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Abstract

Tensor network algorithms (TNAs) represent one of the most recent developments
in the field of numerical methods for the simulation of strongly-correlated many-
body systems. Arising as a natural consequence of an improved understanding
of the entanglement structures intrinsic to the ground-state manifolds of many-
body Hilbert spaces, they correspond to algorithms exploiting entropic constraints
expected to arise in various classes of many-body ground states.

In this work we apply and develop TNAs for the simulation of various strongly-
correlated lattice models.

Concretely, we apply tensor network renormalization (TNR) to the study of the
classical Blume-Capel model (BCM). We propose to exploit the RG features specific
to TNR to obtain an indicator for the vicinity of (multi-)critical points. We show
that in the case of the BCM it leads to a location of its tricritical point matching the
accuracy of state-of-the-art Monte Carlo approaches. This allows us to characterize
the underlying c = 7/10 conformal field theory with an excellent accuracy.

We then present a self-contained introduction to the most widely used techniques
for the simulation of one- and two-dimensional quantum systems, where we cover
matrix product states (MPS) and projected entangled-pair states (PEPS) in detail.
We briefly discuss the multi-scale entanglement renormalization Ansatz (MERA).

We apply infinite PEPS (iPEPS) to the simulation of the Kitaev-Heisenberg (KH)
model, proposed as an effective low-energy theory for the so-called Iridate com-
pounds of the form A2IrO3 (A = Na,Li). We show the ability of iPEPS to ac-
curately encode the complex ground-state physics of Kitaev’s honeycomb model.
When considering the KH model we confirm the existence of all previously found
phases, locate all phase transitions in the phase diagram, finding good agreement
with previous studies, and provide estimates for the survival regions of the spin-
liquid phases in the thermodynamic limit. We briefly discuss the nature of these
transitions.

We conclude this work with a study of various formulations of iPEPS on cylindrical
geometries. We benchmark the proposed formulations by studying the transverse-
field Ising model and find good performance for a subset of the formulations stud-
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ied. We then carry out a comparison between iPEPS and iMPS methods for the
Heisenberg and Hubbard models and find a range of cylinder widths over which
both methods exhibit comparable performance. We find evidence for the potential
of iPEPS simulations on cylinders and argue that our findings provide support for
future studies employing both MPS and PEPS methods in conjunction.
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Zusammenfassung

Tensornetzwerkalgorithmen (TNAs) stellen eine der jüngsten Entwicklungen auf
dem Gebiet der numerischen Methoden zur Simulation von stark korrelierten Mehr-
körpersystemen dar. Als eine natürliche Konsequenz eines verbesserten Verständ-
nisses der Verschränkungsstrukturen, die den Grundzustandsräumen von Mehrkörper-
Hilbert-Räume innewohnen, entsprechen sie Algorithmen, die entropische Beschrän-
kungen ausnutzen, die in verschiedenen Klassen von Mehrkörper-grundzuständen
erwartet werden.

In dieser Arbeit verwenden und entwickeln wir TNAs für die Simulation verschie-
dener, stark korrelierter Gittermodelle.

Wir wenden die tensor network renormalization (TNR) auf die Forschung des klas-
sischen Blume-Capel-Modells (BCM) an. Wir schlagen vor, die für TNR spezifi-
schen RG-eigenschaften zu nutzen, um einen Indikator für die Nähe von (multi-
)kritischen Punkten zu bekommen. Damit zeigen wir, dass es im Falle des BCM zu
einer Lokalisierung des trikritischen Punktes führt, der sich in seiner Genauigkeit
state-of-the-art Monte-Carlo-methoden annähert. Dies ermöglicht uns, die zugrun-
de liegende c = 7/10 konforme Feldtheorie mit einer exzellenten Genauigkeit zu
charakterisieren.

Wir stellen dann eine eigenständige Einführung in die am weitesten verbreite-
ten Techniken für die Simulation von ein- und zweidimensionalen Quantensyste-
men vor, in denen wir im Detail auf matrix product states (MPS) und projected
entangled-pair states (PEPS) eingehen. Wir diskutieren kurz den multi-scale ent-
anglement renormalization Ansatz (MERA).

Wir wenden infinite PEPS (iPEPS) auf die Simulation des Kitaev-Heisenberg-
Modells (KHM) an, das als effektive Niedrigenergie-Theorie für die sogenannten
Iridaten der Form A2IrO3 (A = Na,Li) vorgeschlagen wurde. Wir zeigen die Fä-
higkeit von iPEPS, die komplexe Grundzustandsphysik des Kitaev Modells genau
zu representieren. Bei der Betrachtung des KHM bestätigen wir die Existenz aller
bisher gefundenen Phasen, lokalisieren alle Phasenübergänge im Phasendiagramm
und liefern Schätzungen für die Überlebensregionen der Spinflüssigkeitsphasen im
thermodynamische Grenzfall. Wir diskutieren kurz die Natur dieser Übergänge.
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Wir schlieSSen diese Arbeit mit einer Untersuchung verschiedener Formulierungen
von iPEPS für zylindrische Geometrien ab. Wir bewerten die vorgeschlagenen For-
mulierungen durch die Untersuchung des Ising-Modells im transversalen Feld und
finden gute Ergebnisse für eine Teilmenge der untersuchten Formulierungen. Wir
führen dann einen Vergleich zwischen iPEPS und iMPS Methoden für die Heisen-
berg und Hubbard Modelle durch und finden einen Bereich von Zylinderbreiten,
in dem beide Methoden vergleichbare Leistungen bringen. Wir finden Beweise für
das Potenzial von iPEPS-Simulationen auf Zylinder und argumentieren, dass un-
sere Erkenntnisse Unterstützung für zukünftige Studien liefern, die sowohl MPS-
als auch PEPS-Methoden zusammen verwenden.
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Chapter 1

Introduction

One of the greatest challenges faced by modern science pertains the understanding
of so-called strongly-correlated many-body systems, i.e., the class of systems made
up of extensively many constituents in regimes in which the interactions between
them are by no means negligible. As their name suggests the reliable treatment
of such systems generically precludes an understanding based solely on informa-
tion related to its constituents in isolation or minor modifications thereof. As P.
W. Anderson craftfully described it, these are systems for which truely more is
different [1].

A few of the most notorious examples include systems close to criticality, in which
correlations spread over all length scales in the system, quantum spin-liquid phases,
in which quantum fluctuations preclude the formation of long-range order, even as
the system is brought to absolute zero temperature, or high-temperature super-
conductors, like, e.g., the so-called cuprates, in which the superconducting state
survives at temperatures far higher than expected within a BCS [2] picture.

For critical systems the presence of a diverging correlation length is nothing more
than a reflection of their scale invariance in which microscopic quantities, like, e.g.,
the lattice constant, become irrelevant features and so-called conformal symmetry
typically emerges. For these systems the concept of a universality class appears
as a direct consequence of their scale invariance, allowing for a very elegant clas-
sification in terms of little more than a few properties like the dimensionality of
space and global symmetries [3, 4]. Even more, the emergence of conformal sym-
metry in two-dimensional systems brings about an incredibly rich structure for
critical partition functions allowing them to be organized into so-called conformal
blocks and enabling the exact computation of critical exponents and multi-point
correlation functions [5, 6]. In practice, however, the precise characterization of
a theory’s critical properties is far from being a straightforward matter and, even
with the aid of elaborate theoretical tools, such as the renormalization group (RG)
of Kadanoff and Wilson [7–9], questions remain.
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Originally proposed by Anderson as the ground state of a Heisenberg antiferromag-
net on the triangular lattice [10], the quantum spin liquid (QSL) provides one of the
most peculiar specimens in the zoo of exotic phases arising in strongly-interacting
systems. Unlike in a conventional magnet and as a consequence of strongly frus-
trated interactions, quantum fluctuations in a QSL phase are so strong that, even
as the system is driven to zero temperature, the only clear feature of the system
is its complete lack of features [11–13]! In other words, the system may not be
characterized in terms of a local order parameter, as typically done within the
usual paradigm of Landau theory [14, 15]. These phases have attracted significant
interest as they are known to host fractionalized excitations obeying anyonic statis-
tics, making them a very attractive framework for the implementation of so-called
topological quantum computing [16, 17]. Among the various candidate materials
for hosting a QSL phase, the family of Iridate compounds has recently received
particular attention owing to their potential for hosting spin-liquid phases arising
in a paradigmatic model proposed by Kitaev [18]. Even though all the basic ingre-
dients required to realize Kitaev’s spin liquid appear to be available, the precise
conditions under which this might happen are still unknown and so the search for
the elusive phase continues.

The potential applications for superconducting materials operating at room tem-
perature are innumerable and thus high-temperature superconductivity embodies
one of the most exciting problems in modern condensed-matter physics. How-
ever, a thorough understanding of the mechanism stabilizing superconductivity at
unusually large temperatures remains a major challenge [19, 20]. Interestingly,
the relevant degrees of freedom in the cuprates, given by copper orbitals living in
CuO2 square lattice planes inside a complex lattice structure, can be described by
a low-energy effective theory known as the (single-band) Hubbard model [21], i.e.,
the simplest lattice model describing electrons in a crystal subject to their mutual
Coulomb repulsion. This model is, indeed, known to exhibit some of the basic
qualitative features present in the phase diagram of the cuprates, however, and in
spite of its deceiving simplicity, reaching a consensus on the nature of the ground
state in the so-called underdoped regime has required titanic efforts which only
until recently, and employing a combination of several state-of-the-art techniques,
appear to have converged on a ground state exhibiting stripe order [22, 23].

Despite the considerable progress made towards the understanding of strongly-
correlated systems, much work remains to be done and, as is perhaps to be ex-
pected, the broad nature of the problems encountered means that no single ap-
proach is likely to be applicable in every circumstance.

From a numerical perspective a wide variety of techniques have been developed over
time. Of these, the most accurate is exact diagonalization (ED) which, as its name
indicates, attempts to partially diagonalize the Hamiltonian operator. However,
owing to the exponential growth of Hilbert space dimension as the system size is
increased, this method rapidly becomes inapplicable. Indeed, even when targeting
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Introduction

the ground-state manifold, this method is typically constrained to systems of no
more than 30-50 particles and is often known to suffer from significant finite-size
corrections.

Series expansions methods correspond to the evaluation of observables in terms
of an expansion in powers of some perturbation parameters. Even though these
methods are extremely reliable at high temperatures or close to expansion points
where the expected phase is simple to represent, the radius of convergence for the
series is usually quite limited. In order to overcome this limitation, an analytic
continuation in terms of Padé approximants is often used and thus one is forced to
introduce uncontrolled approximations. Also, owing to their perturbative nature,
studying systems close to criticality becomes challenging [24].

Quantum Monte Carlo (QMC) methods correspond to a class of algorithms in
which a stocastic sampling is employed in order to obtain statistical estimates for
observables of interest. Among the most widely used techniques are diagrammatic
QMC, in which a sampling over Feynman diagrams of certain orders and topologies
is carried out directly in the thermodynamic limit [25–27], or determinantal QMC,
in which the introduction of auxiliary fields allows to decompose density-density in-
teractions into non-interacting terms [28–32]. Whenever applicable, QMC methods
are known to be among the most reliable approaches, however, notable limitations
do arise. For example, in diagrammatic QMC the introduction of uncontrolled
approximations is typically necessary and, similar to series expansions above, the
study of critical systems can be significantly hampered. In the case of determinan-
tal QMC the appearance of weights of varying sign in the partition sum gives rise
to the so-called sign problem, in which the noise-to-signal ratio grows exponentially
fast with the system size and temperature [33]. Since this sign problem often arises
in systems with fermionic degrees of freedom or frustrated spin interactions the
method is of limited applicability in these very interesting cases.

More recently, a new avenue on the path towards the understanding of strongly-
correlated systems emerged with the advent of quantum information theory (QIT).
By providing insights into the subtle entanglement structures present in the ground
states of local Hamiltonians, it has enabled important progress towards taming
the exponential complexity of the many-body Hilbert space, i.e., by driving the
discovery of so-called area laws for entanglement entropy, it has made it clear that,
in a large class of problems, it is only a zero-measure subspace of the exponentially
growing Hilbert space which is relevant for the search of ground-state physics [34–
36].

The class of algorithms exploiting this new understanding of ground-state entan-
glement is generically refered to as tensor network algorithms (TNAs). Their basic
idea is to employ a tensor decomposition of the many-body wave function in order
to design Ansätze exhibiting well-defined entanglement properties. Some of the
most notorious examples go under the name of matrix product states (MPS) [37–
40] and projected entangled-pair states (PEPS) [41–44] and correspond to wave
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functions obeying so-called area laws for entanglement entropy. These Ansätze are
designed to provide efficient and variational representations of ground states for
gapped and local Hamiltonians.

Rather surprisingly, TNAs have also been employed for the development of tools
suitable for the study of systems at criticality, where one of the best-known exam-
ples receives the name of multi-scale entanglement renormalization Ansatz (MERA)
and is designed to encode the logarithmic corrections to the area law arising in crit-
ical one-dimensional systems [45–48].

Importantly, the class of TNAs represents one in which controlled approximations
are employed and thus, by introducing a quantity known as the bond dimension,
a handle with which to systematically improve the accuracy of the algorithms is
effectively obtained.

Even though these are all interesting properties making TNAs very appealing, as
we shall elaborate below, the numerical implementation of some of these algorithms
can bring about important challenges and so we shall also discuss these in detail.

In what follows it will be our focus not only to present a self-contained introduction
to various methods within the class of TNAs, but also to explore the physics
of a number of strongly-correlated systems. Along the way we shall probe the
accuracy and reliability with which the methods may be employed as well as present
proposals for extending their range of applicability.

We shall begin our discussion in Ch. 2 by providing an introduction to the graphical
notation employed in the field of TNAs. In Ch. 3 we will illustrate how partition
functions of classical lattice models may be brought into a form reflecting an under-
lying tensor network structure, thus making them amenable to a TNA treatment.
There we shall present a few of the techniques employed for their evaluation and ap-
ply one of the most recently developed, known as tensor network renormalization,
to characterize the classical Blume-Capel model on the square lattice. In Ch. 4, we
shall present a self-contained introduction to the most important techniques for
the simulations of quantum systems in one and two dimensions. There we shall
introduce matrix product states (MPS), projected entangled-pair states (PEPS) as
well as the multi-scale entanglement renormalization Ansatz (MERA). Chapter
5 presents an application of infinite PEPS to the simulation of a frustrated spin
model known as the Kitaev-Heisenberg model, recently proposed as an effective de-
scription of the low energy degrees of freedom in the so-called iridate compounds.
Finally, in Ch. 6 we study extensions of the PEPS algorithms to cylindrical ge-
ometries and evaluate their performance by considering the transverse-field Ising,
Heisenberg and Hubbard models on the square lattice.
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Chapter 2

A prelude on notation

A recurrent issue in the field of tensor network algorithms is the appearance of ex-
pressions, later referred to simply as tensor networks, in which an unmanageably
large number of indices arise.

To illustrate the issue, consider the following expression

O =
∑

{mi,ni,si,s′i}

A[1]m1

s1 O
[1]n1

s1s′1
A[1]∗m

′
1

s′1
A[2]m1m2

s2 O[2]n1n2

s2s′2
A[2]∗m

′
1m

′
2

s′2

A[3]m2m3

s3 O[3]n2n3

s3s′3
A[3]∗m

′
2m

′
3

s′3
A[4]m3

s4 O
[4]n3

s4s′4
A[4]∗m

′
3

s′4
. (2.1)

A very unnerving one to write, not to mention the huge potential for error in the
proper assignment of indices as well as the intrinsic staleness of a long unintuitive
equation. It turns out, as we shall explain later, that this expression corresponds
to the evaluation of an observable using a so-called matrix product state represen-
tation on a system of 4 sites. Not precisely the system size we will be aiming at
in practice!

In order to avoid this problem, we shall begin by introducing a very practical
graphical notation which is widely used in the field of tensor network algorithms.
This notation will allow us to represent rather complex mathematical expressions
in a very neat and intuitive way.
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2.1 Conventions

2.1 Conventions

Since the core of our work will be concerned with mathematical expression involv-
ing various objects like: vectors, matrices or, more generally, arbitrary rank tensors
as well as the summation of numerous indices, one may develop a simple set of
rules building up a mapping that leads to graphical expressions which are quite
easy to read.1 We will summarize the notation using the following set of rules:

I) Arbitrary rank tensors shall be represented by circles or squares. Which one
is chosen depends largely on the context.

II) Indices attached to any object are represented by lines. If the line style is to
be understood as denoting a specific type of index, this shall be mentioned
explicitly.

III) Summation over indices shared by any two objects is indicated by a line
joining both objects.

IV) Outer products between tensors are represented by adjacent tensors with no
lines joining them. Additional visual aid, e.g., shading, may be provided to
emphasize this structure.

Figure 2.1: Examples illustrating the notation used for tensor network simulations.
Left most: a scalar, left-center: a vector, right-center: a matrix, right most: a
rank-4 tensor.

As with any set of rules, a corresponding set of exceptions entail:

E-I) The identity operator shall be represented simply by continuous lines.

E-II) Tensors satisfying an isometric constraint (or an inverse relation), e.g., iso-
metric matrices satisfying either AA† or A†A, shall be represented by trian-
gles.

1Even though there is, to this date, no standard making these conventions precise, they are
very widely spread so the reader will be able to use them when dealing with most works on tensor
network algorithms.
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A prelude on notation

2.2 Examples

In order to get a better feeling for how the notation works, let us consider a few
simple applications. Figure 2.1, shows a few examples for low-rank objects. In
Fig. 2.2 we show the tensor network corresponding to the trace over a product of
three matrices, where as in Fig. 2.3 we illustrate how one may obtain a rank-1
tensor, i.e., a vector, by contracting common indices on a couple of matrices and
a rank-3 tensor.

Figure 2.2: Graphical notation for the trace over the product of 3 matrices.

α

β
γ

Figure 2.3: Graphical notation for the contraction of common indices on rank-2
(α,β) and rank-3 (γ) tensors into a rank-1 tensor, i.e., a vector.

Finally, with these rules in place we may now recast the evaluation in Eq. (2.1)
into the simple, yet elegant, form of Fig. 2.4.

A[1]∗

O[1]

A[1]

A[2]∗

O[2]

A[2]

A[3]∗

O[3]

A[3]

A[4]∗

O[4]

A[4]

Figure 2.4: Tensor network corresponding to the evaluation of an observable on
a four site system using matrix product state and matrix product operator repre-
sentations of the state and operator, respectively.

Even though these rules cover the basic notions required to understand most works,
depending on the context it might also be assumed that tensors of the same shape
reflected about some axis, e.g., the horizontal axis, correspond to complex conju-
gates of each other. Had we chosen to use this convention all complex conjugation
symbols in Fig. 2.4 could have been simply removed.
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2.2 Examples

We hope that these examples have made it clear how the graphical notation allows
for a very systematic scaling up of the complexity of expressions, while preserving
readability by remaining very intuitive. We shall make extensive use of it in the
remainder of this work.
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Chapter 3

Renormalization of classical
partition functions

In order to begin our discussion on tensor networks we shall start off with a rela-
tively simple scenario in which they arise quite naturally, i.e., in the computation
of partition functions of classical lattice models.

In this chapter we shall also introduce the concept of a contraction scheme, a notion
which will play a central role in the simulation of quantum systems, as we shall
see later on. We begin by introducing contraction schemes in the classical setting
because this will allow us to highlight the key components of each scheme in a very
transparent way. In order to illustrate the accuracy achievable by means of such
contraction schemes we shall close the chapter with a study of the so-called Blume-
Capel model, where we will see how it is possible to obtain results matching the
accuracy of state-of-the-art Monte Carlo studies while at the same time providing
a comprehensive characterization of its critical properties.

3.1 Partition functions

To begin the discussion let us briefly recall some basic concepts of statistical me-
chanics. For the sake of simplicity we shall constrain the discussion to spin systems
in a canonical ensemble exhibiting only nearest-neighbor interactions. Extensions
to more generic settings can be achieved employing minor modifications.

Consider a system described by the Hamiltonian

H =
∑
⟨i,j⟩

hi,j +
∑
i

hi, (3.1)

where ⟨i, j⟩ stands for a summation over the links of a graph G, hi,j interaction
terms coupling the spins at neighboring sites, and on-site terms hi. To obtain a

9



3.2 Mapping to a tensor network

description of the statistical properties of such a system one defines the partition
function

Z =
∑
{Si}

exp(−βH[{Si}]), (3.2)

where the sum runs over all spin configurations and β = 1/kBT , with kB Boltz-
mann’s constant and T the temperature. The partition function of a system plays
a central role in its statistical description as most relevant physical quantities may
be obtained from it. For example the internal energy may be obtained simply as

U := ⟨E⟩ = −∂ logZ
∂β

, (3.3)

whereas the Helmholtz free energy may be computed as

F = − 1

β
logZ, (3.4)

and correlators may be computed by introducing infinitesimal fields at different
locations and then differentiating with respect to these fields.

Below we shall present an approach in which by exploiting the underlying tensor
network structure of partition functions, and performing a controlled approxima-
tion, one gains access to numerous quantities of interest.

3.2 Mapping to a tensor network

From now on let us focus on the case where G corresponds to a square lattice, since
any other case follows in a straightforward way. There are a number of different
ways in which one may make the tensor network structure arising in a partition
function Z explicit. One of these proceeds by defining the rank-41 tensor A[i] with
entries

A
[i]
s̃ls̃bs̃r s̃t

=
∑
s

S [i]
s,s

∏
j={l,b,r,t}

√
B[i,j]

ss̃j

 (3.5)

with j running over the left, bottom, right and top neighbors of site i, respectively,
and in terms of the matrices B[i,j] and S [i] defined as

1The rank of the tensor will in general be given by the number of neighboring sites, i.e., by
the coordination number in the case of regular lattices.
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Figure 3.1: Tensor networks representing partition functions of systems on 5x5
lattices with (left) and without (right) periodic boundary conditions.

B[i,j]
s,s′ = e−β hi,j(s,s

′) (3.6)

S [i]
s,s′ = e−β hi(s) δs,s′ . (3.7)

The partition function Z may then be reformulated in terms of the tensors A[i] as

Z = tTr[A[1]A[2] · · ·A[Nx∗Ny]], (3.8)

with Nx(y) the linear system sizes and tTr representing the so-called tensor trace,
i.e., a summation over all indices corresponding to the tensors in the set {A[i]}.
Thus a partition function may be generically expressed as the tensor networks in
Fig. 3.1.

The exact evaluation of this expression is, rather unsurprisingly, seldom possible
in practice. In fact, by reformulating the computation of the partition function
Z in terms of the tensor network in Fig. 3.1, it is not hard to convince oneself
that its evaluation entails a computational cost growing exponentially fast with
the smallest system dimension, i.e., O((2S + 1)min(Nx,Ny)), for a spin-S system.

Thus, in order to reach system sizes representative of the thermodynamic limit one
is forced to evaluate Eq. (3.8) in an approximate way. It is the precise formulation
of this approximate evaluation what has been dubbed as a contraction scheme. As
we shall show in the following chapter, this concept also plays a central role in the
simulation of quantum systems.

11



3.3 Contraction schemes

3.3 Contraction schemes

As mentioned above the notion of a contraction scheme refers to a specific, pos-
sibly approximate, procedure with which to carry out the summation over tensor
indices in Eq. (3.8). In practice most of these proposals correspond to heuristic
procedures which are, at times, motivated by developments in the understanding of
entanglement properties of quantum states or employ well-known data compression
techniques, e.g., principal component analysis as effected via the so-called singular
value decomposition (SVD) or higher dimensional generalizations thereof [49–54].

Most (if not all) of these schemes are laid out by introducing a control parameter
traditionally denoted by χ. As we will see, this control parameter can be generically
understood as parametrizing the dimensionality of the configuration space over
which the approximation is performed, so that by allowing it to become sufficiently
large one eventually reaches the full dimensionality of the original problem, i.e., all
approximations involved are controlled in that they become exact in the asymptotic
limit χ→ ∞.

T4

T3 AA

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

C1

C1 C4

T2C2 C3

T1

χ
d

T4 C4

T3T1

C2 T2 C3

Figure 3.2: Description of unit cell environments employing environment tensors
employed in the CTM scheme.

3.3.1 Corner transfer matrix (CTM)

The corner transfer matrix (CTM) scheme was introduced by Nishino and Okun-
ishi in Refs. [49, 50] and later generalized by Orús and Vidal in Refs. [51, 52]. The
algorithm acquires its name due to its close connection to Baxter’s corner transfer
matrix construction for classical systems [55–57].

The algorithm proposed in the directional CTM approach from Ref. [51] proceeds
by introducing effective environment tensors meant to describe, possibly infinite,

12
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U
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=

CT1 CT1†

CT2 CT2†

+ =
EVD D

UU†

Figure 3.3: Top left: left CTM growing move. The procedure may be broken into
3 steps: in the first one the left boundary is grown, then the corresponding ten-
sors are merged and finally the new combined tensors are compressed by inserting
approximate resolutions of the identity on the auxiliary bonds. Top right: defini-
tion of new objects upon compression. Bottom: construction of the isometries U
employed for the truncation of auxiliary bonds.

subportions of the system’s unit cell environment, see Fig. 3.2. These environment
tensors are grown by means of iterative absorption steps, in which one contracts
a boundary tensor together with a bulk tensor describing the partition function.
After each growing step one keeps the number of degrees of freedom within com-
putational limits by inserting approximate resolutions of identity in between the
grown tensors and keeping a maximum of χ basis states on their auxiliary indices,
see Fig. 3.3. By repeating such moves along all directions of the system one may
systematically approach the thermodynamic limit.

This algorithm may be formulated with a computational complexity scaling as
O(d2χ3), with d the dimension of the original tensors A[i].

3.3.2 Tensor renormalization group (TRG)

This approach was originally proposed by Levin and Nave in [53], and it is inspired
in the density matrix renormalization group method that we shall encounter later
on in Sec. 4.2.
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SVD

SVD

US1/2

S1/2V

S1/2V

US1/2

Figure 3.4: Two possible
SVDs of the original tensor
A. By performing an SVD,
A = USV , and grouping
into the objects US1/2 and
S1/2V , one obtains two pos-
sible decompositions.

The TRG scheme consists of a series of SVDs of the
tensors in Eq. (3.5), see Fig. 3.4, and subsequent
reconnection of the resulting objects in such a way
that after each step a tensor network on a lattice
dual to the original one is obtained. In carrying out
this procedure the lattice size is reduced by a factor
of 2 after every iteration, i.e., the effective lattice
size decreases exponentially fast with the number
of coarse-graining iterations.2 It is thus often pos-
sible to reach fixed points after only a few dozen
iterations. In order to keep the computational cost
under control a truncation of each SVD decompo-
sition is performed at every step, where the largest
χ singular values are kept. The precise sequence of
operations proposed by Levin and Nave is summa-
rized in Fig. 3.5.

The computational complexity of this method scales
as O(χ6) for fixed χ, however, as discussed already
in the original publication [53], in fixing χ one effectively introduces a cut-off in
the correlation length which can be encoded. Thus to achieve a fixed level of
accuracy as one grows the system at a critical point, the refinement parameter χ
must be permanently increased. In other words, the algorithm does not provide a
sustainable approach at criticality.

SVD Rewire

Figure 3.5: Sequence of operations defining the TRG contraction scheme proposed
in [53]. After a step has been concluded one obtains a tensor network on the dual
lattice with half the number of tensors.

In spite of their inability to provide efficient descriptions at criticality, both the
CTM as well as the TRG algorithms are known to provide good accuracy for values
of χ reachable without exceedingly large computational resources, i.e., employing
a personal computer, see Refs [53, 58] for more detailed discussions.

2As the method does not explicitly incorporate global information, one may just as well think
of it as growing the lattice.
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3.3.3 Tensor network renormalization (TNR)

One of the most recent developments in the field has been proposed by Evenbly and
Vidal [59, 60] and goes under the name of tensor network renormalization (TNR).
This is a contraction scheme inspired by the so-called multi-scale entanglement
renormalization Ansatz [46–48, 61–63], a type of Ansatz state which is designed
to encode wave functions of one-dimensional (1D) systems at criticality, i.e., it
efficiently encodes the amount of entanglement typical of 1D critical points, see
Sec. 4.4.

A central point to this algorithm, as in the TRG above, is the notion of a local
replacement, i.e., the idea of introducing modifications to a network’s local motifs
that, combined with some approximation, allows its coarse graining by employing
a local cost function as a figure of merit.

Ñ

P
W†

W

N

Figure 3.6: Example of a local
replacement in terms of the in-
sertion of a projector P .

In the case of the TRG above, the most
straightforward approach is used in that em-
ploying the SVD provides an optimal reduced-
rank approximation to the various matriciza-
tions of the original tensors A. In the TNR al-
gorithm the notion of a projective truncation
was introduced as a generalization of the SVD-
based approximation [60]. The idea consists of
performing a local replacement by taking a ten-
sor motif N and attaching an isometric projec-
tor P to it, i.e., N 7→ Ñ = NP = Nww†, with
P 2 = P , see Fig. 3.6. Once this insertion has
been carried out the cost function

ϵ = ||N − Ñ || (3.9)

is minimized while preserving the isometric character of w.

As Fig. 3.7 shows, this can be achieved by maximizing ∥Ñ∥ with respect to the
isometry w, which in turn can be done via SVD of the tensor Γw = USV , see
Fig. 3.7, and setting w = V †U † which explicitly satisfies the isometric constraint
in Fig. 3.7 (green box). TNR employs this idea to optimize the objects u, v, w in
Fig. 3.8(e).

This is the only contraction scheme for which there is compelling evidence of it
providing a sustainable approach at criticality, i.e., one in which it is possible to
achieve a fixed error as the algorithm coarse grains the system without indefinitely
increasing the parameter χ. Furthermore, it is the only contraction scheme which
appears to be capable of representing proper renormalization group (RG) trans-
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- =

A*

+

= = kNk2 � kÑk2

--

-

=

Γw

=

Figure 3.7: Left: cost function for the projective truncation approach. The iso-
metric structure of the projector allows for a convenient cancelation of terms. The
final expression shows that the end goal is to maximize ∥Ñ∥. Right top: definition
of tensor Γw. Right bottom: isometric constraints imposed on w (yellow tensor),
see Fig. 3.6. Light and blue tensors indicate complex conjugates of each other.

formations, making it a very interesting approach from a conceptual perspective.
See [59, 60, 64] for a more detailed discussion. We shall exploit these features in
the following section.

Figure 3.8: Summary of the TNR al-
gorithm. Figure taken from Ref. [59].

The algorithm is typically implemented in-
troducing two control parameters χ and
χ′, corresponding to the dimensions of the
outer indices in Figs. 3.8(e) and 3.8(g), re-
spectively. In practice a combination χ′ ∼
χ, with a prefactor 1.5-2, appears to work
quite well. Using this set-up TNR can
be implemented with a computational cost
scaling as O(χ7), although additional con-
trolled approximations may be employed
to reduce this scaling to O(χ6) as in the
TRG scheme, albeit at the expense of in-
troducing an additional control parameter
χ′′. In practice, even when employing the
lower cost variant, the prefactors involved
are found to be substantially larger than
those in the TRG scheme, i.e., of the order
of 102−3.

From a purely numerical perspective TNR
provides a very interesting alternative as it
may achieve errors as low as ∆f ∼ 10−7

at the critical point of the Ising model for
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a modest value of χ = 10. This is an im-
provement of almost two orders of magni-
tude compared to TRG. Away from criticality the accuracy of the algorithms in-
creases quite rapidly.

Additional developments of the algorithm have been discussed in Refs. [65, 66].

3.4 TNR characterization of the Blume-Capel model

Having presented a few of the possibilities proposed in the literature for obtaining
approximate representations of classical partition functions, in this section we shall
illustrate how, exploiting key properties of the TNR algorithm above, it is possible
to combine all the information readily available in the tensor network language to
obtain very accurate and comprehensive characterizations of classical spin models.

All results presented below represent original work carried out by the author, unless
otherwise stated.

To illustrate the approach we shall focus on the so-called Blume-Capel model,
i.e., an extension of the classical two-dimensional (2D) Ising model on the square
lattice in which non-localized, or annealed, vacancies are introduced.3 The model
is defined by the Hamiltonian

H = −J
∑
⟨i,j⟩

σiσj +D
∑
i

σ2i , (3.10)

where ⟨i, j⟩ and i represent the bonds and sites of a square lattice and σ ∈
{−1, 0, 1}, with σ = 0 representing a vacancy. From now on we fix the coupling
constant J = 1, so that the only remaining parameters are D and the temperature
T . It is straightforward to verify that this model inherits the Z2 spin-flip symme-
try, σ → −σ, present in the Ising model. We assume periodic boundary conditions
along both lattice axes throughout the entire discussion.

One may get an overall idea of the phase diagram by looking at the limiting cases
D → ±∞ and T = 0. Below we follow the discussion presented by Cardy in
Ref. [4].

In Eq. (3.10) above the first term represents the typical Ising coupling between
neighboring spins whereas the second term may be thought of as a chemical po-
tential term for the vacancies. Indeed, in the limit of D → −∞ the presence of
vacancies is completely suppressed and the system may be effectively described

3The Blume-Capel model is also interpreted as having degrees of freedom representing spin-1
Ising variables instead. In this context the model is then typically referred to as the Tricritical
Ising model.
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3.4 TNR characterization of the Blume-Capel model

by the classical 2D Ising model where, according to temperature, one finds an or-
dered (ferromagnetic) phase separated from a disordered (paramagnetic) phase by
a second-order phase transition. In the opposite case, i.e., D → ∞, the system is
completely devoid of spins.

Going to the limit T → 0 one finds (up to symmetry transformations) two types
of possible ground states: the first one, owing to the ferromagnetic nature of the
coupling, corresponds to ordered states with σi = ±1, ∀i, and an energy per site of
e = D−2; the second one, corresponding to a fully depleted system, has an energy
per site e = 0. Which ground state is found depends then entirely on the value of
D, where for D > 2 the ground state will be completely devoid of spins whereas
in the opposite case D < 2 a fully polarized state is found. Thus, in this limit,
we find a first-order phase transition separating an ordered phase from a depleted
"disordered" phase.4 Since this first-order phase boundary should be found for a
finite range of temperatures above T = 0, we find that somewhere in the phase
diagram the line of first-order phase transitions must become a line of second-order
phase transitions. The point at which this happens is a so-called tricritical point.5

Even though its existence can be deduced from basic renormalization group (RG)
arguments [4], the actual location of the tricritical point cannot be found by exact
means and there have been numerous numerical studies of this model with the
goal of obtaining an accurate characterization [67–71]. Perhaps more interesting
than the location of the tricritical point itself is the characterization of its critical
properties which, by now, are known to be described by a conformal field theory
(CFT) with a central charge c = 7/10.

In what follows we shall show how it is possible to employ the TNR algorithm
to not only obtain a very accurate location of the tricritical point but also an
essentially unambiguous identification of the underlying CFT.

3.4.1 Phase diagram

In order to obtain the relevant thermodynamic data for the characterization of
the phase diagram we begin by obtaining accurate representations of its partition
function at numerous locations (D,T ) in parameter space. As explained in Sec. 3.1
when employing a tensor network approach we have direct access to approximations
of the partition function and thus of the system’s free energy density f . Via
numerical differentiation we may readily extract quantities like the internal energy
(u), the entropy (s) and the specific heat (c), see Fig. 3.9. These quantities provide
a direct means of characterizing the phase diagram, e.g., the peaks in c hint at the

4The first-order nature of this transition follows directly from the discontinuity in the first
derivative of the energy as a function of D.

5The fact that this is indeed a tricritical point only becomes apparent under the inclusion of
a magnetic field term h

∑
i σi to the Hamiltonian where additional critical lines emerge.
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existence of phase transitions between the ordered (low entropy) and disordered
(high entropy) phases. Depending on the value of D these transitions appear to
be of either first- or second-order type.
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Figure 3.9: Thermodynamic data for the Blume-Capel model obtained using the
TNR algorithm with a bond dimension χ = 6. Top left: Helmholtz free energy,
top right: entropy, bottom left: internal energy, bottom right: specific heat. The
steep increase in the u and s curves together with peaks of the specific heat c hint
at the existence of various phase transitions.

In Fig. 3.11 we show an overview of the phase diagram over a relatively wide
parameter range which was obtained using this approach. As we illustrate in the
inset once one approaches the location of the tricritical point enough it starts to
become increasingly difficult to determine the precise nature, i.e., first- vs second-
order, of the phase transition by the evaluation of numerical derivatives. The
reason being the complex interplay between all parameters in the simulation, i.e.,
D, T , the discretization steps δD, δT as well as the bond dimension χ.

In practice not only will the location of a phase transition depend on the value of χ
but also its precise nature. Indeed, as we illustrate in Fig. 3.10, what might appear
to be a clear first-order phase transition at a small value of χ can evolve into a
phase transition with an extremely weak discontinuity (potentially generated by
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Figure 3.10: Left/right: internal energy per site u in the vicinity of the phase
transition at D = 1.9652/D = 1.9660 for a few values of χ. On the left side the
jump in internal energy is rapidly suppressed as one increases χ, on the right side
the jump appears to remain finite.

our finite discretization) at a larger value. Thus in order to obtain true insights
into the nature and location of a phase transition one must monitor their behavior
as a function of χ.

By carefully monitoring the behavior of the various thermodynamic quantities we
have been able to locate the tricritical point to good accuracy. However, to obtain
the parameters Dt and Tt corresponding to the location of the tricritical point, as
quoted in Tab. 3.1, we have relied on additional input from the behavior of the
system’s conformal data. We explain our procedure below. Our final estimate for
the location of the tricritical point is shown as the yellow diamond in Fig. 3.11.

MC [67] FSS [68] WL-I [69] WL-II [70] TNR
Dt 1.965(5) 1.9655(5) 1.966(2) 1.9660(1) 1.9658(1)
Tt 0.609(4) 0.610(5) 0.609(3) 0.6080(1) 0.6086(4)

Table 3.1: Estimates for the location of the tricritical point in the Blume-Capel
model by means of various methods: Monte Carlo (MC), finite-size scaling (FSS),
Wang-Landau MC (WL) and TNR.

3.4.2 Conformal data

As we mentioned in the beginning of this section, in the case of conformally invari-
ant systems, the classification of a critical point may be carried out via the identifi-
cation of its underlying CFT. It should be emphasized that such a characterization
provides more comprehensive information than, for example, the characterization
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Figure 3.11: Main figure: Phase diagram of the Blume-Capel model obtained
with a value of χ = 6. Inset: phase diagram in the vicinity of the tricritical
point obtained with a value χ = 12. Red dashed (triangles) data corresponds to
parameter values for which a conclusive determination of the type of transition
was not possible via numerical differentiation.

of a universality class via a few critical exponents. Indeed, even though the latter
may be obtained from the former, the converse does not necessarily hold.

For critical systems of finite size the partition function can be arranged in terms
of the theory’s so-called scaling dimensions {∆α} and central charge c as

Z(Lx,Ly) = eβfLxLy
∑
α

e−2π
Ly
Lx

(∆α− c
12

)+··· (3.11)

where we have assumed a system of dimensions Lx and Ly using periodic boundary
conditions at inverse temperature β [6, 72]. In the previous expression the ellipsis
stands for higher-order corrections. This is a consequence of the fact that, in
the continuum limit, the theory effectively corresponds to a conformally invariant
theory.
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Figure 3.12: TNR tensor after s
iterations.

Noting that in the TNR approach each tensor
represents a system of 2sx2s sites after s coarse-
graining iterations, and partially evaluating the
tensor trace in Eq. (3.8), we may readily write

Z(2s,2s) = Tr
(
T (s)

)
(3.12)

with T (s) the transfer matrix defined in
Fig. 3.12, i.e., we may gain access to the the-
ory’s spectrum of scaling dimensions by looking
at the spectrum of the transfer matrix T (s) [4, 6]. More precisely, one finds that6

∆α =
1

2π
log(λα/λ0) (3.13)

with λα the αth eigenvalue of T (s).7

The extraction of the central charge c can be carried out in a number of ways. Here
we employ a procedure in which by normalizing the tensor T (0) = A to remove
the non-universal contribution eβfLxLy , one may readily read out the value of c at
each iteration from the leading eigenvalue of T (s). An alternative approach could
have employed a fitting of the lowest eigenvalue as a function of system size.

We note that a nontrivial structure in Eq. (3.11) is only expected in the case of
nontrivial fixed points. In the particular case of a critical fixed point the spectrum
of scaling dimensions should remain invariant under RG transformations. It is this
observation which we exploit to gain further insights when locating and character-
izing the tricritical point. As the TNR algorithm has been shown to be capable
of achieving (approximate) scale invariance at criticality, we make use of this to
judge the vicinity of the tricritical point, i.e., by looking for the parameter set for
which the best scale invariance is achieved we obtain direct evidence of critical
behavior. In addition, should we have a good hint for the spectrum of scaling di-
mensions expected, as we do here, one may use this as additional complementary
information.

To obtain a quantifiable notion of scale invariance, which is adapted to our ap-
proach, we define the vector α̃(s) as

6In writing this expression we rely on the assumption that the so-called identity field has the
lowest lying scaling dimension ∆0 = 0. This is a justified assumption in the case of minimal
unitary CFTs.

7Often it pays off to consider transfer matrices corresponding to wider cylinders, i.e., one may
often obtain more accurate spectra by staking several T (s) tensors along the horizontal direction.
In that case one needs to adjust Eq. (3.13) to account for the difference between Lx and Ly.
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α̃
(s)
i =

1

∆̃
(s)
i

(3.14)
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Figure 3.13: Lowest-lying scaling dimen-
sions for the second (top), fifth (mid) and
eighth (bot) scales, for a subset of Ds at Tc.
Exact CFT data is given by hollow squares
(red).

with ∆̃
(s)
i the ith scaling dimen-

sion as estimated from the spec-
trum of T (s) in (3.12) at scale s, for
the lowest-lying scaling dimensions.8

Then, by computing

F̃ (s) =
α̃(s)T · α̃(s+1)∥∥∥α̃(s)

∥∥∥ ∥∥∥α̃(s+1)
∥∥∥ (3.15)

we obtain a direct gauge-independent
measure of scale invariance.9 Since,
in this case, we know what spectrum
to expect, we may analogously de-
fine F (s) by substituting α̃(s+1) with
the exact values α. In defining α̃(s)

above, we choose to use the inverse of
the estimated scaling dimensions in
order to give a larger weight to the
lowest lying primary fields and their
descendants in Eq. (3.15).

We show sample data in Fig. 3.13
for several values of D and scales.
There it is possible to see how for
the shortest scales all values of D re-
sult in an almost identical spectrum.
This nicely reflects the fact that, for
such short scales, we do not yet ex-
pect to see any proper signatures of
universal behavior. That the spec-
tra are nearly identical offers a very
tempting interpretation in terms of
the lattice giving the leading (RG ir-
relevant) contribution. Then for in-
termediate scales, i.e., the fifth scale

8We leave out the lowest scaling dimension, corresponding to the identity field, since this
would give a divergent contribution.

9See Ch. 4 for an explanation of the notion of gauge-invariance in tensor networks.
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3.4 TNR characterization of the Blume-Capel model

in the middle plot, the microscopic
information has been effectively in-
tegrated out and the universal prop-
erties emerge, thus showing a very
good agreement with the expected values (red hollow squares). Once coarse grain-
ing continues, the distance to the tricritical point (or numerical errors) leads to a
flow away from the expected values.

Importantly, once we enter this final regime a hierarchy emerges, in which as we
move away from the values Dt and Tt, see Tab. 3.1, the disagreement with the
expected values builds up more rapidly. This exactly matches what would be
expected from an RG point of view. In principle this flow could either lead to
some (trivial) stable fixed point or, in the case in which we are sitting exactly on
top of the line of second-order phase transitions, to the Ising fixed point.10 Here
we find that the values never reproduce the Ising spectrum (data not shown), thus
telling us that insuficient accuracy or numerical errors take the system away from
the critical line.

In Fig. 3.14 we show sample curves illustrating the behavior of the quantity
|1 − F (s)| as a function of coarse-graining step (scale) s. There it can be seen
how for the smallest value of χ shown no clear notion of scale invariance arises, as
the curves increase monotonically. As we move to larger values of χ, some curves
begin to flatten for the intermediate scales, reflecting proper scale invariance. Im-
portantly, a subset of these curves develops dips showing improved invariance over
all neighboring curves. It is these dips which we interpret as signatures of the
close vicinity of the tricritical point. Interestingly the same hierarchy which was
observed in Fig. 3.13 arises here in that the depth of the dips in the curves depends
on the distance to the values Dt and Tt.

On the inset of Fig. 3.15 we show the values of the central charge c as a function of
scale (iteration) evaluated at the estimated location of the tricritical point. There
it can be clearly seen that a good degree of scale invariance is obtained between the
scales 3 to 7, away from which we find values differing strongly from the expected
value c = 7/10. The shape of this curve can be understood in a matter analogous
to Fig. 3.13, as explained above.

On Fig. 3.15 we show the lowest 32 scaling dimensions at the estimated critical
values Dt and Tt. As can be readily seen the agreement between the values com-
puted and those expected is excellent with the largest deviation on the order of
0.8%.

To the best of our knowledge, this is the first time that so many scaling dimensions

10This is because of the fact that the whole line of critical points differs only by an RG irrelevant
perturbation from the Ising fixed point.

24



Renormalization of classical partition functions
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D= 1.9659 - χ = 12
D= 1.9658 - χ = 12
D= 1.9657 - χ = 12
D= 1.9656 - χ = 12

D= 1.9655 - χ = 12
D= 1.966 - χ = 10
D= 1.9659 - χ = 10
D= 1.9658 - χ = 10

D= 1.9655 - χ = 10
D= 1.966 - χ = 8
D= 1.9659 - χ = 8
D= 1.9658 - χ = 8

Figure 3.14: Scale invariance of the spectrum at various values of Dc, Tc and χ, as
measured by the quantity 1− F (s). See main text for definition of F (s).

have been obtained from the Blume-Capel model with such a level of accuracy. The
same holds for the central charge c where we obtain a deviation of about 0.07%
with respect to the expected value c = 7/10. See Tab. 3.2 for a comparison with
previous estimates.

FSS [67] WL [71] TNR
c 0.698(9) 0.73(5) 0.7005

Table 3.2: Various estimates for the central charge c of the tricritical point in the
Blume-Capel model.

We end the characterization of the tricritical point by showing the lowest lying set
of scaling dimensions resolved by momentum and Z2 symmetry sector. This allows
us to identify all (but one) of the so-called primary fields present in the expected
CFT.11 The data is shown in Fig. 3.16.

It should be emphasized that most of the computations we discuss here may be
11The so-called ϵ′′ field which, even though expected in the local Z2 even sector, having a scaling

dimension ∆ = 3 is too far up in the spectrum to be unequivocally resolved from other descendant
fields. The procedure for computing the scaling dimensions corresponding to non-local fields in
a CFT was presented by Hauru et al. in Ref. [73].
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3.5 Discussion

Figure 3.15: Estimated scaling dimensions at Dt and Tt using TNR with χ = 12.
Red hollow squares represent exact CFT data. Horizontal lines show exact values.
Vertical lines show expected degeneracies. Inset: central charge c as a function of
scale. Horizontal (red) line shows the exact value.

readily carried out, for instance, employing exact diagonalization techniques. The
main advantage of the tensor network approach lies on two points: first, on the
ability to reach larger system sizes, for which finite-size corrections become negli-
gible and, second, to do so employing a coarse-graining transformation capable of
preserving all relevant information to good accuracy. The latter is confirmed by
our results.

3.5 Discussion

In this section we have rephrased the notion of a partition function within the
tensor network language and have illustrated how the exponentially growing com-
plexity of its exact evaluation may be circumvented by means of introducing the
concept of a contraction scheme with which one may obtain a (approximate) com-
pact representation efficiently, i.e., in a time growing polynomially with a refine-
ment parameter typically denoted as χ.

In the later parts of the chapter we have applied one of the most recently developed
algorithms, namely the TNR algorithm, to the study of the so-called Blume-Capel
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Figure 3.16: TNR estimates of the lowest lying scaling dimensions (red circles)
at Dt and Tt, see Tab. 3.1, resolved according to symmetry sector, with primary
fields labeled according to their usual names in the literature. Top left: local fields
in the Z2 even sector, Top right: local fields in the Z2 odd sector sector, bottom
left: nonlocal fields in the Z2 even sector, bottom right: nonlocal fields in the Z2

odd sector. Horizontal lines show the exact values.

model. We have used this model to illustrate a procedure which combines the
accuracy of the TNR algorithm with its ability to generate proper RG flows in
order to achieve a highly accurate characterization of the model’s critical proper-
ties, a task which previously required input from multiple approaches. We believe
this procedure to be rather generic, in that it relied on relatively basic RG con-
siderations, and thus applicable to a broad class of models potentially exhibiting
(multi-)critical points.

Given the level of accuracy achieved, we regard this study as setting the stage for
even richer studies of the physics at the tricritical point of the Blume-Capel model.
Indeed, one of the features which we have not fully exploited here is the ability of
the TNR algorithm to produce lattice analogues of a CFT’s scaling operators [64].
This is a feature which could lead to very interesting ramifications. For instance,
by obtaining explicit lattice representations of the theory’s scaling fields one could
then study the effect of various RG irrelevant perturbations to the Ising fixed
point to better understand the transition between two different CFTs (in this case

27



3.5 Discussion

between the c = 1/2 (Ising) CFT and the c = 7/10 (tricritical Ising) CFT) and
the mixing of operators in this process. To our knowledge, this is something which
has only been done perturbatively in the past, see Refs. [74].

Another interesting aspect of the c = 7/10 CFT associated to the Blume-Capel
model is that it is one of the simplest examples exhibiting so-called supersymme-
try, i.e., a type of symmetry connecting fermion-boson partner fields frequently
discussed in the context of high-energy physics and extensions of the standard
model of particle physics. The explicit construction of such partner fields may also
prove to be interesting in studying the emergence of supersymmetry in classical
spin models.
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Chapter 4

Tensor network algorithms for
quantum many-body systems

One of the most prominent challenges in modern day science pertains the under-
standing of systems made up of extensively many components in regimes where
the interactions between them are by no means negligible or even weak. This is
the so-called many-body problem in the strongly-correlated regime in which sys-
tems may typically no longer be treated reliably by means of (quasi-)free particle
approaches.

Perhaps the largest underlying barrier to the understanding of strongly-correlated
many-body systems arises purely because of the properties of the mathematical
framework used for their description. Indeed, as one of the basic postulates of
quantum mechanics dictates, the description of a composite quantum system is
given by the tensor product of the Hilbert spaces associated to each of its con-
stituent degrees of freedom,1 i.e., the many-body Hilbert space is given by

H(N) =

N⊗
i=1

Hi (4.1)

with N the number of constituents and Hi their associated Hilbert spaces. Thus,
a basic consequence of the tensor product structure intrinsic to the many-body
space is its exponential growth in dimensionality as the number of constituents
increases, e.g., in the case of S = 1/2 spins one has dim[H(N)] = 2N .

To see why this constitutes a major roadblock in most cases, one may consider
the simple case in which N = 50, which is rarely enough to be truly representa-
tive of the thermodynamic limit, where one finds dim[H(50)] = 250. The relevant

1For the sake of simplicity we restrict ourselves to distinguishable degrees of freedom.
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4.1 An entanglement-based approach

figure for numerical simulations corresponds to the memory required for storing
a vector in that (complex) Hilbert space. If one describes this vector in terms of
double-precision floating point numbers, a simple calculation yields a total mem-
ory requirement of 8 Petabytes, almost ten times the amount of memory available
in today’s most powerful supercomputer. This tells us that the amount of com-
putational resources required to describe a quantum many-body system exactly
will rarely, if ever, be available. Thus major efforts have been invested in develop-
ing alternative approaches providing efficient descriptions of quantum many-body
states, i.e., descriptions involving only polynomially many parameters.

4.1 An entanglement-based approach

Tensor network algorithms (TNAs) constitute one of the most recent of such ap-
proaches and rely on the crucial observation that, even though the description of
generic states in the exponentially growing Hilbert space is beyond reach for the
system sizes typically required to obtain results representative of the thermody-
namic limit, ground states of local Hamiltonians on the other hand appear to be
very far from resembling generic states in this Hilbert space.

As a matter of fact one of the main forces driving the area of TNAs stems from a
beautiful piece of work by Hastings [34], in which he shows how the ground state of
a one-dimensional (1D) local Hamiltonian with a finite energy gap to excitations
will necessarily obey what has been dubbed as an area law for entanglement en-
tropy. Specifically, given the ground state |ψ0⟩ of an N-component 1D system, the
von Neumann entropy S of the system under bipartition, i.e., the entanglement
entropy, will satisfy

S(ρ1,j) := −Tr(ρ1,j log ρ1,j) ≤ Smax, (4.2)

with ρ1,j = Tr[j+1,N ](|ψ0⟩⟨ψ0|), the reduced density matrix supported over the
first j sites of the chain and Smax a constant satisfying: Smax < ∞, ∀N . Just
as importantly, Ref. [34] also shows how such a ground state admits an efficient
representation in terms of so-called matrix product states (MPS) [37–39], thus
providing sound footing to the MPS-based density matrix renormalization group
(DMRG) proposed much earlier by White [40] which, until then, had relied mostly
on empirical evidence to justify the validity of the approach.

Further works studying the entanglement properties of local Hamiltonians [35, 36,
75–79] have strengthened the notion that targeting the zero-measure space of states
obeying an entanglement area law, see Fig. 4.1, or extensions thereof exhibiting
well-defined entanglement properties, indeed constitutes a very promising approach
to tackling the many-body problem. This has lent support to the development of
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Tensor network algorithms for quantum many-body systems

Ansatz wave functions specifically constructed to obey higher-dimensional versions
of the area law (and generalizations), i.e., wave functions obeying

S(ρA) ∼ ∂A, (4.3)

with ∂A the surface area of the region enclosed by a subsystem A upon bipartition
of the system, e.g., as in Fig. 4.1. In two dimensions, for example, ∂A will represent
the perimeter of the area enclosed by subsystem A and a subclass of such states
goes under the name of projected entangled-pair states (PEPS) [43].

@A

H
Area law states

Hilbert Space

χ=1 χ=100χ=10
…

Figure 4.1: Left: schematic representation of a 2D state obeying an area law,
where blue circles represent local degrees of freedom and the dashed line represents
a bipartition of the system. Right: schematic representation of the many-body
Hilbert space and the zero measure space of area law states. The inset illustrates
how increasing a refinement parameter referred to as the bond dimension, here
denoted as χ, allows to access larger portions of this subspace encoding increasingly
more highly entangled states.

However, in spite of the considerable amount of evidence supporting approaches
specifically targeting area-law states, there is, to date, no mathematical proof
showing that gapped and local Hamiltonians in higher dimensions will necessar-
ily satisfy the area-law constraint.2 Conversely, it is now well-understood that
some of these tensor network states are indeed ground states of gapped and local
Hamiltonians, i.e., their so-called parent Hamiltonian [81].

In the following sections we shall provide a broad overview of some basic techniques
involved in tensor network simulations.

2On the other hand, examples of states obeying an area law have been found for which it has
been proven that PEPS do not provide efficient representations [80]. These examples, however,
correspond to states which are not expected to be efficiently preparable even by a quantum
computer.
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4.2 Matrix product states (MPS)

A[1] A[2] A[3] A[4] A[5]

Figure 4.2: Matrix product state on a 5-site chain employing open boundary con-
ditions. The variational parameters in the Ansatz are contained in each of the
rank-3 A tensors. The horizontal dimensions (bonds) represent virtual degrees of
freedom whereas the lower legs represent the physical degrees of freedom.

4.2 Matrix product states (MPS)

By now matrix product states have arguably become the golden standard for the
simulation of strongly interacting 1D lattice models, however, even though it was
Hastings’ work which placed the class of MPS on solid grounds, simulations em-
ploying the DMRG had been frequently used starting more than a decade before
Hastings’ results were published, see Refs. [39, 82–87] and references therein.

Even though the precise historical development of the field is very interesting in
itself, here we will fast-forward in time to a formulation which is by now regarded
as a de-facto standard in the field of TNAs. Namely, we will begin with an intro-
duction of MPS, taking some time to emphasize their most important properties,
from which we will be able to formulate the DMRG in a very transparent way.
Even though in our presentation we will only be touching upon the most impor-
tant points, the curious reader is encouraged to consult the excellent review in
Ref. [88].

4.2.1 Definition

Consider a system made up of N spins S placed on a 1D open chain.3 The Ansatz
class of MPS is defined as

|ψ⟩ =
∑
{Si}

[A
[1]
S1
A

[2]
S2

· · ·A[N ]
SN

]|S1, S2, · · · , SN ⟩, (4.4)

where each of the A[i] represents a rank-3 tensor of dimensions [mi−1,mi, |S|], see
Fig. 4.2, where the last dimension is fixed by the physical degree of freedom and
mi−1,mi, represent the number of rows and columns, respectively, of the matrix
obtained by fixing a physical state. By construction m0 = 1 and mN = 1 in the

3For the sake of simplicity we will focus the presentation on spin systems for now. Sec. 4.6
explains how the MPS Ansatz may be used to simulate fermionic systems.
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Tensor network algorithms for quantum many-body systems

case of an open chain, whereas periodic chains do not limit these dimensions and
will then include a trace over the matrix product. The fact that the amplitude
ψS1,S2,··· ,SN

, corresponding to a basis state |S1, S2, · · · , SN ⟩, is given by (the trace
over) a product of matrices motivates the name of the Ansatz. The row and column
indices of the matrices A[i]

Si
are typically referred to as virtual indices, or degrees

of freedom, and the largest dimension among these virtual spaces, i.e., the largest
mi, is referred to as the bond dimension, traditionally denoted by m.

O1 O2 O3

A[1] A[2] A[3] A[4] A[5]

A[1] A[2] A[3] A[4] A[5]

A[1] A[2] A[3] A[4] A[5]

A[1] A[2] A[3] A[4] A[5]

h | ih |O| i

Figure 4.3: Tensor networks representing the expectation value ⟨ψ|O|ψ⟩/⟨ψ|ψ⟩
of an operator made up of 3 local operators O1, O2, O3, acting on sites 2, 3
and 4, using MPS. The dashed line running through the diagram of the norm
emphasizes the convention employed in which the mirror reflection of an MPS
tensor corresponds to its complex conjugate.

4.2.2 Some key properties

Several important properties make the class of MPS a very versatile approach for
the simulation of quantum systems. Some of the most important ones are:

▷ Efficient encodings: as is apparent from Eq. (4.4) the number of values re-
quired to fully specify the Ansatz is given by

∑
i|A[i]| ∼ O(N), with |A[i]| the

number of entries in the tensor A[i]. Thus one obtains an efficient encoding
which scales linearly with the system size.

▷ Efficient evaluations: the evaluation of generic observables can be carried
out by constructing tensor networks analogous to that in Fig. 4.3. The
contraction of such a tensor network may be carried out as illustrated in
Fig. 4.4 with a computational complexity scaling as O(Nm3), i.e., scaling
linearly with system size and polynomially with the bond dimension m.
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4.2 Matrix product states (MPS)

A[1] A[2] A[3] A[4] A[5]

A[1] A[2] A[3] A[4] A[5]

(i)
(ii)

(iii)

Figure 4.4: Schematic illustrating a possible sequence of contractions giving an
optimal computational complexity for the evaluation of the MPS norm ⟨ψ|ψ⟩. As-
sumingm and d to be the values of all virtual and physical dimensions, respectively,
one finds the following sequence of computational complexities: (i) O(dm2), (ii)
O(dm3), (iii) O(dm3). From this point on one need only repeat steps (ii) and (iii)
for as long as required. Insertion of operators can be carried out by precomputing
the product of the operator with the corresponding MPS tensor at a subleading
cost of O(d2m2).

▷ Intrinsic gauge freedom: as may be readily verified any MPS state en-
coded by a set of tensors {A[i]} is completely invariant under the introduction
of resolutions of identity, RR−1, for any invertible matrix R, at any bond
(index) joining the Ansatz tensors A, see Fig. 4.5. This gauge freedom plays
an important role in the stability of numerical simulations, as we will explain
below.

A[1] A[2] = A[1] A[2]R R-1

Figure 4.5: Schematic illustrating the gauge freedom intrinsic to MPS.

As is simple to show, provided one does not constrain the bond dimension m, any
quantum state |ψ⟩ may be decomposed as in Eq. (4.4). This brings about a very
convenient numerical framework, where key properties of the wave function may
be readily computed while at the same time providing a means to systematically
obtain controlled approximations. To see this consider the Schmidt decomposition
of the state [89] with respect to a bipartition into subsystems A and B

|ψ⟩ =
k∑

i=1

λi|i⟩A|i⟩B, (4.5)
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Tensor network algorithms for quantum many-body systems

where k is upper-bounded by min[dim(HA), dim(HB)], |i⟩A and |i⟩B represent
basis states on each component of the bipartition and {λi} represents the set of
so-called Schmidt values. These values are positive definite by construction and
the number of them, k = |{λi}|, defines the Schmidt rank of the state.

Representing a state in its Schmidt form has a number of advantages. For instance
a series of approximations may be systematically obtained by the set of states
{|ψ̃m⟩} with Schmidt rank m ≤ k with respect to the given bipartition. For each
of these states an error

ϵm = ∥|ψ⟩ − |ψ̃m⟩∥2 (4.6)

=

k∑
i=m+1

λ2i , (4.7)

satisfying limm→k ϵm → 0, is introduced.4 Thus providing a handle on the accuracy
of the approximation in terms of m. Moreover, the form in Eq. (4.5) allows for a
direct computation of the entanglement entropy, v.s. Eq. (4.2), with respect to the
chosen bipartition, in terms of the Schmidt values as

SAB = −
m∑
i=1

λ2i log λ2i . (4.8)

From here it is then straightforward to see how the entanglement entropy is upper
bounded by SAB = logm, which is independent of the number of sites N . This
corresponds to the area law mentioned above.

By making use of the gauge freedom intrinsic to MPS, one may impose so-called
isometric constraints on the tensors A[i], in order to bring it into its Schmidt form.
This may be achieved simply by means of subsequent QR (or SVD) decompositions
starting from both ends of the system and working ones way towards a target
bond/site, see Fig. 4.6.

An MPS in its Schmidt form is at times also referred to as being in the unitary
gauge or its canonical form with respect to a given bipartition. The name arises
due to the fact that all tensors in the MPS (except for the matrix containing the
Schmidt values) now obey isometric constraints, i.e., satisfy either QQ† = 1 or
Q†Q = 1 when coupling one of the virtual indices to the physical index to form a
matrix, see Fig. 4.6.

Crucially, this procedure would not be available should we have chosen to work
using periodic boundary conditions, i.e., had we introduced a loop into the lattice.

4In writing this expression we assume the state |ψ⟩ to be properly normalized, whereas we
leave the state |ψ̃⟩ in its unnormalized form, i.e., it will satisfy ⟨ψ̃|ψ̃⟩ =

∑m
i=1 λ

2
i .
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A[1] A[2] A[3] A[4]

RQ1 Q4L

LQ Dec.QR Dec.

A[1] A[2] A[3] A[4]

R LR-1

Res. Id. Res. Id.

L-1

B[2] B[3]Q1 Q4

A[2]R A[3] L

Q1 Q4Q2 Q3S

Q3

Q3

=

Q2

Q2

=

Figure 4.6: Left: MPS canonicalization procedure. By sequential QR/LQ decom-
positions one may work from the edges of the chain towards the middle to obtain
the so-called canonical form of the MPS. In this form the diagonal matrix S in
the middle bond contains the Schmidt values of the state. The rest of the tensors
are in left/right canonical form, where they obey isometric constraints. Right:
illustration of isometric constraints QQ† = 1 or Q†Q = 1 on tensors Q. Tensors
Q1 and Q2 are said to be in their left canonical form whereas tensors Q3 and Q4

are said to be in their right canonical form.

4.2.3 Matrix product operators (MPO)

The idea of factorizing a state into a product of matrices can be readily extended
to operators. Indeed, the definition is entirely analogous to that in Eq. (4.4), with

Ô =
∑

{Si,S′
i}

[O[1]
S1,S′

1
O[2]

S2,S′
2
· · · O[N ]

SN ,S′
N
]|S1, S2, · · · , SN ⟩⟨S′

1, S
′
2, · · · , S′

N |, (4.9)

where {O[i]} now represents a set of rank-4 tensors each of which carries two indices
corresponding to the physical degrees of freedom at site i, see Fig. 4.7. As before,
in the case with open boundary conditions the tensors at the edges will have one
trivial index.

O1 O2 O3 O4 O5

Figure 4.7: Illustration of a matrix product operator on a 5-site system.
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Analogously to MPS, any operator acting on a many-body Hilbert space may be
written down in the form of Eq. (4.9) [88, 90]. Perhaps more importantly, it
has been shown how large classes of physically relevant operators, e.g., Hamilto-
nians, may be systematically constructed by employing so-called finite-state ma-
chines [91, 92]. This becomes very handy during the numerical optimization of
MPS wave functions, as developing the DMRG algorithm using MPO encodings of
Hamiltonians allows for a very generic formulation of the codes employed for the
simulations [93–95].

4.2.4 The density matrix renormalization group (DMRG)

As was mentioned above, the whole area of tensor network algorithms essentially
came to life with the invention of the so-called Density Matrix Renormalization
Group as formulated initially by White [40].

In numerical simulations the manifold of MPS is used as a variational class of states
the entries of which are to be optimized in order to obtain accurate approximations
of the ground, and low-lying excited, states of a model. To achieve this the DMRG
algorithm is formulated as an optimization problem targeting the minimization of
the cost functional

f [{A}] = ⟨ψ({A})|H|ψ({A})⟩+ λ(1− ⟨ψ({A})|ψ({A})⟩) (4.10)

with |ψ⟩ given in the MPS form of Eq. (4.4). This cost functional has its global
minima in the set of ground states of the Hamiltonian H, on which the variable λ
takes the value of the ground-state energy E0.

The optimization of the tensors takes place following a sweeping pattern in which
a single tensor A[i] is optimized at a time, keeping the rest of the tensors fixed.

More precisely, suppose we would like to optimize the entries of tensor A[i] then, by
defining ai to be the entries of this tensor in vector form, we may write Eq. (4.10)
as

f [a†
i ,ai] = a†

iHai + λ(1− a†
iNai), (4.11)

with matrices H and N defined in Fig. 4.8.

Since ai appears twice in each term, i.e., the bra and ket components, this is
a quadratic problem with respect to the entries of each tensor the solution of
which may be found by computing ∂

a†
i
f [a†

i ,ai] = 0. This leads to the generalized
eigenvalue problem
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Figure 4.8: Left: definition of tensors N and H corresponding to effective single-
site norm and Hamiltonian from the DMRG procedure. When interpreting them
as matrices we do so by combining bra/ket indices. Right: reduction of norm
network to the identity, N = 1, upon switching to the unitary gauge.

Hai = λNai. (4.12)

However, one may simplify this expression by imposing the unitary gauge men-
tioned in the previous section. As Figs. 4.6 and 4.8 illustrate such a choice results
in N = 1, so that Eq. (4.12) now becomes a regular eigenvalue problem

Hãi = λ ãi. (4.13)

The ability to choose a gauge in which the optimization problem in Eq. (4.10)
is translated into a regular eigenvalue problem is not to be underestimated. By
getting rid of the matrix N , one may rely on very stable linear algebra libraries,
e.g., LAPACK, for solving the system of equations (4.13). Had we not implemented
such a gauge, the stability of an algorithm solving Eq. (4.12) could have depended
heavily on the conditioning of the matrix N .

Once a solution ãi to the problem in Eq. 4.13 has been found, one may regauge
this new tensor into canonical form and proceed with the next site.5

It should be noted that the DMRG algorithm as originally presented in [40], and
discussed here, provides no guarantee of convergence to the true ground state of
a given model. Indeed, in practice it is widely known how starting from too large
a bond dimension can potentially trap the algorithm in local minima.6 A more

5Actually, the optimization need not be constrained to this so-called single-site optimization.
A two-site optimization in which, as the name indicates, two sites are optimized simultaneously is
also very frequently employed. This two-site approach provides access to the so-called truncated
weight of Eq. (4.6) and can be used to adjust the bond dimension m at run-time.

6For most practical applications, however, a slow ramping up of the bond dimension during
the simulation usually works quite well.
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recent proposal for a modified version of the original algorithm provides a variant
which can be guaranteed to converge to the true ground state of any gapped 1D
system [96], albeit at a reduced efficiency.

The infinite density matrix renormalization group

The ideas presented in the previous section can be readily extended to the simula-
tion of infinite size systems. Originally the proposal in Ref. [40] involved a growing
procedure broken into steps in which first the system size would be increased by
inserting two sites into the middle of a chain and then an effective two-site problem
over the newly inserted sites would be solved. In this effective two-site problem
the information from previous iterations (scales) would be implicitly contained in
two boundary blocks, see Fig. 4.9, which could no longer be optimized.

…

InsertBB BB InsertBB BB

h |

h |Ĥ| i

Figure 4.9: Illustration of a 2-site infinite DMRG growing procedure. At each step
(scale) the system is grown by inserting 2 additional sites in the middle of the
chain (red background). The diagrams in the lower row show the boundary blocks
used to represent the energy expectation value (BB - green background). Only the
tensors in the middle red area may be optimized.

Employing the new MPS picture it becomes clear that such a growing procedure
may be generalized to arbitrary growing patterns while preserving the MPS form
of the state during the entire simulation. In this way one obtains greater flex-
ibility while preserving efficiency throughout. Moreover, the MPS picture also
provides direct access to a proper measure of convergence to the thermodynamic
limit, i.e., by preserving the Schmidt spectrum between scales one may monitor
convergence by computing the fidelity between reduced density matrices at subse-
quent scales [88]. In addition, as shown by Orús and Vidal in Ref. [97], one may
again exploit the Ansatz ’ gauge freedom to add a step at the end of the simula-
tion which allows one to use the growing pattern of tensors as the unit cell for an
effectively infinite system and thus perform measurements directly in the thermo-
dynamic limit. An illustration of how the proposal in Ref. [97] may be extended
to generic growing patterns, potentially including two-dimensional (2D) systems,
can be found in Refs. [88, 98].
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Given that the only major conceptual modification required for the formulation of
the infinite size form of the algorithm is the introduction of environment blocks,
one may readily make use of all the framework introduced above where, instead of
sweeping through the whole system, one simply sweeps over the unit cell of tensors
describing the growing pattern while the remaining information, from previous
iterations of the growing procedure, stays stored in the environment blocks.

A A

A A

A[1]

A[2] A[6]

A[5] A[9]

A[10] A[14]

A[13]

A[3]

A[4] A[8]

A[7] A[11]

A[12] A[16]

A[15]

Figure 4.10: Left: illustration of a translation invariant PEPS construction via
insertion of PEPS projectors (blue circles) mapping a covering of virtual entangled
pairs (red squares/dashed lines) onto the physical space (green squares). Right:
final form of the PEPS Ansatz on a 4 by 4 square lattice after tracing out of the
auxiliary degrees of freedom.

4.3 Projected entangled-pair states (PEPS)

In this section we introduce one of the most well-known generalizations of MPS to
higher dimensions. This class of Ansatz states was introduced by Verstraete and
Cirac in Ref. [43] and goes under the name of projected entangled-pair states.

4.3.1 Definition

The class of PEPS targets the manifold of area-law states by employing a con-
struction in which, in a first step, pairs of perfectly entangled states, i.e., states of
the form |ϕ⟩ =

∑
i|i⟩|i⟩, of auxiliary, or virtual, degrees of freedom are introduced

over the edges of a lattice. Thus endowing each site of the lattice with a number
of virtual degrees of freedom equal to its coordination number k. In a second step
these degrees of freedom are projected onto the physical space employing a set of
projectors A[i], with each of the A[i] a tensor of rank k+1 and the additional index
corresponding to the local physical degree of freedom, see Fig. 4.10.

Since the process of projecting these fully entangled virtual degrees of freedom
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leads to a summation over common indices, belonging to projectors located on
neighboring physical sites, the final form of the PEPS state is thus given by

|ψ⟩ =
∑
{Si}

tT r[A
[1]
S1
A

[2]
S2

· · ·A[N ]
SN

]|S1, S2, · · · , SN ⟩, (4.14)

where tTr denotes the so-called tensor trace and corresponds to a summation over
all virtual indices in the Ansatz, see Fig. 4.10. It should be noted that this is a form
which is completely independent of the dimensionality of space and in the special
case of a 1D chain, one recovers the same expression for an MPS, i.e., Eq. (4.4).
As in the case of MPS the dimension of the largest virtual space is referred to as
the bond dimension of the Ansatz and for PEPS it is traditionally labelled by D.

Importantly, the construction presented above in terms of a covering of perfectly
entangled states over the edges of a lattice makes it explicit that, upon consid-
eration of systems large enough, such states will necessarily obey an area law
for entanglement entropy as any bipartition of the system will cut a number of
entangled pairs equal to the number of bonds traversed by the boundary of the
bipartition.

The development of PEPS is, in some sense, really nothing more than the culmi-
nation of a series of developments based on the idea of employing a tensor product
structure as a resource for building Ansatz states, which had already been explored
earlier in the form of tensor product states [41, 42].

4.3.2 Some key properties

As with MPS there are a number of properties which make this Ansatz an attractive
one from the perspective of numerical simulations. As we shall see, however, not
all of the advantageous features present in an MPS simulation will find their way
to PEPS simulations. Some of the basic properties of PEPS are

▷ Efficient encodings: analogously to the case of MPS, and as is apparent
from Eq. (4.14), the number of values required to fully specify the Ansatz
is given by

∑
i|A[i]| ∼ O(N), with |A[i]| the number of entries in the tensor

A[i]. Thus the PEPS encoding scales linearly with the system size.

▷ Inefficient exact evaluations: the evaluation of generic observables can be
carried out by constructing tensor networks analogous to that in Fig. 4.11. As
one may easily convince oneself the exact evaluation of such tensor networks
entails a computational cost scaling exponentially with the smallest system
dimension w, i.e., scaling as O(D2w).7 As a matter of fact such computations

7The additional factor of 2 arises due to the double-layer bra-ket structure of the tensor
network.
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Figure 4.11: Left: illustration of typical tensor networks arising in the evaluation
of the expectation values ⟨ψ|O|ψ⟩/⟨ψ|ψ⟩. In this case we show the measurement of
an operator made up of 2 local operators (yellow squares). We denote the bra and
ket virtual indices by means of double lines. Right: definition of the double-layer
tensors a and o employed in the evaluation of observables.

have been shown to belong to the complexity class #P-complete [99].

In practice one resorts to approximate evaluations which can be carried out
with a computational complexity scaling polynomially with the bond dimen-
sion D as well as an auxiliary bond dimension, typically denoted by χ, which
controls the accuracy of the approximation. This gives a practical way of
performing all evaluations required in a controlled way and is an approach
which is expected to be justified for PEPS offering good approximations of
gapped local Hamiltonians [100].

▷ Intrinsic gauge freedom: as in the case of MPS, it is also apparent from the
form of the PEPS Ansatz that these encodings share the same notion of gauge
invariance, i.e., they remain invariant under the insertion of resolutions of
identity, RR−1, on any bond. This gauge invariance also plays an important
role in the stability of numerical PEPS simulations, albeit in a more heuristic
way.

Unlike in the case of MPS, it is in general not possible to exploit the gauge free-
dom intrinsic to PEPS to simplify the various computations involved in numerical
calculations. Consider for example the quantity ϵ in Eq. (4.6) where two PEPS
wave functions |ψ⟩ and |ψ̃⟩ differ only at a single tensor b
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ϵ = ∥|ψ⟩ − |ψ̃⟩∥2 (4.15)

= ⟨ψ|ψ⟩+ ⟨ψ̃|ψ̃⟩ − ⟨ψ̃|ψ⟩ − ⟨ψ|ψ̃⟩

= b†Nb+ b̃
†N b̃− b̃

†Nb− b†N b̃,

where we single out the vectorization of the differing tensors b and b̃. The com-
putation of this quantity involves the matrix N , defined in Fig. 4.12, which in
the case of PEPS cannot be regauged to yield the identity. The reason is that to
enforce such isometric constraints one requires one-dimensional paths along which
to decompose matrices into isometric and non-isometric parts, the latter of which
can then be shifted along the path until some target site. As Fig. 4.12 illustrates,
such paths are no longer available whenever the links of the lattice form loops.8

a a a a

a a a a

a a a

a a a a

= N

Figure 4.12: Single-site PEPS norm tensor network. The red lines emphasize the
presence of loops, preventing a regauging of matrix N into the identity. When
interpreting N as a matrix we do so by grouping bra (top) and ket (bottom)
indices.

It is also not a straightforward matter to obtain the Schmidt decomposition of a
PEPS. In fact obtaining this decomposition requires that one regroup the PEPS
into MPS form so that the same techniques of the previous section may then be
used. This regrouping, however, entails a cost growing exponentially with the
linear size of the PEPS. For this reason the direct computation of quantities like
e.g., the entanglement entropy is rather rare and typically restricted to tree-like
lattices where simplifications occur [101, 102].

Infinite projected entangled-pair states (iPEPS)

The PEPS Ansatz may be readily generalized to systems of an infinite size, where
the Ansatz is known as infinite PEPS.

8Alternative approaches, however, make clever use of tree-like lattices which exhibit the same
local motifs as the physical lattice of interest to achieve such a canonical form. The caveat of
such an approach is that it involves the introduction of an intrinsically uncontrolled approxima-
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Figure 4.13: Left: illustration of an iPEPS wave function with a 4-site unit cell
on the square lattice. Right: illustration of environment tensors (orange squares),
typically arising in the optimization and evaluation of observables with both finite
as well as infinite PEPS.

To directly address states in the thermodynamic limit, one proceeds by defining
a unit cell that generates the full wave function, see Fig. 4.13. In practice both
the evaluation of observables as well as the optimization of the iPEPS wave func-
tion can be carried out in a matter essentially identical to the way it is done for
finite systems. Indeed, the key point is to note that whenever evaluating (local)
observables, as well as optimizing the PEPS tensors, all computations may be
implemented employing effective environment tensors, see Fig. 4.13, which allow
to abstract away information related to system size. Thus much of what will be
discussed below can be applied directly to systems regardless of their size.

As we will point out along the way, a few subtle differences do arise. One of
the most notorious ones being the fact that iPEPS simulations generically lead to
solving highly nonlinear optimization problems.

4.3.3 Projected entangled-pair operators (PEPO)

As was the case with MPOs, it is also possible to obtain decompositions of op-
erators of interest on higher-dimensional lattices in terms of so-called projected
entangled-pair operators which follow a straightforward generalization of Eq. (4.9)

Ô =
∑

{Si,S′
i}

tT r[O[1]
S1,S′

1
O[2]

S2,S′
2
· · · O[N ]

SN ,S′
N
]|S1, S2, · · · , SN ⟩⟨S′

1, S
′
2, · · · , S′

N |, (4.16)

tion, which may alter the underlying physics of the problem in non-obvious ways, e.g., reducing
frustration in a lattice.
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where each of the {O[i]} represents now a tensor of rank k + 2 with 2 indices
running over the local bra and ket physical degrees of freedom and the remaining k
connect to all neighboring PEPO tensors. Just as for MPOs, there are well-defined
procedures which allow to build PEPOs for wide classes of operators. Interestingly,
such constructions can be visualized very intuitively in terms of particle decay
processes, see Ref. [103].

Unlike in the 1D case, however, PEPOs are much less widely used in PEPS ground-
state calculations, most likely due to the overhead incurred in implementing PEPO-
based optimization on top of the intrinsically expensive PEPS calculations.9 On
the other hand, PEPOs have seen moderate-spread use in finite temperature tensor
network calculations of 2D systems [54, 104, 105], where they naturally arise.

4.3.4 Contraction schemes

As mentioned at the beginning of this section, one of the main caveats of performing
simulations based on the PEPS Ansatz arises due to the intrinsic exponential
scaling of exact computation of observables. This is why, in practice, one is forced
to introduce approximate procedures with which to carry out the evaluation of
various tensor networks arising in PEPS simulations. Such approximations are
generically referred to as contraction schemes, just as in the classical case discussed
in Sec. 3.3.

MPS-MPO scheme

In this scheme the idea is to make use of the similarity between the procedure
of compressing an MPS state obtained by acting on an MPS with an MPO, see
Fig. 4.14, and is perhaps the most widely used approach whenever dealing with
systems of a finite size with open boundary conditions (OBC).

To be more precise, take a state ⟨ψ̃(1)
L | in MPS form describing the left-most column

of the tensor network in Fig. 4.14, where each MPS tensor β[i] is initially given
by the contraction of the physical indices of each of the left-most bra and ket
PEPS tensors A[i,1] at each row i. Thus, the "physical" indices of this new MPS
correspond to the combination of the right virtual index of the PEPS tensor A[i,1]

and that of its complex conjugate. Similarly, one may build an MPO description
O[j] of the jth column transfer matrix by contracting all tensors {A[i,j]} with their
corresponding complex conjugates, i.e., each MPO tensor a[i,j] is now made up by
contracting the physical index in A[i,j] with that of its complex conjugate, as in
Fig. 4.11.

9This could be why, to the author’s knowledge, there has been no PEPO based ground-state
optimization employed to date.
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Figure 4.14: MPS-MPO contraction of a PEPS norm tensor network. At each step
one compresses the action of a double layer PEPS MPO column on the boundary
MPS back into MPS form by keeping the bond dimension fixed to some predefined
maximum.

Using the picture above one may carry out the calculation of a norm tensor net-
work, for example, as ⟨ψ̃(1)

L |O[1]O[2] · · · O[r−1]|ψR⟩ by acting sequentially with the
column MPOs on the edge MPS, as in Fig. 4.14. Since repeating this computation
over several columns would entail the exponential growth of the virtual dimensions
in ⟨ψ̃(i)

L |, one performs a compression of the combined MPS-MPO object at each
step i by searching for the edge MPS ⟨ψ̃[i+1]

L | minimizing the cost function

ϵ[i] = ∥⟨ψ[i]
L |O[i+1] − ⟨ψ̃[i+1]

L |∥2, (4.17)

over the manifold of MPS with a maximum auxiliary bond dimension χ. Once
the MPS minimizing this function has been found, one sets ⟨ψ[i+1]

L | = ⟨ψ̃[i+1]
L | and

i = i+ 1.

This compression may be carried out following an alternating least-squares proce-
dure analogous to that in the DMRG algorithm in which, by targeting a specific
tensor β̃j in ⟨ψ̃[i+1]

L | and holding the remaining ones fixed, one minimizes the cost
functional

ϵ[i][β̃j
†
, β̃j ] = β̃

†
jÑ β̃j − β†

jOβ̃j − β̃
†
jO†βj + const,

with Ñ and O as defined in Fig. 4.15.
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Figure 4.15: Objects Ñ and O appearing in the computation of the cost functional
for the MPS-MPO contraction scheme.

Since this is a quadratic problem in β̃j , as in the previous section, the optimal

solution may be found by computing ∂
β̃
†
j

ϵ[i][β̃j
†
, β̃j ] = 0, which leads to solving

the linear system of equations

Ñ β̃j = Oβj .

By restricting the computation to the unitary gauge introduced in Sec. 4.2.4 above,
one has Ñ = 1 and thus the solution is simply given by β̃j = Oβj .

Finally, it is worth noting that this approach is not restricted to calculations on
systems of a finite size. As a matter of fact, some of the first infinite PEPS
calculations were performed employing a scheme completely analogous to the one
just described, albeit involving compression moves in all directions. In the case
of the infinite system, however, it pays off to perform the contractions using a
lattice tilted by 45◦, where the computational complexity of the algorithm becomes
O(χ3D4). See Ref. [106] for further details.

Corner transfer matrix scheme

An alternative approach which has been used quite succesfully in infinite PEPS
simulations is directly inspired by the CTM scheme presented in Sec. 3.3.1 for
classical systems.

As it turns out one may proceed directly as explained in Sec. 3.3.1 even when
dealing with quantum systems. However, an alternative procedure which has been
found to work quite well in practice was proposed by Corboz in Ref. [107]. When
employing the original proposal, as explained in the classical setting, the algorithm
exhibits a computational complexity of O(χ3D4), whereas in the improved version
of Ref. [107] the cost grows to O(χ3D6).
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4.3.5 Imaginary-time evolution

One of the most widely used approaches used for the optimization of ground-
state PEPS wave functions is that of so-called imaginary-time evolution. In this
approach, by acting with the operator exp(−∆Ĥ) on an arbitrary starting vector
|ψ̃⟩ one may project out all components outside of the ground-state manifold by
taking a sufficient number of such evolution steps.

In practice it is necessary to employ a Trotter-Suzuki decomposition [108] in order
to break the exponential operator into smaller local gates which may be efficiently
applied to the state by fully exploiting the tensor network structure. Even more,
to improve convergence, one does not act with a full set of gates simultaneously
but, instead, applies each of the gates one at a time.

Several approaches have been developed to perform the evolution at various com-
putational complexities. Here we summarize the three most important ones:

Simple update

In the so-called simple update, proposed by Jiang et al. in Ref. [109], a rather strong
approximation is applied in which one bypasses the effects of the full wave function
and, instead, carries out a time evolution which only involves local objects directly
affected by the Trotter gate. To compensate for the local nature of the update one
employs a poor man’s approach in order to incorporate the renormalization effects
arising due to distant portions of the wave function, i.e., by introducing a vector
of weights on each bond of the wave function one obtains a sort of "mean field"
representation for the wave function, see Fig. 4.16.

The insertion of these weight vectors is not fortuitous. They are actually inserted
in an attempt at mimicking the effect of working with a canonized MPS and, as
a matter of fact, such a "pseudo-canonical" form of a PEPS wave function can be
achieved efficiently in (tree-like) Bethe lattices after evolving by a large number of
time steps in the asymptotic limit ∆ → 0.

The optimization procedure itself involves only the tensors directly affected by the
Trotter gate as well as those weight vectors surrounding them. This small tensor
network is then decomposed via an SVD which truncates the singular values kept
and updates the weight vector on the bond optimized by using these singular values,
see Fig. 4.16. In this case the optimization may be carried out with an overall
computational complexity scaling as O(D5), provided that a predecomposition
step as in Fig. 4.17 (top left) is introduced and no observables are measured in the
process.

As is to be expected, this poor man’s approach gives results of intermediate qual-
ity which quickly degrade as one approaches states with an extended correlation
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Figure 4.16: Left: illustration of a uniform PEPS Ansatz employed with the simple
update. Additional weight matrices are illustrated as yellow squares on the bonds
of the PEPS. Right: illustration of the simple update procedure explained in the
main text. In a first step all weight vectors are loaded on the two tensors involved
in the update and the network on the upper left is formed. In the final move an
SVD is performed from which the singular values S are used as the new set of
weights on the bond being updated.

length, e.g., at critical points.

Full update

In the so-called full update [110, 111] one improves upon the simple update by
making use of the assumption that the wave functions before and after the Trotter
step differ only at the tensors which have been directly affected by a local Trotter
gate. Here, unlike in the simple update, the compression of the wave function after
acting with the Trotter gate is carried out so as to minimize a global cost function,
i.e., one employs a cost function analogous to that in Eq. (4.15), adjusted to the
setting in which two of the tensors differ between the wave functions.

By using an ALS approach one compresses the wave function by targeting indi-
vidual tensors at a time. Furthermore, in order to reduce the computational com-
plexity of this optimization, the target tensors are further decomposed via QR/LQ
decompositions into smaller objects, as illustrated in Fig. 4.17. Ultimately it is
these smaller objects which are optimized at each step and, upon convergence of
the ALS procedure, the original PEPS tensors are reconstructed. In this case the
tensor α̃, see Fig. 4.17, minimizing Eq. (4.15) is found by solving the linear system
of equations

N α̃ = Wα. (4.18)
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with W and N as defined in Fig. 4.17. As we pointed out in Sec. 4.3.2, one may no
longer choose a gauge in which the matrix N becomes an identity. Nevertheless,
a proposal by Lubasch, Bañuls and Cirac [111] allows to perform a regauging
that, even though not fully allowing to circumvent the computation of N , has
been found to have a very positive impact on its conditioning. In practice, as a
consequence of the nature of the contraction schemes employed, the matrix N tends
to lose hermiticity, specially for smaller values of the bond dimension χ. One then
employs its closest hermitian approximant N → (N +N †)/2. These modifications
greatly improve the stability and accuracy obtained in solving Eq. (4.18).
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Figure 4.17: Top left: decomposition of tensors A and B into isometries Qa, Qb

and the smaller tensors α and β. Top right: reduced bond environment where
qa, qb represent the outer product between Qa and Qb and their complex con-
jugates, respectively. Bottom left: reduced norm network for tensor α. Bottom
right: reduced environment network containing the imaginary time evolution gate
exp(−∆Ĥ)

In this update it is the construction of the bond environments what constitutes
the bottleneck of the computation and can be performed using the contraction
schemes mentioned above.

Cluster update

In the cluster update, proposed in Ref. [112] and denoted as CUδ, one finds a middle
ground in between the very cheap simple update and the expensive full update by
obtaining separable representations of the environment tensors up to a certain
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distance δ of the sites being optimized. In the case CU0 one finds a type of update
in which one assumes that all environments are separable and is closely connected
to the simple-update. The case CU1 improves on this by adding a single layer of
non-separable environments and also allows for a slightly lower computational cost
compared to the MPS-MPO scheme presented above. The cases CUδ with δ > 1
simply approach the limit of the full update without improving the computational
scaling of the computation.10

4.3.6 Variational optimization

Surprisingly, one of the most recent developments for iPEPS has been the intro-
duction of stable algorithms directly targeting the minimization of a PEPS’ energy,
i.e., targeting the direct minimization of

E = min
{A}

⟨ψ({A})|Ĥ|ψ({A})⟩
⟨ψ({A})|ψ({A})⟩

, (4.19)

with respect to the tensors {A} making up the PEPS Ansatz. This is an important
improvement over imaginary time evolution because, as can be easily proved, the
convergence rate of the latter depends directly on the magnitude of the energy
gap, i.e., should the system exhibit a vanishing energy gap, convergence will be
greatly slowed down.

Even though this is a problem which is in principle simple to formulate, its extreme
nonlinearity in iPEPS makes it a complex one to address. One of the most recent
proposals was put forward in Ref. [113], where it was shown how the CTM contrac-
tion scheme presented above can be modified to perform a systematic summation
of Hamiltonian terms on infinite systems. As might readily be expected, of all
optimization schemes presented, the variational update yields the most accurate
results.

Since the essence of the procedure remains the same as that of the original CTM,
involving only modifications related to the types of boundary tensors one must keep
track of, we redirect the reader to Ref. [113] for a full account of the approach.

This problem has also been addressed in Ref. [114] from an alternative approach
in which a conjugate gradient procedure is combined with so-called channel envi-
ronments to perform the optimization. The approach employed therein has the
advantage that the energy variance may be computed on-the-fly. Thus allowing
one to obtain a direct measure of goodness for a given approximation.

10These intermediate values actually make the cost slightly higher, yet it has been argued that
they may nevertheless be an interesting variant whenever implementing the algorithms using
computational parallelism.
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4.4 Multi-scale entanglement renormalization Ansatz
(MERA)

Within the realm of strongly correlated systems those which exhibit critical be-
havior occupy a very prominent role. In such a regime a system becomes scale
invariant, a reflection of diverging correlations in which entanglement spreads over
all length scales in the system. The scaling of entanglement entropy for such sys-
tems exhibits a violation of the area law discussed at the beginning of the chapter
which, for conformally invariant 1D systems, is of the form

S(A) ∼ log(LA), (4.20)

with LA the length of a subsystem upon bipartition, i.e., such systems exhibit
logarithmic violations of the area law.

=V

V†

W =
W†

Figure 4.18

From the perspective of tensor networks a very interesting proposal has been devel-
oped by Vidal in which he designs a class of tensor networks specifically crafted to
simulate systems exhibiting such violations of the area law. This class of states has
been dubbed as the multi-scale entanglement renormalization Ansatz and they can
be understood as quantum circuits performing entanglement renormalization [45–
47, 62, 115, 116], see Fig. 4.18.

The ability of the MERA to account for this increased growth of entanglement
stems from its holographic structure, i.e., the Ansatz is designed in such a way
that by adding an additional dimension, i.e., a scale dimension, geodesic paths
between two local degrees of freedom separated by a distance L involve a number
of bonds scaling as log(L) [117].
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This Ansatz has been particularly successful at characterizing critical systems, not
only because of its favorable entropic properties but also because of its intrinsic
efficiency, i.e., just like in the case of MPS, the MERA offers a framework in which
observables may be efficiently evaluated exactly due to the isometric nature of its
components, see Fig. 4.18.

Interestingly, it is also possible to formulate such an Ansatz in a scale invariant
form, where quantities like the central charge, scaling dimensions as well as oper-
ator product expansion coefficients may be extracted efficiently [48, 118, 119]. As
this set of quantities can be used to uniquely identify a CFT, the MERA offers a
unique tool for the study of lattice realizations of CFTs.

4.5 Conserved quantum numbers

An important concept in the simulation of many-body systems pertains that of
symmetries. Indeed, as is well known, the presence of a symmetry enforces a
particular structure on both the underlying Hilbert space of the system as well as
the Hamiltonian describing its interactions, where these can be organized into so-
called symmetry sectors, i.e., subspaces invariant under the action of the symmetry
operation [120–122].

Symmetries may be separated into those arising due to an invariance of the system
under permutation of its components, e.g., lattice symmetries, as well as those
arising due to the internal structure of the local degrees of freedom, e.g., spin
rotations about a given axis. They can also arise both at the local (or gauge) as
well as global level, i.e., symmetries modifying the state of the whole system.

Within the tensor network framework global internal symmetries play an important
role as they can be included in a very systematic manner to speed-up simulations
as well as target individual symmetry sectors.

To simplify matters, we shall briefly explain the key idea behind the incorporation
of such a symmetry in the particular case of the group U(1), typically associ-
ated with the global conservation of particle number N̂tot =

∑
i n̂i or total spin

component Ŝz
tot =

∑
i Ŝ

z
i . Our discussion can nevertheless be directly applied to

general compact abelian groups.11 Below we shall follow the discussion presented
in Refs. [123, 125].

Consider a system whose Hamiltonian Ĥ is invariant under the action of the group
U(1), generated by some global operator X̂ =

∑
i x̂i. The presence of such a

symmetry requires that the many-body Hilbert space admit a decomposition in
terms of symmetry-invariant subspaces (sectors) of the form

11The incorporation of symmetries related to nonabelian groups is also possible, although
significantly more complex. For more information on the subject we refer the interested reader
to Refs. [122–124]
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4.5 Conserved quantum numbers

H =
⊕
α

Vα (4.21)

with Vα =Wα ⊗ dα a symmetry sector characterized by a charge α and satisfying
dim(Wα) = 1, with a potentially nontrivial degeneracy space dα.12 Thus, a generic
state in this Hilbert space may be labelled as |α, tα⟩, with 1 ≤ tα ≤ dim(dα).

Now, the key to incorporating such a symmetry into the tensor network framework
lies on interpreting the various tensors appearing as symmetry-invariant linear
maps between Hilbert spaces.

TVa1

Va2

Vb

Figure 4.19: U(1)-invariant ten-
sor interpreted as linear mapping
between vector spaces Va1 ⊗ Va2
and Vb. Labels next to incom-
ing (outgoing) arrows indicate in-
put (output) vector spaces. Such
a tensor must obey symmetry
constrains, such as the one in
Eqs. 4.24.

As an example take the rank-3 tensor T in
Fig. 4.19. This tensor may be interpreted as
the map T : Va1 ⊗ Va2 → Vb, where the arrows
on the tensor are used to distinguish between
input and output (dual) spaces. This is an im-
portant point as the action of a group element
exp(−iφ) ∈ U(1) on a vector space V is given
by the unitary representation U : exp(−iφ) 7→
Ûφ := exp(−iφX̂), whereas the action on the
dual space is given by the dual representation
Û †
φ.

One may also consider the action of the sym-
metry group on the symmetry-invariant tensor
T

T
(α1,α2,β)
tα1 ,tα2 ,tβ

7→
∑

t′α1
,t′α2

,t′β

(Uφ)t′α1
,tα1

(Uφ)t′α2
,tα2

T
(α1,α2,β)
t′α1

,t′α2
,t′β
(Uφ)

∗
t′β ,tβ

(4.22)

= exp(−i(α1 + α2 − β)φ)T
(α1,α2,β)
tα1 ,tα2 ,tβ

(4.23)

= T
(α1,α2,β)
tα1 ,tα2 ,tβ

(4.24)

where in the last line we make use of the fact that the tensor is symmetry-invariant.
This implies that α1+α2−β = 0 for all non-trivial tensor entries, establishing the
conservation of the U(1) charge. This is nothing more than a reflection of Schur’s
lemma [122].

In the general case one will have
12That the dimensionality of the irreducible representation space Wα should satisfy dim(Wα) =

1 is a consequence of the fact that we constrain our discussion to abelian groups [122]. This need
not be the case for nonabelian groups.

54



Tensor network algorithms for quantum many-body systems

Ti1,··· ,ikin ,j1,··· ,jkout = (Tα1,··· ,αkin
,β1,··· ,βkout )tα1 ,··· ,tαkin

,tβ1 ,··· ,tβkout
δNin,Nout (4.25)

with the convention i = (α, tα), j = (β, tβ) for input and output indices and
Nin =

∑
i αi, Nout =

∑
i βi, with the sums running over all input and output

indices, respectively. In writing this expression we interpret Tα1,··· ,βkout as the
(kin + kout)-rank tensor supported over degeneracy spaces. Thus, this expression
generalizes the form of a block diagonal matrix (kin = kout = 1) to arbitrary rank
objects.

In practice, the breaking down of tensors into symmetry blocks entails both mem-
ory savings as well as computational savings since now only smaller blocks need be
manipulated. This also allows for the possibility of performing various operations,
like e.g., contractions and decompositions, on the different symmetry blocks in
parallel.

Even beyond the practical advantages of operating with objects of reduced size
and allowing for the targeting of specific quantum number sectors, see Fig. 4.19,
the conservation of symmetries has played an important role in numerous forms
including the characterization of topologically ordered states [126–130].

As we will see in the next section, the conservation of fermionic parity (or particle
number) plays a crucial role in the ability to simulate fermionic systems using
higher-dimensional tensor network Ansätze like PEPS or MERA.

4.6 Fermionic systems

To conclude this chapter we explain how one may employ the framework developed
in all previous sections for the simulation of fermionic systems.

4.6.1 Matrix product states

The MPS-based simulation of fermionic systems is most often carried out by em-
ploying the so-called Jordan-Wigner transformation which allows to map spin de-
grees of freedom to fermionic degrees of freedom (and vice versa).

Let σ̂+i , σ̂−, σ̂z represent Pauli operators on a chain of spins. One may introduce
the objects
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A[1] A[2] A[3] A[4] A[5]

A[1] A[2] A[3] A[4] A[5]

Ξ2 Ξ3 Ξ4
hf2f5i =

Jordan-Wigner 
Trans. ��

2 �+
5

Figure 4.20: The evaluation of a fermionic expectation value can be carried out in
MPS language by employing the Jordan-Wigner transformation. This requires the
insertion of strings of "filling" operators Ξ̂j , see main text.

Ξ̂j = e+iσ̂+
j σ̂−

j (4.26)

f̂j =

j−1∏
k=1

Ξk σ̂
−, (4.27)

n̂j = (1 + σ̂z)/2, (4.28)

from which it may be readily verified that one obtains operators f̂ (†)i obeying the
canonical fermionic anticommutation relations {f̂i, f̂ †j } = δi,j and zero otherwise.

An important point to note when employing this mapping to simulate fermionic
systems arises due to the non-local nature of the mapping in terms of strings of
Ξ̂j operators, representing "filling" negative factors controlled by a site’s "occupa-
tion number" σ̂+σ̂−. What this means in practice is that, in simulating fermionic
models, one may employ the same implementation of an MPS code as for dis-
tinguishable degrees of freedom, e.g., spins, provided that such strings of filling
factors are properly accounted for.

Thus, for example, in evaluating the two-point correlator f̂2f̂
†
5 , see Fig. 4.20, one

finds in the spin picture

⟨f̂2f̂ †5⟩ = ⟨Ξ̂1 σ̂
−
2 Ξ̂1Ξ̂2Ξ̂3Ξ̂4 σ̂

+
5 ⟩

= ⟨σ̂−2 Ξ̂2Ξ̂3Ξ̂4σ̂
+
5 ⟩.

The inclusion of these "filling" factors may be carried out in a straightforward
manner whenever employing an MPO-based formulation of the DMRG algorithm.
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4.6.2 Higher-dimensional tensor networks

In the case of more generic Ansätze, the lack of a 1D structure turns the Jordan-
Wigner approach above into a rather cumbersome one. Even more, given that the
strings of Jordan-Wigner Ξ̂j operators will now transform generic local operators in
2D into highly non-local objects, there is no clear picture on which to understand
the effect of simulating such objects using tensors network Ansätze, i.e., wave
functions which have been designed to provide efficient descriptions of ground
states of local Hamiltonians.

A much more convenient approach has been developed in Refs. [131–134], where it
is shown how the introduction of two simple ingredients is enough to account for the
effect of the fermionic anticommutation relations giving rise to additional negative
signs in fermionic simulations. However, before jumping to the presentation of
these ingredients we need some preliminaries. Below we follow the presentation
in [132].

The first thing to note is that fermionic models are generically described by parity-
preserving Hamiltonians. Here by parity we refer to the operator P̂ , satisfying
P̂ 2 = 1 (thus providing a Z2 quantum number), determining whether a state
contains an even or and odd number of fermions. This implies that one may
separate the system’s Hilbert space H into even (H(+)) and odd (H(−)) components
as

H ∼= H(+) ⊕H(−) (4.29)

in which states may now be labelled according to their parity p as |p, tp⟩, with tp
a degeneracy label, satisfying P̂ |p, tp⟩ = p|p, tp⟩.

P

PP

P
P

= X

αi βi

αiβi αo βo

αi βi

Figure 4.21: Graphical summary of fermionization rules for higher-dimensional
tensor networks. Left: Z2-invariant tensor preserving fermionic parity. Right:
substitution of index crossings by fermionic swap gates, see main text.

Once the underlying symmetric structure of the many-body space is clear, one may
employ all of the techniques discussed in the previous sections simply by applying
the following fermionization rules
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Fermionization Rules
▷ fermionic parity shall be preserved exactly, see Fig. 4.21.
▷ crossings of indices shall be replaced by fermionic swap tensors X

satisfying

Xαi,βi,αo,βo = δαi,βoδβi,αoS(αi, βi),

with S(αi, βi) = −1 iff the parity of the states satisfies p(αi) = p(βi) =
−1, otherwise S(αi, βi) = 1, see Fig. 4.21.

We conclude this section by directing the interested reader to some of the works [107,
131–133, 135–139] in which this simple set of rules has been employed to simulate
various types of fermionic models.
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Chapter 5

iPEPS study of the
Kitaev-Heisenberg model

In condensed matter physics, the drive behind the exploration of complex quantum
systems exhibiting exotic properties stems not only from their intrinsic interest at
a fundamental level but also from a very practical perspective. Currently a very
active area of research pertains the possibility of employing quantum systems for
the implementation of general computing machines, i.e., quantum computers; a
possibility initially proposed by Feynman [140] and which many believe to be a
promising route towards achieving a (potentially exponential) speed-up over its
classical counterpart.

Among the various proposals available, topological quantum computation (TQC) [16]
has received notorious consideration as one of the most promising approaches to-
wards the development of a quantum computer. In this approach one relies on the
peculiar exchange properties of exotic quasi-particles called anyons [141–146]. As
their name indicates, such excitations need not necessarily fall within the usual
classification of fermions or bosons but, instead, the overall phase factor arising as
one moves one around another is in general arbitrary.1 In fact, such excitations can
only arise in quasi-particle form in two-dimensional systems, as it is here where the
effect of exchanging, or braiding, particles is described by the irreducible represen-
tations of the braid group and is deeply connected to the topological properties of
the system.2 As shown by Freedman et al. [17], this seemingly simple observation
has the powerful consequence that generic computations may be encoded in terms

1Actually the effect of exchanging two particles need not even result in an overall phase
factor. The cases in which it does refer to so-called Abelian anyons. In the more general case
the irreducible representations of the braid group need not be one-dimensional, thus potentially
leading to more complex superpositions. In this case one speaks of non-Abelian anyons.

2The term braiding here arises from the fact that the outcome of an exchange of anyons in
general depends on the order in which it is performed, so that one may visualize the space-time
quasi-particle trajectories as the braiding of thin fibers.
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5.1 Kitaev’s honeycomb model

of a highly coordinated braiding of such particles.

Quantum spin liquids (QSLs), i.e., systems made up of (pseudo-)spin degrees of
freedom in which strong quantum fluctuations preempt the formation of symmetry-
breaking order as one takes the temperature of the system to absolute zero, have
been a common target of study in this context. The reason is that, typically arising
in (Mott) insulating compounds, the Lieb-Schultz-Mattis theorem (and generaliza-
tions thereof) [147–149] guarantees that their featureless nature is almost certainly
bound to lead to exotic topologically ordered phases. Typical of these phases is
the emergence of fractionalized excitations obeying anyonic statistics.

One of the most paradigmatic examples of a QSL arises in a model initially pro-
posed by Kitaev [18]. As shown by Kitaev, not only is this model exactly soluble
but it also hosts so-called Ising anyons in its spectrum. Given the peculiar nature
of its interactions, however, it was long believed that it would remain as nothing
more than a theoretical curiosity until a pioneering proposal by Jackeli and Khal-
iullin [150] made it clear that it might be possible to realize the highly anisotropic
interactions in real materials, provided that additional, more conventional, inter-
actions are introduced. This work spurred numerous theoretical proposals where
Kitaev’s model was extended in various ways in attempts to bridge the physics of
the materials to those of the highly sought after model.

In this chapter we shall explore one of these extensions known as the Kitaev-
Heisenberg model, employing the iPEPS Ansatz. Most of the results presented in
this chapter have been published in [151].

5.1 Kitaev’s honeycomb model

The model originally proposed by Kitaev in Ref. [18] describes a system of S = 1/2
spins on a honeycomb lattice interacting via the Hamiltonian

H = −Jx
∑

x−bonds

σ̂xi σ̂
x
j − Jy

∑
y−bonds

σ̂yi σ̂
y
j − Jz

∑
z−bonds

σ̂zi σ̂
z
j , (5.1)

with each sum running over the subset of bonds labeled by the corresponding
type, see Fig. 5.1, and σ̂ representing the Pauli operators. The Hamiltonian is
thus given by highly anisotropic Ising-like interaction terms, each of which couples
only the spin components matching the labeling of the bonds on the lattice. As one
might already expect the directional nature of the interactions makes this model
a strongly frustrated one, as there is no simple way of satisfying all interaction
terms simultaneously. Indeed, it has been shown that, already at the classical
level, the model has a ground-state degeneracy growing exponentially fast with
system size [152].
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Figure 5.1: Left: labeling of the links of a honeycomb lattice according to Kitaev’s
construction. Center: phase diagram of Kitaev’s honeycomb model; the outermost
triangle corresponds to the intersection of the plane Jx + Jy + Jz = 1 and the
positive octant (Jx, Jy, Jz ≥ 0). Right: unit cell employed for our iPEPS study.

From the form of the Hamiltonian it can be readily verified that it possesses a Z2

time-reversal symmetry, corresponding to the mapping Ŝ → −Ŝ, as well as a C∗
3

composite symmetry made up of a 2π/3 lattice rotation about any site and a 2π/3
spin rotation about the [111] spin axis, properly reflecting the spatial dependence
of the interaction terms.

In the following section, for the sake of brevity, we shall directly state the main
results presented by Kitaev in Ref. [18], as well as other relevant results from
Ref. [153]. The interested reader is referred to the previous references for a complete
account of the beautiful constructions employed in obtaining these results.

5.1.1 Exact Results

As shown by Kitaev, as well as subsequent work [152–154], the model can be
mapped to one of Majorana fermions hopping in the presence of static Z2 gauge
fluxes. The ground-state sector is characterized by having a gauge-flux free config-
uration and the dispersion relation of the fermions in this flux-free sector is given
by

ϵq = ±|fq| (5.2)

with fq = 2(Jxe
iq1 + Jye

iq2 + Jz), q1 = q · n1, q2 = q · n2, and the lattice basis
vectors n1 = (12 ,

√
3
2 ) and n2 = (−1

2 ,
√
3
2 ). As illustrated in the center panel of

Fig. 5.1, the model exhibits 4 different phases, characterized by the existence or
absence of a finite gap to excitations. The gapped phases are generically called A
phases whereas the gapless phase (center triangle) is called B phase. To determine
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the boundary between gapped and gapless phases, one may simply look for lines
along which Eq. (5.2) vanishes. It is simple to verify that the conditions

|Jx| ≤ |Jy|+ |Jz|,
|Jy| ≤ |Jx|+ |Jz|,
|Jz| ≤ |Jx|+ |Jy|,

determine the region for which the gap is zero. Within this region it can be seen
that there are exactly two wave vectors ±q∗ at which the gap closes.

Follow-up work by Baskaran et al. in Ref. [153] showed how it was possible to
extract the exact analytical dynamical correlation functions of the model. For the
ground state it was shown that the static two-site correlation functions exhibit
an extremely peculiar form, i.e., the correlation functions are non-zero if they
correspond to spins on neighboring sites and the spin components match the type
of the bond joining the spins, where they are given by

⟨σαi σαj ⟩ =
√
3

16π2

∫
BZ

cos θ(q1, q2) dq1dq2, (5.3)

with cos θ(q1, q2) =
Re[fq ]
|fq | and fq as given above.

We shall use these known results in the next section to assess the accuracy of iPEPS
Ansatz wave functions when simulating the model. This is an important prelim-
inary step on our way to considering additional extensions, as there have been
claims in Ref. [155] that the original iPEPS Ansatz is incapable of providing an
adequate description of the complex ground state of the model, particularly inside
the gapless phase. Here we shall provide compelling evidence for the contrary.

5.1.2 iPEPS Benchmarks

For all results below we have employed iPEPS wave functions with the structure
shown in Fig. 5.1 where, to simulate the honeycomb lattice, we map it onto a
so-called brickwall lattice containing trivial bonds, i.e., bonds on which the PEPS
Ansatz carries a trivial bond dimension D = 1 (dashed lines in Fig. 5.1) and
thus do not couple the degrees of freedom on that bond. We have also employed
complex arithmetic as these wave functions yielded the best results.

Before diving into the main topic of this chapter, we shall stop to consider the
suitability of iPEPS wave functions to provide a proper description of the complex
ground state for Kitaev’s model. Indeed, since we will only be interested in per-
forming simulations starting from the most challenging point of the phase diagram
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Figure 5.2: Energy per site as a function of inverse bond dimension D in both
FM and AFM regimes (left). Order parameter Omag as a function of inverse bond
dimension D in both FM and AFM regimes (right).

in Fig. 5.1, i.e., the point Jx = Jy = Jz = 1 (red dot), right in the middle of the
gapless phase, we shall focus on this location.

We begin by looking at the ground-state energies per site. Given the form of
Eq. (5.1) it is possible to directly infer the energy per site from the evaluation of
the correlators in Eq. (5.3). By evaluating this expression we find the numerically
exact value of E0 = −0.3936. The iPEPS results employing tensors optimized via
the full update are presented in Fig. 5.2(a). There it can be seen how, starting
from a bond dimension of D = 4, as one increases the bond dimension a systematic
improvement of the variational energies takes place. The reason we do not show
values of the bond dimension D < 4 is that, curiously, they failed to converge to
a state which could be convincingly placed inside the expected QSL phase. The
same was true for all states obtained via the simple update, regardless of the bond
dimension employed. This makes it clear that employing the right optimization
scheme plays a key role in obtaining proper results. In the end we managed to
obtain the energies EFM

0 = −0.3931 and EAFM
0 = −0.3933 for the largest bond

dimension considered D = 7, which provide a relative accuracy of ∆EFM
0 ∼ 0.1%

and ∆EAFM
0 ∼ 0.07% at the ferromagnetically and antiferromagnetically coupled

points, respectively.

Another element characterizing a QSL are quantum fluctuations strong enough to
preclude the formation of, in this case, Z2 symmetry-breaking long-range order
even at absolute zero temperature. Thus to evaluate this component of our iPEPS
wave functions we have considered the root-mean-square value of the local mag-
netic moments as a measure of this symmetry breaking, i.e., we define the order
parameter
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Figure 5.3: Nearest-neighbour correlation functions in the antiferromagnetically
coupled (a) and ferromagnetically coupled (b) cases.

Omag =

√
1

N

∑
α∈UC

⟨σ̂α⟩2, (5.4)

with σ̂α the Pauli operator at each unit-cell site. The results for both FM and
AFM points are shown in Fig. 5.2(b). A strong suppression in Omag is visible for
all values of the bond dimension considered. For the FM coupled data we find a
maximum of 0.03 at D = 4 with a subsequent suppression to a value of 0.017 at
D = 7. On the other hand for the AFM coupled data we find a maximum of 0.02 at
D = 4 with a subsequent suppression to a value of 0.012 at D = 7. Together with
the systematic reduction in symmetry-breaking as the bond dimension is increased,
these results provide a clear signature of the vicinity of our wave functions to a
QSL phase.

Finally, owing to the extremely peculiar form of the spin correlators in the ground
state of the model, we have obtained additional signatures of the vicinity of our
wave functions to a putative Kitaev QSL phase by looking at the local correlation
functions. The results are shown in Fig. 5.3. By evaluating Eq. (5.3), it is readily
verified that a value ⟨σαi σαj ⟩ ≈ 0.525 is to be expected for neighboring sites for
which the bond type label matches the spin component α. We find that our results
indeed systematically approach this value as the bond dimension is increased. It
should be mentioned that the XX and YY correlators exhibit a curious deviation
with respect to the ZZ correlators. This is an artificial breaking of the 2π

3 composite
symmetry mentioned above, arising purely as a numerical artifact of the way we
map the honeycomb lattice onto a brickwall lattice for the construction of the
CTM environment tensors. Importantly, this feature is systematically reduced as
we increase the number of variational parameters in the wave functions and the
environments.

At this point it should already be fairly clear that obtaining an adequate description
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of the Kitaev QSL phase is possible via iPEPS wave functions. Even though
it should still be possible to improve the quality of the approximations further
by increasing the value of the bond dimension, i.e., the number of variational
parameters, the computational cost of doing so would have taken a prohibitively
long time.

5.2 Kitaev-Heisenberg model

As mentioned in the introduction, a large part of the motivation behind the study
of QSL phases arises from the possibility of their realization in real materials.

A family of materials which has received substantial attention over recent years [156–
165] corresponds to the so-called Iridates, i.e., compounds of the form A2IrO3

(A = Na,Li), in which a sizeable charge gap together with a strong spin-orbit cou-
pling lead to an effective description of the active t2g orbitals of Ir4+ ions in terms
of Kramers-doublet pseudospin-1/2 degrees of freedom arranged on a honeycomb
lattice.

A very interesting proposal was put forward by Chaloupka et al. in Ref. [166]
based on the Kitaev-Heisenberg model (KHM) of Ref. [167] yet extended to its full
parameter space, i.e.,

H
(γ)
i,j = A

(
cosφ Si · Sj + 2 sinφ S

(γ)
i S

(γ)
j

)
, (5.5)

with (i, j) labeling nearest-neighbor sites of a honeycomb lattice, the first term
being an isotropic Heisenberg interaction, the second an anisotropic Kitaev inter-
action in which γ ∈ (x, y, z) determines the spin components interacting along a
given bond, φ ∈ [−π, π) and A an overall scaling factor which we set to one.

5.2.1 Previous work

This model has been tackled in the past using a variety of approaches in different
regions of its full parameter regime [155, 166–169]. In its original formulation
(covering only the region φ ∈ [−π/2, 0]) small system studies [167, 169] found
either a second or weak first order phase transition joining a QSL phase to a so-
called stripy phase at roughly φ ≈ −76◦ (or α ≈ 0.8 in the original formulation),
see Fig. 5.1. This value is also reported in the extended formulation on a 24-
site system [166]. The restricted formulation was also studied from a slave-particle
mean-field approach in Ref. [168] where the behavior of the order parameter showed
a discontinuity at a value of φ ≈ −72◦ (α ≈ 0.76). There it was nevertheless
suggested that the transition could end up being of either second or weak first-
order type, upon inclusion of quantum fluctuations beyond the mean-field level.
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5.2 Kitaev-Heisenberg model

Table 5.1: Schematic representation of the various phases found in the phase dia-
gram of the Kitaev-Heisenberg model. Circles of equal (different) color represent
spins aligned (anti-)parallel to each other. From left to right: ferromagnetic, zigzag,
Néel and stripy orders.

Finally, a so-called mixed PEPS (mPEPS) approach in Ref. [155] found a phase
transition at φ ≈ −89◦ (α ≈ 0.99) or, perhaps more precisely, it was found that
the QSL phases did not have a finite span in the thermodynamic limit.

5.2.2 iPEPS approach

Here we will be interested in studying the extension of Kitaev’s model given by
Eq. (5.5). The interest in employing the iPEPS algorithm arises due to various rea-
sons: first, the algorithm is formulated directly in the thermodynamic limit, allow-
ing it to overcome limitations due to the intrinsically small system sizes available
from ED and MPS studies previously employed; second, since the bond dimen-
sion, representing the only refinement parameter in the Ansatz, can be seen as a
measure of the amount of entanglement encoded by the wave function, by system-
atically increasing its value we may monitor the effect of introducing additional
correlations beyond the mean-field level, given by the value D = 1, thus providing
insights beyond those from the previous slave-particle mean-field approaches. 3

More specifically, we will be concerned with addressing the following open ques-
tions: do the QSL phases survive in the thermodynamic limit? and, if they do,
what type of phase transition leads to the various phases found beyond the Kitaev
QSL phases?

In order to tackle these questions we will employ the following approach. First, a
rough idea of the phases present and their locations may be obtained by performing
an optimization of the iPEPS wave functions around the full parameter range
φ ∈ [−π, π). Once these phases have been identified, we address both questions

3Here it should nevertheless be emphasized that the way iPEPS approaches the mean-field
level is not expected to be equivalent to the approach in Ref. [168], where the slave-particle
formulation employed allowed for an adequate representation of the Kitaev QSL phases. Indeed,
as mentioned in the previous section, we were not able to find good QSL phase representatives
below D = 4.

66



iPEPS study of the Kitaev-Heisenberg model

above simultaneously by letting each phase compete, i.e., by choosing tensors
representative of each neighboring phase and optimized far away from a potential
transition point, we carry out additional optimization steps for a range of values of
φ across the expected phase transition using these representatives as initial states.
This provides an initial bias for each optimization. Then, should the QSL energies
remain lower that those of the competing phases across a finite range of φ values,
one obtains strong evidence for the survival of the QSL phase in the thermodynamic
limit. At the same time one may observe the behavior of the energy curves as φ is
varied, so that in the case of a first-order phase transition the metastability of the
competing phases in the close vicinity of the transition should allow us to observe
an energy crossing. On the other hand, should the competing energy lines meet at
a vanishing angle, we will have evidence for a continuous phase transition. These
observations can of course be complemented with measurements of various order
parameters, which should also exhibit clear signatures of the type of transition.

5.2.3 Results

In their proposal Chaloupka et al. [166] performed a 24-site Lanczos diagonal-
ization study of this model in which 6 different phases were identified, namely:
antiferromagnetically coupled QSL (ASL), ferromagnetically coupled QSL (FSL),
Néel, stripy, ferromagnetic and zigzag, see Fig. 5.1. We have found the same phases
using iPEPS and we show an overview of the full phase diagram found in our study
in Fig. 5.4.

In the study by Chaloupka et al. the phase transitions between symmetry bro-
ken phases (stripy/Néel and ferromagnetic/zigzag) were found to be of first-order,
whereas the FSL to ordered transitions were found to be of either second or weak
first-order. In the case of the ASL phase, the nature of the transitions to the or-
dered zigzag and Néel phases was not directly identified but observed to correspond
to level crossings, thus pointing towards first-order-type transitions.

Here, in order to capture the different types of magnetic order we define four
additional order parameters, i.e.,

Oferro =

√
1

4
(⟨σa⟩+ ⟨σb⟩+ ⟨σc⟩+ ⟨σd⟩)2, (5.6)

Ostripy =

√
1

4
(⟨σa⟩ − ⟨σb⟩ − ⟨σc⟩+ ⟨σd⟩)2, (5.7)

Ozigzag =

√
1

4
(⟨σa⟩+ ⟨σb⟩ − ⟨σc⟩ − ⟨σd⟩)2, (5.8)

ONéel =

√
1

4
(⟨σa⟩ − ⟨σb⟩+ ⟨σc⟩ − ⟨σd⟩)2, (5.9)

with each of them being designed to identify the different types of order expected
inside different regions of the phase diagram. Any form of symmetry breaking
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5.2 Kitaev-Heisenberg model

beyond those captured by these four order parameters should be visible through a
finite Omag, see Eq. 5.4.

Figure 5.4: Regions spanned by the different phases found using iPEPS. Four dif-
ferent magnetically ordered (collinear) phases are found: Néel (top right), zigzag
(top left), ferromagnetic (bottom left) and stripy (bottom right). Magnetically
ordered phases are characterized using the order parameters in (5.4)-(5.9). Re-
gions shaded in red correspond to the spin liquid phases. Phase boundary angles
corresponding to D = 6 are indicated by red thick lines on the edge of the circle.
Phase areas and transition angles found by a 1/D → 0 extrapolation are indicated
by the blue shaded regions and blue thick lines.

FSL-Stripy transition

In order to illustrate the procedure proposed above let us consider the region
corresponding to FM Kitaev couplings and AFM Heisenberg couplings defined by
φ ∈ [−90◦, 0]. After a preliminary set of runs we find 3 different phases in this
quadrant: FSL, stripy and Néel as one moves from φ = −90◦ to φ = 0. Noting
that this matches the results from previous studies [155, 166–169] it remains to
verify how our results agree with the transition points found previously. Having
obtained tensors representing the phases at the two extremes of the angle window
shown in the top panel of Fig. 5.5, we perform imaginary-time evolution on these
states for all values of φ in this window.

There an energy crossing at a finite angle is clearly observed for a value of φ ≈ −80◦

with D = 6. From the arguments presented above we believe that this represents
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Figure 5.5: Top: Energy crossings for the FSL to stripy phase transition. Dotted
(Purple), Dash-Dotted (Red) and Dashed (Orange) lines correspond to the location
of the phase transition for D = 4, 5, 6, respectively. The inset shows the maximum
deviation of the bond energies from the mean value normalized to the mean value.
Bottom left: Omag within each phase (green circles: stripy / blue squares: FSL)
and the reconstructed ground state curve (red diamonds). The inset shows the
behavior of Ostripy over the same range of angles. Order parameters are normalized
to one. Dashed orange lines indicate the estimated location of the phase transition
for D = 6. Bottom right: linear extrapolation of the phase boundary in the limit
1/D → 0.

an actual level crossing in the system. Moreover, the magnetization data shows
a pronounced jump consistent with a first-order phase transition, see bottom left
plot in Fig. 5.5. Here all order parameters remain remarkably close to zero within
the φ ∈ [−90◦,−80◦] range, as expected for the FSL, and a jump in both Omag

and Ostripy occurs as the energies of the FSL and stripy phases cross, indicating a
transition into a stripy ordered phase. In the upper inset in Fig. 5.5 we show the
relative deviation in bond energies from the average value and here a jump is also
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5.2 Kitaev-Heisenberg model

visible. Similarly, the transition between symmetry-broken stripy and Néel phases
is found to be of first-order and located at φ ≈ −33◦ (data not shown).

We note here that the phase boundary systematically shifts towards smaller values
of φ (in norm) as we increase the bond dimension D, effectively increasing the size
of the FSL region. A linear extrapolation in 1/D to the D → ∞ limit yields a
phase boundary at φ∞ ≈ −77◦, very close to the value found in previous studies
[166, 167, 169], i.e., φ ≈ −76◦ (or α ≈ 0.8 in the original parametrization [167]),
see bottom right panel in Fig. 5.5. As there is no clear argument for the validity
of such an extrapolation, we quote the transition values for D = 6 in Tab. 5.2 and
interpret this value as a lower bound for the extent of the FSL phase on this part
of the phase diagram. We will do this consistently in all cases below.
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Figure 5.6: Data for the FSL to Ferro (left column) and the ASL to Zigzag (right
column) phase transitions. Top: energy crossing, middle: order parameters, bot-
tom: linear extrapolation of the phase boundary in the limit 1/D → 0.

70



iPEPS study of the Kitaev-Heisenberg model

FSL-Ferromagnetic transition
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Figure 5.7: Energy crossings (top), Omag

(middle) and 1/D → 0 extrapolation of
the phase boundary (bottom) for Néel
and spin liquid phases.

Keeping the sign of the couplings for
the Kitaev term fixed and flipping the
interaction from AFM to FM for the
Heisenberg term (this puts us in the
third quadrant of the phase diagram,
see Fig. 5.4) we find two phases: fer-
romagnetic and FSL, with the phase
boundary being located at φ ≈ −102◦

for D = 6 and a D → ∞ extrapo-
lated value of φ∞ ≈ −106◦. An energy
crossing at a finite angle together with
a discontinuity in the order parameters
Omag and Oferr of comparable magni-
tude to that of the FSL-stripy transi-
tion again indicate that this is a first-
order phase transition, see left panels
in Figs. 5.6 and 5.8.

ASL-Zigzag transition

Switching the character of the interac-
tion of the Kitaev term to AFM brings
us to the second quadrant of the phase
diagram where we find 3 phases: fer-
romagnetic, zigzag and ASL with the
zigzag phase in between the ASL and
ferromagnetic phases, see Fig. 5.4. The
transition from ASL to zigzag is located
at φ ≈ 92◦ with D = 6 (a D → ∞
extrapolation increases this value only
very slightly to φ∞ ≈ 93◦), see right
panels in Fig. 5.6, whereas that from
ferromagnetic to zigzag is found to be
at φ ≈ 161◦. These transitions also ex-
hibit energy crossings at finite angles
with the angle (strength of the transi-
tion) being significantly enhanced between the symmetry-broken phases. Discon-
tinuities in the order parameters Omag / Ozigzag in the first case (see the right
panels in Fig. 5.6) and Oferro / Ozigzag in the second (data not shown) again allow
us to infer that these transitions are of first-order type.
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ASL-Néel transition

Finally, in the regime with all antiferromagnetic couplings φ ∈ [0◦, 90◦], we find
two phases: ASL and Néel. The phase transition is located at φ ≈ 88◦ with D = 6
(extrapolating D → ∞ again brings only a very slight lowering to φ∞ ≈ 87◦)
and an energy crossing at a finite angle together with discontinuities in Omag /
ONéel tell us that this transition is of first-order type as well, see Fig. 5.7. Here
the magnitude of the jumps in the ASL-Néel and ASL-zigzag cases is considerably
weaker than in the lower half of the phase diagram, see Fig. 5.8.

As noted previously in Ref. [167], the regions corresponding to Néel and zigzag
phases are connected via a four-sublattice transformation. The same transfor-
mation connects the stripy phase to the ferromagnetic phase. As is well known,
stronger quantum fluctuations in the Néel phase lead to a suppression in the order
parameters compared to the ferromagnetic phase thus yielding weaker discontinu-
ities in the phase transitions in the upper half of the phase diagram as compared
to those found in the lower half. These features are nicely reflected in the order
parameters shown in Fig. 5.8 as their magnitudes at the phase transition points
match quite well.

86 88 90 92 94
0.0

0.2

0.4

0.6

0.8

1.0

Φ @degD

O
rd

e
r

P
a

ra
m

e
te

r

æ
æ æ

æ æ

æ æ æ æ æ
æ æ

æ
æ

æ æ

æ

à
à à

à à

à à à à à à à à à à à àì ì ì ì ì ì ì ì ì ì
ì ì

ì
ì

ì ì

ì

ì Ozigzag HD=6 - Χ=51L
à Oneel HD=6 - Χ=51L
æ Omag HD=6 - Χ=51L

-110 -100 -90 -80 -70
0.0

0.2

0.4

0.6

0.8

1.0

Φ @degD

O
rd

e
r

P
a

ra
m

e
te

r

æ
æ

æ
æ

æ
æ æ

æ
æ

æ
æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ

æ æ
æ æ

æ
æ

æ
æ

æ

à
à

à
à

à
à à

à
à

à
à à à à à à à à

à à à à à à à à à à à à à à à à à à à à àì ì ì ì ì ì ì ì ì ì ì ì ì ìì ì ì ì ì ì ì ì ì ì ìì ì ì ì ì

ì ì
ì ì

ì
ì

ì
ì

ì
ì Ostripy HD=6 - Χ=51L
à Oferro HD=6 - Χ=51L
æ Omag HD=6 - Χ=51L

Figure 5.8: Order parameters as a function of the angle φ in the vicinity of the
points φ = ±90◦, normalized to 1. Regions of strongly suppressed symmetry
breaking are clearly visible in both cases with finite discontinuities in the order
parameters. The shaded regions indicate the estimated extents of the regions
covered by the QSL phases. All order parameters not shown remain very close to
zero.

We summarize the most important results found in Figs. 5.4 and 5.8.
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Figure 5.9: Order parameters Omag as a function of inverse bond dimension D at
the various phase transitions, normalized to 1. Blue continuous lines correspond to
linear fits to the data. Red lines (dashed) correspond to the D = 6 values whereas
blue (dot-dashed) lines correspond to the value extrapolated to 1/D → 0. The
blue shaded area highlights the region where the true value of the order parameter
is expected to lie in the thermodynamic limit.

5.3 Discussion

In summary, in the case of the spin liquid with antiferromagnetic couplings we
found evidence of first-order phase transitions into symmetry-broken Néel and
zigzag phases for finite values of the bond dimension D, in terms of energy crossings
at finite angles as well as discontinuities in the order parameters. As can be seen
in Fig. 5.9 a considerable suppression of the discontinuity takes place as additional
entanglement is introduced by growing the bond dimension D. This suggests that,
in contrast to the situation on the lower half of the phase diagram, these transitions
are likely to become weak first-order transitions in the thermodynamic limit.

In the case of the spin liquid with ferromagnetic couplings we have also found evi-
dence for first-order phase transitions leading to ferromagnetic and stripy ordered
phases, in contrast with results from previous small system studies [166, 167, 169],
and a reduced extent compared to these previous results. As shown in Fig. 5.9
the behavior of the order parameters as D is increased is highly suggestive of finite
discontinuities, even in the limit 1/D → 0, thus providing significant evidence for
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the first-order nature of these transitions in the thermodynamic limit.

iPEPS Lanczos
ASL - Néel 88◦ 88◦

ASL - Zigzag 92◦ 92◦

FSL - Stripy −80◦ −76◦

FSL - Ferro −102◦ −108◦

Ferro - Zigzag 161◦ 162◦

Stripy - Néel −33◦ −34◦

Table 5.2: Left: transition points found
using iPEPS with a bond dimension D =
6. Right: 24-site Lanczos results from
Chaloupka et al. [166].

Given that the phase boundaries
showed a systematic shift as a func-
tion of D effectively increasing the
size of the QSL phases, as shown in
Figs. 5.5, 5.6 and 5.7, we conclude
that our D = 6 results correspond to
lower bounds. This means that upon
increasing the bond dimension in our
Ansatz beyond D = 6 we expect the
FSL to span at least a region φ ∈
[−102◦,−80◦], whereas the ASL is ex-
pected to cover at least the region φ ∈
[88◦, 92◦]. The effect being more no-
ticeable in the former case can be re-
lated to the nature of the competing phases (ferromagnetic and stripy) allowing
the ferromagnetic spin liquid phase to profit more effectively from additional quan-
tum fluctuations introduced as the bond dimension is increased.

Support for our estimates of the location of the phase transitions and their first-
order nature has been provided more recently by iDMRG studies of the KHM on
infinite cylinders [170], where stronger discontinuities for the transitions between
the FSL and the ferromagnetic/stripy phases compared to those between the ASL
and the zigzag/Néel phases are also found.

As mentioned in Sec. 5.2.1, the possibility of a first-order phase transition between
the FSL and the magnetically ordered phases was discussed in Ref. [168]. There
it was discussed how, within a slave-particle mean-field formulation, the transition
could be one between a Z2 spin liquid and a (gapped) U(1) spin liquid in which,
due to nonperturbative effects, an immediate confinement of the spinons in the Z2

phase directly leads into a magnetically ordered phase.

A significant difference between our results and those in Ref. [168] corresponds to
the magnitude of the discontinuity observed, where in our simulations we find a
discontinuity in the magnetic order parameters about twice as large as the one
observed in Ref. [168], even after 1/D → 0 extrapolation. Given that our Ansatz
properly captures the various phases, it is highly unlikely that a sudden jump,
weakening the discontinuities, arises for larger values of the bond dimension D.
One final possibility relates to the intrinsic rigidity of employing fixed-size iPEPS
unit cells. Such a rigidity should be particularly visible at first-order phase tran-
sitions, where the system may not freely nucleate as the transition happens.
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Chapter 6

Infinite projected entangled-pair
states on cylinders

One of the main forces driving the area of TNAs stems from the remarkable success
of the DMRG in the simulation of 1D lattice models. This success, as we discussed
in Ch. 4, is essentially a consequence of the property that ground states of gapped
and local 1D Hamiltonians both obey an area law of entanglement entropy as well
as admit an efficient representation in terms of MPS.

Perhaps most notorious is the fact that the class of MPS has been repeatedly found
to provide very accurate results even when studying, e.g., critical systems [171–
175], in which the closing of the energy gap leads to a spreading of correlations over
all length scales in the system, or 2D systems [22, 176–178], where an area law can
no longer be used to certify the efficiency of MPS. As a consequence MPS represent
not only the golden standard for the simulation of 1D lattice models, but also one
of the most competitive algorithms for the simulation of strongly-correlated 2D
systems.

In the realm of 2D TNAs, and even though significantly younger than MPS,
(i)PEPS have already shown considerable promise as a competitive algorithm for
the simulation of strongly-correlated systems, with notable achievements including
some of the lowest variational energies and important insights into the physics of
the t-J [107, 135], Hubbard [136], as well as various frustrated spin models [151,
179–189] in the thermodynamic limit.

Even though numerous studies have made it clear that the class of MPS provides a
very competitive approach for the simulation of strongly-correlated systems, even
beyond 1D, the fact that generic ground states of systems in higher dimensions
impose heavier requirements on the amount of entanglement an Ansatz wave func-
tion must be able to encode, poses serious questions to the scalability of MPS as
the method of choice for their study.
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To illustrate the issue let us consider a scenario in which the ground state of a
2D system is known to obey an area law. One possible way of encoding this
wave function would be to map it onto an, intrinsically 1D, MPS wave function
by numbering sites on the 2D lattice sequentially, e.g., in a snake pattern as in
Fig. 6.1. Another approach would correspond to using a PEPS wave function, with
which the connectivity of the lattice would be naturally reproduced, see Fig. 6.1.
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Figure 6.1: Possible coverings for the simulation of 2D systems using PEPS (left)
and MPS (right) on a square lattice. The brown (A) and blue (B) halves illustrate
a possible bipartition of the system.

Upon bipartition of the system, e.g., as in Fig. 6.1, the entanglement entropy SMPS

and SPEPS of the Ansatz states will be upper bounded by their corresponding bond
dimensions as

SMPS ∼ ln(m),

SPEPS ∼W ln(D),

with W the width of the system, or the (interface) surface area of the biparti-
tion. Since both states are supposed to encode the same underlying wave function,
naively equating entropies gives

m ∼ DW . (6.1)

In other words, the bond dimension m required for the MPS encoding would grow
exponentially fast with the width of the system compared to the bond dimension D
required for the PEPS. This can be seen as a reflection of the fact that, whenever
dealing with 2D systems, MPS are known to require an exponential scaling of
the bond dimension in the smallest system dimension in order to preserve a given
accuracy [190].
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To get an idea of the actual numbers one might consider a value of D = 4, which is
well within the limits of what is currently reachable in a numerical simulation, and
a width of W = 10. This gives m = 1.048.576, a value vastly exceeding what is
currently feasible using state-of-the-art implementations of the DMRG algorithm.
Thus, in light of this simple entropic argument, it might appear obvious what the
method of choice should be whenever simulating 2D systems. However, as we have
remarked in Sec. 4, PEPS simulations do not inherit certain advantageous features,
related to numerical stability and computational complexity, present in MPS simu-
lations, e.g., the difference in computational scaling O(m3) vs. O(D10−12) allowing
for substantially larger value of m or the ability to generically choose a unitary
gauge, making it difficult to predict their relative performance based on such a
naive argument.

A few questions thus naturally begin to arise, namely: is it possible to employ
PEPS wave functions as a complementary approach once entropic demands start
becoming prohibitively large for MPS simulations on 2D systems? If so, for which
system sizes should this takeover begin to happen?

6.1 Previous work

The case of computations on infinite cylindrical geometries has received reduced
attention1 with a lot of the work focused on the extraction of topological infor-
mation [128, 193, 194] in which case the computations may be carried out using
cylinders of infinite width, which allow for convenient simplifications, or using
exact contractions of cylinders with modest widths. The case of numerical simula-
tions on cylinders with an arbitrary finite width has, to the best of our knowledge,
received no attention to date.

One may conceive a number of reasons as to why PEPS have received little atten-
tion over time for the simulation of semi-infinite cylinders. A first reason one may
imagine arises from the fact that the inclusion of the tensor indices corresponding
to the PBC can lead to an increase in computational complexity of the, already
rather expensive, algorithms. Another reason pertains the numerical stability of
the computations. Recall that the formulation of the algorithms on systems with
open boundary conditions (OBC) is typically performed in a way completely anal-
ogous to MPS simulations for finite systems, so that in contracting the network for
the norm ⟨ψ|ψ⟩, one may impose the unitary gauge introduced in Sec. 4.2, ensuring
the stability of the computations. However, extending this approach to systems
with periodic boundaries employing a PBC MPS boundary representation would
prevent one from imposing the unitary gauge, thus compromising the numerical
stability of the computations. Alternatively, should one insist on employing an

1Specializations of the iPEPS algorithm to ladders of reduced width, i.e., W ≤ 3, have been
considered in [191, 192]. These, however, do not scale well to arbitrary width cylinders.
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OBC MPS boundary description, this representation will be subject to consider-
ably larger entanglement requirements. The reason being that a direct OBC MPS
representation of the boundary would require the "folding" of the PBC PEPS in-
dices along the bulk, thus resulting in a squaring of the PEPS bond dimension
along the direction parallel to the boundary and, presumably, an increase of the
corresponding bond dimension for the MPS boundary representation. Given that it
is the boundary construction that poses the main bottleneck in PEPS simulations,
such an increase could render the algorithm essentially unusable.

In the following section we will evaluate various approaches in order to better un-
derstand what the best way of proceeding is, when carrying out PEPS simulations
on cylinders.

All results below represent original work by the author unless otherwise specified.

6.2 Contraction schemes

Given the lack of progress in our current setting, the first question to be addressed
is: how can a proper description of generic boundary fixed points be obtained? In
this section we will be exclusively concerned with this question.

Since, given the nature of the problem, it is possible to "cook-up" a very large
number of heuristic approaches to formulate the iPEPS algorithms on cylinders,
here we shall discuss only a few of the most reasonable possibilities. As we shall
see some of these may be rapidly disposed of based on simple arguments, and so
we will touch upon them only so briefly.

Figure 6.2: Illustration of a scheme in which one coarse-grains the iPEPS to width
where it can be contracted exactly. As in this scheme one starts to approach an
MPS description, the horizontal bond dimensions will likely need to scale expo-
nentially with coarse-graining iteration.
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6.2.1 Width-reduction scheme

As a first attempt one could try to reduce the width of the cylinder by obtaining an
effective description in terms of a narrower cylinder for which an exact contraction
of the boundary can be carried out exactly. This could be achieved, e.g., simply by
formulating coarse graining operations along the finite dimension of the cylinder,
as in Fig. 6.2, in such a way that only a maximum number of degrees of freedom,
i.e., a maximum bond dimension, are kept as one coarse grains the lattice.

This approach has a very fundamental shortcoming: in trying to effectively reduce
the width of the PEPS Ansatz we start to approach an MPS description. This
means that for this approach to remain effective, the bond dimension of the re-
duced PEPS tensors along the horizontal direction would potentially have to scale
exponentially with the number of coarse graining steps. Thus, such an approach
would effectively take us back to the original problem we found when employing
MPS encodings of 2D wave functions.

PBCOBC

Figure 6.3: Illustration of two possible ways of mapping an iPEPS wave function
on an infinite cylinder. One may choose to preserve translation symmetry along the
vertical axis by employing a PBC MPS (blue tensors) representation of the system
(right) or break this symmetry artificially by employing an OBC MPS(left).

6.2.2 OBC-MPS scheme

In this scheme we attempt to obtain boundary fixed point descriptions by employ-
ing OBC MPS encodings. To do this one must first perform a folding of the PEPS
indices along the boundaries, see Fig. 6.3, in order to obtain a PEPS transfer ma-
trix resembling that in a ladder/slab geometry. Using this representation we may
then employ the technique explained in Sec. 4.3.4 to obtain the boundary fixed
points.

This approach inherits the numerical stability provided by the ability to enforce
the unitary gauge presented in Sec. 4.2. It is nevertheless important to note that it
also entails an artificial breaking of translation symmetry, potentially removing one
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Figure 6.4: Illustration of the compression schemes employing a PBC MPS repre-
sentation of the boundaries. Here one insert approximate resolutions of the identity
at each bond after merging with a column of PEPS tensors.

of the advantages of preserving this symmetry at the level of the PEPS encoding.
Also, since now the boundary bond dimension corresponds to the coarse graining
of PEPS indices with dimension D2, the value of χ required to achieve convergence
could be increased significantly.2

The evaluation of observables can be done by employing the same ideas presented
in Sec. 4.3.4. The computational cost in this setting becomes O(χ3D6 + χ2D9d)
provided we employ the single-site optimization explained in the previous chapter
and we avoid the direct computation of the full cost function in Eq. 4.15.3

6.2.3 Local PBC-MPS schemes

In these schemes we employ a PBC MPS representation for the boundary, see
Fig. 6.3, and compress the enlarged boundary tensors upon absorption of a column
of bulk double PEPS tensors by introducing approximate resolutions of the identity
on each bond, as in Fig. 6.4, allowing us to preserve any translation symmetry
present in the PEPS representation.

In order to obtain the (approximate) resolutions of the identity required we have
employed two approaches. The first one relies on employing the idea of projective
truncations, successfully used in the context of TNR, see Sec. 3.3.3, where they
are given in terms of isometric matrices. We show the cost function employed in
Fig. 6.5. We shall refer to this approach as the projective truncation PBC (PT
PBC) approach. This approach can be implemented with a leading computational

2As a rule of thumb the values of χ for which convergence is typically achieved scale as
χ ∼ O(D2), whenever performing simulations using OBC. When using PBC, and then folding
these additional indices through the bulk, we effectively square the PEPS bond dimensions being
compressed and thus naively expect a scaling of the form χ ∼ O(D4).

3Employing the so-called double-site MPS optimization would entail a growth of the compu-
tational cost to O(χ3D8 + χ2D11d) and so we avoid its use here.
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complexity scaling as O(χ3D6). The second approach employs a modification of
the CTM procedure employed on the infinite plane [107], where the resolutions of
the identity are now given in terms of generic projectors. We shall refer to this
approach as the iCTM PBC approach and show the steps involved in Appendix A.
It can be implemented with a leading computational complexity of O(χ3D6)

Since in computing the resolutions of the identity above we do not employ the full
wave function, we refer to these schemes as local schemes.

These schemes have the advantage that, by preserving any translation symmetry
present in the PEPS unit cell, they allow for a convenient preconditioning of the
boundary tensors since one may simply recycle boundaries obtained on an infinite
plane. Here, to maximize efficiency, we shall recycle these boundaries directly and
employ the resolutions of the identity to obtain the tensor networks required for
measurements.

WA A

WB B

WA A

WB B-

2

V

V†

S

U

V

�

�V TM

T

Figure 6.5: Left: illustration of the cost function employed in the PT PBC scheme
to obtain resolutions of the identity in terms of isometries. Right: illustration of
a procedure employed to compress the cylindrical transfer matrix T (brown box)
representing the environment of a set of measurement tensors (yellow diamonds).
By performing an SVD of this environment one may improve the efficiency of the
computations in a controlled way.

When employing these schemes one may perform additional controlled approxi-
mations to improve the efficiency in calculating local observables. To do this we
employ a truncated SVD of the cylindrical transfer matrix T representing the en-
vironment around a set of measurement tensors, see Fig. 6.5, in which we keep
χV TM states after truncation. Such an approximation pays off particularly well
in situations where the width of the unit cell is significantly smaller than that of
the cylinder. The reason is that in such a case the spectrum of T thins down
exponentially fast with the ratio between widths.
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6.2.4 Global PBC-MPS scheme

This scheme represents a variant of the schemes above in which the full wave
function is employed in computing the resolutions of the identity at each bond.
We refer to this scheme as the full wave function iCTM PBC scheme and illustrate
in App. A a possible way of proceeding. However, we shall not be presenting data
obtained using this approach here.

6.3 Benchmarks

Since in PEPS simulations there is a number of different sources of error, we
shall simplify the following discussion by exploiting a very convenient property of
PEPS wave functions, namely, their modularity. This modularity originates in the
fact that, once a particular unit cell structure has been chosen and PEPS tensors
representing states of interest have been obtained, e.g., by numerical optimization
or direct construction, they may be embedded in any lattice admitting a complete
covering based on the chosen PEPS unit cell.4 Thus providing Ansatz states for a
range of lattice sizes directly from a single simulation. In our case this will allow
us to focus on the computation of boundary fixed points without dealing with the
additional complexity of optimizing the PEPS tensors. A task which we postpone
to future work.

In order to evaluate the different schemes we shall rely on three criteria: conver-
gence, time-to-solution and accuracy, which we will evaluate by performing simu-
lations of the transverse field Ising model for a number of transverse field values
at various cylinder widths W .

6.3.1 Transverse field Ising model

The transverse field Ising model (TFIM) is defined as

H = −
∑
⟨i,j⟩

σzi σ
z
j − h

∑
i

σxi ,

with ⟨i, j⟩ and i, here and below, running over all bonds and all sites on the
lattice, respectively, and σα representing a Pauli matrix. As is well known, and
depending on the value of the magnetic field h, this model exhibits two different
phases, i.e., a ferromagnetic and a paramagnetic phase, which are separated by a
critical point at hc ≈ 3.04 [54, 197–201]. In the region h < hc the ground-state

4This feature has already been successfully exploited in previous PEPS studies. See, e.g.,
Refs. [128, 193–196].
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manifold is doubly degenerate with the ground states being characterized by a
finite magnetization along the z axis Mz. On the other hand the region h > hc has
a nondegenerate ground-state manifold with a vanishing Mz magnetization and
a finite magnetization Mx parallel to the field applied. In both cases the system
exhibits a finite energy gap away from hc, regardless of the width of the cylinder.
The value hc, however, corresponds to a critical point at which a second order
phase transition is found, leading to the closing of the energy gap.

The presence of the critical point will allow us to probe the accuracy of the various
contraction schemes by tuning the magnetic field from a mildly correlated regime
with h = 1 to a strongly-correlated regime at h = 3 and a number of values in
between.

Convergence

We begin by examining the rate at which each scheme approaches a given value of
the energy per site, i.e., we compare the value of the energy for a given value of χ
to that achieved for the largest χ considered.

We show some sample convergence curves as a function of the boundary bond
dimension χ in Fig. 6.6 for fields h = [1.0, 2.75, 2.9] using the FU. There it can
be seen how for small values of the magnetic field, i.e., h = 1, all of the schemes
achieve excellent convergence at reduced values of χ, reflecting the short correlation
length of the states. Moving closer to the critical point leads to an overall up-shift
of the various curves for all the methods. This is expected due to the same reason
above, i.e., a more strongly-correlated state requires a larger bond dimension to
account for the increased entanglement present in the state.

Interestingly, the relative convergence behavior exhibited between narrow and
wider cylinders is reversed between the OBC scheme and the local PBC schemes,
i.e., the local PBC schemes converge faster for wider cylinders whereas the OBC
scheme tends to converge faster for narrower cylinders. This is most likely a conse-
quence of the interplay between the bond dimensions χ and χV TM . More precisely,
to judge convergence in the local schemes we proceed by considering fixed values
of χV TM and then observe convergence as a function of χ. Given that the spec-
trum of the tensors T , see Sec. 6.2.3, depends directly on the value of χ chosen,
fixing the value of χV TM leads to a slight reduction in accuracy, i.e., a somewhat
slower convergence. Since the spectrum of the transfer matrix T is most dense for
narrower cylinders, it is there where the effect becomes most relevant.

As Fig. 6.6 shows, even though a slow down in convergence is a generic feature
of all schemes as one moves to values of h closer to hc, both the smoothness as
well as the rate with which convergence is achieved (at least in this example) by
employing the OBC MPS scheme is noticeably better than that of the other two
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Figure 6.6: Relative convergence plots of the energy per site for the various con-
tractions schemes. Top row: OBC, middle row: iCTM PBC and bottom row: PT
PBC schemes, respectively. The left/middle/right columns corresponds to field
values of h = 1.0, h = 2.75 and h = 2.9, respectively. All simulations were carried
out using tensors optimized via the FU.

schemes. Indeed, from the plot it is apparent that the values at which a given
convergence level is achieved are also systematically smaller compared to those of
the local schemes. A finding which is rather at odds with our original expectations.
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This is most likely a consequence of the fact that more compact representations
of optimization minima can be found using the OBC MPS scheme due its global
nature. It is also plausible that the possibility of breaking translation symmetry
allows for more flexible search paths, although we have found no evidence of a
significant artificial symmetry breaking once the boundaries have converged.5

Accuracy

To illustrate the accuracies achievable with our current approaches we show in
Fig. 6.7 the relative error in energy per site as a function of cylinder width ob-
tained using tensors from both the SU and the FU of various bond dimensions D.
Even though we only show results for the OBC scheme directly, the supporting
plots on the right column show that variations between the OBC and the iCTM
PBC scheme are small enough to yield no qualitative changes to those presented
in Fig. 6.7. Thus showing that results remain consistent across the approaches
employed.

There it is possible to see the remarkable accuracies achievable whenever perform-
ing simulations off criticality. However, once we start approaching the critical point
the accuracy of our simulations starts to drop rapidly, particularly for cylinders of
narrower widths. Since the OBC scheme properly accounts for finite size effects
in the construction of the boundary fixed points, we expect the primary limiting
factor in this regime to be the quality of the PEPS tensors used. This is supported
by the modest variations found with respect to the iCTM PBC scheme.

As expected the tensors optimized via the SU generically exhibit a lower accuracy
whenever simulating states of a considerable correlation length, i.e., beyond h =
1.0 in the plot. When employing FU-optimized tensors we find that values of very
good quality, i.e., at least as good as ∆E ∼ 10−4, are achievable for all cylinder
widths considered, even when restricting ourselves to simulations of modest bond
dimension D and placing the system at a value of the magnetic field h = 3.0, i.e.,
about a percent away from the critical point.

Time-to-solution

In Fig. 6.8 we show a comparison of the time-to-solution required for various values
of the cylinder width W and bond dimension D using the author’s MATLAB-
based implementations of all three contraction schemes. Proper attention has been
payed to employing only operations abiding to the known optimal computational

5The convergence behavior for tensors employing the SU is significantly improved for all
schemes and thus Fig. 6.6 represents a worst-case scenario.
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Figure 6.7: Left: relative error in the energy per site using the OBC MPS scheme
employing tensors optimized via the FU (top) and SU (bottom). Reference val-
ues were obtained using results from the iDMRG algorithm extrapolated to zero
truncation error. Right: relative difference between iCTM PBC and OBC schemes
with the FU (top half) and the SU (bottom half). Field values are shown in the
plot.

complexity, however, none of the implementations has been optimized for ultimate
performance. All simulations were performed sequentially using the same type of
processor.

As one may readily convince oneself, a number of caveats may arise when per-
forming such a direct comparison. Indeed, as we explained above the way the
simulations are carried out are not equivalent nor are the expected computational
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Figure 6.8: Time to solution for all three contraction schemes. Time required to
complete the measurement of all observables required for the evaluation of the
energy per site. The data corresponds to simulations at h = 2.75 employing FU
tensors.

scalings. We thus show the results in Fig. 6.8 mostly to give a feeling for the rel-
ative run-time between schemes under similar conditions and not because of their
being of quantitative relevance.

As Fig. 6.8 shows, a significant difference in the actual run times of the algorithms
indeed arises in practice. Indeed, for the two largest cylinder widths presented, i.e.,
W = 8, 12, the results show that employing one of the local schemes can results in
a reduction of the overall runtimes up to a factor of ∼ 10. A qualitative difference
between the OBC and the local MPS schemes is that whereas in the former the
operation carrying the leading computational complexity is proportional to the
cylinder width W , in the latter schemes the terms scaling linearly with W are
actually subleading so that once we reach a large enough D (χ), we expect to see
no system size dependence. This is an effect which appears to be visible at D = 4
for the iGCTM PBC scheme, although larger values of D would be required to
verify that the simulations have already started to reach such regime.

All in all the results in Figs. 6.6 and 6.7 not only strengthen the idea of employing
PEPS wave functions on cylinders as a viable one but also validate an approach
exploiting the modularity of PEPS wave functions as well as locality in the contrac-
tion schemes as long as cylinders wide enough are considered, i.e., W ≳ 6. This is
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a conclusion which extends to other models like the Heisenberg model below (data
not shown).

6.4 iMPS vs iPEPS comparison

As we mentioned at the beginning of the chapter, the main motivation for this
work pertains the exploration of the iPEPS algorithm as a viable approach on
cylindrical geometries. This is particularly important as simulations on cylinders
have become the de-facto approach for MPS studies of 2D strongly-correlated
systems, in which an understanding of the physics at the thermodynamic limit
is obtained by means of simulating cylinders of increasing widths. As is well
known, however, such studies can yield results which are in stark contrast to those
from studies targeting the thermodynamic limit directly, e.g., using iPEPS wave
functions on the infinite plane. A notorious example has recently arisen in the
study of the antiferromagnetic Heisenberg model on the Kagome lattice where
MPS studies favored a gapped Z2 spin liquid [176, 202, 203] whereas a projected
entangled-simplex state (PESS) Ansatz [204],6 provides evidence for a gapless spin
liquid [102, 205]. Thus, studying the relative performance of iMPS and iPEPS on
cylindrical geometries may help us understand the limits of MPS studies of 2D
systems as well as provide an important benchmark for future developments of the
iPEPS algorithm.

In what follows we shall begin to address the question: when should, if ever, iPEPS
become the method of choice over iMPS, when simulating strongly-correlated sys-
tems on infinite cylindrical geometries? In order to do so we will consider two
paradigmatic models: the Heisenberg and Hubbard models on the square lattice.

As we found in Sec. 6.3, it is possible to obtain good results by performing iPEPS
calculations based on a recycling of the boundaries together with a iCTM PBC
contraction scheme in which the approximate resolutions of the identity are ob-
tained by means of local computations, see Sec. 6.2. Since this approach is very
favorable in terms of computational costs, we shall employ it in our discussion
below.

The results presented in this section have been published in [139] as part of a col-
laboration. The author would like to thank Prof. Philippe Corboz for authorizing
the publication of his iPEPS data for the Hubbard model, shown in Fig. 6.12, as
part of this work. The PEPS tensors optimized using the variational update for
the Heisenberg model were also provided by him.

6A PESS can be regarded as a variant of PEPS in that they are constructed by projecting
more complex simplices at the virtual level, compared to the single sites employed in PEPS [204].
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6.4.1 Heisenberg model

We begin by considering the Heisenberg model

H =
∑
⟨i,j⟩

Ŝi · Ŝj ,

with Ŝ defining spin-1/2 operators. For W = 2 cylinders the system becomes
strongly dimerized, with a finite spin gap separating the ground state from a band
of propagating spin triplets. Even though this picture remains valid for any finite
even width, increasing the system width has the effect of reducing the energy gap.
In the limit W → ∞ the energy gap closes, giving way to a critical state with
an algebraic decay of correlations and a finite sublattice magnetization. The most
accurate results to date, using stochastic series expansions (SSE), give an energy
per site E0 = −0.6694421(4) in the thermodynamic limit [206].
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Figure 6.9: Variational energies for the Heisenberg model using iMPS (dashed
lines/green symbols), iPEPS SU (dotted lines/cyan symbols), iPEPS VU (dot-
dashed lines/red symbols) and loop QMC (dotted line/blue circles) methods. Loop
QMC error bars are smaller than the symbol size. The black horizontal dotted line
represents the SSE thermodynamic limit estimate, E0 = −0.6694421(4), from
Ref. [206]. For the largest bond dimensions considered, i.e., m = 4096 and D = 5,
a crossover between iMPS and iPEPS is visible around W ∼ 11.

Our main results for the Heisenberg model are shown in Fig. 6.9. As initially
expected, various crossings of the energy curves appear depending on the precise
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values of the bond dimension as well as optimization scheme used. For the largest
bond dimensions considered, i.e., m = 4096 and D = 5, the crossover where iPEPS
outperform iMPS happens at a width W ∼ 11, although a very close competition
is clearly visible in the range W ∈ [8, 12].

For the iPEPS simulations we find that, up to the largest bond dimension consid-
ered (D = 5), most curves corresponding to the SU remain remarkably flat across
the full set of widths simulated. Given that the SU is based on an approximation
incorporating only subparts of the wave function, renormalization effects arising
due to longer-ranged entanglement are almost completely absent and, in this case,
it simply produces states for which the correlation length does not appear to be-
come large enough to notice the finite width of most cylinders considered. Indeed,
the values of the energy obtained contain only minor corrections to the value ob-
tained for the 2D system.

On the other hand simulations with tensors using the variational update (VU)
improve significantly on the energies of the SU and a bending of the energy curves
is clearly visible as one moves to narrower cylinders, although not enough to com-
pletely match the accuracy of the iMPS simulations for the narrowest cylinders
shown (W = 6). The overall improvement of the VU compared to the SU can be
understood as a consequence of the tensors providing more accurate approxima-
tions to the physics of the infinite size system. Still, given that we are ultimately
not properly accounting for finite size effects, as one moves to narrower cylinders
the relative accuracy drops considerably below W ∼ 8.

We find that iMPS simulations manage to reproduce the reference energy values to
high accuracy for cylinder widths up to W ∼ 10 where, for a given bond dimension
m, a clear up-bend in the curves starts to take place resulting in a significant loss in
accuracy. This is a clear reflection of the fact that the bond dimensions considered
are not enough to compensate for the higher entropic demands of simulations on
wider cylinders.

To get an overall idea of how efficient the encoding of the wave functions is, in
Fig. 6.10 we show a comparison of the relative errors for both iMPS and iPEPS
as a function of inverse number of variational parameters. There it is again pos-
sible to see how, for a fixed number of variational parameters, the VU provides a
significantly more accurate estimate than that of the SU. More importantly, it is
also possible to see how the VU curves systematically decay faster than the SU
curves as one increases the number of variational parameters. The improved effi-
ciency of the PEPS encoding is clearly visible in that all PEPS curves are located
to the right of all MPS curves. It is remarkable that, starting with cylinders of
width W ∼ 8, the rate of decrease in relative error for iPEPS wave functions as
a function of inverse number of variational parameters essentially matches that of
iMPS on the narrowest cylinders considered (W = 4). This observation becomes
all the more relevant once we recall that these tensors have not been optimized for
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Figure 6.10: Relative error of the different Ansatz wave functions for the square
lattice Heisenberg model as a function of inverse variational parameters. The
higher efficiency of the iPEPS Ansatz (SU – dotted lines/cyan symbols, VU –
dot-dashed lines/red symbols) is reflected on the fact that all iPEPS curves are
located to the right of all iMPS curves (dashed lines/green symbols). We employ
non-symmetric tensors to simplify the counting of variational parameters.

each of the cylinder widths.
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Figure 6.11: Energy based correspondence between iMPS and iPEPS bond dimen-
sions m and D for simulations of the Heisenberg model using the SU (left) and
VU (right). Estimated values for W̃ in Eq. (6.2) are shown next to the curves.

Finally we may turn to the correspondence between values of the bond dimensions
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m and D as a function of the cylinder widths. To obtain an m-to-D mapping we
match their energy as a function of their bond dimensions, i.e., for each Ansatz
we perform linear interpolations of the energy curves at a fixed width and then
for each value of m (D) we find the expected accuracy and the value of D (m)
matching that value. We show the correspondences obtained using the SU and
FU in Fig. 6.11, where it is possible to see that indeed, at least for cylinders of
moderate width, a relation of the form

m ∼ DW̃ , (6.2)

analogous to that in Eq. (6.1), does appear to hold albeit with values W̃ differing
from the actual width W of the cylinder. In fact, considering the case W = 10, as
in our example at the beginning of the chapter, instead of W̃ ≈W we find values of
W̃ ≈ 2.1 and W̃ ≈ 3.6 when matching accuracies between states using the SU and
VU, respectively. This in turn yields a pair of bond dimensions D = 4, m ∼ 1000
offering comparable accuracies. In other words, our initial estimate resulted in a
gross overestimation of the value of m required to match a PEPS state with a
given D.

6.4.2 Hubbard model

We now consider the Hubbard model

H = −t
∑
⟨i,j⟩,σ

(
ĉ†iσ ĉjσ + h.c.

)
+ U

∑
i

n̂i↑n̂i↓,

where ĉ†iσ (ĉiσ) creates (annihilates) an electron with spin σ on site i and n̂iσ :=

ĉ†iσ ĉiσ represents the number operator. This model has been studied extensibly us-
ing a large variety of numerical methods given its close connection to the physics of
the cuprate high-temperature superconductors, see Refs. [22, 207–212] and refer-
ences therein. In the half-filled case, i.e., n := 1

N

∑
i⟨ni⟩ = 1 and N the number of

sites, it is widely accepted that the system finds itself in a Mott-insulating regime
for arbitrarily small values of the on-site repulsion U . Since we wish to avoid
difficulties arising due to a large number of competing states, a problem largely
present at weak doping, we shall constrain our simulations to the half-filled regime
at a strong repulsion of U/t = 8. Using this set of parameters the ground-state
energy per site has been estimated using auxiliary field QMC (AFQMC) to be
E0 = −0.5247(2) in the thermodynamic limit [22].

The ground-state energy per site on an infinite cylinder of width 6 has been esti-
mated using state-of-the-art finite DMRG simulations, employing elaborate finite-
size-effect cancellation and extrapolation techniques, to be atE(6)

0 = −0.52528(1) [22].
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Figure 6.12: Variational energies for the half-filled Hubbard model at U/t = 8,
using iMPS (dashed lines/green symbols), iPEPS (dot-dashed lines/red symbols)
and (extrapolated) DMRG (blue circle) methods. The DMRG result was obtained
from Ref. [22]. The horizontal dotted line represents the AFQMC thermodynamic
limit estimate, E0 = −0.5247(2), from Ref. [22]. For the largest bond dimensions
considered, i.e., m = 8192 and D = 11, a crossover between iMPS and iPEPS is
visible around W ∼ 7.

Our main results for the half-filled Hubbard model are summarized in Fig. 6.12.
In general we find a situation qualitatively similar to that in Fig. 6.9 for the
Heisenberg model, in that various energy crossings are visible depending on the
different values of the bond dimensions m and D. In this example we find that for
the largest bond dimensions considered, i.e., D = 11 and m = 8192, the crossover
where iPEPS provides an improvement over iMPS happens at a width of W ∼ 7.

For our iMPS simulations we find good convergence at W = 6, where we may
directly compare to Ref. [22], after which a strong increase in energy is noticeable
for all bond dimensions considered. This more rapid increase in iMPS energies,
compared to the one found above for the Heisenberg model, can be understood as
a consequence of the increased local Hilbert space dimension, i.e., 4 compared to 2
of the Heisenberg model, thus allowing for a more rapid build-up of entanglement
between different parts of the system as the cylinder widths increase. Even though
the largest value of m we consider here, i.e., m = 8192, still does not quite manage
to reproduce the (extrapolated) reference energy quoted above, it is nevertheless
reassuring to see that the difference found is quite small, with a relative difference
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∆E(6) ≈ 0.01%. It is also interesting to see that, without any additional extrap-
olation, the variational energies of the largest bond dimension iPEPS simulations
already come very close to the thermodynamic limit estimate, with a relative error
of ∆E = 0.17%.

As in the case of the Heisenberg model we find that the energy-based m-to-D cor-
respondence for the Hubbard model, shown in Fig. 6.13, also exhibits the proposed
functional form in Eq. (6.2). Here the functional form is rather visible up to values
of the bond dimensions lying on the lower end of the curves, reflecting the fact
that the smaller (for a given width) values might have still not been large enough
to approximate the ground state properly.
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2.44
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Figure 6.13: Energy based correspondence between iMPS and iPEPS bond dimen-
sions m and D, respectively, for simulations of the Hubbard model using the FU.
Estimated values for W̃ in Eq. (6.2) are shown next to the curves.

Before closing this section we emphasize that the discussion on the m-to-D map-
ping is based entirely on matching the energy of the various Ansatz states and it
is thus not obvious that such a procedure should give results analogous to those
obtained from the matching of entanglement entropies, as discussed in the begin-
ning of the chapter. We believe that the exponential behavior found for m as a
function of D in Figs. 6.11 and 6.13 can nevertheless be understood as a reflection
of the latter.

For this we begin by noting that the presence of a finite energy gap guarantees that
a lower variational energy is indeed a good indicator of the proximity to the ground
state. Thus, once one has reached bond dimensions large enough to properly
encode the physics of the ground state one effectively obtains representations of the
same state, and thus the same entanglement entropy, up to spurious contributions
from higher excited states. Noting that the energy gaps start to close as the
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cylinder widths start getting larger, the fact that the exponential behavior begins
to disappear once the cylinder widths reach a certain threshold, i.e., W ∼ 10− 12
in this case, appears to support this argument. In other words, the closing of the
energy gaps allows for a mixing of more and different types of states thus breaking
the correspondence.

6.5 Discussion

We started off this chapter with a very basic discussion based on entropic argu-
ments in which we motivated the exploration of the iPEPS algorithm on infinite
cylindrical geometries. One of the goals of this exercise was to evaluate the feasi-
bility of such an approach when compared to the more widely spread use of (i)MPS
simulations on the same type of geometry.

Since the use of the iPEPS algorithm on infinite cylindrical geometries had been,
until now, largely unexplored territory, in the first half of the chapter we focused
on various possible formulations and found that the combination with OBC MPS
techniques is possible, yielding very satisfactory results even without the explicit
tuning of the PEPS tensors for each individual cylinder. In addition, we explored
alternative contraction schemes with the aim of preserving any translation symme-
try present in the original PEPS Ansatz while remaining computationally cheap.
There we proposed two local variants which exhibited a performance largely de-
pendent on how correlated the underlying state was, and generally requiring larger
values of the boundary bond dimension χ for convergence. These local schemes
could nevertheless be employed to give adequate results at a reduced runtime
compared to the global OBC MPS scheme. We also proposed a global contraction
scheme with the ability to preserve translation invariance and expect this to be
the most adequate variant when going further into the tuning of the tensors for
each individual cylinder. The exploration of the latter, however, remains as future
work.

In the second half of the chapter we have focused on a direct comparison to the
iMPS approach and have managed to show how, as expected from our original
entropic argument, various crossovers in the relative accuracy of the iMPS and
iPEPS Ansätze occur as the width of the cylinders and the bond dimensions m
and D are increased. For the largest bond dimensions considered, a modest width
of W ∼ 7 was already enough to obtain an improvement over iMPS energies by
using iPEPS wave functions when simulating the half-filled Hubbard model at
U/t = 8. It seems reasonable to expect an additional improvement of iPEPS over
iMPS energies as the value of U is reduced. On the other hand we found that when
simulating the Heisenberg model this crossover took place at a considerably larger
width of W ∼ 11, albeit with a strong competition over the range W ∈ [8, 12].

It is perhaps worth emphasizing that it is not the precise widths at which the
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energy crossings take place that are of particular importance but, instead, it is
the overall energy landscape which provides important insights. After all it is
clear that modifications in either bond dimension will necessarily lead to a shift of
the crossover value (not to mention improvements in the algorithms). The energy
landscape, however, gives us a qualitative understanding of their relative accuracies
and an m-to-D mapping under different settings which, together with knowledge
of the actual computational effort for each simulation, can be used as a guiding
principle for when to choose one method over the other.

We have found evidence for the possibility of findingm-to-D mappings via a match-
ing of the energy accuracy and that, to an extent discussed above, their behavior
matches the one expected based on an entropic matching of bond dimensions. All
in all we have found that the initial entropic argument grossly overestimated the
value of m required to match the quality of a given D PEPS wave function. This is
something which we interpret as a strong sign for how much improvement should
still be achievable by refining the PEPS formulation employed here.

Given that we have found good overlap between the regions in which each method
exhibits proper accuracy, we believe that these results provide a good example of
how MPS and PEPS algorithms may be employed in the future in a complementary
way to obtain accurate results over a wide range of cylinder widths, i.e., one may
exploit the remarkable accuracy of MPS at reduced cylinder widths while making
full use of the entropic advantage provided by PEPS at increased widths, with the
intermediate region serving as a direct cross-check scenario.
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Chapter 7

Conclusions & Outlook

In this thesis we have applied tensor network algorithms to study the physics
of strongly-correlated two-dimensional systems. In order to make it a relatively
self-contained work we have not only presented the applications and new results
obtained by the author and collaborators but have also spent some time devel-
oping the basic notions required to understand the machinery involved in such
computations.

Before we conclude this work we would like to digress somewhat on a number
of promising avenues connected to the work presented here and which we believe
constitute lines of study which might prove interesting in the future.

The idea of employing quantum-inspired contraction schemes for the renormal-
ization of partition functions is one with plenty of room for exciting applications.
Indeed, having strengthened the interpretability of tensor network renormalization
(TNR) as a framework of proper renormalization group transformations in Ch. 3,
the possibility of performing RG-based characterizations of both 2D classical and
1+1D quantum systems from a controlled nonperturbative perspective opens up,
i.e., by following a procedure similar to that presented in Ch. 3, one may study
RG flows generated by the complete Hamiltonian in a controlled way without the
introduction of, e.g., ϵ-expansions about a given dimension of space [4]. Given
the excellent characterization of the Blume-Capel model we have have managed to
obtain, it appears very tempting to explore, in even more detail, various interest-
ing properties like, e.g., the emergence of supersymmetry at its tricritical point [6]
or the explicit construction of lattice analogues of scaling operators [174]. This
would be of interest not only to better understand their real-space structure but
could also be used, among other things, to study the transition between different
universality classes.

Along these lines a significantly more challenging endeavor would correspond to
the efficient formulation and implementation of a 3D TNR algorithm capable of
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encoding multiplicative logarithmic corrections to the area law expected forD ≥ 2
Fermi liquids or spin-Bose metals [213, 214]. One of the key issues to be addressed
in such a project, at least naively, would be to understand how to formulate this
generalization to produce a branching MERA structure [215], as opposed of the
MERA obtained from 2D TNR [61]. The reason for this more stringent requirement
is that in 3D the regular MERA does not allow to encode logarithmic corrections
to the area law and, thus, a much more complex structure is required.

In the area of frustrated spin models the reduced number of reliable methods avail-
able make the application of iPEPS a very interesting endeavor. Even though in
Ch. 5 we have constrained ourselves to the exploration of one of the earliest variants
of the Kitaev-Heisenberg model, proposed to describe the physics of the layered
Iridates A2IrO3 (A = Na,Li), the overall quality of the results we have managed to
find give confidence in moving towards more complex generalizations containing
off-diagonal Kitaev terms or longer-ranged interactions [216, 217]. These gen-
eralizations are introduced in order to go beyond the original family of Iridates
considered here to include other interesting candidates for Kitaev physics like,
e.g., α-RuCl3 [218, 219]. For these applications it would also be very interesting
to explore recent developments for finite temperature calculations [104, 105, 138],
which should in principle allow to draw direct connections to current experimental
efforts and fill a rather notorious gap between these and numerical simulations.

Finally, the exploration of PEPS methods on cylinders represents an area with
plenty of room for improvement and applications. In Ch. 6 we have shown that
PEPS indeed constitute a viable alternative for the simulation of cylindrical ge-
ometries and have suggested the exploration of complementary MPS-PEPS ap-
proaches. However, to fully exploit the potential of PEPS one of the first steps
to follow would be to understand how to best perform the optimization of the
wave function directly on the cylinder. Even though we have provided hints for
a possible route, it is very likely that additional steps need to be taken to com-
pensate for the relatively expensive algorithms. Once such a generalization has
been properly understood the world of frustrated magnetism and fermionic sys-
tems provides plenty of models which remain controversial and could use additional
input in understanding the transition from quasi-1D to 2D. One relatively obvious
example corresponds to the antiferromagnetic Heisenberg model on the Kagome
lattice for which MPS and PESS, a variant of PEPS in which one considers entan-
gled simplices [204], support either gapped or gapless ground states, respectively.
Also, having understood how to simulate generic systems on cylinders, the study
of topologically ordered phases may be done reliably using model information only
and thus extending studies based on hand-crafted wave functions [128, 193, 194].
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Appendix A

Supplementary material for
chapter 6

A.1 Diagrams for the construction of projectors Pb and
Pt

Here we present the diagrams for the computation of the projectors Pb and Pt, in-
troduced in Sec. 6.2.3 for the iCTM PBC and the full wave function PBC schemes.
We show the operations employed for the iCTM PBC scheme in Fig. A.2. For
the full wave function PBC scheme we propose to replace the starting diagram
in A.2(a) with the construction in A.1.

A.2 Loop Quantum Monte Carlo Simulations of the
Heisenberg Model

As was mentioned in the main body of the text, we have used loop QMC simula-
tions as reference data to judge the accuracy of iMPS and iPEPS when simulating
the Heisenberg model. For these simulations we have relied on version 4.0a1 of
the loop QMC code available as part of the ALPS project.[93] Since loop QMC
simulations are carried out both at finite temperature as well as finite size, ob-
taining ground state estimates in the thermodynamic limit will in general require
finite-T as well as finite-size extrapolations. In order to simplify the procedure
we have performed all simulations at temperatures low enough to render the finite
T variations comparable to the statistical error. We found that temperatures in
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S1/2

S1/2

U

V

Figure A.1: Proposed construction for the full wave function computation of the
projectors Pb and Pt. The upper and lower halves (separated by the orange dashed
line), could be handled like the corresponding halves in Fig. A.2a). The objects
U , S, V would be obtained in the same way as in the right panel of Fig. 6.5. The
bond wrapping around the cylinder, of dimension χV TM , could again be used as a
"perturbation" parameter with which to speed-up calculations.

Width E0

4 -0.683282(2)
6 -0.672788(1)
8 -0.670760(2)
10 -0.670101(2)
12 -0.669815(2)
14 -0.669677(1)
16 -0.669594(3)

Table A.1: Loop QMC estimates for the infinite-length finite-width ground state
energies of the S = 1/2 Heisenberg model on square lattice cylinders.

the range T ∼ [0.01, 0.003], depending on cylinder width, were enough to obtain
negligible variations.

To obtain energy estimates in the infinite-length limit, we carried out simulations
on systems of various lengths L ∈ [32, 1024]. This data was then extrapolated
assuming a scaling of the form E(L) = a + b(1/L) which, given that the system
always has a non vanishing energy gap, is a reasonable assumption. For the actual
energy estimates we obtained, see Table A.1.
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Figure A.2: Sequence of operations employed in the iCTM PBC scheme from
Sec. 6.2.3. The cost of the initial QR/LQ decompositions can be reduced by
employing truncated SVD decompositions.

A.3 iPEPS Simulations

As mentioned in the main text, we find that recycling the boundaries obtained from
a simulation on the infinite plane provides good starting points for the boundary
construction. The iCTM PBC scheme was then used to adjust the boundaries
when performing measurements.

When computing the energies, a cylinder made up of the boundary tensors W and
up to 2 columns of PEPS tensors must be contracted. In addition to the com-
pression mentioned in Fig. 6.5, we also employed, for the larger values of D, an
additional compression step which reduces the vertical transfer matrix inside the
brown box in Fig. 6.5 from a four-column object to a two-column object. This
compression happens in a manner completely analogous to the procedure illus-
trated in Fig. 6.4. An additional parameter χ′ was introduced for this compression
and its proper convergence also monitored.

Simulations for the Heisenberg model were carried out both with and without
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A.3 iPEPS Simulations

preserving the Stotal
z U(1) symmetry of the model, where the non-symmetric data

was used to generate Fig. 6.10 in the main text. We present our energy estimates
for the Heisenberg model shown in the main text using the simple and variational
updates in tables A.2 and A.3, respectively. We estimate the error bars of the
data based on the convergence of the energies as a function of all auxiliary bond
dimensions. For the simple update we estimate error bars to be smaller than
±0.0001 for all values of D. Error bars in the variational update are estimated to
be at or below ±0.0003 for all values of D. In Fig. A.3 we provide some sample
data illustrating the convergence behavior we found as a function of the auxiliary
bond dimension χ.

Simulations for the Hubbard model were carried out preserving both U(1) quantum
numbers associated to Stotal

z and charge conservation. We present our variational
energy estimates for the Hubbard model shown in the main text in table A.4. We
estimate error bars of this data to be smaller than ±0.0001 for D = 5 and around
±0.0003 for D > 5.

We have constrained our simulations to use checkerboard unit cells, i.e.2x2 unit
cells with only two types of tensors. All simulations were carried out using real
double-precision arithmetic.
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Figure A.3: Convergence of iPEPS energies as a function of the inverse boundary
bond dimension χ. Top: sample convergence data for the Heisenberg model. For
this data a value of χV TM large enough to exhibit negligible variations was chosen.
Bottom: sample convergence data for the half-filled Hubbard model. Here an
approach in which χV TM was scaled proportionally to χ2 was used.
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D \Width 4 6 8 10 12 14 16
2 -0.6624 -0.6595 -0.6594 -0.6594 -0.6594 -0.6594 -0.6594
3 -0.6678 -0.6635 -0.6633 -0.6633 -0.6633 -0.6633 -0.6633
4 -0.6744 -0.6685 -0.6677 -0.6675 -0.6675 -0.6675 -0.6675
5 -0.6749 -0.6698 -0.6686 -0.6683 -0.6683 -0.6683 -0.6682

Table A.2: iPEPS estimates for the infinite-length finite-width ground state en-
ergies of the S = 1/2 Heisenberg model on square lattice cylinders using tensors
optimized with the simple update. Error bars are estimated to be at or below
±0.0001.

D \Width 4 6 8 10 12 14 16
2 -0.6681 -0.6632 -0.6626 -0.6625 -0.6625 -0.6625 -0.6625
3 -0.6743 -0.6700 -0.6689 -0.6686 -0.6684 -0.6684 -0.6683
4 -0.6729 -0.6709 -0.6699 -0.6695 -0.6693 -0.6692 -0.6692
5 -0.6715 -0.6704 -0.6699 -0.6696 -0.6695 -0.6695

Table A.3: iPEPS estimates for the infinite-length finite-width ground state en-
ergies of the S = 1/2 Heisenberg model on square lattice cylinders using tensors
optimized variationally on the infinite plane. Error bars are estimated to be at or
below ±0.0003.

A.4 iMPS Simulations

All iMPS simulations were carried out using an implementation of the iDMRG
algorithm based on the ALPS libraries, which we hope to make public soon. Simu-
lations for the Heisenberg model were carried out both with and without preserving
the U(1) symmetry corresponding to the conservation of Stotal

z present in the model.
The symmetric and non-symmetric simulations were used to generate Fig. 6.9 and
Fig. 6.10 in the main text, respectively. We present our U(1) symmetric variational
energy estimates for the Heisenberg model shown in the main text in table A.5.
Similarly, all simulations for the Hubbard model were carried out preserving both
U(1) quantum numbers associated to Stotal

z and charge conservation. We present
our variational energy estimates for the Hubbard model shown in the main text in
table A.6.

We have restricted the size of the optimization unit cells to be twice the width
of the cylinder and used a bottom-to-top left-to-right zig-zag pattern to cover the
system. All simulations were carried out using real double-precision arithmetic.

103



A.4 iMPS Simulations

D \Width 6 8 10
5 -0.5135 -0.5133 -0.5133
7 -0.5182 -0.5179 -0.5179
8 -0.5207 -0.5202 -0.5199
10 -0.5234 -0.5232 -0.5231
11 -0.5242 -0.5239 -0.5238

Table A.4: iPEPS estimates for the infinite-length finite-width ground state ener-
gies of the half-filled Hubbard model at U/t = 8 on square lattice cylinders using
tensors optimized with the full update. Error bars are estimated to be smaller
than ±0.0001 for D = 5 and around ±0.0003 for D > 5.

m \Width 4 6 8 10 12 14 16
550 -0.68328 -0.67273 -0.67042 -0.66895 -0.66704 -0.66456 -0.66173
1050 -0.68328 -0.67278 -0.67047 -0.66959 -0.66841 -0.66675 -0.66463
2050 -0.68328 -0.67279 -0.67067 -0.66988 -0.66915 -0.66811 -0.66667
4096 -0.68328 -0.67279 -0.67074 -0.67001 -0.66952 -0.66890 -0.66797

Table A.5: iMPS estimates for the infinite-length finite-width ground state energies
of the S = 1/2 Heisenberg model on square lattice cylinders.

m \Width 6 8 10
1024 -0.52248 -0.51402 -0.50221
2048 -0.52411 -0.51853 -0.51059
4096 -0.52491 -0.52149 -0.51520
8192 -0.52524 -0.52321 -0.51896

Table A.6: iMPS estimates for the infinite-length finite-width ground state energies
of the half-filled Hubbard model at U/t = 8 on square lattice cylinders.
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