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*Corresponding author: E-mail: daniel.croll@unine.ch.

Associate editor: Jeffrey P. Townsend

All data used in this article have been deposited in the Nucleotide Short Read Archive (accession nos.

PRJNA327615 and PRJNA178194).

Abstract

Differences in gene content are a significant source of variability within species and have an impact on phenotypic traits.
However, little is known about the mechanisms responsible for the most recent gene gains and losses. We screened the
genomes of 123 worldwide isolates of the major pathogen of wheat Zymoseptoria tritici for robust evidence of gene copy
number variation. Based on orthology relationships in three closely related fungi, we identified 599 gene gains and 1,024
gene losses that have not yet reached fixation within the focal species. Our analyses of gene gains and losses segregating in
populations showed that gene copy number variation arose preferentially in subtelomeres and in proximity to trans-
posable elements. Recently lost genes were enriched in virulence factors and secondary metabolite gene clusters. In
contrast, recently gained genes encoded mostly secreted protein lacking a conserved domain. We analyzed the frequency
spectrum at loci segregating a gene presence–absence polymorphism in four worldwide populations. Recent gene losses
showed a significant excess in low-frequency variants compared with genome-wide single nucleotide polymorphism,
which is indicative of strong negative selection against gene losses. Recent gene gains were either under weak negative
selection or neutral. We found evidence for strong divergent selection among populations at individual loci segregating a
gene presence–absence polymorphism. Hence, gene gains and losses likely contributed to local adaptation. Our study
shows that microbial eukaryotes harbor extensive copy number variation within populations and that functional differ-
ences among recently gained and lost genes led to distinct evolutionary trajectories.

Key words: copy number variation, evolutionary genomics, fungi.

Introduction
Differences in gene content are an extensive source of poly-
morphism within species that can have significant pheno-
typic effects (Henrichsen et al. 2009; Conrad et al. 2010).
Gene gains after duplication or horizontal transfer generate
significant evolutionary novelty (Ohno 1970; Lynch and
Conery 2003). Large-scale gene losses following whole ge-
nome duplication events make extensive contributions to
differentiation among species (Blomme et al. 2006; Wolf
and Koonin 2013). Differences in gene content is also an
important source of adaptive differentiation within species
(Redon et al. 2006; Pezer et al. 2015; Cheeseman et al. 2016).
Gene gains and losses preferentially occur in specific chromo-
somal locations and tend to affect genes with specific func-
tions (Blomme et al. 2006; Albalat and Ca~nestro 2016).
However, little is known about the mechanisms leading to
gene gains and losses segregating within population and how
selection acts upon gene content changes.

Gene deletions are under negative selection due to dele-
terious effects of loss-of-function (Conrad et al. 2006; Emerson

et al. 2008; Sudmant et al. 2015). However, the degree of gene
dispensability (i.e., the impact on fitness) can vary substan-
tially among genes (Ohno 1985) and gene losses may also be
adaptive (Olson 1999; Morris et al. 2012). Most gene gains
originate through duplications and are assumed to be initially
selectively neutral and later fixed by genetic drift, although
positive selection can also lead to the fixation of a duplicated
gene (Innan and Kondrashov 2010; Cardoso-Moreira et al.
2016). Adaptive gene gains through horizontal transfer can
be under strong selection and spread among multiple species
(Ropars et al. 2015). Adaptive gene gains and losses were well-
described in pathogens of plants. In plants, the immune sys-
tem triggers defense responses after detection of specific
pathogen proteins, generally identified as effectors (Jones
and Dangl 2006). For pathogens, the loss of genes encoding
such detected proteins can be highly beneficial (Stukenbrock
and McDonald 2009; Presti et al. 2015; Hartmann et al. 2017).
Gene gains through expansions of specific gene families or
horizontal gene transfers can contribute to host specialization
and virulence on new hosts (Friesen et al. 2006; Ohm et al.
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2012). The ability of pathogens to rapidly surmount host
resistance and adapt to new hosts is directly linked to major
economic losses in agriculture (Fisher et al. 2016). The strong
selection that potentially acts on individual gene presence-
absence polymorphisms makes plant pathogens excellent
models to investigate the evolutionary trajectory of gene
gains and losses. In addition, many plant pathogens have
haploid genomes, which exposes gene gains and losses
more directly to selection (Stukenbrock and Croll 2014).

Fungal plant pathogen genomes are often compartmen-
talized into rapidly evolving, repeat-rich and conserved, gene-
rich compartments. Repeat-rich and rapidly evolving com-
partments often segregate presence–absence polymorphism
within the species (Croll and McDonald 2012; Dong et al.
2015). Until now, analyses of within-species gene content
focused on a small number of genomes or targeted specific
gene categories (Yoshida et al. 2009; Syme et al. 2013;
Plissonneau et al. 2016). To understand the mechanisms re-
sponsible for gene gains and losses within species, an exten-
sive set of genomes from multiple populations needs to be
analyzed. Zymoseptoria tritici is the major pathogen of wheat
(Fones and Gurr 2015) with significant variation in gene con-
tent among strains. Genomic analyses showed that hundreds
of genes can be lacking in individual strains compared with
other strains of the species (McDonald et al. 2016; Plissonneau
et al. 2016). A chromosomal rearrangement led to a major
adaptation by deleting a gene that encoded for a protein
recognized by the host (Hartmann et al. 2017). Hence, Z. tritici
is an excellent model to investigate the evolutionary trajec-
tories of recent gene gains and losses. In addition, the path-
ogen undergoes high rates of sexual reproduction (Croll et al.
2015) exposing recent gene gains and losses individually to
selection. The genome of Z. tritici was assembled from
telomere-to-telomere (Goodwin et al. 2011) and a compara-
tive genomics framework of three closely related species
(Grandaubert et al. 2015) enables precise characterizations
of individual gene gains and losses.

In this study, we analyzed recent gene gains and losses
across the genome in four worldwide Z. tritici populations.
For this, we used whole genome sequences of 123 isolates to
identify high-confidence gene presence–absence variations.
We used orthology among three closely related species to as-
sign each presence-absence gene polymorphism to either a
recent gain or a loss event. We analyzed how recent gene gains
and losses were differentially affected by chromosomal loca-
tion, expression level, and gene function. Finally, we analyzed
signatures of selection acting on recent gene gains and losses.

Results

Identification of Recent Gene Gains and Losses in Z.
tritici Populations
We analyzed genome-wide recent gene gains and losses in
four Z. tritici populations sampled from wheat fields across
the geographic range of the pathogen. We used Illumina se-
quencing data generated for 130 haploid Z. tritici isolates (8–
29�mean coverage; supplementary table S1, Supplementary
Material online). First, we detected presence–absence

polymorphisms of entire genes against the reference genome
using mapped read depth. We excluded seven isolates from
further analyses, because we found evidence of partial or
complete chromosomal aneuploidy. We manually curated
presence–absence polymorphisms of genes encoding small
secreted proteins. Genes encoding small secreted proteins are
often located in proximity to regions enriched in repeats and
complex sequence rearrangements that are error-prone for
deletion calls (Presti et al. 2015). We used both comparative
genomics analyses and direct amplification of loci (polymer-
ase chain reaction [PCR]) to validate gene presence–absence
polymorphism calls. As the genomes of two isolates are avail-
able as telomere-to-telomere assemblies (Plissonneau et al.
2016), we used the complete genomes to validate gene pres-
ence–absence polymorphism calls. For each gene predicted
to be deleted in isolate ST99CH_3D7, we performed a blast
search in the complete genome sequence of the same isolate.
Our analyses showed that 237 out of 251 genes predicted to
be deleted were indeed absent from the ST99CH_3D7 ge-
nome. Hence, 14 (3.5%) gene deletion calls were erroneous.
We performed also PCR amplification assays on 95 isolates to
validate gene deletion calls in 14 different genes including six
genes encoding small secreted proteins. The assay confirmed
100% of the 317 tested gene deletion calls (see supplementary
text S1, Supplementary Material online, for details).

We identified a total of 37,644 presence–absence polymor-
phism events affecting 1,623 distinct genes in the genome
(14.6% of all genes on chromosomes shared among all iso-
lates). Then, we classified gene presence–absence polymor-
phism events as recent gene losses or gains in Z. tritici
populations based on gene homology information in closely
related species. Grandaubert et al. (2015) identified a set of
core Zymoseptoria genes, that is, genes having an ortholog in
at least one of the closely related species (Z. pseudotritici, Z.
ardabiliae, and Z. brevis). We defined incomplete (i.e., recent)
gene losses as any presence–absence polymorphism affecting
a core Zymoseptoria gene. Conversely, we referred to incom-
plete (i.e., recent) gene gains as any presence–absence poly-
morphism event affecting a Z. tritici orphan gene (genes
lacking an ortholog in any of the three other species). In
the 123 Z. tritici isolates, we found that 1,024 genes were
affected by incomplete losses (i.e., 10.4% of Zymoseptoria
core genes) and 599 genes were affected by incomplete gains
(i.e., 49.1% of Z. tritici orphan genes; fig. 1A). Incomplete gene
gain events were segregating at higher frequency than incom-
plete gene loss events in the 123 isolates. The median fre-
quency of the gene absence allele at gene loss loci was 3.3%,
whereas the median frequency of the gene absence allele at
gene gain loci was 16.3% among the 123 isolates (fig. 1B;
supplementary tables S2 and S3, Supplementary Material on-
line). Incomplete gene losses and gene gains were found on all
13 core chromosomes (chromosomes found in all members
of the species; fig. 1C). We found that the proportions of
genes affected by incomplete loss events and incomplete
gain events were significantly higher in subtelomeric regions,
defined here as regions within 300 kb of the telomeres, com-
pared with the chromosome genome-wide average
(Pearson’s chi-squared test; incomplete losses
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P< 2.2�10�16; incomplete gains P¼ 9.6�10�10; supplemen-
tary fig. S1, Supplementary Material online).

Gene Functions Differentially Affected by
Losses and Gains
We investigated the gene functions affected by incomplete
gains and losses. Genes affected by incomplete losses and
gains were both significantly shorter than conserved genes
(i.e., genes not affected by any loss or gain event; Kruskal–
Wallis test, P< 0.05 adjusted for multiple comparisons; fig.
2A). We found that genes affected by incomplete gains were
significantly shorter than genes affected by incomplete losses
(P< 0.05; fig. 2A). Furthermore, we found that genes affected
by incomplete gains and losses were significantly closer to
transposable elements (TEs) than conserved genes
(P< 0.05; fig. 2B). We found no significant difference between
genes affected by gains and losses in regards to distance to TEs
(P> 0.05; fig. 2B). A total of 74 out of 91 genes encoding
protein domains associated with TEs, such as reverse tran-
scriptase, transposase, or integrase domains, were affected by
an incomplete gain (n¼ 53) or loss (n¼ 21).

We analyzed transcriptomic data to identify gene expression
differences. For this, we used RNA-seq data previously collected
over the entire infection time course on wheat (Rudd et al.
2015). We found that genes affected by incomplete losses and
gains were significantly less expressed than conserved genes
(Kruskal–Wallis test, P< 0.05 multiple comparisons corrected;
fig. 2C). Furthermore, genes affected by incomplete losses and
gains were significantly less upregulated during infection
(P< 0.05; fig. 2D). Nonetheless, we found 66 and 166 genes
affected by incomplete gains and losses, respectively, that

were highly upregulated during wheat infection (maximum
reads per kilobase of transcript per million mapped reads,
RPKM, differences>100). Genes affected by incomplete gains
were significantly less expressed and less upregulated than
genes affected by incomplete losses (P< 0.05).

The majority of the genes affected by incomplete losses
(51.8%) or incomplete gains (79.8%) encoded proteins lacking
a conserved protein family domain. For genes with a pre-
dicted function, we performed a gene ontology (GO) enrich-
ment analysis. We tested whether some GO terms were
overrepresented or underrepresented compared with the ge-
nomic background (supplementary tables S4 and S5,
Supplementary Material online). GO terms for DNA integra-
tion and for proteolysis were significantly overrepresented
both among genes affected by incomplete losses or gains.
Among genes affected by incomplete gains, we found GO
terms related to recombination processes to be overrepre-
sented, whereas among genes affected by incomplete losses
overrepresented GO terms were related to metabolism (e.g.,
oxidation–reduction, amide transport, pigment metabolism).
The encoded proteins included peptidases, oxidoreductases,
hydrolases, and methyltransferases. Genes encoding proteins
with extracellular functions and association to membranes
were overrepresented among genes affected by incomplete
losses. GO terms for cellular processes (e.g., cellular metabolic
process, gene expression, translation, RNA processing, cell
communication) were significantly underrepresented among
genes affected by incomplete losses and gains. Similarly, RNA
and sugar binding activity as well as proteins localized in
intracellular compartments were underrepresented among
gene functions affected by incomplete losses and gains.

FIG. 1. Characterization of incomplete gene gains and losses among 123 completely sequenced Zymoseptoria tritici isolates. (A) Schematic tree
representing the phylogenetic relationships between Z. tritici and four most closely related species. Evidence for orthologs was used to infer
whether a segregating gene presence–absence polymorphism segregating in Z. tritici was due to a recent (incomplete) gain or recent (incomplete)
loss. n.d., not determined. (B) Number of genes for each category of Z. tritici genes as shown in (A). (C) Frequency of the gene absence allele at
incomplete gene gain and loss loci among 123 isolates. (D) Genome-wide distribution of incomplete gene gains and losses. (1) Chromosomes of the
reference genome and position in Mb. (2) Percentage of genes that have an ortholog in other Zymoseptoria species shown in 10-kb nonoverlapping
windows (gradient shows differences from 0% to 100%). (3) Percentage of genes with no orthologs in other Zymoseptoria species (orphans) shown
in 10-kb nonoverlapping windows (gradient shows differences from 0% to 100%). (4) Content in transposable element sequences in 10-kb
nonoverlapping windows (gradient shows differences from 0% to 50%). (5) Proportion of genes affected by incomplete losses in 100-kb non-
overlapping windows. (6) Proportion of genes showing an incomplete gain in 100-kb nonoverlapping windows.
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Incomplete Losses and Gains of Pathogenicity Genes
and Secondary Metabolite Gene Clusters
Genes gains or losses can confer significant adaptive value to
colonize a host (de Jonge et al. 2011; Presti et al. 2015). We
analyzed three categories of pathogenicity-related genes for
evidence of incomplete gene gains and losses (fig. 3): second-
ary metabolite gene clusters, genes encoding cell wall degrad-
ing enzymes and small secreted proteins. Genes encoding cell
wall degrading enzymes play a role in the degradation of plant
cell walls and nutrient acquisition (Esquerré-Tugayé et al.
2000; de Jonge et al. 2011). Genes encoding cell wall degrading
enzymes (n¼ 47) were affected by incomplete losses at a
lower proportion (6.5%) than genes encoding proteins with
a conserved domain (7.0%) and genes encoding secreted

proteins (13.1%). No gene encoding cell wall degrading
enzymes was recently gained.

Genes encoding small secreted proteins may be recognized
by the host immune system (Rep 2005). Small secreted pro-
teins were defined as secreted proteins of�300 amino acids
and containing�5% cysteine residues following commonly
used definitions of small secreted proteins in plant patho-
genic fungi (do Amaral et al. 2012; Sperschneider et al. 2015).
We identified a total of 135 genes encoding small secreted
proteins and were affected by incomplete loss more fre-
quently (24.2%) than the average for all secreted proteins
(13.1%) and the genome-wide average (10.3%). Conversely,
genes encoding small secreted proteins were affected by in-
complete gains less frequently (23%) than the average for all
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secreted proteins (35.5%) and the genome-wide average
(49%). Among genes encoding small secreted proteins, we
found 16 genes affected by incomplete losses and 16 addi-
tional genes affected by incomplete gains. However, the pro-
portion of genes encoding secreted proteins affected by
incomplete gains was almost three times as high as the pro-
portion affected by incomplete losses (35.5% vs. 13.1%).
Presence–absence variation affected a total of 32 out of 135
genes encoding small secreted proteins (i.e., 23.7%; supple-
mentary fig. S2, Supplementary Material online).

Genes encoding secondary metabolite gene clusters are
involved in the biosynthesis of pigments (e.g., melanin) and
toxins (e.g., antimicrobials, mycotoxins, and phytotoxins) con-
tributing to fungal pathogenicity, nutrient acquisition, and
ecological adaptation (Howlett 2006; Stergiopoulos et al.
2013). In general, each gene cluster is defined by a backbone
gene (Brakhage 2013). We focused our analysis on secondary
metabolite gene clusters with backbone genes encoding either
a polyketide synthase (PKS) or a nonribosomal peptide syn-
thetase (NRPS). The genome of Z. tritici contained nine PKS
gene clusters, two NRPS gene clusters, and one PKS–NRPS
hybrid gene cluster (Ohm et al. 2012). We considered that a
secondary metabolite gene cluster was affected by a significant
deletion if at least the backbone gene was deleted. Remarkably,
the percentage of incomplete losses in backbone genes of
secondary metabolite gene clusters was the highest of any
analyzed gene category, as we found that 5 out of 12 PKS or
NRPS genes (41.7%) were lost in at least one isolate (41.7%; fig.
3). Gene losses affected gene clusters either almost entirely

(e.g., PKS9 gene cluster; fig. 4A) or only partially (e.g., NRPS4
or PKS10 gene cluster; supplementary fig. S3, Supplementary
Material online). None of the investigated secondary metab-
olite gene clusters was recently gained. We analyzed the recent
loss of the PKS9 gene cluster in more detail (fig. 4B). The PKS9
gene cluster is expressed in planta (Rudd et al. 2015; Palma-
Guerrero et al. 2017). We analyzed the chromosomal sequence
of a genome which lacked PKS9. We found that isolate
ST99CH_3D1 retained the two PKS9 cluster genes encoding
a transporter and a cytochrome c heme lyase. Furthermore,
the isolate retained a gene encoding an additional ATP-
binding cassette transporter immediately adjacent to the clus-
ter. Next, we identified homologs of the same genes in
genomes of three closely related species, Z. ardabiliae
(n¼ 4), Z. brevis (n¼ 1), and Z. pseudotritici (n¼ 5). In all Z.
ardabiliae and Z. pseudotritici genomes, the gene order within
the cluster was conserved. In Z. brevis, we identified orthologs
of all cluster genes, however the cluster was not assembled as a
single scaffold. These results strongly suggest that the PKS9
gene cluster was gained in the ancestor of Z. brevis and Z. tritici.
The absence of the cluster in Z. pseudotritici may be due to a
secondary loss. Alternatively, the PKS9 gene cluster may never
have reached fixation in any of the species and the lack of
evidence in Z. pseudotritici may be a sampling artifact.

Population Structure and Selection Signatures on
Gene Losses and Gene Gains
Zymoseptoria tritici isolates used in this study were collected
in four worldwide locations (fig. 5A). We analyzed the
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population structure of presence-absence polymorphism
generated by incomplete gains and losses using principal
component analyses (fig. 5B). The first two principal compo-
nents clearly clustered the isolates by geographic origin. This
clustering recapitulates the population structure identified at
single nucleotide polymorphisms (SNPs).

To test whether selection acted on gene gain and loss
polymorphisms, we contrasted the allele frequency spectrum
of incomplete gene gains and losses with derived allele fre-
quencies at synonymous SNPs (fig. 5C). We performed com-
parisons of allele frequency spectra in each population
separately. In all four populations, we found a strong excess
of low-frequency variants (frequency� 10%) and a reduction
of high-frequency variants (frequency� 70%) for incomplete
gene losses compared with synonymous SNPs (Pearson’s chi-
squared tests in Australia: v2 ¼ 335.99, P< 2.2�10�16;
Switzerland: v2 ¼ 183.38, P< 2.2�10�16; Israel: v2 ¼ 130.79,
P< 2.2�10�16; and Oregon: v2 ¼ 314.84, P< 2.2�10�16).
This pattern suggests that gene losses were under negative
selection in all populations. The allele frequency spectra of
incomplete gene gains differed among populations. We found
an excess of low-frequency variants (frequency� 10%) for
incomplete gene gains compared with synonymous SNPs in
the Australian and Oregon populations, suggesting that in-
complete gene gains were also under negative selection in
these populations. However, the excess of rare variants of
incomplete gene gains compared with synonymous SNPs
was significantly lower than the one observed for incomplete
gene losses (Pearson’s chi-squared tests in Australia: v2

¼ 90.32, P¼ 1.28�10�9 and Oregon: v2 ¼ 82.58,

P¼ 3.82�10�4). In contrast, in the Swiss and Israel popula-
tions, the frequency spectrum of incomplete gene gains
largely matched the spectrum of synonymous SNP allele fre-
quencies for low-frequency variants (frequency� 10%). In
these two populations, we also observed a slight excess of
intermediate frequency variants (60%� frequency� 70%)
for incomplete gene gains compared with synonymous SNP
allele frequencies (Pearson’s chi-squared tests in Switzerland:
v2 ¼ 79.944, P¼ 1.16�10�7 and Israel: v2 ¼ 40.988,
P¼ 8.27�10�3). This excess could be indicative of balancing
selection maintaining an allele at intermediate frequency. To
investigate the differences observed between populations, we
computed population size (Ne) estimates based on genome-
wide SNPs (supplementary table S6, Supplementary Material
online). The analyses showed that each of the four field pop-
ulations had large effective population sizes.

The majority of recent gene gains and losses were shared
by at least two populations, although a significant proportion
of events were population-specific (supplementary fig. S4,
Supplementary Material online). We used VST to compute
the differentiation in allele frequencies at gene gain and loss
loci between pairs of the three most closely related popula-
tions (Israel, Oregon, and Switzerland). We compared the
distribution of VST to the distribution of FST values of synon-
ymous SNPs (fig. 6B). The Australian population was excluded
in this analysis due to the high mean SNP FST against the
other populations (mean FST¼ 0.28). In all three pairwise
comparisons, we found that incomplete gene gains had a
strong excess of high VST (>0.3) compared with synonymous
SNPs and incomplete gene losses. Conversely, incomplete

A B

PKS9  gene cluster

10 kb

S
eq

ue
nc

ed
 is

ol
at

es

Australia 

Israel

Switzerland

Oregon

Gene absent
(incomplete loss locus)

Gene present

Gene absent 
(incomplete gain event)

Z
. b

re
vi

s 
 

110 120 130 140 150 160

Polyketide synthase

100 

Position on chromosome 2 (in kb)

 emorhcotyCretropsnart CBA
c heme lyase

ABC transporter

Z
. p

se
ud

ot
rit

ic
i  

Z
. t

rit
ic

i 

S
T

99
C

H
_3

D
1

IP
O

32
3

PKS9  gene cluster

Z
. a

rd
ab

ili
ae

  

Polyketide synthase 

FIG. 4. Evolution of the polyketide synthase (PKS) 9 gene cluster in Zymoseptoria tritici and the sister species Z. pseudotritici, Z. brevis, and Z.
ardabiliae. (A) Gene presence–absence polymorphism affecting the PKS9 gene cluster among the 123 Z. tritici isolates grouped by population. The
physical position of each gene is shown below. (B) Comparative genomics analyses of the PKS9 gene cluster in Z. tritici and the three closest known
sister species Z. pseudotritici, Z. brevis, and Z. ardabiliae. On the left is a schematic tree representing the phylogenetic relationships between Z. tritici
and three sister species. In Z. tritici, two segregating variants of the PKS9 gene cluster were found. Isolate ST99CH_3D1 is lacking nearly all genes of
the PKS9 cluster compared with the IPO323 reference genome. Analyses of the homologous regions in five Z. pseudotritici and four Z. ardabiliae
genomes showed that the gene cluster was missing with the exception of two genes encoding an ABC transporter and a cytochrome c heme lyase,
respectively. In Z. brevis, all genes of the PKS9 cluster were present, however orthologs were split on three different genome assembly scaffolds.

Distinct Trajectories of Massive Recent Gene Gains and Losses . doi:10.1093/molbev/msx208 MBE

2813Downloaded from https://academic.oup.com/mbe/article-abstract/34/11/2808/3988102
by ETH Zürich user
on 19 December 2017



gene loss VST values largely followed the SNP FST values in all
pairwise comparisons. There was a slight excess of extreme
VST values (VST> 0.8) for incomplete gene losses compared
with FST values at SNPs. Incomplete gene gains showed higher
population differentiation than incomplete gene losses.

Highly differentiated gene gain and loss allele frequencies is
indicative of local adaptation. We focused on VST outliers to
identify genes with excessive variation in incomplete loss and
gain frequencies among populations (fig. 6A; supplementary
tables S7 and S8, Supplementary Material online). We iden-
tified a total of 52 genes with highly differentiated incomplete
losses frequencies. This set of genes included six genes encod-
ing secreted proteins and genes belonging to the NRPS4 and
PKS10 gene clusters (supplementary fig. S3, Supplementary
Material online). Furthermore, we identified a total of 66 re-
cently gained genes with highly differentiated allele frequen-
cies. We found seven genes encoding secreted proteins. Three
out of these were encoding small secreted proteins (genes
2_00001, 3_00158, and 8_00609). The loss of gene 8_00609
was previously found to be driven by host specialization
(Hartmann et al. 2017). The gene 2_00001 (showing excess
differentiation in two pairwise comparisons) is highly upregu-
lated during infection (Rudd et al. 2015).

Discussion
We identified extensive standing genetic variation in popula-
tions of a fungal pathogen due to recent gene gains and losses.
Genes affected by recent gains and losses encoded for func-
tions in fungal virulence and ecological adaptation. Several
recent gene gains and losses segregating in the species are
likely linked to host specialization and under divergent selec-
tion among populations. We found generally strong selection
against recent gene losses and varying strengths of selection

against recent gene gains showing that these categories of
gene presence-absence polymorphisms are on distinct evolu-
tionary trajectories in populations.

High Intraspecific Gene Content Variation through
Gene Gain and Loss in Compact Fungal Genomes
Variation in gene content is common within species and was
found in all kingdoms of life (Schrider and Hahn 2010;
_Zmie�nko et al. 2013). We found that gene gains and losses
segregating in Z. tritici populations affected a total of 1,623
genes (14.6%). Our results were consistent with previous anal-
yses of Z. tritici sampled in Australia (McDonald et al. 2016).
Similarly, a comparison of two completely assembled Z. tritici
genomes showed that each isolate was lacking several hun-
dred of genes of the other isolate (Plissonneau et al. 2016).
Intraspecific variation in gene content was also found in other
fungi including the human fungal pathogen Cryptococcus
gattii (Steenwyk et al. 2016) and among the compact
genomes of the budding yeast Saccharomyces cerevisiae
(Strope et al. 2015). Although fungal genomes are often com-
pact and haploid, the levels of intraspecific gene content var-
iation in fungi are comparable to the levels of gene content
variation reported in plants and mammals ( _Zmie�nko et al.
2013; Zarrei et al. 2015).

The well-studied evolutionary history of Z. tritici and
multiple closely related species that diverged within<18,500 -
years provides a powerful comparative genomics framework
(Stukenbrock et al. 2007; Stukenbrock, Quaedvlieg, et al. 2012;
Grandaubert et al. 2015). A large number of well-defined
orthologs allows to distinguish whether a gene presence-ab-
sence polymorphism was due to a recent gene gain or gene
loss. We defined a recent gene gain as a segregating gene
presence-absence polymorphism within Z. tritici for which

FIG. 5. Population structure and allele frequency spectra of incomplete gene gains and losses. (A) Sampling locations of the 123 Zymoseptoria tritici
isolates. (B) Principal component analysis of the population structure found at loci segregating incomplete gene losses, incomplete gene gains and
a set of 1,457 genome-wide synonymous single nucleotide polymorphisms (SNPs). The percentage of variance explained by each principal
component is shown in parentheses. (C) Allele frequency spectra of incomplete gene gains and losses within populations. The allele frequency
spectra were contrasted with the allele frequency spectrum of the derived allele at synonymous SNPs (n¼ 237,185).
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no ortholog exists among any of the closely related species,
that is, presence-absence polymorphism of a Z. tritici orphan
gene. The most parsimonious explanation for such polymor-
phism is that the gene gain has not yet reached fixation within
the species. Alternatively, the gene may have already reached
fixation in the recent past and the polymorphism is evidence
for a secondary gene loss. However, both scenarios imply that
the gene constitutes an evolutionary novelty since the last
speciation (�10,500 years BP). A gene gain may erronously be
identified if closely related species experienced independent
losses of the same gene. As we analyzed multiple genomes
from each of three related species of Z. tritici, the identified
orphan genes were unlikely to be the product of gene losses in
related species.

A species may gain an orphan gene following a gene du-
plication event if one gene copy diverges extensively and
acquires a new function (Tautz and Domazet-Lo�so 2011).
Alternatively, genes may evolve de novo from noncoding

DNA. This mechanism relies on the spontaneous evolu-
tion of an open reading frame (ORF) and gain of cis-reg-
ulatory elements (McLysaght and Guerzoni 2015). De
novo genes are characterized by generally low expression
levels and may have short lifespans in populations due to
genetic drift (Carvunis et al. 2012; Palmieri et al. 2014).
Some of the genes recently gained in Z. tritici shared
characteristics with de novo genes including short coding
sequences and low transcription levels. Alternatively, hor-
izontal gene transfer can be a source of orphan genes in
species. Orphan genes acquired from bacteria or plants
led to major gains of function in plant pathogens (de
Jonge et al. 2012; Ropars et al. 2015).

Both the proximity to telomeres and to repetitive ele-
ments increased the likelihood of segregating gene gain and
loss polymorphisms in populations. These trends were con-
sistent with nonallelic homologous recombination (NAHR)
and retrotransposition caused by transposable elements that
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can cause major gene losses (Hastings et al. 2009; Carvalho
and Lupski 2016). Indeed, subtelomeric regions in Z. tritici are
rich in recombination hotspots and transposable elements
(Goodwin et al. 2011; Croll et al. 2015). Recombination hot-
spots are the primary target for NAHR events. Furthermore,
retrotransposition of transposable elements may also cause
rearrangements as excision induces the repair of double-
strand breaks (Kazazian and Goodier 2002).

Gene Dispensability and Host–Pathogen Coevolution
We found that genes encoding functions in basic cellular
processes were significantly less affected by gene gains and
losses than other gene categories. This result is consistent
with strong selection acting against loss of essential functions
in a haploid organism (Cheeseman et al. 2016). In contrast, we
found an enrichment in functions associated with
membrane-bound, secretion, and nutrition-specific meta-
bolic pathways among genes affected by incomplete gains
and losses. Functions associated with secretion and nutrition
are playing a major role in the interaction of pathogens with
the host and environment (Monod et al. 2002; Presti et al.
2015). Recent gene losses were also frequent in gene catego-
ries with a role in fungal virulence. Functional redundancy
and environment-specific dispensability (i.e., a gene function
is essential only in specific environmental conditions) are two
major factors thought to lead to gene dispensability (Albalat
and Ca~nestro 2016). This is consistent with our data showing
high rates of recent gain and loss events in genes involved in
the interaction with the host and the environment. For plant
pathogens, both hosts and the environment are highly het-
erogeneous over space and time.

We found strong differences in the proportions of recent
gene gains and losses in three gene categories involved in host
interactions. Genes encoding cell wall degrading enzymes
were largely retained and constituted a clear exception to
the high levels of gene dispensability for secretion and nutri-
tion functions. This is consistent with evidence of pervasive
purifying selection acting on genes encoding cell wall degrad-
ing enzymes in Z. tritici and closely related species (Brunner
et al. 2013). Genes encoding small secreted proteins (a protein
category frequently involved in virulence expression on the
host) showed both high levels of recent gene gains and losses.
This shows that this gene category is rapidly evolving and has
high levels of dispensability. Recent gene losses were remark-
ably frequent in gene clusters responsible for secondary me-
tabolite production. The evolution of the PKS9 cluster
showed that entire secondary metabolite gene clusters can
be readily gained and lost, as we found evidence that the
cluster was recently acquired in an ancestor to Z. tritici and
readily lost in Z. pseudotritici and Z. tritici. The highly uneven
rates of recent gene gains and losses among different gene
categories strongly suggests that both mechanistic factors of
replication fidelity and selection for novel functions play
an important role in the evolution of gene content in a
species.

Evidence for Selection Driving Gene Gains and
Losses in Populations
We tested for selection on gene gains and losses at two sep-
arate levels: the level of differentiation among populations at
gene presence–absence frequencies among populations and
deviations from neutral expectations of gene presence–ab-
sence frequencies within populations. The former analysis is
designed to investigate evidence of local adaptation driven by
gene gains and losses and the latter analysis tests for the
overall impact of selection on gene gains and losses across
the genome. We found that gene gain and loss loci showed an
excess in high fixation indices compared with differentiation
levels at neutral markers. Although high fixation indices at
individual loci may be caused by very restricted gene flow,
overall there is evidence for divergent selection acting on
recent gene gains and losses.

For example, divergent selection among populations was
found for the recently gained gene 8_00609 encoding a small
secreted protein. The presence-absence polymorphism at this
gene was previously shown to underlie host specialization on
a specific wheat variety (Hartmann et al. 2017). The encoded
protein is likely detected by the host immune system and,
hence, isolates lacking the gene were able to evade detection
during infection. Two additional, recently gained genes
encoding small secreted proteins (2_00001, 3_00158) showed
highly differentiated gene presence-absence frequencies
among populations. Recently gene gained genes that have
not yet reached fixation in the species, hence, likely play an
important role in the interaction with the host and adapta-
tion of the pathogen in different environments.

We found evidence for divergent selection on recent gene
losses in PKS and NRPS secondary metabolite gene clusters.
The function of secondary metabolite gene clusters in Z. tritici
is largely unknown; however, secondary metabolites play im-
portant roles in pathogenicity and ecological interactions in
many pathogens (Howlett 2006; Stergiopoulos et al. 2013).
Gene clusters, in particular the backbone genes, are highly
conserved among fungi and frequently subject to horizontal
gene transfers (Wisecaver and Rokas 2015). Our study shows
that recently lost gene clusters can be under divergent selec-
tion within a species. This may be due to differences in envi-
ronmental conditions disfavoring the production of specific
metabolites. The evidence for divergent selection for recently
lost gene clusters shows how population genetic process can
explain variation in gene cluster content among closely re-
lated species.

Distinct Evolutionary Trajectory of Gene Losses and
Gene Gains in Populations
The distinct mechanisms by which gene gains and gene losses
are generated and how recently gained genes are functionally
distinct from recently lost genes strongly suggests that selec-
tion should act differently upon each category of gene pres-
ence-absence polymorphism. Selection against deleterious
copy number variation (CNV) should be particularly strong
in a haploid organism such as Z. tritici because deletions can-
not be shielded from selection in the hemizygous state. We
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found indeed that incomplete gene losses showed strong
signatures of negative selection, whereas the incomplete
gene gains showed either weak or no signature of negative
selection. Differences in the strength of selection against gene
gains could be explained by differences in effective population
size. However, we found no strong association between sig-
natures of selection and population sizes. Both gene gain and
loss polymorphisms recapitulated the levels of population
differentiation at neutral markers. Incomplete gene gains
were more stratified among populations than incomplete
gene losses. This may be caused both by stronger divergent
selection on gene gains and universally negative selection
against gene losses among populations. Differences in selec-
tion pressure acting on gene deletions and duplications were
found in populations of humans (Sudmant et al. 2015), fruit
flies (Emerson et al. 2008; Cardoso-Moreira et al. 2016) and
malaria parasites (Cheeseman et al. 2016). Deletions were
generally more deleterious than duplications as the latter
are likely to initially be selectively neutral. Our study showed
that recent gene gains were on similar evolutionary trajecto-
ries within the species than gene duplications in a number of
different taxa.

Positive selection on individual gene duplications or hori-
zontally transferred genes can be an important driver to fix
CNV within species (Innan and Kondrashov 2010; Ropars
et al. 2015; Cardoso-Moreira et al. 2016). We showed that a
subset of the genes gained de novo in Z. tritici experienced
similarly strong positive selection to adapt either to the host
or to the environmental conditions. The large panmictic
populations maintained a large number of recent gene gains
and losses at high frequency serving as a reservoir for rapid
adaptive evolution.

Materials and Methods

Fungal Isolate Collection and Illumina
Whole-Genome Sequencing
A total of 130 field isolates of Z. tritici were included in this
study. The isolates originated from four different geographical
locations including Australia, Israel, Switzerland and USA
(Oregon). Each population comprised 22–50 isolates and
were sampled between 1990 and 2001. Sampling years and
sampling locations of these four populations were described
previously (Zhan et al. 2005). Isolates were stored for long-
term use in silica and saved at �80 �C after sampling. No
clonal genotypes were found among these isolates in previous
genetic diversity analyses (Linde et al. 2002). We used the
whole-genome Illumina sequencing data of 106 isolates
that were deposited on the NCBI Short Read Archive under
the BioProject ID numbers PRJNA178194 and PRJNA327615
(Torriani et al. 2011; Croll et al. 2013; Hartmann et al. 2017).
We generated raw sequencing data for 24 additional isolates.
As for the previously available data sets, we extracted high-
quality genomic DNA from liquid cultures and performed
100-bp paired-end sequencing with an insert size of ca.
500 bp on the Illumina HiSeq2000 platform. The generated
raw sequencing data was deposited on the NCBI Short Read

Archive under the BioProject ID PRJNA327615 (supplemen-
tary table S1, Supplementary Material online).

Read Mapping
Raw Illumina reads were screened for adapter contamination
and trimmed for sequencing quality using Trimmomatic
v0.32 (Bolger et al. 2014). The following settings were used:
illuminaclip¼ TruSeq3-PE.fa:2:30:10, leading¼ 10,
trailing¼ 10, slidingwindow¼ 5:10, minlen¼ 50. Then, se-
quence data from all isolates was aligned to the gapless,
telomere-to-teleomere assembly of the reference genoms iso-
late IPO323 (Goodwin et al. 2011) accessed from
EnsemblFungi (Flicek et al. 2014). The short read aligner
Bowtie 2 version 2.2.3 (Langmead et al. 2009) was used for
read alignment with the following settings: –very-sensitive-
local –phred33 -X 1000. Reads were marked as PCR duplicates
using the MarkDuplicates module of Picard tools version
1.118 (http://broadinstitute.github.io/picard). The genome-
wide coverage of the 130 sequenced isolates was calculated
as the number of mapped reads multiplied by average read
length and divided by the genome size.

CNV Calling
We used CNVnator (Abyzov et al. 2011) to perform a statis-
tical analysis of short read coverage along the 13 core chro-
mosomes in order to predict CNV events in the 130
sequenced isolates compared with the reference genome.
For each isolate, we assessed CNV events in bins of 100 bp
as recommended. We retained CNV calls according to the
following filtering criteria: length>500 bp, P< 0.05, and
q0< 0.5. Additionally, we filtered CNV calls for the normal-
ized average read depth signal. We kept only deletions with
normalized average read depth of<0.4 and duplications with
normalized average read depth of>1.6. After CNV calling and
filtration for quality, the complete data set comprised 81,550
deletions and 5,600 duplications.

Full or Partial Chromosomal Duplications
Seven isolates (a12_3B_11, a15_3B_10, AUS_1E4,
ST99CH_3C4, ISY_Ar_5a, a15_2a_14, a15_2a_15) showed ev-
idence for full or partial chromosomal duplications based on
chromosome-wide analyses of predicted gene CNV events
(data not shown). We calculated the per-chromosome read
depth for these seven isolates using the bedtools “genomecov”
command (Quinlan and Hall 2010). Suspected chromosomal
duplications had a per-chromosome read depth>1.5� of the
genome-wide coverage, which strongly suggested that these
chromosomes were partially or entirely duplicated. As partial
or full chromosomal duplications were likely caused by differ-
ent mechanisms than individual gene duplications, we ex-
cluded the affected isolates from further analyses and
retained 123 isolates.

Identification of Genes Affected by
Presence–Absence Polymorphism
To identify genes affected by presence–absence polymor-
phism, we focused our analyses on genes affected by deletions
compared with the reference genome. For this, we calculated
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the percentage of overlap between deletion events and genes
using the bedtools “intersect” command (Quinlan and Hall
2010). We retrieved high-quality gene models predicted for
the IPO323 genome using deep transcriptomics data
(Grandaubert et al. 2015). A gene was considered as affected
by a presence–absence polymorphism event if the deletion
event was overlapping >90% of the gene. For the genes that
were affected by multiple deletions, we calculated the per-
centage overlap based on the sum of all deletion events af-
fecting the gene. The genes that were affected by both a
deletion and a duplication event were excluded from further
analyses. We validated gene presence–absence polymor-
phism calls using complete genome assemblies and direct
amplifications of target loci (see supplementary Materials
and Methods in Supplementary Material online).

Validation of Gene Presence–Absence Polymorphism
Using Comparative Genomics
We compared genomic sequences of the two completely
assembled genomes available for the species. The genomes
included the reference genome isolate IPO323 (Goodwin
et al. 2011) and a full assembly of the Swiss ST99CH_3D7
isolate (Plissonneau et al. 2016). We used blastn to screen
IPO323 transcripts sequences against the ST99CH_3D7 ge-
nome assembly (Camacho et al. 2009). For each IPO323 tran-
script, we retained the best hit in ST99CH_3D7 based
bitscores. We identified an IPO323 transcript sequence to
be missing in ST99CH_3D7 if either of the following condi-
tions were met: 1) the bitscore was inferior to 100, 2) the
percent identity of the IPO323 transcript and the best
ST99CH_3D7 hit was <90%, 3) the length of all blast hits
in ST99CH_3D7 was <10% of the IPO323 transcript length
used as a query, and 4) evidence of gene disruption such as
exon loss was retrieved from blast analysis.

Manual Inspection of Gene Presence–Absence
Polymorphism Events
Genes encoding small secreted proteins (SSPs) in plant path-
ogenic fungi are often located in proximity to regions
enriched in transposable elements (TEs) and complex se-
quence rearrangements (de Jonge et al. 2011; Dong et al.
2015). The identification of CNV events is likely more error-
prone in such regions (Teo et al. 2012). Therefore, we per-
formed manual curation of presence–absence polymorphism
events affecting genes encoding SSPs. For isolates predicted to
lack particular genes encoding SSPs, we visualized the read
mapping to the reference genome and presence–absence
polymorphism event calls using the IGV genome browser
(Robinson et al. 2011; Thorvaldsd�ottir et al. 2013). We
inspected the consistency of read coverage and prediction
of deletion events. Furthermore, we collected independent
evidence for the presence or absence of specific genes encod-
ing SSPs using blast searches against de novo assemblies of
each isolate. For this, we performed assemblies of the Illumina
read data of each isolate using SPAdes 3.6.0 (Bankevich et al.
2012). We used BayesHammer read correction prior to as-
sembly. The de novo assembly was performed with a k-mer
range of “21,29,37,45,53,61,79,87” and the assembly was

polished using MismatchCorrector. De novo assemblies for
each of the isolates were used for BLAST searches using the
blastn command of the ncbi-blast-2.2.30þ software
(Camacho et al. 2009). We kept only presence–absence poly-
morphism events affecting genes encoding SSPs that were
supported both by IGV visualization and BLAST searches.
We excluded 192 out of 824 presence–absence polymor-
phism events of genes encoding SSPs.

Validation of Gene Presence–Absence
Polymorphisms by PCR Assay
We validated a subset of gene presence–absence polymor-
phism calls in 95 randomly selected isolates using PCR assays.
We selected 14 genes affected by CNV events belonging to
the cell wall degrading enzymes, secondary metabolite gene
clusters, and SSP gene categories. We aimed to have a bal-
anced representation of gene presence–absence polymor-
phisms segregating at low, intermediate, and high
frequencies in the populations. For each locus, we selected
PCR amplicons of ca. 500 bp in a conserved region of the gene
or in the immediate flanking sequences. To identify conserved
regions, we used consensus sequences obtained from de novo
assemblies of each isolate. Primers were designed using Primer
3.0 (Rozen and Skaletsky 2000; supplementary table S9,
Supplementary Material online). For PCR reactions, we used
a similar protocol as described in (Croll et al. 2013). PCR
reactions were conducted in a 20-ml volume containing 5–
10 ng genomic DNA, 0.5 mM each of forward and backward
primers, 0.25 mM dNTP, 0.6 U Taq polymerase (DreamTaq,
Thermo Fisher, Inc.), PCR buffer. PCR products were amplified
for 33–35 cycles. The resulting amplicons were examined on
1% agarose gels. Each PCR reaction contained a primer pair of
a microsatellite locus as a positive control to ascertain ampli-
fication (Goodwin et al. 2007).

Identification of Incomplete Gene Losses and
Gene Gains
For each gene affected by presence–absence polymorphism,
we defined whether the polymorphism was due to an incom-
plete gene loss event or an incomplete gene gain based on
orthology data from three closely related species from the
Zymoseptoria genus (Grandaubert et al. 2015). Grandaubert
et al. identified a total of 9,890 genes that have an ortholog in
at least one genome of Z. pseudotritici (n¼ 5), Z. brevis
(n¼ 1), or Z. ardabiliae (n¼ 4). These orthologs were called
Zymoseptoria core genes. A total of 1,221 that had no ortho-
log in any of the analyzed genomes (Grandaubert et al. 2015)
were called Z. tritici orphan genes. We defined incomplete
(i.e., recent) gene losses as any presence–absence polymor-
phism affecting a core Zymoseptoria genes and we defined an
incomplete (i.e., recent) gene gain any presence–absence
polymorphism affecting a Z. tritici orphan gene. Genome-
wide gene losses and gains event distributions were visualized
using the R package {ggplot2} (Wickham 2009) and Circos
version 0.67-7 (Krzywinski et al. 2009). Pearson’s chi-squared
and multiple comparison tests after Kruskal–Wallis were per-
formed using the open source software R.
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Gene Ontology Analysis and Functional Annotation
We functionally annotated the gene models for the 11,111
genes described on the core chromosomes previously
(Grandaubert et al. 2015). For this, we used InterProScan
v.5.16-55.0 (Jones et al. 2014) to assign protein sequence
motifs to PFAM and GO terms based on hidden Markov
models. Protein sequences were additionally screened for ev-
idence of a secretion signal, transmembrane, cytoplasmic, and
extracellular domains using a combination of SignalP v.4.1
(Petersen et al. 2011), Phobius v.1.01 (K€all et al. 2007), and
TMHMM v.2.0 (Krogh et al. 2001). Locations of transposable
elements were annotated previously (Grandaubert et al.
2015).

Identification of Orthologs of Secondary Metabolite
Gene Clusters in Zymoseptoria Species
To identify homologs of genes found in secondary metabolite
gene clusters, we performed BLAST analyses using blastn ver-
sion 2.2.31þ (Camacho et al. 2009). The genomes of five Z.
pseudotritici, four Z. ardabiliae isolates, one Z. brevis, and one
Z. passerinii isolates were downloaded from NCBI under the
accession numbers PRJNA63035, PRJNA277173, PRJNA63037,
PRJNA63039, PRJNA46489, PRJNA63043, PRJNA277174,
PRJNA63045, PRJNA63047, PRJNA63049, and PRJNA274679
(Stukenbrock et al. 2011).

SNPs Calling Procedure
SNPs calling was performed as described previously (Croll
et al. 2013; Hartmann et al. 2017). In summary, the
HaplotypeCaller tool of the Genome Analysis Toolkit
(GATK) version 3.3-0 was used (McKenna et al. 2010). To
further validate the identified SNPs, we used the independent
SNP caller Freebayes v.0.9 (Garrison and Marth 2012) and
filtered for quality and genotyping rate (>90%). We excluded
SNPs located on accessory chromosomes, tri-allelic SNPs, and
finally retained a total of 1,375,999 SNPs. To identify ancestral
alleles at SNPs, we analyzed whole-genome sequencing data
of the two closest known sister species of Z. tritici. We used
raw Illumina reads of four Z. pseudotritici isolates
(STIR04_2.2.1, STIR04_3.11.1, STIR04_5.3, STIR04_5.9.1) and
four Z. ardabiliae isolates (STIR04_1.1.1, STIR04_1.1.2,
STIR04_3.13.1, STIR04_3.3.2) (Stukenbrock et al. 2007;
Stukenbrock, Christiansen, et al. 2012). We retained SNPs
that had a genotyping rate>50% and were monomorphic
within the respective sister species. Then, we assigned ances-
tral alleles for any Z. tritici SNP if an allele was shared and
retained in both sister species. We were able to assign ances-
tral alleles for 584,327 SNPs. We annotated and predicted the
effect of SNPs using SnpEff 4.3i (Cingolani, Platts, et al. 2012).
We selected the 237,185 synonymous SNPs using SnpSift
(Cingolani, Patel, et al. 2012). We generated a randomly cho-
sen subset of synonymous SNPs at equal distance (20 kb)
across the genome (1,457 bi-allelic SNPs). This subset of
SNPs was assumed to be largely in linkage equilibrium given
previous estimates of linkage equilibrium decay in Z. tritici
populations (Croll et al. 2015).

Population Genomics Analyses
To estimate population differentiation of allele frequencies at
genes affected by incomplete loss and gain, we calculated the
variant fixation index VST (Redon et al. 2006). VST is a variant
of the FST index (Wright 1951; Nei 1973) and is frequently
used to identify differentiated CNV between populations
(Redon et al. 2006; Pezer et al. 2015; Steenwyk et al. 2016).
For each pairwise population comparison, VST was calculated
as VST¼ (VT–VS)/VT, where VT is the total variance in copy
numbers between the two populations and VS is the average
of the variance within each single population, weighted for its
sample size. Additionally, we calculated pairwise FST values for
the genome-wide 1,457 synonymous SNPs (Wright 1951; Nei
1973). We used the R package {hierfstat} (Goudet 2005) that
implements Yang’s algorithm (Yang 1998). We used VST out-
lier detection scans to identify loci with highly differentiated
loss or gain frequencies between populations. The 97.5th per-
centile of the distribution of FST for SNPs was used as a
threshold for outlier detection in each pairwise comparison.
To estimate the effective population size (Ne), we used 1,457
synonymous SNPs that were equally spaced to avoid linkage
disequilibrium due to physical proximity. Ne estimates were
calculated using the linkage disequilibrium approach (Waples
and Do 2008) implemented in NeEstimator v2.01 (Do et al.
2014). Allele frequency spectra of incomplete gene losses and
incomplete gene gains against allele frequency spectra of syn-
onymous SNPs were compared using Pearson’s chi-squared
tests on contingency tables of derived SNP allele and gene
absence allele counts. Statistical tests were computed in each
population separately using the open source software R.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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