns

When a user has multiple devices at their disposal, they have to choose which one (or
ones) to use for a task. Oulasvirta et al. have identified several factors in [149] that
impact the decision: Input and output modalities are important. A user mentioned
checking the weather on their phone during lunch but then reading the newspaper
on their desktop as it did not display well on their phone at that time. Devices with
hardware keyboards are often preferred over touch-screen keyboards for writing [87, 95].
Form factors can play a role as well: Another user mentioned strategies to cope with
privacy issues when using a laptop on an aeroplane. Due to its size, its micro-mobility
is limited and a fellow passenger’s gaze cannot be avoided easily. Smaller devices such
as tablets and phones are often chosen due to their portability [93]. In the home,
they are used in a lightweight manner in parallel to other activities such as cleaning or
watching TV [95]. Phones and tablets are typically always on and have a small setup
overhead unlike laptops or desktops that may require unpacking and booting up or a
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complicated login procedure [93, 95, 149]. The latter are typically preferred for longer
and more substantive tasks [149] that amortise the setup time, for example writing a
longer email or working from home [95]. Smartphone use is sometimes perceived as
more socially acceptable compared to laptops, for example for checking emails during a
talk [149]. In the home, tablets and smartphones are used as communal devices that are
passed around between users, for example when video-calling [95]. Sometimes devices
are chosen based on application features. Some applications offer different functionality
on different platforms [87] or software may only be available on a certain device due to
licensing [37].

Rather than choosing a single device and sticking with it for a task, users have been
observed using multiple devices instead. Several patterns of multi-device use have been
identified. There are serial or sequential patterns [87, 161] where a task is started on one
device and continued on another. For example, looking up a phone number on a tablet
and calling it with a phone [87] or looking for a video on a tablet and then watching it on
a TV [95]. Santosa and Wigdor observed a serial pattern that they labelled producer-
consumer where data is produced on one device and consumed on another one, for
example authoring a document on a PC and reviewing it on a tablet [161]. However,
the roles of producer and consumer were not tightly coupled with the device type as also
the phone was found in the producer role, for example for collecting data in a meeting
which would later be transferred to a PC. Such an assignment of roles to devices for a
task was also found by Dearman and Pierce [37] who, for example, interviewed a user
who had a computer dedicated to writing code and another one for testing it. Reasons
for switching devices include changes in the character of a task that render another
device more suitable (moving from looking up a phone number to making a call) or in
context (reading news in the bus and continuing in the office). In other instances, the
chosen device turns out to be not ideal for the task at hand and the user switches for
improved efficiency [87].

In addition to these sequential patterns, there are also patterns of parallel usage
of multiple devices [37, 87, 161]. Based on a diary study [87], Jokela et al. describe
three different types of parallel multi-device use: resource lending, unrelated parallel
use, and related parallel use. In resource lending a primary device borrows a resource
such as a screen or network connectivity from another device, for example a laptop is
connected to a TV to watch a film or a phone is used to provide Internet access to
a computer while travelling. Unrelated parallel use happens when a user does several
tasks in parallel using multiple devices. Each device is dedicated to a separate task.
Often, a primary task, for example doing homework on a computer, was accompanied
by a secondary activity, such as listening to music on the phone. Unrelated parallel
use was reported in fewer instances than related parallel use, however, the authors also
presumed that the participants were not always aware of its occurrence. In related
parallel use, multiple devices are used for the same task. A typical pattern is the use
of a secondary device to look up additional information for an activity on a primary
device, for example looking up an actor or translating a word with a dictionary with a
phone while watching a film on a TV. Figure 2.1 shows another example observed by
the author of this thesis where a phone is combined with a tablet to shop for wine on a
train. This performer-informer pattern [161] has also been observed in work settings,
where tablets have been used to display documentation while the desktop is used for
a primary programming task. Related to the above is the performer-informer-helper
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Figure 2.1: While shopping for wine on the phone on a train, a tablet is used to display
additional information.

pattern where a device, typically a phone, takes over the role of a helper within a task,
for example for calculations [161]. Sometimes a device is used to control another device
in what has been labelled the controller-viewer/analyser pattern [161] or remote control
pattern [138]. This pattern has been observed when a phone is used to control a music
system or a slide show presentation.

2.1.3 Issues in Multi-Device Use

Even though people already use multiple devices sequentially or in parallel, there are
a number of issues that impair the user experience. A lot of these problems stem
from the lack of communication between the devices and the lack of awareness of the
devices of each other. To transfer information from one device to another, several
strategies have been observed: Portable media, such as USB sticks, are used to copy
files from one device to another [37]. This approach is suitable mainly for PCs rather
than mobile devices and can only be used for information that is represented as a
file, which is typically not the case for application state, for example. Users also often
email information to themselves [37, 91]. While this approach avoids the use of external
hardware and will work on any device with an email client, it requires the user to switch
from the current activity to the email client on both the sending and receiving device.
Furthermore, the user needs to consciously share the data. If, for example, they forget
to send a file from the office computer to their travel laptop and only realise once they
are at a conference, they may not easily access that file from a distance. To avoid such
problems, users have come up with elaborate synchronisation strategies [149].

To some extent, the introduction of cloud storage such as iCloud, Google Drive, and
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Dropbox provides a remedy to these problems by synchronising files on all connected
devices automatically in the background. However, a network connection is required
and access to cloud storage is sometimes perceived as slow and unreliable [87]. If a user
expects to have no or limited network access for example during a flight, they need to
plan ahead for future data needs [161]. Some of these services still require a context
switch and offer limited control, in particular in collaborative use cases [161]. Further-
more, they only operate on files, but this focus on files misses important information,
for example interaction histories [37]. A need for synchronised browsing histories has
also been recognised by Kane et al. [91]. Nowadays, modern browsers can be configured
to synchronise browsing histories and stored passwords if the user logs in with their
account on all devices. Another task that has been found to work well across multiple
devices is emailing [94]. As most of the state is stored on the server, an email can be
read on one device and answered on another device. A draft could be started on a
mobile phone and continued on a PC. However, the same mobility between devices is
still not supported in many other applications, for example social networking where a
status update needs be completed on a single device, leading to higher frustration [94].
Furthermore, data is often trapped inside applications and can only be accessed through
the application [161], in particular for web-based and mobile applications. Exporting
and sharing this data is only possible if the application provides such a service. In sum-
mary, despite the increased number of synchronisation services, there are still issues in
interoperability across different platforms and with incompatible content formats [87].

While synchronisation is crucial for multi-device use [25], more issues remain, in
particular in related parallel use. Above, we have described how multiple devices are
often assigned distinct roles in a task. However, devices typically have no awareness of
their role within a task as well as the other devices currently in use and their respect-
ive roles [37]. Such awareness of connected devices is required for improved function
coordination, for example in the remote control pattern [138, 161]. Information on
proximity, location, and orientation of other devices enables intuitive interaction tech-
niques [161] but is usually limited to Bluetooth or NFC presence or not at all available
in unmodified consumer devices. Increased awareness between devices could also be-
nefit unrelated parallel use, for example the music on a laptop could automatically be
turned down when a phone call is received [87]. In sequential use, indicating from what
device an application state has been transferred has also been found important [94], as,
for example, an email marked as read had a different meaning on PCs than on mobiles
to some users.

2.2 Cross-device Systems

In the last two decades, a multitude of cross-device systems and interaction techniques
have been explored. Taxonomies and frameworks have been created to classify multi-
device systems based on the number and size of devices and the number of involved
users [185] as well as their interactions [176]. In this section, we discuss the interaction
techniques used in existing systems before we examine single-user as well as multi-user
scenarios.
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2.2.1 Interaction Techniques

The combination of multiple devices into a whole system creates challenges and op-
portunities in the interaction design. As discussed in the previous section, transferring
data from one device to another is a persisting challenge. Some researchers have ex-
plored how the user interface should be designed for cross-device interactions by adding
menus and buttons for sharing information across devices [10, 24, 58, 137]. Others
have explored novel input modalities for cross-device interactions. One of the earliest
works is Pick-and-Drop by Rekimoto et al. [157] that builds on direct manipulation
using a stylus. Pick-and-Drop is an extension to the widely used drag-and-drop inter-
action technique. The latter typically uses a mouse and cannot be easily applied across
physical device boundaries. Instead of using a mouse, Pick-and-Drop employs a stylus:
Objects can be picked up with a pen in one location and dropped in another location
by tapping the device with the pen.

Similar direct manipulation approaches have been proposed using mobile phones
rather than a stylus as an input device [60, 162, 163, 167]. Some techniques have
been developed in particular for interactions with large surfaces such as interactive
tabletops [162, 163]. As each phone is typically associated with a user, phone touches
on the surface can be assigned to a user, which is generally not possible for finger
touches without using special-purpose hardware [41]. The association of touches with a
user identity allows personal clipboards to be implemented in multi-user systems [164]
and undo operations can be executed per user. The phone’s capabilities exceed those
of a stylus in some respects: it comes with a touch display and contains a user’s data.
The touch display can be used to show personalised menus, but can also act as a more
private extension of surface [163]. For example, to select a photo, a user can access their
personal album on their phone rather than on a shared tabletop where everyone can
see its content. Personal data, such as a contact, can easily be selected on the phone
and transferred to a shared surface using a phone touch. Smartwatches have been used
in a similar role in combination with tabletops: as a palette for instruments, providing
personalised feedback, and as personal content repository [14].

Phones and tablets have also been used as tool palettes for whiteboard interac-
tion [158]. Phones can even be used in an eyes-free manner, due to their smaller size,
to eliminate attention switches between the devices [120] (Fig. 2.2). Whereas digital
whiteboards generally have pen input and the phones and tablets are used to provide
additional functionality, some larger displays support no direct input on the surface
itself (such as projectors in meeting rooms or display walls) or are out of reach. Early
work extends mouse and keyboard input across multiple devices [86], allowing a wall
display to be controlled from a laptop using the latter’s input devices. All displays are
combined into a single virtual desktop where a cursor can easily move from one display
to another. The system supports multiple users with multiple mice and keyboards,
however is limited to a single cursor per physical device. Multiple users are suppor-
ted in the Remote Commander of the Pebbles project [132] where PDAs are used to
emulate mouse and keyboard inputs on a PC. Later iterations of Pebbles use PDAs as
slideshow controllers [131] and to interact with screens at a distance in combination
with laser pointers [134]. The laser pointer is used to specify a region of interest on
the larger screen which is copied onto the handheld device where the user can interact
with it using direct manipulation. More recently, similar interaction techniques have
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Figure 2.2: Using a phone as an eyes-free tool palette for whiteboard interaction [120]

been explored replacing PDAs with smartphones and making use of commercial body
tracking sensors such as as the Kinect. Mid-air pointing gestures have been combined
with touch input on phones [13, 168]. Some systems use the phone’s camera to capture
the content of the remote screen and make it interactive on the phone [12], to create a
virtual projection area on the remote screen showing content from the phone [6], or to
transfer state between a phone and a PC [21]. Phones have also been used to navigate
3D environments on large displays through tilting, making use of the phone’s gyroscope
sensor [153].

While the above techniques capitalise on the different capabilities of heterogeneous
devices, the combination of a more homogeneous set of devices has also been explored.
Multiple tablets, phones, or screens can be combined into one large surface for in-
creased screen real estate [2, 111, 146, 155]. Several interaction techniques have been
explored to establish a connection between the devices. Using a stylus, the user can
stitch devices together by drawing a line starting from one device and ending on an-
other [68]. Devices can also be paired with a pinch gesture involving two devices [110].
SurfaceLink can connect devices that are located on a shared surface through gestures
on the surface rather than the devices themselves [52]. Similarly, AirLink can can be
used to connect devices with a in-air wave gesture between the devices [23]. All of
these techniques not only connect the devices, but also extract their relative positions.
If no position information is required, a whole range of pairing interaction techniques
is available [32, 188]. Recently, camera based techniques have also been explored for
device association [36, 196].

Rädle et al. have demonstrated that most people prefer spatially aware interac-
tion techniques over spatially agnostic ones in a study involving multiple tablets [156].
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However, a more recent study found that the preference for spatially aware interactions
disappeared in some device configurations and physical alignments [137]. Rich spatial
information enables proxemic interaction techniques that take into account distance,
orientation, movements, and identity of devices and users [3]. One proxemic pattern,
gradual engagement, is to reveal more information on a screen as the user comes closer
and to make the screen interactive once the user is in close proximity [116]. Information
on the relative position of people in a room can be used to determine group member-
ships, which enables interactions within the group [117]. For example, a gesture can
be used to share information with people from the group but not with those who are
in close proximity but not part of the group. Within a group, gestures using micro-
mobility, small movements of devices, enable the sharing of data across devices. For
example, a device can be tilted towards another device to open a portal. After a file has
been dragged through the portal on the sending device, it will appear on the recipient.

Emerging form factors have also been explored as part of cross-device systems.
Smartwatches can be used in combination with phones, serving either as an additional
sensor in the background or assuming a role in the foreground as input device or ex-
tended display [26]. MultiFi [55] combines bodyworn devices, such as a watch, with a
headworn display for seamless interaction on the go. A headworn device was also used
as a mediator between devices in a user’s environment in the Gluey project [169] and
eye-tracking devices have been used to enable gaze-based interaction across multiple
devices [104, 187].

2.2.2 Single-User Scenarios

In this section, we inspect single user cross-device scenarios found in the literature
and outside of research. While some applications can be used by a single as well as
multiple users, we classify them as single-user scenarios if collaboration is not explicitly
addressed and multi-user otherwise.

Quite frequent are distributed media players. For video players, the video itself is
shown on the largest screen and smaller, ready-to-hand devices such as tablets can be
used as controllers [45, 197]. When more than two devices are available, these can be
used to show additional content such as a search panel or related videos [197]. Google
offers a commercial product, the Chromecast1, to control a TV or an audio system from
any device in the same Wifi network. These applications fall into the category of the
remote control pattern and make use of the different devices properties: while phones
and tablets are ready to hand, TVs have larger screens better suited for showing a
video. A slightly different scenario is proposed in Sammi [63] where a spatially-tracked
smartwatch is used both to navigate a video timeline and to show a preview of the
video that is being played on a mobile phone.

Others make use of the combined screen real estate of multiple devices. The video
itself can be split into multiple tiles which can be played synchronously distributed
over multiple screens [45, 165]. Extra devices are also used to show additional content
related to the video that is being played. Nielsen found in 2010 that nearly 60% of
people watching TV were using the internet at the same time [53] and launched an

1https://www.google.com/intl/de_ch/chromecast/?utm_source=chromecast.com Accessed
on 13. 01. 2017

https://www.google.com/intl/de_ch/chromecast/?utm_source=chromecast.com
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Figure 2.3: Sending a location from a PC to a phone using Google Maps.

app that shows companion content synchronised to the TV program. The term second
screen has been used to describe these experiences and applications [69, 135, 136]. The
content displayed on the second screen can be pulled from existing sources such as
Wikipedia or Google Maps [103].

Another common scenario for cross-device use are map applications. Multiple
devices can be coordinated to show different views of the same map location (for ex-
ample satellite images or street maps) or to show different zoom levels [197]. Similar
to videos, maps can be tiled across multiple devices and navigated synchronously [62].
Secondary devices can also be used to show information about markers selected on a
primary device [63]. Multiple devices can not only be combined to increase screen real
estate, but also to combine interaction modalities. MultiFi displays a larger map on
a headmounted display and enables direct touch interaction by integrating a smart-
watch [55]. By default, Google Maps only supports sequential use of multiple devices
by offering a menu option to send the current location from a PC to a phone2 (Fig. 2.3).

The remote control pattern has also been applied to slideshow presentations. Mi-
crosoft’s PowerPoint provides a companion Office Remote3 app that allows the speaker
to control the presentation and to consult notes on a mobile device. Apple offers similar

2https://support.google.com/maps/answer/6081481?hl=en Accessed on 13. 01. 2017
3https://www.microsoft.com/en-us/research/project/office-remote/ Accessed on 13. 01.

2017

https://support.google.com/maps/answer/6081481?hl=en
https://www.microsoft.com/en-us/research/project/office-remote/


2.2. Cross-device Systems 21

functionality with its Keynote4 software.

The increased screen real estate offered by multiple tablets has been exploited for
active reading [24, 25] and sensemaking tasks [58]. Hamilton and Wigdor observed that
participants assigned different roles to the devices [58]. Typically, a central device was
used for notetaking while additional devices were used to store important documents
or look up keywords. A similar, more recent study in a collaborative setting found
relatively little use of more than one device per user [154]. The finding was attributed
to a legacy bias. A study carried out with XDBrowser investigated how users would
distribute a web application across a phone and a small tablet and found patterns that
were common between users [138].

Commercial providers have recently started to explore better support for cross-
device device usage as well. A notable example is Apple’s continuity system5. It allows
users to answer phone calls on their Mac instead of their iPhone and provides support
for sequential multi-device use via a cross-device clipboard and the Handoff system.
The system simplifies sharing a phone’s cell network connection with a computer over
Wifi.

In summary, most single user scenarios aim at either increasing screen real estate
by combining multiple devices or implement the remote control pattern with a smaller
ready-to-hand device and a larger out of reach screen. Most commercial systems focus
on sequential use cases and resource sharing and provide little support for parallel
patterns.

2.2.3 Multi-User Scenarios

A common scenario for multi-user cross-device systems are smart rooms [7, 57, 85,
181, 193]. These rooms are equipped with digital devices, such as wall displays and
digital tabletops, to enhance team meetings and collaboration. In addition to the fixed
equipment, people can integrate their own devices (laptops and handheld device) into
the system (Fig. 2.4). The iRoom, for example, allows meeting participants to bring
material on their laptop and present it on a primary screen in the room [85]. The larger,
shared devices offer a public platform for discussion, whereas the personal devices offer
more privacy, for example to search for content within personal files [57, 158]. The
iRoom comes with a room controller application that visualises the devices in the room
based on their location and allows a user to choose, for example, where a presentation
should be shown.

Some systems have been built specifically for brainstorming and content creation.
CurationSpace enables instrumental interaction for creating and curating historical arte-
facts [14] . Instruments can be selected on a smartwatch and applied to objects on a
shared digital tabletop. The results can be stored and carried away on the watch. The
NICE discussion room integrates digital pens and paper into the multi-device environ-
ment [57]. Bragdon et al. have aimed to support a more democratic process than the
one that is supported in traditional meeting rooms that are equipped with a projector
connected to a single computer [13]. Skeleton tracking sensors in the room enable every
participant to use pointing gestures and their mobile phones to control the content on

4https://support.apple.com/en-us/HT204378 Accessed on 13. 01. 2017
5https://support.apple.com/en-us/HT204681 Accessed on 13. 01. 2017

https://support.apple.com/en-us/HT204378
https://support.apple.com/en-us/HT204681
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Figure 2.4: A multi-user, multi-device scenario [140]

the projector. The system has been demonstrated in the context of software developer
meetings. A similar goal was shared by the UD Co-Spaces project that demonstrated
how a multi-surface system can increase engagement and improve collaboration in the
setting of participatory urban design [112].

Other smart room projects have focused on data visualisation and exploration, using
large screens or display walls in combination with tabletops or smaller devices such as
laptops to display large datasets [7, 193]. Other collaborative scenarios with a large
amount of data have been explored in the context of emergency response planning [31]
as well as oil and gas exploration [170].

Data visualisation and collaborative sensemaking scenarios have also been explored
in multi-device settings outside of smart rooms. Polychrome is a flexible cross-device
framework that can apply different display space configurations to (existing) data visu-
alisation applications [2]. RAMPARTS is a spatially aware sensemaking system using
tablets [195], whereas others have used tablets in combination with a digital tabletop
and found that it performs better than a tablet-only solution [191]. In contrast, Zager-
mann et al. found that sensemaking performance did not decrease when the tabletop
was replaced with a much smaller shared tablet, however they found that communica-
tion styles were changed to adapt to the situation [198]. A whole range of multi-surface
systems have been developed for geo-spatial data (see [172] for an overview). For ex-
ample, CozyMaps targets multiple tablets combined with a larger display [27]. The
larger display shows an overview and provides a space for sharing whereas the tablets
allow individual users to interact with the map. Interactions on the tablets are reflected
on the large display to increase awareness. While some of these systems operate in the
browser but are targeted to a specific domain, general purpose solutions for collaborat-
ive browsing across multiple devices have been proposed as well [59, 109, 194].
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Content creation scenarios have also been explored in ad-hoc settings as opposed
to smart rooms with fixed equipment. Mobile phones have become ubiquitous and
there are multiple systems that have been built for a group of users whose phones are
combined into a collaborative system, for example for brainstorming [110]. The same
approach has also been used to share photos [111, 146].

Multi-surface systems have been used for giving presentations [103, 105, 159, 186]
and in classrooms [18]. The presentation itself can be distributed across multiple
devices [103, 105] and the devices of the audience can be used to add interactivity
such as polls and quizzes [159, 186].

Bardram has explored a hospital scenario [4, 5], an environment where work is fast-
paced, mobile, as well as collaborative and often multiple tasks have to be executed in
parallel. To tackle these challenges, he proposes the ABC system which allows activities
to move between multiple devices.

A combination of multiple phones and a single tablet has been used for card games,
where the player’s hand of cards is shown on the private phone screen and the tablet is
used as a shared surface [174].

Similar to the single-user scenarios, multi-device systems are used to increase screen
real estate, which is particularly beneficial in situations with a large amount of data.
In addition to the increased screen real estate, multi-device systems can allow multiple
participants to interact at the same time, facilitating collaboration and fostering demo-
cratic processes. In contrast to single-user systems, multi-user systems have a higher
need to provide awareness cues about the various interactions that occur. To avoid con-
flicts, many systems rely on social protocol, but explicit conflict management solutions
have also been implemented [121].

When it comes to the sets of devices that are used, two general directions can be
observed. The first assumes a relatively fixed set of devices, for example, systems for
specially equipped rooms. The second kind of scenario is more flexible and targets
whatever devices are available within a group of users. The first kind of system of-
ten includes a heterogeneous set of devices, ranging from digital tabletops, wall-sized
displays, and laptops to tablets and mobile phones. Within the second kind, we find
systems that are completely independent of device types and others that are targeted
towards more homogeneous device sets, for example multiple mobile phones.

2.3 The Development Process

In this section, we investigate how applications described in the scenarios of the previ-
ous section could be built. We analyse tools and frameworks for the whole development
process starting from design and prototyping to testing and usage analysis. Some solu-
tions can be used across multiple stages of the process and those will be featured in all
relevant subsections. The design of software is typically iterative [61] and software de-
velopers often cycle through short implementation, testing, and debugging phases [106].
Consequently, the stages presented here are not completely independent. Instead, a res-
ult from the analytics phase could trigger another iteration in the design or a failed test
could lead to debugging and changes to the implementation. Our focus is on tools that
have been built specifically for cross-device applications but we also consider conven-
tional tools where appropriate.
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2.3.1 Design and Prototyping

The first phase of the development process is characterised by experimentation and
exploration. The designer or developer decides on features, the interaction techniques,
and the distribution of the different parts of the application across devices, as well as
the visual design. At this stage, fast iterations are important and it should be possible
to try out an idea in a quick and easy manner [61]. Some of the tools that we introduce
in this section have not been built with designers and developers in mind, but are
targeted at non-technical end-users. We still include them in our analysis as they allow
experimentation and could be used to explore alternative ideas.

A wide range of tools have been developed to support the design and prototyping
stage. Some of the earlier work has addressed designing applications that can run on
and adapt to many different types of devices, often coined multi-device applications.
In contrast to cross-device applications, these run on a single device, but have been
designed to cope with different platforms and device types, for example, they will
execute on a PC as well as a mobile phone. There are two main issues that need
to be addressed. First, there are different platforms that often come with their own
style guides and design patterns [42]. Second, different screen sizes and interaction
modalities may require different designs. For example, a button may be large enough
to control with a mouse on a PC, but too small on a mobile phone with touch input.
Building an individual prototype or design for each platform and device type requires
a lot of effort that the research community has tried to reduce. The interface builder
Gummy addresses the need for interfaces that run on multiple platforms by allowing the
developer to create a graphical user interface (GUI) based on a GUI that was created for
another platform [124]. The system maintains a platform-independent representation
of the GUI. In a later iteration, the different versions were linked and changes on one
platform could be propagated to another platform [125]. The same problem can also be
tackled through programming by demonstration: Macros can be recorded in D-Macs
for one device and replayed on other devices [126]. For example, when a label needs to
be updated in multiple designs, the designer can record the change in one design and
automate the change in the other designs. Another approach uses a library of design
patterns which have been optimised for different device types in conjunction with layers
which separate UI elements that are used on multiple devices from the ones that are
specific to a given type [108].

While adapting a UI to different platforms and devices is necessary in cross-device
applications, it is not sufficient. In multi-device applications the whole interface is
transferred in some form to a device, but, in cross-device applications, different parts of
the UI can end up on different devices. This distribution of the UI across devices and
the interaction between the devices also needs to be designed and specified. Different
mechanisms for designing and specifying distributed user interfaces (DUIs) have been
explored. One concept is model-based engineering, where the user interface and its
distribution are described in a modelling language [47, 113, 123, 151]. Properties of
the devices, users, and environment can be modelled as well [123, 118]. These systems
generate executable code based on the models that have been authored. Some projects
include a visual tool that assists the designer in building the model rather than having
to author it in a domain specific language (DSL) [113].

Instead of implementing a cross-device application from scratch, existing applica-



2.3. The Development Process 25

tions or services could be used as a basis. Some of the earlier work building on existing
user interfaces targets UI migration [49, 118, 175, 190], addressing sequential use cases.
The state of the application is retained as the application is moved from one device
to another. Ghiani et al. provide a visual migration client which can either push an
application from a source device to a target device or, on a target device, pull the ap-
plication from the source [49]. The user can choose to migrate the whole application or
only a part of it. For parallel use cases, our GUI builder XD-Studio, also takes existing
UIs as a basis [141]. A developer defines distribution profiles based on the device types
and user roles that are expected to use the application. The developer can then assign
parts from the existing UI to the different profiles either by dragging and dropping UI
elements from the source interface or by loading the whole UI and removing unnecessary
elements. Both Polychrome [2] and HydraScope [62] can also be used to distribute and
synchronise existing applications across multiple devices. In contrast to XD-Studio,
the focus of these two projects is on the synchronisation of state rather than the visual
design, however, they do offer a platform for experimentation.

Reusing existing UIs, components, and services is the core idea behind mashups.
While the majority of works on mashups target the single-device use case, solutions
for cross-device usage have also been explored [35, 101]. DireWolf allows small UI
components (widgets) to be distributed across multiple devices using a visual DUI
manager [101].

The granularity of the UI distribution or migration can be used to classify cross-
device tools and frameworks [150]. While some only allow the interface as whole to be
moved between devices [175], others operate at the level of widgets [101], arbitrary UI
elements (such as buttons, labels or containers) [141], or even allow arbitrary window
regions to be selected [138, 183].

The solutions that we have discussed so far are designed for UIs that adhere to
the WIMP paradigm (window, icon, menu, pointing device). New UI paradigms
specifically for cross-device applications have been explored. Squidy focuses on mod-
alities other than mouse and keyboard and provides an interaction library as well as
a visual tool for rapid prototyping [99]. ZOIL introduces design principles for zoom-
able object-oriented information landscapes [83]. Multiple toolkits have been built to
facilitate prototyping interaction techniques that rely on sensor data, such as proxemic
interactions [70, 115, 171]. Some of the toolkits provide a visualiser for tracked devices,
persons, and their relationships [115, 171]. Sensor data is abstracted into higher-level
entities and events [70, 115] and data from multiple sensors are fused [70, 171]. Some
support experimentation not only at the software level, but also with hardware, by
allowing additional sensors to be added in an easy manner [70, 171].

Different approaches can be observed in terms of devices needing to be present
during the design. Some systems, mainly those focusing on end-user-development, do
not differentiate between design and run-time [49, 62, 101, 118, 138]. In these cases, the
application can only be distributed across devices that are present. Others, in particular
model-based approaches, implement a two step process separating the design-time from
the run-time [47, 113, 123, 141, 151]. At design-time, the devices need not be present.
XDStudio [141], however, supports the design on actual devices, if they are present
(Fig. 2.5). Otherwise, the designer can work on a main development device where other
devices are either emulated [70, 141] or not required for specifying the behaviour of a
cross-device application [47, 113, 123, 151]. To check the designs at run-time and iterate
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Figure 2.5: With XDStudio, design is supported on a developer machine as well as on
actual devices [141].

over them, some tools integrate device emulators [70, 124, 141]. Device emulation will
be discussed in more depth in the debugging section.

A number of theoretical frameworks map out the design space, provide design
guidelines, and facilitate the requirements analysis [150, 176, 190]. The 4C frame-
work [176] focuses on the interactions in multi-user, multi-device ecosystems. The
framework identifies 4 themes of interactions: communality, continuity, collaboration,
and complementarity. Communality refers to devices that are used by multiple users
sequentially, for example a ticket machine. The sequential usage pattern that we have
observed previously involving a single user and multiple devices is analysed using the
term continuity. Collaboration describes how multiple users share a single device, for
example a tabletop. Finally, complementarity refers to parallel usage patterns of a single
user. Continuity is also part of a user experience framework by Wäljas et al. [190]. It
is complemented by composition and consistency. Composition refers to the roles that
are allocated to devices, the distribution of functionality, and how systems adapt if a
device with a certain functionality is not available in a certain situation. Consistency
refers to shared look-and-feel, semantics, and interactions across all devices. The frame-
work of Paternò and Santoro [150] mainly refers to software design (for example the
communication architecture), but includes some relevant dimensions for designing user
interaction.

Design patterns can also inform the design process. Two studies have collected
empirical data about user preferences regarding UI distributions of existing applica-
tions [82, 138]. Both observed a remote control pattern where a phone is used to
control another device. A related pattern was labelled view+input by Nebeling et
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al. [138], where one device is chosen to provide input to the system due to its superior
input capabilities. The same authors also observed mirror and extend patterns. In the
first case, the whole interface is duplicated and synchronised across multiple devices.
In the second case, only part of the interface from a first device is duplicated on a
second device. Hutchings and Pierce observed an influence of the environment – public,
semi-public, or private – on the chosen distributions [82]. Both studies advocate against
fully automated UI distributions and are in favour of giving some control to the user.

The main challenges in designing cross-device applications are introduced by the
immense design space. Supporting multiple platforms and device types has been a
challenge even for single device applications and the problem is exacerbated in cross-
device development [42]. A designer may not know exactly what devices are going to
be used and may not have that exact device configuration at hand. Attempting to
cover every possible configuration in the design phase with a concrete design is hardly
feasible [82]. Instead, the design phase could account for some expected configurations
and be combined with a flexible implementation that can adapt to unexpected ones,
similar to responsive web design [114]. Furthermore, the user could be given some
control over the assignment of roles and UI components to devices.

2.3.2 Architectures and Implementation

The implementation step transforms the design from the previous phase into a working
system. Typically this is done by writing some form of source code. As in the previous
phase, a lot of decisions need to be made: Technologies, architectures, and frameworks,
need to be chosen. There are various frameworks and libraries that reduce the low-level
work required for cross-device applications, in particular related to the distribution of
the UI and the synchronisation of state across multiple devices.

A criterion to classify a cross-device system is the platforms that it supports and
the mechanisms for cross-platform support, if any, that it provides. Some systems target
only a single platform, for example Windows [10, 83] or Android [58]. These systems
have been built either for a homogeneous set of devices (for example multiple desktop
computers [10] or tablets and phones [58]) or they have been used in controlled settings
where the hardware can be coordinated to match the given platform [83], as is the case
in smart rooms. In contrast, this thesis targets a more flexible class of applications that
adapt to the devices at hand. Hence, the hardware and platforms cannot be assumed
to meet a specific requirement. Rather, interoperability has been identified as a crucial
requirement for cross-device applications [71].

There are several approaches to supporting multiple platforms. One approach is
to implement the same functionality in different programming languages and use a
platform-independent communication protocol between the devices [1, 22, 171]. While
this approach allows a heterogeneous set of devices to be used in combination, the
interoperability comes at the cost of higher development effort. Even though a library
provides building blocks in multiple languages and facilitates the implementation, the
client application itself still needs to be implemented separately in each language. This
duplication of code complicates not only the development but also the maintenance
of the applications as multiple code bases need to be synchronised. A benefit of the
approach is that it allows each client to be tailored to the specific platform, for example
in terms of look-and-feel or by using functionality that is not offered everywhere.
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The development effort can be lowered by building on platform-independent toolkits
or frameworks, such as Mono6 or Tcl/Tk7 [71, 122]. Using such frameworks, code can be
written once and will be executed on multiple platforms. A similar strategy is used in
model-based approaches where a concrete user interface can be specified independent of
the platform and executable applications will be generated for multiple platforms [123].

The same write-once-run-everywhere effect can be achieved with web technologies.
While differences in browser implementations remain and the rate at which browsers
implement new standards vary, applications written in web technologies can be executed
on a wide range of hardware and platforms. At the same time, the web has evolved from
being centred on documents to supporting fully-fledged applications. New APIs provide
access to sensor data such as the geolocation or device motion, enabling interactions that
had been previously possible only with native technologies. The newly introduced pro-
tocols WebSocket and WebRTC enable bi-directional communication between client and
server and between multiple clients respectively, a crucial building block for applications
that span multiple devices. Web applications come with the additional benefits of re-
quiring no installation step, thus enabling lightweight, ad-hoc interaction in contrast to
native applications that first need to be installed. Furthermore, the web community has
already tackled the problem of adapting to different device form factors and developed
approaches such as responsive web design [114]. Web standards have been introduced
to address this challenge, for example CSS media queries and flexbox layouts. The re-
search community has recognised this potential and a number of web-based cross-device
frameworks and libraries have been developed [2, 28, 48, 64, 97, 129, 155, 165, 197].

Another aspect that needs to be considered is the system architecture of a cross-
device application. One approach is to have a central server that coordinates the inter-
action between the client devices [28, 58, 64, 83, 142, 143, 147, 155, 171, 197]. This has
been the predominant approach. On the other end of the spectrum are peer-to-peer
solutions where the devices communicate with each other directly [45, 100, 122]. Fisher
et al. have argued that a peer-to-peer architecture has benefits over a client-server
architecture for distributed user interfaces, mainly due to robustness, scalability and
security [45]. Latency can be lowered when messages are directly passed between clients
instead of going through a server [100]. On the other hand, a powerful central server
can facilitate synchronisation and conflict resolution [147] and relieve mobile devices
with little computational power [150]. In 2012, Paternò and Santoro [150] noted that
the space of peer-to-peer DUI applications is underexplored. This was largely due to
the lack of peer-to-peer communication protocols in the browser at that time. The
introduction of WebRTC has since created an opportunity to experiment with peer-to-
peer systems [2, 48, 100, 103], however, not all browser vendors have implemented the
protocol to date. Apart from pure client-server and peer-to-peer architectures, there
are also hybrid or flexible systems [71]. Badam et al. use peer-to-peer connections
to synchronise data between clients and a server for persistence [2]. Others eliminate
the need for a remote sever by having one of the clients dynamically take over the
role of the server or coordinator [33, 47, 72, 165]. This role can even be transferred
between devices at run time, which could be relevant when the current server device
is removed [46, 72]. This approach enables functional applications even when there is

6http://www.mono-project.com/ Accessed on 06. 02. 2017
7https://www.tcl.tk/software/tcltk/platforms.html Accessed on 06. 02. 2017
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no internet connection (a requirement in most client-server systems) as Bluetooth and
local networks can be used to communicate [165].

Another step in the implementation of a cross-device application is the specific-
ation of the UI distribution. In this step, the developer specifies which part
of a UI should be allocated to which device. Several frameworks provide mechan-
isms for UI distribution using different approaches. Some use an event-based ap-
proach [28, 50, 123, 155, 165] where an event, such as a device joining or leaving, a
user interaction, or a change in the context, triggers an update to the user interface
and its distribution. Each of these frameworks provides commands for manipulating
the UI of a given device in an imperative manner, for example showing or hiding a UI
element or moving it from one device to another. Panelrama used a declarative ap-
proach based on affinity scores [197]. UI components that belong together are wrapped
in panels which can be distributed across devices. The developer assigns affinity scores
to each panel describing its suitability to be allocated to a device based on its char-
acteristics. For example, in a video player application consisting of a controller panel
and a video playback panel, the controller panel would have have a high ready to hand
score because it requires user input whereas the video playback panel would have a high
physical size score to show the video. The system automatically calculates an optimal
distribution of the panels based on the properties of the available devices. If a TV and
a phone were available in our example, the controller would be assigned to the phone
and the playback panel to the TV. A similar automatic distribution of the UI can be
achieved in Weave with the combine operator that groups multiple devices into one
virtual device [28]. Similar to Panelrama, developers using Weave can address devices
matching high-level input and output characteristics rather than specific device types.
Weave’s successor DemoScript infers these device selectors automatically based on con-
crete example devices that a developer can pick in a visual tool [29]. This abstraction
allows developers to implement applications that are, to some degree, independent of
the specific devices that will use them. As discussed in the previous sections, users
assign roles to their devices, which can in some cases be independent of device charac-
teristics, for example when a set of homogeneous devices is used [58]. Thus, basing the
distribution of the UI solely on device characteristics could fail to meet users’ needs.
Most frameworks have no explicit concept for roles. With those that do, the roles are
associated with the user rather than the device [46, 71]. For example, an application
can be adapted to a user who has admin rights or is a guide (as opposed to a tourist),
essentially implementing a role concept similar to the one that we have seen in the
design phase with XDStudio [141].

A distributed application comes with an inherent challenge of keeping the state
consistent across all devices. Most cross-device frameworks provide a mechanism for
state synchronisation. The synchronisation can be handled explicitly or implicitly [2,
197]. In the explicit case, the developer has to trigger the sharing manually. Panelrama
differentiates three different explicit sharing functions: state can be pushed from a device
to a global shared state representation, it can be pulled from the global representation
to overwrite the local state, and it can be merged, where application-specific logic
combines the local and the global state [197]. In the implicit case, the developer marks
state variables that need to be shared and the system tracks changes and shares them to
the other devices whenever they change without any need for further intervention from
the developer. Polychrome also proposes unilateral sharing where a single leader device
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can write changes while the other devices can only listen to changes [2]. Fine grained
control over data sharing can be obtained with our session concept [143]. A session
associates data, users, and devices. Devices can join multiple sessions and changes
to data within a session are propagated to all devices in the session. This approach is
targeted towards multi-user cross-device applications where some data might be private
and only shared with a user’s devices whereas other data is shared with other users. In
mashup and component-based approaches, a loosely-coupled publish-subscribe approach
is predominant where UI components such as widgets publish state changes as events
and other components register to be notified of these events, regardless of the devices
on which the sender and the listener are situated [48, 100, 103].

Two approaches can be observed for describing state changes: a snapshot of the
new state can be transmitted [4, 100, 197] or an operation that will transform the old
state into the new state [2, 65, 97]. The second approach can ensure consistency and
conflict resolution through operation transformation (OT) when multiple devices send
updates simultaneously. In contrast, the snapshot approach facilitates the addition of
newcomer devices to a system. The new device only needs to be sent the latest version
of the shared state [4] whereas, in the OT approach, a (potentially long) history of
operations needs to be applied. In either approach, changes can be captured at the
level of the model [48, 65, 100, 103, 143, 197] or its representation in the UI [2, 97].
For example, in a video application with a play/pause toggle button, a change of state
can be described as a change from the play state to the pause state or as a click of the
button. In Polychrome, these two approaches are labelled data-centric and interaction-
centric [2]. However, the second approach does not necessarily track only interactions
such as clicks but can also track changes in the structure of the UI which might be a
result of interactions but could also be triggered by the system. This is the approach
used by Webstrates where changes in the DOM are synchronised across devices [97]. In
this UI-centric approach, no semantic knowledge on the data is required and it is thus
also suited to legacy applications [2]. On the other hand, in the model-centric case,
semantic information could allow more advanced conflict resolution or merging and it
enables different representations of the same model on different device types.

Conventional WIMP UIs are usually built with some variation of the model-view-
controller (MVC or MV* to denote variations) software architecture pattern [102],
separating the model data from its visual representation, the view. A myriad of MV*
frameworks have been developed in particular for web applications8. The MV* pattern
has also been used for distributed applications where the model is kept in sync across
multiple devices and the views are updated accordingly [1, 54, 83]. Other software
architectures have been explored in the context of new interaction paradigms such as
instrumental interaction [51, 72, 71, 96]: VIGO (Views, Instruments, Objects, Gov-
ernors) is a pattern where instruments can manipulate objects (represented in views)
mediated by governors [96]. Shared substance builds on the same concept of instru-
mental interaction and promotes a data-oriented approach [51]. In contrast to object-
oriented design, this approach decouples data and operations that can be executed on
the data. Activity-centric approaches focus on activities as first class objects [4] which
are composed of actions, users, and meta-data [71, 72].

Some frameworks provide explicit support for device management ranging from

8See http://todomvc.com/ for a comprehensive list

http://todomvc.com/
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built-in pairing methods [58, 197] to programming APIs for accessing information about
the devices in the system [152]. Discovering devices and pairing them into a cross-
device system has been declared an integral requirement for cross-device infrastruc-
ture [71]. Devices in physical proximity can be detected and paired automatically
through Bluetooth [165]. Other techniques that have been implemented in cross-device
frameworks include QR codes [58, 197], NFC [58], and gestures such as bumping [58].
Some web-based systems implement pairing based on URLs which are shared between
devices [97, 197]. Devices can also be associated based on their owner [152]. The infra-
structure of Pierce and Nichols has turned device ownership into a first class property
and a list of users and the devices they own is maintained on the server [152]. The asso-
ciation of devices and users allows a device to send messages to other devices belonging
to the same user. Devices are also typically a first class property in frameworks with
event-based distribution approaches [28, 165] and in model-based systems [50, 123],
allowing a device to react to the presence (or absence) of another device. On the other
hand, in the declarative approach of Panelrama, the distribution of the UI is handled
by the server and there is no mechanism for a device to query and directly interact with
other devices in the system [197].

Novel cross-device interaction styles such as proxemic interaction rely on sensor
data to provide information on the position of other devices and users. Most position-
tracking sensors provide streams of low level data and often multiple data-sources need
to be integrated. Some cross-device frameworks and toolkits provide higher-level APIs
and facilitate the integration of multiple sensors. Both the SoD [171] and the Proximity
Toolkit [115] generate high level events for changes in the relationship among devices
and between devices and users, for example distance or orientation changes. Similarly,
WatchConnect [70] provides an event-based API for gestures sensed by a smartwatch,
for example a mid-air swipe, whereas XDKinect [142] enables web-based cross-device
applications with gesture and speech interaction through a JavaScript event API. The
SoD Toolkit [171] can fuse data from multiple sensors into location events, freeing the
developer from having to coordinate them. Alternatively, the developer can choose
a sensor based on confidence levels provided by the toolkit. HuddleLamp [155] can
be used to abstract away the sensing completely: It creates and manages a virtual
workspace in which devices positioned on a flat surface are tracked. The developer
specifies the content of the workspace while the system ensures that each device renders
the right excerpt of the workspace. Tracko [84] eliminates the need for external sensing
by leveraging built-in sensors of phones, namely Bluetooth, the microphone, and inertial
sensors, to track the presence and relative position of devices and to enable gestures in
3D space.

This section illustrates the vast amount of related work that has been done to sup-
port the implementation of cross-device applications. As in the design phase, it remains
a challenge to cover all possible device configurations with the implementation. With
event-based approaches, the order of the events, for example devices joining the sys-
tem, could potentially impact the state of the UI, as each event can trigger change.
Frequently, sample applications that are used to illustrate these approaches use only
two devices or omit any explanation of how the application adapts to varying config-
urations [28, 50]. It is unclear, if a developer would manage to correctly predict how
the UI behaves with a given device configuration, if it was one they did not have in
mind during the implementation. With declarative approaches such as Panelrama’s
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affinity scores, the order in which devices are added to the system is not expected to
have an impact, however, developers still struggled to predict how the UI would dis-
tribute across devices without executing the applications [197]. While developer tools
that provide previews or execute the application are discussed in the following section,
another approach worth investigating could be to base implementations on cross-device
patterns [137, 138] and to introduce a concept for device roles.

2.3.3 Debugging

We use the term debugging to describe the next phase in the development cycle. We will
use the term in a broad sense not only focusing on fixing bugs, but including informal
checks verifying if the software behaves as expected and adapting the implementation
if it does not. This cycle of writing code and checking the result is how developers
typically work during code composition tasks [173]. Developers also dedicate time to
code comprehension which is the understanding of existing code [173], a prerequisite
for debugging. Finally, there is the actual debugging task [173] where the developer at-
tempts to eliminate a bug from the code. A crucial first step is reproducing the bug [9].
Next, the developer will typically determine why something did or did not happen, for
example by stepping through the code with a debugger [98]. In this section, we analyse
how existing cross-device tools support checking the implementation, code comprehen-
sion, and debugging. Since this thesis focuses on web-based cross-device applications,
we also examine how these tasks are supported in conventional web development.

Two approaches can be observed for checking the implementation. Either the code
can be executed on emulated devices [28, 29, 141, 143] or on real devices [28,
141, 143]. Emulated devices offer the benefit of needing less (potentially expensive)
hardware. Adding a new device can be as easy as clicking a few buttons and it is
typically faster to load a new version of the code onto a device emulated on the developer
machine than deploying and loading it onto external hardware. For these reasons, device
emulators have also been used to verify multi-device applications [125]. On the other
hand, emulation cannot cover every aspect of a real device [42], for example haptics and
form factors which could be central to the user experience. Weave [28], XDSession [143],
and XDStudio [141] offer support for executing the application on both emulated or real
devices or a mix thereof. However, none of these tools couples the emulation with the
code. Weave provides a logging mechanism but no debugger integration. This approach
mainly facilitates checking if an application works or looks as expected, but in cases
where it does not, little support is offered to track down the source of the problem. Thus
the tools operate at a higher level of abstraction and mainly help to test and debug the
design and the interaction rather than the implementation. DemoScript [29], a follow-
up on Weave, connects the code with the emulated devices, allowing the developer
to step through the code line by line and showing the result on emulated devices. A
sequence of steps in the code is visualised as a storyboard that not only shows the
current state (as is typical for device emulation) but also previous states corresponding
to each line in the code.

Checking an implementation is particularly challenging when sensors are involved
and may require physical manipulations [42]. This is the case in particular for applica-
tions with proxemic interaction techniques [115]. Device emulators have also been used
for this scenario. WatchConnect [70] provides a hardware emulator for smartwatches
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Figure 2.6: An emulated phone in the Chrome browser.

and focuses on testing the sensor data and machine learning algorithms. The Proximity
Toolkit [115] provides no emulation, but visualises tracked entities and their relation-
ship which can help a developer’s understanding of the data model. Furthermore, a
developer can record sensor data with the Proximity Toolkit and replay it later. This
functionality eliminates the need to re-enact proxemic interactions physically every
time a change to the implementation needs to be checked. A similar approach could be
used for Kinect-based cross-device interactions [142] and the tool Kinect Analysis [144],
however the latter offers no cross-device specific support.

Record and replay functionality is also offered in XDSession [143]. The functionality
is implemented at the level of session manipulations as opposed to user interactions,
that involve the creation, deletion, and changes of data. As a result, the tool can only
be used with applications that use XDSession as an implementation framework. In
addition to session manipulations, meta-data is recorded including the device and user
that triggered the manipulation. The data is visualised on a timeline in the Session
Inspector along with information on devices joining and leaving sessions. A recording
can be transferred from one set of devices to be replayed on another, for example from a
phone and tablet to a tablet and a TV, allowing the developer to compare and contrast
the results. A Session Controller provides a means to manage devices, sessions, and
users through a visual interface.

Modern web applications are normally designed to work on a multitude of devices,
ranging from large screens to small smartphones. However, developers usually use
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Figure 2.7: Smartphone Test Farm offers products for managing device inventories for
testing and debugging.

powerful desktop or laptop machines with keyboards and large screens to work effi-
ciently. As with cross-device applications, there is the need to test and debug these
applications on devices other than the developer machine. Furthermore, implement-
ations of web standards vary across different browser vendors and operating systems,
so testing with just one of them may not unearth all of the issues. A number of tools
have been proposed to address these issues and again we can distinguish approaches
based on device emulation from those using real devices. Modern browsers have support
for device emulation built in. In Chrome, for example, common device models can be
chosen from a list or custom ones created dynamically. For preconfigured devices, the
system stores screen dimensions and pixel density and newer versions of the browser
even include the device frame so that it can be captured in screenshots (Fig. 2.6).
Chrome allows the network to be throttled to lower speed to emulate bad network con-
ditions, however, no emulation of device computing power is offered. Basic emulation
for sensor data including location, orientation, and touch is available, but the input of
the data is static and not suitable for gestures. For example, the sensors can be set to
emulate a portrait pose, but not a dynamic shaking gesture. The emulators are tightly
coupled with the debugging tools of the browser allowing the developer to inspect and
manipulate the program state at run-time and to step through the code.

Given the limitations of device emulation, support has also been provided for test-
ing and debugging web applications on real devices. On smaller devices such as phones
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there is little room for displaying debugging tools and relying on touch interaction could
make it difficult to navigate through the code. The problem has been addressed with
remote debugging tools that display the debugging interface on a developer machine
and communicate with the device under test. Early approaches were browser agnostic
and required a debug script to be injected into the client application that would com-
municate with a debug server over HTTP [127, 130]. Since then browser vendors have
integrated remote debugging into the desktop and mobile versions and usually require
that the mobile device is connected via USB. The cable introduces a scalability issue
when many different devices need to be tested. Products such as Smartphone Test
Farm9 (Fig 2.7) or Device Lab10 have been developed to address these issues with soft-
ware for managing device inventories and physical components such as stands. Services
such as BrowserStack11 and CrossBrowserTesting12 eliminate the need to have physical
(or virtual) device inventories and offer testing on real devices as a service. Screenshots
can be generated in both services and CrossBrowserTesting offers access to debugging
tools.

Whenever the source code of a web application changes, the browser needs to re-
load the application both on real and emulated devices. This can become tedious, in
particular when many devices need to be tested in parallel. Various tools (for example
BrowserSync13 or Ghostlab14) have automated this process by observing the source
files for changes and automatically refreshing the browser. In addition, both tools
can synchronise user interactions such as clicks, scrolling or text input across multiple
windows, allowing a developer to verify multiple devices in parallel. Cross-device ap-
plications typically include a pairing step where devices are associated with each other
before the actual interaction. That pairing step would also need to be repeated on
every reload and there is currently no tool support for this specific task, so it has to be
executed manually by the developer.

Capture and replay of events is another established technique for debugging web ap-
plications. Mugshot [128] captures events such as user interaction and non-determinism
on end-user machines and allows a developer to replay the program execution on a de-
veloper machine to track down program failures. FireCrystal [148] uses capture and
replay to increase code comprehension of dynamic behaviour. The developer can record
an interaction and analyse on timeline how the DOM changed and what part of the
HTML, CSS, and JavaScript were involved. An interactive timeline is also offered by
Timelapse [17] which integrates with existing debugging tools such as breakpoints, the
call stack, and source code that can be inspected and stepped through. The tool proved
to be most useful to experts whereas less-skilled developers were distracted by it. All
three systems supported recording and replaying on a single device and thus do not
cover cross-device use cases where interactions can take place on multiple devices in
parallel. Replaying the same interaction on each device would not suit the characterist-
ics of cross-device applications, as each device could be displaying different UI elements
for interaction. Many cross-device applications are built for collaborative scenarios. A

9http://openstf.io/index.html Accessed on 14.02.2017
10https://www.vanamco.com/devicelab/ Accessed on 20.04. 2017
11https://www.browserstack.com/ Accessed on 14.02.2017
12https://crossbrowsertesting.com/ Accessed on 14.02.2017
13https://browsersync.io/ Accessed on 14. 02. 2017
14https://www.vanamco.com/ghostlab/ Accessed on 14. 02. 2017
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single developer may struggle to accurately provide input to all devices in a realistic
manner without help. A replay mechanism that coordinates multiple devices and takes
into account their different roles could alleviate the problem.

2.3.4 Testing

In the previous section, we have examined how applications are frequently checked as
the developer is writing code. These informal tests mainly serve the purpose of seeing
if the feature that was just implemented works or looks as expected. However, changes
to the code could introduce unexpected side effects that may not be covered in the
informal test. Testing all aspects of an application manually after every small change
in the code would require a lot of time and would be tedious due to the repetitive nature
of the task. On the other hand, omitting such tests can lead to regressions. For this
reason, software tests have been automated and testing has become an integral part of
software engineering practice.

Testing can be done at various levels of abstraction. On one side of the spec-
trum are unit tests with high granularity that verify program behaviour at the level of
individual classes or functions [15]. At the other end of the spectrum, there is system
testing where a whole, integrated system is verified. UI testing, also referred to as
end-to-end testing, is a form of system testing where user interactions are mimicked on
the interface, for example a button click could be triggered and then a label would be
checked to see if it shows updated information.

Testing can also be analysed in terms of the coupling with the underlying code.
The aim of unit tests is to check every possible state and interaction between system
components [15]. Consequently, they require knowledge of the internal structure of the
system and are highly coupled with the code. Such an approach is labelled white-box
testing. In contrast, UI testing focuses on the expected input/output behaviour of the
system and has less coupling with the code. It is is thus a black-box testing approach.

As unit tests operate in isolation and at a very high granularity, the impact of the
fragmentation and distribution of cross-device applications on the testing is limited.
The behaviour under test would typically be executed on a single device. In contrast,
UI testing is highly impacted by the distribution and fragmentation. Multiple devices
need to be coordinated during a test. For example, clicking a button on one device,
could update a label on another device. This makes UI testing a particular challenge
for cross-device developers and we will focus on that approach in this thesis.

Two main approaches for UI testing can be observed: Interactions with the UI can
be recorded and replayed or they can be scripted by a tester [107]. Tools like Selenium15

allow a tester to demonstrate interactions to the system which will be recorded and can
be replayed repeatedly. While this requires little knowledge of the structure of the
UI, it can fail when significant changes are introduced. The scripting approach can
take longer initially to carefully craft interactions, but has been shown to be easier to
adapt to changes [16]. A study has shown that the scripting approach can become
less expensive than record and replay after one to three releases [107]. The reduced
maintenance costs of the scripts amortise the higher initial costs of writing the scripts.

To the best of our knowledge, there is no specific support for testing cross-device

15http://www.seleniumhq.org/ Accessed on 15. 02. 2017
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applications. However, a subset of the issues in testing cross-device applications are
addressed by existing work. Most conventional applications are developed on desktop
machines, but many will run on mobile devices. Testdroid [90] enables tests to be ex-
ecuted in parallel on multiple mobile devices. It executes test scripts that can either be
written manually or derived from recorded interactions. Testing novel forms of interac-
tions can be a particular challenge as most testing systems are limited to conventional
mouse and keyboard input. Hesenius et al. have extended an existing test automation
framework with support for gesture-based interactions [66]. Neither approach handles
the coordination of multiple devices with interaction between each other. Furthermore,
the uncertainty of what devices will actually use the application is not accounted for.

2.3.5 Usage Analysis

The previous sections illustrate the extensive interest of the research community in
cross-device applications and interaction. However, little is known about how cross-
device applications are used outside of studies and lab conditions. Under these con-
trolled conditions users are typically equipped with a specific set of devices and instruc-
ted how to use the application. Once an application has been deployed, it is difficult
to assess how it is used in the wild as current cross-device frameworks have no built-in
support for collecting usage data. Knowing how an application is used could inform a
future iteration of the design or enable data-driven design [38]. For example, informa-
tion on observed device configurations could prompt an optimisation of that specific
configuration. Furthermore, given that cross-device applications are still rare outside
of research labs, users may not realise that an application can be used with multiple
devices in parallel [154]. If such a legacy bias is detected, efforts could be made to
educate the user about how other available devices could be integrated.

The research community has investigated how people use their set of devices. How-
ever, these studies were rarely at the level of a single application but rather focused on
general use. Most work is based on self-reported data that is obtained through inter-
views, surveys, diary studies, activity logs or a combination thereof [37, 87, 95, 149, 161].
Other work focuses on tracking activities on a single device. Church et al. provide
a comprehensive summary of challenges and techniques of tracking users on mobile
devices [34]. A logger needs to be installed on the devices or integrated into an ap-
plication. Tracked data includes application launches, sensor data (for example device
motion), and screen state (on or off). While most work focuses on analysis of a single
device, ENGAGE [88] measures engagement in multi-device settings. It combines cam-
era data from desktop and laptops with information on the current application and
screen state on mobile devices to infer user engagement across the set of devices. These
tracking approaches produce a large amount of interesting data, however, they can also
raise privacy concerns [34]. Most studies are thus conducted with a smaller set of parti-
cipants and a limited duration (a notable exception being [189] with 12’500 participants
tracked over two years).

In contrast, more lightweight approaches are well-established in the domain of web
applications [20, 178]. Given that many cross-device applications are built with web
technologies, these approaches could be extended for cross-device applications. To track
a web application, typically a script is injected into the client-side code, tracking user
interactions such as visited URLs and information about the device. No installation of
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Figure 2.8: Google Analytics showing device overlap.

software by the user is required. As a trade off, compared to the heavyweight methods
discussed above, less information is obtained, for example measuring user engagement
based on camera data is not possible. On the other hand, this approach introduces fewer
privacy issues. The behaviour is typically tracked at the level of a single application
rather than general device usage. Commercial systems such as Google Analytics16,
Alexa17, and Web-Stat18, provide such tracking services that can be integrated into
any website. They generate reports and visualisations of the tracked data that can be
used a basis to improve a website or measure business goals. For example, if an online
shop measures only few sales on tablets, this finding could prompt an evaluation of
the tablet user interface and the checkout procedure. The focus of these services is on
single-device use. While Google Analytics offers basic cross-device reports19 based on
devices associated with the same users, the tracked metrics are either very general or
only target sequential use cases: Device overlap tracks the device types and numbers
thereof that are used to access an application (Fig. 2.8). There is no information that
specifies if any of these accesses were in parallel or on the order of the devices used.
However, it provides information on the kind of devices that are generally used to access
an application. The order of the devices used is tracked with device paths, which show
the last 5 devices used before a conversion, for example a purchase. There is no support
for tracking parallel usage of multiple devices, which would be of particular interest in
cross-device applications.

16http://www.google.com/analytics/ Accessed on 20. 02. 2017
17http://www.alexa.com/tools Accessed on 20. 02. 2017
18http://www.web-stat.com/ Accessed on 20. 02. 2017
19https://support.google.com/analytics/answer/3234673 Accessed on 20. 02. 2017

http://www.google.com/analytics/
http://www.alexa.com/tools
http://www.web-stat.com/
https://support.google.com/analytics/answer/3234673
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2.4 Conclusion

Most prior work specific to cross-device applications targets the early phases in the
process, namely design and implementation. This may be sufficient to build prototypes
to study in research labs, but does not address the challenges of building products
that are used outside of such controlled environments. Products need to be robust to
endure usage deviating from the main envisioned scenarios. Their code base needs to
be maintained, often over years and by a changing team. In conventional development,
for example in web development, a host of tools exist to support testing, debugging,
and usage analysis. In this thesis, we use them as a basis for our investigation into
better support for cross-device application development. We introduce tools for all
stages in the process, but the main contributions are in debugging, testing, and usage
analysis. We focus on flexible cross-device applications that adapt to the set of devices
at hand and implement parallel usage patterns. This flexibility introduces the particular
challenge that many different sets of devices could be used which leads to a large design
space. Hutchings and Pierce have argued that it may not be possible to design an
application that can react to every possible situation and that the user should be
given the option to adapt the distribution of an application [82]. Dong et al. have
also identified uncertainty of a user’s intention as a challenge in the design phase [42].
The implementation needs to be capable of handling such flexibility. Our analysis
showed that current implementation frameworks provide no concept of assigning roles
to devices rather than users, even though it has been shown that this would better reflect
the user’s mental model [37, 161]. For informal checks and debugging, we can learn
from responsive web design tools that allow a developer to easily switch between many
different device types. However, these tools do not account for interdependency between
the devices, which is an integral part of cross-device applications [42]. A crucial property
of these tools is the tight coupling with the source code, which is missing in most cross-
device tools. Even though it may not be possible to design for every imaginable device
configuration, testing should cover a wide range of possible configurations to ensure
robustness. Without automation this kind of testing would be very time consuming and
probably skipped in many cases. The stages from implementation to usage analysis also
suffer from the fragmentation of the application logic across multiple devices. The lack
of tools for testing cross-device applications has been identified as a major challenge [42].

This thesis focuses on the engineering process of flexible, distributed graphical user
interfaces. We acknowledge social challenges and those challenges specific to new device
form factors such as glasses and watches, as well as new forms of interactions such as
proxemics [56]. However, these are out of the scope of this thesis.





3
MultiMasher: Design and Prototyping

This chapter1 presents visual tools and architectures for cross-device mashups. The goal
is to support experimentation and the exploration of ideas using existing applications.
Instead of building a new cross-device prototype from scratch, existing applications built
for single device use can be mashed up and distributed across multiple devices. The
resulting prototypes are functional and could be used to receive a first round of feedback
from end-users. We present concepts for cross-device mashups and requirements for a
mashup tool that we implemented in our MultiMasher prototype. MultiMasher provides
visual tools for creating web-based cross-device mashups using direct manipulation and
only requires limited technical knowledge of the underlying applications. We analyse
two different architectures that we explored with MultiMasher and discuss trade-offs.
Finally we evaluate MultiMasher along the dimensions of a logical framework [150] that
we extended for cross-device mashups and in terms of its technical compatibility with
50 top websites. This chapter was developed in [179].

3.1 Concepts and Requirements

We define a cross-device mashup as a web application that reuses content, present-
ation, and functionality provided by other web pages and that is distributed among
multiple cooperating devices. The following scenario (Fig. 3.1) illustrates how cross-
device mashups could be used in the design process.

Ted, a designer, has the goal of building a travel planning cross-device ap-
plication. It targets users that are on the go and should offer information
on nearby places. Ted expects potential users to each have their smartphone,
but they could also want to make use of the larger, digital TV in their accom-
modation. A first step, Ted chooses Wikipedia as an information source. As
Wikipedia provides good background information, but does not give a good

1Earlier versions of parts of this chapter were originally published as Husmann et al. [74, 75].
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Figure 3.1: A cross-device mashup composed of two websites and three devices.

visual impression of a place, he also wants to simultaneously add Google
Image Search results for each place users look up. Ted uses MultiMasher
to quickly mash up articles from Wikipedia and images from Google for the
same place on the large screen. He envisions that each user could enter
new locations with their smartphone. However, they should be able to use
a single input field to update both the article and the images on the large
screen rather than searching separately on each page. Ted demonstrates his
mashup to two stakeholders who collaboratively explore a couple of places
using their smartphones while sitting on the sofa. One of them mentions
that he will typically also have his laptop with him when travelling and asks
whether that device could be integrated. Using MultiMasher, Ted can eas-
ily migrate the mashup to the laptop while preserving the current state and
demonstrate how he could adapt the design to that particular device.

We introduce the following three entities that are central to cross-device mashups:
components, mashups, and devices. Components extracted from existing websites are
composed into a set of inter-connected mashups which are accessed simultaneously by
multiple devices (Fig. 3.2). We define a component as a subset of HTML elements that
can range from a single input field to a nested container, such as the whole HTML body.
A mashup contains a specific set of components. All devices accessing the same mashup
receive the same set of components with the same state. To obtain a different view or
an independent state, a new mashup must be created, however, the same component
can be used in multiple mashups. Finally, a cross-device mashup is a set of multiple
mashups accessed by multiple devices with communication between the mashups. The
relation between user and device may be one-to-one, many-to-one or one-to-many as a
user could use multiple devices at a time, for example a phone and a tablet, while a
larger device such as a smart TV may be shared by multiple users.

We have identified the following dimensions of operations that a cross-device mashup
tool should support: mashing up, distributing and co-browsing (see Table 3.1).

Mashing up refers to operations that are also used in conventional, single-device
mashup development. Component creation can be supported programmatically or by
direct manipulation of the UI. Component manipulation and adaptation includes mov-
ing, resizing, copying, and deleting components to design a mashup visually. For the
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Mashup 2Mashup 1

Device 1 Device 2 Device 3

Page 1 Page 2 Page 3 Page 4

Figure 3.2: Overview of a cross-device mashup

design of functionality, inter-component communication is required so that the manip-
ulation on one component, for example entering a text into an input field, triggers an
update to another component, for example showing image results for that text. We dis-
tinguish explicit and implicit inter-component communication (Fig. 3.3). Components
originating from the same website are expected to communicate implicitly, without any
need for specification by a developer. For example, a component with the input from
the Google image search is expected to communicate the search term to an image result
component. This is the default behaviour of the website and it should persist despite
the website’s division into components. On the other hand, components stemming from
two different websites must be explicitly connected by the developer to create interac-
tion. Introducing a third component that contains the result of a search on Wikipedia
into our example, it must be explicitly connected to the Google search component, if it
is to update upon the input of a keyword into the Google search component.

In the distributing dimension, we group operations that are related to components
being distributed across multiple mashups and devices. Component migration from
one mashup to another (and consequently from one device to another) while main-
taining its state and configuration, such as connections to other components, would
support experimentation and quick iterations on the design. For example, when a new
device joins an existing cross-device mashup, components could quickly be reshuffled
to account for the new device. Inter-component communication is also relevant in the
distributing dimension as the communication should function independent of compon-
ents being on the same or two different mashups or devices. Note that in our model
of cross-device mashups, the same mashup could also be accessed by multiple devices,
requiring communication across devices even when components are located in a single
mashup. The developer of the mashup should not have to think about the location of
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Dimension Operation Details

Mashing up Component creation Programmatic
Direct manipulaton

Component manipulation and adaptation Moving
Resizing
Copying
Deleting

Inter-component communication Explicit
Implicit

Distributing Migration of components Across devices
Inter-component communication Across devices

Co-browsing Raising awareness for interactions Between multiple users

Table 3.1: Operations in a cross-device mashup tool

Figure 3.3: Implicit and explicit inter-component communication. Components from
the same website communicate implicitly whereas components from different websites
communicate explicitly. Both types of communication can span mashup and device
boundaries.

the components and their movement across devices. Rather they should be able specify
the communication channels between components, while the mashup tool handles all
effects introduced by the fragmentation.

The co-browsing dimension covers the aspect of multiple users accessing a cross-
device mashup simultaneously. As a user interacts with a cross-device mashup, updates
to another user’s view of the mashup are likely to occur. In our scenario, a person
searching on the phone would update the shared TV. To avoid confusion, a mechanism
for raising awareness for interactions on other devices should be employed.

3.2 MultiMasher

We have implemented the operations and concepts from the previous section in our
MultiMasher prototype. MultiMasher provides visual tools for creating cross-device
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mashups as well as a run-time platform. MultiMasher does not differentiate between
design- and run-time. Any changes to a mashup take effect immediately, allowing a de-
signer to quickly try out ideas. The MultiMasher client runs in a modern browser and
does not require any installation. A new device can easily be added to a cross-device
mashup by opening a URL and selecting the mashup to be displayed. We designed
MultiMasher on the principle of direct manipulation, thus it requires no programming
experience and was built with both technical and non-technical users in mind. Multi-
Masher consists of two main views: The global view provides an overview of the complete
cross-device mashup, all the mashups of which it is composed, and all devices currently
using the system. Upon the selection of a mashup, the mashup view is opened where
the mashup can be edited and used.

3.2.1 Global View

The global view shows an overview of the whole cross-device mashup and all devices
currently connected to the tool (Fig. 3.4). The user starts with an initially empty cross-
device mashup and can start by creating a mashup. For each mashup, there is a preview
in the global view. A newly created mashup is shown as an empty canvas. Coloured
rectangles represent components inside a mashup. Components originating from the
same website share a background colour, for example a search bar component and an
image result component both coming from Google search. To differentiate multiple
components from the same website, they are marked with distinct border colours. A
list below the mashups maps the colours to websites and component names. It can be
used as a guide to the user to understand which component is which. Hovering over a
component in the list highlights it the mashup preview. The list includes information
on explicit inter-component communication.

Connected devices are shown in another list and each device is assigned a colour.
In the mashup preview, a small rectangle at the bottom right shows which devices are
currently accessing a mashup. Basic information about the device such as the browser
and the operating system is displayed to differentiate the devices. This information
could be simplified into device types or supplemented with user provided device names
in the future.

The mashup previews are interactive. Components can be resized and moved from
one mashup to another using drag-and-drop. This direct manipulation provides an
easy means to distribute components across devices. As all interactions take immediate
effect, a component can be moved from one device to another simply by dragging it
from one mashup to another in the global view. Any device connected to the affected
mashup will update immediately.

3.2.2 Mashup View

A newly created mashup is represented as an empty canvas. By clicking and dragging
the mouse over the canvas, the user can create a new component with the dimensions of
the selected area (Fig. 3.5). A dialog prompts the user to provide a name and a URL for
the website from where the component should be extracted. Alternatively, the website
can be selected from a list with websites that have been used before. MultiMasher then
loads the full website inside component boundaries. As a next step in configuration
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Figure 3.4: The global view with two mashup previews (Mobile and Large) at the top.
Components and devices (clients) are listed below the previews.

mode, the user can select UI elements that will be extracted as the component (Fig. 3.6).
When in element selection mode, hovering over an HTML element adds a coloured
border to that element to provide feedback on the current selection. The selection can
be confirmed with a click and the user is prompted to provide a name (for example
search). Subsequently, only the selected element and its descendants are displayed.

The linking mode provides a means to link components from different source web-
sites to enable inter-component communication. Whereas components from the same
website (for example article and the search box from Wikipedia) are linked implicitly,
components from different sources need to be linked explicitly. MultiMasher supports
these explicit links via tags than can be attached to change, submit and click events of
an HTML element. Subsequently, all elements with identical tags for the same event
type will be connected and an event triggered on one element will trigger the same
event on all connected elements. For example, to ensure that a search on Wikipedia
also triggers results on Google image search, the following approach needs to be taken.
A search interaction consists of a user typing a text into an input and then either
clicking a search button or hitting the enter key to submit the query. At the HTML
level, this results in three events that need to be mapped. A change event for the input
element that is triggered as the user types into the field, a click event when the button
is pressed, and a submit even when instead the query is sent using the enter key. For
each of these events, a label needs to be attached both on Wikipedia and Google image
search. MultiMasher will then mirror all events that occur on the first website on the
second one.

As an alternative to creating a component from scratch, an existing component
can be cloned to produce a new component from the same website sharing the created
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Figure 3.5: Dragging over an empty part of the canvas creates a new component.

Figure 3.6: In selection mode, the currently selected elements are highlighted with a red
border. After confirming the selection, only the selected element and its descendants
are displayed.

event tags. Initially, the cloned component is an exact copy of the existing component.
The designer can then go into the configuration mode where the cloned component will
display the whole underlying website again. Then, the designer can choose a different
set of HTML elements to be displayed. The event tags will be retained from the original
component, saving the developer the effort of having to create them for each component
coming from the same website.

Components can be resized and positioned inside the mashup using direct manipu-
lation. As in the global view, all changes are immediately synchronised to all devices
accessing the mashup. To move a component to a different mashup (and device), the
global view needs to be used.

Once the designer is done configuring a component, it can be switched from con-
figuration mode into execution mode. Now the component is ready for interaction, for
example a user could enter a query into the search box. However, the designer can
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switch back into configuration mode at any time to tweak the component.

3.2.3 Co-browsing Feedback

A user manipulating a mashup while others are accessing it can cause confusion. For
example, a component that is being moved from one mashup to another would disappear
from one device and emerge on another. MultiMasher provides an explanation to such
events by highlighting components that are being manipulated with the colour of the
client device that triggers the manipulation (Fig. 3.7). A toast message describing
the manipulation slides in from the bottom of the screen and is shown for a couple of
seconds.

Similarly, events that are triggered due to explicit component-linking are displayed
at the bottom of each component. The event name is shown as well as the source page
that triggered the original event (Fig. 3.8).

Figure 3.7: If a user moves a component, it is highlighted in the colour of the used device.
In addition, a toast messages announces the manipulation to increase awareness.

Figure 3.8: A component based on Google image search has been updated due to a
click on the Wikipedia page. Awareness information is shown at the bottom left of the
component.
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3.3 Architecture and Implementation

In this section, we discuss the architecture and implementation of MultiMasher. We
start by discussing two alternative architectures that we explored. Then we provide
details on the implementation.

3.3.1 Alternative Architectures

One major challenge in cross-device applications is to keep the state synchronised
across multiple devices. We have experimented with two different architectures for
MultiMasher. The architectures are based on the two approaches Lowet and Goergen
describe in [109]: JavaScript engine input synchronisation and output synchronisation.
The first approach synchronises UI events, for example clicks. The synchronisation thus
happens before JavaScript is executed. In contrast, output synchronisation propagates
the changes to the DOM that have been triggered by an event and subsequent exe-
cution of JavaScript. Lowet and Goergen favour input synchronisation arguing with
better scalability and user experience. This is the approach that we used in the first
MultiMasher prototype [74]. In this version, events are tracked on all client devices.
When an event occurs, it is forwarded to a server which propagates it to all clients par-
ticipating in the cross-device mashup (Fig. 3.9 left). On each device, the MultiMasher
event engine triggers the event, invoking event handlers that were installed by the ori-
ginal web application. The event handlers are also invoked on the device from which
the event originated. For example, when the Wikipedia search button is clicked on
one device, the MultiMasher event engine replicates that click on all connected devices.
Consequently, the search is repeated on all devices and they all send a search request
to Wikipedia, resulting in the same article being displayed on all devices.

Our experimentations with this architecture has revealed two main drawbacks.
First, repeating requests to the server can be problematic, in particular when the re-
quest updates the server. The HTTP standard2 describes some requests (in particular
GET) as safe, meaning that they only serve to retrieve information and should not
change the state of the server. Similarly, the DELETE and PUT requests should be
idempotent so that multiple invocations of the same request have the same effect as a
single invocation. Safe and idempotent requests pose no problem with input synchron-
isation. In contrast, POST is neither safe nor idempotent. Consequently, sending the
same POST request from multiple devices due to the synchronisation of events could
have unwanted side effects. For example, if a mashup contained an online shop, the
input synchronisation could lead to the buy button being pressed multiple times (once
per device). This in turn could lead to multiple orders. The second problem with in-
put synchronisation is that the server might send different content to different devices,
causing the devices to run out of sync. For example, a server may answer a search query
differently based on the search history on each device or show personalised results.

Since MultiMasher is targeted to be used with arbitrary websites whose servers are
out of our control, we opted for a centralised approach based on output synchronisation
in the second prototype. Instead of synchronising the event itself, the changes to a
website after the event has been triggered are synchronised. Each event is handled only

2https://tools.ietf.org/html/rfc2616#section-9 Accessed on 13.03.2017

https://tools.ietf.org/html/rfc2616#section-9
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Figure 3.9: The input synchronisation MultiMasher architecture on the left and the
output synchronisation architecture on the right.

once, eliminating duplicate requests to external servers. To simplify the state manage-
ment, there is exactly one reference browser that applies all events and communicates
the changes to the connected devices. We opted for a remote control solution similar
to one used in Highlight [145] and use a browser on a server as a proxy (Fig. 3.9 right).
Events on the devices are intercepted and forwarded to the proxy browser on the server.
Only the proxy browser executes the attached event handlers. The event handler could,
depending on the implemented functionality of the website, trigger local JavaScript up-
dating the DOM or send requests to the server of the website to retrieve new data. The
resulting website is sent to all connected devices, including the one that triggered the
event. Whereas in the first approach, each device maintains a session with the website
server, there is only a single session in the second approach, namely between the proxy
browser and the website server.

3.3.2 Implementation

Figure 3.10 illustrates the MultiMasher implementation which constists of a client and
a server component. The server is running on the Node.js3 platform with MongoDB4

for persistence. It uses the PhantomJS5 headless browser as the proxy that handles
the events. PhantomJS offers a GUI-less browser that can be controlled through a
JavaScript API. Events are captured on the client, sent to the Node.js server and
replayed in the PhantomJS proxy. The server then reads the updated DOM from the
proxy and sends the changes back to the clients. The communication between the server
and the clients has been realised with the Socket.io6 WebSocket library. The client-side

3https://nodejs.org/ Accessed on 13.03.2017
4https://www.mongodb.com/ Accessed on 13.03.2017
5http://phantomjs.org/ Accessed on 13.03.2017
6https://socket.io/ Accessed on 13.03.2017

https://nodejs.org/
https://www.mongodb.com/
http://phantomjs.org/
https://socket.io/
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Figure 3.10: The MultiMasher implementation.

logic was implemented in JavaScript while the UI uses the MV* framework AngularJS7

and interface components from Bootstrap8. In the MultiMasher client, each mashup
component is loaded inside an iframe. The JavaScript of the original website is disabled
in the client-side components to avoid that the state on the different devices can run
out of sync. Instead all events, for example clicks, are captured by the MultiMasher
client-side logic and replayed on the proxy browser.

3.4 Evaluation

We have carried out two evaluations of MultiMasher. First, we present the results of
a conceptual evaluation along the dimensions of an established framework, then we
discuss a technical evaluation that analysed the comparability with 50 top websites.

3.4.1 Conceptual Evaluation

We have evaluated MultiMasher along the dimensions of a logical framework for multi-
device user interfaces [150]. The framework describes design dimensions that are relev-
ant in cross-device frameworks and applications. However, it does not take into account
dimensions relating to mashups. To account for the mashup aspect in our work, we
have added the following dimensions.

Inter-Component Communication describes how distributed UI elements can be
set up to communicate with each other. This might be implicit, if no configuration

7https://angular.io/ Accessed on 30.08.2017
8http://getbootstrap.com/ Accessed on 13.03

https://angular.io/
http://getbootstrap.com/
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by the user is required; explicit, if the connection has to be manually established;
and mixed if both cases are possible. MultiMasher provides a mixed approach.
Implicit communication is only possible for components that originate from the
same source, otherwise the communication has to be set up explicitly via tagging.

Synchronisation Consistency defines how complex it is to maintain synchronisation
across devices and websites. In a consistent system, resynchronisation is easy to
achieve; while in an inconsistent system, resynchronisation is hard to achieve. An
example of similar observations may be found in [109]. As MultiMasher stores
the state of a mashup centrally on the server, a device that is out of sync simply
needs to reconnect to the server in order to synchronise.

Type of Components analyses the type of components used in the distribution.
These can be widgets, which are small, pre-built, self-contained web applications.
Another option is to support arbitrary HTML elements, which is the case in
MultiMasher.

Component Creation defines the mechanisms that can be supported for creating
components. Components may be pre-built, i.e. widgets; scripted at design-time,
i.e. by developers working on the cross-device-mashup; or generated by direct-
manipulation of websites by the user as in MultiMasher.

Flexibility to Changes analyses flexibility to changes in the source websites, e.g.
because of evolving website structure of the re-authored pages. It ranges from
high if components can adapt well to the new source to low if no adaptation is
provided. In MultiMasher, an evolving website can interrupt inter-component
communication. If the DOM elements for a component can no longer be found,
it only affects that component. The rest of the mashup remains stable and the
user may adjust the component to any changes in the source website.

Table 3.2 provides a summary of our analysis of MultiMasher with respect to the
existing and additional framework dimensions. We justify the values chosen in the
existing dimensions as follows. Distribution is dynamic as it can be updated at run-
time. Migration is supported at the level of UI elements, as mashup components can
be moved between devices while preserving state. The granularity that is supported
in MultiMasher ranges from the entire UI down to components of UI elements. The
smallest granularity that can be chosen is the HTML element, however, since compon-
ents can contain nested elements the entire UI could be chosen by selecting the body

element. The trigger dimension describes who can cause changes to a cross-device inter-
face. In MultiMasher the system does not automatically redistribute components across
devices. Instead all changes have to be made by the user. In terms of sharing devices,
MultiMasher provides support for moving information. Any user can move components
to a shared device. Sharing by interacting is also possible, as is illustrated in the scen-
ario where two users can control a shared TV with their mobile devices. MultiMasher
supports mixed timing. A mashup can be migrated immediately from one device to
another. As the mashup state is stored centrally on the server, it is not required that
both devices are present and migration could also happen in a deferred manner when a
second device joins after the first device has left the system for a while. The interaction
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Multi-Device Dimensions MultiMasher

Distribution Dynamic
Migration UI elements
Granularity Entire UI to components of UI elements
Trigger User
Sharing Moving information, sharing by interacting
Timing Mixed
Modalities Multi-modal
Generation Run-time
Adaptation Resizing
Architecture Client-Server
Mashup Dimensions MultiMasher

Inter-Component Communication Mixed
Synchronisation Consistency High
Type of Comp. HTML element
Flexibility Medium
Creation Direct manipulation

Table 3.2: Conceptual evaluation for multi-device UI dimensions (left) and mashup
dimensions (right)

modalities that can be used with MultiMasher are dependent on the ones supported
by the browser and implemented by the underlying websites. As some browser can be
used with touch, mouse, or speech, we rate this dimension as multi-modal. MultiMasher
does not differentiate between design- and run-time, so all UI generation happens at
run-time. The most essential support for UI adaptation is provided in that components
can be moved and resized to accommodate different device characteristics. As outline
above, the system has been built with a client-server architecture.

3.4.2 Technical Evaluation

The technical evaluation used a methodology similar to [139] and had the goal to analyse
compatibility with existing websites. MultiMasher was used with 50 top websites,
ranked according to popularity and traffic by Alexa9. We selected the first 5 websites
from 10 categories: Arts, Business, Games, Health, Home, News, Science, Shopping,
Society, and Sports. The evaluation was conducted in February/March 2014.

Setup

To asses MultiMasher with these top websites, we developed a simple but representative
cross-device scenario (Fig. 3.11). The scenario was chosen because it can be constructed
using almost any type of website. Two devices are used in the scenario, each accessing
a different mashup constructed from two websites. The two websites are separated into
components, which are distributed across the devices and tested. We have identified

9http://www.alexa.com/topsites Accessed on 15.05.2017

http://www.alexa.com/topsites
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Browsing Page elements are loaded and displayed correctly.
Page elements behave as expected.
User interactions are handled correctly.

Distribution Page elements can be extracted and distributed as components.
Distributed elements are displayed correctly.
Distributed elements behave as expected.
Distributed elements are synchronised with the underlying web
page.

Mashing up Elements of a web page can be linked with elements belonging to
another page.
Click, change, and submit events are correctly replayed in linked
elements.

Table 3.3: Criteria of the technical evaluation.

three types of components which can be found on most websites: menu, search bar, and
main content. Only one of the two websites is changed at each iteration of the scenario,
while the other is fixed. The changing website is the one under test. The purpose of
the fixed website is exclusively to test the mashup capabilities – in particular the inter-
component communication across devices – and it should not impact the evaluation. We
selected Wikipedia for this purpose, as it had proved to work very well in MultiMasher.

Figure 3.11: The evaluation scenario.

We have defined criteria in three categories to assess MultiMasher (Table 3.3).
Browsing criteria assess whether a website can be loaded in MultiMasher, display-
ing and behaving correctly. Distribution criteria refer to component extraction. Web
page elements should display and behave correctly when distributed as components
and remain synchronised with the underlying website (implicit inter-component com-
munication). Finally, the mashing up criteria are used to check if components can be
linked with elements from another website (explicit inter-component communication)
and if events are propagated correctly. For each criterion, a value between 1 and 5 was
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assigned using the following scale:

1. very poor, major issues (e.g. page will not load)

2. poor, only specific elements are working

3. fair, most critical elements are working

4. good, only specific elements are not working

5. very good, full support

The evaluation and assignment of values was carried out by Stefano Pongelli as part
of his Master thesis project [179].

Results

Overall, MultiMasher demonstrated good compatibility with many websites from differ-
ent domains. 43 of the 50 tested websites (86%) received an average rating of 4 or higher
when aggregating over all criteria. However, the browsing criteria take precedence over
the other categories and can be understood to be an upper bound on the compatibility.
A low score in terms of browsing implies a low compatibility with MultiMasher overall,
despite possibly higher scores in distributing and mashing up. Considering the brows-
ing criteria in isolation, the number of websites that scored an average of 4 or higher
drops to 31 (60%). This score implies that they had either no issues or only small
issues affecting non-critical elements, for example ads in separate iframes. Figure 3.12
provides a summary of the browsing results. 48 sites (96%) scored a 3 or higher, which
implies that the majority of critical elements were working as expected.
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Figure 3.12: The results for the browsing criteria.

The compatibility with the distributing and mashing up criteria was high. For the
distribution criteria, 48 sites (96%) scored a 4 or higher and 17 sites were rated a 5
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Figure 3.13: The results for the distributing criteria.

(Fig. 3.13). Similarly, for the mashing up criteria, 44 sites (88%) reached at least a 4
and 39 sites (78%) obtained the maximum rating of a 5 (Fig. 3.14).

Most issues we observed are related to the following challenges.

• Heavy use of JavaScript. To prevent duplicate updates and clients running out of
sync, we have blocked JavaScript execution on client-side components. Instead,
JavaScript is executed in the proxy browser and the results are sent to the clients.
In most cases, this did not affect the normal behaviour of a website. However,
it does limit cases where dynamic behaviour is essential, for example for drag-
and-drop interactions or panning a map. Such operations trigger mouse move
events, which are not synchronised to the server for performance reasons. A single
interaction may produce hundreds of events. It would be possible to throttle the
events and only execute a reduced number on the server, however, the usability of
such interaction techniques heavily depends on short reaction times. The latency
introduced by a round-trip to the server would be problematic.

• CSS extraction. We encountered some instances where the extracted element
was not positioned correctly inside the component or where the page background
was shown out of place. We manipulate the CSS of the extracted element so
that it is positioned at the top left corner of its component. In some cases this
manipulation conflict with existing CSS rules. Currently, efforts are made to
introduce a component standard to the web10. While web components are not
yet widely spread, their goal of encapsulation of functionality and style could
mitigate the problem.

• DOM evolution. MultiMasher identifies the HTML elements making up a com-
ponent with a CSS path. Some websites change their DOM continuously to
prevent spam, for example by randomly changing IDs of form elements. This be-
haviour interferes with our path-based approach and causes elements to be missed
or wrong elements to be matched. DOM re-matching techniques, such as the ones
introduced in PageTailor [11], could be used to alleviate this issue.

10https://www.w3.org/standards/techs/components Accessed on 17.03.2017

https://www.w3.org/standards/techs/components
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Figure 3.14: The results for the mashing up criteria.

• Nested iframes. Certain websites load content inside iframes. We have no control
over this nested content due to the same origin policy11 and cannot forward events
from the client to the proxy in the server. Furthermore, the iframes can be used
to inject JavaScript to the parent website causing the client-side copy to behave
differently from the one in the proxy browser.

3.5 Discussion

With MultiMasher, we have presented a platform for experimentation with cross-device
applications. Cross-device prototypes can be built with the visual tools and little tech-
nical knowledge is required. The reuse of existing applications enables a fast process
and the direct drag-and-drop manipulations allow the user to quickly adapt to new
devices joining a mashup. Since the produced prototypes are functional, they can be
evaluated with potential users and even changed on the fly during an evaluation to take
into account a user’s feedback.

While we have not formally evaluated MultiMasher with end-users, it was demon-
strated to a wide range of visitors and in classes. Up to 30 students have joined the
same cross-device mashup with their own devices and we did not observe any issues.
In particular, a Sudoku game that was turned into a multi-user application with only
a few clicks proved to be very popular among students.

While the produced cross-device mashups can be used on any device with a browser,
the visual tools for creating and manipulating them have been optimised for mouse
interaction and somewhat larger screens. Mashups are thus best created at a laptop
or a PC. However, we do expect most designers to have access to such equipment.
Disabling JavaScript in the components on the client-side can hurt user experience to
some extent. Dynamic behaviour that relies on JavaScript such as certain animations

11https://www.w3.org/Security/wiki/Same_Origin_Policy Accessed on 17.03.2017

https://www.w3.org/Security/wiki/Same_Origin_Policy
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or drag-and-drop interaction is not supported. However, we consider this limitation
acceptable for the prototyping stage.



4
XD-MVC: Implementation

This chapter1 presents a web-based library for implementing cross-device applications.
While the web platform offers primitives that enable cross-device applications, working
with the platform directly requires every cross-device developer to tackle issues such
as UI distribution, state synchronisation, or device pairing individually and manually.
On the other hand, existing cross-device frameworks often follow an all-in approach
and restrict the choice of technologies that can be used, for example in terms of UI
frameworks. With the XD-MVC library, we investigate how we can provide abstractions
for common cross-device development tasks while allowing the developer to work with
familiar tools and technologies. We propose a layered architecture that gives developers
a choice in the level of support they need, with the goal of achieving a low threshold
and a high ceiling [133].

We first introduce the structure and concepts of XD-MVC and explain how they
support cross-device development. We then discuss the architecture and implementa-
tion of the library with particular focus on the communication architecture. XD-MVC
can support both client-server and peer-to-peer communication to enable low latency in
browsers that support peer-to-peer communication and a client-server fallback solution
for those that do not. To demonstrate the usefulness of XD-MVC, we describe a set
of sample applications that have been implemented using the library. The library has
been made available to the public on Github2.

4.1 Concepts

XD-MVC provides support for the development of cross-device applications at different
levels of abstraction. We first motivate and explain the layered structure of XD-MVC.
Next, we introduce the concepts that the lowest layer provides. Then we explain how

1Earlier versions of parts of this chapter were originally published as Husmann et al. [73, 77, 76].
2https://github.com/mhusm/XD-MVC
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the library can be used with the MV* library Polymer3 and introduce the higher level
components that we provide with Polymer.

4.1.1 Layered Architecture

Given the large number of front-end frameworks that are available and used in web
development we wanted to avoid locking developers into a single framework. At the
same time, only offering a general purpose solution would still leave many tasks to the
developer. We thus explored a layered approach (Fig. 4.1).

Figure 4.1: The layers of XD-MVC.

The lowest layer is implemented in pure JavaScript for a maximum of compatibility
with front-end frameworks. This layer facilitates connection management, distributes
information about devices and their roles in the system, and provides state synchron-
isation with an event-based API. A developer can choose to use the library as they
wish, either by building their application directly on top of the library or with the
help of an MV* framework. If an MV* framework is used, some integration may be
required to map library concepts to framework concepts. As a proof-of-concept, we
provide an integration with the Polymer framework. Our Polymer integration extends
beyond simply providing the JavaScript API in Polymer. It includes a set of Polymer
components as building blocks that handle common cross-device tasks, including pre-
configured UI distributions and visual components. While these components give less
freedom to the developer in comparison to the lower level API, they require less manual
configuration and scripting.

4.1.2 JavaScript API

The JavaScript layer provides an event-based API for connection management, infor-
mation about devices and roles, and state synchronisation. Note that XD-MVC is based
on a thick-client architecture. All code examples in this section are executed on a client
device. The server-side is discussed in the architecture and implementation section. An
early version of the JavaScript API was developed in [182].

3https://www.polymer-project.org/ Accessed on 23.03.2017

https://www.polymer-project.org/
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Connection Management

In a cross-device application, devices that participate together in an application need to
be associated somehow. XD-MVC provides an API so that devices can be paired and
unpaired in an ad-hoc manner. As applications built with XD-MVC are web-based,
an application is started by loading a URL in the browser. The XD-MVC library will
register the device with a server upon initialisation. The server assigns a unique ID
to each device. The ID can be made persistent so that it is kept by a device across
reloading of the application or it can be set to change any time a new connection is
made to the server for privacy reasons. Device A can be paired to device B by specifying
B’s ID in a pairing request. B will receive a pairing event so that it is aware of the
connection and A will be notified of the success or failure of the request. When a third
device C is to be added to the group, it is sufficient to connect C to either A or B. The
library ensures that all devices within a group are connected to each other by building
up a complete graph of connections. Listing 4.1 illustrates the API for connecting
devices.

1 XDmvc.connectTo(’someDeviceId’);

2

3 XDmvc.on(’XDconnection’, function(device){

4 console.log(’now connected to ’ +device.id).

5 });

Listing 4.1: Connecting to a device by its ID and receiving an event for an incoming
connection.

Devices and Roles

XD-MVC shares information about devices connected to each other in a group with
each device. This allows the developer to distribute and update the UI accordingly. For
example, when a TV and a phone are paired, the developer could display the controller
of a video player on the phone and the video itself on the TV. On the other hand,
if they only detect a single device, both components could be displayed on the same
device. The event-based API informs the developer of devices joining and leaving. In
addition, the developer can query the connected devices at any time. XD-MVC groups
the devices into categories based on screen size (extra large to extra small), but also
provides the exact dimension of the application window in pixels. An event is triggered
when a device changes the size of the application window, for example when a browser
is resized (Lst. 4.2).

1 XDmvc.on("XDdevice", , function(device){

2 console.log(’device has changed ’ +device.width +’ ’ +device.height);

3 });

4

5 if (XDmvc.othersDevices.small > 0) {

6 console.log(’there is a small device connected to this device’);

7 }

Listing 4.2: Listening for changes in the devices and querying devices by type.
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XD-MVC integrates a concept of device roles. A developer can define arbitrary
roles and associate them with the devices. While other frameworks associate roles with
users, in our analysis of related work on device use we found that associating roles with
devices better fits the mental model of users. However, a developer is free to map a user
role to a device role. Essentially, a role in our model is simply a piece of information
associated with a device. It is up to the developer to define the semantics of a role.
A device can have multiple roles and a role can be taken by multiple devices. The
JavaScript API provides functions to add and remove roles from a device (Lst. 4.3).
Similar to the device information described above, XD-MVC allows the developer to
register for events in role changes and query the roles at any time. The library informs
the developer about role changes on any connected device. The video player example
could also be realised with a controller and a player role that are dynamically assigned
to the devices.

The developer determines how the roles are allocated to a given device. For ex-
ample, they could do it based on device information. Alternatively, the assignment
can be passed on to the user through the UI, enabling end-user customisation of the
distribution. Any device with the controller role could then be configured to show the
video controls whereas player devices would be set to show the video.

1 XDmvc.addRole(’controller’);

2 XDmvc.removeRole(’viewer’);

3

4 XDmvc.on(’XDroles’, function(device){

5 console.log(’device ’ +device.id +’ has changed roles’ +device.roles).

6 });

7

8 if (XDmvc.otherHasRole(’controller’)) {

9 console.log(’At least one of the other devices has the controller

role’);

10 } else {

11 console.log(’None of the other devices has the controller role’);

12 }

Listing 4.3: Adding and remove roles to the current device. Listening for changes to
roles on connected devices and querying roles.

State Synchronisation

In a cross-device application, multiple devices must be kept in sync. XD-MVC operates
on the concept of a distributed MVC architecture [54]. Instead of synchronising a
rendered UI across devices – as is the case for image based solutions (for example
[12, 183]) – only the model is kept in sync. When the model changes, each device needs
to re-render its view (Fig. 4.2). In contrast to the image-based approaches, smaller
amounts of data need to be transmitted and dynamic behaviour, such as animations,
can be handled locally. As a disadvantage, the MVC-based approach requires developer
intervention whereas the image-based ones can handle legacy applications more easily.

XD-MVC allows the developer to specify models to be synchronised across devices.
The specified models must be of type Object or Array. Models of simple types such



4.1. Concepts 63

as String or Number can be wrapped in an Object. To register for synchronisation,
the developer needs to specify the model object, an optional callback function that is
triggered whenever another device manipulates the model, and a label that identifies
the model (Lst. 4.4, line 2). The callback function (line 4) receives the model label, the
new value, and the ID of the device that caused the change. It is the developer’s task
to initiate a change of the view.

Figure 4.2: State synchronisation based on a shared model in XD-MVC.

1 var zoom = { level : 1};

2 XDmvc.synchronize(zoom, setZoom ,"zoom");

3

4 var setZoom = function(label, newZoom, deviceId){

5 console.log(’The device ’ +deviceId + ’has changed the model ’ +label

+’. The new value is ’ +newZoom);

6 }

Listing 4.4: Synchronising a model object and listening for changes with a callback
function.

4.1.3 Polymer Components

XD-MVC provides a set of web components built with the Polymer library. On the
one hand, these serve as a demonstration of how XD-MVC can be integrated with an
MV* framework. On the other hand, they provide additional functionality that is not
available in the JavaScript API, including visual components. Polymer is a library for
building web components with a declarative API. A component provides functionality
and optionally a visual UI. Components built with Polymer can be integrated into any
web application. At the same time, Polymer can be used as an MV* framework and
it implements established concepts such as two-way data-binding. In line with this
component-based philosophy, we have built a set of components for XD-MVC that can
be used in isolation or combination.

State Synchronisation with Data-Binding

Many MV* frameworks offer a data-binding mechanism to map a model to a view.
Polymer includes two-way data-binding: changes in the model update the view and
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manipulations in the view (for example entering text into an input) can directly up-
date the model. We hook into this mechanism for state synchronisation with the
xdmvc-synchronised component. The component has a declarative API for binding an
object (Lst. 4.5). The bound object needs to be a map of String labels to values of type
Object or Array to enable a mapping to the JavaScript API described above (Lst. 4.6).
The synchronised objects can then be bound to any other component. Changes in the
state will be propagated to all connected devices. The two-way data-binding ensures
that the view updates to reflect changes received from another device.

1 <xdmvc-synchronised objects="{{synced}}"></xdmvc-synchronised>

2 <video-controller state="{{synced.video.state}}">

3 </video-controller>

4 <video-player state="{{synced.video.state}}"

title="{{synced.video.title}}">

5 </video-player>

Listing 4.5: Synchronising a model object with Polymer and two-way data-binding.

1 properties: {

2 synced: {

3 type: Object,

4 value: function(){ return

5 {"video": {"state": "play",

6 "title": "Cape Epic Summary"},

7 "playlist": [1,5,7],

8 }

9 },

10 notify: true

11 }

12 }

Listing 4.6: Declaring a synchronisation map containing an object (video) and an
array (playlist) in Polymer.

Declarative UI Distribution with Roles and Devices

XD-MVC provides declarative access to the device and roles API with the xdmvc-roles
and xdmvc-devices components. Combined with Polymer’s conditional templates,
these elements allow the developer to specify a UI distribution in a declarative manner.
The dom-if templates in Polymer display or hide content based on a Boolean condition.
Listing 4.7 illustrates an example. To enable declarative access to roles the correspond-
ing XD-MVC component is added. Using data-binding, the developer can query if a
given role is currently selected. In the example, the video controller is only displayed
if the controller role is selected and similarly the video player requires the player role.
The same could be implemented by querying the device size instead of using roles.
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1 <xdmvc-roles roles="{{roles}}"></xdmvc-roles>

2

3 <template is="dom-if" if="{{roles.isselected.controller}}">

4 <video-controller state="{{synced.video.state}}">

5 </video-controller>

6 </template>

7 <template is="dom-if" if="{{roles.isselected.player}}">

8 <video-player state="{{synced.video.state}}">

9 </video-player>

10 </template>

Listing 4.7: Declarative specification of a UI distribution using XD-MVC and
Polymer’s conditional templates.

Distributed Layout Templates

While the information about devices and their roles enables the developer to distribute
the UI in many ways, it does require some effort on the part of the developer. In
contrast, systems that distribute the UI automatically lower that effort at the price
of control. We have opted for a middle ground by providing a small template library
for distribution patterns. Related work has identified patterns in end-user customised
distributions [138, 137]. The patterns reduce the amount of code that needs to be
written to achieve a distributed UI. As a proof of concept, we have implemented the
following three templates:

• The controller template distributes content between controller and viewer devices
and implements the most popular remote-control pattern observed in [138]. List-
ing 4.8 illustrates the pattern in a code example and Fig. 4.3 shows the resulting
application loaded onto 3 devices.

• The pages template distributes content paginated content across devices. The
content can be navigated in a synchronised manner. Adding additional devices
allows more content to be viewed simultaneously. Listing 4.9 illustrates the pat-
tern in a code example and Fig. 4.4 shows the resulting application loaded onto
3 devices.

• The lazy pages template is similar to the pages template, however content is loaded
lazily. It is thus better suited to situations where the list of pages is very long.

Note that the mirror pattern from [138] is achieved by default if the appropriate
state synchronisation is set up. No further configuration is needed. Templates can be
nested and combined. For example, a pages template could be nested inside the viewer
part of the controller template.

Pairing

Device association is a recurring task in cross-device development. A whole range of
interaction techniques and technologies have been explored in related work. We have
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1 <controller-layout>

2 <div class="controller">

3 <paper-button on-click="prev" raised>Previous</paper-button>

4 <paper-button on-click="next" raised>Next</paper-button>

5 </div>

6 <div class="viewer">

7 <img on-tap="next" src="{{getSource(synced.gallery.selected,

albums)}}"/>

8 </div>

9 </controller-layout>

Listing 4.8: Using the controller template. Content wrapped in the
controller-layout tag is automatically distributed across devices. The content
must be structered into a controller and viewer section using the class attribute.

1 <page-layout current="{{current}}" selected="{{selected}}">

2 <div>page 0</div>

3 <div>page 1</div>

4 <div>page 2</div>

5 <div>page 3</div>

6 <div>page 4</div>

7 <div>page 5</div>

8 </page-layout>

9 <paper-button on-click="prev" raised>Previous</paper-button>

10 <paper-button on-click="next" raised>Next</paper-button>

11 <div>Global current page: <span>{{current}}</span></div>

12 <div>Selected page for this device: <span>{{selected}}</span></div>

Listing 4.9: Using the pages template. Content wrapped in the page-layout tag is
automatically distributed across devices. The other content is replicated.
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Figure 4.3: The controller example from Lst. 4.8 when loaded onto 3 devices. The first
device has the controller role and shows buttons to navigate a gallery. The other two
devices are viewers and display the selected image

investigated two approaches in XD-MVC. The first is based on URL sharing which
is an established technique in web-based cross-device frameworks. The latter is more
experimental and explores the space of social and physical proximity. We will discuss
each in turn.

URLs and QR codes XD-MVC provides a component for connecting devices based
on a shared URL. When an application is first loaded, it modifies its URL to include the
device ID. That URL can be shared to another device, for example with a messenger
application or NFC. When the second device opens the URL, it will automatically be
paired to the first device. The component can be configured to assign roles to the
devices based on their role in the pairing process (Lst. 4.10). In cases where copying
and sharing a URL via a service is not easily possible, a URL can easily be represented
as a QR code. Thus, the user can scan the code using a camera-enabled device instead
of having to type complicated and long URLs into the browser. XD-MVC provides a
component that generates such a QR code. Furthermore, it includes a visual component
consisting of the QR code and a list of all connected devices to provide feedback on the
current state to the end-user (Fig. 4.5).

1 <xdmvc-url-pairing connector="controller" connectee="viewer"/>

Listing 4.10: Pairing with shared URLs. If device A loads the URL of device B,
device A will be assigned the controller role while device B will be a viewer.

Social and Physical Proximity While a number of interaction techniques have ex-
plored device association based on physical proximity, we propose that social proximity
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Figure 4.4: The pages example from Lst. 4.9 when loaded onto 3 devices. Each device
shows a page, the other controls are replicated on each device. Stepping through the
pages is synchronised across devices.

should also be taken into account. Physical proximity does not necessarily imply social
proximity, as we illustrate with four scenarios in Fig. 4.6. Existing techniques enable
the pairing of devices that are physically close. However if physical proximity is the only
criterion, they can present a security risk, as is illustrated by the case of a woman who
received unwanted pictures from a stranger on a train [8]. While some systems do allow
the user to restrict access to people on the contact list, there are cases where sharing
with physically close strangers is wanted and the user has to remember to switch the
settings to the appropriate mode. We introduce three pairing modes that balance user
control and the amount of user intervention (Fig. 4.7).

• Auto-Pairing automatically pairs two devices and requires no user interaction.

• Req-Pairing requires a pairing request from the initiating device. No interaction
is required from the receiving device.

• Ack-Pairing requires a pairing request from the initiating device and the receiver
has to accept the request in order to establish the connection.

With auto-pairing the user has no control over the pairing but also does not need
to interact. At the other end of the spectrum, there is ack-pairing where on both
the sending and receiving device, a user interaction is required. We propose that the
appropriate mode could be chosen automatically depending on both the physical and
social proximity of the devices and their owner. For example, two physically close



4.2. Architecture and Implementation 69

Figure 4.5: A visual component for connecting devices via QR code or URL. The button
at the top shows the number of current connections and toggles the QR code and the
connection information. At the bottom, currently connected devices are shown together
with information on device type.

devices belonging to the same user could be automatically paired. To avoid that, for
example, a user’s smartphone at work is paired with the TV at home, req-pairing could
be used when the distances between the devices passes a threshold. Consequently, the
devices would only be paired when the user explicitly requests it. Finally, for people
on the user’s contact list ack-pairing could be used to ensure that both parties agree
with the pairing. To pair devices of two strangers, existing methods based on shared
information such as a QR code or a PIN code could be used. We have implemented a
prototype of this pairing model as an extension to XD-MVC. The extension is available
as set of Polymer components including visual elements (Fig. 4.8). The concept of
pairing based on social and physical proximity was developed in [30].

4.2 Architecture and Implementation

In this section, we discuss interesting aspects of the architecture and implementation
of the XD-MVC library. We start by analysing different communication architectures
between devices and motivate our choice for a hybrid architecture. We then describe
the overall architecture of the library and discuss its implementation.

4.2.1 Device-to-Device Communication

Communication between devices is essential in cross-device applications. It is a re-
quirement for state synchronisation. As we have discussed in Chapter 2, client-server
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Figure 4.6: Scenarios of social and physical proximity.

Figure 4.7: The three pairing modes with varying user control.

architectures have been predominant in cross-device systems. In client-server architec-
tures, communication between clients is mediated by the server. However, peer-to-peer
architectures have been proposed as a better fit by some [45]. For systems built with
pure web technologies and running in unmodified browsers, peer-to-peer communication
has become an option only recently with the introduction of the WebRTC standard.
However, the standard has not yet been implemented by all major browser. Most not-
ably, Safari is missing support as of Summer 2017, but has committed to the integration
of the standard later in the year.

Moving from a client-server to a peer-to-peer architecture can drastically reduce
latency. This is the case, in particular, when the server is remote and the clients are co-
located. Incidentally, that is a common setup for web-based cross-device applications.
The application is typically served by some web server which could be anywhere in the
world. The devices used together in a cross-device application are usually in the same
room, even though it could be possible to integrate remote devices. We have measured
round-trip times between two clients communicating over a server. The clients were
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Figure 4.8: A visual component for pairing devices based on the user’s contact list.
Devices can be sorted by distance to show physically close ones first. Selecting a device
sends a pairing request. Since the ack-pairing mode is used, each request needs to be
confirmed.

in Zurich, Switzerland and the server was in New York, USA. We measured the time
for message from device A to device B and back to A. Resulting times were at around
200ms on average. Direct peer-to-peer communication over WiFi was a whole order
of magnitude faster, measured at 20ms. Humans perceive reactions by a system that
occur within less than 100ms as instantaneous [19]. When we halve the round-trip time
to obtain an estimate for the time required to send a single message, we already reach
that limit with the client-server architecture. Furthermore, the measured time does
not include any updating of the UI which would add more time. Consequently, cross-
device applications built with client-server architectures may struggle to meet optimal
response times for human perception. This could, in particular, be problematic in
applications with continuous interaction, for example panning maps that are distributed
over multiple devices.

While the improved latency is a clear argument in favour of a peer-to-peer architec-
ture, the lack of support for WebRTC in Safari would exclude a large set of devices (all
iPads and iPhones). To address this problem, we propose a hybrid communication ar-
chitecture: Where available, device communicate directly over WebRTC. Devices with
no support fall back to communication mitigated by a server (Fig. 4.9). The perform-
ance measures were collected in [43] where this hybrid architecture was developed as
well.

4.2.2 System Architecture

XD-MVC is split into a client- and a server-side part. Even when only peer-to-peer
communication is used, a server is still needed to establish the communication between
the devices. Once the devices have been paired, the server could in theory be discon-
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Figure 4.9: Devices with WebRTC support can communicate directly (A and B).
Devices without support can use the fallback via the server (C).

nected, however, no new connections could then be established. Figure 4.10 provides
an overview of a generic application built with XD-MVC. As with any web application,
there is the need for a web server that serves the client HTML and other resources.
The client integrates the XD-MVC library. The library communicates with the XD-
MVC server component. The server component can either be integrated into the web
server, if it is written in Node.js, or executed as a stand-alone server. The XD-MVC
server maintains a list of all devices that are connected to it. For devices that support
WebRTC, it establishes the peer-to-peer connection upon a pairing request. In addition,
a WebSocket connection is maintained to each device for the fallback communication
for devices without WebRTC support.

Figure 4.10: The architecture of an XD-MVC application.
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4.2.3 Implementation

The XD-MVC server is implemented in JavaScript as a Node.JS module. For the
WebSocket communication, it uses Socket.io. The WebRTC communication was imple-
mented with PeerJS4. The server has the responsibility of enabling and coordinating
communication among devices. Most of the logic is implemented in the client-side of
the library.

To enable the envisioned flexible use of the framework, the client is implemented in a
number of layers and modules. The lowest layers are all implemented in JavaScript. The
first layer implements device-to-device communication. Using this layer, a developer
can enable direct communication between devices. The system automatically routes the
communication via the server if needed. This process is transparent to the developer.
The next layer adds the concept of roles and devices and provides state synchronisation.
To minimise the amount of data that needs to be transferred, only a delta that represents
the change is transmitted. For example, when a new item is added to an array, only
that item is transmitted along with its position in the array rather than a snapshot of
the whole array. The library computes the delta on the sender side and applies it on
the receiver side.

On top of this JavaScript layer, there are the Polymer components that provide the
same functionality with a declarative API. The Polymer layer was initially implemented
with Polymer 0.5, but was migrated later to Polymer 1.0. Optional Polymer components
provide functionality such as the pairing via URLs and QR codes as well as the layout
templates.

4.3 Evaluation

We have evaluated the XD-MVC library by creating a number of demonstrator applic-
ations. These applications demonstrate the breadth of applications that can be built
using the library. In this section, we provide an overview of a selection of applica-
tions developed with XD-MVC. The applications were built while the library was still
evolving. Consequently, some were developed when not all concepts were implemented
yet. For example, the layout patterns and the social pairing were added last, while state
synchronisation was available from the beginning. As a result, not all applications use
all features of the library. Table 4.1 provides an overview of all applications and the
main features each uses. However, this varied use is in line with the modular concept
of the library and the applications serve a means to demonstrate the flexibility of XD-
MVC. At the same time, the development of these demonstrator applications inspired
concepts that could be added to library and unearthed issues in other phases of the
workflow, in particular the insufficient support in testing and debugging. A number of
people were involved in building the applications. While some were built by the author
of this thesis and by students contributing to the library, others were built by students
not involved in the development of the library.

4https://github.com/peers/peerjs Accessed on 30.30.2017

https://github.com/peers/peerjs
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Application JavaScript
API

Polymer
Components

QR Pairing Social
Pairing

Layout
Templates

XD-Bike x x
Hotel
Booking

x x x x

Webcam
Viewer

x x x

Maps x
Voting x

Table 4.1: A summary of the main XD-MVC features that each application uses.

4.3.1 XD-Bike

XD-Bike is an application for planning mountain bike trips. It was inspired by existing
route repositories such as GPS-Tracks.com5. Existing repositories offer a large number
of routes to choose from; GPS-Tracks.com has over 1300 for Switzerland alone. To en-
able an informed choice, each route is accompanied by details such as length, technical
difficulty, and a map. Due to the large amount of data, the sites are best accessed on
devices with larger screens. Even though some have started to implement a responsive
design to better cater to mobile devices, the user experience clearly suffers on small
screens. As cross-device applications can provide increased screen real-estate, we con-
sidered this an interesting scenario to explore. We had in mind that multiple users
could pair their mobile devices while planning a route on the go, for example on the
train. On the other hand, we also wanted to cater to scenarios where a larger device
might be available, for example a TV in a hotel room.

These considerations have resulted in XD-Bike, a flexible cross-device mountain bike
route repository. XD-Bike is built as a number of components that can either be viewed
on a single device or distributed across multiple devices. The distribution is by default
done automatically by the system based on the space requirements of each component
and the size of the devices (Fig. 4.1). A map takes up more space than a route summary,
for example. Large devices can show multiple components simultaneously while smaller
one only show a single component. The user can however select a different component
for each device if they wish so.

XD-Bike was implemented by three students during a semester as part of the Infor-
mation Systems Lab where students earn 10 ECTS by working in teams on a project
during one semester (14 weeks). The project uses XD-MVC and Polymer (version 0.5).
Most of the time was spent on the general implementation and only a small portion
was spent on implementing the cross-device support with XD-MVC. Only an index for
the current route needed to be configured for state synchronisation. The automatic
distribution of the UI was implemented based on the device information provided by
the system. Pairing was implemented with URLs which were shared using NFC during
demos with Android devices. The URL sharing component was not yet available in
XD-MVC and the implementation was done manually. As we expected this to be a

5http://www.gps-tracks.com/ Accessed on 31.03.2017

http://www.gps-tracks.com/
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recurring developer task, we later added that component to XD-MVC. XD-Bike ex-
perimented with the role concept. The device initiating the cross-device interaction
was given a controller role. Only the controller device can choose routes while visitor
devices can only view routes.

Figure 4.11: XD-Bike used on two devices. A map is shown on the larger device. The
smaller device shows a summary of the selected bike route.
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4.3.2 Hotel Booking

The cross-device hotel booking application was developed as a demonstrator for the
concept of pairing based on physical social proximity. It was inspired by hotel booking
applications such as Booking.com6. Similar to the bike route repositories, hotel booking
sites present the user with a large amount of data: descriptions, maps, reviews and
more. Our cross-device booking application distributes that information across available
devices. One device lists available hotels. When a hotel is chosen, a map and a detail
view are available that can each be viewed on separate devices (Fig. 4.12). Alternatively
all components can be loaded onto a single device. However, we paid particular attention
to users who are on the go and have access to mobile devices only. When a single user
accesses the applications on two devices (for example a phone a tablet), the devices are
paired automatically. To support scenarios where the user is travelling with friends or
a partner, the devices can be paired based on this social connection. The application
lists contacts from the address book, showing physically close ones first. This would
allow friends in a cafe or on a train to quickly pair devices while avoiding pairing with
strangers. The application was implemented by Sivaranjini Chithambaram as part of
her Bachelor thesis project [30]. It uses XD-MVC with the Polymer integration, in
particular it integrates the extension for pairing based on social and physical proximity.
It uses a controller and a pages layout template. The list of results serves as a controller
component where as the map and hotel details have been implemented as two pages
inside the viewer part.

Figure 4.12: A cross-device hotel booking application.

6http://www.booking.com/ Accessed on 31.03.2017

http://www.booking.com/
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4.3.3 Webcam Viewer

The webcam viewer application is composed of two main parts: a webcam viewer and
a controller interface. The viewer displays a webcam image and is meant to be loaded
onto large screens, for example a public display or a TV. The controller has two modes:
in portrait orientation, the user can choose a webcam location from a list (Fig. 4.13),
in landscape they can rotate the camera to see a different part of the view and they can
navigate in time. The application was implemented with XD-MVC and the Polymer
integration. It uses live images obtained from 360 high-resolution Roundshot cameras7

in Switzerland. When an application is loaded by entering a URL in the browser, it
automatically assumes the viewer role, making use of the role concept provided by the
library. It displays a QR code for pairing, using another library component. Devices
that scan the code are automatically assigned the controller role and will show the
corresponding UI. The application was implemented in less than 300 lines of code, not
counting the dependencies.

Figure 4.13: A cross-device webcam viewer that can be controlled with a phone.

7http://www.roundshot.com Accessed on 31.03.2017

http://www.roundshot.com
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4.3.4 Maps

We have experimented with maps applications as they are a common usage scenario in
related work. We have created a maps application where devices can assume various
roles. Mirrored devices have their centres synchronised. If the map is panned on one
device, the other device updates accordingly. This mechanism allows the same region to
be inspected with different views, for example street maps and satellite maps. Overview
devices show the view ports of mirrored and viewer devices on an map (Fig. 4.14).
Viewer devices are independent of other devices, but show up on the overview. The
user can choose a role for each device in the UI.

Figure 4.14: Device 1 and 2 are mirrored devices and share a synchronised centre, but
have independent zoom and layers. Device 3 has the overview role and shows the view
ports of device 1 and 2 as coloured rectangles.

This application was built on top of the JavaScript API of XD-MVC. The maps
were realised with Google Maps and the application thus serves as a demonstrator for
integration with external components. The application uses the role concept, connection
management, and state synchronisation provided by the library. The benefits of the
peer-to-peer architecture have become apparent with this application in informal tests.
While panning is smooth on devices supporting WebRTC there is a notable lag with
those that do not.
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4.3.5 Voting

To demonstrate the usage of the library with an MV* framework other than Polymer,
we implemented an application with the React framework. It builds on the XD-MVC
JavaScript API. The application provides a voting mechanism. It could be used in group
meetings or deployed on a (semi-)public screen. There are two main components: The
results view shows questions and corresponding answers with the numbers of votes they
have received. The voter view allows a user to vote on existing questions or to add new
questions. Figure 4.15 illustrates the applications used with two phones and a tablet.
The tablet shows the results view. The phone is used to vote for a question, while
a new question is being added with the phone on the right. Devices can be paired
with shared URLs and QR codes. These pairing options are not available in the XD-
MVC JavaScript API and thus needed to be reimplemented in React. The application
including the React integration was implemented by Aryaman Fasciati as part of his
Bachelor thesis project [44].

Figure 4.15: A cross-device voting application. Devices can either be used to vote or
to display the results.

4.4 Discussion

In this chapter, we have introduced the cross-device library XD-MVC. Our goal with
the library was to provide flexible support for developers. The layered architecture
allows developers to choose the level of support they need, ranging from simple state
synchronisation to visual pairing components and distributed layout templates. We also
contribute a hybrid architecture for device-to-device communication. Transparent to
the developer, the library chooses a peer-to-peer or a client-server connection depending
on the technologies supported by the devices. We have demonstrated the flexibility and
usefulness of the library in a range of sample applications.

Some related work advocates against classic client-server architectures where an
internet connection is needed to reach a fixed server [122, 165]. Instead they suggest the
use of ad-hoc networks and peer-to-peer connections to support situations without an
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internet connection. Even though our library uses peer-to-peer connections, it requires
access to a server to be fully functional. The server is needed to setup the connection
between devices. Ad-hoc interaction in offline scenarios is thus not supported. In our
approach, the benefit of the peer-to-peer communication is the reduced latency.

When developing the sample applications, we noticed that, despite the usage of a
cross-device library, some tasks in the development process are poorly supported by
current tools. All applications are web-based and run in the browser. To test and
debug these applications we used conventional browser tools. However, these do not
cater for the parallel use of multiple devices in a single application. While there are
workarounds, for example using multiple browser windows or user profiles, there is a
lot of manual labour and repetition. In the following chapter, we investigate how these
processes could be better supported.



5
XD-Tools: Debugging

This chapter1 presents an integrated set of tools for debugging cross-device applications.
While there are many frameworks and toolkits that target the design and implement-
ation phase of cross-device applications, there is only limited support for testing and
debugging. Checking whether a piece of code that was just written behaves as expected
and, if it does not, finding out why, are crucial parts of the developer workflow [173].
For single-device development, a wide range of tools support this stage of the process.
However, these conventional tools have not been built with cross-device applications in
mind and consequently offer only limited support for such scenarios. The large set of
possible device combinations that can be used increases the space of solutions that need
to the checked. Furthermore, conventional tools do not account for the fragmentation
of a cross-device application across multiple devices. Devices are handled in isolation
and interdependencies between devices are not supported conceptually. As a result,
there is more manual labour required by the developer for coordinating devices and
aggregating debugging information that is distributed across devices.

In this chapter, we analyse how cross-device development differs from single-device
development with respect to informally verifying code and debugging. Based on these
differences, we identify a set of requirements for debugging support. Next we present
XD-Tools, a proof-of-concept implementation of these requirements. We report on a
qualitative evaluation of XD-Tools in a user study. This chapter was developed in [67].

5.1 Developer Tasks

Shneiderman and Mayer [173] have identified five basic programming tasks: composi-
tion, comprehension, debugging, modification, and learning. We discuss the challenges
cross-device development introduces with respect to these tasks. We omit learning as
it is out of scope and describe no specific modification tasks as modification “requires
skills gained in composition, comprehension, and debugging”. To illustrate these tasks,

1Earlier versions of parts of this chapter were originally published as Husmann et al. [78].
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we use a running example of a cross-device video player (like the application presented
in [197]). The video player is composed of the video stream, playback controls, and
a search interface. The video player adapts to the device configuration at hand by
distributing these components across the devices.

5.1.1 Composition

Composition entails understanding the problem, devising and implementing a plan
to solve it, and finally checking the solution [173]. In cross-device development, the
first three steps are supported by tools for design, prototyping, and implementation
such as the ones described in the two previous chapters. For checking the solution,
we distinguish four kinds of checks: Does the program distribute across devices as
expected? Does it behave as it should? Does it look as it should? Is it fast enough?
While the last three questions are not specific to cross-device applications, they can be
more challenging to answer when multiple devices are involved.

Distribution Checks

Most cross-device design and implementation frameworks allow the developer to spe-
cify how an application should be distributed across devices, for example using event-
based [28] or declarative approaches [197]. Independent of the approach, the developer
should verify that the application distributes components as expected for a given set
of devices. The request for preview tools mentioned in [197] illustrates that it can be
challenging for developers to predict the distribution solely by looking at the code. In
our video example, the playback stream should go to devices with larger screens, while
smaller devices such as phones show the playback controls. A developer could check
this assumption by testing the application with a few device configurations. In addi-
tion, they could verify that the application also distributes correctly in corner cases.
For example when two phones of equal size are used, and no other devices, the applica-
tion should still be functional and display all components. However, there is a trade-off
between testing a lot of device configurations which would likely result in better chances
that bugs are caught and the time and effort spent on these repetitive tests.

Functional Checks

In functional checks, the developer verifies that the application specific behaviour is as
expected. For example, when the play button is pressed, the video should start playing
on whichever device has the playback stream. This could be the same device or another
device. The potential distribution adds complexity to the process.

Visual Checks

The challenge of making a UI look good on a variety of devices is exacerbated in cross-
device applications where the possible combinations of devices increase the design space
and result in even more configurations that need to be checked. For example, when
only a tablet is used, the device shows the video stream as well as the playback controls.
When a mobile is connected, the controls are moved there. While in a conventional
application, a developer might check whether they implemented the design correctly
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for a phone, a tablet, and a desktop, a cross-device application can support various
combinations of these (and other) devices. So the developer might check with a phone
and tablet, only a phone, only a tablet and other configurations. As with the distribu-
tion checks, there is significant effort required to repeat visual checks on many different
configurations.

Performance Checks

While we do not address rigorous, quantified performance tests in this chapter, we do
expect a developer to informally check performance and react to obvious issues. The
distributed architecture of a cross-device application introduces a communication and
synchronisation overhead. This overhead can impact performance and the perceived
responsiveness of an application. When the application is tested on a single device,
performance issues may not be presented, for example, due to shorter communication
paths and lower latencies. Furthermore, the developer should take into account the
diverse nature of devices that may run the application. Not all of them may be as
powerful as the usual development machine. Finally, if an application supports multiple
users, simultaneous interaction and a large number of users can also impact performance
by increasing the synchronisation overhead.

5.1.2 Comprehension

When a developer has to work with software written by another person, for example
to fix a bug or add functionality, they need to have some understanding of the code.
The developer can acquire this knowledge by reading the code, by stepping through it
with a debugger, or by executing the code and examining the program output [106].
The distribution of a cross-device application adds complexity. It may be unclear from
the code what part will be executed on which device. On the other hand, stepping
through the code with a debugger on a single device may not have the same result as
doing so on multiple devices. However, using the debugger on multiple devices manually
requires coordination and the same process might need to be repeated with different
device configurations.

5.1.3 Debugging

Any of the above checks can reveal an issue or a bug could be reported by a user or
an automated test. A crucial first step in debugging is to reproduce the bug [9]. The
flexibility of cross-device applications can introduce challenges in reproducing bugs. It
is possible that a bug only manifests itself in a certain device configuration but not in
others. If the bug report omits such details, it can be challenging to reproduce the bug.
For example, the video player application has a button to toggle play and pause. A bug
report could state that the state of the button does not match the state of the video.
When the developer checks this using a single device that shows playback controls, they
do not observe the bug and the button behaves correctly. Only when they add a second
device with controls, do they realise that the state of the button is inconsistent across
multiple devices with playback controls because it is not properly synchronised.
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Once the bug has been reproduced, the developer will attempt to find the cause in
the code and fix it. During this process the developer will typically try to answer why
something did or did not happen [98]. This can be done by stepping through the code
with the debugger and examining the run-time state. This results in the same issue
of having to coordinate multiple debuggers on multiple devices that we have discussed
above. If it is not obvious which device is affected, breakpoints have to be repeatedly
set on each device and the developer needs to monitor each device to see which one hits
the breakpoint.

5.2 Requirements

Based on the developer tasks, related work in cross-device and web development, and
our own experiences in implementing cross-device applications, we have identified the
following requirements for tool support.

5.2.1 Emulation of Multiple Devices

Using emulated devices rather than real devices can speed up the iterations of writing
code and checking the solution significantly. It also allows the developer to test on
devices that are not physically available. However, emulated devices in current browsers
have been tailored to sequential rather than parallel use. For example, test first on an
(emulated) smartphone and then on a tablet. In contrast, in cross-device scenarios
devices are used in parallel and it would be desirable to be able to emulate multiple
devices simultaneously. Existing tools have not been built with such scenarios in mind.
While it is possible to emulate multiple devices on the same developer machine, manual
coordination and workarounds need to be employed. For example, the developer can
use multiple browser windows to emulate multiple devices. However, devices in the
same browser instance share session data and do not accurately represent independent
devices. This issue can be worked around, at least in Chrome, with multiple user
profiles. This comes at the cost of having to configure a new user profile when a new
device needs to be added. In summary, a tool for testing and debugging cross-device
application should support the emulation of multiple devices.

5.2.2 Integration of Real Devices

While we consider device emulation a crucial requirement, emulated devices cannot
replace testing with real devices. Device emulation cannot cover all aspects of a real
device. In particular, characteristics such as haptics and form factors cannot be emu-
lated. While performance emulation is possible in theory, it is often limited to network
throttling in practice. For these reasons, an application should be tested, at least oc-
casionally, on real devices. When issues are found during these checks, it is desirable
that debugging can be started right away incorporating these devices. Existing tools in
browsers provide support for integrating real devices, but it is rather static (for example
requires a USB connection) and not a good fit for rapid changes in device configurations
which are common in cross-device scenarios.
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While current tool support treats device emulation and the integration of real devices
as two independent tools, we suggest there could be benefits in combining the two.
The following scenario illustrates a possible use case. In our cross-device video player,
expected device configurations include a single laptop PC, a TV with a laptop, and
a phone with a TV. When the phone interface is being tested, using a real phone
occasionally ensures that the UI looks and feels good when using touch input. However,
a TV may not be readily available and, when the focus is on the phone, an emulated
TV could be used in the test.

5.2.3 Switching of Device Configurations

As illustrated in the video scenario, a developer may want to test and debug an applic-
ation with a range of different device configurations. While the state of the art allows
a developer to quickly switch from one device to another, for example from a phone
to a tablet, it does not consider groups of devices. However, a developer may have
a number of device configuration that they want to test in succession, for example a
phone and tablet, two phones and a TV, as well as just a tablet. In addition to enabling
a way to quickly switch between predefined device configurations, a tool should also
provide a means to add new devices to an existing configuration so that the developer
can test how the application adapts to dynamic changes at run-time. For example, an
application might update its UI distribution when a tablet is connected. In the case of
the video streaming application, it will move playback controls to the tablet if one is
available.

5.2.4 Integration of Debugging Tools

Modern browsers integrate a wide range of debugging tools. These allow the source
code of the application to be inspected. In addition, network communication can be
tracked and failures highlighted. The console allows the developer to output debugging
information and to execute code in an ad-hoc fashion. With the debugger, the developer
can step through the code and inspect program state. With CSS tools, the developer
can see which rules are applied to a given element and add, remove, or update rules at
run-time. Such tools are very useful, but they do not cater to the parallel use of multiple
devices. Consequently, the developer has to coordinate these tools on all devices, for
example by inserting a CSS rule separately on each device or by setting breakpoints
repeatedly.

5.2.5 Automatic Connection Management

In web development, the code editing and testing cycle can be described as follows.
The developer edits a file containing code for the client application. The application is
executed by loading a URL in a browser. Every time the developer makes a change to
the client and wants to verify it, the URL needs to be reloaded. When iterations are
short and happen in a quick succession, manually reloading the application is tedious
and tools such as BrowserSync have automated this process. However, in cross-device
applications, there is typically an additional pairing step that connects the devices.
When the browser is refreshed, the connections between devices are lost and this pairing
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steps needs to be repeated every time the application changes. Since the issue is specific
to cross-device applications, current tools for responsive web applications provide no
support. A tool specific to cross-device development could alleviate the problem by
reconnecting previously paired devices automatically when the application is reloaded.

5.2.6 Coordinated Record and Replay

Testing and debugging applications typically includes repetition. A small change to the
code requires the application to be checked to see if the change had the desired effect,
for example if it eliminates a bug or changes the UI or logic as expected. Often, the
changed code does not affect the initial state that the application is in upon loading,
but fist requires user interaction. A test of a responsive application could, for example,
include entering text in a field and then clicking a submit button. Recording and
replaying such interactions lowers the amount of repetitive work that a developer has
to do manually. State of the art tools allow tests to be recorded on one device, for
example a phone, and replayed on another, for example a tablet, so that the results
can be compared. Existing tools target single-device scenarios where all interactions
occur on the same device. In contrast, in cross-device scenarios interactions can occur
on multiple devices. The interaction on these devices would need to be coordinated.
In the above example, the input field and the submit button could be located on two
different devices and the click on the submit button should not be triggered before the
input has been entered on the other device. Furthermore, some cross-device scenarios
target multiple users and interactions can occur simultaneously. It is not practical for
a developer to gather several people each time they need to test an application. Thus,
record and replay functionality should be tailored towards multiple devices and should
support simulating multiple users.
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Figure 5.1: A developer using XD-Tools. Two devices are emulated in the main XD-
Tools application on the developer screen. A real device is also connected to the system.

5.3 XD-Tools

Based on the requirements, we have designed and implemented an integrated set of tools,
called XD-Tools. XD-Tools runs as a proof-of-concept application inside a browser, how-
ever, we imagine that the tools could become part of a browser’s own developer tools in
the future. The high-level goals of XD-Tools are twofold: First, we aim to facilitate the
navigation of the large space of possible device combinations by introducing the concept
of device configurations that allow devices to be grouped together and to be saved and
loaded. Second, we mitigate the impact of the fragmentation of the application across
devices by aggregating information and the control of multiple devices centrally. At the
same time, XD-Tools builds on established concepts and tools in testing and debugging
single-device applications.

XD-Tools consists of two main parts. A main application was designed to be loaded
onto the developer machine and is optimised for larger screens. It is complemented by
a helper application for the integration of real devices. Figure 5.1 illustrates the setup
that a developer could use when working with XD-Tools. An overview of the main
application is shown in Figure 5.2. It is centred around a set of emulated devices a©
that take up most of the available screen real estate. At the top, a toolbar provides
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Figure 5.2: The main application of XD-Tools with one real device connected and three
emulated devices. A cinema application has been loaded into the system.
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functionality for specifying and reloading the application under test b©, adding new
emulated devices c© as well as saving and loading device configurations d©. The bottom
is reserved for debugging tools, such as the JavaScript console e©, function debugging
f©, the CSS editor g© and connection management h©. Devices (emulated and real

ones) are assigned a colour for easier identification and each device can be enabled or
disabled for debugging i©. Not visible in this screenshot is the record and replay tool
which would reside next to the emulated devices on the right side of the screen. To
prevent visual overload and to cater to a developer’s preferences and the current stage
in the workflow, the UI can be customised. The tools can be configured in size or hidden
if not required. Next, we describe how XD-Tools addresses each requirement.

5.3.1 Emulation of Multiple Devices

XD-Tools supports emulation of multiple devices at the same time. Devices can be
chosen from a list of predefined, common device models (Fig. 5.3) or customised manu-
ally. Each emulated device is represented by a coloured rectangle that comes with a
toggled menu at the top and the device view port containing the application that is
being tested or debugged (Fig. 5.4). The emulated devices can be freely arranged on the
screen using direct manipulation. If many devices are used simultaneously or if devices
with larger screen resolutions are emulated, the emulated devices can be scaled down.
With the press of a button, the device can be flipped from landscape to portrait mode
and vice-versa. At a glance, the developer can see an entire configuration of devices
and, when interacting with a device, immediately sees the reaction of the other devices.

In contrast to emulating multiple devices with conventional browser tools in multiple
tabs or windows, XD-Tools ensures that each device has its own separate resources, such
as local and session storage. For example, an application with user login would require
the user to log in on every device in XD-Tools, while they would be automatically
logged in on all devices after logging in on a single device with the conventional tools.
Our approach is thus a more accurate representation of using multiple devices.

5.3.2 Integration of Real Devices

We decided against using USB cables to integrate real devices. Cables do not scale
beyond a few devices unless specialised hardware is used. Furthermore, not all devices
can be easily connected with a USB cable. While it is simple to connect a tablet
or phone (assuming the correct type of cable is at hand), integrating a TV or an
interactive whiteboard by cable may not be straightforward. Instead, XD-Tools offers
a mechanism to add devices by either scanning a QR code that is displayed on the
developer machine or loading a URL manually on the device to be integrated. This
step will load a helper application on the device that communicates with the main
XD-Tools application over the network. The helper application does not contain any
UI elements in order not to interfere with the application under test and to provide a
realistic testing environment. Each connected real device is represented in the XD-Tools
main application by a coloured proxy similar to the emulated devices but without the
viewport. This allows the developer to see at a glance how many devices are connected.
Real devices can be used for debugging, record and replay, and connection management
alongside the emulated devices.
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Figure 5.3: Selecting an device to be emulated from a list of preconfigured device
models.

Figure 5.4: An emulated device in XD-Tools.
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Figure 5.5: The aggregated JavaScript console showing logs from four devices.

5.3.3 Switching of Device Configurations

To enable fast switching between device configurations, XD-Tools allows the developer
to name and store the current device configuration on the screen. The system saves
the arrangement of the devices on the screen and allows the developer to restore it at a
later time. New devices can be added quickly from the list of predefined devices. The
developer can extend that list with their own device types if needed.

5.3.4 Integration of Debugging Tools

We have either re-implemented or integrated some of the existing debugging tools com-
monly offered by browsers as they have proven to be useful. These tools have been
built for single device use cases. We have extended them to provide integrated support
for multiple devices. By default, all devices are available in the tools, however, a device
can easily be deselected with a click on a button that matches its assigned colour.

JavaScript Console

The console is a commonly used tool for debugging. Logs show errors produced by
the browser, for example if a resource is not found, as well as any information that
the developer chooses to log from the code using the console API. In XD-Tools, we
aggregate the logs from all devices and show them centrally in one place so that the
developer does not have to check an individual console for each device. The logs are
colour coded in the device colours to facilitate the identification of the device that is
responsible for printing the log.

Imitating the behaviour of a typical browser console, our console can also be used to
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execute JavaScript at run-time on all selected devices, including connected real devices.
This allows the developer to quickly test functionality, inspect the state of the ap-
plication by printing variables, or experiment with the implementation by injecting or
overwriting functions without reloading the whole application. Figure 5.5 shows ex-
ample usage of the aggregated console. First, a function is called that is not defined
and an error message is shown. When the correct function name is used, each device
prints the output (a location object) to the console. Here the developer can see that all
devices print the same location, which could indicate that the synchronisation works
as expected. The application under test in the example uses different roles for devices
and, when the roles are printed, the developer can inspect the roles assigned to each
device. Without XD-Tools, the developer would need to execute the function on each
device separately and aggregate the output manually. If a function needs to be executed
on a single device only, the developer can deselect the other devices by clicking their
corresponding toggle buttons.

CSS Editor

XD-Tools includes a simple CSS editor that allows new style rules to be added without
reloading the application, facilitating fast experimentation with the visual design or
finding the correct rules that produce a desired result. As with the console, the developer
can select the devices that should apply the rules from the CSS editor. For example,
the developer could create a rule while a phone is selected. After the rule has been
applied to the phone, the developer could select the TV and add a different rule for
that device.

Source Code Inspection and Function Debugging

The source code can be inspected for emulated devices. A button in the menu of each
device takes the developer to its source code. It is also possible to debug functions. The
developer can specify a function name globally to set a breakpoint. When any device
hits the function, the execution is stopped and the developer can step through the code
with the debugger. The device that hit the breakpoint is highlighted (Fig. 5.6). XD-
Tools integrates the debugger provided by the browser, so the developer has access to
the usual tools for inspecting the state of variables or the call stack. Without XD-Tools,
the developer would need to set a separate breakpoint on each device and constantly
monitor the devices to realise when one hits a breakpoint.
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Figure 5.6: Debugging with XD-Tools. The device hitting the breakpoint is highlighted
in green.
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5.3.5 Automatic Connection Management

To speed up iterations, XD-Tools provides a button that reloads all devices, emulated
or real, simultaneously. Furthermore, it provides an option to reconnect previously
connected devices automatically, eliminating the time consuming step of re-pairing
devices manually at each reload. Additionally, the developer can configure XD-Tools
to automatically pair newly added devices to the existing device configuration. In our
experience, it is a common use case that a new device is added and immediately paired
to the other devices in the system. On the other hand, there are situations where this
behaviour might not be desired, for example when testing the pairing process itself.

5.3.6 Coordinated Record and Replay

User interaction can be recorded on emulated devices and replayed both on emulated
and real devices with XD-Tools. Figure. 5.7 illustrates the record and replay interface
with a configuration of three devices. A column represents a timeline for each device.
After the record button has been pressed, the system records all user interactions.
Once that process has been stopped, XD-Tools represents the recording on the timeline.
As many events can happen within a short period, for example a sequence of mouse
move events, the events occurring close together are collapsed into a single label. The
developer can cut a longer sequence into subsequences and describe them with labels.
For example, in the video player, the user could first look for a video by entering a term
into the search box and then choose a video from the results to play. This interaction
could be recorded in one session, but later split into a searching and a playing part.
The recorded sequences can be moved for replay on any device. In our example, the
developer could record the whole sequence on a single tablet. Later they could add
a phone to the device configuration and choose to replay the search sequence on the
phone while keeping the play sequence on the tablet to mirror the UI distribution.

Sequences can be copied so that multiple devices replay the same sequence. The
developer can either replay sequences individually on each device or globally. In the
case of global replay, the system ensures a basic coordination between the devices so
that a sequence on one device will start when another one has finished on another
device. Replaying sequences simultaneously on multiple devices allows the developer to
simulate multiple users using the system. The replay can be stopped with breakpoints
so that the developer can inspect the system at any time during the interaction.
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Figure 5.7: Record and replay on three devices in parallel.
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Figure 5.8: XD-Tools architecture.

5.4 Architecture and Implementation

Figure 5.8 illustrates the architecture of XD-Tools. The system consists of several parts.
There is a main application that provides the UI of XD-Tools. The main application
was designed to be loaded onto a developer machine with a large screen. It is served by
the XD-Tools server. Inside the main application, emulated devices load the application
under test from the application server. There is no restriction on the application server
other than it must permit the application to be loaded into iframes. A small script
must be injected into the application under test. The script is hosted on the XD-Tools
server. The real devices load a helper application from the XD-Tools server. The helper
application has no UI component. Instead it is responsible for reloading the application
under test, replaying events, and handling the automatic connection management. The
communication between the helper application and the main application is routed via
the XD-Tools server and was implemented with Socket.io.

Both the helper and the main application have been implemented with pure web
technologies and do thus not depend on a specific browser vendor. However, to achieve
a tight integration with an existing debugger, we created a Chrome extension. While
the rest of tools can be used in any modern browser, the source code inspection and
function debugging are only available through the extension in Chrome. As Chrome
extensions are only supported on the desktop version of Chrome and not in the mobile
version, the real devices do not offer this functionality.

In contrast, the JavaScript console and the CSS editor are re-implementations of
the existing browser tools and are not part of the browser extension. Real devices
are affected by changes made through these tools via the injected script. The script
overwrites the default logging function, forwarding all logs to the main application
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where the content is shown in the aggregated console. The script will also execute all
JavaScript commands that are typed into the console.

Device emulation has been implemented with iframes. The application content of
each emulated device is loaded into a separate iframe. With a naive implementation this
approach would result in shared content across multiple emulated devices. The default
behaviour of all major browsers is to share session and persistent data (localstorage) that
originate from the same host (for example myapplication.com) across all windows, tabs,
or iframes. We have observed developers using different browser profiles to workaround
this issue. To better replicate the behaviour of separate devices, we trick the browser
into assuming that each emulated device loads the application from a different host.
This is achieved with the introduction of a DNS server. For each emulated device, we
generate a new host name (for example myapplication2.com) that will be resolved by
the DNS and point to the application server. To the browser each emulated device
loads a different application, while in reality they all load the same one. As a result,
each emulated device has its own session and persistent storage.

For the coordinated record and replay functionality, the event handlers are registered
for all events that are tracked by XD-Tools. It is crucial that XD-Tools is the first
event handler to be called. Otherwise other event handlers could modify the state of
the document or even stop the propagation of the event before the XD-Tools handler is
called. In the latter case, XD-Tools would miss the event. To avoid these problems, the
XD-Tools script should be inserted at the top of the application’s main HTML so that
it is the first script to execute. Furthermore, the script uses the event capturing2 on the
document node rather than the default bubbling. When replaying, devices schedule all
events up to the first breakpoint using setTimeout. Once the breakpoint is reached,
the main application is informed and the next events will be scheduled when the user
decides to resume the execution.

XD-Tools is not coupled with any cross-device framework. The requirements are
independent of the specific implementation of a cross-device framework. There is one
exception: The automatic connection management clearly depends on the connection
mechanisms used in the cross-device application or the framework with which it was
built. We have implemented default auto-connections for applications that use URLs for
pairing. To cater for different mechanisms, there is an option to disable the URL-based
approach and configure a script-based approach. When using the latter, developers
have to provide the implementation for two functions (List. 5.1). XD-Tools selects one
device as the main device to which all other devices will connect. The main device
can be changed in the UI. The function getConnectionParam will first be called on
the main device, giving it a chance to execute any necessary code and to provide a
parameter (for example a device identifier) that will be passed on to all other devices
in connectWithParam. In that second function, these can then execute the necessary
steps to connect to the main device. Note that this approach also allows for all devices
to join a predefined session or room if such a concept is used. Listing 5.1 shows the
implementation of these two functions when the JavaScript API of XD-MVC is used
for pairing rather than URLs.

2https://www.w3.org/TR/DOM-Level-3-Events/#event-flow Accessed on 10.04.2017

https://www.w3.org/TR/DOM-Level-3-Events/#event-flow
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1 function getConnectionParam() {

2 // Return a parameter that is required

3 // to connect to this device.

4 return XDmvc.deviceId;

5 }

6

7 function connectWithParam(param) {

8 // Establish a connection to a device.

9 // Device information is given in param.

10 XDmvc.connectTo(param);

11 }

Listing 5.1: Configuring automatic connection management with a script.

5.5 Evaluation

Cross-device development is an active topic in academia, but still relatively rare outside.
The lack of experienced cross-device developers limits the form of evaluation studies
that can be carried out and precluded a long-term study in the wild. Instead, we
evaluated XD-Tools in a small qualitative study with 12 developers. We designed the
experiment around two conditions: In the baseline condition, browser-tools, participants
only had access to the Chrome Developer tools (including device emulation and remote
debugging), while, in the second condition, they also had access to XD-Tools. In both
cases, they had the option to connect real devices.

5.5.1 Participants and Setup

We recruited 12 participants (10 males, 2 females) aged 23 to 33 (median=26) from our
computer science department. At least basic skills in web programming (JavaScript,
HTML and CSS) were required to participate in the study, however, we relied on
self-assessment. Two participants reported more than 5 years of experience in web
development, five 2 – 5 years and five less than 2 years. Nine participants had experience
in developing responsive applications and eight had at least some experience developing
cross-device applications. Among those eight participants, five reported using browser
tools for emulating devices and six using real devices for testing. Other strategies
mentioned were using multiple browsers, multiple browser profiles, and private windows
(to avoid shared data). Ten participants had experience with the Chrome Developer
tools that we used as a baseline.

The participants were provided with a 30 inch screen (2560x1600 pixels) and a
desktop computer as a main device (Figure 5.9). A Nexus 7 tablet and an HTC M9
Android phone were available for testing. The main device had five browser profiles
preconfigured that could be used for emulating devices.

5.5.2 Tasks and Procedure

A different cross-device application was used for each condition to reduce learning
effects: The first was a video player that consists of controller devices that can be
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Real Devices

Main Device, 30 inch Screen

Figure 5.9: Study Setup.

used to search for videos and create playlists and player devices that show the videos.
The second was a cinema application that shows information such as location, a film
summary, and show times on the set of available devices. Both applications were
implemented with the XD-MVC framework. For each application, participants were
given two tasks: a debugging and an implementation task.

The conditions and applications were rotated and counterbalanced. However, parti-
cipants always started with a debugging task followed by an implementation task. The
video debugging task was designed to require at least two devices to reproduce the bug
in the UI. The cinema debugging task was optimised for two devices as well, however it
was possible to solve it using a single device in which case it required more user inter-
action to reproduce the bug. For both tasks, it was also possible to spot the bug in the
source code. Participants were asked to fix the bug once they found it. Similarly, for
the implementation tasks, at least two devices were required in the video application
and three devices in the cinema application to verify the correctness. The following
tasks had to be completed.

• cin bug : A wrong variable name in a loop caused cinemas to be displayed in
incorrect map locations.

• cin impl : When a film is chosen, the prices of all theatres showing it in the selected
city had to be displayed. In a next step, the price for a selected theatre had to be
highlighted and the style of the highlighting had to be improved using CSS. The
selecting of location and theatre was done on other devices.

• vid bug : Access to an empty video queue stopped the playlist from working in
some use cases.
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• vid impl : Functionality of a remote control button had to be implemented on the
controller device to play and pause the video on the player device. The button
should only be functional if a player device is currently showing a video. The
state of the video should be reflected in the button (play, pause). All controller
devices in the system should reflect the correct state. The style of the button was
given as a mockup.

Participants were given skeletons for the implementation and were allowed to test
their implementation at any time, debugging it if necessary. In all tasks, participants
were encouraged to test if their implementations and bug fixes worked correctly.

Participants were introduced to the Chrome Developer Tools, XD-Tools, and the
applications. The record and replay feature of XD-Tools was hidden and not available
in the study in order to decrease the study duration. Debugging tasks were stopped
after 15 minutes and implementation tasks after 30 minutes if the participants were
not close to reaching a solution. The whole study took participants 90 to 120 minutes
to finish, including completing questionnaires at the beginning, after each task, and at
the end of the study. The study was captured on video in order to analyse devices and
tools that were used.

5.5.3 Results

Nine participants managed to complete all tasks within the given time. Three parti-
cipants did not complete five tasks in total (2 cin bug, 2 cin impl, 1 vid impl). The
participants who had difficulties with the tasks generally struggled with web techno-
logies (JavaScript in particular) despite assessing their skills at 3 on a 5-point scale
(1=basic, 5=proficient). As can be seen in Figure 5.10, developers were not faster us-
ing XD-Tools compared to the baseline. As most developers (10 out of 12) were familiar
with the baseline tools and but not with XD-Tools, more exposure to XD-Tools could
potentially result in performance gains. One participant (P5) commented that “using
Chrome devtools happens automatically. It takes time to get used to different tools”.

Overall, only 3 participants connected real devices. In the browser-tools condition,
one user connected two devices in the implementation task and another user connected
one device in both tasks. In XD-Tools, one user connected one real device in each task.
Figure 5.11 shows the average number of emulated devices per user grouped by task.
Three participants commented that they like to see everything (including emulated
devices) in one window or one screen. On the other hand, one participant requested
separate windows for emulated devices which our system currently does not support.

We received very positive feedback. All participants agreed or strongly agreed that
they would use XD-Tools for implementing cross-device applications and all but one
participant strongly agreed that they would use XD-Tools for debugging (Figure 5.12).
P3 said “I think it is very useful for cross-device applications and I wish I had access
to it when I was working on a cross-device application last year.” In particular, the
auto-connection option was very well received. Also the integration of the debugging
tools was praised. Another participant (P8) stated that “it was very convenient to use.
I especially liked the CSS editor and connection features. It really simplifies the process
of cross-device application development when one has everything visible on one screen
and does not have to switch to other devices, which might be a bit distracting.”
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Figure 5.12: Results from the questionnaire.

Participants requested an even tighter integration with current developer tools.
Some of the debugging tools were reimplemented and not all functionality of exist-
ing tools was available. For example, breakpoints for the debugger could only be set at
the beginning of a function and not in arbitrary locations. As a result, some developers
missed some of the features that they were used to. Similarly, auto-complete of variable
names and values in the CSS editor was requested

5.6 Discussion

The feedback in our study showed that the support for emulation of multiple devices
and automatic connection management enable fast cycles of authoring or modifying
code and checking the result. As they remove tedious reloading and pairing steps, they
reduce the overhead for the developer required to check even small changes in the code.
This could lead the developer to execute their code more frequently and discover flaws
in the design or implementation earlier.

We did not evaluate the save and reload functionality for switching of device-
configurations. It would have been necessary to add additional tasks or make the exist-
ing tasks more complex for participants to really appreciate this feature. For example,
we could have asked participants to implement two different designs for smartphone
and tablet as opposed to tablet and TV. At roughly two hours duration, our study
was already quite long and we did not want to increase the time further. However,
we assume that it would also contribute to shorter implementation and testing cycles
in combination with the automatic connection management by allowing the developer
to test different device configuration at a lower cost compared to manually managing
configurations. Due to the long study duration, we also decided against evaluating
coordinated record and replay.

We observed only one instance of a participant using the integration of real devices
with XD-Tools in our study. We attribute this to the somewhat artificial setting of
the study where all tasks could be solved using only emulated devices. However, we
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assume that developers would test on real devices at least occasionally during longer
development phases. For example, even when touch is emulated, it does not accurately
convey what it feels like to use an application on a smartphone. In our questionnaire,
six participants mentioned using real devices when developing cross-device applications.

Based on the participants’ feedback, we consider the integration of existing debugging
tools crucial. In our prototype we re-implemented the CSS editor and the JavaScript
console and provided basic access to the debugger. Our version of these tools are
not quite as capable as the original ones and participants expressed interest in a tighter
integration. In our vision, the support we provide with XD-Tools would be implemented
by the browsers themselves in the future, eliminating the need for a separate set of tools.

The reduced functionality of these re-implementations is a limitation of XD-Tools.
While the CSS editor in the browser usually allows the inspection and manipulation
of existing CSS rules, our version is limited to the addition of new rules. Rules added
through the editor can be changed or removed, but not those added in the code. The
device emulation is centred around screen size and modalities such as touch are not
emulated. Neither are network conditions or geographic location. While these settings
could be emulated using the tools provided by the browser, the settings would apply to
all devices (and the main application itself) rather than to an individual device.

We have used XD-tools with applications written with XD-MVC and with one
application that did not use a cross-device framework. Although no other frameworks
have been tested, no issues should arise with purely web-based frameworks. While we
took care to be framework-agnostic, we also see benefits in tailoring debugging tools
to a specific framework. For example, the data-synchronisation could be offered for
inspection. While it is possible to inspect arbitrary state with the JavaScript console,
a visualisation tailored to the specific mechanism in use could be helpful. Similarly,
the specification of the UI distribution could be visualised. However, to create such
visualisation knowledge of the inner workings of an application is needed.

The setup of XD-Tools is somewhat complicated as it requires the installation of a
DNS server and the configuration of the operating system on the developer machine.
These steps are required for the emulation of multiple devices with separate storage.
If these mechanism were directly implemented in the browser tools, the DNS would no
longer be needed and setup would be significantly less complex.

The main limitation of the study is the short amount of time that developers had
to work with XD-Tools. As a participant commented, it takes some time to become
familiar with new tools. It would be interesting to collect data of a long-term field
study with XD-Tools outside of the artificial setting of a lab study. In the future, cross-
device development may become more prevalent which would also increase the number
of cross-device developers available to such studies.

The UI of XD-Tools has been optimised for a single large screen. However, many
developers use more than a single screen and it would interesting to explore if XD-Tools
itself could be distributed across multiple screens or devices.

While we provide some automation for testing applications with the record and
replay functionality, XD-Tools has been built for manual testing and debugging. It is the
developer’s responsibility to execute a test and decide if the result is acceptable or not.
Formally specified tests can be automated and integrated into the development process,
for example in continuous integration. In the next chapter, we explore automated
testing in the context of cross-device applications.
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XD-Testing: Automated Testing

In this chapter1, we analyse testing in the context of cross-device applications. Even
though testing is an established step in the software engineering process, there is little
support for testing cross-device applications and it has been identified as a particular
challenge [42]. Flexible cross-device applications that adapt to the set of devices at hand
could, in theory, be used by an unlimited number of different device configurations.
In practice, some configurations are more likely to occur than others, but writing a
separate test for each configuration would still be time-consuming and repetitive. The
fragmentation of the application logic across devices exacerbates the problem as the
devices need to be coordinated. Existing tools have been built for single-device use
cases and offer little support to the challenges of testing cross-device applications.

In the following section, we introduce a motivating example that highlights the
shortcomings of existing tools and the requirements specific to cross-device testing. As
motivated in the Background chapter, we focus on UI testing as it is impacted by the
fragmentation of cross-device applications more than unit testing. Next, we introduce
our testing library XD-Testing and discuss how it addresses these shortcomings and
requirements. We start with parametrised tests that can be repeated across multiple
configurations of devices. Then, we introduce a domain specific language for cross-
device tests that allows a developer to address devices explicitly and implicitly in a
testing script. The final component of XD-Testing is a mechanism to record the program
flow on multiple devices with screenshots. The result can be viewed in a visualiser that
allows the developer to compare and contrast the execution of the program on different
device configurations. We then discuss the architecture and implementation of XD-
Testing and explain how it integrates with existing testing libraries. XD-Testing was
evaluated in a case study with a sample cross-device application. We report on the
test cases written and the results of using the library to test code written by students
as part of a web engineering class. Finally, we discuss limitations of our approach and
directions for possible extensions. This chapter was developed in [177].

1Earlier versions of parts of this chapter were originally published as Husmann et al. [81].
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6.1 Motivating Example

To illustrate the challenges in testing cross-device applications, we will again use the
video player application introduced in the previous chapter. Listing 6.1 presents a
simple test case that checks if a video, when selected from a list of results with a click,
will be displayed in the player by asserting that the correct title is shown. This example
test case will work fine, if the player and the list of search results are both on the same
device. However, it not suitable for a distributed UI. To address that situation, the
tester could write a test case with two devices. They would need to pair the devices
first. Then, they would need to know which device shows the list and which device
the player so that they can execute each command on the correct device. Identifying
the correct device may not be trivial, as this may depend on the capabilities of all
devices, such as the screen size, or the context in general. Furthermore, the tester
would need to ensure that the title element is checked after the video has been clicked
and allow time for the change to propagate across devices. While writing such a test
case requires increased effort compared to the single-device test case, it also just covers
one particular combination of devices. However, selecting a video in the search list
should always display that video, regardless of the device configuration used and the
distribution of the UI. Existing testing libraries offer no constructs for writing tests
that are implicitly assumed to be distributed across multiple devices and that could be
executed on different device configurations.

On the other hand, addressing devices explicitly could allow the developer to verify
if the UI has been distributed correctly for a given configuration. For example for a
device configuration with a phone and a TV, a test could be written that checks if the
controls are on the phone and the video on the TV.

1 client

2 .click(’li=My Video’)

3 .getText(’#title’)

4 .then(function(value) {

5 assert(value === ’My Video’); // true

6 });

Listing 6.1: A simple test case that checks if a user clicks on a video in a list that
the title of the video is displayed.

6.2 Parametrised Tests with Device Templates and Scen-
arios

To better support automated testing of cross-device applications, we introduce the lib-
rary XD-Testing. The library offers a mechanism to parametrise a test with a set of
devices so that the same test can be executed on different device configurations. To this
end, we introduce device templates and device scenarios. A device template represents
a reusable description of a specific device (for example an iPhone 5 or an Nexus 6).
We define a device scenario as a set of devices that interact with each other. A device
scenario can be composed by instantiating devices from templates. Table 6.1 lists all
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Template property Supported values

name Strings
type ”watch”, ”phone”, ”tablet”, ”desktop”
size ”xsmall”, ”small”, ”medium”, ”large”
width Positive integer
height Positive integer
desiredCapabilities Accepted by Selenium

Table 6.1: Properties and supported values of device templates.

properties and accepted values of a device template, whereas Listing 6.2 provides an
example template. XD-Testing includes 8 predefined templates as examples. These
examples include a desktop PC, different smartphone and tablet models, and a smart-
watch. Additional templates can be added by the developer. As new device models
are released by manufacturers, new templates can be created to reflect these additions.
Templates can be shared among testers and reused.

1 {

2 name: "Nexus 5",

3 type: "phone",

4 size: "small",

5 width: 360,

6 height: 640,

7 desiredCapabilities: {browserName: "chrome"}

8 }

Listing 6.2: An example device template for a Nexus 5 phone.

Listing 6.3 shows how a scenario can be composed directly in JavaScript when
writing a test case. Alternatively, the scenario can be loaded from a configuration
file, enabling re-use of scenarios across test cases and projects. To better support the
testing of unexpected device combinations, XD-Testing provides a command line tool
for generating device scenarios randomly. The tester can restrict the randomness to
some extent by limiting the maximum number of devices in the scenario and only
allowing certain template properties (for example only phone and tablet as types). A
set of scenarios can be iterated over so that the same test can be executed on each
scenario. In the next section, we describe how individual devices can be addressed
within a scenario and how tests can be composed that are independent of the scenario.

6.3 A Domain Specific Language for Cross-Device Tests

To enable the authoring of tests similar to the one in the motivating example but with
support for cross-device configurations, we have developed a domain specific language.
The new language constructs enable easier specification of cross-device application tests.
Our language was implemented as an extension to WebdriverIO2 which provides pro-
grammatic commands to remote control browsers with Selenium. WebdriverIO provides

2http://webdriver.io/ Accessed on 04.05.2017

http://webdriver.io/
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1 var scenario = {

2 ctr: xdt.templates.devices.nexus4(),

3 dA: xdt.templates.large.nexus10(),

4 dB: xdt.templates.desktops.chrome()

5 };

6

7 xdTesting.multiremote(scenario).init()

8 // Load url on all devices

9 .url("http://myapp.com")

10 .click("button");

Listing 6.3: Creating a device scenario ad-hoc through JavaScript: Templates can
be accessed from a general set (line 2) or by characterisation such as size (line 3) or
type (line 4). A test is parametrised with the scenario (line 7) so that all following
steps (line 9 and 10) are executed on the chosen devices.

no easy way to coordinate multiple browsers. While it does allow the instantiation of
multiple browsers, coordinating them is limited to either broadcasting commands to all
browsers or sending a command to a single one that must be selected using an identifier.
We introduce novel device selectors that allow the developer to either let the system
choose devices implicitly, or explicitly specify the device set for a command based on
device characteristics such as the size or type of the device or accessible application
elements. Matching devices are passed to a callback function which executes clearly
separated from the initial device set. Commands within the callback context are only
executed on the selected device subset. Selectors can be nested for a step-wise nar-
rowing of the device specifications, enabling the combination of multiple criteria. For
example, a tester could first select devices by element and then restrict the resulting
set to tablets only. The DSL supports method chaining which means that each method
returns an object that again can receive a method call. Commands chained after a
selection callback are executed on the original device set and are executed after the
commands inside the callback. XD-Testing handles the asynchronism that is inherent
to cross-device testing and waits for each browser to finish a command before executing
the next method in the chain.

6.3.1 Explicit Device Selection

Explicit device selection allows the tester to specify exactly what devices should execute
a set of commands. Devices can be chosen based on static criteria, such as the charac-
teristics specified in the device templates, or with dynamic properties that are evaluated
at run-time. Table 6.2 shows an overview of the explicit device selectors provided by
XD-Testing. Devices can be selected by id, size, or type as specified in a scenario.
These criteria are static and do not change at run-time. Alternatively, devices can be
selected based on the UI elements that they display: The selectByElement selector
will return all devices where a given HTML element is visible. The selection criterion
needs to be a valid CSS selector. All of these device selectors return a set of zero or
more matching devices. In addition, there is a selectAny selector that limits the set
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to a single arbitrary device or throws an error if the set is empty. This selector allows
the developer to ensure that a command is executed on a single device only. When it
is nested in another selection, it can be used to choose a single device from a set of
devices that already match some criterion. Listing 6.4 illustrates such a use case. First,
all tablets are selected with a selectByType selector and a button is clicked on each
device. Then a single device is selected among the tablets with the selectAny selector
and another click command is triggered.

Command Criteria Category Criterion

selectById Device characteristic One or multiple device Ids
selectBySize One or multiple screen sizes
selectByType One or multiple device types

selectByElement
Dynamic

A element selector
selectAny None, arbitrarily chosen

Table 6.2: Explicit device selection commands.

1 .selectByType("tablet", tablets => tablets

2 .click("button")

3 .selectAny(device => device

4 .click("button")

5 )

6 );

Listing 6.4: First, all tablets are selected with a type selector (line 1), then the
selection is constrained to a single device with the any selector (line 3).

Explicit device selectors accept a second optional callback to address the comple-
mentary device set. This set includes all devices not matching the selector. The original
device set can thus be split into two sets with a selector. The set in the first callback
includes all devices matching the selector while the second callback includes the original
set minus these devices. The complementary callback can be useful in combination with
the selectAny selector. It allows the tester to trigger a command on one device and
check results on all other devices. Listing 6.5 illustrates such a use case with the video
player application. When it is used with multiple devices that act as controllers, the
state of the playback buttons should be synchronised across all controllers. The test
case selects all devices that act as controllers based on the elements that are displayed.
Then a single device is chosen with the selectAny selector and a click of the play
button is triggered. Using the complementary callback, all other devices are checked
to see if the button is correctly showing the pause state. The test will fail if any of the
devices does not comply within the given timeout.
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1 .selectByElement("#controls", controller => controller

2 .selectAny(

3 one => one

4 .click("#play"),

5 rest => rest

6 .waitForVisible("#play=Pause", 2000)

7 )

8 );

Listing 6.5: Example usage of the complementary device set.

1 .implicitAny(device => device

2 .click(’li=My Video’)

3 .getText(’#title’)

4 .then(function(value) {

5 assert(value === ’My Video’);

6 }));

Listing 6.6: A simple test case using the implicitAny selector. Each command is
executed on exactly one device.

6.3.2 Implicit Device Selection

Implicit device selection removes the need to know about the device configuration that
is used in a specific test. Instead, it allows the tester to specify a test independent
of the devices used and lets the system choose appropriate devices for each command.
The system analyses each command and finds the set of devices that are able to execute
it based on the availability of the UI elements required to execute the command. For
example, if the play button should be clicked, the system finds all devices that show the
play button and only triggers a click on these devices. We define two implicit device
selectors and define their semantics as follows.

• implicitAll: The system ensures that each command is executed on at least one
device. Each command is guaranteed to be executed on all devices that match
the selector given in a command.

• implicitAny: The system ensures that each command is executed on exactly one
device. While selectAny chooses a device and then tries to execute all commands
on the same device, implicitAny chooses a suitable device for each command.

For both selectors, the device will throw an error if it does not find a matching
device for a given command. Listing 6.6 and 6.7 illustrate the two selectors. Using
implicitAny the first listing triggers a click on a list item with the content My Video
on an arbitrary device that has that element. Then, the value of the title UI element
is checked whether it displays that same content. The check is also executed on an
arbitrary device granted that it displays that element. In contrast, the same test written
using implictAll triggers the click on all devices with that list item and the check is
repeated on all devices with the title item. As a result, we cannot assume a single return
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1 .implicitAll(device => device

2 .click(’li=My Video’)

3 .getText(’#title’)

4 .then(function() {

5 var values = Array.prototype.slice.call(arguments);

6 values.forEach(value => assert(value === ’My Video’))

7 }));

Listing 6.7: A simple test case using the implicitAll selector. Each command is
executed on one or more devices.

value for commands that provide a result (such as getText) within a implicitAll

selector. Each text could potentially display a different value and each value needs
to be checked individually, resulting in slightly more complex code. The two selectors
could also be combined to first click the list item on exactly one device and then verify
that the title is correct on all devices that have the title element.

6.3.3 Device Set Commands

XD-Testing provides additional commands to control a device set.

• getCount returns the number of devices contained in the device set.

• forEach provides access to each individual device in a set and accepts a callback
with two parameters. The first parameter provides an individual device and allows
the tester to execute commands on it. The second parameter gives a consecutive
index for each device, i.e. the first device is identified by 0, the second by 1,
etcetera.

getCount could be used to verify that the correct number of devices show a given UI
element for a given device scenario. With forEach the tester has fine-grained control
over all devices and can execute arbitrary commands.
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6.4 Flow Recording and Visualisation

In addition to the formal tests that can be specified with the DSL, we also provide tool
support for more informal checks based on visual properties. We record screenshots
of the application during the test execution at points of interest marked by the tester.
The recorded screenshots are presented in a visualiser so that the tester can verify the
application behaviour visually. We define a flow as the compound assembly containing
information about the participating devices, the executed commands, and recorded
screenshots.

6.4.1 Recording

Each test execution generates a JSON representation of the flow which is stored in a
.json file. Since the file contains all necessary information for the visualisation, it can
be transferred and shared with other developers. We provide the following commands
for recording flows.

• name(name) allows the developer to specify a unique and human-readable name
for a flow recording. It is used to identify a flow in the visualiser tool.

• checkpoint(name) marks interesting checkpoints in the test execution. At each
checkpoint, the recording generates a screenshot that is associated with the check-
point name. Checkpoint names for a single device need to be unique, but the same
name can be used across multiple devices. Screenshots originating from different
devices with the same checkpoint name are associated in the visualiser for com-
parison.

• addErrorCheckpoint() marks a flow as failed. Failures in a flow are highlighted
in the visualiser so that they can be spotted easily. In addition to marking failures
individually, this command also allows a developer to add error checkpoints glob-
ally by creating a test hook that checks after each test if a failure has occurred
(Lst. 6.8).

1 afterEach(function() {

2 if (this.currentTest.state == ’failed’) {

3 return devices

4 .addErrorCheckpoint()

5 }

6 });

Listing 6.8: Adding error checkpoints globally.
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Figure 6.1: Two flows being compared with the visualiser: The one on the left has been
generated with a scenario consisting of a phone and a larger screen, the one on the right
additionally contains a tablet.

6.4.2 Visualisation

XD-Testing comes with a basic visualiser for recorded flows (Fig. 6.1). The tool lists all
flows that are available in its directory. Each device that is part of a flow is represented
by a column. A row is added for each checkpoint, showing the checkpoint name and the
captured screenshot. Optionally, all executed commands can be shown, which could be
of particular interest for failed flows. Failed flows are marked in the flow list so that
they stand out. Note that a flow may hit no failure checkpoint but still be considered
failed due to its visual properties. In that case, it will not be marked and it is up to the
tester to notice the problem. Multiple flows can be loaded into the visualiser and be
compared side by side. This is of particular interest when they represent the same test
executed on different device scenarios. For example, this allows a flow recorded on two
phones to be contrasted with a flow recorded on a phone and a tablet. Alternatively, it
could support finding regressions when the same scenario is used with different versions
of the source code.
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XD-Testing
Selenium 

WebDriver 
Interface

Browsers
(Client-side SUT)WebDriver Browser driverWebDriver I/O

Figure 6.2: The architecture of XD-Testing: XD-Testing is run as Node.js application
(left). It communicates with a Selenium server (middle) using the WebDriver protocol.
Selenium controls the browsers that run the system under test (right).

6.5 Architecture and Implementation

XD-Testing has been built for UI testing of web-based cross-device applications. Hence,
its architecture (Fig 6.2) has been designed to enable XD-Testing to control multiple
browser instances simultaneously which run the client-side portion of the system under
test (SUT). XD-Testing has been implemented on top of WebdriverIO and is executed
in the Node.js runtime. WebdriverIO communicates with a Selenium server over the
WebDriver protocol3. The Selenium server can control any number of browser instances
and is able to execute operations on the browser instances, for example triggering a click
command or reading a label. Selenium is not restricted to a particular browser vendor,
however, it requires a separate browser driver for each vendor. Thus, XD-Testing can
support any browser in its scenarios that Selenium can handle. XD-Testing loads a
browser instance for every device specified in the scenario.

XD-Testing is an extension to WebdriverIO and can act as a replacement for it. It
is backwards compatible, so that tests written for WebdriverIO can also be executed in
XD-Testing. This supports adding cross-device support to legacy single-device applica-
tions with existing tests. Existing tests cases can be kept and executed with XD-Testing
while new ones specific to the cross-device usage can be added later. XD-Testing adds
cross-device abstractions to WebdriverIO and introduces some additional tracking to
enable the implicit selectors and screenshot generation.

XD-Testing can be used in combination with existing test automation frameworks.
Such frameworks can be used for development practices where testing is a central com-
ponent, for example with continuous integration. In continuous integration, a commit
of a code change to a central repository automatically triggers the execution of a test
suite. This approach can lead to regressions being caught earlier. XD-Testing itself
was built with continuous integration and used the Mocha4 test runner, which was also
used for the example test cases in the case study.

We have designed XD-Testing to be agnostic of any specific cross-device application
framework. At the same time, we see merit in giving the tester access to certain
features of a cross-device framework. For example, it may be useful to query the
number of connected devices, information usually contained in the internal state of the
cross-device framework used for development. For this reason, XD-Testing can integrate
facades that provide access to cross-device frameworks. This mechanism makes internal
state of these frameworks available in test cases. Functionality that is common to

3https://w3c.github.io/webdriver/webdriver-spec.html Accessed on 05.05.2017
4http://mochajs.org/ Accessed on 05.05.2017

https://w3c.github.io/webdriver/webdriver-spec.html
http://mochajs.org/
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multiple frameworks can even be abstracted so that the implementation framework
can be dynamically switched without the need to update the test code. We have
implemented a facade for XD-MVC that provides access to various functionalities, such
as device pairing, querying connected devices, or handling events defined in the cross-
device framework itself.

6.6 Case Study

We have conducted a case study to evaluate XD-Testing. We have written tests for a
cross-device gallery application to analyse how XD-Testing can be used to cover the
needed tests. The case study consisted of two main parts. First, we worked with an
existing code base of a gallery application written by the thesis author which uses the
XD-MVC framework. We highlight some sample test cases that were written for this
version. In a next phase, we evaluated a gallery application with a similar, but slightly
different feature set that was implemented by students as part of our web engineering
lecture. This version was written in plain JavaScript, using no cross-device framework.

6.6.1 Gallery Application and Sample Test Cases

The gallery application in the first phase implemented the following behaviour. The
gallery displays a number of photos. The application can be used with a number of
viewers and one controller device. Viewer devices show one photo each in large, while
the controller can be used to select photos to be shown from a list. If more than one
viewer device is paired to the same controller, it shows subsequent photos from the list.
The controller interface is dynamically assigned to the smallest device among all paired
devices. If only a single device is present, it will assume both the controller and viewer
roles so that the application is fully functional at all times.

We have written test cases that verify this behaviour and present two examples here.
The first test (Lst. 6.9) checks that the controller is displayed on the smallest device.
This is done by instantiating a scenario with expected devices, in the example a phone
and a desktop computer (lines 2 to 4). The scenario is loaded (line 6) and the devices
are paired using the cross-device framework facade (line 7). Then, an explicit selector
is used to find the smaller device of the two (line 8). Finally, the test waits for five
seconds for the controller UI component to become visible (line 9). If it does not, the
test will fail.

This test checks one expected device combination where the devices and their char-
acteristics (for example the expect size) are known to the tester. The test benefits from
the device templates that make it easy to instantiate a device with certain character-
istics and compose multiple devices into a scenario. The test demonstrates the use
of explicit device selectors that eliminate the need to keep a reference to each device.
Instead, the devices are managed by XD-Testing. A device could be swapped out or
added easily without having to replace the actual test (lines 6 to 12) and adding a new
device only requires another line of code.

The second test makes no assumption about the device configurations that will use
the application. It uses an implicit selector to test application behaviour independent
of the devices used. The application should always display the photo that is selected
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1 it(’should show controller on the smallest device’, () => {

2 let deviceSet = {

3 A: xdTesting.templates.xsmall.nexus4(),

4 B: xdTesting.templates.desktops.chrome()

5 };

6 return devices = xdTesting.multiremote(deviceSet).init()

7 .app().pairDevicesViaURL(baseUrl)

8 .selectBySize(’xsmall’, small => small

9 .waitForVisible(’.controller’, 5000)

10 )

11 .end()

12 });

Listing 6.9: This test creates a scenario with a phone and a desktop device. It checks
that the controller is displayed on the smallest device.

1 xdTesting.loadScenarios().forEach(scenario => {

2 it(’should show selected image’, () => {

3 return devices = xdTesting.multiremote(scenario.devices).init()

4 .app().pairDevicesViaURL(baseUrl)

5 .checkpoint(’paired’)

6 .implicitAny(device => device

7 .waitForVisible(’.controller’, 5000)

8 .click(’.controller img:nth-of-type(2)’)

9 .waitForVisible(’.viewer img[src="img/album/large/02.jpg"]’, 3000)

10 .checkpoint(’image clicked’)

11 )

12 })

13 });

Listing 6.10: This tests loads scenarios from a configuration file. For each scenario,
it checks if a photo selected on a controller is displayed on a viewer device.

on the controller device, independent of the number and type of devices that are used.
Listing 6.10 verifies this behaviour. For this test, random scenarios have been generated
using the command line tool. The scenarios are loaded from the generated file and the
following test code is repeated for each scenario (line 1). As before, each scenario is
instantiated (line 3) and the devices are paired (line 4). After pairing, a checkpoint is
set (line 5) so that the initial state is captured in a screenshot for the flow visualiser.
Then, an implicit block is started with the implicitAny selector (line 6) which ensures
that the following commands are executed on exactly one device. The test waits for
the controller UI component to become visible (line 7) and, once it is visible, triggers a
click on the second photo in the list (line 8). Then, the test waits for any viewer device
to show the photo (line 9). Finally, another checkpoint captures the final state in a
screenshot (line 10).

This second test would be even more challenging to write without XD-Testing than
the first one. Without the implicitAny command, the tester would need to find the
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Figure 6.3: A test suite with four tests, 3 passing and one failing.

appropriate device for each command in lines 7 to 10 before the command can be
executed. Furthermore, the commands would need to be properly synchronised. This
would make the code longer, more complex, and harder to read. With XD-Testing, the
tester can focus on the application behaviour while the library handles the identification
and synchronisation of the devices. Both test cases use the framework integration for
pairing devices, resulting in a single line of code for this common step.

6.6.2 Evaluation of Web Engineering Exercise

As part of our web engineering class, students were asked to implement a simplified
version of the gallery application. In contrast to the previous version, the viewer and
controller roles were not assigned dynamically, instead each interface could be loaded
with a different URL. The application did not use any cross-device framework and
students were free in their implementation, as long as it met the specifications in the
exercise description. However, they all started from the same code skeleton. We created
9 test cases verifying behaviour described in the specification. The tests were executed
on the reference solution that was implemented by the thesis author. All tests passed,
demonstrating that there were no false positives in the tests and that the reference
solution indeed meets the requirements.

After the exercise had been graded, we asked students to voluntarily send us their
code, in particular if they had any issues. We tested three different solutions that
we received and that were reported to have issues. While they all covered the basic
functionality, we were able to confirm the issues with the tests. The issues were edge
cases and concerned either the re-distribution of images when viewer devices connected
or the incorrect handling of more than one session of paired viewers and controllers.
Figure 6.3 illustrates the output of a test suite of four tests. The first three tests have
passed, while the last one has failed. The test output indicates that there is an issue
with an image source not being equal to the expected one. In cases like this one,
the visualiser can provide further help. Figure 6.4 shows the visualiser for a failed
test. Failed tests are marked in the overview. In the first row, two viewers (ScreenA
and ScreenB) are paired with a controller (RemoteA) and the photos are distributed
correctly: ScreenA shows the selected photo and ScreenB the next one in the list. When
ScreenA is disconnect in the second row, ScreenB is expected to update and show the



118 Chapter 6. XD-Testing: Automated Testing

Figure 6.4: The visualiser displaying a failed test.

selected photo. However, it remains unchanged and the tests thus fails. The failure is
represented with an ERROR checkpoint that is automatically created and represented
in the third row. While the test output indicated that there is a problem, the visual
representation aids the comprehension of the underlying cause of the problem.

As XD-Testing is a library for end-to-end testing, little knowledge of the implement-
ation is required to write test cases. This was confirmed by the fact that the same test
cases could be re-used across the reference solution and the three student solutions with
small tweaks. Mainly CSS selectors needed to be adapted to identify the correct UI
elements which may vary slightly between implementations.
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6.7 Discussion

With XD-Testing, we had the goal of reducing the effects of the fragmentation and
the many possible device combinations that we have identified as challenges in cross-
device testing. The case study has confirmed that XD-Testing facilitates verifying
cross-device applications. We were able to compose test cases that check complex cross-
device-specific application behaviour. Tests that were hard to express with existing
tools became more concise and easy to understand. The explicit selectors allow the
application to be verified with expected device combinations, for example to check
whether the UI distributes correctly across the devices. The implicit selectors enable
tests that check functionality independent of the devices used. When combined with
the device scenarios that can be randomly generated by XD-Testing, implicit selectors
allow the tester to cover a wide range of possible device combinations, even unexpected
ones.

In the case study, we also found directions for future extensions of XD-Testing.
First, the explicit device selectors are limited to a small set of characteristics and to
one characteristic at a time. While nesting allows the combination of multiple selectors
to a certain degree, the code can become complex and hard to understand if the nesting
is too deep. Furthermore, some selections cannot be expressed with nesting, for example
the selection of the smallest device in a scenario. Such selections could be enabled with
a more sophisticated query language that could allow queries such as find the smallest
device with a touch screen.

Our case study was carried out with emulated devices. Device types were differenti-
ated mainly based on different screen sizes. However, there are other factors that could
impact a test, for example computing power that affect wait times or interactions that
rely on sensor only available on some device types. Thus, we also see benefits in using
real devices with differing hardware for tests. As XD-Testing builds on the standard-
ised WebDriver protocol, the tests could be executed on any device that support the
protocol. The selectors are independent of a device being emulated or real. However,
the device templates have been built for emulated devices and the composition of the
scenarios would need to be adapted to take into account available real devices.

The visualiser has been built with the goal of providing additional information for
failed tests and to allow the tester to inspect the application visually. This could, for
example, allow them to compare the application in different scenarios and to find issues
that were not covered in any test. The visualiser was optimised to compare at most two
scenarios at a time. While more scenarios could technically be displayed simultaneously,
we suspect that this could lead to visual overload. Other means to compare a larger
number of scenarios visually could be explored in the future.
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XD-Analytics: Usage Analysis

After an application has been deployed, monitoring its usage can provide interesting
insights. Usage analysis products such as Google Analytics promise insights into user
experience and behaviour and allow business goals to be measured. These can be used
to shape a product in a next iteration or to help choose between different designs in
A/B testing. Existing analytics solutions take into account the different device types,
as user behaviour may vary between them, however they have not been built with cross-
device applications in mind. In this chapter1, we explore how analytics tools need to
be adapted to provide insights tailored to cross-device applications. We illustrate how
a cross-device analytics tool might be used by listing interesting questions one might
ask about cross-device usage of an application that cannot easily be answered with
conventional tools. Next, we introduce a set of metrics for cross-device analytics. We
have implemented these metrics in the tracking and visualiser tool XD-Analytics. We
give a short overview of the tool and explain how it can be used to answer the questions
from the use cases. Then we present the architecture of the tool before we report on
our experiences using it in a case study with educational software in the wild. Note
that some of the screenshots in this chapter have been edited to give better readability.
This chapter was developed in [160].

7.1 Cross-Device Analytics Use Cases

In the following list, we present use cases for cross-device analytics. We list interesting
questions that could inform a next iteration in the design and development of a cross-
device application that cannot easily be answered with conventional analytics tools.

U1 – Detecting cross-device usage Is there any cross-device usage of the ap-
plication? How much time is spent online with cross-device usage and how much with
single device usage? If a cross-device application is only used with a single device,
efforts could be made to better educate the user about cross-device functionality.

1Earlier versions of parts of this chapter were originally published as Husmann et al. [79, 80].
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U2 – Detecting device combinations What devices are typically involved in
parallel usage? Are there any unexpected combinations (e.g. three smartphones) that
the application could be optimised for? Device combinations that are detected could
be optimised for in the design. Furthermore, this information could also be fed back
into the testing phase where these combinations could specifically be tested.

U3 – Localising cross-device usage within an application Which part of the
application is commonly used with multiple devices? When transitioning from a single-
device to a cross-device application, it is possible that cross-device support has only
been enabled for certain features of the application. Localising the cross-device usage
could help to confirm that the application is used as intended. Furthermore, it could
be the case that only certain features are suited to cross-device usage whereas others
might be used mostly on a single device. Data on usage could inform a next design
iteration of the application.

U4 – Finding patterns by device combination What do users who combine a
lot of devices do? What do users with specific combinations of devices (e.g. two tablets)
do? Answers to these questions could help tailor specific functionality to specific device
combinations.

U5 – Preparing for the move from a single-device to a cross-device applic-
ation What devices in general are used to access the application? For an application
without cross-device support, can we find indications where it could benefit from in-
troducing cross-device functionality? For example, if we can detect the parallel use of
an application without cross-device support, this could be an indication that the user
might benefit from adding such support and provide some first insights into what kind
of cross-device features might be useful.

7.2 Metrics

To answer the questions from the previous section, we propose that the following metrics
are tracked in a cross-device application.

• Devices, users, and sessions The two most important entities to be recorded
are devices and users. To identify that the same user is using multiple devices,
a user concept is required. As soon as a user is logged in, the device can be
associated with the user. Additionally, we propose that open tabs are tracked as
well in what we call sessions. An application opened in multiple tabs on the same
device could indicate a need for more screen real estate. In summary, a user can
have multiple devices which can have multiple sessions.

• Device types Device types provide information on the kind of devices that use
an application. Variations of this metric are also tracked in conventional analytics
tools where devices are often classified as phones, tablets, or desktop computers.
In our prototype, we classify devices into five categories (xs, sm, md, lg, xl)
according to their screen size.

• Device combinations When multiple devices are used in parallel, we can record
the combination of device types that are used, for example two small devices and
a large device.
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• Device cardinalities The device cardinalities count the number of devices in a
combination regardless of the device type.

• Location combinations When devices are used in combination, the URL loca-
tions that are viewed on each device can be associated. The locations are typically
an indication of the content, state, or functionality of the application that a user
is accessing.

• Combined views ratio The combined views ratio is calculated by dividing the
number of views of a location as part of device combination by the total number
of views. This will result in a high number for locations that are mostly used in
a cross-device setting and a low number for those that are mostly accessed from
a single device.

7.3 XD-Analytics

We have implemented these metrics in a cross-device analytics tool. The proof-of-
concept tool consists of a tracker that needs to be integrated into the application under
inspection and a visual UI for the analysis of the collected data. We first give an
overview of the tool and explain how it addresses the use cases introduced above. Then
we provide some details on the architecture and implementation of the tool.

7.3.1 Overview

Figure 7.1 provides an overview of the UI of XD-Analytics. Bar charts, time line charts,
and ordered lists can be used to view the data in the upper part of the UI. Below, the
analyst can filter the data and drill down into aspects of interest. The interaction has
been designed on principles from faceted search. Figure 7.2 illustrates a facet for device
types. When a value in a facet (e.g. a small device) is selected, the other facets update
to only reflect values that also match the selected facet (e.g. locations that were visited
with small devices). XD-Analytics can provide answers to the questions in the following
way.

U1 – Detecting cross-device usage Looking at device cardinalities (Fig. 7.3)
gives a first indication. Any cardinality higher than one denotes cross-device usage. A
chart can be created that displays aggregated time online for specific device cardinalities
(Fig. 7.4). A similar chart can be created with average time online which could be
used to determine if users with multiple devices spend more or less time with the
application than single device users. Time spent online could be used as an indication
of engagement.

U2 – Detecting device combinations As this directly corresponds to a metric,
questions regarding device combinations can easily be answered by inspecting the data
in either the list or bar chart (Fig. 7.5) format.

U3 – Localising cross-device usage within an application The analyst can
investigate this by inspecting location combinations (Fig 7.6). The data is presented in
descending order so that the most frequent location combinations are shown first. The
combined views ratio highlights locations that are more frequently used with multiple
devices than with a single device. Furthermore, the analyst can enter location patterns
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Figure 7.1: An overview of XD-Analytics.

Figure 7.2: A facet in XD-Analytics.
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Figure 7.3: Device cardinalities

Figure 7.4: Time online for single device usage (green) and for combinations of two
devices (dark grey)

Figure 7.5: Device combinations
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Figure 7.6: Location combinations, showing 47 users who accessed home and landing
simultaneously.

using regular expressions and filter for these patterns. This restricts the analysis to
certain locations within the application.

U4 – Finding patterns by device combination These questions can be answered
by filtering the device combinations or cardinalities and then inspecting the locations.
For example, the device cardinality could be set to the highest occurring number and
then the locations and their combinations could be inspected. This would give an in-
dication of what the user is doing with their devices. Likewise, a given combination
(md, md) could be fixed and the process repeated.

U5 – Preparing for the move from a single-device to a cross-device ap-
plication General information about the devices can be obtained by inspecting the
device types, information on browsers, their versions, and operating systems used. If
an application has no specific cross-device support, but parallel usage is detected (using
the same methods as for U1), this could be an indication that they would benefit from
added cross-device support. Similarly, if there are more sessions than devices and thus
users have multiple tabs open with the same application, it could be worth investig-
ating if users would benefit from moving the additional tabs to a second device and
coordinating interaction with the first one. Inspecting the location combination could
provide pointers to what functionality is used in parallel.

7.3.2 Architecture and Implementation

XD-Analytics consists of two main parts: a script that tracks the user in the client
application and a server that collects the data and presents it to the analyst through
a visual analytics interface. Figure 7.7 provides an overview of this architecture. The
tracker is a JavaScript file that needs to be included in the client application. It tracks
device characteristics, user interactions, and application state based on URL locations.
The device type is derived from the screen size in CSS pixels2. While not entirely
accurate for all devices due to differences among vendors, informal tests produced good
results with mobile phones (Nexus 4, Samsung Galaxy Note 4) classified as small, a
tablet (iPad Air) as medium, a notebook as large, and a 30inch screen as extra large.
The data collected in the client is sent to the server in batch uploads. Every 30 seconds,
the tracker checks if the user is still using the application and an event is generated to
track the duration of the session. To associate devices with users, the application should

2https://www.w3.org/TR/css3-values/#reference-pixel Accessed on 12.05.2017

https://www.w3.org/TR/css3-values/#reference-pixel
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Figure 7.7: XD-Analytics architecture: A tracker integrated into the client application
collects data and sends it to the analytics server.

supply a user ID on each device. This could be derived from any login mechanism that
is used and it should be chosen so that personal identification of the user is not possible
to protect their privacy. For example, instead of an email address a hash derived from
the address could be used. The tracker assigns a unique, persistent ID to each device
so that devices can be distinguished from each other and repeated visits with the same
device can be recognised.

On the server, the data is preprocessed. The event logs received from the tracker
are aggregated into 10-minute intervals for performance reasons. These metrics are
aggregated by device and user, before the cross-device metrics are calculated. XD-
Analytics has been implemented using the Meteor3 platform. Both the tracker and
the analytics client communicate with the server over websockets using the JSON-
based Distributed Data Protocol (DDP) that is part of the Meteor platform. The
data is stored persistently on the server using MongoDB. The analytics client has been
implemented using React and Chart.js4 components.

7.4 Case Study

We have used XD-Analytics to track the introduction of a cross-device feature into an
application with an existing user base. The application had no cross-device support
at the start of the case study. Over the course of 9 weeks, we recorded more than
3 million log entries. The case study was conducted with the Taskbase5 application.

3https://www.meteor.com/ Accessed on 12.05.2017
4http://www.chartjs.org/ Accessed on 12.05.2017
5https://www.taskbase.com/ Accessed on 12.05.2017

https://www.meteor.com/
http://www.chartjs.org/
https://www.taskbase.com/
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Taskbase is an educational platform that allows teachers to upload course material,
such as exercise sheets or lecture slides. Students can give feedback on the exercises
and rate their difficulty. At the time of the study, the software was used at Swiss
schools and universities, including ETH Zurich with more than 3500 users from the
mathematics department. ETH Zurich has its own installation6 which was used in the
work described here.

7.4.1 Cross-Device Extension

We used XD-Analytics to track the use of Taskbase before the introduction of the cross-
device feature to get an impression of how the platform is used. Even though exercise
sheets can be printed, instructors observed that students often access them digitally
during exercise sessions using notebooks or tablets. This was reflected in our logs when
we analysed access patterns. We also noticed that more than 2700 users accessed the
platform with two different devices (not necessarily in parallel), while fewer than 400
used only a single device. Fewer than 100 users used three or more devices. In our own
teaching, we have experienced students handing in hand-written exercises for marking
digitally, by either scanning or photographing them. Based on this experience and the
analysis of Taskbase usage, we decided to implement a feature that allows students
to submit hand-written solutions by photographing them with their phone or tablet.
The feature was designed for the following scenario. The student displays the exercise
instructions on their laptop or tablet while they solve the exercise on paper. Once
they are ready to submit the solution, they use their phone to scan a QR code that
is displayed alongside the instructions (Fig. 7.8). This step takes them to an upload
page where they are prompted to photograph their solution (Fig. 7.9). The solution is
associated with the correct exercise automatically. The solution is then made available
to the instructor for marking through the platform.

The feature was implemented in Taskbase and introduced in a class that the author
of this thesis was teaching as an assistant. The class had previously not been using
Taskbase. The platform was introduced and the feature was demonstrated in an exercise
session. Students were encouraged to use it, but were still allowed to hand in their
solutions in person or by email as they had done previously. In total 44 students were
enrolled in that class and roughly 30 students typically attended the exercise sessions.
Handing in assignments was voluntary (a master solution was provided) and generally
done by 6 to 10 students to get personalised feedback.

7.4.2 Results

In the section, we present the data and insights that we have gathered in our case study
using XD-Analytics. Note that all data presented here was filtered to only show users
from that specific course. The filtering was done using regular expressions on the URL
locations, a feature that is provided by XD-Analytics.

Figure 7.10 shows the morning when the feature was introduced in the course. From
8.15 to 10 students were in the lecture. They had received an email stating that the
course material was available on the platform. During the lecture, there was some

6https://e-lectures.ethz.ch Accessed on 12.05.2017

https://e-lectures.ethz.ch
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Figure 7.8: A Taskbase user connects their phone by scanning a QR code on the
notebook.

Figure 7.9: A Taskbase user submits their solution by taking a picture with their phone.
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Figure 7.10: Device cardinalities for the morning of the feature introduction. The dark
green line shows single device users, the light green one users with two devices.

activity on the platform. The activity spikes after 10. That is when the new cross-
device feature was demonstrated in the exercise session that took place from 10.15 to
11. The dark green line denotes access with a single device, whereas the lighter green
line shows device cardinalities of two. The data shows that most students used only a
single device to access the platform, but a few used two devices in parallel. The data is
line with our observation that only a few students tried the cross-device feature in the
exercise session.

The students then had two weeks time to solve the exercise and hand in the solution.
Figure 7.11 shows a day when two students handed in their solution using the added
cross-device feature. The chart is filtered to only show device cardinalities of two to
limit the data to users who used two devices in parallel. One handed in around 11 and
the other one around five o’clock. This data matches the number of solutions that we
received.

Figure 7.12 lists the device combinations that were tracked. The most common
combination is a small and large device, matching the intended use with a phone and a
laptop. When we removed the filter for the specific course and inspected the combined
view ratio, we found that locations related to our course were listed first (Fig 7.13).
Given that other courses had much higher student numbers (up to 10 times more) and
as a result much higher activity in general, this observation shows that the metric is
suited to locate cross-device activity within an application.

XD-Analytics helped us inform the design of the cross-device feature and allowed us
to observe its introduction in the wild. The system let us quantify cross-device usage
and track it over time. It showed that the feature was indeed used, but only by a
small number of students. Partly, this can be explained by the fact that the study was
carried out as part of a Master thesis and had to be done within tight time constraints.
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Figure 7.11: Cross-device usage for hand in. One student used the cross-device feature
at 11.00, the other at 17.00 to hand in their solutions.

Figure 7.12: The device combinations observed in the class.
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Figure 7.13: Locations sorted by the combined view ratio. Locations with high cross-
device activity in relation to total activity are listed first.

While the Taskbase platform does have many users, we failed to find a professor who
was already using the system to agree to take part in the study. At that time of study,
the semester was almost over and they were reluctant to introduce a change so late in
the semester. Hence, we decided to test the system with a class of this thesis’ author.
However, since only a few students had been handing in their exercises previously, as
it was not mandatory, the low usage numbers were not surprising.

7.5 Discussion

In this chapter, we have introduced a set of metrics together with use cases for cross-
device analytics. With our prototype implementation XD-Analytics and its use in a
case study we have shown what we can learn about cross-device use in the wild. We
have also identified some limitations of our implementation. First, we aim at detecting
parallel usage of multiple devices based on a user concept. However, some applica-
tions do not include one. In its current state, XD-Analytics cannot identify parallel
usage in such applications. Furthermore, if an application includes a user concept but
applies a separate pairing mechanism, the explicit pairing will also not be tracked.
That is, if the user is logged into the same application on two devices simultaneously,
XD-Analytics will record it as parallel usage, whether the devices are paired or not.
Similarly, cross-device usage between multiple users are currently not detected. A be-
nefit of our approach is that is independent of any cross-device framework and pairing
mechanism. It also allows applications with no cross-device support to be tracked. Fur-
thermore, it is in line with the intuition behind what we understand by parallel usage:
the same person using multiple devices simultaneously. However, if explicit pairing was
needed, XD-Analytics could be extended with a pairing event to be sent to the server
along with the rest of the logs. The calculation of the device combination could then
be adapted to take pairing into account.

Tighter integration with existing cross-device frameworks could allow further ana-
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lyses. User or device specific roles could be tracked as well. Other frameworks make
use of the relative position of devices and/or users. Collecting and analysing such infor-
mation could help us understand how the applications are used when deployed outside
of lab environments.

We have classified the devices according to their screen size. Other categorisations
could be used, for example phone or tablet. However, the device landscape is quite
diverse. Some notebooks come with removable keyboard and can be used as tablets.
Large phones are approaching small tablets in size. Rather than putting devices into
these narrow categories, additional device characteristics could be recorded to provide
more information on the type of device that is used. For example, information on input
and output modalities could be recorded, as these characteristics are sometimes used
to determine the distribution of the UI.





8
Conclusion & Outlook

Motivated by the increasing number of devices users have at their disposal, we invest-
igated how applications can be built that make use of multiple devices in parallel. Our
analysis of related work showed that tools for building cross-device applications focus
on the design and prototyping stage and the implementation stage. Later stages in the
development process, including testing and debugging, have received little attention in
prior work. As a result, existing tools are suitable for building experimental proto-
types but offer little support for building well-tested products. In this thesis, we filled
that gap by analysing the different stages of the development process and providing
appropriate tool support for each stage. Let us revisit the research questions from the
Introduction.

• RQ1 How well do existing tools support cross-device development across the
whole development lifecycle?

• RQ2 What are the requirements of tools specific for cross-device development?

• RQ3 Can we provide better tools for cross-device development, in particular for
testing, debugging, and usage analysis?

We identified inadequacies of existing tools that have been built with single-device
applications in mind, answering research question RQ1. Essentially, these issues boil
down to two major challenges that developers face in cross-device development: The
many possible device combinations lead to a huge design space and make it difficult to
develop, debug, and test the applications. The fragmentation of the logic across devices
introduces challenges in particular during testing and debugging.

Next, we summarise our contributions for each stage in the development process.
These address research questions RQ2 and RQ3. For design and prototyping, we
introduced MultiMasher, a visual tool for creating functional cross-device prototypes
from existing websites. The tool only requires limited technical knowledge as most in-
teractions build on direct manipulation of the underlying website. Components can be
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extracted from a website and combined with other components from the same or a dif-
ferent website. MultiMasher handles the inter-component communication across device
boundaries. The tool enables experimentation by allowing the designer to easily add
new devices and migrate components from one device to another using drag-and-drop.
We also used MultiMasher as an opportunity to experiment with different architectures
for state synchronisation.

For the implementation phase, we contributed the JavaScript framework XD-
MVC. Using a wide range of sample applications that were built with the framework,
we demonstrated its flexibility and utility. Its layered architecture allows developers to
choose the level of support they need while maintaining freedom to work with familiar
technology. With the Polymer components we provided building blocks for common
tasks such as pairing and predefined layout components implement common distribution
patterns.

With XD-Tools we contributed a set of tools to the debugging phase. Based on
common developer tasks, we analysed challenges that are particular to cross-device
debugging and informal testing and derived requirements for tool support. With XD-
Tools, we presented a prototype that illustrates how browsers could support cross-device
debugging in the future. XD-Tools enables the inclusion of both real and emulated
devices for testing and debugging. It eliminates some of the challenges introduced by the
fragmentation of the logic across devices by grouping devices into device configurations
that can be inspected and manipulated as a whole. Furthermore, repetitive tasks can be
automated, for example the pairing of devices or by recording and replaying interactions
on multiple devices. In a qualitative user study, developers welcomed the cross-device
support introduced by XD-Tools.

Based on a motivating example, we demonstrated the challenges of testing cross-
device applications. We found in our analysis that UI tests are more problematic in
cross-device applications than unit tests which are more isolated and do not suffer from
the fragmentation of the logic across devices. To enable repeatable automated UI tests
across a range of device configurations, we introduced device templates and scenarios
that can be used to parametrise tests. Our explicit device selectors allow a tester
to verify specific device configurations whereas the implicit selectors enabled device-
independent tests and handle the fragmentation of logic across devices. In addition
to these concepts that we implemented in the library XD-Testing, we also contributed
a tool for visually verifying test execution based on screenshots. In a case study, we
showcased the kind of tests that can be written with the library and how the screenshots
could help to find the cause of a failed test.

Our final contribution was XD-Analytics, a tool for cross-device usage analysis.
Based on five cross-device analytics use cases, we introduced a set of metrics of interest.
We track these metrics in our prototype implementation XD-Analytics and discussed
how they address the use cases. XD-Analytics was evaluated in a in-the-wild study
with an educational application. It provided insights into how a cross-device feature
was adopted by the users when it was introduced during the study.
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8.1 Analysis

Our original vision was to foster communication between the devices in our everyday
lives. We approached the problem by analysing state-of-the-art tool support for devel-
oping cross-device applications and filled the gaps where we found them. A common
theme in all the tools that we have presented in the thesis is that we have a concept of
a set of connected devices. This is in contrast to conventional development tools that
treat each device individually. The concept of connected devices allows us to aggregate
information, for example for debugging or analytics, and to address the set as whole,
for example when testing.

Our hope is that with improved tool support, we will spark the creation of more and
better cross-device applications and bring us a step closer to Mark Weiser’s vision of the
seamless use of devices. While we see better tool support as a necessary condition, it
may not be sufficient. Researchers have lamented that a killer cross-device application
is still missing. Furthermore, while our analysis of related work showed that people
do use multiple devices in parallel and do ask for better support, it is unclear whether
that implies that every application should support parallel use or whether it will remain
limited to certain domains or use cases.

We have focused on the development of applications that distribute across devices.
However, we also see a lot of potential in better communication among different ap-
plications across devices (like the example presented in [58]). We imagine that the best
experience could be achieved with cross-device support at the operating system level.
However, finding solutions that work across different platforms, each with its own user
and cloud systems, would be a big challenge to tackle and would require cooperation
from the platform owners.

Our web-based approach is more lightweight and works across most platforms. How-
ever, it comes at the cost of reduced access to platform specific APIs, for example a
user’s contacts or the file system. Furthermore, we have focused on somewhat conven-
tional devices with GUIs. In a smart home, we may encounter a range of other devices
(for example personal assistants such as Amazon Alex or Google Home) or sensors
that could add to the cross-device experience. We have not considered these devices
in our work. While our tools and concepts are applicable to smartwatches, we have
not included these in any of our evaluations as at the time of writing they have not
been tailored to support modern web browsers. However, we see a lot of potential for
cross-device interaction of watches with other devices (in particular with phones [26]).

We have focused our work mostly on somewhat conventional interactions with the
devices using touch or mouse and keyboard. However, new interaction modalities might
be used with cross-device applications (for example proxemics [117] or gestures [40]).
At the same time, we observe a trend towards conversational, speech-based interfaces
with the personal assistant devices mentioned above. Our work has not considered
these modalities. While we would argue that the main concepts can also be applied
to these modalities, namely that devices should be handled as a set, further support
would need to be explored, in particular for testing and debugging, as our tools have
been tailored to the visual part of the applications.

We have approached the problem by analysing existing workflows and tools and
adapting these to cross-device applications. This is an incremental approach. Starting
from a blank slate one could opt for a more radical approach. The benefit of our
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approach is that the tools we built are familiar to the developers to some extent, which
should increase learnability. We also expect that familiar tools are more likely to be
adopted by developers. A discussion of the individual tools including their limitations
and possible extensions can be found at the end of each respective chapter.

8.2 Outlook

We can see many opportunities for further research. Our implementation library XD-
MVC has been kept general enough to enable both automatic and user-driven distribu-
tion of an UI. A more opinionated approach could be explored along with specific tool
support. Others have explored giving users complete freedom in defining UI distribu-
tions [138] or relied on common patterns [137]. This user-driven UI distribution is
an interesting approach which eliminates the burden of attempting to design and im-
plement a suitable UI distribution for every possible device combination. On the other
hand, this approach could introduce new challenges for debugging, testing, and usage
analysis. If the UI distribution is defined by the user, the developer has to deal with
even more uncertainty. In addition to not knowing the devices that might be used, the
UI distribution is also in the hands of the user and not the developer. This can make
testing and debugging especially hard, where it is vital to know as much as possible
about the setting to reproduce issues and to test.

Another direction of research would be to investigate cross-device interaction
across application boundaries. The application framework Conductor [58] enables
communication across applications and devices. For example, a map application can
be combined with a contacts application to display nearby friends. The focus of Con-
ductor is on interactions rather than the development process. However, we also expect
challenges in the development process that would need further investigation. Allowing
arbitrary applications to be combined would require clear communication protocols and
APIs. A developer would need to test their own application carefully to ensure that it
really behaves according to specification. As the input from another application is out
of the developer’s control, they would need to ensure that their own application is ro-
bust in all situations. Debugging may require that the setup with the other application
is replicated or that at least the communication can be simulated, whereas usage ana-
lysis may need coordination of multiple applications which may originate from different
developers or companies. Furthermore, support at the operating systems level could be
investigated.

As we have discussed above, we have focused on the graphical user interface and
mostly conventional input based on touch, mouse, and keyboard. New input mod-
alities, such as proxemic interaction, gestures, or conversational UIs require further
investigation. These modalities come with higher degrees of freedom than the conven-
tional input modalities and we expect that they are more challenging to debug and test
for that reason. Mechanism such as recording and replaying interactions may be even
more important with these modalities, but it may not be enough to use the data of a
single test user to achieve good coverage. Instead, larger data sets may be required,
making usage analysis and data collection even more important. The combination of
multiple modalities also merits further research.

Finally, despite the many research prototypes that have been built, we have seen
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little adoption of cross-device applications outside labs, apart from a few very
specific scenarios (for example using the phone to control the TV). This can be ex-
plained to some extent with a legacy bias [154]. Can we overcome this bias with better
applications? How can we teach the user that they can use more than single device at
a time using our application? Or are they simply overwhelmed with the complexity of
using multiple devices? These are important questions that should be investigated.





A
Student Contributions

A number of students have contributed to the technical realisation of the tools and
showcase applications presented in this thesis. The following students have made a
significant contribution as part of their Master’s, Bachelor’s or lab project. All students
have been personally supervised by this thesis’ author.

• Stefano Pongelli has implemented the second MultiMasher prototype in [179].

• Fabian Stutz has implemented a first version of the state synchronisation in
XD-MVC in [182].

• Silvan Egli has implemented the hybrid communication architecture of XD-MVC
in [43].

• Dhivyabharathi Ramasamy, Alexander Richter and Marko Zivkovic
have developed the XD-Bike application.

• Madelin Schumacher has experimented with the distributed layout patterns
in [166].

• Sivaranjini Chithambaram has developed the pairing based on social and phys-
ical proximity in XD-MVC and implemented the hotel booking showcase applic-
ation in [30].

• Aryaman Fasciati has developed the XD-MVC integration with React and the
voting showcase application in [44].

• Nina Heyder has developed XD-Tools and executed the associated user study
in [67].

• Michael Spiegel has implemented XD-Testing and written the tests in the as-
sociated case study in [177].
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• Nicola Marcacci Rossi has developed XD-Analytics and conducted the case
study with Taskbase in [160].
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[104] C. Lander, S. Gehring, A. Krüger, S. Boring, and A. Bulling. GazeProjector:
Accurate Gaze Estimation and Seamless Gaze Interaction Across Multiple Dis-
plays. In Proceedings of the 28th Annual ACM Symposium on User Inter-
face Software and Technology, UIST ’15, pages 395–404, New York, NY, USA,
2015. ACM. ISBN 978-1-4503-3779-3. doi: 10.1145/2807442.2807479. URL
http://doi.acm.org/10.1145/2807442.2807479. Cited on page 19.

[105] J. Lanir, K. S. Booth, and K. Hawkey. The Benefits of More Electronic Screen
Space on Students’ Retention of Material in Classroom Lectures. Computers &
Education, 55(2):892 – 903, 2010. ISSN 0360-1315. doi: http://dx.doi.org/10.
1016/j.compedu.2010.03.020. URL http://www.sciencedirect.com/science/

article/pii/S0360131510001065. Cited on page 23.

[106] T. D. LaToza, G. Venolia, and R. DeLine. Maintaining Mental Models: A Study
of Developer Work Habits. In Proceedings of the 28th International Conference on
Software Engineering, ICSE ’06, pages 492–501, New York, NY, USA, 2006. ACM.
ISBN 1-59593-375-1. URL http://doi.acm.org/10.1145/1134285.1134355.
Cited on pages 23 and 83.

[107] M. Leotta, D. Clerissi, F. Ricca, and P. Tonellla. Capture-Replay vs. Pro-
grammable Web Testing: an Empirical Assessment During Test Case Evolution.
In Proceedings of the 2013 20th Working Conference on Reverse Engineerings,
WCRE ’13, pages 272–281, 2013. doi: 10.1109/WCRE.2013.6671302. Cited on
page 36.

[108] J. Lin and J. A. Landay. Employing Patterns and Layers for Early-stage Design
and Prototyping of Cross-device User Interfaces. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’08, pages 1313–
1322, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-011-1. doi: 10.1145/
1357054.1357260. URL http://doi.acm.org/10.1145/1357054.1357260. Cited
on page 24.

[109] D. Lowet and D. Goergen. Co-browsing Dynamic Web Pages. In Proceedings
of the 18th International Conference on World Wide Web, WWW ’09, pages
941–950, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-487-4. doi: 10.
1145/1526709.1526836. URL http://doi.acm.org/10.1145/1526709.1526836.
Cited on pages 22, 49, and 52.

[110] A. Lucero, J. Keränen, and H. Korhonen. Collaborative Use of Mobile Phones for
Brainstorming. In Proceedings of the 12th International Conference on Human
Computer Interaction with Mobile Devices and Services, MobileHCI ’10, pages
337–340, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-835-3. doi: 10.
1145/1851600.1851659. URL http://doi.acm.org/10.1145/1851600.1851659.
Cited on pages 18 and 23.

[111] A. Lucero, J. Holopainen, and T. Jokela. Pass-them-around: Collaborative Use of
Mobile Phones for Photo Sharing. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’11, pages 1787–1796, New York, NY,
USA, 2011. ACM. ISBN 978-1-4503-0228-9. doi: 10.1145/1978942.1979201. URL
http://doi.acm.org/10.1145/1978942.1979201. Cited on pages 18 and 23.

http://doi.acm.org/10.1145/2807442.2807479
http://www.sciencedirect.com/science/article/pii/S0360131510001065
http://www.sciencedirect.com/science/article/pii/S0360131510001065
http://doi.acm.org/10.1145/1134285.1134355
http://doi.acm.org/10.1145/1357054.1357260
http://doi.acm.org/10.1145/1526709.1526836
http://doi.acm.org/10.1145/1851600.1851659
http://doi.acm.org/10.1145/1978942.1979201


Bibliography 157

[112] N. Mahyar, K. J. Burke, J. E. Xiang, S. C. Meng, K. S. Booth, C. L. Girling,
and R. W. Kellett. UD Co-Spaces: A Table-Centred Multi-Display Environment
for Public Engagement in Urban Design Charrettes. In Proceedings of the 2016
ACM on Interactive Surfaces and Spaces, ISS ’16, pages 109–118, New York, NY,
USA, 2016. ACM. ISBN 978-1-4503-4248-3. doi: 10.1145/2992154.2992163. URL
http://doi.acm.org/10.1145/2992154.2992163. Cited on page 22.
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