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Abstract

Cone-beam X-ray transmission computed tomography (CT) is a cross-sectional

imaging technique with diverse applications in medical diagnosis, industrial in-

spection and material research. Industrial CT calculates a 3 dimensional rep-

resentation of an object from a fast and non-destructive measurement. This

has enabled possibilities in product quality control and dimensioning in product

design.

However, due to the variations in sizes and materials of industrial samples,

the conventional measurement and calculation processes lead to representations

with artifacts. The artifacts lower the spatial resolution of the CT measurements

and misrepresent the structure of the sample under test.

This dissertation explores the possibilities to improve industrial cone-beam

CT by employing arbitrary trajectory and prior information during the data

acquisition and calculation processes. The first contribution is the automatic

calibration of the CT setup utilizing a new calibration target. The calibration

models the CT imaging subsystem as a projective camera and extract the geom-

etry from projection images. This calibration process isolates the reconstruction

artifacts from the calibration. The second contribution comes from the com-
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bination of arbitrary trajectory and iterative reconstruction. Lower noise and

less pronounced artifacts are accomplished by this approach. The third con-

tribution comprises two data fusion models to integrate optical scanning data

in CT reconstruction. The novelty of the models lies in the capability to fuse

either complete or partial optical data acquired off-site with CT data. The

improvement from the data fusion includes reducing the amount artifact and

restoring missing features in limited-angle CT scans. Both have been validated

by experiments.



Zusammenfassung

Röntgen-Computertomographie (CT) in Kegelstrahlgeometrie ist ein bildgeben-

des Verfahren mit vielfältigen Anwendungsgebieten in der medizinischen Diag-

nostik, in der industriellen Inspektion und in der Materialforschung. Die indus-

trielle CT stellt eine schnelle und zerstörungsfreie Messtechnik dar, welche eine

drei-dimensionale Darstellung eines Objekts ermöglicht. Dadurch erschliessen

sich Möglichkeiten in der Qualitätsprüfung von Produkten sowie der Vermes-

sung von Dimensionen in der Produktgestaltung.

Aufgrund der Schwankungen in den Grössen und Materialien industrieller

Proben, führen herkömmliche Messungen und Berechnungen zu Objektdarstel-

lungen mit Artefakten. Diese Artefakte verringern das räumliche Auflösungsver-

mögen der CT Messungen und führen zu einer falschen Darstellung der Struktur

des zu untersuchenden Objekts.

In dieser Dissertation werden Möglichkeiten zur Verbesserung industrieller

Kegelstrahl CT untersucht. Die Verbesserungstechniken basieren auf willkür-

lichen Abtast-Bahnen im Messprozess sowie in der Verwendung von Vorabinfor-

mationen in den Berechnungen. Der erste Beitrag ist eine automatische Kalib-

rierung des CT Aufbaus durch ein neues Kalibrations-Objekt. Die Kalibration
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modelliert das bildverarbeitende Teilsystem des CTs in Form einer projizieren-

den Kamera und extrahiert die Geometrie aus den projizierten Bildern. Die

Kalibrierung grenzt die Rekonstruktionsartefakte aus der Kalibrierung ab. Der

zweite Beitrag stammt aus der Verbindung der willkürlichen Messbahnen mit

einer iterativen Rekonstruktion. Durch diesen Ansatz können niedrigere Störsig-

nale und weniger ausgeprägte Artefakte erreicht werden. Der dritte Beitrag

dieser Arbeit umfasst zwei Datenfusions-Modelle zur Integration von optischen

Messdaten in die CT Rekonstruktion. Diese Modelle bieten das Potential en-

tweder komplette oder partielle optische Daten, welche extern entstanden sind,

mit den CT Daten zu vereinigen. Die Verbesserung durch das Datenfusionsmod-

ell zeigt sich in einer Verringerung der Artefakte, sowie in einer Wiederherstel-

lung von fehlenden Merkmalen in Messungen mit beschränktem Winkelraum.

Beide Verbesserungen konnten in Experimenten bestätigt werden.
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Chapter 1

Introduction

Back in 1890s, X-rays were discovered and systematically studied by Wilhelm

Conrad Röntgen for the first time. The capability of studying the internals of an

object raised the interest of the research community resulting in a large number

of research projects on this topic. The technology in generating and detecting

X-rays also evolved fast to meet the demand from both research and industry.

Computed tomography is one of the most important applications enabled by

the discovery of X-rays and the development of X-ray technology. By acquiring

radiographies around an object, a representation of the internals of an object

can be calculated.

Due to the non-invasive character of computed tomography (CT ), it quickly

became a popular medical imaging method. The research in medical CT focuses

on identifying small contrast in attenuation images within a short acquisition

time while keeping a low radiation dose, following the infamous As Low As

Reasonably Achievable (ALARA) principle. In recent years, more advanced
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2 CHAPTER 1. INTRODUCTION

signal processing methods have been utilized in the medical CT reconstruction

resulting in higher detectability with lower dose.

Outside the medical imaging field, CT is also used as a 3D imaging tool

in industry and research. Unlike medical CT, the designs of industrial CT

systems are optimized to achieve either larger field of view to accommodate

larger samples or optimized to achieve higher spatial resolution to resolve

micro structures. One appealing feature of CT as an imaging tool is that the

measurement is non-destructive, which drives down the analytical costs and

enables repeated measurements of one sample after it undergoes other tests.

However, for a given industrial CT system, a generic scanning procedure

and genetic processing algorithm may result in artifacts. In a generic scanning

procedure, the sample rotates in the CT setup while a detector records the

radiographies of the sample. A schematic of a CT setup in the reference

frame of the sample is illustrated in fig. 1.1(a). The process to compute a

3D representation of the sample from these radiographies is referred as CT

reconstruction. The result of the reconstruction from the radiographies acquired

using a generic scanning procedure contains cone-beam artifacts, which leads

to reduced spatial resolution as illustrated in fig. 1.1(b). When measuring

large samples, a complete rotation is not possible due to the possible collisions

between the sample and the CT system. With only a subset of the complete

radiographies, the result suffers from severe limited-angle artifacts as illustrated

in fig. 1.1(b).

In this dissertation, the possibility to incorporate 3D optical surface scan

(fig. 1.1(c)) in a CT measurement process is explored. The first idea is to

replace the generic scanning procedure with an adaptive procedure according to

the visible size of the sample. The second idea is to fuse the optical data with



3

(a)

(b) (c)

Trajectory plane

Cone-beam artifact

Limited-angle
artifact

u
vu

v

Figure 1.1: The schematic of a simple CT system illustrated in the reference frame of
the object is shown in (a). (b) illustrates the cone-beam artifact and the limited-angle
artifact utilizing a cross section taken from a limit-angle CT scan result of a sample.
The green dashed lines marks the edges in the ground truth image. The discrepancy
between edges from the gray value image and the ground truth are the results of the
artifacts. The same sample is scanned with a 3D optical scanner and the resulting
mesh is rendered and displayed in (c).



4 CHAPTER 1. INTRODUCTION

the limited-angle CT data in the reconstruction. Therefore, the objective of this

dissertation is to utilize the optical data as prior information and to develop a

numerical framework to enable the data fusion of volumetric and surface 3D

models to mitigate CT artifacts.

Chapter 2 gives an overview of the measurement techniques utilized in this

dissertation, i.e. X-ray tomography, optical surface scan, tactile measurement.

The physical processes in measurement techniques are elucidated to explain the

fundamental differences and connections among the techniques. For CT, the

introduction discusses the production of X-ray photons, the interaction between

X-ray photons and matter, the detection of X-ray photons and the geometry

of a CT system. The definitions of 2 dimensional and 3 dimensional images

and their discrete representation will be given in this section to assist further

discussion. For optical surface scans, the structured light scanning method is

introduced. The working principle and the resulting surface representation will

be illustrated. Lastly in this chapter, tactile measurement employed by tactile

coordinate measurement machines is introduced. The advantages over the other

techniques and its limitations are reviewed here.

Chapter 3 discusses the introduction to tomography reconstruction

algorithms. The introduction will start from 2D Radon transformation and

direct inversion algorithm using simplified geometry which helps to understand

the basic concepts in the reconstruction. It continues to the widely used

analytical 3D reconstruction algorithm and the flexible iterative reconstruction

algorithms.

Chapter 4 presents the state-of-the-art in incorporating prior information in

a CT investigation. This chapter starts with an overview of the prior information

that has been employed in other research projects and the advantages from the
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integration of the prior information. Some of the techniques and theories used

in this dissertation are reviewed in this chapter. At the end of this chapter, the

goal of the research is elucidated with respect to the state-of-the-art.

Chapter 5 starts with the analysis of the calibration of the CT system. A

calibration target is assembled and an algorithm is developed to automatically

extract the correct geometry. The calibrated geometry is then used in

a correction algorithm to achieve a reconstruction free from geometry

misalignment. At the end of this chapter, a non-circular trajectory is applied to

the scan if the geometry of the sample is known a priori and a reconstruction

scheme to reconstruct the image from arbitrary trajectory is implemented.

Chapter 6 details the algorithm employed to align the optical data and CT

volume as well as two models developed to fuse optical data and CT data. The

first data fusion model assumes that the complete optical data is available and

the result is demonstrated in a simulation study. To enable the integration

of partial optical data, a second data fusion model is developed where the

assumption of complete optical data is no longer needed. The model is analyzed

in a simulation study and validated by experiments.
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Chapter 2

Overview of acquisition

systems

Three acquisition systems are used in this dissertation to acquire different

physical signals from the object under investigation. The X-ray CT system

acquires the attenuation coefficients of the object by means of measuring the

transmission of X-ray photons. The surface information of an object is acquired

by a 3D optical scanner. The optical scanning method used in this dissertation

is based on projecting structured light onto the surface of the object. Other

than the two non-contact methods, a mechanical tactile system is also used to

locate the surface of the object. In this chapter, a review of the acquisition

systems is presented with a focus on the difference in the physical meanings of

the signals, the advantages and the disadvantages of the systems.

7



8 CHAPTER 2. OVERVIEW OF ACQUISITION SYSTEMS

Geometry acquisition

Contact Non-contact

Destructive Non-destructive Reflective Transmissive

Optical Radiowave CTTactile CMMSlicing

Figure 2.1: Classification of geometry acquisition systems. In this dissertation, optical
surface scan and CT scan as non-contact testing methods are used. The data acquired
from both systems will be fused to improve the representation of the geometry of
the sample under investigation. The tactile CMM results are used during system
calibration and used as a ground truth measurement during the evaluation of the
fusion result.

2.1 X-ray CT acquisition system

A typical industrial X-ray CT system has three main components, i.e. the X-ray

source, the sample stage and the detector . One way to represent an industrial

X-ray CT system is to decompose such a system into a stationary subsystem

and a moving subsystem. Contrary to the medical CT system, the stationary

system in an industrial CT is the imaging system, which is composed of the

X-ray source and the X-ray detector, and the moving system is the sample

manipulation system, which moves the sample w.r.t. the imaging system.

The imaging subsystem measures the transmission image of any object

placed in the field of view. The perspective of the projection is a function of

the geometric parameters of the imaging subsystem. The manipulation system

moves the object in the imaging subsystem to change the perspective of the

projections. The manipulation is dictated by the trajectory settings which
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typically involve translations and rotations.

Source

Detector

Sample manipulator
 

Figure 2.2: A photo of a typical industrial CT system. There are three main
components, i.e. the X-ray source, the X-ray detector and the sample manipulator.
During a CT scan, the source is stationary with respect to (w.r.t.) the detector.
Therefore, the source and detector are treated as the imaging subsystem in this
thesis. Although, the sample manipulator moves the sample to change the projection
perspective during a scan, in this thesis, the discussion adopt the reference system of
the sample and assume the imaging system is moving according a trajectory.

2.1.1 X-ray sources

In industry and research, there are three commonly used X-ray sources. The

X-ray generation mechanisms for them are briefly reviewed below.

• Synchrotron radiation

At a synchrotron facility, the electrons are accelerated close to the speed

of light. The electrons are guided into either a bending magnet or

an undulator, where the electrons are forced to change their trajectory

which results in emitting electromagnetic radiation as elucidated by

Stampanoni et. al. [66].

• X-ray tube
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An X-ray tube is a vacuum tube with a filament emitting electrons on one

end. After the electrons leave the filament, they are accelerated by a static

electric field towards the other end of the vacuum tube, where the electrons

hit a target. X-ray photons are generated during the bombardment

process. The photons generated from this process can be classified into

two types. When fast moving electrons are decelerated by the nuclei of

the target material, X-ray photons are generated. The radiation generated

from this process is referred as bremsstrahlung as explained by Cervantes

et. al. [18]. During the process, some electrons from the inner shell of

the atoms assembling the target material are ejected. When an outer

shell electron falls to the inner shell, the energy difference is emitted as a

photon. The radiation from the process is called characteristic radiation

as it carries certain characteristics of the target material.

• Linear accelerator

The Linear accelerator (LINAC) has a lot in common with the X-ray

tube regarding the X-ray production mechanism. High speed electrons

bombard the target material to generate X-ray photons. The main

difference lies in the acceleration process. In a LINAC, the electrons

are accelerated by the traveling wave or standing wave in the waveguide

generated by RF power as explained by Huang et. al.[38].

2.1.2 Beam geometry

A ray in the context of this dissertation is defined as a portion of a line starting

from the point d where the X-ray photon is emitted and pointing to the

direction of travel nd. A cluster of rays form a beam. A parallel beam is a
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cluster of parallel rays which point to the same direction, while a divergent beam

is a cluster of rays which originate from the same starting point. A particular

divergent beam often used in industrial CT is a cone beam which is a divergent

beam collimated to form a cone shape beam in space.

2.1.3 Beam quality

The quality of the X-ray source has a direct impact on the result of the imaging

system. The following aspects are considered as important factors contributing

to beam quality.

• Beam intensity and flux

The flux and intensity of an X-ray beam in parallel and cone beam

geometry can be defined as vector fields. For a point d on a surface,

as illustrated in fig. 2.3, the intensity can be defined with the help of a

small disk centered at d with an area A and a normal vector nA. The nA
is chosen to allow the maximum number of photons traveling through A

in a given time. The intensity as shown in eq. (2.1) is measured in s−1 and

the flux can be derived from the intensity and is measured in s−1m−2.

I(A, d) = nd
dN

dt
(A,nA, d) (2.1)

j(d) =
∂I

∂A
(d) (2.2)

• Focal spot size

A cone beam has a single point emitting X-rays. In practice, the X-rays
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nA

nd

A

d

Figure 2.3: Illustration of the axillary surface A used in the definition of flux. d is a
point on a surface, with nd being the normal vector at this point. nA is the normal
vector of a disk A. nd is selected to maximize the number of particles traveling through
A.

are generated in the area where the electrons are focused. The area is

defined as the focal spot of the X-ray source.

• Energy spectrum

The generation of the Bremsstrahlung is a random process. The resulting

X-ray photons have different energies. The spectrum of the generated X-

ray photons can be filtered by metal films to produce a narrower spectrum

at a cost of reduced beam intensity.

• Beam uniformity

One specific problem for an X-ray tube is that the intensity of X-rays

leaving the target depends on their angle to the target surface. This leads

to an uneven distribution of flux within the beam. This is often referred

to as the heal effect [16]. Assuming a sphere centered at the X-ray source,

the amplitude of the flux on the surface of the sphere varies.

Tradeoffs
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During the interaction of the electron and the target material, most of the

kinetic energy of the fast moving electron is converted to heat. Due to the

limited rate of heat transfer, the total amount of heat that can be dissipated in

a unit area is limited. Therefore, with increased power, the focal spot size will

increase. At the same time, higher flux of electrons will cause the electrons to

repel each other due to their electric field. This poses a challenge to the focusing

of the electrons, which may lead to the further expansion of the focal spot size.

Filtering the X-ray photons will narrow the bandwidth of the spectrum, but

it will further reduce the intensity. By designing the filter geometry [49], the

non-uniform beam profile can be mitigated.

2.1.4 X-ray photon mass interaction

X-ray imaging relies on the interaction between X-ray photons and matter.

When the X-ray photons are traversing through an object, they may be absorbed

or scattered by the material. Therefore, the intensity of the beam will decrease

after traversing through matter. The attenuation of the beam intensity carries

the information of the object under investigation, which leads to the contrast

in the resulting X-ray images.

Beer-Lambert Law

For a narrow monochromatic beam, the attenuation can be modeled as:

Itr = I0e
−

∫
L
µu(x)dx, (2.3)

where

µu(x) = µs(x) + µa(x) (2.4)

The total attenuation coefficient µu(x) is a sum of scatter coefficient µs(x)
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and absorption coefficient µa(x), for which an empirical relation is [16]:

µa =
kρZ4

AZ(hν)3
, (2.5)

where k is a constant, Z is the atomic number of the material, AZ is the atomic

weight of the material and hν is the photon energy.

2.1.5 X-ray detection

The intensity of the beam is measured with an X-ray detector. The X-ray

photons are converted into visible light first and the intensity of the visible light

is measured with photo diodes. The electrons generated at the photo diodes

with the help of the photoelectric effects are collected at the detector. The

voltage is then digitized by an analog to digital converter and used as a measure

of the X-ray beam intensity.

2.1.6 CT acquisition

A CT acquisition system is composed of an X-ray source, an X-ray detector

and a sample manipulator. The relative positions of the source and detector

define the acquisition geometry and the location and orientation of the object

is defined by the scanning trajectory. In this chapter, all the notations used to

describe the geometry and the trajectory are introduced. Circular trajectory

with parallel beam and arbitrary trajectory with cone beam will be described

in detail.

The geometry defines the transformation of any point in the world coordinate

system to a point in the detector coordinate system. To construct the

transformation matrix, a set of geometric parameters is defined. For parallel
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geometry, the parameters are defined in fig. 2.4.

Figure 2.4: Parameters of a parallel beam geometry. ns is the direction of rays in
the parallel beam. nd is the normal vector of the detector. o′ is the projection of the
origin of the world coordinate system. (uoff , voff ) defines the offset from the geometry
center of the detector to o′.

The ray direction ns is defined with respect to the world coordinate system.

The normal vector of the detector plane is nd.

In the geometry with parallel beam (fig. 2.4), the ray direction in the beam

is ns. The projection of the origin of the world coordinate xyz is o′. Two

orthogonal unit vectors, u and v, form the basis of the in-plane coordinate

system. Therefore, nd = u× v. u and v indicate the orientation of the detector

elements. The orientation is characterized by the in-plane rotation angle, θin,

and out-of-plane, θout, rotation angle. The in-plane angle is defined w.r.t. the

x axis and the out-of-plane angle is defined w.r.t. the z axis following the right

hand rule. The origin of the detector coordinate system is defined by the offset

along u and v from o′. The offset is defined as (uoff , voff ).
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In an ideal case, the in-plane angle and out-of-plane angle are zero and o′ is

placed at the geometric center of the detector, i.e. u = nx , v = ny and nd = nz.

Figure 2.5: Parameters of a cone-beam geometry. ns in the cone-beam setting
is defined as the direction of the principle ray of the cone beam, i.e. the ray
perpendicular to the detector, while the out-of-plane rotation and the source offset
are zero. (xsoff , ysoff ) are the offset of the source in the source plane, i.e. plane
perpendicular to ns, w.r.t the origin of the source plane.

The cone-beam geometry parameters are defined in fig. 2.5. In a cone-beam

geometry, the relative position of the source S and the detector is defined. To

demonstrate the geometry, the source and the detector are placed in the world

coordinate system, such that the projection of S overlaps with the origin of the

detector coordinate system o′ while the in-plane and out-of-plane angles are set

to zero. The plane containing S and being parallel to the detector plane are

defined as the source plane. The distance between o′ and the source plane is the
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source detector distance (lsdd) and the distance between o and the source plane

is the source isocenter distance (lsid). The sid and the sdd are marked in a

simplified schematic as illustrated in fig. 2.6. The position of the source within

the source plane can be characterized by the source offset ( xsoff , ysoff ).

Source detector distance (sdd)

Source isocenter distance (sid)

Source Detector

Figure 2.6: A simplified geometry of a CT setup from a side view.

The objective of defining the geometry is to mathematically map any point

in the world coordinate system to the detector coordinate system. With the

above definition, for any point P , using the above parameters, its projection in

the plane coordinate system can be calculated.

The coordinates are represented in homogeneous coordinates, similarly to

what Szeliski et. al.[67] employed, to calculate the coordinate P tr after the

projection.



18 CHAPTER 2. OVERVIEW OF ACQUISITION SYSTEMS

P tr =


Pu

Pv

1

 = T
g
·


Px

Py

Pz

1

 = T
g
· P (2.6)

where

T
g

=

M
T1︷ ︸︸ ︷

1 0 xoff − uoff
0 1 yoff − voff
0 0 1



M
T2︷ ︸︸ ︷

−lssd 0 0 0

0 −lssd 0 0

0 0 1 −lsid



M
T3︷ ︸︸ ︷

1 0 0 −xoff
0 1 0 −yoff
0 0 1 0

0 0 0 1



×


cos(−θin) − sin(−θin) 0 0

sin(−θin) cos(−θin) 0 0

0 0 1 0

0 0 0 1


︸ ︷︷ ︸

M
T4


1 0 0 0

0 cos(−θout) − sin(−θout) 0

0 sin(−θout) cos(−θout) 0

0 0 0 1


︸ ︷︷ ︸

M
T5

(2.7)

Specifically, in T
g
, the M

T5
applies the out-of-plane rotation; the M

T4

applies the in-plane rotation; theM
T3

applies the source offset; theM
T2

applies
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the scaling; the M
T1

applies the relative offset of the detector.

The trajectory in the context of this dissertation is the trajectory of the

X-ray source w.r.t. the object during the acquisition. The same definition

is used in the OpenRTK toolkit [59] which adopted the geometry definition

from the international standard IEC 61217. Most CT scanners can perform

a circular trajectory, where the scanning system with a fixed geometry rotates

around one fixed rotation axis. If the rotation axis is defined as a line parallel to

(0, 1, 0)T and going through the origin of the world coordinate, the transformed

coordinate P tr,θ at any scanning angle θ can be calculated by multiplying the

rotation matrix T
r
:

P tr,θ = T
g
· T

r
· P = T

g
·


cos(−θ) 0 sin(−θ) 0

0 1 0 0

− sin(−θ) 0 cos(−θ) 0

0 0 0 1

 · P (2.8)

The transformation matrix from the geometry and trajectory has 9 degrees of

freedom implying the coordinate of the source point, the coordinate of the origin

of the detector plane and the orientation of the detector coordinate system. The

complete transformation matrix is capable of describing any arbitrary scanning

geometry and trajectory.

A few trajectories that are used in this dissertation are used to demonstrate

the definition of the geometry.

Ideal geometry and circular trajectory: An ideal geometry in the

context of this dissertation implies the source and detector offsets as well as

the in-plane and out-of-plane angles are zero. A circular trajectory under such

ideal geometry can be represented as:
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T = I
3
·


−lssd 0 0 0

0 −lssd 0 0

0 0 1 −lsid

 ·I4 ·


cos(−θ) 0 sin(−θ) 0

0 1 0 0

− sin(−θ) 0 cos(−θ) 0

0 0 0 1

 , (2.9)

where I
n
denotes an identity matrix of size n× n.

Ideal geometry with spiral trajectory With an ideal alignment in the

imaging subsystem and the perfect alignment of the rotation axis, a spiral

trajectory needs an extra parameter to describe the spacing after one full

evolution, rs[rad−1].

T = I
3
·


−lssd 0 0 0

0 −lssd 0 0

0 0 1 −lsid

 ·


1 0 0 0

0 1 0 θ × rs
0 0 1 0

0 0 0 1



·I
4
·


cos(−θ) 0 sin(−θ) 0

0 1 0 0

− sin(−θ) 0 cos(−θ) 0

0 0 0 1



(2.10)

2.1.7 Data representation

As the contrast of CT comes from the attenuation coefficient, the result of

CT is a spatial distribution of attenuation coefficient in the field of view of

the acquisition system. The spatial distribution of attenuation coefficients is

denoted as the object function, which is a real valued function defined on
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R3, f : R3 7→ R. To parametrize the object function, the object function is

represented using the finite series expansion [17].

f(x) =

Nv∑
i=1

µibi(x), (2.11)

where bi(x) is a set of linear independent basis functions and the µi are the

coefficients. The most common choice of the basis functions is the voxel

functions, that is

bi(x) = rect(
x1 − x̂i1

∆x1
)rect(

x2 − x̂i2
∆x2

)rect(
x3 − x̂i3

∆x3
), (2.12)

where (x̂i1, x̂i2, x̂i3) is the coordinate of the center of the ith voxel and the

(∆x1,∆x2,∆x3) denotes the voxel size in each direction.

The beam intensity function on the detector plane is a real valued function

defined on the detector plane, Iθ : R2 7→ R. The intensity function is sampled by

the detector, therefore it is automatically represented using a set of pixel basis

functions. The parameters in this basis is measured according to the spatial

sampling process and the quantification process:

• Spatial sampling

The sampling of the beam intensity is achieved with a flat-panel detector

where the detector elements are aligned in a rectangular grid. The pitch of

the detector elements sets the spatial frequency of the sampling process.

Assuming the pitch sizes in both directions are the same, the sampling

frequency of the intensity distribution in each direction of the flat panel

detector is fs = 1/lpitch[mm−1]. Due to the finite size of the detector

elements, the sampled value is an average over the span of the active area
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of the detector element. Assuming p
i
is the coordinate of the center of the

ith element in the detector coordinate system, the intensity sampled by

the ith detector element at a projection angle θ is represented as Iθi

Iθi =

∫∫
Sp

Iθ(p
i
) dS, (2.13)

where Sp is the active area of the ith detector element.

• Quantification

After the sampling process, Iθi is mapped to a finite set of discrete values

limited to the output of the analogue to digital converter (ADC). To fully

utilize the dynamic range of the ADC, the ratio between the maximum

intensity and minimum intensity should be close to the maximum discrete

value and the noise floor should be kept low by choosing proper exposure

settings. During a CT scan, the exposure settings of the acquisition

system are constant in order to keep the acquisition consistent across all

projections. Therefore, the exposure setting has to be calculated based on

the smallest attenuation from all projections, resulting in under-utilization

of the dynamic range in certain projections. This will reduce the intensity

resolution in industrial CT when the sample is planar.

The resulting discrete representation of the intensity distribution image from

angle θ can be denoted as Iθ. Iθi denotes a specific pixel value in the discrete

representation. If the projection angles are arranged in some order, the complete

stack of images can be denoted as I and the value of a single pixel value as Ii.

Similarly, the beam intensity without any attenuation is denoted as I0 which is

also referred as the flat field image.
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Without considering the polychromatic nature of the X-rays and the

scattering of the X-ray photons in the sample, the Beer Lambert law eq. (2.3) is

applied to calculate the integral of the attenuation coefficient p along the path

of the beam from the sampled beam intensity,

p = {− ln (
Ii
I0i

) | Ii ∈ I, I0i ∈ I0} (2.14)

Accordingly, the CT reconstruction problem can be represented as the

estimation of the coefficients µ under a set of basis functions bi(x) from the

measurement of the intensity images I.

2.1.8 Limitations

CT measurements come with their limitations. The quality of the CT result

is limited in spatial resolution and intensity resolution. The CT result is also

prone to artifacts.

• Spatial resolution of a single projection

The performance of a typical imaging system can be estimated by the

modulation transfer function (MTF ) [48]. The main factors contributing

to the limited response of the MTF include the focal spot size, the pixel

size of the detector and the pixel cross talk. In addition, the scattering of

X-ray photons also lowers the spatial resolution of the imaging system.

• Intensity resolution of a single projection

The discrete representation of the intensity image has limited resolution in

the magnitude of the intensity [12]. With insufficient intensity resolution,

the acquisition will not be able to pick up low contrast features and may
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contain banding artifacts. With a limited dynamic range of the ADC, it

is very challenging to preserve all details for samples with large variation

in thickness.

• Limitation from the geometry

The accuracy of CT relies on the accuracy of the acquisition system.

The reconstruction process takes the geometric parameters as input

parameters. Any error in the geometric parameters will be propagated

to the reconstruction results. Typical artifacts arising from inaccurate

geometry include wrong voxel size and blurred image boundary.

2.2 Optical scanning

Optical surface acquisition is another non-contact acquisition method. The

signal from the acquisition is the optical reflectivity property of the sample.

The optical surface scanning methods can be classified into active and passive

scanning methods [10] depending on whether controlled structured light was

used. An optical acquisition system with a light source projecting a structured

pattern to the sample is an active acquisition system. Such scanners are

called structured light scanners and scanners without using structured light

are stereoscopic scanners.

2.2.1 Principles

Both stereoscopic scanners and structured light scanners utilize triangulation to

sense the position of a point in the camera coordinate system.

Stereoscopic scanner
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In a simplified model, a stereoscopic scanner is composed of two camera

systems as illustrated in fig. 2.7. To measure the position of a point in the

world coordinate system where Ow is the origin, each camera captures an image

of the point and record its coordinate in the pixel array. The relation between

the coordinates of the point in the world coordinate system and its image can

be expressed with the help of the projection matrix in homogeneous coordinates

as:


u

v

1

 = M
int
·M

ext
·


U

V

W

1

 (2.15)

and


u′

v′

1

 = M ′
int
·M ′

ext
·


U

V

W

1

 (2.16)

where M
ext

and M ′
int

are the intrisic matrices [35] of the cameras and M
ext

and M ′
ext

are the extrinsic matrices defining the spacial relations of the object

and the cameras.

If the following conditions are met, the coordinate in the world coordinate

system can be calculated.

• Calibrated cameras

The cameras are calibrated such that the intrinsic projection matrices are
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L

v

u

v'

u'

(U,V,W)

Ow

Figure 2.7: Illustration of a simple stereo camera system. In this simplified model,
there are two pin hole cameras and their relative position is known. The point with
an unknown position represented by (U, V,W )T can be extracted if both cameras are
calibrated and are able to capture the point.



2.2. OPTICAL SCANNING 27

known. In addition, the relative position of the two cameras is known such

that a linear relation between the extrinsic matrices of the two cameras is

known.

• Point correspondence

The point of interest on the object is correctly identified on the image

from the camera.

Structured light scanner

In a structured light scanner, one of the camera systems in the stereoscopic

scanner is replaced with a projector. The acquisition principle remains the same.

The difference lies in the point correspondence process. Instead of matching

images acquired from both cameras, the only camera acquires the known pattern

projected from the projector to accomplish the correspondence task.

2.2.2 Limitations

The limitations of the optical surface scan comes from the calibration of the

system and the point correspondence as well as from the stitching of results

from different scans. The calibration of the system must be performed each

time after the configuration of the setup is modified. During the measurement,

the change in system temperature will lead to a drift of the calibration due to

the thermal expansion. The point correspondence is achieved by identifying

image features in stereoscopic scanners and by identifying the pattern reflected

by the surface of the sample in structured light scanners.

The structured light scanner is used as the main instrument in this

dissertation for optical surface acquisition. To construct the correspondence,
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the pattern projected on the surface of the sample has to be visible to the

camera in the system. This leads to the following limitations:

• Material property of the sample

If the material of the sample is transparent to the light used by the scanner

(laser or visible light) or if the material is translucent, the projected

pattern will not form any image with enough contrast for the camera

to detect.

• The texture of the surface of the sample.

Glossy surface will lead to spectacular reflections on the surfaces which

will saturate the sensor of the camera. As a result, such surfaces will not

be detected.

• The color of the surface.

If the projected structured light is absorbed by the surface material, no

contrast will be detected by the camera. This also results in the surface

not being detected.

• The topology of the surface.

Narrow cavities and deep trenches on the surface will block either the

projection or the view of the camera preventing the correspondence.

Accuracy limits

Quantitative analysis of optical surface scanning setups is very challenging

because of the many instrument parameters [29]. Qualitatively, the accuracy of

the measurement mainly comes from two aspects, i.e. the error within a single

acquisition and the error from stitching the acquisitions from different directions.
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The spatial resolution of the projection pattern and the spatial resolution of the

camera are the main limiting factors of high spatial accuracy.

2.2.3 Data representation

Every point that has been successfully detected and triangulated will be

recorded. All detected points from the scans will result in a point cloud. To

preserve the surface information, the connectivity among the points is added.

The resulting data structure is the mesh representation of the surface. In this

dissertation, a mesh from the surface scan is refered asMopt.

2.3 CMM scanning

The tactile coordinate measurement is the standard in the manufacturing

industry. The procedure has been standardized to produce traceable results.

This task can be performed by a dedicated coordinate measurement machine

(CMM) or a CNC machine with modification.

2.3.1 Principle

A tactile CMM relies on the tactile feedback from probing the sample surface.

The position and the geometry of the probe are recorded when a feedback is

registered. The measurement results are used to fit the parameters of primitives.

The following primitives are measured:

• Surface

A surface is represented as a point on the surface and a normal vector.
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• Cylinder

A cylinder is parameterized as a point and a vector pointing along the

axis of the cylinder and the length of the radius.

• sphere

A sphere is parameterized as a point in the center and a radius from the

center to the surface.

2.3.2 Limitations

The limitations of CMM measurements are the following:

• Speed

The measurement is a serial process and involves mechanical movement

for each point. This leads to a very low throughput. Within any

reasonable measurement time, only a limited number of surface points

can be measured.

• Material of the sample

Due to the limited sensitivity of the force sensor, the tactile CMM cannot

measure samples with soft surfaces.

• Free form surface

With the basic configuration used in this dissertation, only the

measurements of primitives are possible. The continuous measurement of

a free form surface is challenging and it needs a sampling plan estimated

from the original design.
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• Resolution

The CMM offers high accuracy measurement, but it lacks the ability to

resolve fine structures. As the probe has a finite size, the smallest feature

is limited by the size of the probe.

• Reach

The limited reach of the probe poses an upper limit to the largest depth

of a measurement. Deep and narrow trenches cannot be measured with

CMM.

2.3.3 Data representation

In this dissertation, the parameters from the measurements of the primitives

are listed in tables.
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Chapter 3

Tomographic reconstruction

Tomographic reconstruction is the process to calculate the representation of

the object from the measurements. Using the notation from section 2.1, the

reconstruction of CT is the process of estimating the coefficients µ under a set

of basis functions bi(x) from the measurement of the intensity images I. This

chapter starts with the Radon transformation which represents a function using

integrals on hyperplanes. As the attenuation of the beam intensity by the sample

is directly related to the integral of the linear attenuation coefficient along

the path of the ray, the radon representation builds a connection between the

attenuation coefficient and the measured beam intensity. Similar to the Radon

transformation in some way, the cone beam transformation is more important

to industrial CT applications because parallel beams are almost exclusively used

at synchrotron facilities.

33
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3.1 Radon transform

The attenuation of the beam intensity is a function of the integral of the

attenuation coefficients along the path of the beam. To assist the analysis

of the reconstruction problem, the Radon transform [42] is defined. Assuming

f ∈ S(Rn), where S(Rn) is a Schwartz space on S(Rn) , for a vector θ on the

unit sphere Sn−1 and a signed scalar value s ∈ R, the Radon transform R can

be defined:

Definition 3.1 (Radon transformation).

Rf(θ, s) :=

∫
x·θ=s

f(x)dx, (3.1)

where s is the distance between the origin and the hyperplane perpendicular to

θ. An illustration of the Radon transformation in 2D is shown in fig. 3.1.

An operator along a predefined orientation is defined as:

Rθf(s) := Rf(θ, s). (3.2)

The X-ray transform is the integral along a line going through point x with

direction θ

Definition 3.2 (X-ray transform).

Pf(θ, x) :=

+∞∫
−∞

f(x+ tθ)dt. (3.3)
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Figure 3.1: An illustration of the Radon transformation in 2D.

The Radon transform can be expressed as an integral of the X-ray transform:

Rf(ω, s) =

∫
x∈θ⊥,x·ω=s

Pf(θ, x)dx, (3.4)

where θ ∈ Sn−1 and ω ⊥ θ.

Similarly, the X-ray transform from a predefined direction is defined as Pθ.

P is referred as a forward projection operator and its dual operator, P∗, is

referred as a backward projection.

Definition 3.3 (X-ray back projection transform).

P∗f(x) =

∫
Sn−1

f(θ, Eθx)dθ, (3.5)

where Eθx is the orthogonal projection on θ⊥.
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The Divergent beam transform is an integral along a half line starting from

a point:

Definition 3.4 (Divergent beam transform).

Df(a, θ) :=

+∞∫
0

f(a+ tθ)dt, (3.6)

where a is the starting point of the half line.

The position parameter can be absorbed into the operator to simplify the

notation as:

Daf(θ) :=

+∞∫
0

f(a+ tθ)dt, (3.7)

The cone beam back projection for any given ray starting point is defined

as:

Definition 3.5 (Divergent beam back projection).

D∗af(x) := f(a, θax), (3.8)

where θax ∈ Sn−1 is parallel to the vector pointing from a to x.

3.2 Fourier slice theorem

One important addition to the Radon transform is the Fourier slice theorem.

Definition 3.6 (Fourier slice theorem). For f ∈ S(Rn),
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F (Rθf(σ)) = (2π)(n−1)/2F (f(σθ)), (3.9)

where σ ∈ R and F denotes the Fourier transform of a function.

The Fourier slice theorem bridges the Radon transform of a function and

the function itself via Fourier space. Combined with eq. (3.4), the Fourier

representation of the function can be calculated from the X-ray transform of

the function. This leads to the reconstruction algorithms.

3.3 Fourier based reconstruction

The direct calculation of the inverse Fourier transform from the Fourier

transform of the projections is referred as the direct Fourier reconstruction.

Since 3D CT scan is the focus of this dissertation, the following discussion will

be limited to 3D.

Definition 3.7 (Direct Fourier reconstruction). For f ∈ S(R3),

f(x) = (2π)−3/2
∫
R3

eix·ξF (f(ξ))dξ, (3.10)

The direct Fourier reconstruction is an analytical solution assuming the

Fourier representation to be continuous. However, due to the discrete nature

of the sampling process, only a subset of the Fourier coefficients are available

and they are arranged in a polar grid. To utilize the fast Fourier transformation

(FFT ), the corresponding coefficients in a rectangular grid in the Fourier space

are interpolated. The error introduced in the interpolation process limits the

practical application of this reconstruction method.
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The simplicity of the direct Fourier transform lies in the fact that there is

a conversion between the Radon data and Parallel projection data as shown

in eq. (3.4). However, such a conversion does not exist between Radon data

and divergent beam projection data. In industrial CT, a cone beam, which is a

divergent beam in 3D, is used instead of parallel beam. Since there is no direct

conversion from cone-beam data to Radon data, the reconstruction has to be

adapted. Grangeat [34] discovered a method to calculate the derivatives of the

Radon transform from the cone beam transform. Based on the derivative of

the Radon transform, the function can be reconstructed from the cone beam

transform.

The Grangeat method requires complete Radon data, which means all the

coefficients in the Radon transform need to be available. The data completeness

in the Radon space implies the cone beam transform to be measured at any

possible source position, using the notation from eq. (3.6), a/‖a‖ ∈ S2. However,

in practice, the data completeness cannot be guaranteed. The source positions

in real world scans form a curve in space, which only covers a subset of S2.

The curve is referred as the source trajectory. If the source trajectory is in

a plane and forms a complete circle, such a trajectory is referred as a circular

trajectory. A scan following a circular trajectory is easy to perform in real world

applications, although the incomplete data acquired during such a scan prevent

an exact reconstruction of the function.

3.4 Filtered backprojection reconstruction

The data acquired with a setup consisting of a cone beam source and a flat

panel detector cannot cover the entire Radon space if only a circular trajectory
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is performed during the acquisition. All measurable Radon coefficients with

a circular trajectory are distributed in a torus shaped region if the detector

is assumed to be infinitely large. The region outside the torus is referred as

the shadow space [16]. If the necessary Radon coefficients to reconstruct the

function at a certain location fall in the shadow space, the function at the specific

location cannot be exactly reconstructed.

If the trajectory is denoted as a(λ), with λ ∈ R1 as a parameter, Tuy [68]

has concluded that the exact function value at x can be exactly reconstructed

with the presence of noise only if a(λ) fulfills the following conditions:

Definition 3.8 (Tuy’s conditions). For any θ ∈ S2, there exists λ, such that

(a(λ)− x) · θ = 0, (3.11)

a′(λ) · θ 6= 0. (3.12)

Tuy’s conditions require each plane that goes through x intersects the

trajectory transversally to exactly reconstruct the value at x with stability

against noise.The Tuy’s conditions are applied to the circular trajectory. Any

point that is not in the plane containing the circular trajectory does not meet

the Tuy’s conditions, i.e. any plane containing x that is parallel to the circular

trajectory plane at the same time does not intersect the circular trajectory.

Therefore, a stable reconstruction of the exact values is not possible anywhere

other than in the trajectory plane.

Feldkamp, et. al [30] developed an algorithm to reconstruct an

approximation of the function from projection data acquired from a cone beam

source and a flat panel detector setup performing a circular trajectory.
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Definition 3.9 (FDK reconstruction). Assuming pθv(u, v) is the projection

from θ on the virtual detector going through the isocenter.

The projection value is weighted geometrically:

pθvw(u, v) = pθv(u, v)
lsid√

l2sid + u2 + v2
, (3.13)

Apply a high pass filter g(u) along the axis parallel to the trajectory plane:

hθ(u, v) = pθvw(u, v) ∗ g(u), (3.14)

Back project to image domain. For any position (x, y, x),

f(x, y, z) =

+2π∫
0

l2sid
(lsid − xsin(θ) + zcos(θ))2

hθ(u, v)dθ (3.15)

The exact attenuation coefficients from the trajectory plane can be

reconstructed correctly while the attenuation coefficients outside the trajectory

plane are prone to cone beam artifact as shown in fig. 3.2. The surfaces parallel

to the trajectory plane are blurred resulting in a reduced spatial resolution in

the direction of the rotation axis. For scans using a small cone angle, the FDK

algorithm offers a good reconstruction result.

3.5 Algebraic reconstruction

Other than solving the reconstruction problem by computing the inverse Radon

transform of a function, the reconstruction problem from a different perspective

can be approached from a different perspective.
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Figure 3.2: The cross section of a reconstructed cuboid perpendicular to the trajectory
plane. The blurred boundary is referred as the cone-beam artifact. The trajectory
plane is the plane where all source positions lie in. The cause of the cone-beam artifact
is insufficient data from the acquisition. A schematic of the source and the envelope of
the cone beam are added to the figure to illustrate the angle between the X-ray beam
and the boundary.

3.5.1 Direct algebraic reconstruction

Assuming the rectangular grid is used as the representation of the function to

be reconstructed, the total attenuation along a narrow beam can be calculated

as the following:

pi =

N∑
j=1

aijµj , (3.16)

where i = 1, ...,M is the index of the projection and j = 1, ..., N is the index

of the attenuation coefficients in the representation.

If all the measurements are arranged together,the following compact form

can be used:

p = A · µ, (3.17)
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If A is explicitly known, the above linear system can be solved by calculating

µ̃ = A+ · p, (3.18)

where A+ is the Moore Penrose Pseudo-inverse [28], which can be calculated

by SV D [63]. However, a high resolution industrial CT scan will produce a

measurement p with a size of M = 1440 × 4000 × 4000 = 2.304 × 1010. To

reconstruct a grid consisting of N = 4000×4000×4000 = 6.4×1010 unknowns,

A will have more than 1021 elements. Although A is sparse, the computation

of the SVD cannot be finished in a reasonable time. In addition, typically the

reconstruction problem is ill-posed [43], i.e. some singular values from the SVD

calculations are small. The Pseudo inverse will amplify very small changes in

the projections data leading to a very unstable reconstruction.

3.5.2 Iterative reconstruction

To solve the linear system in eq. (3.17), iterative methods are more feasible

considering the size of the problems. The algebraic reconstruction technique

(ART) employs the Kaczmarz’s method [41] solving eq. (3.17) by projecting

intermediate iteration results onto the solution set of a single row in A. The

sequence of the iterations will converge to a solution to eq. (3.17).

At the beginning of the iteration, the volume to be reconstructed is set to 0.

A random narrow beam is then chosen to project the volume to a point in the

projection. The difference is then back-projected to the volume. The iteration

stops once the stopping criteria are met. The ART algorithm is summarized in

Algorithm 1.

In Algorithm 1, the index i is selected randomly from all possible detector



3.5. ALGEBRAIC RECONSTRUCTION 43

Algorithm 1 Algebraic reconstruction technique
1: procedure ART
2: µ(0) = 0,
3: p(n) = A · µ(n)

4: µ(n) = µ(n−1) − ai·f(n−1)−pi
ai·(ai)T

(ai)
T

5: end procedure

locations. The algebraic reconstruction methods are flexible to the acquisition

geometry and are less prone to noise in the projection images. Compared to

the FDK algorithm, the algebraic methods can achieve better image quality

at a reduced amount of projections. At the same time, the capability to

incorporate other constraints and prior information make it an increasingly

popular reconstruction method.
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Chapter 4

State of the art

The previous chapters have introduced the CT acquisition process and the

basic principals of the CT reconstruction algorithms. The FDK algorithm

has been used as the standard reconstruction algorithm in many commercial

CT systems [55] but it has its intrinsic limitations such as the blurring in the

direction of the rotation axis [72] and the restriction on the acquisition of the

projections. The ART algorithm is not limited to the acquisition but, within

a given measurement, the result from the this algorithm converges to the least

square solution [40], which is an approximation of the exact solution. Without

any additional information, iterative reconstructions like ART cannot further

improve the reconstruction quality. Fortunately, the flexibility to incoorperate

prior information is one of the advantages of iterative reconstructions over the

conventional FDK algorithm. Most of the research on the topic of incoperating

prior information are trying to achieve one or more of the following objectives:

• reduce noise

45
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• mitigate artifacts

• reduce the number of required projections

This chapter presents an overview of the different prior information that has

been utilized to improve the CT reconstructions and the implementations of

new algorithms incorporating prior data.

4.1 Prior information employed in CT

As CT is a technology to sense the spatial distribution of attenuation coefficients,

any knowledge about this distribution prior to the acquisition is considered as

prior information. The prior information comes from the understanding of the

image properties or an additional measurement of the same object utilizing the

same or different measurement modalities.

4.1.1 Image property

The distribution of attenuation coefficients of the object and the projections are

represented as functions defined in 3D and 2D space as shown in subsection 2.1.7.

When the object function and the projection functions are represented as

images, the prior understanding of the image properties can be exploited during

the reconstruction process. The statistical properties and the compressibility of

the images have been studied in many projects.

Statistics

Poisson noise model. The generation of the X-ray photons and the

interaction of the X-ray photons with matter as well as the detection of X-

ray photons is a cascaded Poisson process if the electronic noise at the detector
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readout is not considered [16]. Îi denotes a random variable and Ii denotes

a realization of Îi. Îi follows a Poisson distribution with an expectation of

I0ie
−(A·µ)a , i.e.

Ii ∼ Poisson(I0ie
−[A·µ]i) , (4.1)

where [.]i denotes the ith element of the vector.

To model the complete process including the readout system, a Gaussian

term can be added to the noise model [65, 44] to simulate the noise from the

readout circuit.

Ii ∼ Poisson(I0ie
−[A·µ]a) +N (0, σ2), (4.2)

where the σ is measured experimentally with the radiation turned off.

Gaussian noise model. A more practical and simpler model is to assume a

Gaussian noise after applying the Beer-Lambert Law eq. (2.3), i.e.

pi = [A · µ]i + ni, ni ∼ N (0, σ2
i ), (4.3)

Sparseness and compressibility

Using the notation from subsection 2.1.7, a signal f can be represented using

a set of basis functions b and coefficients µ. If there are only K,K � Nv non-

zero coefficients, f is K sparse in basis b.

Most natural images are not sparse. Due to the existence of noise, the

representation of natural images is not sparse in almost all basis functions.

However, under certain representations, the image are compressible.

The coefficients µ in a certain set of basis functions b can be sorted in a
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decreasing order:

µ̂1, ..., µ̂K , ..., µ̂Nv (4.4)

If the sorted coefficients follow a power law decay and there are only a few

large coefficients, the image is compressible. A more rigorous definition can be

found in [19].

The compressibility of images is often used as prior information in iterative

reconstruction algorithms to regularize the solutions.

Self similarity

The self similarity at different positions within one image was employed in

the non-local means denoising filter [15, 14]. The non-local means filter is a

patch-based filter. The non-local mean filter can be expressed as:

µj,NLM =

∑
k∈Sj

wjk(µ)µk∑
k∈Sj

wjk(µ)
, (4.5)

where wjk(µ) is the similarity function and Sj is the search region.

4.1.2 Prior images

Measurements taken from the object under investigation prior to the CT

measurements are used as prior information. As the measurement may be taken

from a different modality, the use of prior images is often a multisensor data

fusion problem. The objective of data fusion tasks is to achieve a synergistic

effect.

Depending on the attributes measured by the modalities, the prior images

can be categorized into two groups.
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• CT scans

Previous CT scans of the same object at the same or different resolution

can be used to improve the CT reconstruction as a prior image . In the

case of a CT scan, the value in the image carries the same physical meaning

and often in the same representation. This allows a direct integration of

the prior data.

• Other sensors

Optical surface scan, ultrasonic measurement and magnetic resonance

imaging results are also used as prior information. However, the fusion of

signals from different physical domains is not straightforward.

4.1.3 CAD file

The design file as a guideline for the manufacturing of a part can be used as

prior data.

4.2 Incorporating prior information

With the given prior information listed above, there are many possible methods

to incorporate them to improve the CT result. The approaches are classified

into two categories depending on the moment the prior information enters

the CT process. The CT process is composed of three major steps, i.e. the

acquisition, the reconstruction and the analysis of the result as illustrated in

fig. 4.1. The methods in the first category apply the prior information before the

data acquisition process to improve the quality of the raw data. The methods in

the second category focus on fusing the prior data into the final reconstruction.
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Although the two categories will be discussed separately, the methods on both

categories are often applied together as the acquisition and the reconstruction

are coupled.

Acquisition Reconstruction Analysis

Prior data

Figure 4.1: CT process diagram. A typical CT investigation includes three procedures:
acquisition, reconstruction and analysis. In this thesis, prior data is utilized in all three
procedures with a focus on the integration of prior data during the reconstruction.

4.2.1 Acquisition with prior information

Most commercial systems acquire images along a circular source trajectory at

positions uniformly distributed along the circle. Based on the prior knowledge

of the object, the conventional acquisition protocol is no longer the optimal. By

studying the prior information of the object, non-standard acquisition protocols

allow better reconstructions or reconstruction in comparable quality from a

reduced number of projections.

In-plane trajectories

The circular trajectory is an in-plane trajectory as all sampling points lie

in the same plane. Such design is easy for mechanical implementation and

experiment planning. For 2D CT scans, an in-plane trajectory is sufficient to

achieve accurate and stable reconstruction result according to eq. (3.11). In-

plane trajectories other than a standard circular trajectory have been proposed
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to enable different applications or to improve the reconstruction results [6, 25].

The first variant is a circular trajectory with selected projection angles.

The data acquired from all angles contains a large amount of redundant

information [56] and the information from different angles contributes to the

result differently. By selecting only a subset of all possible angles, the object can

be reconstructed at similar quality allowing cheaper and faster measurements.

In [6], a similar trajectory has been applied to the simulation to achieve favorable

results compared to a standard trajectory with the same number of projections

while assuming the binary nature of the image is known a priori. Using the

notation from eq. (2.9) in subsection 2.1.6, the transformation matrices for each

projection can be represented as:

{T (θ), T (θ + ∆θ), ..., T (θ + (n− 1)∆θ)}, (4.6)

where n is the number of projection and ∆θ is the angular increment used during

the scan.

The circular trajectory with selected projection angles can be presented as:

{T (θ̂1), T (θ̂2), ..., T (θ̂n)}, (4.7)

where the sequence θ̂ is the outcome of the selecting algorithm.

Another in-plane trajectory was proposed [25] where the spatial support of

the object is used to allow dynamic zooming during the acquisition. In this

approach, the convex hull of the object was extracted from the spatial support.

The source to object distance is adjusted dynamically such that the project of

the object fully utilizes the detector area. The authors claim a more accurate
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result and increased resolution. The trajectory can be presented as:

{T (θ, lsid0), T (θ + ∆θ, lsid1), ..., T (θ + (n− 1)∆θ, lsid(n−1))}, (4.8)

If the shape of the object is known a priori by optical surface scanning and

a circular trajectory is impossible due to possible collisions between the object

and the scanner, a limited-angle scanning trajectory needs to be applied. A

limited-angle trajectory [31, 64, 21] covers less angles than a short-scan [57]

needs. The range of the scanning angle during a short-scan is the sum of π and

the cone opening angle. An in-plane limited-angle trajectory can be represented

as:

{T (θ), T (θ + ∆θ), ..., T (θ + (k − 1)∆θ)}, k∆θ < θparker. (4.9)

where θparker is the angular range in a short scan.

Arbitrary trajectory As proved in [68], an in-plane trajectory is

insufficient to stably reconstruct the whole object accurately and the geometry

of the equipment and the sample may prohibit certain scanning position.

Arbitrary trajectories with measurement positions that are not in the same

plane can be applied to samples if the boundary of the object is known prior

to the measurement. The realization of arbitrary trajectory is often limited

by the manipulation system of a CT setup. Such a manipulation system is

demonstrated by Banjak et. al. [5], where the source and detector are mounted

on robotic arm to enable CT scans of stationary objects. However, with limited

reach of the robotic arms, an arc-line-arc scanning trajectory [71, 37] is used.



4.2. INCORPORATING PRIOR INFORMATION 53

Using the notation of this dissertation, the trajectory can be represented as:

{T (θ, 0, 0), ..., T (θ + (k − 1)∆θ, 0, 0),

T (θ + (k − 1)∆θ,∆l,∆l), ..., T (θ + (k − 1)∆θ, yoff , voff ),

T (θ + (k − 2)∆θ, yoff , voff ), ..., T (θ, yoff , voff )}, (4.10)

where ∆l is the step size in vertical translation.

Since the reconstruction of the full object is not needed for certain

measurement, the design of the trajectory has been tailored towards the

reconstruction of a region of interest or towards certain imaging tasks. Gang et.

al. [32] has demonstrated a design rule for task-based trajectories by allowing

one additional degree of freedom when scanning along a circular trajectory.

Schrapp et. al. [62] has taken this idea and applied it to industrial CT systems.

Using the notation of this dissertation, a task-based trajectory can be

symbolically represented as:

{T} = arg max
{T}

f(Wt,M, {T}), (4.11)

where Wt is the task function describing the imaging task, M is the quality

metric used to evaluate the performance of the reconstruct at the imaging task

and {T} is the sequence of acquisition with its parameters.

4.2.2 Reconstruction with prior information

In this section, the focus is on the iterative reconstruction algorithms which

are capable of incorporating prior information. Although certain variation

of analytical algorithms allows the integration of prior data, the choices of
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prior data is limited [75] and they are not as flexible because a complete

reimplementation is needed if the parameter of the reconstruction problem

changes. I will focus on the specific reconstruction algorithms employing prior

information.

Reconstruction with arbitrary trajectory

As shown in Algorithm 1, the computation procedure does not put any

constraints on the geometry. The system matrix A contains all the geometry

information needed to describe the spatial relation between the object and the

imaging system. Since all projection values on one projection image correspond

to one single projection configuration it is more efficient using all pixels from one

projection to update the object instead of using a single projection value. The

simultaneous algebraic reconstruction technique (SART ) [3] can be employed

for this purpose.

Algorithm 2 Simultaneous algebraic reconstruction technique
1: procedure SART
2: µ(0) = 0,
3: p(n) = A · µ(n)

4: µ(n) = µ(n−1) −
∑
pi∈pi

ai·µ
(n−1)−pi
ai

(ai)
T∑

pi∈pi
ai

5: end procedure

In Algorithm 2, p
i
is a set containing all pixel values from one single

projection.

Reconstruction using the noise model as prior information

In statistical reconstruction methods, the attenuation coefficients are

modeled as a random variable. Although it is an abuse of symbols, µ is used to

represent the random variable and a realization of it is represented as µ̂ to avoid
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using a different symbol to represent the object. Similarly, the projection values

are modeled as a vector of random variable p and a realization of it p̂. The µ

with the highest likelihood to produce the given measurement p̂ is the solution

to the reconstruction problem. As the object is unknown and the measurement

is corrupted by noise, the expectation maximization method is used to solve

the problem. In the first step, the expectation of p is derived according to the

system model and noise model as function of µ. In the maximization step, the

most likely µ is calculated, often in an iterative way.

According to the measurement model and the noise model eq. (4.1), the

discrete likelihood of measuring Î given µ̂ can be calculated as eq. (4.12) if the

entries in I are considered statistical independent.

PI(Î | µ̂) =

M∏
i=1

(I0ie
−[A·µ̂]i)Îi

Îi!
e−I0ie

−[A·µ̂]i (4.12)

After taking the logarithmic operation on both sides:

lnPI(Î | µ̂) =

M∑
i=1

(Îi ln I0ie
−[A·µ̂]i − ln Îi!− I0ie−[A·µ̂]i) (4.13)

To maximize the likelihood, the derivative is calculated and set to 0:

∂ lnPI(Î | µ̂)

∂µ̂j
=

M∑
i=1

(−Îiaij + I0ie
−[A·µ̂]iaij) (4.14)

Multiply µ̂j on both sides, the update scheme using a fixed-point iteration

is show as the following:

µ̂
(k+1)
j = µ̂

(k)
j

∑M
i=1 I0ie

−[A·µ̂]iaij∑M
i=1 Îiaij

(4.15)
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where k and k + 1 are iteration numbers.

Reconstruction with regularization

To reconstruct µ from eq. (3.17) with a noise model as in eq. (4.3), another

approach is to solve an unconstrained optimization problem of the form:

J(µ∗) = ‖p−A · µ∗‖22, (4.16)

where ‖.‖2 denotes the l2 norm.

As the reconstruction problem is ill-posed, i.e. the solution is sensitive to

input noise, the system is underdetermined [39] or the system is inconsistent [54],

the solution to the above system is unstable [27]. The measurement process has

a low-pass nature due to the limited frequency response from the acquisition

system. As a result, the reconstruction contains high-pass filters which can

easily amplify noise leading to a noisy or unstable reconstruction. Therefore,

a regularization term derived from prior information is often added to the cost

function J(µ).

J(µ) = ‖p−A · µ‖22+λR(µ), (4.17)

where the ‖p−A·µ‖22 is referred as the data fidelity and R(µ) is the regularization

term. λ controls the balance between the data fidelity and regularization.

Reconstruct with prior images

There have been many attempts to reconstruct with prior images. The

noncooperation of previous CT data during reconstruction has been proved

an effective method to reconstruction using only limited amount of new data.

The prior image constrained compressive sensing [20] method has successfully

utilized the prior image in the cost function and solved the problem in a
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compressive sensing framework.

min
µ

(α‖Ψ1(µ− µ
a
)‖1+(1− α)‖Ψ2(µ

a
)‖1), s.t. A · µ = p (4.18)

The µ
a
in eq. (4.18) is the prior image. The Ψ is some sparsifying operator and

α ∈ (0, 1) is used to control the contribution of the prior image. Because there

is no algorithm to find the l0 solution in a polynomial time, the l1 norm is used

as a heuristic to reach a solution close to the l0 solution.

The reconstruction with prior images acuqired from other sensors, such

as optical data, requires a different model since the data represents different

physical meanings. Current research in fusing optical data with CT data

assumes the optical representation and CT representation are pre-aligned and

the optical representation is complete and contains no artifacts. In [61], the

optical data is replaced by the CAD data and the method is applied on a

limited-angle scan to reduce artifacts and to improve contrast. In [46], synthetic

data is used to restrict the spatial support of the image, which is similar to a

pre-aligned, defect-free optical scanning result.

4.3 Research gap

This chapter shows a list of prior information that has the potential to improve

the CT results as well as the approaches to integrate them into the CT work

flow. Most of the research focus on using the image properties and more accurate

physical models as prior information to improve the reconstruction after the

acquisition is done. Impressive results have been achieved to reduce the artifacts

and improve image quality without increasing the amount of measurements. The



58 CHAPTER 4. STATE OF THE ART

attempts to use prior images acquired from other sensors have hinted a promising

research direction where the information gain from other sensors can be fused

to the CT reconstruction to gain a synergy effect. Optical surface scanning has

its unique advantage in achieving high resolution 3D representation with a large

field of view at low costs. However, the potential of utilizing optical surface data

in CT is not fully explored.

The optical surface scanning data can be used in the acquisition planning.

A complete CT investigation comprises the acquisition, the reconstruction and

the analysis. To achieve the best result, improvements should be applied to the

whole work flow. During the acquisition process, the scanning trajectory can be

planned if the surface geometry of the object is known. Instead of a standard

circular trajectory, an arbitrary trajectory fulfilling Tuy’s conditions eq. (3.11)

can be applied to eliminate certain artifacts. In this dissertation, the optical

surface scanning data is used as a priori in both acquisition and reconstruction

to combine the improvements.

The practical implementation needs to align the optical data and CT data.

In literature, most of the demonstrations are from synthetic data where the

spatial relation between the surface data and CT data is known prior to the

reconstruction. However, to allow the maximum flexibility, the acquisition of

the optical result and CT result are done separately and measured in different

coordinate systems. Before the alignment, each system should be calibrated

such that both datasets are scaled equally. In this dissertation, the calibration

is discussed and a new method is applied to assist the alignment of optical data

and CT data.

The data fusion needs to tolerate the defects from the optical scanning. Due

to the limitations of the optical acquisition system (subsection 2.2.2), the result
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from an optical acquisition contains defects, such as gaps and holes. With such

defects, most current data fusion model will fail. Therefore, in this dissertation,

a new data fusion model is developed to fuse partial optical data with CT data.

The following chapters attempt to close the research gap by employing

new calibration procedures, new alignment procedures and new data fusion

models. Chapter 5 starts with the calibration of the CT imaging system and the

acquisition procedure. The second part covers the discussion of the alignment

of the CT and optical data. Chapter 6 presents two data fusion models capable

of mitigating artifacts and can be practically implemented. The validations are

done with simulation and experiments.
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Chapter 5

CT system calibration and

data acquisition

This chapter discusses the characterization of a CT system, including the

imaging subsystem and the manipulation subsystem (fig. 2.2), as well as the

possibility to use prior information during the acquisition process of CT.

The characterization will be restricted to the geometry of the setup. A

calibration target is assembled and a characterization procedure which isolates

the calculation of geometry from artifacts of the CT reconstruction is developed.

At the end of this chapter, the possibility to use a calibrated system to perform

scans with arbitrary trajectories (defined in subsection 2.1.6) that fulfill the

Tuy’s conditions eq. (3.11) is discussed.

The imaging system is composed of an X-ray source and an X-ray detector,

which acquires projection images of the object under investigation. The

performance of the imaging system is a function of the quality of the beam,

61
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the material attributes of the object under investigation and the characteristic

of the detector. In an ideal imaging system, the transfer function at each stage

of the imaging system is lossless, which results in a perfect projection image

of the object under investigation. A perfect projection image is calculated

based on an ideal projective imaging system with a point source. To model the

projection process more accurately, a cascaded modeling of the whole imaging

process has been published by Tward et. al.[69]. As explained in the cascaded

model, the result of a real-world imaging system has limited spatial resolution,

leading to soft edges in the image. In this chapter, the discussion focuses on

the geometric aspects of the imaging system. The geometric relation between

the source and detector is calibrated with the help of a customized calibration

target to accurately project points in 3D space to the detector plane.

The manipulation system executes the designed trajectory along the

direction in which the projection images are taken. The manipulation system

often operates independently from the imaging system. Therefore, the spatial

relation between the manipulation system and the imaging system needs to be

known prior to the reconstruction. Manual calibration is time consuming and

is prone to operator errors. One approach to correct the misalignment between

the imaging system and the manipulation system is to iteratively correct the

geometry guided by a cost function defined on the reconstructed image as

demonstrated by Muders et. al [51]. As a reconstruction step is involved in the

process, this approach is time-consuming. Another issue with this approach is

that the reconstruction volume is different from the ground truth up to a scaling

factor which is not acceptable for metrological applications. In this chapter, the

spatial relation is automatically extracted from the projection images with the

help of a calibration target. With the calibrated spatial relation between the
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imaging system and the manipulation system, the voxel size can be correctly

calculated.

As stated in eq. (3.11), even with a calibrated system and a perfect imaging

system, it is insufficient to reconstruct an object without artifacts when using

a circular trajectory. In this chapter, a circle-line-circle trajectory is applied to

the CT scan based on a known 3D surface scan.

5.1 Imaging system calibration

In this section, a reference sample based calibration is implemented. The

calibration is calculated from the projection images only. This approach is

less prone to reconstruction artifacts and enjoys a faster overall computation.

5.1.1 Perspective transformation model

An ideal imaging system in a CT setup can be modeled as a perspective camera.

An illustration of a perspective camera is shown in fig. 5.1. Oc is the origin of

the coordinate system of the camera. In an X-ray system, the camera center

is replaced by the X-ray source. In this chapter, X-ray source and camera are

used interchangeably. The image plane is defined by the focal length f , that is

the distance between Oc and the image plane, and the principle point P , where

the vector connecting Oc and P is perpendicular to the image plane. The ray

OcP is denoted as the principle ray of the model. Od is the origin on the image

plane and a point on the image plane is assigned with coordinates (u, v). In a

camera system, the image area has a finite span and the center of the image

area is at C. The imaging system is placed in a world coordinate system defined

by Ow, xw, yw, zw.
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Figure 5.1: The schematic of a simplified perspective camera model. The three
coordinate systems used in different reference frames are defined by 1) the origin Ow

of the world coordinate system and the basis vectors xw, yw, zw; 2) the origin Oc of the
camera coordinate system and the basis vectors xc, yc, zc; 3) the origin of the detector
Od and the basis vectors u, v. The world coordinates can be defined arbitrarily. In
this chapter, the coordinate system used in the CMM measurement of the calibration
target is used for this purpose.
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In a perspective camera model without distortion, the projection of a point in

the world coordinate system to the image coordinate system can be represented

as:


u0

v0

1

 = M
int
·M

ext
·


xw0

yw0

zw0

1

 , (5.1)

where

M
int

=


1 0 uc

0 1 vc

0 0 1



fx 0 0

0 fy 0

0 0 1




1 s/fx 0

0 1 0

0 0 1

 (5.2)

and

M
ext

=
[
I3 Twc

] R
wc

0

0 1

 . (5.3)

In the intrinsic matrix M
int

, (uc, vc) is the coordinate of the center of the

image area in the image coordinate system. fx and fy are the focal distances

in horizontal and vertical direction. In case the pixels on the image plane have

the same width and height, fx = fy. s is the skew factor to compensate the

angle in the pixel arrangement on the image plane. Unlike the optical system

for longer wavelength, the X-ray imaging system in an industrial transmission

CT system does not contain any lens. Therefore, no lens correction needs to

be applied to the X-ray imaging system. In this case, with a known intrinsic

matrix, the X-ray imaging system is fully characterized.
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The extrinsic matrix represents a rigid transformation defined by a rotation

R
wc

and a translation Twc. Any point in the world coordinate system will be

transformed into the coordinate system of the camera. Therefore, the extrinsic

matrix is uniquely defined by the position of the camera in the world coordinate

system.

The complete projection matrix M
int
M

ext
has 11 degrees of freedom

(DOF s). Assuming a perfectly manufactured detector with perpendicular

arrangement of square pixels, the number of DOFs can be further reduced to 9.

The projection matrix can be extracted if corresponding coordinates of points

are available. Since each point will lead to two linear equations, at least 5 points

are needed for this calculation.

5.1.2 Calibration sample design, fabrication and

characterization

A planar checkerboard in black and white (as illustrated in fig. 5.2) is often used

to calibrate a camera capturing visible light. The corners of the checkerboard

can be located with sub-pixel accuracy as shown by Zhang et. al. [74]. However,

as discussed in eq. (2.3), the contrast from an X-ray transmission imaging system

comes from the line integral of the attenuation coefficient. According to eq. (2.5),

a larger difference in thickness and a larger difference in atomic number will

result in a better contrast. Another aspect is the extraction of the position

of the corresponding image on the image plane. A checkerboard pattern with

certain thickness will produce edges with smooth transition in gray values other

than a sharp edge even without considering any other artifact. In addition,

the edges will not be detectable when the principle ray is perpendicular to the
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normal direction of the planar sample.

Figure 5.2: Checkerboard pattern used for optical camera calibration.

The design of a calibration target for an X-ray imaging system has the

following concerns:

Ground truth measurement

As the CMM produces accurate and traceable results, the calibration

sample needs to be CMM-friendly. According to the limitations of CMM

subsection 2.3.2, the selection of the geometry of the features are reduced to

the primitives. At the same time, the features need to be easily accessible by

the tip of the CMM. Since the distance between the feature points are crucial

to the calibration, the features have to be connected via a rigid body.

Material selection

The material choice for the feature structure and the supporting structure

needs to enable high contrast in the X-ray image to improve the detectability of

the features during calibration. According to eq. (2.5), the difference in atomic

numbers should be as large as possible.
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Number of detectable features

At least 5 correspondences are needed to calibrate the X-ray imaging system.

Yet, due to the difficulty in the corresponding step during calibration, the

number of features shouldn’t be too high either.

As a result, a set of spheres arranged in a triple helix geometry are used

as calibration targets as illustrated in fig. 5.3. The material of the spheres

are Zirconia and the supporting structure is made of glass. The spheres are

manufactured by Saphirwerk R© and the nominal specifications are listed in

tab. 5.1. The spheres are attached to a roughened conical flask as shown in

fig. 5.4.The spheres are numbered from 1 to 12, according to vertical position

and size of the sphere.

The assembled calibration target is measured with a CMM to produce a

reference measurement. 9 points are measured by the CMM on each sphere to

estimate the center and diameter of the sphere. The centers are recorded in the

coordinate system of the CMM, which is located near the calibration target. The

uncertainty from the CMM can be derived from the Empa standard operation

procedure 01554.

The CMM result is listed in tab. 5.2. The center points are represented in

the coordinate system of the CMM. As the exact coordinates will be used during

Diameter Deviation Roughness
40 mm 0.13 µm 0.014 µm
50 mm 0.13 µm 0.014 µm
60 mm 0.25 µm 0.020 µm

Table 5.1: The nominal specifications of the spheres from the
manufacturer. The Diameter is the nominal diameter. The Deviation
is the deviation from perfect sphere. The Roughness is the maximum
allowed roughness.
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Figure 5.3: Rendering of the spherical features of the calibration target. The spheres
are color coded according to their diameters. The sphere are arranged in a triple helix
structure. Spheres of the same size are arranged in one helix. The arrangement in
helix and the selection of spheres with different diameters reduce the chance of transits
and facilitate the correspondence of the projection images with the spheres.
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Figure 5.4: Photos of the calibration target from top and side view. The spheres are
numbered from 1 to 12, according to the vertical position and size of the sphere.
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the next steps in calibration, the same coordinate system will be referred to the

object coordinate system.

5.1.3 Measurement

The calibration target is scanned in a CT system which has been calibrated in

the factory. The scanning parameters are listed in tab. 5.3 and tab. 5.4. Before

the scan, the calibration target is placed on the manipulator with the axis of

the flask coarsely aligned to the axis of rotation. 1440 projection images are

taken with an angular increment of 0.25 degrees.

5.1.4 Point extraction and correspondence

In this subsection, firstly, the exact coordinates in the detector coordinate

system of the projections of the feature structures on the projection images are

extracted and, secondly, the coordinates in the reference frame of the detector

are corresponded to coordinates of the features in the reference system of the

object.
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Number x [mm] y [mm] z [mm] r [mm] uncertainty [µm]
1 4.393 17.152 14.247 4.001 2.83
2 13.241 -12.400 14.433 5.002 2.83
3 -17.581 -5.840 16.189 6.001 2.83
4 15.718 9.921 4.546 3.996 2.83
5 1.119 -19.147 4.058 5.000 2.83
6 -16.976 9.169 5.268 5.998 2.83
7 20.663 2.050 -6.105 3.997 2.83
8 -9.245 -18.862 -5.411 4.996 2.83
9 -11.994 17.915 -5.272 5.995 2.83
10 19.066 -11.594 -14.128 4.002 2.83
11 -19.702 -11.744 -13.955 5.002 2.83
12 1.299 23.379 -13.869 6.001 2.83

Table 5.2: The coordinates of the spheres and the diameter of the spheres in the
calibration target measured by a CMM.

Source settings Value Unit
Voltage 229 kV
Current 43 µA

Table 5.3: Source settings

Detector settings Value Unit
Horizontal dimension 1880 pixel
Vertical dimension 1496 pixel

Pixel pitch 0.127 mm

Table 5.4: Detector parameters
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Segmentation

The raw image contains the projections of the feature structure and the

supporting structure. Although the materials have been selected to have a

large difference in the linear attenuation coefficient, the cumulated attenuation

coefficient from the supporting material is sometimes comparable to the

cumulated attenuation of the features Therefore, a simple gray value based

segmentation is insufficient. The objective of the segmentation in this step is

to roughly locate the feature structure and remove as much as possible other

non-feature structures.

The following procedures create a mask (fig. 5.5(d)) of a subset containing

the projections of the spheres. The projection image (fig. 5.5(a)) is firstly

segmented using a simple threshold (fig. 5.5(b)). After the thresholding, both

the projections of the feature structure and supporting structure are labeled.

Secondly, morphological filters are applied to the thresholded image to remove

the narrow stripes from the supporting material. Specifically, several iterations

of erosion filters are applied to the image followed by dilation filters. The

number of erosion filtering iterations depends on the widest part of the stripes.

The stripes are removed completely after the erosion step (fig. 5.5(c)). The

following dilation process restores the areas where the feature structures are.

As the objective is just to roughly locate the features, several more iterations

of dilation are applied to ensure no part of the features will be lost.

Circular Hough Transform

The coordinates of the centers of the spheres are measured by CMM. In this

step, the projection of the centers needs to be extracted from the projection

images to allow further calculations. In a cone-beam imaging system, the

projection of a sphere on the detector is an ellipse unless the center of the sphere
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(a) (b)

(c) (d)

Figure 5.5: (a) shows one projection of the calibration target. The dark circles are
the projection of the spheres made of Zirconia. The other structure in the projection
image is the flask made of glass. (b) shows the result of thresholding. (c) shows the
result after erosion. This operation removes the projections of the walls of the flask.
(d) shows the result after dilation. The result can be used as a mask to select regions
where further processing shall be applied.



74CHAPTER 5. CT SYSTEM CALIBRATION AND DATA ACQUISITION

is located on the principle axis of the imaging system. However, considering

the small cone angle used in the imaging system, the resulting projections are

ellipses with eccentricities close to 0. Therefore, the projections will be detected

as circles and the centers of the circles will be taken as the projections of the

centers of the spheres.

The detection of circles in the projection image is achieved by Circular Hough

Transform as explained by Rizon et. al. [60]. In a Circular Hough Transform,

an edge detection filter is applied to the image first to locate any edge that can

be on a circle. For a given radius and given edge pixels, all pixels in the image

that could be on a circle centered at the given edge pixels are targeted. This is

followed by repeating the same procedure for all edge pixels and voting on the

most likely pixels being the center of a circle with the given radius. To detect

circles with different radii, the above procedures are repeated.

In this dissertation, the implementation from Matlab [47] is used to detect

the center and the radius of the circles in the projection. As an example, the

detected circles from fig. 5.5(a) are illustrated in fig. 5.7(a).

Transit

Figure 5.6: Projection of the calibration target with transit of two spheres.
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Due to the nature of the transmission imaging system, the projection circles

may transit each other in the projection image as shown in fig. 5.6. In case of

sufficient transmission, the boundaries of both circles in transit can be extracted

from the edge detector. However, the limited acquisition time and the low source

voltage from the micro CT systems result in missing boundaries which makes

the circle detection difficult. As a result, there might be circles missing.

Correspondence

The extracted circles from the Circular Hough Transform need to correspond

to the spheres in the calibration target. To achieve the correspondence, the

diameters and the vertical location of the spheres are firstly used. As the axis

of the conical flask is coarsely aligned to the rotation axis and the calibration is

placed close to the center of the detector, the circles on the projection image can

be separated into groups according to their vertical location fig. 5.7(b). Within

each group, the circles are identified according to their diameter fig. 5.7(c).
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Figure 5.7: (a) shows the result from the circle detection program. (b) shows the result
by sorting the circles according to their vertical coordinates in the reference frame of
the detector. Afterwards, the circles are grouped according to the vertical coordinate
intervals. (c) shows the result after sorting within each group.

However, since the spheres have difference magnifications due to their

different distances to the source, the diameter of the circles is insufficient to
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identify the spheres in the calibration target. To demonstrate this problem, the

radius of the detected circles is plotted in the projection images in fig. 5.8(a).

The radii of circles number 10, 11 and 12 are highlighted to illustrate the

problem. The gray bar indicates the discarded projection where certain circles

are not detected due to transits and therefore neglected from further analysis.

The horizontal axis is the projection index which indicates the scanning angle

in case of a circular trajectory.

To correspond the correct circle to the spheres on the calibration target,

the coordinates of the centers of the circles are used as constraints. As the

projections are acquired along a circular trajectory and all the spheres are in

the field of view, the change of the center coordinates is small. Any jump

in the coordinates as shown in fig. 5.8(a) or in fig. 5.9(a,b) indicates a mis-

correspondence. The mis-correspndence are corrected using Algorithm 3.

Algorithm 3 Correspondence
1: procedure Correspondence
2: Input: Radii, vertical coordinates, horizontal coordinates
3: Output: Correspondence between the detected circles and the spheres
4: Sort w.r.t. the vertical coordinate into 4 groups. g1, g2, g3, g4
5: Sort w.r.t. the radius within each group gi
6: Discard measurements with missing circles
7: Locate jumps in either horizontal coordinate or vertical coordinate
8: Re-correspond utilizing the jumps in coordinates
9: end procedure

5.1.5 Extract intrinsic matrix

The direct linear transformation (DLT ) method, initially developed by Abdel

et. al.[2] is used to extract the intrinsic matrix. The DLT method utilizes the



5.1. IMAGING SYSTEM CALIBRATION 77

R
a

d
iu

s
 [

p
x
]

40

50

60

70

80

90

100
Circle 1

Circle 2

Circle 3

Circle 4

Circle 5

Circle 6

Circle 7

Circle 8

Circle 9

Circle 10

Circle 11

Circle 12

Discarded

(a)
Projection index

0 500 1000 1500
40

50

60

70

80

90

100
Circle 1

Circle 2

Circle 3

Circle 4

Circle 5

Circle 6

Circle 7

Circle 8

Circle 9

Circle 10

Circle 11

Circle 12

Discarded

(b) Projection index

R
a

d
iu

s
 [

p
x
]

Mis-correspondence

Figure 5.8: The traces are colored according to their correspondence. The radii of
the circles are plotted against the projection index. Mis-correspondence occurs when
two traces cross each other. The thickened traces show examples of a circle mis-
corresponded twice. The radii of the circles are plotted again in (d) after correction
of the mis-correspondence. Gray bars indicate discarded views. Projection index
indicates the scanning angle in case of a circular trajectory.
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Figure 5.9: The traces are colored according to their correspondence. The radii of
the circles are plotted against the projection index. Mis-correspondence occurs when
two traces cross each other. The horizontal and vertical coordinates of the circles are
plotted in (a) and (b).
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known 3D coordinates (xw, yw, zw)T of the feature in the reference frame of the

object and the 2D coordinates (u, v) of their projections in the reference frame

of the detector. The CT imaging system is modeled as a pin-hole system during

the calibration. According to eq. (5.5), every correct correspondence will result

in two linear equations.

The projection matrix is denoted as:

M
p

= M
int
·M

ext
=


m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

 , (5.4)

The intrinsic and extrinsic matrices are explicitly expressed in eq. (5.2) and

eq. (5.3).

The correspondence between (ui, vi)
T and (xwi, ywi, zwi) can be expressed

as eq. (5.5).

−xwim11 − ywim12 − zwim13 −m14 + uixwim31 + uiywim32 + uizwim33 + uim34 = 0

−xwim11 − ywim12 − zwim13 −m14 + vixwim21 + viywim22 + vizwim23 + vim24 = 0.

(5.5)

If the elements in M
p
are rearranged into a vector vp and put all the

coefficients from all the correspondence from a single projection into a matrix

C, the projection can be represented as:

C · vp = 0. (5.6)

With 12 correspondences in each projection, the linear equations can be
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solved in a least square sense using the pseudo inverse method. However, due

to the noise in the projection images, the extracted 2D coordinates (ui, vi) are

not exact. This leads to inconsistent equations in eq. (5.6) and, as a result,

the solution from the pseudo inverse contains high uncertainty. To increase the

accuracy of vp, all the projection images are used at once. Without considering

the drift of the focal spot, the geometry of the imaging subsystem is identical

throughout the acquisition, which indicates the intrinsic part of the projective

matrix from every single acquisition stays the same.

If the intrinsic parameters in eq. (5.6) is denoted as α = uc, vc, fx, fy, s and

the extrinsic parameters from ith projection as β
i

= βi1, βi2, βi3, βi4, βi5, βi6,

the calibration problem can be formulated as an optimization problem:

α = arg min
{α,β

1
,...}

i=n∑
i=1

‖(ui, vi)− fα,β
i
(xwi, ywi, zwi)‖22, (5.7)

where fα,β
i
is a symbolic operator for projection and n is the number of

projections.

5.1.6 Imaging system calibration result

In this subsection, the above methods are applied to the calibration data

acquired from a micro CT setup as described in subsection 5.1.3. The

implementation from Bouguet [13] is used to perform the calculation. The least

square problem (eq. (5.7)) is solved iteratively using the gradient descent method

in this implementation. The optimization converges after about 10 iterations.

The residual over iteration is plotted in fig. 5.10 The result of the calibration of

the imaging subsystem is demonstrated by the following experiments.

The focal distance and the coordinate of the principle point are extracted
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Figure 5.10: The residual after each iteration.

using the calibration procedure from different number of projections. The

projections used for the calculations are always uniformly distributed in [0, 2π].

The projections that contain undetected circles due to transits are counted in

the number of projections but not included in the calculation. The envelope of

the confidence interval calculated from the residual is shown in fig. 5.11.

5.2 Manipulation system calibration

The extrinsic parameters extracted from the calibration system describe the

transformation from the reference frames of the object and the imaging system.

The change of the extrinsic parameters extracted from different projections are

results of the sample manipulation. In theory, the calibration system can be

calibrated from the same procedure and the trajectory used for the acquisition

can be extracted. However, due to the small number of feature points available

in each projection, the uncertainty of the extrinsic parameters is too large for
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Figure 5.11: The estimated focal length and the coordinate of the principle point are
plotted in (a) and (b)(c) against the number of projections used for the estimation.
The gray envelope indicates the uncertainty of the estimation.
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calibration.

5.2.1 Extract trajectory

As shown in eq. (5.3), the extrinsic matrix transforms any point in the reference

frame of the object to a point in the reference frame of the camera system.

To extract the position of the camera in the reference frame of the object, the

coordinate of the origin of the camera system is calculated using the inverse

extrinsic matrix.

If the extrinsic matrix is represented using homogeneous coordinates, the

inverse matrix is:

M−1
ext

=

 R−1
wc

R−1
wc
Twc

0 1

 . (5.8)

Therefore the coordinates of the camera in each projection can be calculated

as

R−1
wc
Twc (5.9)

The result is visualized in fig. 5.12.

The extracted camera positions in the reference frame of the object form a

circle, which is expected as a standard circular trajectory is applied during the

acquisition. The notches along the circle indicate the views that are not taken

into the calculation due to the missing feature points as a result of transits

(illustrated in fig. 5.6).



84CHAPTER 5. CT SYSTEM CALIBRATION AND DATA ACQUISITION

(a) (b)

(c) (d)

Figure 5.12: The 4 plots show a set of scattered points in isometric view (a), x-y
view (b), x-z view (c) and z-y view(d). The centers of the spheres on the calibration
target are plotted as blue dots near the origin of the coordinate system. The extracted
camera positions (X-ray source positions) are plotted as red dots and they form a
circle around the origin. The gaps on the circle indicate the discarded views.
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5.2.2 Extract rotation axis

During the acquisition along a circular trajectory, the only manipulation of the

sample is the rotation of the sample. Without considering the movement of

the rotation axis, the camera positions in the reference frame of the object is a

circle. Therefore, a circle is fitted to the extracted camera positions to extract

the rotation axis.

As an approximation, the fitting is done in two steps, i.e. fitting a plane to

the points and fitting a circle to the projection of the points on the plane. The

plane fitting follows Algorithm 4.

Algorithm 4 Correspondence
1: procedure Fit a plane to 3d points
2: Input: The coordinates of a set of points xi
3: Output: The normal vector n and a point on the plane p

c
of the a plane

4: Calculate the centroid p
c
of the points xc

5: Calculate the vectors vi = xi − xc
6: Calculate the covariance of the vectors V −1V
7: Calculate n as the eigenvector with the smallest eigenvalue.
8: end procedure

After projecting all the points to the plane, a circle is fitted to the projections

following Algorithm 5

Algorithm 5 Correspondence
1: procedure Fit a circle to 2d points
2: Input: The coordinates of a set of points p

i
3: Output: The radius and the center of a circle that is fitted to the points.
4: Parameterize the circle as p2x + p2y + a1px + a2py + a3 = 0
5: solve the parameters in a least square manner.
6: Calculate n as the eigenvector with the smallest eigenvalue.
7: end procedure
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The extracted axis of rotation is illustrated in fig. 5.13. In fig. 5.13(a),

the circle fitted to the camera positions is illustrated as well as a line along

the normal direction of the circle going through the center of the circle. The

line is an illustration of the rotation axis in the reference frame of the object.

The projections of the rotation axis using the extrinsic parameters from each

projection are plotted in fig. 5.13(b) together with the geometric center of the

detector and the principal point of the imaging subsystem. A zoom-in view in

fig. 5.13(c) reveals the misalignment of the imaging system and the manipulation

system. The difference between the projection of the nominal rotation axis and

the extracted axis at the vertical center of the detector is less than 0.2pixels,

which validates the calibration method in this chapter. The deviation of the

extracted rotation axis is an indicator of the accuracy of the result. The

deviation is unlikely to be zero due to the errors from the extraction of the

coordinates on the detector and other processes of the calculation.

5.3 Arbitrary trajectory

Tuy’s conditions eq. (3.11) have stated that an acquisition along a circular

trajectory cannot collect sufficient data to reconstruct the exact 3D object. One

particular artifact associated with the insufficient data is the cone beam artifact

fig. 3.2. Cho et. al. [23] and Zeng et. al. [73] have applied helical trajectory

to acquire data using a cone beam setup to reduce the cone-beam artifact.

However, to execute such a trajectory, the manipulation system must be able

to perform rotation and translation in a coordinated manner. At the same

time, to prevent artifacts from misalignment, the manipulation system must be

accurate while performing rotation and translation. To lower the demand on the
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Figure 5.13: The extracted center of the circular trajectory is marked as a blue cross in
(a) and the axis of rotation is marked by a back line. The projection of the extracted
axis of rotation is plotted in (b) which indicated the system is well aligned. (c) shows
a horizontal zoom in view. The blue cross is the geometric center of the detector and
the red cross is the principle point. The nominal axis of rotation is marked by the
magenta line and the green line is the extracted axis of rotation which is an average
of the projections of the rotation axis from different views.
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mechanical system of the sample manipulator, the circle-line-circle trajectory is

used to acquire projection images.

5.3.1 Circle-line-circle trajectory

The circle-line-circle (CLC) trajectory adds a second circle and a line segment

to a standard circular trajectory as illustrated in fig. 5.14. The two circles have

the same radius and are parallel to each other. The line segment connecting the

circles is perpendicular to the planes of the circles. The radius of the circle is the

source to iso-center distance, sid. The scanning starts at the intersecting point

of the line segment and the bottom circle. Firstly, a circular scan is executed.

Following the circular scan, the acquisition continues while the image system

travels w.r.t. the object along the line segment. Finally, a second circular scan

is performed. Using the notation from eq. (2.6), the CLC trajectory can be

denoted as:

{T (θ, 0, 0), ..., T (θ + k∆θ, 0, 0), ..., T (θ + 2π −∆θ, 0, 0),

T (θ + 2π −∆θ,∆l,∆l), ..., T (θ + 2π −∆θ,H,H),

T (θ + 2π,H,H), ..., T (θ + 4π −∆θ,H,H)}, (5.10)

where ∆l is the step size in vertical translation.

5.3.2 Sample preparation

The cone-beam artifact reduced the spatial resolution in the direction of the

rotation axis, leading to an anisotropic spatial resolution in a 3D image. As a

result, boundaries that are parallel to the circular trajectory plane are blurred as
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R

R

H

Figure 5.14: Schematic of the circle-line-circle trajectory. It is composed of two circles
and a line segment.

illustrated in fig. 3.2. To study the cone-beam artifact, a cuboid-shaped sample

illustrated in fig. 5.15 is fabricated.

80 +- 0.05mm

S1

S2

Figure 5.15: Isometric view of the test sample 1A. S1 and S2 are two opposing surfaces.

The two surfaces S1 and S2 are parallel and are approximately 80mm apart

from each other. The cone-beam artifact is expected to occur at one surface if

the other surface is in the plane of the circular trajectory.

A set of similar samples varying in length are fabricated. The particular
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sample used in this study is named as sample 1A.

5.3.3 Optical surface scan

Sample 1A is scanned with a structured light 3D surface scanner from

Breuckmann. The scanner used in this experiment is the SmartScan 3D

SM2069-HE5 which features a 5 mega pixel camera offering a resolution of 18

µm. Before the scanning, the scanner was calibrated by a calibration target

following a calibration work flow provided by the equipment manufacturer.

During the scan, the sample was placed on a rotation stage. Projection patterns

at different spatial resolution are projected onto the surface of the sample to

extract the surface features at different scales. To acquire the complete surface,

the sample is rotated and measured from different directions. The result is

denoted asM1A and illustrated in fig. 5.16.

5.3.4 CT scan

The setup used to acquire the transmission projection images is composed of

an industrial X-ray tube with a maximum acceleration voltage of 450kV and

a flat-panel detector as well as a sample manipulator capable of performing

rotation around one axis and translation along one axis. The specification of

the detector is listed in tab. 5.5.

Scanning parameters

The distance between the two circles in the CLC trajectory (H in fig. 5.14)

comes from the optical result. To minimize the cone-beam artifact, the distance

is set to the span of the sample in the direction of the rotation axis. The scan

along each of the circular trajectory has an angular increment of 1 degree. The
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Figure 5.16: Optical scanning result of the test sample. This is the rendering of the
mesh. Part of the texture is also recorded. The boundaries on the texture indicate the
stitching boundaries. The visible surface of the sample is well represented. The mesh
contains defects at the bottom of the trenches and the bottom of screw holes.

XRD 1621 AN14 ES
Manufacturer Perkin Elmer
Pixel count 2048 × 2048
Pixel pitch 200 mm2

Area 409.6 × 409.6 mm2

Scintillator DRZ-Plus 208 Gd2O2S:Tb

Table 5.5: Specifications of the flat-panel detector.
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scan along the line segment has an increment of 1 mm in translation. The

resulting trajectory is parameterized and stored in a proprietary trajectory file

which will be used in the control software.

Projection from CLC trajectory

The raw data acquired from the detector is stored in a stack of projection

images. Several preprocessing are applied to the raw data, i.e. normalization

w.r.t. the difference of the flat field image and dark field image, negative

logarithmic operation and bad pixel removal. The resulting image stack is

illustrated in fig. 5.17. The z direction is the projection index. The pixel values

can be arranged into the projection vector, p
clc

as defined in eq. (2.14). A slice

of the stack across the projection index, marked in fig. 5.17(a), is plotted in

fig. 5.17(b). The projection data from the circular scans and translational scan

can be clearly distinguished from this view.

To illustrate the improvement from employing the CLC trajectory, the

reconstruction from a CLC trajectory is compared to the reconstruction from

a circular trajectory. The circular trajectory used is the first circle of the CLC

trajectory. The projection acquired from the scan using the circular trajectory

is denoted as p
fc
, which is shown in fig. 5.17(b). The specification of p

clc
is

summarized in tab. 5.6:

Parameter Value
Dimension 950 × 1400 × 792
Pixel size 0.2 × 0.2 mm

Table 5.6: Specification of the projection images acquired from a circle-line-circle
trajectory.
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Figure 5.17: (a) illustrates the projection images acquired with a CLC trajectory. The
three images shown in (a) are taken from views in the first circle, line segment and the
second circle of the CLC trajectory. The area marked by white solid and dashed lines
across the projection index is used to slice the projection stack. The slice is shown in
(b).
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5.3.5 Reconstruction

The subset p
fc

is reconstructed using the standard FDK algorithm (eq. (3.15)).

The particular implementation used to produce the result below is from the

openRTK toolkit developed by Rit et. al. [59]. The reconstruction region is

defined by a point in the reference frame of the object and the number of voxels

in each direction and the voxel size as shown in tab. 5.6.

An expectation maximization algorithm is employed to reconstruct the

object from the projection data acquired with the CLC trajectory . The

implementation is based on the openRTK toolkit developed by Rit et. al. [59].

The reconstruction region is the same as the one used in the reconstruction from

the subset for easy comparison.

5.3.6 Result

The reconstructed objects are illustrated in fig. 5.18. The reconstruction from

the CLC dataset is shown in fig. 5.18(a)(b) and the result from the circular scan

is shown in fig. 5.18(c)(d). To visualize the 3D objects, contours thresholded

at 0.02mm−1 are extracted and rendered in fig. 5.18(a)(c). A 3D rendering

of the contour offers an intuitive way to inspect the external geometry of the

object. For detailed analysis, a slice is taken from each reconstructed volume

(fig. 5.18(b)(d)). The cone-beam artifact is clearly visible at the upper boundary

of the slice which is taken from the reconstruction from the circular subset

p
fc
. Line profiles across the slices are plotted in fig. 5.19 to qualitatively study

the cone beam. The profile is calculated from a rectangular region bing 40

pixels wide and centered at the line marked in fig. 5.18(b)(d). The profiles

at the boundary between the sample and air are plotted at a finer scale in
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fig. 5.19(b)(c). The horizontal lines are drawn at 80% and 20% of the maximum

value in the profile respectively as references. One way to measure the response

of the edge is to measure the span of the edges in the profile. The results are

listed in tab. 5.7:

With only one circular trajectory, the cone-beam artifact at the boundary

far from the trajectory plane is prominent, leading to a larger span of edges. The

reconstruction from the dataset acquired from a CLC trajectory shows almost

the same spans at both the rising edge and the falling edge. The correction

of the cone-beam artifact using CLC trajectory is due to the employment of a

CLC which meets the Tuy’s conditions.

A region in the slice (fig. 5.18(b)) is selected as feature region to estimate the

noise level inside the object. The histograms of the pixel values in the selected

region are plotted in fig. 5.20. To describe the distribution of the pixel values, a

Gaussian distribution is fitted to the histogram and the standard deviations are

calculated as one metric for the noise performance. From the measurements,

the EM algorithm reduces the noise by 60%.

5.4 Discussion

The methodology adopted for the calibration does not require any reconstruction

of the volume. This isolates the calibration problem from the reconstruction

Rising edge Falling edge
CLC 0.36 mm 0.37 mm
Circular 0.43 mm 1.70 mm

Table 5.7: The span of the rising and falling edges
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(a) (b)

(c) (d)

Take profile

Take profile

Measure

noise

Measure

noise

Roughness

Roughness

Attenuation

Attenuation

Figure 5.18: The reconstruction result from a CLC trajectory is shown in (a) and
(b). The reconstruction result from a circular trajectory is shown in (c) and (d). The
isosurfaces in (a) and (c) are extracted using the same parameter (0.02mm−1).
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Figure 5.19: The line profile extracted along the line marked in fig. 5.18 is shown in
(a). The zoomed views at the rising and falling edge are plotted in (b) and (c).

(a) (b)

Figure 5.20: The histogram of pixel values in the area marked in fig. 5.18. The
result from the EM algorithm with CLC is shown in (a) and the result from the RTK
algorithm with a circular trajectory is shown in (b).
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problem. Therefore, this calibration approach is less prone to reconstruction

artifacts. At the same time, the result from this approach offers absolute

voxel size enabling dimensional measurements. Compared to manual alignment,

this approach serves as a fast solution which also requires less intervention

from operators. The fabrication of the calibration target does not require any

precision tool, this approach is practical to implement. On the other hand, this

approach requires one additional measurement after each system modification

and it requires similar calibration targets of different sizes to calibrate systems

with different detector sizes. It is worth noting that the algorithm used to locate

the projections of the center of the sphere can be improved. An implementation

to fit ellipses to the projections would increase the accuracy, which will reduce

systematic errors. This approach also has the potential to detect wobbling or

to extract arbitrary trajectory.

Another geometric factor in the imaging subsystem is the focal spot size. One

solution that is implemented within the frame of this dissertation is to simulate

the source with multiple sources with various intensities. Preliminary results

are promising and this solution will be investigated in subsequent projects.

The CLC trajectory is just one of many possible trajectories fulfilling Tuy’s

conditions. Considering the limitation of the manipulation system, the CLC is

selected because of its simplicity. The EM algorithm presented in this chapter

is able handle trajectories other than CLC without significant modifications.



Chapter 6

Data fusion

So far, the prior information has been used in the data acquisition process to

suggest scanning trajectories fulfilling Tuy’s conditions. In this chapter, the

employment of prior information in the reconstruction process is investigated.

With existing CT projection data, is it possible to improve the reconstruction by

fusing optical scanning data acquired separately? More precisely, is it possible

to mitigate the limited-angle artifacts by fusing optical data with CT data? To

answer these questions, two key problems are investigated, (1) the alignment

of the two dataset acquired in different reference frames and stored in different

representations and (2) the data fusion model to merge the two data sets to

achieve synergy.

99
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6.1 Alignment

The alignment is a process to bring measurements in different coordinate

systems into one common coordinate system. The reconstruction volume is

defined in the coordinate system of the object. Its origin is defined as the

intersecting point of the rotation axis and the trajectory plane if a circular

trajectory is used for the CT acquisition. In the case of an arbitrary trajectory,

the origin of the coordinate system can also be arbitrarily defined. A Cartesian

coordinate system is defined with the origin and a set of basis vectors. The

orientation of the basis vectors can be arbitrarily assigned, although it is a

common practice to align one basis vector with the rotation axis if a circular

trajectory is used. For the optical acquisition system, another Cartesian

coordinate system is used, the origin and the basis vectors are defined by the

equipment or the user.

The objective of the alignment is to find a transformation matrix T to map

the coordinates in one reference frame to the other one. If the relative position

of the two systems is fixed, i.e. the optical and the CT scanners are connected

rigidly, the alignment can be realized by pre-calibration. However, this solution

is impractical due to the following issues:

• Radiation damage

As most of the commercially available optical scanners are not designed

to operation in the presence of X-ray radiation, there is often no shielding

material to protect the sensitive components in the optical scanner.

This prevents the optical scanner from being operated during the CT

acquisition.

• Reconfiguration of the acquisition system
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Provided the optical scanner is shielded, due to the difference in the

source of contrast, the optimal scanning trajectory for a CT acquisition

system and an optical acquisition system are often different. As a result, a

constant reconfiguration of the setup is necessary. Performing calibration

for each reconfiguration is time consuming. Thus, other approaches should

be investigated.

• Project specific reason

Within the framework of this dissertation, the optical scanning tasks are

performed by collaborators from University of Heidelberg.

There are two general approaches that have been evaluated to align the

datasets with completely different representations. The basic principle is to

convert one representation, either the optical or CT reconstruction, to the

other and calculate the transformation matrix using the same representation.

Considering that complete tool chains exist to handle alignment tasks on same

representations, a more straightforward implementation would be possible if

the datasets are converted to the same representation. Which way to go?

Converting 3d mesh from the optical scanner to volumetric representation or

converting 3d volume to mesh?

The mesh is composed of vertices and edges connecting the vertices. From

the working principle explained in subsection 2.2.1, a mesh represents a visible

surface. In an ideal setting, the mesh forms a closed surface representing the

interface between the material and air. Converting mesh data to volume data

will result in a volumetric mask with the same size as the reconstruction. To

align the volumes, a segmentation of the object from the supporting material is

necessary. In addition, the features inside the object that are not visible to an
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optical scanners need to be segmented and removed based on voxel values.

Converting volume data to mesh data and align between mesh files will

result in almost the same issues as converting mesh data to volume data. One

advantage is the smaller size of the mesh files. Therefore, for the alignment

process, the volumetric representation is converted to mesh representation.

It has to be pointed out that the alignment task is performed by project

collaborators. Only basic concepts and main procedures are briefly noted here

for the purpose of completeness.

6.1.1 Extract isosurface

In this dissertation, the isosurface is represented by a polygonal mesh extracted

from the volume by applying the marching cubes (MC) algorithm, described

by Lorensen, et. al. [45]. The MC algorithm operates on cubes formed by

connecting the centers of 8 neighboring voxels. The MC algorithm takes one

parameter which is the threshold value used to decide boundaries. The voxel

values of the 8 voxels are compared to the threshold. Depending on the result

of the comparison, the cube is matched to one of the possible templates, some

of which are illustrated in fig. 6.1 taken from the dissertation of Bayer [7].

The matching template inserts new vertices as part of the representation of

the isosurface. After iterating over all the voxels, the vertices form watertight

meshes representing the isosurfaces. There are many implementations of the

MC algorithm available. In this dissertation, the implementation in Paraview

[4] is utilized.

In fig. 6.2, a CT scan of a cylinder head is used to illustrate the result of

isosurface extraction. One part of the dataset is represented by the isosurface

with a gray texture. The other part of the dataset is rendered by coloring the
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Figure 6.1: Some of the templates used in the MC algorithm.

voxels based on the voxel values according to a color map and a transparency

setting. The threshold value used is marked on the color legend.

6.1.2 Reduction

The extracted isosurface contains internal structures that are not visible to an

optical scanner as shown in fig. 6.2. Bayer et. al [9] has demonstrated that

the internal features will cause bias in the following alignment process leading

to a possible misalignment. A subset containing only the external vertices

must be separated from the mesh extracted from the volumetric dataset. The

RanCEAF algorithm developed by Bayer et. al [9] is used to extract a subset

of vertices representing the visible surface of the object.

The RanCEAF algorithm selects vertices by querying the nearest neighbor
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Volum

Mesh

Internal structures

Figure 6.2: (a) shows the result of the isosurface extraction. Half of the volume is
processed and the other half is rendered using volume rendering. (b) shows a clipped
isosurface with internal structures marked.

(a) (b) (c) (d)

Figure 6.3: Illustration of the RanCEAF algorithm.
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of shifted seed points. The seed points are initially selected from the MVEE

randomly. For each seed, the shifting direction is towards the center of the

MVEE and the step size equals the distance from the seed to its NN. An

illustration is taken from the dissertation of Bayer [7] to explain the shifting. The

number of shifts is predefined. After a few shifts, the selected vertices produces

a good representation of the external surface as illustrated by Bayer et. al [7]

in fig. 6.4.

(a) (b) (c)

Figure 6.4: Result of the RanCEAF results with different parameters. (a) shows the
result with no seed shift. (b) shows the result with 1 time seed shift. (c) shows the
result with 2 times seed shift.

6.1.3 Iterative closest point algorithm

The alignment between the extracted mesh and the optical scan is accomplished

by the iterative closest point (ICP ) algorithm. The ICP algorithm minimize

the root mean square error between two point clouds by applying a rotation

and a translation operation to the points in one point cloud as described by
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Besl et. al. [8]. However, the ICP algorithm does not guarantee the result

reaches the global optimal result. Therefore, the implementation of ICP in

MeshLab [24] requires a coarse manual alignment before the iteration starts. As

the mesh from the optical scan often contains missing surfaces, an interesting

question would be how much of the overlap between the extracted mesh and the

mesh from optical scan needs to be to ensure the convergence of the alignment.

Chetverikov et. al developed the trimmed iterative closest point algorithm [22],

an extension of the ICP algorithm, to process datasets with overlaps under

50%. Thus, the mesh from the optical data should have 50% or more overlap

with the surface of the object. In this dissertation, high quality optical data

is acquired covering over 90% of the visible surfaces. Before running the ICP

algorithm, a careful manual alignment is performed to prevent the optimization

being trapped at local minimum.

6.2 Mask extraction

To fuse the optical data, the mesh representation is converted to a volumetric

representation. The conversion is explained in this section. As the direct output

of the optical scanner, the mesh represents the surface of the object. All the

triangles formed by three vertices represent patches of the surface. Unlike the

conversion from a volumetric representation to a mesh representation where

watertight meshes are guaranteed, the conversion from the mesh representation

has to process the defects in the mesh originating from the limitations of the

optical surface scanner. The defects are referred as false negatives from the

surface acquisition. Partial surface data with defects are the typical results

from an optical scanner. In this section, the discussion focuses on different
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approaches to handle complete surface data and partial surface data.

6.2.1 Ray clipping

The ray clipping method [7] calculates the coordinates of the intersection points

when casting a ray from the X-ray source to the detector elements. As the

surface orientation is one of the attributes stored in the mesh, the intersection

points can be identified as entering or exiting the object when casting from

the source. Thus, a segmentation of the object from the reconstruction volume

is achieved by casting all possible rays in a scan. However, this approach is

only applicable to complete surface data since partial surface data will lead

to missing boundary points resulting in inconsistent segmentation result from

different rays. In this dissertation, the volume clipping is applied.

6.2.2 Volume clipping

After the alignment using ICP, the mesh can be transformed into the coordinate

system of the volume. To convert the mesh into a volumetric representation,

each voxel in the reconstruction region is tested if it intersects with the mesh.

According to the test result, a subset of the voxels are identified as boundary

voxels B.

Bi = [B]i =

0, if i ∈ ΩB

1, if i /∈ ΩB

(6.1)

where ΩB contains all the indices of voxels which intersect with a meshM.

In the case of complete surface data, all the voxels enclosed by the watertight

mesh can be segmented from the whole volume and identified as part of the
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object. A subset containing all the masked voxels is stored as M .

Mi = [M ]i =

1, if i ∈ ΩM

0, if i /∈ ΩM
(6.2)

Where ΩM is the set of voxel indices that are located inside of a watertight

meshMw.

6.2.3 Measurements on the mask

Before the data fusion process, dimensional measures can be taken from the

optical mesh and the extracted mesh. The distance between planes are taken

as measures because they can be used to compare across different techniques.

The measurement procedure on the mesh is described here.

The objective is to measure the distance between two planes. However, this

objective is not well defined for planes that are not parallel. Considering the

angle between the planes is small, the measurement is then converted to the

measurement of the distance between a point in on plane to the other plane.

This is achieved using by the following procedure:

• Selecting points in one plane

Select more than 3 points that are well separated from one plane and

record their coordinates as d1, ..., dn, n > 3

• Fit a plane to the extracted points

The equation of a plane in 3D is

cadx + cbdy + cc = dz, (6.3)
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where d = (dx, dy, dz)
T and ca, cb and cc are coefficients. With more than

3 points, the coefficients can be solved in a least square sense. The pseudo

inverse is used to compute the coefficients.

• Select one point in the opposite plane

Select one point from the other plane as d0. The distance D is calculated

as

D =
cad0x + cbd0y − d0z + cc√

c2a + c2b + 1
(6.4)

6.3 Data fusion model

This section explains how data fusion can be achieved by reconstructing the

object from the CT projection data using the optical mask as prior information.

Two different models are developed to fuse either complete optical data or partial

optical data with the CT scanning data. The first model assumes that complete

surface data is available. The second model drops this assumption and accepts

a broader range of optical data resulting in a practical model to fuse optical

data.

6.3.1 Data fusion using the EM method

In eq. (4.12), the reconstruction aims to find the result which has the maximum

likelihood with the given measurement without other prior information of the

object. In this model, the reconstruction is formulated as an optimization

problem, which takes the optical mask as prior information and to find the

result with the maximum a posteriori. After applying the Bayesian rule:
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Pµ(µ̂ | Î) =
PI(Î | µ̂)Pµ(µ̂)

PI(Î)
(6.5)

the objective function of the optimization becomes:

Pµ(µ̂ | Î) =
Pµ(µ̂)

PI(Î)

M∏
i=1

(I0ie
−[A·µ̂]i)Îi

Îi!
e−I0ie

−[A·µ̂]i (6.6)

Assuming that the complete surface data is available and the mask eq. (6.2)

generated from the optical scan segments the object and its surrounding empty

space, the values of voxels outside the mask are set to zero. The values of

the voxels inside the mask are unknown, therefore, an uniform distribution

is applied. In the same equation, the probability PI(Î) is not a function of

the linear attenuation vector and it is treated as a constant. Following the

same calculations as eq. (4.12) to eq. (4.15), the following iteration scheme is

implemented:

µ̂
(k+1)
j = µ̂

(k)
j

∑M
i=1 I0ie

−[A·µ̂(k)]iaij∑M
i=1 Îiaij

, j ∈M, (6.7)

where k and k+1 are iteration numbers. The difference between eq. (6.7) and

eq. (4.15) lies in the selection of voxels during the update. The mask extracted

from the optical scan serves as labels to segment the volume into object and air.

Only the voxels representing the object have a contribution to the projection;

hence are updated in the reconstruction. In the implementation, the initial

values are set to zero. In each iteration,
∑M
i=1 I0ie

−[A·µ̂(k)]iaij computes the

forward projection image based on the current volume. The projection image is

then divided by the projection image acquired from the experiment,
∑M
i=1 Îiaij .

The radio is utilized to update the current volume.
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6.3.2 Data fusion model with partial surface data

The objective of this data fusion model is to fuse the features resolved by the

optical scanners with the features resolved by a CT scanner. For simulation

studies with numerical phantoms, the surface mesh represents the real surface

of the sample without false negatives, i.e. holes. In this case, the surface mesh

segments the volume into sample and air. The maskM is the set of all the voxels

in the sample that contribute to the projection. The fusion can be implemented

as an additional constraint in the reconstruction as

µ = argmin
µ

∥∥∥A ·D
M
µ− p

∥∥∥
2

(6.8)

where D
M

= diag{Mi}. The D
M

ensures that during each iteration only

the voxels in the mask are updated. The aim of the multiplication with the

system matrix A is to project the current volume. The difference between the

projection of the reconstructed volume and the measured projects is minimized.

However, the effectiveness of this method requires the mesh to be watertight [26],

i.e. containing no holes, and the sample to be the only object in the field of

view, which, in practice, is often violated.The holes can be closed by simply

analyzing the curvature of the neighboring triangles if the assumption of smooth

surface mesh is true and the holes are relatively small, i.e. subdivision method.

However, applying a patch at a hole to produce a watertight mesh is a risky

operation. If there are protruding structures missing from the optical scanning,

such patches will segment the image at the wrong location leaving a mask

that is too tight for the object. As a result, all features outside the patch

will be missing and the attenuation of the object will be overestimated. The

surface mesh is a representation of the visible surface of the object which is
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an interface between air and other material. For transmission measurement,

such an interface indicates that the attenuation coefficients on both sides of

the mesh are different. This creates a direct link between the surface mesh

and the gradient image of the object. The boundary field B marks the exact

locations where a non-zero gradient is expected. However, the value of the

gradient is unknown because the attenuation coefficients are unknown before

reconstruction. The gradient of real-world images, especially the gradient

images of industrial images, are compressible as most of the elements in the

gradient images are zero or close to zero. If using a gradient operator as the

sparsifying operator ψ, in the compressive sensing framework, the reconstruction

problem can be formulated as:

µ = argmin
µ

∥∥ψ(µ)
∥∥
1
, s.t. A · µ = p (6.9)

where ψ is some sparsifying operator, similar to the operator used by Chen

et. al. [20], transforming the image to sparse representations. The `1 norm in

eq. (6.9) replaces the `0 norm as a heuristic to encourage a sparse solution.

Since a subset of non-zero elements in these gradient images are tagged in B,

(eq. (6.9)) can be updated s.t. the gradients calculated at the boundaries tagged

in B are preserved because they have a smaller weight in the cost function in

Equation (eq. (6.9)).

µ = argmin
µ

∥∥∥D
B
ψ(µ) + αD

B
ψ(µ)

∥∥∥
1
, s.t. A · µ = p (6.10)

where D
B

= diag{Bi} is a mask composed of all the boundary voxels extracted

from the optical scan. D
B

= diag{1−Bi} is the inverse mask and α ∈ [0, 1) is
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a parameter to tune the strength of the mask.

6.3.3 Implementation

The constraint optimization problem in Equation (eq. (6.10)) can be

transformed into an unconstrained optimization problem [58]:

µ̂ = argmin
µ

∥∥A · µ− p∥∥2
2

+ c
∥∥∥D

B
ψ(µ) + αD

B
ψ(µ)

∥∥∥
1

(6.11)

The parameter c balances the data fidelity and the regularization. To search

for the minimizer µ̂, the Alternating Direction Method of Multipliers (ADMM)

[50] approach is employed. Using a similar notation, the unconstrained

optimization is transformed to a constrained optimization problem with K(µ, z)

as the cost function:
minimize K(µ, z) =

∥∥A · µ− p∥∥2
2

+ c
∥∥∥D

B
z + αD

B
z
∥∥∥
1

subject to z = ψ(x)

(6.12)

This optimization is solved using the Lagrange method. The Lagrange multiplier

is l, and relaxation variable is d. The variables will be updated alternatively in

each iteration.

µ
k+1

= argmin
µ

∥∥A · µ− p∥∥2
2

+ l
∥∥ψ(µ)− zk − dk

∥∥2
2

zk+1 = argmin
z

c
∥∥∥D

B
z + αD

B
z
∥∥∥
1

+ l
∥∥ψ(µ)− z − dk

∥∥2
2

dk+1 = dk − (ψ(µ)− zk)

(6.13)

By converting the optimization into sub-problems, the computation is
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simplified. A combination of efficient least-square algorithm and soft-

thresholding can be applied to solve the optimization problem.

To minimize µ
k+1

, the gradient of its cost function is set to zero and solve

it with a conjugate gradient(CG) method. The minimizer zk+1 is achieved by

applying a soft thresholding operation at level α× c
2 l (line 16 in Algorithm 6)on

all the voxels which are tagged in B and at level c
2 l for all the other voxels. The

initial value of µ can be set to zero or to a masked backprojection. The use of a

masked backprojection as the initial image often results in a faster convergence,

but it may trap the search algorithm at a local minimum. In the following,

the initial image is set to zero. The reconstruction work flow is summarized in

Algorithm 6.

6.4 Simulation

The two models, which take complete surface data and partial surface data

respectively, are tested with synthetic data to study their characteristics. The

simulations focus on the application in limited-angle scans following a partial

circular scan. In the simulation study of the data fusion model with EM

estimation, two experiments with different angular sampling rates are performed

to study the performance of the model under sparse sampling conditions. In

the simulation study of the data fusion model taking partial optical data, the

simulation is set to test the stability of the model.

6.4.1 Complete optical data

A virtual cone beam CT setup is used in the simulation fig. 6.5. The X-ray

source has an ideal point-like focal spot and the photons generated from the
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Algorithm 6 Reconstruction with boundary information
1: procedure Reconstruction with partial optical data
2: µ

0
= 0, d0 = 0 // Initialization

3: for k = 1, ..., kmax do
4: µ

k
= µ

k−1
5: //Prepare the linear system to be solved by CG
6: ACG = ATA+ lψTψ, b = AT p+ lψT (zk + dk)
7: //Calculate the residual and the normalization
8: r = b−A

CG
· µ

k
, q = r, ρ = rT r

9: for i = 1, ..., nCG do
10: t = A

CG
q

11: a = ρ
qT t

// Calculate conjugate vector coefficient
12: r = r − at
13: µ

k
= µ

k
+ aq //Update

14: ρs = ρ
15: ρ = rT r
16: p = r + ρ

ρs
p // Calculate next conjugate vector

17: end for
18: zk = max(

∥∥∥ψµ
k
− dk−1

∥∥∥− c
2l (DB

+ αD
B

)sign(ψxk − dk−1)

19: dk = dk−1 − ψµk + zk
20: end for
21: Return µ

k
22: end procedure
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source are assumed to be monochromatic. A flat panel detector is used and

aligned with the X-ray source, i.e. perfect alignment. The sdd is 1000 mm and

the sid is 500 mm. In this experiment, limited-angle circular trajectory specified

in eq. (6.14) is used during the acquisition to generate limited angle scan data.

{T (−θ1), T (−θ1 + ∆θ), ..., T (θ2)} (6.14)

where θ1, θ2 ∈ (0, π/2).

Figure 6.5: The schematic of the virtual CT setup used in the simulation. The source is
aligned to the detector such that the central ray from the source is always perpendicular
to the detector. The relative position of the source with respect to the detector is fixed
during the scan. The object is placed between the source and detector. The relative
position of the source with respect to the object forms the source trajectory. In the
experiments, the angle range is always from θ1 to θ2.



6.4. SIMULATION 117

The synthetic phantom used in this simulation study has features to test

the contrast at a given spatial resolution and uniformity of the reconstruction.

A cross-section of the phantom perpendicular to the rotation axis is illustrated

in fig. 6.6(a). The Phantom is placed in the described CT system with its

geometric center overlapping with the isocenter, i,e, the intersecting point of

the central ray and the rotation axis. The surface data in the experiment is the

outer boundary of the phantom in fig. 6.6(a).

In the first simulation, the angle range during the acquisition is limited

to 60 degree with an increment of 1 degree, which is referred to a fine scan

in this experiment. The acquisition result is the input of the reconstruction

program. To illustrate the improvement by incorporating surface information,

the reconstruction is carried out with and without surface information and

for each case the reconstruction is stopped after 500 iterations. In a second

simulation, the scan angle increment is set to 6 degree, which is denoted as a

few-view scan. The same reconstructions are carried out for the few-view data

set.

The central slice of the phantom and the central slices of the reconstruction

results are illustrated in fig. 6.6. The results shown in fig. 6.6(b) and

fig. 6.6(d) are calculated without surface information. The projection values are

backprojected to the outside of the object leading to unrecognizable boundaries

and non-uniform reconstruction of the object. To describe the uniformity of the

reconstruction, the standard deviation of the pixel values in area 1 as indicated

in fig. 6.6(a) is calculated for each of the reconstructed images. The results

are shown in tab. 6.1. The reconstruction of the parallel structures in the

phantom is also affected by the limited scan angle and the number of projections.

fig. 6.6(d) shows the reconstruction of the phantom without surface data under
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the constraint of limited scan angle and limited number of projections. Denote

the parallel structures in the phantom as a square wave, then the square

wave response of the reconstruction is not homogeneous resulting in reduced

capability to differentiate materials. To assess the homogeneity, the contrast

of the structures in area 2 as illustrated in fig. 6.6(a) is calculated for all the

reconstructed images and the standard deviation of the contrast within area

2 for each reconstruction is selected as a measure of the homogeneity. The

contrast is calculated as

c =
vlocalmax − vlocalmin

vglobalmax + vglobalmin

(6.15)

Where vglobalmax is the maximum pixel value in area 2, and vlocalmax indicates the

maximum pixel value at a local area. The same rule applies to the minimum

values. The mean value of the contrasts at different locations within the area is

plotted in fig. 6.7 with the standard deviation shown as error bars. The contrast

values at the end of the iterations are listed in tab. 6.2.

6.4.2 Partial optical data

The performance of the model with partial optical data is demonstrated using

two simulations with synthetic phantom. The phantom has protruding and

Without surface data With surface data Improvement
MSE std. MSE std. MSE std.

Fine scan 0.077 0.2772 0.056 0.2362 27.27% 14.79%
Few-view 0.0516 0.2208 0.0382 0.1955 25.97% 11.46%

Table 6.1: The analysis of pixel values in area 1 after 500 iterations. The mean
square error (MSE) between the reconstructed images and the phantom is calculated.
The standard deviation of the reconstructed value is also calculated to quantify the
uniformity of the reconstruction.
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Figure 6.6: a) illustrates the central slice of the phantom used in the simulations.
This slice is composed of uniform areas and areas with homogeneous parallel planes.
The same structure repeats in the third dimension. Among the uniform areas and
homogeneous areas, two of them, highlighted as area 1 and area 2 are selected for
further quantitative analysis; b) shows the reconstruction from a fine scan without
using surface data; c) shows the reconstruction from a fine scan with complementary
surface information; d) shows the reconstruction from a few-view scan without using
surface data; e) shows the reconstruction from a few-view scan with full surface
information. The relative attenuation coefficient is indicated by the scale bar.
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Without surface data With surface data Improvement
MSE std. MSE std. MSE std.

Fine scan 0.9181 0.037 0.9402 0.0189 2.41% 48.92%
Few-view 0.609 0.2193 0.8874 0.0283 45.71% 87.10%

Table 6.2: The analysis of pixel values in area 2 after 500 iterations. The mean value
of the local contrast values and the standard deviation of the local contrast values are
shown in this table as a measure of the homogeneousness of the square wave response.

Figure 6.7: a) shows a contrast assessment of the reconstruction from fine scan data.
The traces show the mean value of the local contrast values with the standard deviation
of the contrast values plotted as error bars. The data points represented by circles
are from reconstructions without full surface data and the points shown as crosses are
from reconstructions with full surface data; the data in b) is calculated from few-view
data.
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concave surface structures and cascade circles as internal structures. The cross

section of the sample is illustrated in fig. 6.8, the same structure repeats in the

direction of the y axis, i.e. the rotation axis. The boundary voxels are known

from the numerical phantom. The full set of boundary pixels is used as a perfect

representation of the surface while a subset without all protruding and concave

structures is used as a simulated boundary derived from a defective optical

surface measurement (fig. 6.8(b)). The material of the sample is assumed to be

aluminum and the photons are assumed to be monochromatic with an equivalent

energy of 100keV. Simulated Poisson noise was added to the projection assuming

a total of 1 million photons per detector element during the exposure.

To demonstrate the improvement from fusing prior information with CT

projection data, the same set of limited-angle projections were reconstructed

using the model presented in subsection 6.3.2 with complete or incomplete

boundary as prior and with zero prior information. The model parameters

are set as c=1.0 and l=10 while the number of CG iteration is set to 5. The

parameters are selected empirically. At the end of each iteration, the mean

square error of the projections (MSEproj) is calculated and the reconstructed

volume (MSErecon) as the phantom is known. In addition, the structure

similarity index (SSIM) [70] of the cross-section is calculated. The SSIM is

a patch-based algorithm for evaluating the image quality over the whole image.

For patches, x and y, of the same size, the SSIM is computed as

(2mxmy + c1)(2σxy)

(m2
x +m2

y + c1)(σ2
x + σ2

y + c2)
, (6.16)

where mx is the average of x, my is the average of y, σxy is the covariance of

x and y, σ2
x is the variance of x, σ2

y is the variance of y, c1 = (k1L)2, c2 = (k2L)2,
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k1 = 0.01, k2 = 0.03 and L is the dynamic range of the image.

The structural component of the SSIM for patches x and y, is particularly

important because correctly reconstructed structure is essential for segmentation

tasks.
σxy + c3

σxσy + c3
, (6.17)

where c3 = c2/2.

The MSErecon and the SSIM of the cross-section extracted from the

reconstruction with zero prior , incomplete boundary and complete boundary

are plotted in fig. 6.9, fig. 6.10 and fig. 6.11 respectively. TheMSEproj dropped

quickly after a few iterations before it started to slightly increase due to the

regularization, while the MSErecon decreases with the iteration. However,

the reconstructions were stopped after 1000 iterations before the sequence of

the reconstructed volumes converges. As the task is to mitigate the limited-

angle artifact, primarily the blurred boundaries which are not parallel to any

rays during the acquisition, the structural similarity is of more interest. The

structural component of the SSIM has reached its maximum at 0.9686 for zero

prior, 0.9770 for incomplete boundary and 0.9891 for complete boundary after

1000 iterations which justifies the early stopping of the algorithm. The increase

of SSIM is in line with the successfully reconstructed boundaries which are

parallel to z axis in fig. 6.12(a, c).

While the exterior surface of the sample benefits directly from the fusion

of surface data, the improvement in the reconstruction of internal features is

investigated. The modulation transfer function (MTF) [11] is calculated with

the help of the test structures inside of the phantom as a measure of spatial

resolution. Although the MTF is non-stationary in limited-angle CT [33] and
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Figure 6.8: The cross section of the simulated phantom. The attenuation coefficients
are linearly represented as gray levels. 0 is mapped to black and 0.054 [mm−1] is
mapped to white, i.e. window = [0, 0.054].The same structure repeats in y direction.
In the simulation, this cross section is aligned to the trajectory plane. In (a), all the
boundaries visible to the outside are highlighted in green and will be used as perfect
boundary in the simulations, while in (b) only part of the boundaries are highlighted
in red and they will be employed as defective boundary to simulate real-world surface
scanning results with holes.
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Figure 6.9: Results from the simulation with zero prior information. The MSEproj

and the MSErecon as well as all the SSIM components from the reconstructions using
proposed Algorithm 6 with zero prior information are plotted. All traces share the
same horizontal axis which indicates the number of iterations, while the MSEs are
plotted against the primary vertical axis on the left and the SIMM and its components
apart from the structural component are plotted against the secondary vertical axis.
The insets show the structural components of the SSIM.
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Figure 6.10: Results from the simulation with defective boundary as prior information.
The MSEproj and the MSErecon as well as all the SSIM components from the
reconstructions using proposed Algorithm 6 with defective boundary are plotted. All
traces share the same horizontal axis which indicates the number of iterations, while
the MSEs are plotted against the primary vertical axis on the left and the SIMM and
its components apart from the structural component are plotted against the secondary
vertical axis. The insets show the structural components of the SSIM.
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Figure 6.11: Results from the simulation with perfect boundary as prior information.
The MSEproj and the MSErecon as well as all the SSIM components from the
reconstructions using proposed Algorithm 6 with perfect boundary are plotted. All
traces share the same horizontal axis which indicates the number of iterations, while
the MSEs are plotted against the primary vertical axis on the left and the SIMM and
its components apart from the structural component are plotted against the secondary
vertical axis. The insets show the structural components of the SSIM.
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(a) (b)

(c) (d)

(e)
(f)

Figure 6.12: Results from the simulation study. The cross section images of the
reconstructed volume taken from the trajectory plane are shown in (a,c,e). The gray
level map window is [-0.01, 0.06]. The two features used for detailed analysis are
indicated in (b) as f1 and f2. The MTF measured along horizontal direction and
vertical direction at f1 and f2 are illustrated in (b,d,f).
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even the local stationary assumption is inaccurate, the MTF is calculated in

a standard and consistent procedure across the three images for comparison

purposes. The edge spread function is extracted along the x and z direction at

the test structures marked as f1 and f2 in fig. 6.12(a). The MTF is derived

and shown in fig. 6.12(b, d, f). The measurement indicates that the spatial

resolution along z direction is higher than the resolution along x direction, which

is explained by the limited scanning angle. Another observation is that the local

MTF inside the phantom doesn’t change if boundary information is provided

to the reconstruction, which is an expected result as there is no additional

information regarding the internal structures provided to the reconstruction.

However, other improvements on internal features are noticeable, such as the

uniformity of the image and the contrast at the test structures. To describe the

property, the contrast to noise ratio (CNR)

‖µf − µb‖
σb

(6.18)

where µf is the mean value of the feature, µb is the mean value of the background

and σb is the standard deviation of the background, is calculated at the test

structures. The results are listed in tab. 6.3. The CNR at the test structures is

significantly improved because of the better estimation of the pixel values inside

the object as a result of additional surface information.

In the second simulation, the phantom is a cuboid placed in the center of

the CT system and is aligned to the detector such that the top and the bottom

face of the cuboid are parallel to the trajectory plane. This is a typical scenario

where severe cone beam artifacts arise at the top and bottom faces. The cone

angle of the beam in this experiment is 20 degree and the scanning angle is 360
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Feature Zero prior Defective mesh Perfect mesh
f1 5.72 33.95 16.97
f2 24.52 35.51 71.47

Table 6.3: Contrast to noise ratio at f1 and f2 in fig. 6.8 after
reconstruction with zero prior information, defective mesh and
perfect mesh.

degree, i.e. a full circle trajectory, as the focus is on the cone beam artifact in

this case. a Poisson noise level, which is equivalent to 1 million photons per

detector element, is added to the simulated projection data. The phantom is

then reconstructed with the standard FDK algorithm (fig. 6.13(a)) and the

proposed algorithm incorporating surface data (fig. 6.13(b)). The formerly

blurred top and bottom faces due to cone beam artifact are restored by the

fusion of surface data. Although it is not justifiable to claim an increased spatial

resolution in y direction, the reconstruction of the top and bottom surfaces is

crucial when segmenting the object and supporting materials in experiments.

Besides the reduction of cone beam artifact, the reconstruction also benefits

from the iteration to gain a much more accurate and precise voxel value as

illustrated in fig. 6.13(b).

6.5 Experiments

6.5.1 Experimental study

To validate the model and simulation and to prove the feasibility in practical

applications, the model is applied to experimental data and solved using

Algorithm 6. The sample used in the experiment is an aluminum cuboid with

drilling holes and trenches on the surface. The sample was scanned with a micro
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a)

c)

b)

Figure 6.13: Comparison of cone beam artifact between FDK and the proposed
algorithm. The cross section from the y − z plane from the FDK reconstruction is
shown in (a), while the same cross section from the reconstruction with surface data
is shown in (b). The histogram (normalized with probability) of all the pixel in the
object for both cross section images is shown in (c). The gray value distributions are
fitted against Gaussian distributions and the results are indicated in the legend of (c).
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CT system and a full circular trajectory. The scanning parameters are listed in

tab. 6.4.

The FDK reconstruction from the full-angle projections was segmented to

extract the object surface which was then used for alignment with the optical

scanning result. The optical scanner generated a mesh representationM of the

sample’s surface. Due to known limitations, most of the deep trenches and holes

cannot be acquired, as shown in fig. 6.14(d). The aligned mesh was rasterized

to generate the boundary voxel map B for the reconstruction. A subset of

the projection data, containing only projections taken in a 60 degree interval

with a fixed angular increment, was extracted as an input to a limited-angle

reconstruction. Two reconstructions were carried out using Algorithm 6 with

and without surface data. Both reconstructions used the zero image as initial

image and executed 500 iterations. The results are shown in fig. 6.14. The

cross-sectional images of the reconstructed volumes along different directions

are plotted into three groups for comparison. fig. 6.14(a) and (b) show the cross

section with normal direction along the central beam. The most noticeable

improvement is the reduction of cone beam artifact at the top and bottom of the

image, which is important in order to separate the object from the supporting

stage. Limited-angle artifact is not prominent in fig. 6.14(a, b). On contrary,

the cross sections along the other two directions fig. 6.14(c, e) are distorted by

the limited-angle artifact. As a result, all surfaces with normal direction along

the beam direction are blurred. Due to the lack of boundary information, the

reconstruction algorithm cannot stop the smearing of the voxel value across

the object boundary, which is an empirical explanation of the blurring. It is

shown that, after fusing the optical data and CT projection using Algorithm 6,

the information acquired by both techniques is combined successfully. Features
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Figure 6.14: The cross sections from y − z, x− y and x− z planes are shown in pairs
in (a)(b)(c). The reconstruction without optical scan, i.e. zero prior, is always placed
on the left while the reconstruction with optical data, i.e. defective boundary, on
the right. The features (f3 and f4) are highlighted in (b) and (c). The gray level
window is [-0.01, 0.09]. The mesh from the optical scan is rendered in (d). Due to the
limitations of optical scanning, the structures in the holes and part of the trench are
not resolved and shown as holes in (d).
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that were previously only available in one dataset are linked allowing more

metrological tasks of the object. Unlike the simulation studies, a distortion-free

and noise-free phantom is not available, rendering the full-reference metrics,

such as SSIM and MSE, impossible to calculate. The CNR in the cross-section

images is used as quantitative measure of the image quality. The feature selected

in this study is a drilling hole in the object of fig. 6.14(b), where optical data

and CT data are partially available. The results are in line with the visual

inspection and listed in tab. 6.5.
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Parameter Value
Source detector distance 1020.2 [mm]
Source object distance 235.8 [mm]

Source voltage 160.0 [kV]
Source current 60.0 [µA]

Source target material Tungsten(W)
Scintillation material CsI

Exposure time 1.0 [s]
Averaging 3 (frames)

Binning factor 2x
Angular step 1.0 [deg]

Reconstruction volume dimension 340× 840× 500 (voxels)
Voxel pitch size 0.12× 0.12× 0.12 [mm]

Table 6.4: Experiment parameters

Feature Zero prior Optical scan
f3 2.42 25.07
f4 4.03 46.27

Table 6.5: Contrast to noise ratio at f3 and f4 in fig. 6.12(a) after
reconstruction with zero prior, defective mesh from an optical scan.
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6.6 Results and analysis

Two data fusion models are presented to cooperate optical scanning data with

transmission X-ray data to mitigate artifacts in CT scans.

The first model requires the availability of the complete surface data. A

mask segmenting the object is extracted from the optical data to limited

the spatial support of the object. An MLEM algorithm is developed to

incorporate the mask with the CT data. From the simulation study with a

synthetic phantom, the limited-angle reconstruction with surface data leads to

a better reconstruction of uniform areas and better resolved parallel structures.

Quantitatively, the reconstruction of the uniform area with surface data achieved

at least a 20% decrease in MSE and a 10% improvement in uniformity while

the homogeneity for parallel structures is improved by 80% in the few-view

configuration.

In contrast to the first model, the second model drops the assumption of

complete surface data and accepts defective meshes from real-world optical

scans, allowing day-to-day practical use in production. The fusion of surface

information gives an increase of image quality of the reconstruction, namely the

contrast to noise ratio shown in tab. 6.5 which is important for non-destructive

testing, and mitigates the cone beam and limited-angle artifacts. The fused

volume combines features resolved by both imaging techniques allowing various

geometric measurements which are not possible with individual modalities. At

the same time, it has to be pointed out that the additional surface information

will not lead to extra resolving capability of internal features.

To quantitatively study the possibility to use the fusion result for

geometric measurements, an image processing procedure simulating the CMM
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measurements is implemented. The simulated CMM procedures are applied to

extract thicknesses of the test sample at selected locations. In the procedures,

instead of applying a global threshold to segment the material from air, local

segmentation methods are applied at preselected points to extract local surface

points and surface normal vectors. A plane is then fit to the extracted local

surface points. To represent the surface extracted locally, the normal vector

is calculated. The range of the distance from the fitting points to the surface

along the normal vector is defined as the flatness of the surface. A small value

in flatness indicates a flat surface.

s1

s3

s2

(a) (b) (c) (d)

Figure 6.15: (a) mesh representation of the surface of the sample acquired by an optical
scanner. The surface at the bottom of the drilling holes and trenches is missing due to
the limitation of the optical scanner. The surfaces used in further analysis are labeled
as S1, S2, S3; (b) surface extracted from a limited-angle CT scan; (c) surface extracted
from the fusion of CT and optical data; (d) optical scan with texture. The red cubes
indicate the subset chosen for local surface extraction during the simulation of the
CMM procedure.

The simulated CMM is applied to the result from the experimental study

detailed in this chapter. The optical surface without texture, the CT
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reconstruction without fusing optical data and the data fusion results are

illustrated in fig. 6.15(a)(b)(c) respectively. Due to limited accessibility, the

surfaces at the bottom of the holes and trenches are missing and are represented

as black in fig. 6.15(a). The three surfaces denoted as S1, S2, S3 are marked in

fig. 6.15(a). The distances defined by the surfaces on both ends of the sample

are marked by dashed lines with arrow ends. The reconstruction results are

represented as iso-surfaces after applying global thresholding on the volumetric

data. In fig. 6.15(b), the distortion of the surface S2, as defined in fig. 6.15(a)

is caused by the limited scanning angle and the distortion of surface S3 results

from the cone-beam artifact.
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Figure 6.16: The measurement results of S1, S2, S3 are plotted in (a)(b)(c) respectively.
In each plot, the center horizontal dash-dot line indicates the design value and the
other two horizontal dot lines indicate the upper and lower limit of the manufacturing
tolerance. The thickness measured by the instruments are plotted as data points. The
surface flatness extracted from the measurements are plotted as error bars.

6 subsets are selected for the measurements of each surface. fig. 6.15(d)

illustrates the subsets selected to extract the surface properties of S1 as an

example. The thickness between surfaces S1, S2, S3 and their opposite surfaces

are estimated and compared between the reconstructed datasets with and

without fusing prior optical data. The results from the simulated CMM are
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summarized and plotted in fig. 6.16. The horizontal line indicates the design

parameter and the manufacturing tolerance (±0.05mm for all thicknesses) and

the measurement results from different instruments are plotted as data points.

Given that the CMM results indicate that the surfaces are nearly parallel to their

opposite surfaces and the flatness value is very small, the flatness extracted from

the simulated CMM are results from measurement uncertainties and artifacts.

The flatness values from CMM and simulated CMM results on both datasets

are plotted as error bars in fig. 6.16. Compared to CMM, the results extracted

from the limited-angle CT shows large variations and anisotropy of uncertainty.

The measurement at S2 has the largest error and uncertainty, because the data

acquired with the limited-angle trajectory is insufficient to uniquely calculate

the S2 surface. The CT measurement at S3 also shows inconsistency to the

CMM result. This is due to the cone-beam artifact, because the S3 surface is

nearly parallel and far from the trajectory plane. The results from the fusion of

CT and optical data show high precision at all measurements, eliminating most

of the volumetric artifacts causing the blurring of image boundaries. However,

the fusion result at measuring S1 under-performs the other two measurement

instruments in terms of accuracy due to the limited accuracy of the optical

scanner.

The measurement uncertainty in computed tomography is an open research

topic. Image scaling, image artifacts, reconstruction algorithm, segmentation

algorithm as well as evaluation strategy all affect the final measurements.

The accuracy and the measurement uncertainty are not homogeneous in

the reconstructed volume, which adds another layer of complexity to the

problem. Müller et. al. [52] explore the different measurement strategies and

Nardelli et. al. [53] attempts to assess the results employing features extracted



6.6. RESULTS AND ANALYSIS 139

from the reconstructed volume. The uncertainty in this experiment can be

calculated according the standard [1], similar to [36], as:

U = kU

√
u2cal + u2p + u2w + u2b , (6.19)

where ucal is the calibration uncertainty from the CMM.

up =

√√√√ 1

n− 1

n∑
i=1

(yi − ȳ)2 (6.20)

is the uncertainty from the repeated measurements, where n = 6 is the

number of measurements and ȳ is the average. The uw is the uncertainty

from the manufacturing and it is neglected in the following calculations. kU

is the coverage factor and is set to 2. The standard uncertainty of the

systematic deviation between the CT measurement and the reference method

ub is calculated as:

ub =
1√
n

√√√√ 1

n− 1

n∑
i=1

(yi − ycal)2, (6.21)

where ycal is the measurement using the reference method.

The uncertainty values have been calculated and listed in tab. 6.6 and

tab. 6.7.

The uncertainty originating from the systematic deviation has dropped in

the measurements on the data fusion result at S2 and S3, illustrated in fig. 6.15.

This is achieved by mitigating the limited-angle artifact and cone-beam artifact

respectively. At the same time, the increase in uncertainty at S1 on the data

fusion result compared to the CT result is due to the systematic deviation of
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up ub ucal U

s1 0.007 0.099 0.004 0.198
s2 0.549 1.559 0.011 3.306
s3 0.039 0.561 0.016 1.126

Table 6.6: The uncertainty of the measurements on CT result. All
results are measured in [mm].

up ub ucal U

s1 0.002 0.169 0.004 0.337
s2 0.014 0.036 0.011 0.081
s3 0.001 0.058 0.016 0.121

Table 6.7: The uncertainty of the measurements on data fusion result.
All results are measured in [mm].

the optical scan.

6.7 Discussion

It has been shown that the data fusion can successfully mitigate the cone-beam

artifact and the limited-angle artifact. The restored top and bottom surfaces

segment the object from the supporting material, which greatly simplifies

the post processing steps, although the cone-beam artifact is not completely

removed. The major improvement comes from the fusion of features extracted

by CT and the optical scan. The impact is clearly visible from the fusion

result, as the external boundaries of the object are reconstructed. On the other

hand, the proposed model and computation algorithm have several drawbacks.

First, the model has multiple parameters, to which the minimizer is sensitive.

Second, the optimization process needs to be accelerated to achieve a high-

quality reconstruction within a short time.
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The amount of available optical data has a substantial influence on the data

fusion result. This impact comes from two aspects. More available optical

data containing sufficient features on the surface of the object helps with the

alignment of the optical and CT data. A complete optical scan also simplifies

the data fusion as the optical scan can be treated as a segmentation separating

the object from the volume. However, if both optical system and CT system are

located in one coordinate system, i.e. no alignment is needed after the scans,

the data fusion developed in this chapter can take advantage of any amount of

optical data. Compared to the amount, the spatial distribution of the optical

data has a larger impact on the final result. One observation from fig. 6.14

is that not all the cross-sections gain the same amount of improvement. If the

optical data and CT data are redundant, the improvement is minimal as the CT

data is sufficient in resolving the object. When the optical data complements

the CT data, the optical data offers information that is missing from the CT

data resulting in restored boundaries as shown in fig. 6.14(b,c). Since Tuy’s

conditions (eq. (3.12)) have described the subset of the image that can be

reconstruction using only the CT data, if the optical data contains features that

are missing in the subset, an improvement in the final result can be achieved by

fusing optical data with CT data.

Although this chapter has only demonstrated the performance on mitigating

cone-beam artifact and limited-angle artifact, the fusion of the optical data

can be used to improve reconstruction with scattering artifact as well. More

advanced alignment methods need to be implemented to enable alignment

based on selected features rather than using the complete external surfaces from

isosurface and optical scans.
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Chapter 7

Conclusions and Outlook

The need for new reconstruction algorithms stems from the ever increasing

demand from industry and research. As the variation of samples is vast

and the information about any given sample is from different modalities,

future reconstruction algorithm will become more flexible and will be able to

integrate information known prior to the CT measurement. The contribution

of this dissertation lies in the demonstration of utilizing a particular type

of prior information, namely 3D optical scan, to improve the CT result

and the discussion of the required changes in the entire work flow of a CT

investigation. Fusing two datasets is advantageous as more information about

one particular sample becomes available, but only with correct handling and

careful interpretation can the result benefit from it.

143
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7.1 Scientific contributions

7.1.1 Fulfillment of research objectives

The objective of this dissertation is to utilize the optical data as prior

information and to develop a numerical framework to enable the data fusion of

volumetric and surface 3D models in order to mitigate CT artifacts. Aiming at

developing a flexible work flow to integrate optical data, the mesh representation

acquired by the optical scanner is defined in a reference frame other than the

reference frame of the CT reconstruction. Therefore, as the first step in the

data fusion framework, the optical data is aligned with the CT data using the

RanCEAF and the ICP algorithms. After converting the aligned optical mesh

to a mask, the optical data is fused with the CT data using the models (eq. (6.7)

and eq. (6.10)) developed in this dissertation. The stability of the models against

noise is tested by simulated Poisson noise and validated by real-world experiment

data. Finally, both cone-beam artifact and limited-angle artifact are greatly

reduced. The features resolved by the optical scanner and CT are integrated

into one 3D representation. The contrast to noise ratio at selected features

gained an over 10 times improvement in a real-world experiment.

7.1.2 Closing the research gap

As a result of this dissertation, the research gap has been narrowed leading to

a more reachable solution to routinely integrating prior optical data into a CT

investigation.

Besides utilizing the optical data in the reconstruction, the optical data is

also used to improve the scanning trajectory in a preliminary study. Instead

of acquiring data along a conventional circular trajectory, a circle-line-circle
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trajectory is applied to the acquisition, where the distance between the two

circles in the CLC trajectory is set to be the distance between the top and

bottom surfaces of the sample. The result from applying a CLC trajectory has

shown a significant reduction of cone-beam artifact.

The work in this dissertation has enabled the fusion of optical data containing

defects with CT data. The model developed in this work represents the

reconstruction in a compressive sensing framework and adds the optical result

as constraints to the objective function. The advantage of using partial optical

data comes in two folds. First, artificially closing the holes on the mesh is

no longer needed. The risk of losing features due to hole-closing algorithm is

eliminated. Second, using partial optical data allows objects other than the

sample of interest to exist in the field of view.

7.2 Outlook

With little modification of the CT hardware, significant improvement in

reconstruction has been accomplished in this dissertation. It has been

demonstrated that the integration of optical data can mitigate artifacts in the

reconstruction. This project has laid foundation for many interesting research

topics and further engineering challenges.

In this dissertation, the acquisition, reconstruction and the analysis, as

illustrated in fig. 4.1, are three discrete procedures. Improvements can

be achieved in each procedure when employing prior information. If the

manipulation system allows more degrees of freedom, the design of the scanning

trajectory can be more flexible and better utilize the prior information. As the

accuracy of the manipulation system may suffer when performing sophisticated
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trajectories, the approach in this dissertation to calibrate the geometry can be

applied to alleviate the problem. The reconstruction procedure can be improved

in at least two ways. On one hand, the alignment and the reconstruction can

be performed iteratively allowing the alignment to readjust. On the other,

the conversion between mesh and volume representation can be avoided by

intersecting the mesh with the reconstruction volume. As for the analysis

procedure, the prior information can help in rejecting measurements corrupted

by artifacts.

Although it is a repetition of the idea from Gang et. al. [32], a CT

investigation should be considered as an end-to-end work flow. As after each

projection taken, one more piece of information of the sample is obtained, the

next projection should be selected based on the measurement task. So far, the

implementation of Gang et. al. still limits the number of degrees of freedoms

of the manipulation system due to the characteristic of medical C-arm systems.

With less constraints, the parameter space of an industrial CT is much larger.

A potential contribution would be the integration of the optical data to add

constraints to the search of the next projection. At the same time, the amount

of computation needed for such problems is large. As the resolution of the

detector increases in industrial CT setups and a broader search space, the

computation problem itself becomes a research topic. The development of X-ray

source and detector technology, better physical modeling and faster computation

will continue to be active research areas.
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