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Come to the edge.
We might fall.
Come to the edge.
It’s too high!
COME TO THE EDGE!
And they came,
And he pushed,
And they flew.

— Christopher Logue





Dedicated to parents
For helping us grow





Abstract

User interfaces (UIs) are the means through which we interact with com-
puter systems, and users perform both simple, as well as critical task through
such user interfaces. For example, users visit their daily news portals, but
also perform e-banking payments through user interfaces. Medical doctors
use them to operate safety-critical devices such as respirators, implanted
medical device programmers, etc. Given that safety- and security-critical
tasks are performed through such user interfaces, it is important to secure
them against attacks. Therefore, the goal of this thesis is to (1) better un-
derstand the security problems of modern user interfaces, and (2) propose
novel defenses against damaging user interface attacks.

There is a plethora of known user interface attack approaches that
launch attacks from, e.g., a malicious application running on the target
device, or from malicious peripherals (e.g., a mouse or a keyboard). Such
attacks can, for example, infer user input or inject malicious input into the
system. However, they commonly suffer from accuracy issues or limited
attack applicability. Different systems for detecting user interface attacks
were also proposed. However, they are commonly vulnerable to evasion
through simple obfuscation attacks.

In this thesis, we address these shortcomings and make the following
contributions. First, we propose two new user interface attacks that are
accurate, hard to detect, and enable previously unreachable attack scenarios.
Second, we propose two new systems for detecting a particularly damaging
and effective user interface attack — phishing. Our systems are based on
visual similarity and are resilient to obfuscation.





Zusammenfassung

Benutzerschnittstellen (UIs) erlauben es uns mit Computersystemen zu
interagieren. Sie ermöglichen es Benutzern sowohl einfache als auch kri-
tische Aufgaben auszuführen. Beispiele für Benutzerschnittstellen sind
Nachrichtenportale, auf denen Benutzer täglich Neuigkeiten abrufen, oder
e-banking Plattformen, über die sie ihr Zahlungen online abwickeln kön-
nen. Mediziner brauchen Benutzerschnittstellen, um sicherheitskritische,
medizinische Instrumente wie Beatmungsgeräte zu bedienen oder um im-
plantierte Geräte zu programmieren. Da sicherheitskritische Anwendungen
über Benutzerschnittstellen ausgeführt werden, ist es wichtig diese gegen
Angriffe abzusichern. Das Ziel dieser Doktorarbeit ist es (1) Sicherheitspro-
bleme moderner Benutzerschnittstellen besser zu verstehen und (2) neue
Verteidigungsmechanismen gegen Benutzerschnittellenangriffe zu finden.

Es gibt eine Unmenge an bekannten Benutzerschnittstellenangriffen,
die mit Hilfe von schädlichen Anwendungen, welche auf dem Zielgerät
installiert sind, oder die durch schädliche Eingabegeräte (z.B. eine Com-
putermaus oder -tastatur) durchgeführt werden. Solche Attacken können
unter anderem Rückschlüsse auf Benutzereingaben machen oder schädliche
Eingaben in dem betroffenen System ausführen. Diesen Angriffen man-
gelt es jedoch an Präzession und sie verfügen nur über eine beschränkte
Anwendbarkeit. Es wurden bereits verschiedene Systeme zum Aufdecken
solcher Schnittstellenangriffe vorgeschlagen. Diese können jedoch häufig
mit einfachen Verschleierungstaktiken umgangen werden.

In dieser Doktorarbeit beschreiben wir die jeweiligen Schwächen und
leisten den folgenden Forschungsbeitrag: Erstens stellen wir zwei neue Be-
nutzerschnittstellenangriffe vor, welche präzise und schwer zu entdecken
sind, sowie bisher unerreichbare Angriffsszenarien ermöglichen. Zweitens
stellen wir zwei neue Systeme vor, die einen besonders schädigenden und
effektiven Benutzerschnittstellenangriff entdecken können, der “Phishing”
genannt wird. Unser System beruht auf visueller Ähnlichkeit und funk-



tioniert auch dann, wenn Verschleierungstaktiken angewendet werden.
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introducing me to the idea of a PhD abroad all those years ago.

I would like to thank the members of my committee, namely Prof. Dr.
Kevin R. B. Butler, Prof. Dr. William Enck, Prof. Dr. Apu Kapadia, and Prof.
Dr. Adrian Perrig for dedicating their time and for providing invaluable
insight and dissertation comments.

The beginnings of my PhD were a particularly challenging period. I
would therefore like to thank Prof. Dr. Nils Ole Tippenhauer, Prof. Dr.
Kasper Rasmussen, Dr. Claudio Soriente, Prof. Dr. Aurélien Francillon, and
Dr. Boris Danev for their help and guidance during those initial times. I
sincerely and wholeheartedly thank both Mrs. Barbara Pfändner and Mrs.
Denise Spicher for helping me innumerable times over the years.

During my studies at ETH, I had the privilege and honor of interacting
and befriending many great people. I thank my colleagues Prof. Dr. Aanjhan
Ranganathan, Aritra Dhar, Dr. Alexandra Dmitrienko, Prof. Dr. Arthur
Gervais, Marco Guarnieri, Nikolaos Karapanos, Dr. Kari Kostiainen, Dr.
Claudio Marforio, Dr. Ramya Masti, Dr. Ognjen Marić, Siniša Matetić,
Daniel Moser, Mridula Singh, Hubert Ritzdorf, Prof. Dr. Joel Reardon,
David Sommer, Dr. Elizabeth Stobert, Der-Yeuan Yu, and Thilo Weghorn for
making my PhD a truly memorable experience. I thank Stephanos "Stipe"
Matsumoto and Thilo Weghorn for all the camaraderie and the many long
and illuminating conversations directed towards spiritual growth.



I especially thank Aanjhan Ranganathan for the psychological coun-
seling services rendered during the years. He patiently listened to all my
thoughts, fears and complaints, and all it cost me were a few dozen cups
of coffee. Your words of encouragement and wisdom, your empathy and
general understanding were much appreciated and will never be forgotten.

I extend special thanks to my co-authors Michael Och and Thomas Knell,
who contributed significantly towards their respective projects and thereby
helped shape this dissertation into what it is today.

I would like to dedicate a special part of this acknowledgment to Kari
Kostiainen. Without his guidance, his patience and his clarity of thought, I
would have given up on my PhD. Thank you!

Finally, I would like to thank my mother, as well as Ivana Karninčić for
all the love and support, and for standing by me during good and bad.

Completing a PhD at ETH Zurich was a challenging, but also immensely
rewarding endeavor. However, as with all things, and a PhD is no exception,
they eventually come to an end.

Therefore, onwards to new challenges, whatever they may be!

vi



Contents

1 Introduction 1
1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Security of Modern User Interfaces 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Security of User Interfaces . . . . . . . . . . . . . . . . . . . . . 14
2.3 Input Confidentiality . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Input Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Output Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6 Output Confidentiality . . . . . . . . . . . . . . . . . . . . . . . 29
2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

I Attacks 31

3 Inferring User Input with Hover 35
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Background on Android . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Our Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 Attack Implementation and Evaluation . . . . . . . . . . . . . 44
3.5 Attack Implications . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.6 Discussion and Countermeasures . . . . . . . . . . . . . . . . 56
3.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Adaptive User Interface Attacks 63



Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Background on Terminals . . . . . . . . . . . . . . . . . . . . . 66
4.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4 Hacking in the Blind . . . . . . . . . . . . . . . . . . . . . . . . 71
4.5 Attack Device Protoype . . . . . . . . . . . . . . . . . . . . . . . 82
4.6 Case Study: Pacemaker Programmer UI . . . . . . . . . . . . 83
4.7 Case Study: Online Banking UI . . . . . . . . . . . . . . . . . . 91
4.8 Countermeasures . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.10 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

II Countermeasures 101

5 On-device Spoofing Detection 105
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.3 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.4 Change Perception User Study . . . . . . . . . . . . . . . . . . 114
5.5 Spoofing Detection System . . . . . . . . . . . . . . . . . . . . 122
5.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.7 Detection Probability Analysis . . . . . . . . . . . . . . . . . . 131
5.8 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.9 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6 Cloud-based Spoofing Detection 139
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.2 Background on Android UIs . . . . . . . . . . . . . . . . . . . . 142
6.3 Motivation and Case Study . . . . . . . . . . . . . . . . . . . . 142
6.4 Visual Impersonation Detection System . . . . . . . . . . . . . 145
6.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.6 Detection Results . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.7 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.9 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7 Closing Remarks 161

viii



Contents

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.2 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Appendices 167
A User Study Questions . . . . . . . . . . . . . . . . . . . . . . . . 167

Bibliography 169

Resume 192

ix





List of Figures

1.1 An overview of attack vectors on user interfaces . . . . . . . 2

2.1 An example structure of modern graphical user interfaces . 12
2.2 Examples of dedicated terminal user interfaces . . . . . . . . 13
2.3 High-level user interface attack goals . . . . . . . . . . . . . . 16
2.4 Examples of user input attacks . . . . . . . . . . . . . . . . . . 17
2.5 Examples of system output attacks . . . . . . . . . . . . . . . 25
2.6 Thesis roadmap and high level overview of key areas of

related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Hover (floating touch) technology . . . . . . . . . . . . . . . . 38
3.2 Post-click hover events . . . . . . . . . . . . . . . . . . . . . . . 42
3.3 Example of post-click hover events collected by Hoover . . . 43
3.4 Overview of the attack . . . . . . . . . . . . . . . . . . . . . . . 44
3.5 Hover events and accuracy . . . . . . . . . . . . . . . . . . . . 47
3.6 Predicting click positions . . . . . . . . . . . . . . . . . . . . . 48
3.7 Accuracy in predicting the keyboard keys clicked by the user 49

4.1 Examples of critical user interfaces on dedicated terminals
and general-purpose PCs . . . . . . . . . . . . . . . . . . . . . 65

4.2 Classification of physical attack techniques and their limitations 67
4.3 Attack scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4 Attack system overview . . . . . . . . . . . . . . . . . . . . . . 73
4.5 Example user interface model . . . . . . . . . . . . . . . . . . 74
4.6 Our algorithm maintains a list of state trackers . . . . . . . . 75
4.7 Movement event handling . . . . . . . . . . . . . . . . . . . . . 76
4.8 Click event handling . . . . . . . . . . . . . . . . . . . . . . . . 77
4.9 Transition probabilities . . . . . . . . . . . . . . . . . . . . . . . 78
4.10 Fingerprinting UI example . . . . . . . . . . . . . . . . . . . . . 80



List of Figures

4.11 Attack device prototype . . . . . . . . . . . . . . . . . . . . . . 82
4.12 Case study UI: custom cardiac implant programmer . . . . . 83
4.13 State tracking accuracy . . . . . . . . . . . . . . . . . . . . . . 86
4.14 State tracking overhead . . . . . . . . . . . . . . . . . . . . . . 88
4.15 Complexity of user interfaces . . . . . . . . . . . . . . . . . . . 104

5.1 Spoofing application example . . . . . . . . . . . . . . . . . . 110
5.2 Spoofing examples . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.3 Approach overview . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.4 Model for mobile app login screens . . . . . . . . . . . . . . . 113
5.5 Examples of Facebook login screen spoofing samples . . . . 115
5.6 Color modification results . . . . . . . . . . . . . . . . . . . . . 118
5.7 General modifications results . . . . . . . . . . . . . . . . . . . 120
5.8 Logo modifications results . . . . . . . . . . . . . . . . . . . . . 120
5.9 Detection system overview . . . . . . . . . . . . . . . . . . . . 122
5.10 Detection system details . . . . . . . . . . . . . . . . . . . . . . 123
5.11 Decomposition process . . . . . . . . . . . . . . . . . . . . . . . 125
5.12 Summary of the screenshot analysis . . . . . . . . . . . . . . . 125
5.13 Decomposition examples . . . . . . . . . . . . . . . . . . . . . 128
5.14 Deception rate accuracy . . . . . . . . . . . . . . . . . . . . . . 129
5.15 Analysis intuition . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.16 The detection probability p as a function of infected devices n135

6.1 Taxonomy of mobile app visual impersonation . . . . . . . . 140
6.2 Obfuscation example . . . . . . . . . . . . . . . . . . . . . . . . 143
6.3 An overview of the impersonation detection system that

works in two phase . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.4 Screenshot analysis system for impersonation detection . . 150
6.5 The distribution of analysis time. . . . . . . . . . . . . . . . . 153
6.6 Average number of screenshots extracted from an app, as a

function of time. . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.7 Manual evaluation of hamming distances of screenshot hashes.154
6.8 Manual evaluation of false positives and false negatives. . . 154
6.9 False positive and false negative rates . . . . . . . . . . . . . . 154
6.10 User interface extraction results. . . . . . . . . . . . . . . . . . 154

xii



List of Tables

3.1 Specifics of the devices used in the experiments . . . . . . . 45
3.2 Demographics of the participants in our experiments. . . . . 46

4.1 User trace collection demographics. . . . . . . . . . . . . . . . 85
4.2 Online attack detection study demographics. . . . . . . . . . 89
4.3 Attack detection study results . . . . . . . . . . . . . . . . . . . 90
4.4 Online banking UI user study results. . . . . . . . . . . . . . . 93
4.5 Placement options for human user tests. . . . . . . . . . . . . 96

5.1 Statistics of the Facebook user study. . . . . . . . . . . . . . . 117
5.2 Demographics of the Facebook user study. . . . . . . . . . . . 117
5.3 Performance evaluation of our implementation. . . . . . . . 131
5.4 Summary of analysis terminology. . . . . . . . . . . . . . . . . 133

6.1 Application dataset . . . . . . . . . . . . . . . . . . . . . . . . . 152





Chapter 1

Introduction

A user interface (or “UI” for short) is the means by which we interact
with a computer system, and any user interface comprises of two main
components: the user input, and the system output mechanisms. The
technology of user interfaces has progressed far, from the early days of
systems based on bulky punch cards and command line interfaces. However,
even though the technology has steadily evolved over the years, the core
underlying principle of our interaction with computers stayed surprisingly
unchanged in the past 40 years. The most prevalent type of user interfaces
today are still those tailored for the combination of a pointing device (touch
sensor or mouse), and a visual display. They are present in the majority
of modern devices, such as laptops and desktop computers, as well as on
mobile platforms such as smartphones and tablets. Securing such user
interfaces is the focus of this thesis.

Users perform both simple daily tasks as well as operations critical to
their privacy, security, and safety through user interfaces. For example,
users visit news portals and check weather forecasts, but also perform
administrative system configurations, write e-mails, or enter their credit
card information and e-banking credentials. Medical doctors use such UIs
to configure the implanted medical device of a patient, while assembly-line
operators use them to control robots.

Users operate a variety of input (e.g., keyboard, touch-screen, mouse)
and output peripheral types (video screens, speakers, etc.), with different
connection interfaces (e.g, USB, FireWire, Thunderbolt). The complexity
and diversity of modern UIs present an inviting attack surface, resulting in
an entire class of attacks called user interface attacks.



Introduction

Figure 1.1: An overview of attack vectors on user interfaces. Through
physical alterations to the target system, the adversary can compromise
both the confidentiality and integrity of user input (malicious peripherals
(1), man-in-the-middle devices (2)), as well as system output (compromised
interconnecting link (3), or output device (4)). A malicious application can
also compromise confidentiality of user input (input-inference attacks (5)),
as well as integrity of output (e.g., spoofing attacks (6)). Attacks where
the adversary compromises the OS are outside of the scope of this thesis.

An adversary can launch UI attacks, that can compromise the confiden-
tiality and integrity of both user input and system output, in different ways
(Figure 1.1). Some attack vectors require physical access, while others
only require a malicious application running on the target system. For
example, an adversary with physical access (1, 3 in Figure 1.1) can in-
stall malicious input peripherals [84, 99], or a malicious device located
in-between the legitimate peripherals and the system [99] (2, 4). The
adversary can then compromise the confidentiality of all user input (e.g.,
by using key-loggers [98]), but can also perform more sophisticated attacks
that compromise the integrity of user input by injecting malicious UI com-
mands [84,99,123] (e.g., opening an administrative console and executing
a malicious application). Similarly, the adversary can compromise the con-
fidentiality and integrity of system output by, e.g., directly compromising
the output device, or by installing similar man-in-the-middle attack devices.
The peripheral ports of a device are often directly accessible [119], allowing
an adversary to easily attach a stealthy and malicious hardware device.

If the adversary controls a malicious application running in the back-
ground of a smartphone (5, 6), the adversary can also compromise the
confidentiality of user input by performing input inference attacks using side
channels (e.g., accelerometer [36,142], gyroscope [134,196]). Launching
such attacks requires few [44,137,161] or no special privileges [36,142].
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An entire subclass of user interface attacks focuses on user decep-
tion [42,63,90,116,139,150]. For example, if the user interface presents
content generated by the adversary, the integrity of what the user sees is
violated, and the user can be deceived into believing that the target system
(or application) is in a different state, and take actions that the user did not
intend to perform. Such unintended actions can result in severe safety and
security violations, depending on the role of the system itself. For example,
if the user interface of an implant programmer shows malicious electro-
cardiogram data (ECG), a doctor could wrongly conclude that the patient
requires immediate electroshock therapy. In phishing attacks, which are
another kind of UI attacks, a malicious application steals login credentials
by presenting the user with a fake login screen of an application the user
knows. Such application-based UI attacks are widespread, as research [214]
showed that 86% of analyzed mobile application malware samples were
repackaged versions of legitimate apps, which performed UI attacks.

Alternative UI attacks are possible, such as mounting remote software
attacks, using side-channels to infer physical keyboard input [110] and
video output [102], or compromising the operating system. However, they
are outside of the scope of this thesis as such attacks are highly specialized
and are significantly less frequent.

User interface attacks are powerful because (1) in case of malware run-
ning on the device, they commonly require few to no special permissions
to launch, (2) in case of physical attacks, they require only brief and nonin-
vasive access to the target system (an attacker only connects a peripheral),
and most importantly, (3) they can bypass existing, commonly deployed,
security mechanisms. For example, in the scenario where malware is run-
ning on the target system, even though the malware may be unable to
perform a malicious operation directly (e.g., initiate electroshocks, read
user login credentials), due to lack of permissions, the malware can still fool
the user into performing the operation instead. In such cases, the system
is still vulnerable to compromise, irrespective of any applied architectural
security features (system hardening, process isolation, exploit mitigation
techniques, or other security mechanisms).

The enabling fact for user interface attacks is the lack of a secure end-
to-end channel between the user and the application they are interacting
with. However, depending on the considered system, establishing such a
channel is challenging. Authenticated (and confidential) input and output
through dedicated devices [127], software attestation of peripherals [106],
or security indicators [31,103,121,162] are possible solutions. However,
such mechanisms only protect against some kinds of UI attacks and are not

3
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widely deployed on modern commodity devices as they commonly require
specialized and expensive hardware, or reduce system usability by, e.g.,
increasing the cognitive load of users.

Instead of establishing such a secure channel, approaches based on pre-
venting or detecting malicious behavior were also proposed. For example,
a system can be hardened against malicious peripherals [133], however,
such approaches can reduce overall system usability, as in daily usage
scenarios users require the ability to connect arbitrary peripheral devices.
Even more alerting is that users plug in untrusted USB devices, as 45% to
98% of users connected random and untrusted USB devices found on the
street [182]. Access-control approaches for USB peripherals [19,180] (e.g.,
USB firewalls) only protect against certain types of input injection attacks
(e.g., execute pre-programmed commands through malicious peripherals).
Approaches based on extracting and comparing static [65,215] (e.g., appli-
cation code) and dynamic [21,75,147,184,198] (e.g., application system
call patterns) fingerprints are susceptible to evasion by means of obfus-
cation. An adversary can easily evade detection by slightly modifying a
malicious application such that it results in different fingerprints [120].

Due to the variety of attack types, and affected platforms (from smart-
phones and desktop machines, to embedded terminals), user interface
attacks are challenging to defend against. Although various countermea-
sures were already proposed, user interface attacks still remain widespread,
and highly successful attack vectors.

1.1 Contributions
The goal of this thesis is to better understand the security problems of mod-
ern user interfaces. More precisely, our goals are to (1) better understand
the attack surface on modern user interfaces, and (2) to present new ways
of preventing widespread types of user interface attacks, that overcome the
drawbacks of existing approaches.

Towards that goal, we make the following contributions. We describe
two new user input attacks, namely an input inference attack on Android
smartphones, and a new class of command injection attacks. We present
two new systems for detecting smartphone spoofing attacks.

1.1.1 Attacks
Modern user interfaces are complex, and it is therefore challenging to
foresee the effects that the introduction of a new user input method will
have on overall system security. Hover, or floating touch, is such a new
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1.1 Contributions

kind of user input technology that produces a special type of event (hover
event). Such events allow the user to interact with the device without phys-
ically touching its screen. The hover technology gained popularity when
Samsung, a prominent mobile device vendor, adopted it in its Galaxy and
Note series. We show how introducing such a novel user input technology
can have unexpected, and far-reaching security ramifications, that result in
serious violation of user input confidentiality. More specifically, we make
the following contributions:

Inferring user input with Hover. We demonstrate a novel input inference
attack on modern Android smartphone devices that support the hover
technology. Our attack uses such hover events to infer user input, i.e.,
screen tap locations, or text inserted through the on-device keyboard,
and potentially affects millions of users [29, 30, 70, 92]. Existing input
inference attacks either require additional permissions [44,137], depend
on environmental factors [137] (e.g., noise in the phone’s vicinity), infer
only a particular kind of input (e.g., numerical input), or exhibit low
inference accuracy. We show that a malicious application, running in the
background of an Android device, can infer user input from all applications
on the device in a precise and continuous manner. We also demonstrate
that our attack can be implemented without any special permissions.

However, inferring user input is the initial step, and to derive useful
information, the malware needs to know the context (system state) in
which it was entered (e.g., whether the user is interacting with a game
or an on-screen keyboard). In input inference attacks, the malware is
a malicious application running on the device, that can infer the context
with the proper permissions, or by using known side-channels (e.g., /proc).

In command injection attacks, the malware is a malicious hardware
device (e.g., a USB peripheral), and inferring system state is a challenging
task, as such malware is not executed on the target devices directly and
therefore does not have access to any form of system output. This inability
to infer system state is a major limitation of existing command injection
attacks. For example, if an adversary connects a malicious peripheral that
masquerades itself as a keyboard, the malware cannot know in the cur-
rent system state and hence cannot determine when to launch its attack.
The malware therefore commonly launches the attack immediately upon
connection to the system. However, if the malware launches the attack
at the wrong point in time, the user may notice, and the attack may fail.
Furthermore, we observed that more damaging UI attacks can be performed
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while a legitimate user is operating the device (e.g., a doctor programming
the implanted pacemaker of a patient).

Adaptive user interface attacks. We present a new class of adaptive user
interface attacks that overcome those limitations, where the adversary
attaches a small device in between the legitimate input peripheral and
the target system. By analyzing the stream of user input, our approach
infers the most likely state of the system without observing any feedback
from the system. Our approach therefore operates “in the blind”, and
enables launching of precise and damaging UI attacks. Existing command
injection attacks only perform simple command injection, e.g., where the
malicious device attempts to install malware on the system by executing a
pre-programmed sequence of input commands that, e.g., download and
execute a malicious application immediately upon connecting the device to
the target system. Such attacks are limited because the installed malware, or
introduced system misconfigurations, can be detected by existing malware
detection approaches.

Our approach enables new attack scenarios that existing command in-
jection attacks could not achieve. Our attack can compromise the integrity
of a user’s e-banking session without ever resorting to installing malware.
We show that such attacks can be implemented efficiently, are hard for the
users to detect, and can lead to serious violations of input integrity.

1.1.2 Countermeasures
A common assumption in malware detection approaches is that malware
exhibits some form of behavior (e.g., reading user contacts or SMS), or
requirement (e.g., special permissions) that a benign application does not,
which enables it to be detected. However, compared to regular mobile mal-
ware, spoofing applications can be significantly stealthier, as such malware
does not require any special permissions, nor does it necessarily perform
any suspicious actions, other than drawing on the device screen.

Therefore, applying existing malware detection approaches to phishing
apps is challenging. Existing detection approaches based on extracting
and comparing static or dynamic fingerprints were proposed. However, we
demonstrate that such approaches are susceptible to simple obfuscation
attacks [120]. User-assisted approaches (e.g., security indicators) require
attentive users, and prior works have shown that users typically ignore
or misunderstand such security indicators [58, 160]. To detect spoofing
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applications in a manner that is accurate, resilient to obfuscation, and
performant, a new approach is needed.

Instead of analyzing a large malware corpora and extracting common
denominating similarity features from them, we take a conceptually dif-
ferent approach — we focus on visual similarity as perceived by the users.
Security-critical user interfaces (e.g., login screens) of mobile applications
are commonly significantly simpler in both design and the number of el-
ements, when compared to similar UIs on, e.g., desktop devices. This
observation enables us to use various image analysis techniques. Our
approach extracts screenshots at runtime, and compares them to known
reference values. Furthermore, our approach is more robust to obfusca-
tion as we base our analysis on the end result of every spoofing attack —
namely the screenshot presented to the user. More specifically, we make
the following contributions:

On-device spoofing detection system. We propose a novel, on-device
spoofing detection approach, tailored to the protection of mobile app login
screens. We propose deception rate as a novel similarity metric for measuring
how likely the user is to consider a potential spoofing app as one of the
protected applications. We conducted a user study that provided us with
insight into how users perceive visual change. Some visual modifications
(e.g., reordering elements) the users did not perceive as important as, e.g.,
modifying the logo. We also used the study results to implement a spoofing
detection system based on visual similarity. We show that efficient detection
is possible, with low performance overhead.

Even though such an approach is resistant to evading detection by
means of obfuscation, it still runs on the user’s phone. It therefore rep-
resents a reactive approach, as it cannot prevent malware infection from
taking place, but can only detect the problem once the malware, running
on the user’s smartphone, launches the attack. We therefore asked the
following question: “Can the approach of visual similarity be used to detect
malware on the marketplace as well?”.

Cloud-based spoofing detection system. Motivated by our findings above,
we present a novel, and proactive approach, for detecting mobile applica-
tion impersonation attacks on the marketplace. Our system uses dynamic
code analysis to extract user interfaces from mobile apps and analyzes
the extracted screenshots to detect impersonation. As the detection is
based on the visual appearance of the application, as seen by the user,
our approach is robust to different attack implementation techniques and
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resilient to simple detection avoidance methods such as code obfuscation.
Our work demonstrates that impersonation detection through user inter-
face extraction is effective and practical at the scale of a whole marketplace.

1.2 Thesis Organization
This thesis is divided into two parts, and is organized as follows. We begin
by motivating the problem of user interface security and reviewing related
work in Chapter 2.

In the first part of this thesis we propose two novel attacks. In Chapter 3,
we present an user interface attack on Android, that infers user input in
an accurate and continuous manner. Our attack uses a novel side-channel
based on the Android hover technology. In Chapter 4, we present a new
class of user interface attacks that focus on injecting malicious user input,
and that enable attack scenarios that existing attacks are not applicable to.

In the second part, we consider the problem of spoofing, a widespread
user interface attack. We propose two novel systems for detecting such
mobile application spoofing attacks. In Chapter 5, we propose an on-device
detection system, while in Chapter 6 we focus a scalable, cloud-based
spoofing detection system.

We conclude this thesis in Chapter 7 by summarizing our findings.
Furthermore, we reflect on the lessons learned, and we describe possible
future directions in the field of user interface security.

1.3 Publications
The chapters in this thesis correspond to the contributions from the follow-
ing publications:

• E. Ulqinaku, L. Mališa, J. Stefa, A. Mei, and S. Čapkun, Using Hover
to Compromise the Confidentiality of User Input on Android,
Proc. ACM Conference on Security and Privacy in Wireless and Mobile
Networks (WiSec), 2017

• L. Mališa, K. Kostiainen, T. Knell, D. Sommer, and S. Čapkun, Hacking
in the Blind: (Almost) Invisible Runtime User Interface Attacks,
Proc. Conference on Cryptographic Hardware and Embedded Systems
(CHES), 2017

• L. Mališa, K. Kostiainen, and S. Čapkun, Detecting Mobile Applica-
tion Spoofing Attacks by Leveraging User Visual Similarity Per-
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ception, Proc. Conference on Data and Application Security and Privacy
(CODASPY), 2017

• L. Mališa, K. Kostiainen, M. Och, and S. Čapkun Mobile Application
Impersonation Detection Using Dynamic User Interface Extrac-
tion, Proc. European Symposium on Research in Computer Security
(ESORICS), 2016

In addition to the core publications, during my PhD I also co-authored
the following papers:

• N. O. Tippenhauer, L. Mališa, A. Ranganathan, and S. Čapkun, On
Limitations of Friendly Jamming for Confidentiality, Proc. IEEE
Symposium on Security and Privacy (S&P), 2013

• E. Androulaki, C. Soriente, L. Mališa, and S. Čapkun, Enforcing Loca-
tion and Time-Based Access Control on Cloud-Stored Data, Proc.
International Conference on Distributed Computing Systems (ICDCS),
2014

• D. Sommer, A. Dhar, L. Mališa, E. Mohammadi, D. Ronzani, and
S. Čapkun, CoverUp: Privacy Through "Forced" Participation in
Anonymous Communication Networks, eprint 2017/191, 2017

• E. Stobert, E. Cavar, L. Mališa, and D. Sommer, Teaching Authentica-
tion in High Schools: Challenges and Lessons Learned, USENIX
Workshop on Advances in Security Education (ASE), 2017
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Chapter 2

Security of Modern User
Interfaces

2.1 Introduction
Computer systems are an integral and inseparable part of human society,
as they have proved their usefulness in most aspects of our lives. However,
a computer system designed to be operated by a user is only useful when
accompanied by a corresponding, and useful, user interface.

Such user interfaces (or “UI”s for short) consist of two main components:
a user input, and system output mechanisms, illustrated in Figure 2.1. The
input mechanisms could be the common combination of a pointing device
and keyboard, but also other input peripherals, such as touch-screens,
joysticks, or microphones. The most common output mechanism is a video
screen, but can also be a set of speakers, e.g., in case of audio controlled
user interfaces, such as Google Home [78] or Amazon Echo [14].

User interfaces as we know them today changed significantly over the
past 50 years, as some of the first user interfaces were based on batch
processing systems. Such UIs did not enable real-time interaction with
the computer system, as all user input needed to be specified ahead of
time (e.g., in the form of punch cards, or magnetic tape), provided to the
computer’s input queue, and all system output was then produced in the
form of printouts. The large delay between providing input and observing
system output made user interaction slow and error-prone. A user could
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Figure 2.1: An example structure of modern graphical user interfaces.
However, some operating systems (e.g., microkernel designs [87]) can
have the input and output subsystems located in user space, instead of the
privileged kernel space.

notice an error only after the printout started to occur. The user then had
to correct the error, and repeat the input process from the beginning.

The next advancement were command-line interfaces, that provided
users with immediate feedback on video displays. Furthermore, such sys-
tems enabled users to specify input through keyboards, rather than physical
mediums, which allowed users to notice and correct errors immediately.

Our present, de-facto standard, way of interacting with computer sys-
tems are graphical user interfaces, and the most widespread graphical
UIs are ones based on the windows, icons, menus, and pointer model (also
known as “WIMP”). Such UIs allow multiple windows, showing different
information, to be simultaneously present on the device screen. Menus
are used to specify common user commands (e.g., opening or saving files,
closing applications, etc.). Pointing, commonly through the use of a mouse
or similar device, is an intuitive way to navigate such two-dimensional user
interfaces. Contemporary operating systems, such as Windows, OS X, as
well as the GNOME [5] and KDE [6] desktop environments, all follow a
similar paradigm.

In such a model, UI operations are often metaphors for real-world
operations [73] (a concept known as skeuomorphism), which was one of
the reasons such user interfaces became ubiquitous. For example, files are
commonly represented as documents inside folders, much as they would
be organized on an office desk. Following a similar analogy, to move files
around the storage medium, a user picks them up and drags them to their
new location. Similarly, to delete a file, a user drags it into a trash can. A
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Figure 2.2: Examples of dedicated terminal user interfaces.

paradigm that models reality made such UIs intuitive and easy to explain
to users that are new to computers.

Graphical user interfaces rely heavily on a pointing device and allow
the user to visually recognize operations. For example, a user can navigate a
folder structure simply by clicking on the respective icons. In contrast, older
command line interfaces allowed executing more advanced commands,
but they also relied on recollection instead of recognition, as users had to
already know the list of available command line commands, as well as their
various options and arguments.

There are also classes of devices with user interfaces that do not follow
the WIMP paradigm, and an example are modern mobile platforms (e.g.,
smartphones and tablets), as well as dedicated embedded terminals (ATM
machines, pacemaker programmers, etc.).

Mobile platforms. Compared to desktop systems, the way users interact
with mobile platforms is significantly different. Such mobile devices have a
variety of sensors (ambient light, motion sensors, etc.), as well as a touch-
screen instead of a mouse and keyboard combination. As a result, such
devices support a richer set of input gestures, such as pinching, swiping,
as well as multi-finger input. Furthermore, such devices have no standard
notion of a “desktop”, and commonly only have a single application running
in the foreground at any given time.

Dedicated terminals. Contrary to such feature-rich devices and user in-
terfaces, safety-critical systems (Figure 2.2) are commonly embedded ter-
minals that run stripped-down operating systems. While on commodity
devices a user can install and run various applications, and are designed to
be applicable in a variety of settings and purposes, dedicated terminals are
commonly designed only for one particular task (e.g., dispensing money,
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programming implanted medical devices). The user interface design of
such devices reflects those constraints, and the UI is comparatively simple,
and does not consist of multiple windows the user can freely navigate.
Such devices commonly execute only a single application, that does not
provide the features of a modern desktop. Such constrains enable the
introduction of more advanced security measures. Dedicated terminals can
be configured to, e.g., prevent users from connecting their own (untrusted)
input peripherals, or USB memory sticks. Critical terminals are often air-
gapped, i.e., physically isolated from unsecured computer networks, to
increase resilience against remote attacks. We defer a further description
of smartphone user interfaces and dedicated terminals to Chapter 6 and
Chapter 4, respectively.

The goal of a good user interface is to increase user productivity. That
goal is commonly achieved through abstraction and simplification, as in-
deed, during daily interaction a user does not observe the full details of the
inner workings of a computer system, due to underlying system complexity.
Therefore, we can consider the user interface as a window into the system,
where only the most relevant information for effective system control are
presented to the user, and the remainder (e.g., complex program logic,
internal variables) are hidden away.

2.2 Security of User Interfaces
User interfaces, by definition, are the only communication channels the
user has with a computer system, based on which a user both decides future
actions, as well as submits commands to the system. If those communi-
cation channels are maliciously tampered with, the overall security of a
computer system can be compromised, irrespective of any applied architec-
tural security features, e.g., system hardening [133,143], process isolation,
control-flow integrity [11,60], or other security mechanisms [54,71].

User interface attacks are possible in the absence of a secure, i.e., au-
thenticated and confidential end-to-end channel, between the user and
the application the user is interacting with. Lack of authentication en-
ables attacks on input and output integrity (e.g, phishing attacks, command
injection), and lack of confidentiality enables inference attacks (e.g., sensor-
based approaches, shoulder surfing, etc.). Depending on the considered
scenario, realizing such a channel can be challenging or even infeasible.

A potential solution to the problem is the concept of trusted paths. Based
on the Trusted Computer System Evaluation Criteria [10] a trusted path is
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“a mechanism by which a person at a terminal can communicate directly with
the Trusted Computing Base”.

A straw-man solution to achieve such a trusted path is to allow only
signed and manually vetted applications to run on the system, as well as
only use trusted peripherals. Such an approach can be feasible on dedicated
devices, such as embedded terminals. However, on general purpose devices
(e.g., smartphones) such an approach constrains the user and degrades
user experience as users often install third-party applications. Simple forms
of trusted path can also be achieved through secure attention sequences.
For example, such a sequence on Windows OS is “Ctrl+Alt+Del”, and it
ensures that only the kernel can catch such combinations. However, such
approaches implicitly trust input peripherals. Some approaches form the
trusted path only within the borders of the system itself (e.g., they im-
plicitly trust input and output peripherals [105]), while others extend the
trusted path outside of the system by proposing custom input devices [128].
Some approaches work on mobile platforms [105], while others are de-
signed for desktop systems [128,189]. Furthermore, some are based on
hypervisors [216] while others utilize hardware security features.

In terms of assumptions, trusted path approaches commonly enable
secure input (and output) in the presence of a malicious OS. However,
on their own, such approaches do not necessarily offer protection against
other types of user interface attacks. For example, input inference attacks
through side-channels may still be possible, depending on the considered
system. In case the system does not rely on trusted peripherals, the attacker
can still, e.g., replace the keyboard or device screen with malicious ones.

There are multiple ways of classifying related work in the field of
UI security. One way is based on various trust assumptions (e.g., is the
OS trusted, are the peripherals trusted, etc.). However, the goal of this
thesis is to better understand the attack surface, as well as propose novel
countermeasures, for widespread UI attacks, and we consider attacks that
compromise the OS or introduce malicious hardware components (e.g.,
CPU, PCI, etc.) out of scope.

As various UI attacks were proposed that maliciously modify, inject, or
infer either the commands a user is inputing into the system or the system’s
output that is presented to the user, we perform the classification from
an attack-oriented perspective. Such attacks differ in attack goals, but
commonly have a serious impact on users, as well as computer systems
they target. In the remainder of this chapter, we review the various attacks
on user interfaces, as well as their proposed countermeasures. We begin
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Figure 2.3: High-level user interface attack goals. The attacker can com-
promise the confidentiality and integrity, of input or output, as well as
combinations thereof.

by stating the attacker model common to such attacks, and by creating a
foundation on which to classify related work.

2.2.1 Adversarial Model
We observe from the user interface model presented in Figure 2.1 that the
adversary has the following four high-level attack goals (Figure 2.3). The
adversary can attempt to compromise the confidentiality or integrity of user
input, as well as compromise the confidentiality or integrity of system output.

User interface attacks commonly assume the following model. The
adversary either (1) controls a malicious application running on the target
system, or (2) has physical access to the system. The former case commonly
involves a malicious application that can either have some, or no special
privileges. A common assumption is that the OS is not compromised, as a
compromised OS can trivially inspect and modify all user input and system
output. In the latter case, the adversary can approach the target system
and, e.g., operate the device directly. The adversary can also attach a
malicious hardware device to the target system, or in between an existing
input peripheral (man-in-the-middle attacks). With this classification and
adversarial model in mind, we proceed by summarizing related work.

2.3 Input Confidentiality
A class of user interface attacks, known as input inference attacks, focus
on compromising the confidentiality of various types of user input, rang-
ing from single screen taps, individual keystrokes, to typed words, whole
sentences, or even spoken phrases. Such attacks are commonly performed
by a malicious application running on the device that has access to device
sensors. They can also be performed through dedicated hardware devices
(e.g., hardware keyloggers) or other physical attacks (e.g., an attacker
taking a picture of a locked device). Some attacks require special privileges
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Figure 2.4: Examples of user input attacks. Approaches based on malicious
peripherals (1), man-in-the-middle devices (2), and various approaches
where the malware is an application running on the device, e.g., sensor
side-channels (3), were proposed. All three approaches can be used to
compromise the input confidentiality, while approaches (1) and (2) can also
be used to compromise input integrity, as described later in this chapter.

(e.g., access to the microphone or camera), while some operate without
any privileges at all.

2.3.1 Software Approaches
Microphone and camera approaches. Narain et al. [137] and Chowd-
hurry [44] propose attacks that infer both keystrokes and general screen
tap locations using one or more smartphone microphones. Schlegel et
al. [161] propose Soundcomber, where the authors access the microphone
and perform light-weight speech recognition to extract sensitive informa-
tion (e.g., credit card numbers), while the user is operating an interactive
voice response systems. Simon and Anderson [167] demonstrate inferring
PINs through the combined use of a front-facing camera, and a microphone,
while Liu et al. [110] show how the technique of time difference of arrival
(TDoA), commonly applied to ranging problems, can be used to infer typed
keystrokes on a nearby, physical keyboard.

Fiebig and Hänsch [68] describe attacks where a malicious application
extracts private information through the use of the front-facing camera. The
camera is used to infer user keyboard input by observing facial reflections
(e.g., from glasses on the user’s face), as well as to steal user fingerprints
when a user’s fingertip moves through the camera’s view.

Zhang et al. [209] take an image from an unprotected and inactive
(e.g., locked) device. The authors then use computer vision approaches to
extract fingerprints, and from the positions of those fingerprints the likely
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unlock passcode. Yue et al. [200] take images while the user is typing (e.g.,
a PIN). The authors are unable to directly deduce typed input from the
pictures, but can use computer vision techniques to estimate at which parts
of the screen the input was performed. A possible defense for approaches
based on the camera is to augment the smartphone with physical camera
lids that would prevent unwanted screen grabs [68].

As the above approaches use sensitive peripherals, the malware requires
special privileges in order to launch the attacks. Another set of approaches
focus on motion sensors, and therefore do not require any special privileges,
as access to those sensors is commonly allowed to all applications.

Motion sensor approaches. Cai and Chen [36] were the first to demon-
strate the motion side channel on smartphones with on-screen numeric
keyboards, and Aviv et al. [23] demonstrate using accelerometer data to
infer user input. The authors focus on pin entry (numerical keyboards)
and pattern entry scenarios. Wang et al. [186], and Sarkisyan et al. [159]
demonstrate the same motion sensor side-channel on smartwatches.

Miluzzo et al. [134] and Xu et al. [196] use the combined readings of
both accelerometer and gyroscope data to infer general smartphone screen
tap positions. Owusu et al. [142] advance the attack, and demonstrate that
accelerometer readings and a trained Random Forest model are sufficient
to infer complete sequences of text, entered using the on-screen keyboard.
Ping et al. [146] show how using motion sensors is sufficient to infer even
longer user inputs (e.g., whole sentences).

As previous approaches commonly evaluate their attacks on a small
number of devices, Cai and Chen [37] researched the practicality of such
input inference attacks in a variety of settings, such as on multiple users,
keyboard layouts, and smartphone models.

The applicability of such attacks is not limited to the device the mal-
ware is running on. Liu et al. [112] demonstrate how motion sensors in
smartphones can be used to infer keystrokes on nearby physical keyboards.
Marquaradt et al. [122] demonstrate that using smartphone accelerom-
eter readings can be used to infer words typed on a nearby (physical)
keyboard. Michalevsky et al. [132] showed that MEMS gyroscopes, em-
bedded in modern-day smartphones, are sensitive to acoustic signals and
can be used as a simple form of microphones. Using machine learning, the
authors achieved 65% accuracy on detecting short voice phrases spoken
near the phone (e.g., digit pronunciations). Input inference attacks were
proposed that use sound to infer keystrokes inserted using physical key-
boards [22,217]. However, applying such approaches on smartphones is
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challenging, due to the on-screen keyboard having different mechanical
and acoustic properties [36].

The above inference attacks are presented in the context of Android, but
such attacks work on other platforms as well. For example, Damopoulos et
al. [51] demonstrate using motion sensors to infer taps on iOS platforms
as well. Spreitzer [172] demonstrates that even data acquired from a low
resolution sensor, i.e., the ambient light sensors of a smartphone, can be
used to infer PINs typed on the same device.

As sensor side-channels are a common attack vector, a proposed de-
fense is to reduce the amount of available information in the side-channel
used in the attack by, e.g., reducing the sampling frequency of motion
sensors [122,132,137,142]. For example, an accelerometer could still be
useful if it samples at 20Hz, instead of the common 100Hz, and reducing
the sampling rate reduces the amount of useful information and would neg-
atively affect inference precision. Fine-grained sensor access [142,161,196]
(e.g., sensors require more elaborate permissions) is another possible de-
fense. A more active defense approach is to randomly initiate the phone
vibrator, to incur noise in the motion sensor data [142,166], or to frequently
change sensitive input (e.g., create new passwords) [196], or even to pre-
vent any access to motion sensors while the user is performing a critical
operation (e.g., keyboard input) [23,134]. Another defense approach is
to randomize the keyboard layout during sensitive input operations (e.g.,
passwords) [169], but such approaches can incur user errors, and can
negatively affect user experience.

Elevate privileges. A malicious application could also attempt to elevate
its privileges through vulnerabilities present in higher-privileged applica-
tions, or the operating systems itself and thereby gain direct access to user
input. However, such software attacks are outside of the scope of this thesis.

Other approaches Diao et al. [57] take a different approach, and propose a
novel side-channel based on interrupt timing analysis. The authors observe
that the interrupt number patterns (the amount of interrupts per unit of
time) leaks information about the input. Such information is available
through the proc filesystem on Android, and the authors use the data
to infer unlock patterns as well as which application is running in the
foreground. Authors propose decreasing the resolution of interrupt data, as
well as finer-grained access control to the proc filesystem [57] as possible
countermeasures.
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2.3.2 Physical Approaches
A physically proximate attacker can attempt shoulder-surfing attacks, where
an attacker attempts to compromise the confidentiality of user input by
simple observing the user typing the input. Such attacks can be prevent by
shoulder-surfing safe login methods [145].

An attacker can also compromise the confidentiality of user input
through hardware attacks, such as through the use of a hardware key-
logger [98] that records all inserted keyboard input. Other than keyloggers,
an attacker can also use more complex man-in-the-middle hardware [99].
However, as such types of attack are more closely related to compromising
integrity of input, we summarize them in the upcoming section. To prevent
hardware-based attacks, one can use dedicated (trusted) devices [127], or
software attestation of peripherals [106]. In such cases, the peripherals
can share keys with the host, and ensure confidentiality and authenticity
of input data between the peripheral and host system.

For example, Bumpy [128] is a system for creating a secure input path
between user input peripherals, and a remote web service. The system
proposes the usage of specialized hardware that encrypts all user input
prior to sending it through USB. Inside the OS, trusted code running inside
the Flicker [126] framework decrypts the input, and releases it to the des-
tined application. Through the use of a dedicated device, the system also
informs the user to which website (if any) the input is going to. However,
the Bumpy system was designed for desktop scenarios, and not mobile
smartphone platforms.

Summary. Input inference approaches based on motion sensors, micro-
phones, or cameras, suffer from noise in the channels and are inherently
sensitive to environmental factors, e.g., if the user is moving, or navigating
a noisy environment. For example, microphone based keystroke infer-
ence [137] works well only when the user is typing in portrait mode. As a
result, they either suffer from accuracy issues and require multiple obser-
vations to boost the inference accuracy, or require additional permissions
that could raise user suspicion.

2.4 Input Integrity
In the previous section we discussed approaches that focus on compro-
mising confidentiality, and we can consider such approaches as passive,
as they only attempt to infer user input. In this section we discuss active
attacks that compromise the integrity of user input by injecting malicious
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commands into the target system.

Directly operate the user interface. A simple attack vector that compro-
mises the integrity of user input is when an attacker has physical access.
The attacker approaches the device, and directly operates the user inter-
face of the target system (e.g., by using the available keyboard or mouse).
The attacker can then perform any action that the user interface exposes.
Instead of only operating the UI, an attacker can also attempt to install
malware onto the system itself by, e.g., accessing a command console, or
uploading the malware through USB peripherals. However, such man-
ual attacks take time to execute, and may not always be applicable (e.g.,
dedicated terminals can prohibit executing untrusted applications). Fur-
thermore, such attacks can be prevented through the use of authentication
(e.g., passwords, second-factor dongles, etc.).

The Universal Serial Bus (USB) implies trust between host and device.
While the recent USB 3.0 defined an authentication protocol, prior version
of the standard does not require (or provide mechanisms) to authenticate
or attest peripherals or the host. USB implementers forum considers users
to be responsible for their own security [113], stating that “[...] consumers
should always ensure their devices are from a trusted source and that only
trusted sources interact with their devices.”. A feature of USB is the support
for composite devices. Such composite devices enable a single device to si-
multaneously expose the interfaces of multiple devices (e.g., a microphone
and a webcam). For example, a malicious USB memory stick can announce
itself to the target system as a keyboard. As a result, physical attacks were
proposed where an attacker attaches a malicious device to the system, or
compromises an already attached one.

Command injection. In command injection attacks, a malicious attack
device commonly masquerades as a human interface device (HID), such as
an USB mouse or keyboard [26,77,84,140]. The attack device then injects
malicious input that, e.g., adds a new administrative user, or executes an
application and infects the target system with malware. An example are
BadUSB [140] attacks, where the adversary compromises the firmware of
a legitimate USB peripheral (e.g., memory stick), and augments it with
malicious logic. Instead of compromising existing peripherals, the attacker
can also use a custom device (e.g., rubber ducky [84], facedancer [77]),
dedicated to performing command injection attacks. Kierznowski proposes
BadUSB 2.0 [99], a more advanced version of the attack where the attack

21



Security of Modern User Interfaces

device is not only connected to the target system, but is located in between
the legitimate peripheral (man-in-the-middle).

Command injection attacks are a realistic threat, as studies showed
that many people (as high as 98%) plug in unknown USB devices found
on the street [94,182]. Although such attacks target desktop systems, the
approach of injecting commands via malicious peripherals conceptually
applies to any other system with exposed peripheral ports. For example,
Wang and Stavrou [187] demonstrate how a phone can be compromised
by injecting input commands through the connected USB cable.

2.4.1 Proposed Defenses
A proposed defense against command injection attacks on platforms that
contain motion sensors (e.g., smartphones) is through user identification,
e.g., by using motion sensors to identify users based on tap patterns [210],
or movement data [33]. However, a malicious device could attempt to
learn the input patterns of a real user prior to launching the attack. Another
possible defense is through the use of device authentication where, e.g.,
the host only accepts a trusted and limited set of devices. A simple form of
device authentication is through the use of vendor or product IDs. How-
ever, those identifiers are trivial to spoof by a malicious device. Another is
to white-list devices based on serial numbers, however, firmware can be
compromised and report spoofed serial numbers.

User-centric defenses. There are various user-centric defense approaches
that prompt the user to detect malicious behavior. In USB Keyboard
Guard [52] for example, the authors propose capturing every event when
a new keyboard device is added. The system then prompts the user with
a screen, and instructs the user to decide whether or not to add the key-
board device. In GoodUSB [179], Tian et al. propose a software-based
approach for isolating USB devices from the host. The system requires
kernel modifications, and it prompts the user on every new device connec-
tion. Potentially malicious (denied) devices are redirected to an internal
honeypot for further monitoring.

Kang [96] proposes USBWall, a hardware based approach where a phys-
ical separation between host and peripheral is introduced by a specialized
device. Any USB device is considered as untrusted, until it specifies its
capabilities (intentions), and then the user decides wether to add the device
or not. This approach is conceptually similar to SandUSB [114]. Griscioli
et al. [82] propose a hardware device that forces the user to interact with
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any newly connected USB devices, prior to their usage (authorization).
For example, if a new keyboard is attached, the user is required to type a
random challenge through the device. Similarly for a connected mouse, the
user is required to draw a line between two selected points on the screen.

The drawback of user-centric approaches is that users can get desen-
sitized to the security prompts over time, and begin to habitually accept
arbitrary devices. A similar problem is known in the context of security
indicators, as research has shown that even when users were instructed
to pay attention to security indicators, many failed to do so, while some
disregarded them completely [192], due to not understanding the security
implications of their actions. To remove the user from the decision process,
automated approaches (e.g., based on access control) were proposed.

Access control approaches. Tian et al. [180] propose USBFilter, a firewall
system for USB devices. The authors presented a tool that enables pinning
file descriptors to certain processes. For example, access to a specific USB
device (e.g., USB microphone), which is a file on Linux, can be restricted
to a particular process (e.g.. VOIP application). Similar pining of files to
specific applications can also be performed by alternative approaches such
as PinUp [59] and SELinux [148]. Furthermore, by performing isolation
on a low level, USBFilter can protect (possibly flawed) kernel drivers from
malicious peripherals, as it is blocked before the required drivers are loaded.
The approach also enables the ability to filter based on specific interfaces
of a single device — an approach relevant for malicious composite devices.

Angel et al. [19] propose Cinch, a virtualization layer to secure USB
communication by separating an untrusted machine from a protected one,
through the use of a hypervisor. The authors also propose a overlay protocol,
that enables establishing TLS sessions between the USB device and the
target system. In such a manner, access can be denied to untrusted devices
(devices that don’t possess the signed certificate). However, implementing
such a cryptographic overlay requires modifying USB devices.

Wang and Stavrou [188] propose USBSec, a custom authentication
layer on top of USB. However, such an approach requires custom kernel
extensions. Furthermore, there are various open-source [100], as well as
commercial projects [47,48,74] that offer access control functionalities for
USB devices.

Other approaches. Bates et al. [28] and Letaw et al. [104] propose using
USB ports to determine identity through the use of fingerprinting. The
authors show that a USB device can identify the host, based on features
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inherent to the machine hardware, or USB software stacks. In such cases,
a peripheral device (e.g., a mouse) can detect if a malicious man-in-the-
middle device (e.g., BadUSB2.0 [99]) is present, or if the device is directly
communicating with the host. Barbhuiya et al. [26] propose an approach
based on analyzing keystroke dynamics, and detecting input that was
created in an automated manner (e.g., by a malicious peripheral, as opposed
to user-typed input). Another approach to protecting against malicious
firmware modification attacks [140] is through cryptographically signing
firmware images. However, such approaches can require complex key
management. Additionally, to prevent command injection attacks one
can use software attestation to, e.g., only allow the use of trusted input
peripherals [106].

An alternative approach is to randomize keyboard keys, however such
approaches are commonly applicable only to systems where the keyboard
is an application running on the system (e.g, in case of smartphones). The
rationale is that an automated input mechanisms (e.g., malicious peripheral
posing as a mouse) does not know the current keyboard layout. However,
such an approach only protects against keyboard input through the on-
device keyboard, as the malicious peripheral could also register a separate
USB keyboard device.

Summary. Currently proposed command injection attacks are limited to
executing simple sets of pre-programmed user input [77,84,99,140]. To
detect such attacks, a common assumption is that malicious peripherals
will exhibit some form of non-compliant behavior. For example, if a storage
peripheral registers itself as an input peripheral to inject user input, or
if the automated input is inserted at a different speed or style [26]. It is
therefore challenging to apply existing approaches to detect attacks that are
compliant, e.g., an attack that does not create an additional input channel
(e.g., registers a new keyboard), but rather injects input through the regular
input channel (e.g., in the case of a man-in-the-middle device [99]).

2.5 Output Integrity
In the previous sections we focused on user input attacks. However, an
attacker can also directly attack the system output as well. A type of
such attacks that compromise the output integrity are also known as user
deception attacks. We can think of many attacks that compromise integrity of
output (e.g., phishing) as attacks whose final goal is to compromise integrity
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Figure 2.5: Examples of system output attacks. Approaches that com-
promise the confidentiality of output based on side-channels such as RF
leakage and shoulder-surfing attacks (1), or man-in-the-middle devices
(2) are possible. Furthermore, attacks on output integrity, such as user
deception attacks, e.g., spoofing (3) or UI redressing (4), were proposed.

of input (described in the previous section). However, we decouple those
two sections for clarity of presentation.

2.5.1 User Deception Attacks
Phishing attacks are an all too common occurrence, and are good examples
how efficient and devastating user interface attacks can be. By maliciously
changing what the user sees (e.g., the contents of the device screen), such
user deception attacks attempt to confuse the users into believing that they
are interacting with a known and trusted application, when in reality they
are interacting with a another one. Such attacks assume an adversary that
controls a malicious application on the target device.

An example of such attacks are spoofing attacks, where a modified
stock market application changes the value of the current stock prices that
the user sees. The application is otherwise completely benign, and by
modifying what the user sees such an app then deceives the user into, e.g.,
selling or buying stock. A more common form of such spoofing attacks are
phishing attacks, where a malicious application creates a fake interface,
commonly for the purpose of stealing user credentials.

The existing application phishing detection systems attempt to identify
API call sequences that enable specific phishing attacks vectors (e.g., acti-
vation from the background when the target application is started [31]).
Many approaches in web phishing detection analyze the contents of the
website’s DOM tree, and compare the structure and elements to know
instances of phishing attacks [12, 111, 154, 205, 208]. Such approaches
could be also applied to smartphone scenarios, as mobile operating systems
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commonly keep all UI elements in a tree structure similar to a HTML DOM
tree. Another approach is to consider the visual presentation of a spoof-
ing application (or a website), and compare its similarity to a reference
value [43,72,125]. Approaches based on Gestalt theory [190] to detect
web phishing using visual similarity were proposed [43], as well earth
mover’s distance [72] were proposed. There are various attack vectors that
enable such phishing attacks to occur, and we summarize repackaging, as
well as activity and task hijacking.

Application repackaging is a simple and widespread [76,214] malware
deployment vector, where the attacker downloads a legitimate application
(commonly from a marketplace), appends malicious logic, and re-uploads it
to the marketplace under a different author. Such modifications can easily
be performed at large scale, e.g., by use of automated tools.

Activity hijacking is an attack vector where an attacker brings a new activ-
ity to the foreground [42,63] (e.g., a malicious copy of the previously active
app). Such attacks consist of two steps: (1) detect when the targeted app is
active, and (2) place the malicious activity in the foreground. The first step
can be realized through side-channels such as the proc filesystem [42], or
from design features of the windowing manager [150]. An alternative form
of the attack is through “immersive” fullscreen windows [31] that enable
creation of fullscreen windows the user can not escape out of.

Task hijacking are recent attack vectors for user deception attacks. They
utilize user interface design features (specific flags of the underlying GUI
subsystem, the design of the activity stack, the way the “Back” button is
implemented, etc.) to change the order of the window stack [150]. After
the attack is launched, by clicking the “Back” button, the user brings a
malicious activity to the foreground, instead of the expected (benign) one.

User interfaces on smartphone platforms are sophisticated subsystems.
They offer a variety of APIs that an attacker can use to divert the normal
flow of UI operations to, e.g., bring a malicious phishing window in the
foreground without the user noticing the transition. Furthermore, such
attacks are applicable to any UI on the system, including system applica-
tions. Although the above attacks were proposed in the context of Android,
similar attacks are shown to work on iOS as well [156].

Other attacks. Tapjacking (or clickjacking) [90, 116, 139, 152, 156] are
attacks where the user believes that one application is receiving their input,
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when in reality, the input is processed by another app. For example, the
user see and presses the Facebook “Like” button, when in reality, e.g., the
user allowed the attacker administrative access to the device.

Other UI attacks are also possible. For example, if a malicious app
shows a static image of a UI, the attacker can cause a denial-of-service
effect on the user, as the user sees the UI but is unable to interact with it,
and concludes that the app is unresponsive.

2.5.2 Proposed Defenses
User deception attacks are a major threat [83] and one reason why they are
so successful, is that users can not determine the provenance of the content
presented on the device screen. Felt and Wagner [63] pointed out that the
lack of trusted path from input to the app is both a problem, as well as the
reason for phishing attacks. Another reason is that upwards of 90% of users
use the visual look and feel of a website as means of authenticity [56,95].
The login screen the users see could have been created by a benign and
trusted application, just as it could have been created by a malicious one.
As a result, approaches that aid the user in detecting such attacks were
proposed.

Existing repackaging detection approaches mostly use fingerprinting
based on static (such as code structure [65] or imported packages [215]),
and dynamic features [21,75,147,184,198] (such as system call [108] or
network traffic patterns [163]). For example, EagleDroid [175] extracts
fingerprints from Android application layout files, while ViewDroid [204]
and MassVet [41] perform static analysis on parts of the code relevant to
the UI construction to extract a graph that expresses the user interface state
and transitions. The rationale behind these works is that while application’s
code can be easily obfuscated, the user interface structure must remain
largely unaffected.

User-centric approaches. Approaches based on security indicators [31,
103,121,162] can help users to detect deception attacks. Such approaches
either annotate parts of the display presented to the user, or use dedicated
hardware devices, in order to inform the user when interaction with a
trusted (or untrusted) application is taking place.

A possible approach is to permanently dedicate a part of the smart-
phone device screen to security indicators [63]. For example, Lange and
Liebergeld [103] propose Crossover, an approach that dedicates a part of
the screen to indicate which virtual mxachine (VM) is currently active on a
mobile platform that supports multiple VMs. Similarly, Selhorst et al. [162]
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propose “m-gui”, a secure GUI that always shows the name of the currently
active application (compartment) at the top of the screen. The drawback
of such approaches is that mobile devices are limited in terms of available
display size. Furthermore, such approaches require attentive users to notice
the indicators.

Bianchi et al. [31], and similarly Fernandes et al. [67], propose a security
indicator located inside the bottom navigation bar (next to the “Back”
key). The indicator always presents which application is currently active.
However, such an approach is susceptible to attacks where an attacker draws
over the security indicator (e.g., in full-screen apps). For that purpose, the
authors also propose using a secret image, that the attacker does not know
and therefore cannot spoof. Bumpy [128] uses a small dedicated screen
as a form of security indicator. Fernandes et al. [66] propose AuthAuth, a
trusted input path where the authors annotate the system keyboard app
with secret images, known to the user, but not to an attacker attempting
to launch spoofing attacks. Based on such images, the user can visually
check if the input is going to the intended application. GuarDroid [183]
takes a similar approach of annotating the keyboard with secure phrases.
Furthermore, GuarDroid establishes a trusted path for password entry
between potentially untrusted apps running on the smartphone, and an
external service. The OS encrypts all user input (e.g., password typed
through the on-device keyboard) prior to sending it to the corresponding
user-land application. A legitimate app would then send this input through
the network to a remote service, e.g., to login. The OS would intercept the
network transmission, and replace the encrypted password with the correct
one. A malicious phishing application therefore only sees the encrypted
text input, and not the real password.

The drawback of approaches based on security indicators, is that they
rely on users to be constantly attentive and able to detect signs of attacks
taking place (e.g., visual discrepancies in the security indicators).

UI hardening approaches. Chen et al. [39] focus on analyzing and pre-
venting sensitive input leakage from input method editor (IME) apps, such
as custom keyboard apps. Zhang et al. [206] propose App Guardian, a sys-
tem that automatically pauses suspicious background apps while sensitive
input is taking place. Ren et al. [149] propose WindowGuard, a system
capable of preventing a wide range of UI redressing attacks. Roesner and
Kohno [152] consider the problem of securely embedding third-party user
interface components (e.g., ad libraries) into existing apps. The authors
propose LayerCake, a modified Android framework that prevents one prin-
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cipal (UI element) from maliciously tampering with other elements.

Summary. Spoofing attacks, such as phishing, remain a widespread and
devastatingly efficient user interface attack. Existing prevention mecha-
nisms based on security indicators suffer from lack of user attention.

2.6 Output Confidentiality
An attacker can compromise the confidentiality of system output (Fig-
ure 2.5) in various ways. An attacker can compromise the link between
the system and the output device (e.g., a monitor), or simply observe
the system output through shoulder-surfing attacks. However, such at-
tacks can be addressed using special head-mounted displays and appro-
priate coding [109, 193]. Another approach is to exploit vulnerabilities
in the monitor’s firmware, attach a malicious man-in-the-middle device,
or use side channels to infer the presented data. One such side chan-
nel is based on electromagnetic emanations [102], where the attacker
reconstructs the video image from the signals that leak through the cable
connecting the graphics card to the monitor. Such attacks can be prevented
by shielding the cables [7] or by fortifying the security of the monitor’s
firmware [11,54,60,71,133,143]. An alternative physical attack is to in-
tercept hardware components en-route [9]. An attacker could then replace
legitimate components with their malicious counterparts.

Such attacks are realistic and potentially damaging, but are also highly
specialized, and fall outside of the scope of this thesis. We therefore do not
focus on them any further.

2.7 Summary
The goal of this thesis is to both advance the state-of-the-art in user in-
terface attacks, as well as to propose novel defense mechanisms against
widespread types of user interface attacks. Towards that end, in this chapter
we motivated the problem of user interface security, we reviewed related
work and pointed out the benefits and drawbacks of existing attacks as well
as defense approaches.

We conclude this chapter with a visual representation of key parts of the
UI security problem space (Figure 2.6). The goal of the figure is to visually
position the contributions of this thesis with respect to broad related work
areas, and also to serve as a roadmap for upcoming chapters.
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Introduction
In Chapter 2, we reviewed related work in the domain of user interface
attacks, and we saw that various input inference attacks were proposed.
Some used motion sensors, while others used microphones or cameras.
However, such attacks suffer from sensitivity to noise in the employed
side-channels (or environment), or only work in specific scenarios (e.g.,
when the device is in portrait mode). Furthermore, existing approaches
either suffer from accuracy issues, or require additional permissions that
could raise user suspicion.

One reason why side-channels, the common sources of such attacks,
are challenging to prevent is that they are difficult to account for at system
design time. System architects nowadays can model and prevent well-
known side-channels, such as timing [97], temperature [124], RF [102]
and acoustic [25] emanations. Furthermore, the existence of side-channels
is highly specific to the computer system at hand, as some side-channels
that exist on smartphones (e.g., using ambient light sensors to infer PINs)
may not necessarily exist on other devices as well.

In Chapter 3, we present a novel Android input inference attack that is
based on a new side-channel (hover). Our attack overcomes the limitations
of prior work, and enables precise and continuous input inference.

Furthermore, we observed that existing command injection attacks are
limited to only executing simple sets of pre-programmed user input (e.g.,
open command console, add new administrative user). In Chapter 4 we
therefore present a novel class of adaptive command injection attacks that
target both dedicated terminals, as well as general purpose devices (e.g.,
desktop systems). Our attacks enable new attack scenarios that are beyond
the ones of simple command injection, and to which existing command
injection attacks attacks are not applicable to.
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Chapter 3

Inferring User Input with
Hover

3.1 Introduction
The recent years witnessed a surge of user input inference attacks. This is
not surprising, as these attacks can profile users or obtain sensitive user
information such as login credentials, credit card numbers, personal cor-
respondence, etc. Existing attacks are predominantly application-specific,
and work by tricking the users into entering their information through
phishing or UI redressing [31, 139, 150, 152, 191]. Other attacks exploit
readily available smartphone sensors as side-channels. They infer user input
based on readings of various sensors, such as the accelerometer [85], gyro-
scope [132] and microphone [137]. Access to these sensors (microphone
excluded) requires no special permissions on Android.

In this chapter, we introduce a novel user input inference attack for
Android devices that is more accurate, and more general than prior works.
Our attack simultaneously affects all applications running on the device
(it is system-wide), and is not tailored for any given app. It enables con-
tinuous, precise collection of user input at a high granularity and is not
sensitive to environmental conditions. The aforementioned approaches
either focus on a particular input type (e.g., numerical keyboards), are
application-specific, operate at a coarser granularity, and often only work
under specific conditions (limited phone mobility, specific phone placement,
limited environmental noise). Our attack is not based on a software vul-
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nerability or system misconfiguration, but rather on a new and unexpected
use of the emerging hover (floating touch) technology.

The hover technology gained popularity when Samsung, one of the
most prominent players in the mobile market, adopted it in its Galaxy S4,
S5, and Note series. The attack presented in this chapter can therefore
potentially affect millions of users [29,30,70,92]. The hover technology
produces a special type of event (hover events) that allow the user to
interact with the device without physically touching its screen. We show
how such hover events can be used to perform powerful, system-wide input
inference attacks.

Our attack carefully creates and destroys overlay windows, right after
each user’s tap to the foreground app, in order to capture just enough
post-tap hover events to accurately infer the precise click coordinate on the
screen. Previous phishing, clickjacking, and UI redressing techniques [31,
139,150,152,191] also create such overlay windows, commonly using the
SYSTEM_ALERT_WINDOW permission. Our attack benefits from, but does not
require such a permissions, as we present an implementation that does
not require any permissions. Furthermore, overlay windows in our case
are exploited in a conceptually different manner; our attack is continuous,
completely transparent to the user, does not obstruct the user’s interaction
with the foreground app, does not redirect the user to other malicious
views, and does not deceive the user in any manner — a set of properties
not offered by existing attacks.

To evaluate our attack, we implemented Hoover, a proof-of-concept
malicious application that continuously runs in the background and records
the hover input of all applications. However, to realize our attack we had
to overcome technical challenges. Our initial experiments with the hover
technology showed that hover events, unexpectedly, are predominantly not
acquired directly over the point where the user clicked. Instead, the events
were scattered over a wider area of the screen. Therefore, to successfully
predict input event coordinates, we first needed to understand how users
interact with smartphones. For this purpose, we performed a user study
with 20 participants interacting with one of two devices with Hoover on
it, in two different use-case scenarios: general clicking on the screen and
typing regular English text. The hover events acquired by Hoover were
then used to train a regression model to predict click coordinates, and a
classifier to infer the keyboard keys typed.

We show that our attack works well in practice with both stylus and
fingers as input devices. It infers general user finger taps with an error of
100px. In case of stylus as input device, the error is reduced to just 2px.
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Whereas, when applying the same adversary to the on-screen keyboard
typing use-case, the accuracy of keyboard key inference results of 98% and
79% for stylus and finger, respectively.

A direct and intuitive implication of our attack is compromising the
confidentiality of all user input, system-wide. For example, Hoover can
record various kinds of sensitive input, such as pins or passwords, as well
as social interactions of the user (e.g., messaging apps, emails). However,
there are also alternative, more subtle, implications. For example, Hoover
could potentially profile the way the device owner interacts with the device,
i.e., generate a biometric profile of the user. This profile could be used to,
e.g., restrict the access only to the device owner, or to help an adversary
bypass existing keystroke based biometric authentication mechanisms.

We discuss possible countermeasures against our attack, and we observe
that, what might seem as straightforward fixes, either cannot protect against
the attack, or severely impacts system or hover technology usability.

3.2 Background on Android
In this section we provide a brief primer on the hover technology and on
alert windows, a common UI element used by many Android mobile apps.

Hover events in Android. The hover (or floating touch) technology en-
ables users to interact with mobile devices without physically touching
the screen, and we illustrate the concept in Figure 3.1. The technology
was first introduced by the Sony Xperia smartphone in 2012 [170], and is
achieved by combining mutual capacitance with self-capacitance sensing
systems. After the introduction by Sony, the hover technology was adopted
by Asus in its Fonepad Note 6 device in late November 2013. It finally took
off when Samsung, one of the biggest players in the smartphone market,
adopted it in a series of devices including the Galaxy S4, S5, and the Galaxy
Note [158]. Samsung alone has sold more than 100 million devices sup-
porting the hover technology [29,30,70,92], and all these devices are a
potential target of the attack described in this chapter.

The hover is handled by the system as follows. When the user interacts
with the smartphone, the system can detect the position of the input device
before it touches the screen. In particular, when the input device is hovering
within 2cm from the screen (see Figure 3.1), the operating system triggers
a special type of user input event (the hover event) at regular intervals.
Apps that catch the event gain from it the location of the input device over
the screen in terms of x and y coordinates. Once the position of the input
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Figure 3.1: Hover (floating touch) technology. The input device creates a
special class of events (hover events) without physically touching the device
screen. The rightmost part shows the hover technology in use. The user is
interacting with the phone without the input device physically touching
the device screen.

device is captured by the screen’s sensing system, it is then dispatched to
the View Objects, Android’s building blocks for user interface, listening
to the event. In more details, the flow of events generated by the operating
system while the user hovers and taps on the screen are as follows. The
system starts firing a sequence of hover events with the corresponding (x , y)
coordinates, when the input device gets close to the screen (less than 2cm).
A hover exit event followed directly by a touch down event is fired when the
user touches or taps on the screen, followed by a touch up event notifying
about the end of the touch. Afterwards, another series of hover events with
relative coordinates are again fired as the user moves the input device away
from the original point of touch. Finally, when the input device leaves the
hovering area, i.e., is floating higher than 2cm from the screen, a hover exit
event is fired.

View Objects and Alert Windows. The Android OS handles the visual-
ization of system and application UI components on screen through the
WindowManager interface [15]. This interface is responsible for managing
and generating the windows, views, buttons, images, and other floating
objects on the screen. Depending on their purpose, the views can be gen-
erated as to catch hover and touch events (active views, e.g., a button),
or not (passive views, e.g., a static image). However, the mode of a given
view can be changed, e.g., from passive to active, through specific flags
of the updateViewLayout() API of the WindowManager interface. For
example, to make a view passive we can set the FLAG_NOT_FOCUSABLE
and FLAG_NOT_TOUCHABLE flags. The first flag avoids that the view blocks
possible touch events destined for textboxes of other apps that are un-
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derneath the view. The second flag disables the ability to intercept any
touch or hover event. Setting the two flags prevents the static view from
interfering with the normal usage of the device, even though it is always
present on top of any other window. In addition, a given view can know
when a click was issued somewhere on screen and outside the view area,
i.e., without knowing the click position. This is made possible by setting
the FLAG_WATCH_OUTSIDE_TOUCH parameter of the view.

Alert windows are views that, even when created from a background
service, the OS puts on top of every other visible object, including those of
the app the user is currently interacting with [16]. To generate alert win-
dows, the WindowManager interface utilizes the SYSTEM_ALERT_WINDOW
permission, that the service that creates the view must hold. This per-
mission is used by system apps such as “Text Messaging” or “Phone” to
show information related to the cost of the last text message or telephone
call. Most importantly, the permission is very common to many apps on
Google Play, as it enables users to quickly interact with a given app while
they are using another one. An example is the Facebook Messenger’s “chat
head” feature, that let the user reply outside the Messenger app. Among
the popular apps that use the SYSTEM_ALERT_WINDOW permission are also
Facebook, Skype, Telegram Messenger, etc. These apps alone have recorded
billions of installs on Google Play.

3.3 Our Attack
The goal of our attack is to track every click the user makes with both high
precision (e.g., low estimation error) and high granularity (e.g., at the
level of pressed keyboard keys). The attack should work with either finger
or stylus as input device, while the user is interacting with a device that
supports the hover feature. Furthermore, the attack should not be detected
by the user, i.e., the attack should not obstruct normal user interaction
with the device in any way. Before describing our attack, we state our
assumptions and adversarial model.

3.3.1 Assumptions and Adversarial Model
We assume the user is operating a mobile device that supports the hover
technology. The user can interact with the mobile with either a stylus, or a
single finger, without any restrictions.

We consider the scenario where the attacker controls a malicious appli-
cation installed on the users device, and where the goal is to violate the
confidentiality of user input without being detected. The malware can have
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access to the SYSTEM_ALERT_WINDOW, but does not require it. Furthermore,
we assume the malware has the INTERNET permission that Android desig-
nated as a PROTECTION_NORMAL permission [18] that is granted to all apps
that require it at install time.

3.3.2 Attack Overview
To track the input device immediately after a user performs a click, we ex-
ploit the way Android OS delivers hover events to apps. When a user clicks
on the screen, the following sequence of hover events with corresponding
coordinates and time stamps are generated (see Section 3.2): hover events
(input device floating), hover exit and touch down (on click), touch up
(end of click), hover events (input device floating again).

The above sequence already shows that just by observing hover events
one could infer when and where the user clicked. To obtain these events,
a malicious application can generate a transparent alert window overlay
if it holds the SYSTEM_ALERT_WINDOW permission, otherwise it can, e.g.,
use the Toast class to create the overlay and implement the attack as
described in Section 3.4.5. Recall that the alert window components are
placed on top of every other view by the Android system (Section 3.2).
Once created, the overlay could catch the sequence of hover events fired
during clicks and would be able to track the input device. However, doing
so in a stealthy way without obstructing the normal app interaction of the
user (the foreground victim application) is not trivial. The reason is that
Android sends hover events only to those views that receive touch events.
In addition, the system limits the consumption of a touch stream of all
events in between and including touch down and touch up, to one view
only. Therefore, a transparent and malicious overlay tracking the input
device would either catch both hover events and the touch, thus preventing
the touch to go to the victim app, or none of them, thus preventing the
malware to infer the user input.

3.3.3 Achieving Stealthiness
The malicious app controlled by the adversary cannot directly and stealthily
observe click events. We show that it can instead infer the clicks stealthily
by observing hover events preceding and succeeding each user click. In
doing so, the adversary is able to infer the user input to the device without
interfering with regular user interaction, and our attack works as follows.

The malicious app generates a fully transparent alert window overlay
which covers the entire screen. The overlay is placed by the system on top
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of any other window view, including that of the app that the user is using,
and due to the overlay the malware can track hover events. However, the
malicious view switches from active (catch all events) to passive (pass them
through to the underneath app) in a smart way, so that the touch events go
to the real app while the hovering coordinates are caught by the malware.
The malware achieves this by creating and removing the malicious overlay
in a way that does not interfere with the user interaction. We proceed by
describing the procedure in the next section.

3.3.4 Catching Click Times and Hover Events
We implement our adversary (malware) as a background service that is
always running on the victim device. The main challenge of the malware
is to know the exact time when to switch the overlay from active (add it on
screen) to passive (remove it), and back to active mode again. Note that,
to guarantee the attack stealthiness, we can only catch hover events, as
catching other types of events (e.g., user taps) would result in disrupting
the user’s regular UI experience. Therefore, estimating when the user is
going to stop hovering the input device in order to perform the click on the
screen is not trivial, and we approach the issue in the following way.

The malware makes use of two views through the WindowManager. One
is the fully transparent alert window overlay mentioned earlier in this sec-
tion. The second view, that we call the listener, has a size of 0px and it does
not catch hover events nor regular user clicks. Its only purpose is to give
the malware knowledge of when a click happens, and the Hoover malware
will then use this information to remove (or recreate) the transparent over-
lay accordingly. The listener view has the FLAG_WATCH_OUTSIDE_TOUCH
flag activated, which enables it to be notified each time a click happens
anywhere on the screen. Then, the malware engages the two views during
the attack as follows.

Inferring click times. Every user click happens outside the listener view,
as the view has a size of 0px. In addition, this view has the appropriate flag
FLAG_WATCH_OUTSIDE_TOUCH set, and is therefore notified by the system
when the click’s corresponding touch down event is fired. As a result, the
malware infers the exact timestamp of the click, though it cannot know its
position on the screen just yet (step 1 in Figure 3.2).

Catching post-click hover events. After the click time is detected, the
next step is to infer the click position. This is done through the activation
of the whole-screen transparent overlay, which is then used to acquire
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Figure 3.2: Post-click hover events. Hoover catches post-click hover events
through the use of a transparent malicious overlay.

the hover events that succeed the click. However, the malware activates
the overlay only after the previous phase; namely after the touch down
event has already been fired and the click has already been intercepted
by the application the user was interacting with (step 2 in Figure 3.2).
This guarantees that the attack does not interfere with the normal user
experience. From that moment on, the overlay intercepts hover events
fired as the input device moves away from the click’s position and towards
the next screen position the user intends to click on (step 3 in Figure 3.2).

In contrast with the listener view, which cannot interfere with the user-
device interaction but can be constantly present, the overlay cannot be
present on screen, otherwise it will obstruct the next clicks the user makes.
At the same time, the overlay must remain active long enough to capture
a sufficient number of hover events succeeding the click to perform an
accurate click location inference. With the devices considered in this work,
our experiments show that hover events are fired by the operating system
once every 19ms on average. In addition, we find that an activation time
of 70ms is a good trade-off between catching enough hover events for click
inference and not interfering with the user-device interaction. After the
activation time elapses, the malware removes the overlay again (step 4 in
Figure 3.2).

3.3.5 Inferring Click Positions
At this stage, the malware has collected a set of post-click hover events for
each user click. Starting from the information collected, the goal of the
attacker is to infer the position of each user click as accurately as possible.
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Figure 3.3: Example of post-click hover events collected by Hoover. In case
of stylus input, the captured post-click hover events (h1, h2, . . . , hn) tend to
closely follow the stylus path. In case of a finger, the captured hover events
are scattered over a wider area and are rarely directly over the click points.

A simple straw-hat solution would be to determine the click position only
based on the position of the first post-click hover event. However, while
this approach works well with stylus clicks, it is inaccurate in estimating
finger clicks. The reason is that the stylus, having a smaller pointing surface,
generates hover events which tend to follow the trajectory of user movement
(Figure 3.3). As a result, the first post-click hover events tend to be very
close to the corresponding clicked position. Conversely, the surface of the
finger is considerably larger than that of the stylus pointer, and those hover
events do not precisely follow the trajectory of the finger movement, as in
the stylus case. This was also confirmed by our initial experiment results
that showed that the position of the first captured post-click hover is rarely
over the position of the click itself.

For this reason, to improve the accuracy of click inference of our ap-
proach we use machine learning tools which consider not only the first
post-click hover event, but all those captured in the 70ms of the activation of
the overlay (see Figure 3.4 for a full attack overview). In particular, for the
general input inference attack we use a regression model. For the attacks re-
lated to the keyboard (key inference) we make use of a classifier. On a high
level, given the set of post-click captured hover events (h1, h2, . . . , hn), a
regression model answers the question: “Which is the screen position clicked
by the user?”. Similarly, the classifier outputs the estimated key pressed by
the user. To evaluate our attack we experimented with various regression
and classifier models implemented within the analyzer component of the
attack using the scikit-learn [144] framework. We report the result in the
next section.
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Figure 3.4: Overview of the attack. Overlay windows catch hover events
and detect when a click has occurred. The hover events are then provided
to the position estimator regression model which produces an estimated x
and y coordinates of the click position. In case of an on-screen keyboard
attack, a separate classifier estimates which key was clicked.

In our initial experiments, we noticed that different users exhibit differ-
ent hover event patterns, as some users moved the input devices faster than
others. In case of fingers, the shape and size of the users’ hands resulted in
significantly different hover patterns. To achieve accurate and robust click
predictions, we therefore need to train the regression and classifier models
with data from a variety of users. For that purpose, we performed two user
studies that we describe in the next section.

3.4 Attack Implementation and Evaluation
To evaluate the attack we implemented Hoover, a prototype malware for
Android. Hoover operates in two logically separated steps, as it first collects
hover events (as described in Section 3.3) and analyzes them to predict
user click coordinates. We implemented the two steps as two distinct com-
ponents, but both components could also run simultaneously on the user
device. However, in our experiments we opted for their functional split as it
simplified our analysis. The hover collecting component was implemented
as a malicious Android app that runs on the user device. The analyzer was
implemented in Python and runs on our remote server, but could also be
implemented as another on-device component. The communication among
the two is made possible through the INTERNET permission held by the
malicious app, a standard permission that now Android grants by default
to all apps requesting it, without user intervention.

We found that uploading collected hover events on the remote server
does not incur a high bandwidth cost. For example, we actively used a
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Device Type Operating System Input Method

Samsung Galaxy S5 Cyanogenmod 12.1 Finger
Samsung Galaxy Note 3 Neo Android 4.4.2 Stylus

Table 3.1: Specifics of the devices used in the experiments. The last column
shows the input method supported by the device.

device (see Table 3.1) for 4 hours, during which our malicious app collected
events. The malware collected hover events for approximately 3,800 user
clicks. The size of the encoded hover event data is 40 Bytes per each click
and the total data to be uploaded amounts to a modest 150kB. We obtained
this data during heavy usage of the device and the numbers represent an
upper bound. We believe that the average amount of clicks collected by a
standard user would be significantly less in a real-life usage scenario.

Finally, for the experiments we recruited 40 participants whose demo-
graphics we present in Table 3.2. The evaluation of Hoover was done
in different attack scenarios, namely (1) a general scenario, in which we
assume the user is clicking anywhere in the screen and two more specific
scenarios targeting on-screen keyboard input of (2) regular text and (3)
random alphanumeric and symbol strings. We evaluate Hoover in terms of
click coordinates inference accuracy in all three scenarios.

We performed a number of experiments with both stylus and finger as
inputs, on two different devices whose specifics we shown in Table 3.1.
However, the ideas and insights on which Hoover operates are generic and
do not rely on any devices particularities. Therefore, we believe our attack
would work just as well on other Android devices that support hover.

3.4.1 Use-cases and Participant Recruitment
In this section we describe in detail each use-case scenario and we report
on the participants recruited for the evaluation of our attack.

Use-case I: Generic clicks. The goal of the first use-case scenario was to
collect information on user clicks anywhere on screen. For this purpose, we
asked the users to play a custom game where the users had to recurrently
click on a ball shown at random positions on the screen. This use-case
scenario lasted 2 minutes.
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Gender Education Age Total
M F BSc MSc PhD 20-25 25-30 30-35

Use-case I 15 5 3 5 12 7 7 6 20
Use-case II 15 5 3 5 12 7 7 6 20
Use-case III 13 7 5 4 11 6 9 5 20

Table 3.2: Demographics of the participants in our experiments.

Use-case II: Typing regular text. The second scenario targeted on-screen
keyboard input, where the participants were instructed to type a paragraph
from George Orwell’s book “1984”. On average, each paragraph contained
250 characters of English text, including punctuation marks.

Use-case III: Typing password-like strings. This time the users were
asked to type strings of random characters, instead of English text. Each
string had a length of 12 characters that contained combinations of sym-
bols and alphanumeric keys. The goal was to simulate a scenario in
which the user is typing a password. An example string looked as follows:
“&!c$$/7#/$;#”. Every time the users had to type a symbol character, they
had to click the SYMBOL key to switch to the second layout of the keyboard,
and vice-versa.

Each use-case scenario was repeated 3 times by the participants. In the
first iteration they used their thumb finger as input device. In the second
iteration they used their index finger, whereas in the third and last one, the
stylus. During each use-case and corresponding iterations we recorded all
user click coordinates and hover events that followed them.

Participant recruitment. For the experiments, we enrolled a total of 40
volunteers from a university campus, and we present the demographic
details of our participants in Table 3.2. It is worth noting that no private
user information was collected at any point during the experiments. The
initial 20 people were enrolled for the first two use-cases; the general
on-screen click setting and the input of regular English language text. Later
on, we decided to add the third use-case to the evaluation as well. We
therefore enrolled another 20 volunteers that carried out the corresponding
experiments. However, we payed attention that their profile was similar to
the participants in the first group (see Table 3.2). The users operated the
devices from our testbed (see Table 3.1), with the Hoover malware running
in the background. Our set of participants mainly includes the younger
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Figure 3.5: Hover events and accuracy. The input-inference accuracy in
dependence of the number of post-click hover events considered.

population whose input will typically be faster; we therefore believe that
the Hoover accuracy might only improve in the more general population.
We leave this extended evaluation as part of our future work.

As a result of our experiments with the 40 participants, we collected ap-
proximately 24,000 user clicks. Furthermore, the malware collected hover
events for 70ms following each click. Approximately 17,000 clicks were
of various keyboard keys, while the remaining 7,000 clicks were collected
from users playing the ball game.

Ethical considerations. The experiments were carried out by lending each
of the volunteers our own customized devices. In the password-like use-
case scenario, we asked the participants to type strings with symbols and
alphanumerical characters that we randomly pre-generated. At no point
did we require participants to use their own devices or provide any private
or sensitive information such as usernames or passwords.

3.4.2 Duration of Hover Collection
A first aspect we investigated is for how long the malware should keep
the malicious overlay active without obstructing the next click issued by
the user. The results showed that, in 95% of the cases, the inter-click time
(interval among two consecutive clicks) is larger than 180ms.

Then, we investigated on how the number of post-click hover events im-
pacts the prediction accuracy. For this reason, we performed a preliminary
experimental study with just two participants. The initial results showed
that the accuracy increases with increasing the number of considered hover
events. However, after the first 4 events the accuracy gain is less than 1%
(see Figure 3.5). Therefore, for the evaluation of the Hoover prototype we
choose to exploit only 4 post-click hoover events. This choice impacted the

47



Inferring User Input with Hover

D
ec
isi
on

Tr
ee

R
an
do
m

Fo
re
st

B
as
el
in
e

La
ss
o

Li
ne
ar

R
eg
re
ss
io
n

0
3

10

20

30

R
M

S
E

(p
x
) Stylus

D
ec
isi
on

Tr
ee

B
as
el
in
e

La
ss
o

Li
ne
ar

R
eg
re
ss
io
n

R
an
do
m

Fo
re
st

100
107

120

140

160

Finger

Figure 3.6: Predicting click positions. We present the results of different
regressions models using Root Mean Square Error (RMSE) as the metric.
Results are obtained using leave-one-out cross-validation.

time that Hoover keeps the malicious overlay active for, i.e., the post-click
hover event collection time. We observed that 70ms was indeed sufficient,
as the first 4 post-click hover events were always fired within 70ms after
the user click.

Lastly, we point out that our choice of 70ms is quite conservative when
compared with the 180ms of inter-click time observed in our experiments.
However, as we will see in the next sections, the prediction results with
the Hoover prototype are high. On the one hand, a longer collection time
would increase the number of post-hover events captured, and this could
improve the accuracy of the regression and classifier in inferring user input.
However, a static, longer collection time risks exposing the adversary to
users whose click speed is very high — higher than those of the users in our
experiment. A more sophisticated adversary could begin with an arbitrarily
short collection window and dynamically adapt it to the victim’s typing
speed.

3.4.3 Hoover Inference Accuracy
In this section, we present the experimental results regarding Hoover effec-
tiveness and precision in inferring user click coordinates. Once Hoover ob-
tains the post-click hover events from the user, it sends them to the machine-
learning based analyzer running on the remote server (Section 3.3.5).
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Figure 3.7: Accuracy in predicting the keyboard keys clicked by the user.
The best model (random forest) achieves 98% (stylus) and 79% (finger)
accuracy using 10-fold cross-validation. The standard deviation of the
values with all models is ≤ 1%.

Inferring the coordinates of general user clicks. The analyzer uses a
regression model to infer the user click position on screen. Intuitively, the
accuracy of the results depends on the model used for the prediction, and
we therefore experimented with a number of different models. In particular,
we used two linear models (Lasso and linear regression), a decision tree,
and an ensemble learning method (random forests) [144].

The input to each model was, for every subject (user) and click, the
(x , y) coordinates of the post-click hover events captured by Hoover (Sec-
tion 3.3). The output consists of the coordinates of the predicted click
position. As a benchmark, we exploit a simple straw-man strategy that
outputs the coordinates of the first post-click hover event observed as the
estimated click position.

We used the leave-one-out cross-validation, i.e., for every user click
validated the training was done on all remaining user clicks. The prediction
result for all stylus and finger click samples obtained from the 40 partic-
ipants in the experiment are presented in Figure 3.6a. We observe that
the various regression models perform differently in terms of Root Mean
Square Error (RMSE).

First, we observe that for all regression models the finger-related results
are less accurate than the stylus related ones. This is expected, as the hover
detection technology is more accurate with the stylus (the hover events
follow its movement more faithfully) than with the finger (its hover events
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are more scattered over the device screen). Nonetheless, in both cases the
prediction works well. In particular, we note that the estimation error with
the stylus drops down to just 2 pixels. Consider that the screen size of the
Note 3 Neo, the smallest device used in the experiments, is 720× 1280px.

Lastly, we note that in the stylus case (Figure 3.6a) simple linear models
perform better than more complex ones. This is not the case when the finger
is used as an input device (Figure 3.6b). In this case the best predictions
are given by the more complex Random Forest model, which is followed by
linear regression. We believe that this is again due to the highest precision
with which stylus hovers are captured by the screen, in contrast to those
issued by the finger.

Inferring on-screen keyboard input. To infer the typed keys in the
keyboard-based use-cases we could follow a straightforward approach.
First, infer the corresponding click coordinates with the previous methodol-
ogy, check into which key locations do the clicks fall into, and then output
that key as the prediction result.

Similarly to before, the click prediction in the stylus case and with the
linear regression model results are highly accurate — only a 2px error
within the actual click coordinate. Therefore, the above straightforward
solution might work well for the sylus. However, the procedure is ill suited
for the finger case, where the error to predict the coordinates of the clicks
is considerably larger (Figure 3.6). For this reason, we take an alternative
approach and pose the question as the following classification problem:
“Given the observed hover events, which keyboard key did the user press?”.
Again, we experimented with various classification models; two based
on trees (decision trees and extra trees), the Bagging Classifier, and the
Random Forest model [144]. Similarly to the regression case, we use a
baseline model as a benchmark that directly transforms the coordinates of
the first post-click hover event into the key they correspond to (whose area
they fall within). The results are presented in Figure 3.7 for both the stylus
and the finger.

First, we observe that key-prediction results are accurate — 79% for the
finger and up to 98% for the stylus (Figure 3.7). The random forest model
is the one with the highest prediction accuracy. Additionally, the baseline
approach yields an accuracy of 97% with the stylus, the more precise input
device in terms of hover events, and the random forest model increases the
result by an additional 1%. However, the performance gap between the
baseline and the more complex model increases significantly in case of the
finger — from 40% (baseline) to 79% (random forest).
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3.4.4 Detecting Keyboard Input
Hoover collects any kind of user input that is based on screen clicks. It
therefore needs to differentiate among on-screen keyboard taps and other
types of clicks, and one possible way is through side channels. Previous
work [42] showed that the public /proc folder is a reliable source of infor-
mation to infer the status of other running apps. As the on-screen keyboard
is a separate app on Android, Hoover could employ similar techniques to
understand when the user is typing. However, we cannot only rely on the
approach that uses /proc for keyboard detection for two reasons. Firstly, it
is not fully accurate and it presents both false positives and negatives, which
might diminish our attack’s accuracy. Secondly, we cannot be sure that
the /proc folder will always be freely accessible as the operating system
might restrict its access through a specific permission, or even remove it
completely for security purposes.

Therefore, we implement a simple heuristic for this problem that ex-
ploits the fact that the on-screen keyboard is shown at the bottom of the
device screen. Therefore, when a user is typing, the clicks are mostly
directed towards the small screen area covered by the keyboard. A straight-
forward methodology is to employ an estimator to distinguish, among
all user clicks, those that target keyboard keys. Such an approach could
however result in false positives, as a user could click on the lower part
of the screen for many purposes, e.g., while playing a game that involves
clicks, to start an app whose icon is located in that area, and so on.

To filter out clicks that could yield false positives we further refine our
heuristic. If the user is actually typing, it will issue a large number of
consecutive clicks on the lower part of the screen. So, we filter out click
sequences that produce text shorter than 4 characters, as these sequences
are commonly too short to be usernames or passwords. In addition, we
empirically observed that, after the user clicks on a textbox to start typing,
at least 500ms elapse until the user types the first key. This is the time
needed by the keyboard service to load it on the screen, and we added the
corresponding condition to our heuristic to further reduce false positives.

We evaluated the simple and refined heuristic on data gathered for
48 hours from a phone in normal usage, i.e., chatting, browsing, calling,
etc. The data consist of clicks and their respective events fired by the
system, as well as timestamps of the moments when the user starts (and
stops) interacting with the keyboard. Both heuristic versions have no false
negatives (missing typed chars) in our dataset. The simple version has a
false positive rate of 14%, whereas the refined version reduces it to 10%.
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We implemented the heuristics as a proof-of-concept, and we believe a
more sophisticated refinement that also includes the difference between
typing and clicking touch times (e.g., for how long the user leans the input
device on screen during clicks) could lower the false positives further.

3.4.5 Launching Attack Without Any Permissions
In our first proof-of-concept implementation of Hoover we exploited the
SYSTEM_ALERT_WINDOW permission to generate window views to infer click
times (the 0px size Listener view) and to collect post-click hover events (the
transparent overlay). However, we show that functionalities of the listener
and transparent overlay can be implemented in an alternative, though
more complex, way through APIs and functionalities publicly accessible in
Android and without requiring any permission at all.

The functionality provided by the listener view (inferring the click
time) can be achieved in two different permission-free ways. The first
is to analyze information coming from sensors such as gyroscope and
accelerometer [134], accessible without permissions on Android. The
second is to continuously monitor the information in the /proc folder
related to the keyboard process, also accessible without permissions on
Android [107]. Previous works have shown that both methodologies can
be highly accurate in inferring click times [107,134].

The functionality of the transparent alert view overlay (to capture
post-click hover events) can be implemented through the Toast View
API1. Toast windows are members of the View class which can be used
by services without permission in order to provide the user with a quick
message regarding some aspect of the system. An example is the window
that shows the volume control while the user is changing the volume up
or down. Just like alert windows, toasts are always shown on top of the
foreground app and they can capture hover events as well. Therefore, the
transparent overlay can also be generated as a transparent Toast View
that covers the whole screen after each user click, and can be used to
capture the necessary post-click hover events.

As a proof-of-concept, we implemented a preliminary version of Hoover
with the above insights. In particular, we used side-channel information
from the /proc folder to infer user click times and the Toast APIs for
the transparent overlay. We evaluated this permission-free version of the
attack over data collected through a small-scale experiment — a single-
user instructed to perform the first two use-case scenarios (clicking on a

1https://developer.android.com/guide/topics/ui/notifiers/toasts.html
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ball and typing regular text) with both finger and stylus as input device.
Even with this small-scale evaluation the accuracy was high, as the random
forest classifier yielded a 92% accuracy in inferring user clicks, while the
regressor had an RMSE of 112px. These results show that Hoover can be
implemented without relying on any permission and still be highly accurate.

3.4.6 Attack Improvements
The experimental results presented in this section showed that hover events
can be used to accurately infer user input, both in case of general click
as well as keyboard keys. In this section we list other ways that could
potentially improve the attack and its accuracy even further.

Additional hover events. Throughout our evaluation, we collected 4 hover
events following each click. An attacker could collect more hover events,
for a period of time longer than 70ms, which could further improve the
performance of our models.

Language model. In our evaluation, we considered the worst case scenario
for the attacker, where the attacker does not make any assumptions on the
language of the input text. Although the text the users typed was in English
in our experiments, it could have been in any arbitrary language. In fact,
the goal of the experiment was just to collect data on user clicks and hover
events, irrespective of the typing language. A more sophisticated attacker
could therefore first detect the language the user is typing in. Then, after
the key inferring methods we described, the attacker could apply additional
error correction algorithms to improve the accuracy.

Per-user model. In our evaluation, both the regression models and classi-
fiers were trained on data obtained from all users, i.e., for each strategy
we created a single regression and classification model that was then used
to evaluate all users. However, it is reasonable to assume that a per-user
model could result in higher accuracy. We could not fully verify this in-
tuition on our dataset as we did not have long enough per-user data on
all participants. However, we did a preliminary evaluation on the two
users with the most data points: 411 clicks for user 1 and 1,399 for user 2.
The result with separate per-user model training showed a considerable
improvement, particularly with the finger typed input. The accuracy of
keyboard key inference increased from 79% (all users) to 83% for the first
user and 86% for the second one.

53



Inferring User Input with Hover

Alternative input methods. Our attack is both effective and accurate in
keystroke inference, but it can not be as effective with swiping text. As
Hoover infers coordinates only after the input device leaves the screen,
in case of swiping this translates to inferring only the last character of
each word swiped by the user, which does give enough information on the
typed text. That said, it is important to note that swiping is not enabled for
password-like fields and characters such as numbers or symbols need to be
typed and not swiped. Therefore, even in the presence of swiping, Hoover
is still effective in stealing sensitive information such as passwords or pins.

In our attack we assume that a regular keyboard is used. However,
users could employ complex security mechanisms that, e.g., customize
the keyboards or rearrange the keys each time the user types. This type
of mechanisms would certainly mitigate our attack as Hoover would be
unable to correctly map coordinates to keys. However, at the same time
the usability of the device would decrease as the users would potentially
find it difficult to write on a keyboard whose keys are rearranged each
time. Consequently, it is likely that systems would tend to restrict the
protection mechanism to highly sensitive information like PIN numbers and
credentials, leaving texts, emails, and other types of messaging sequences
still vulnerable to our attack.

3.5 Attack Implications
The output of our attack is a stream of user clicks inferred by Hoover with
corresponding timestamps. In the on-screen keyboard use-case scenario,
the output stream of clicks can be converted into keyboard keys, either
using our trained classifier or other alternative means (see Section 3.4.4).
In this section we discuss possible implications of the attack and of the
techniques and ideas exploited therein.

3.5.1 Violation of User Privacy
A first and direct implication of our attack is the violation of user privacy,
as a more in-depth analysis of the stream of clicks could reveal sensitive
information regarding the device owner. Consider the following output of
our attack:

john doe<CLICK>hey hohn, tomorrow at noon, downtown
starbucks is fine with me.<CLICK><CLICK>google.com
<CLICK>paypal<CLICK>jane.doe<CLICK>hane1984
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After an initial analysis of the sequence we quickly understand that the
first part of the corresponding user click operations were to either send
an email or a text message. We also understand who is the recipient of
the message (probably John) that the user is meeting with the person the
next day, and we uncover the place and the time of the meeting. Similarly,
the second part of the sequence shows that the user googled the word
paypal, and that the user probably logged into the service afterwards, that
her name is Jane Doe and that her credentials for accessing her paypal
account are potentially jane.doe (username) and jane1984 (password).
This is a simplified example that shows how easily Hoover, starting from
just a stream of user clicks, can infer sensitive information about a user.

Another observation in the above example is that the output contains
errors regarding the letters “j” and “h” as the corresponding keys are close
on the keyboard. However, since the text is in English, simple techniques
based on dictionaries can be applied to correct for the error. If the text
containing the erroneous inferred key was a password, dictionary based
techniques would not work as well. However, in such cases we can exploit
another aspect; namely the movement speed, angle, and other possible
features that define the particular way each user moves the finger or stylus
to type on the keyboard. It is likely that this particularity impacts the
key-inference accuracy of Hoover and that makes so that a specific couple
of keys, like “j” and “h”, tend to be interchanged. With this in mind, from
the example above we can deduce that Jane’s password for the paypal
account is likely to be jane1984.

3.5.2 Advanced Analysis of Target Applications
There are other, more subtle, potential uses of the sequence of user input
events that Hoover collects. For example, from the click streams the ad-
versary could potentially uncover the foreground app (the one the user
is currently interacting with). This could be done by inferring which app
icon was clicked on the main menu of the device or by fingerprinting the
interaction between the user and the target application. Indeed, every ap-
plication could be potentially associated to its unique input pattern. Once
the foreground app is known, the adversary can launch other, more dam-
aging attacks that target the particular application through attacks like UI
redressing or phishing.

3.5.3 User-biometrics Information
So far we have discussed what an adversary can obtain by associating the
user click streams inferred by Hoover to their semantics (which app was
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started, typed text, etc.). However, the data collected by Hoover could also
be used to profile the way a user clicks or types. As Hoover has access
to click timestamps, it could therefore deduce user biometric information
regarding device interaction patterns.

The listener view in Hoover obtains the corresponding timestamp each
time a hover event is fired in the system. In particular, it obtains times-
tamps for events of the type touch down (the user clicks) and touch up
(the user removes the input device from the screen). These timestamps
allow Hoover to extract the following features: (1) the click duration, (2)
the duration between two consecutive clicks, computed as the interval
between two corresponding touch down events, and (3) hovering duration
between two clicks, computed as the interval between a touch up event
and the next touch down event. These features are the fundamentals for
continuous authentication mechanisms based on user biometrics [153,195].
In addition, the mechanisms proposed in [153,195] require a system level
implementation, which can be challenging and may add complexity to
existing systems. Hoover could therefore be used to attack biometric-based
authentication mechanisms as well.

3.6 Discussion and Countermeasures
The success of the attack we described relies the a combination of an unex-
pected use of hover technology and alert window views. Here we review
possible countermeasures against this attack and we show that, what might
seem like straightforward fixes, either cannot protect against the attack, or
severely impact the usability of the system or of the hover technology.

Limit access to hover events. The presented attack exploits the informa-
tion dispatched by the Android OS regarding hover events. In particular, the
hover coordinates can be accessed by all views on the screen, even though
they are created by a background app such as Hoover. This feature enabled
us to accurately infer user input. One possible way to mitigate the attack is
to limit the detection of hover events only to components generated by the
application running in the foreground. In this way, despite the presence of
the invisible overlay imposed by Hoover running in the background, the
attacker would not be able to track the trajectory of the movement while
the user is typing. However, this restrictive solution could severely impact
the usability of existing apps that use alert windows to improve the overall
user experience. An example is the “chat head” feature of the Facebook
application. If not enabled to capture hover events, this feature would not
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serve it’s intended purpose as it would not capture user clicks either. Recall
that a view either acquires both clicks and hover events, or none of them.

Another possibility would be to decouple hover events from click events,
and limit the first ones only to foreground activities. This solution would
add complexity to the hover-handling components of the system and would
require introducing and properly managing additional, more refined per-
missions. Asking users to manage complex permissions was shown to be
inadequate, as users tend to agree to any permission requested by a new
app they want to install [117]. Not only users, but developers as well
find already existing permissions as complex and tend to over-request per-
missions to ensure that applications function properly [62]. Given this,
introducing additional permissions to address this problem is challenging.

Use the touch filtering specific. We proceed by explaining why the
filterTouchesWhenObscured mechanism [4] cannot be used to thwart
our attack. Touch filtering is an existing Android OS specific that can be
enabled for a given UI component. When enabled, all clicks (touch events)
issued over areas of the view obscured by another service’s window, will
not get any touch events, i.e., the view will never receive notifications from
the system about those clicks. The touch filtering is typically disabled by
default, but app developers can enable it for components, including views,
of a given app by calling setFilterTouchesWhenObscured(boolean) or
by setting the android:filterTouchesWhenObscured layout attribute.

If Hoover were to obstruct components during clicks, the touch filtering
could have endangered its stealthiness as the underneath component to
whom the click was intended to would not receive it, so the user could
become alerted. However, this is not the case, as Hoover never obstructs
screen areas during clicks. Recall that, the malicious overlay is created
and destroyed in appropriate instants in time, as to not interfere with user
clicks 3.3. Therefore, even with the touch filtering enabled by default on
every service and app, neither the accuracy, nor the stealthiness of the
Hoover malware are affected.

Forbid 0px views. Hoover uses a 0px view which listens for on-screen
touch events and notifies the malware about the occurrence of a click so
it can promptly activate the transparent overlay. Thus, forbidding the cre-
ation of 0px views by services seems like a simple fix to prevent the attack.
However, the attacker can still overcome the issue by generating a tiny
view and position it on the screen as to not cover UI components of the
foreground app. For example, it could display it as a thin black bar on
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the bottom, thus visually indistinguishable from the hardware screen border.

Limit transparent views to legitimate or system services. Clearly, this
limitation would impede Hoover to exploit the transparent overlay. How-
ever, a sophisticated attacker can employ a more complex technique to over-
come the problem. For example, in the keyboard attack scenarios, Hoover
can, instead of showing a transparent overlay, design a non-transparent
one which is an exact copy of the keyboard image on the victim’s phone.
The keyboard-like overlay would then operate just as the transparent one
yet would be equally undetectable to the user. A similar approach can be
used to collect the clicks of a target app whose design and components are
known to the attacker (e.g., the login screen of well-known apps such as
Gmail, Facebook, and so on).

Inform user about overlays, trusted paths. The idea here is to make
the views generated from a background service easily recognizable by
the user by restricting their styling, e.g., imposing at system level a well-
distinguishable framebox or texture pattern. In addition, the system should
enforce that all overlay views adhere to this specific style, and forbid it for
any other view type. However, countermeasures that add GUI components
as trusted path [31,183] to alert a user about a possible attack (security
indicators) have effectiveness issues. Even when users were aware about
the possibility of an attack and the countermeasure was in place, there
were still 42% of users that kept using their device normally [31].

This kind of trusted paths mostly help against phishing attacks where
the foreground app is a malicious one and not the actual app the user in-
tends to interact with. However, note that this is not the case for our attack
where the malware always runs in the background and does not interact
with the legitimate foreground application. Even if security indicators were
shown on a view-based level rather than on an app-based one like in [31],
note that the overlay in Hoover is not static. Rather, it is shown for very
short time windows (70ms) successive to a click, when the user focus is
potentially not on the security indicator.

Protect sensitive views. Another idea is to forbid that a particularly sensi-
tive view or component generated by a service, e.g, the keyboard during
login sessions or an install button of a new app, is overlaid by views of
other services, including alert windows. A possible implementation of this
solution could be to introduce an additional attribute of the View class,
which specifies whether a given instance of the class should be “coverable”.
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When this attribute is set, the system could enforce any other screen object
overlapping with it to be “pushed out” the specific view’s boundaries, e.g., in
another area on the screen not covered by the view. However, it would be a
responsibility of the app developers to carefully design the app and identify
sensitive views that require the non-coverable attribute. In addition, these
types of views should adhere to a maximum size and not cover the whole
screen. Otherwise, it would not be possible for other services, including
system ones, to show alert windows in presence of a non-coverable view.
This solution could mitigate attacks like ours and also others that rely on
overlays even though in a different way (e.g., clickjacking). However, it
would put a considerable burden on the app developers that will have
to carefully classify UI components of their apps into coverable and non
coverable, taking also into consideration possible usability issue with views
generated unexpectedly from other legitimate apps such as on screen mes-
sage notifications, system alert windows, and so on.

Restrict access to trusted applications and services. Finally, Android
could restrict apps from accessing features of the system that could be
exploited in attacks at system level, rather than leaving the final decision
at the hand of the user or developers. This approach is partially adopted
by iOS for certain sensors (e.g., the microphone), which is limited only to
apps that require it to function correctly. Another possibility is to grant
the SYSTEM_ALERT_WINDOW permission only to system services, or to apps
signed by the Android development team [17]. However, this solution is
costly and might require manual intervention but, nonetheless, combined
with user alerts could largely mitigate the attack.

From the discussion above, we conclude that access to hover events
needs to be handled carefully, taking into consideration both usability and
security concerns. However, it should not be ignored since it allows input
inference at a very high level of granularity and with a very high accuracy.

3.7 Related Work
The main challenge to achieve the goal of inferring user input comes
from the basic rule of Android, that a click is only captured by one app
only. However, existing works have shown that malware can use various
techniques to bypass this rule and infer user input (e.g., steal passwords).

We can think of mobile application phishing [42] as a trivial case of input
inference attacks, where the goal of the malware is to steal keyboard input
(typically login credentials) of the phished application. Although effective
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when in place, a limitation of phishing attacks is their distribution. To spread
the malware, the attacker commonly submits the app to official markets.
However, markets can employ stringent checks on the apps and perform
automated app analysis. Furthermore, and contrary to our techniques,
phishing attacks need to be implemented separately for every phished app.

UI redressing (e.g., clickjacking) is another approach to achieve input
inference on mobile devices [31,89,139,150,152,191]. These techniques
operate by placing an overlay window over some component of the ap-
plication. When clicked, the overlay either redirects the user towards a
malicious interface (e.g. a fake phishing login page), or intercepts the input
of the user by obstructing the functionality of the victim application (e.g.,
an overlay over the whole on-screen keyboard). However, such invasive
attacks disrupt the normal user experience, as the victim application never
gets the necessary input, which can alarm the users.

An alternative approach is to infer user input in a system-wide manner
by using side-channel data obtained from various sensors present on the
mobile platform [68,85,132,134,137,161,178,196], like accelerometers
and gyroscopes. Reading such sensor data commonly requires no special
permissions. However, such sensors provide signals of low precision which
depend of environmental conditions (e.g. the gyroscope of a user that is typ-
ing on a moving bus). The derived input position from such side-channels
is therefore often not accurate enough to differentiate, e.g., which keys
of a full on-screen keyboard were pressed. For example, the microphone
based keystroke inference [137] works well only when the user is typing in
portrait mode. In addition, its accuracy depends on the level of noise in
the environment.

Contrary to related works, our attack does not restrict the attacker to a
given type of click-based input (e.g., keyboard input inference only), but
targets all user clicks. It does not need to be re-implemented for every
target app, like phishing and UI redressing, as it works system-wide.

3.8 Conclusion
In this chapter, we proposed a novel type of user input inference attack. We
implemented Hoover, a proof-of-concept malware that records user clicks
performed by either finger or stylus as input device, on devices that support
the hover technology. In contrast to prior works, our attack records all
user clicks with both high precision (e.g., low estimation error) and high
granularity (e.g., at the level of pressed keyboard keys). Our attack is not
tailored to any given application, and operates in a system-wide manner.
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Furthermore, our attack is transparent to the user, as it does not obstruct
normal user interaction in any way.

Attack limitations. The current limitation of hover technology, as well as
our attack, is the inability to detect multiple input devices (e.g., fingers)
at the same time. However, we believe that, as soon as multi-hovering is
implemented on mobile devices, the attacks presented in this chapter could
be adapted. An additional limitation is that our attack is not tailored for
alternative input methods such as swipe.
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Chapter 4

Adaptive User Interface
Attacks

4.1 Introduction
In the previous chapter, we proposed a novel input inference attack whose
goal was to compromise the confidentiality of user input, and our previous
attack required a malicious application to run on the target device. However,
modern malware can reside in various places — on the device itself, but also
on connected peripherals (e.g., BIOS, hard drive firmware). One type of
such malware resides in malicious user interface devices, such as a keyboard
or a mouse [140]. Commonly, the end goal of such malicious peripherals
is to inject sequences of user input that install some form of malware to
the device operating system. However, installing malicious OS components
or introducing system misconfigurations, such as adding an administrative
account, could be fully prevented by security hardening (e.g., Windows
Embedded Lockdown features [133]), or leave forensic traces that can be
detected by existing malware-detection approaches.

A significantly stealthier alternative, that after attack completion leaves
little to no forensic evidence, is to attack systems only through their user
interfaces. Such attacks exploit a fundamental property of any device
designed to operate under user control; namely that, irrespective of applied
hardening techniques, the device must continue to accept user input.

As user input cannot be simply blocked, user interface (UI) attacks were
proposed. Current state-of-the-art are BadUSB-style attacks [140], where
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the goal of the malicious peripheral is to inject simple, pre-programmed
sequences of keyboard and mouse input, commonly while the user is not
using (or looking at) the device. However, the main drawback of such works
is the lack of system state awareness. For example, the BadUSB malware
does not know in which state the system is currently in. Launching attacks
that inject user input at the wrong time could result in attack failure, or in
users trivially detecting them. If the malware could infer the system state,
and the precise point in time when to launch an attack, more powerful
attacks (e.g., compromise integrity of e-banking payment), as well as new
attack scenarios, become possible. We therefore attempt to answer the
following question: “Can an adversary improve state-of-the-art UI attacks,
without installing malware on the target system?”

We present a new class of adaptive runtime user interface attacks, in
which the adversary infers the system state, violates the integrity of user
input at a specific point in time, while the device is operated by the legitimate
user, causing precise and stealthy runtime UI attacks without any malware
running on the device. The attack is hard to detect, it can result in serious
safety violations, even loss of human life, and users are led to believe that
they accidentally caused the damage themselves.

The first part of the attack is conventional. The adversary gains tempo-
rary physical access to the target system, attaches a small attack device, and
leaves the premises. The device is attached to an interface that connects
an input device (USB keyboard or mouse, touchscreen, etc.) to the system.
After deployment, the attack device works fully autonomously, i.e., without
remote connection to the adversary.

In the second part of the attack lies its novelty. Contrary to existing
approaches, our attack device observes the constant stream of user input
events and, based on this information, determines when the user is about
to perform a critical operation, and when the UI attack should be launched.
Although the attack device has full visibility and control of the user input
channel, it cannot directly observe the state of the target system, as the
device has no feedback from the system (e.g., access to monitor output).
In particular, the adversary does not know the current state of the UI or the
mouse pointer location. The adversary must therefore, given user input,
infer the most likely system state and correct attack timing. We propose
the following two attack approaches:

• UI fingerprinting. If the attack user interface is sufficiently unique in
it’s design (e.g., number, type and positions of UI elements), then the
attacker can precisely detect when the user is interacting with that
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Figure 4.1: Examples of critical user interfaces on dedicated terminals and
general-purpose PCs. Attacking such UIs can lead to various safety and
security violations.

UI by simply observing the mouse and keyboard input patterns that
are unique to it.

• State tracking. If the adversary can build a model of the entire target
system user interface, the adversary can attack the system using
probabilistic state tracking.

To successfully realize our UI attacks, we had to overcome technical
challenges. Once the adversary has determined the correct time to attack,
the attack device injects a series of precise and fast input events. While
the adversary is able to freely manipulate the input channel, the user
receives instant visual feedback — the legitimate user is part of the system
control loop. Therefore, we designed attack techniques that are both
accurate (low false positives), and stealthy (give little visual indication to
the user). Furthermore, our attack needs to run in small attack devices
with constrained resources, track system state both accurately and fast.

To demonstrate the attack, we implemented it on a small embedded
device, and evaluated it on two different types of platforms: general-
purpose PCs and dedicated terminals.

First, on PC platforms, we tested our attack on replicated UIs of real-
world e-banking websites from three major banks, on 20 local participants.
Each participant was a domain expert, as the attack was performed using
the bank they were already a client of, on a UI they were already familiar
with. Our evaluation shows that we can accurately fingerprint UIs in a
reliable (90% attack success rate) and stealthy (90% of users did not notice
our attack) manner, that is surprisingly tolerant to noise (users habitually
clicking around, pressing “tabs” to navigate between elements, different
browsers and screen resolutions).
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Second, for dedicated terminals, we tested the attack on a simulated
(but realistic) user interface of a medical implant programmer. We tested
our attack on 987 online study participants and we show that the we can
accurately perform system state tracking, and that the attacks are very hard
to detect (93% to 96% attack success rate). To gain increased confidence
in our online study results, we performed a follow-up, on-site study with
domain experts: none noticed the attack.

We emphasize that our attack approach is applicable to a wide range
of attack scenarios, including different target systems, user input methods
and UIs, where the adversary has to perform the attack under target state
uncertainty. We show that our novel UI attack approach is easy to deploy,
as it requires only brief and non-invasive access to the target system (e.g.,
attaching a USB device takes seconds). A small attack device (e.g., NSA
cottonmouth project1) can be difficult to notice, and to a malware detection
system the attack is invisible, as no malicious code is running on the terminal
itself. The attack is also agnostic to any applied user authentication.

One way to detect the attack is that the user notices the subtle visual
changes on the user interface while the attack is active (e.g., medical
device settings are modified). However, our user studies show that the vast
majority of users fail to notice the attack. The prevention of this attack
therefore likely requires different approaches, such as authentication of
input devices, design of protective measures on user interfaces, etc., and
this work motivates the development of such solutions. Since our attack is
invisible to traditional malware detection, it operates under uncertainty
without any feedback from the system, and it gives little visual indication
to the user, we call it hacking in the blind.

4.2 Background on Terminals
In this section we give background on terminals and their security hard-
ening, and motivate that terminals can be susceptible to the types of UI
attacks that we focus on in this chapter.

Many safety-critical systems are embedded terminals that run stripped-
down operating systems with hardened security. Here we describe protec-
tive measures (Lockdown features) available on the Windows Embedded
Industry platform [133], but similar security enhancements are commonly
available on embedded Linux distributions as well.

The terminal can be configured to run only a single application (Ap-
pLocker feature) where the application user interface occupies the entire

1https://nsa.gov1.info/dni/nsa-ant-catalog/usb/index.html
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Figure 4.2: Classification of physical attack techniques and their limita-
tions. Remote attacks are typically not applicable to devices that are, e.g.,
connected to closed networks or even air-gapped. Hardware modifications
are time consuming and require a sophisticated adversary. Runtime soft-
ware injection (e.g., into the device RAM) can be prohibitively complex,
and can leave forensic evidence. Attacks where the adversary operates
the device UI typically have limited damage. Pre-programmed user input
attacks, such as BadUSB [140], do not work on safety-critical terminals
due to missing keyboard shortcuts and console access. The focus of our
work is on adaptive user input attacks that overcome these limitations.

device screen. The user cannot escape the application UI with a specific
key sequence (Keyboard Filter), and thus the user can only interact with
the terminal through that UI and the application is executed with least user
privileges (User Account Control). Terminals are typically disconnected
from the Internet, installation of third-party software is not allowed, and
the terminal can verify its software at boot and start only signed software
at runtime (AppLocker). The terminal can be configured to only connect to
USB devices with known class, device and product identifiers (USB Filter).

To understand if our attack is applicable to safety-critical terminals,
we studied medical terminals and their deployment in two ways. First,
we visited the intensive care unit of a modern hospital and examined its
terminals and physical access control practices. We were both surprised
and disturbed just how easy it is to get brief, unattended physical access to
medical terminals that are used for life-critical operations. Based on our
experience, an adversary could easily access medical terminals, and plug a
small device to a port that connects an input peripheral.

Second, we performed a survey of 130 medical terminals based on
publicly-available manuals. We found that 76 of the studied devices are
operated by some combination of mouse, keyboard, or touchscreen. Of
those 76, we found accessible USB ports on 50 devices. We conclude that
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safety-critical medical terminals with easily accessible, off-the-shelf input
peripherals and ports are common. Our survey data is available online2.

4.3 Problem Statement
The goal of the adversary is to attack a security-critical user interface (see
Figure 4.1), and we focus on attack scenarios where the adversary has brief
physical access to the target system, prior to its usage. In this section we
discuss limitations of known physical and user interface attack techniques
and describe our adversary model.

4.3.1 Limitations of Known Attack Techniques
There are various kinds of physical attack. Figure 4.2 provides a catego-
rization of common attack techniques.

Hardware modification. One could argue that, in case the attacker has
even brief physical access to a device, that the device should already be
considered as trivially compromised. However, this is often not the case,
due to two practical reasons. First, the attacker often can not shut the
device down. This would prevent the attacker from opening the device and
injecting advanced hardware backdoors or performing similar modifica-
tions. Second, the attacker may simply not have sufficient time to perform
such attacks. For example, in case of the hospital, we observed that the
intensive care ward was never left unattended for extended periods of time.

Software injection. Another approach that relies on physical access is
local injection of malicious code. Existing terminal hardening techniques
prevent simple malicious code installation. The terminals can be configured
such that code cannot be copied to terminals from external media (e.g.,
connected USB devices) and unsigned code cannot be executed on the
terminals. More sophisticated code injection techniques that, for example,
inject malicious code to the runtime memory of the terminal require so-
phisticated equipment and are difficult to execute, given only brief physical
access to the terminal. On general-purpose PCs, code injection attacks are
common, but such attacks leave forensic evidence that could be detected
using existing malware-detection schemes.

Operate user interface. User input can not be simply blocked, and an
attack approach that leverages this fact is to manipulate the device directly

2https://goo.gl/arp2DU
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through its user interface. For example, if the adversary has physical access
to the target device, and can operate its UI, the adversary can perform all
the operations that the legitimate user is entitled to. Such attacks have two
limitations. First, unauthorized use can be addressed with user authentica-
tion (e.g., devices could be screen locked). Second and more importantly,
on safety-critical terminals the damage of such attacks is typically limited.
For example, certain medical devices are only connected to patients when
operated by doctors, and thus such attacks are less severe compared to
runtime attacks that modify the operation of the terminal during its use.
Similarly, e-banking websites are protected using passwords and second-
factor authentication schemes — information that the attacker does not
necessarily have access to at attack time.

Pre-programmed attacks. Another class of user input attacks rely on ex-
ternal devices connected to the target system. In such cases, no malware is
present on the target system, and the purpose of the attack device is to ei-
ther passively intercept user input or to actively inject pre-programmed sets
of commands. A hardware key logger that collects user input is an example
of a passive attack. BadUSB [140] is an example of a pre-programmed
attack where a malicious user input device (keyboard) injects malicious
keystrokes into the target system. Such attacks leverage keyboard shortcuts
that, e.g., open a console or an administrative window and modify the
target system settings. Such attacks do not apply to hardened terminals,
as they rarely have console programs, and on terminals the user, or an
adversary that controls user input, cannot “escape” the application UI to
modify system settings beyond what the application enables. As the adver-
sary does not know the current system state, such attacks can not be used
to compromise (e.g., hijack) an e-banking user session, without resorting
to installing malware to the device.

4.3.2 Our Goal: Adaptive Runtime Attacks
The focus of this chapter is on adaptive runtime UI attacks, that overcome
the limitations of the above discussed techniques. We explore UI attacks
that work even if hardware modifications are not practical and software
injection can be prevented. Our goal is to design runtime UI attacks that are
more damaging and accurate than pre-programmed attacks or operating
the device directly through its user interface.
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Figure 4.3: Attack scenario. The adversary attaches an attack device to
an interface that connects a user input device to the target device. The
adversary can also replace a user input device with a malicious one.

4.3.3 Adversary Model
We assume an adversary that gains temporary access to the target device
prior to device usage, and attaches a small attack device to it and leaves the
premises. The attack device sits in-between a user input peripheral and the
device (Figure 4.3). If the input peripheral is integrated into the terminal
device (e.g., touchscreen), the adversary attaches the attack device to an
interface that connects the input device to the terminal main unit. If the
input device is an external device (e.g., USB mouse), the adversary can
attach the attack device to the USB port that connects the device to the
target system. The adversary can also simply replace an external input
peripheral with one that contains the attack device. Such on-site operations
are quick to perform. General-purpose PCs have ports for user input devices.
Additionally, our survey (see Section 4.2) shows that many terminals are
used with external peripherals that are connected to easily accessible ports.

We assume that the adversary can install the attack device unnoticed.
Besides installing the attack device, the adversary does not interact with the
target device in any other way. In particular, we assume that the adversary
does not reboot the device and that the adversary cannot observe its current
state (the user interface might be locked, or password protected). The
adversary can make the attack device so small that legitimate users do not
notice its presence. If the device is used via two input devices (e.g., mouse
and keyboard), the adversary can connect both to the same attack device.

The attack device can observe, delay, and block all events that originate
from the connected user input devices as well as inject new events. After
the installation, the attack device works fully autonomously, i.e., it does
not communicate with the adversary. After the attack, the adversary may
collect the attack device.

70



4.4 Hacking in the Blind

We assume that the adversary knows the target application UI, including
its states and state transitions. We also assume that the application user
interface is deterministic: similar interaction always causes the same result.

4.3.4 Example Attack Targets
We explore such attacks in two different contexts: general-purpose PCs
and dedicated terminals. On PC platforms we focus on online banking
user interfaces. If the adversary manages to launch a successful UI attack
on e-banking, the attack can have significant financial consequences. On
terminals we focus on medical implant programmers. If the adversary can
successfully violate integrity of user input on an implant programmer UI,
the attack can put human lives in danger.

These two platforms, and the chosen application UIs, represent different
types of attack targets. The user interface of a dedicated terminal device
typically consists of a single application UI. The application UI typically
occupies the entire screen and the user of the device cannot escape the ap-
plication UI. Terminal devices often have fixed screen resolutions. When the
terminal is booted, its execution always begins from the same application
UI state. On the other hand, general-purpose PCs have many applications
with various UIs. The application UIs are managed by windowing systems
and users are free to install new applications. The UIs of general-purpose
PCs also have various screen resolutions that can be changed by the user.
When a PC is booted, the attack target application is typically not active.

4.4 Hacking in the Blind
The installed attack device observes events from the connected input de-
vice(s) and launches the attack by modifying existing or injecting new input
events when the legitimate user is performing a security-critical operation.

While the attack device can intercept all user input events, their inter-
pretation may have two forms of uncertainty. First, the adversary may not
know the state of the target device UI (e.g., because the UI was locked when
the attack device was installed). We call this state uncertainty. Second,
the adversary may not be able to interpret all received user input events
without ambiguity. In particular, mouse events are relative to the mouse
cursor location that may be unknown to the adversary. We call this location
uncertainty. In contrast to mouse input, touchscreen events do not have
location uncertainty as touchscreen clicks are reported to the operating
system in terms of their absolute (x , y) coordinates.
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The primary challenge in our approach is to launch the attack accu-
rately under such uncertainty, without any feedback from the target device
(hacking in the blind). The best attack strategy depends on the attack plat-
form (general-purpose PC or dedicated terminal), application user interface
configuration, the type of the input device, and the level of stealthiness the
adversary wants to achieve. We first discuss simple attack strategies, and
then move on to present our two main attack techniques: state tracking
and UI fingerprinting.

4.4.1 Simple Techniques
If the adversary manages to reduce (or remove) both location and state
uncertainty, attacking the device user interface becomes easier. Assuming
that the adversary knows both the current user interface state, the mouse
cursor location, and complete model of the UI, each event can be inter-
preted unambiguously. For example, if an adversary knows the complete
user interface configuration of a dedicated-purpose terminal, the adversary
can then easily track both mouse movement and state transitions in the
user interface. In general-purpose platforms, such as PCs, building such a
model is typically not possible. Below we list methods that can help the
adversary to reduce uncertainty.

Reducing state uncertainty. A simple technique to learn the state of the
system is to wait for a reboot. If the attack device can determine when
the terminal is booted, it knows that, shortly after, the target device user
interface is in a known state. This technique works only if the target device
is rebooted before the attack. While PCs are routinely restarted, many
dedicated terminals run long periods of time without reboots. Learning the
state of the target device at boot may help attack state detection for system
where complete UI model can by built. However, on general-purpose PCs,
where such models are typically not feasible, knowledge of the correct
system state at boot does not help in attack state detection.

Reducing location uncertainty. A simple technique to determine the
mouse cursor location is to actively move the mouse (i.e., inject movement
events) towards a corner of the screen. For example, if the mouse is moved
up and left sufficiently, the adversary knows with certainty that the mouse
cursor is located at the top-left corner of the screen. Moving the mouse
while the system is idle may not be possible if the target device UI is locked.

To make the above process appear less suspicious during terminal use,
the adversary can create an appearance that the user moved the mouse
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Figure 4.4: Attack system overview. On the attack device, a state tracking
component processes observed user input events with respect to a UI model
and produces a state estimate. The attack is launched based on the state
estimate and the UI model by blocking and injecting new events.

herself. For example, when the attack device observes mouse movement
events left and up, it can inject additional movement events to the same
direction. The process mimics a situation where the mouse movement was
accelerated and the user unintentionally moved the mouse cursor to corner
of the screen herself. The limitation of this technique is that if such mouse
movement is performed repeatedly (e.g., at every boot), it can appear
suspicious to an anomaly detection system or post-attack forensics.

Summary. We take a practical stand and assume that in many scenarios
the adversary has to perform the attack under location uncertainty, state
uncertainty or both. To increase the robustness of our attack, we design
attack techniques to handle both types of uncertainty. We first describe state
tracking that is applicable to target devices, such as terminals, where the
adversary can build a complete model of the target system UI. After that, we
describe UI fingerprinting that allows attack state detection on platforms,
such as general-purpose PCs, where such model creation is infeasible.

4.4.2 State Tracking
Starting from this section, we describe a novel state tracking that enables the
adversary to launch accurate attacks despite of uncertainty. State tracking
is applicable to terminals, where the adversary can build a complete model
of the target system UI (e.g., typically on dedicated terminals, the target
application UI constitutes the complete target system UI). A noteworthy
property of the system is that it estimates user interface state and mouse
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Figure 4.5: Example user interface model. The model includes user in-
terface states, user input elements and state transitions. The attack state
contains attack elements and a confirmation element.

location fully passively, and thus enables implementation of stealthy attacks.
We proceed by giving a high-level overview of the attack system (Figure 4.4).

The attack device contains a static model of the target system user
interface that the adversary constructed before the device deployment and
it runs two main software components. The first component is a State
and Location Estimator that determines the most likely user interface state
(and mouse cursor location) based on the observed user events and the UI
model. The estimation process can begin from a known, or an unknown
user interface state, at an arbitrary moment and it tracks mouse, keyboard
and touchscreen events. The second component is an Attack Launcher that
performs active UI manipulation when the legitimate user is performing a
safety-critical operation. We describe several attack variants and evaluate
their detection through user studies.

User interface model. The user interface model (Figure 4.5) contains
user interface states, their user input elements and state transitions. User
input elements are buttons, text fields, multiple choice elements, sliders etc.
All input elements can be interacted with mouse and touchscreen devices,
while some can also be interacted with a keyboard. For each state, the
model includes the locations and types of the user input elements and the
possible state transition that the element triggers. One state is defined as
the start state and one or more states are defined as the target states. The
goal of the attack is to modify safety-critical input elements (target elements)
on the target states. Typically the target state includes also a confirmation
element that the user clicks to confirm the safety-critical operation.
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Figure 4.6: Our algorithm maintains a list of state trackers. On each click
it creates child trackers and removes the parent from the list.

State and location estimation. Here we describe our state and location
estimation algorithm for mouse and keyboard. Later we explain how the
same algorithm can be used to estimate state for touchscreens input (only
state uncertainty).

The algorithm operates by keeping track of all possible user interface
state and mouse location combinations. For each possible state and location
the algorithm maintains a state tracker object. The trackers contain a state
identifier and an uncertainty area that determines the possible location
of the mouse in that state instance. Additionally, the algorithm assigns a
probability for each tracker object that represent the likelihood that the
terminal user interface and the mouse cursor are in this state and location.

The estimation algorithm maintains the tracker objects in a list (Fig-
ure 4.6). If the estimation begins from a known state, we have initially
only one tracker, to which we assign 100% probability. If the estimation
begins from an unknown state, we create one tracker per possible system
state and assign them equal probabilities. Assuming no prior knowledge on
the mouse location, we set the mouse uncertainty area to cover the entire
screen in each tracker during initialization.

The state and location estimation is an event-driven process. Based on
the received user input events, we update the trackers on the list, create
new trackers and delete existing ones from the list. For each mouse move-
ment event, we update the mouse uncertainty area in each tracker. For
every mouse click, we consider all possible outcomes of the click, including
transitions to new states, as well as remaining in the same state. We create
new child trackers with updated uncertainty areas, add the children to the
list, and remove the parent tracker from the list (see Figure 4.6). When
we observe a user event sequence that indicates interaction with a specific
UI element, we update the probabilities of each tracker accordingly. We
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Figure 4.7: Movement event handling. Movement can reduce the uncer-
tainty area size (1) and (3) or change its location (2).

explain these steps in detail below.

Movement event handling. When the mouse uncertainty area is the entire
device screen, any mouse movement reduces the size of the uncertainty
area. For example, if the user moves the mouse to the right, the area
becomes smaller, as the mouse cursor can no longer reside in the leftmost
part of the screen (Figure 4.7). If the mouse is moved to a direction where
the uncertainty area border is not on the edge of the screen, the mouse
movement does not reduce the size of the uncertainty area, but only causes
its location to be updated. Any mouse movement towards a direction where
the uncertainty area is on the border of the screen, reduces the size of the
uncertainty area further. For each received mouse movement event, we
update the uncertainty areas in all trackers.

Click event handling. When we observe a mouse click event, the esti-
mation algorithm considers all possible outcomes for each tracker. The
possible outcomes are determined by the current mouse uncertainty area
(Figure 4.8). We create new child trackers for each possible outcome and
update their mouse uncertainty areas as follows.

If the user interface remains in the same state, the updated mouse area
for the child is the original area of the parent from which we remove the
areas of the user input elements that cause transitions to other states. For
each state transition, the mouse area is calculated as the intersection of
the parent area and the area of the user input element that caused the
transition. Once the updated mouse uncertainty areas are calculated for
each child tracker, we remove the parent tracker from the list, and add the
children to it. We repeat the same process for each state tracker on the
list. We note that as a result of this process, the list may contain multiple
trackers for the same state with different mouse uncertainty areas.
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Figure 4.8: Click event handling. We create state trackers for all possible
click outcomes, including remaining in the same state and transitions to
new states. A new uncertainty area is calculated for each tracker.

The probability of a child tracker is calculated by multiplying the prob-
ability of its parent with a transition probability. We consider two options
for assigning transition probabilities, as shown in Figure 4.9.

• Equal transitions. Our first option is to consider all possible state
transitions equally likely. For example, if the mouse uncertainty area
contains two buttons, each of them causing a separate state transition,
and parts of the screen where a click does not cause a state transition,
we assign each of them 1/3 probability.

• Element area. Our second option is to calculate the transition prob-
abilities based on the surface of the user interface element covered
by the mouse uncertainty area. For example, if the uncertainty area
covers a larger area over one button than another, we assign it bigger
transition probability.

The transition probabilities can be enhanced with a priori probabilities
of UI element interactions. For example, based on prior experience on
comparable user interfaces, the adversary can estimate that an OK button
is pressed twice as likely as a cancel button in a given state.

Element detection. Finally, we identify user interaction with certain UI
elements based on sequences of observed user input events. For example,
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Figure 4.9: Transition probabilities. On the left, all possible outcomes are
considered equally like. On the right, we illustrate area-based transition
probabilities (the larger the element, the more likely it was clicked).

a mouse event sequence that begins with a button down event, followed
by movement left or right that exceeds a given threshold, followed by a
button up event is an indication of slider usage. Similarly, text input from
the keyboard indicates likely interaction with an editable text field and a
click indicates a likely interaction with a button.

When we observe such event sequences (slider movement, text input,
button click), we update the probabilities of the possible trackers on the
list. One possible approach would be to remove all trackers from the list
where interaction with the identified element is not possible (e.g., a button
click is not possible under the mouse uncertainty area). After such trackers
would be removed from the list, we could increase the probabilities of the
remaining ones equally. Such an approach could yield fast results, but
also provide erroneous state estimations. If the user provides text input
on a user interface state that does not contain editable text fields or if
text highlighting is mistaken for slider movement, the algorithm would
remove the correct state from the list. We adopt a safer approach where
we consider trackers with the identified elements more likely and scale up
their probabilities, and keep the remaining trackers and scale down their
probabilities. The scaling factor is an adjustable parameter of this approach.

Target state detection. Our algorithm continues the state tracking process
until two criteria are met. First, we have identified the target state with a
probability that exceeds a threshold. After each click event and detected
element we sum the probabilities for all trackers that represent the same
state to check if any of them exceeds the threshold. Second, the mouse
uncertainty area must be small enough to launch the attack. We combine
the mouse uncertainty areas from all matching trackers and consider the
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uncertainty area sufficiently small when its size is smaller than the size of
the target elements or the confirmation element.

State estimation for touchscreen. Using a touchscreen instead of a mouse
does not affect our algorithm. Typically touchscreens report click events
in absolute coordinates, hence using a touchscreen corresponds to the
case where the mouse location is known, but the starting state is not.
Determining the possible transitions after a click is trivial, since there can
be at most one intersection of a clicking point with the area of an element
in a specific state. Text input can be observed from the virtual keyboard
therefore the element detection works the same way as described previously.

4.4.3 User Interface Fingerprinting
In this section we describe UI fingerprinting that is applicable to adaptive
UI attacks on general-purpose PC platforms. On a high level, our UI fin-
gerprinting approach works as follows. The attack device keeps a history
of all events observed in the last t minutes (in our experiments, t = 5min
produced good results). For every observed mouse click event, the attack
device takes the target application UI model, analyzes the event history and
asks the following question: “Is the user interacting with the critical UI?”.

Listing 4.1: Example of an e-banking UI fingerprinting model.

el_account          = Rect(...), T_REQ | T_ATTACK_EL, 0
el_amount           = Rect(...), T_REQ, 1
el_reference_number = Rect(...), T_REQ, 2
el_execute_date     = Rect(...), T_REQ, 3
el_booking_text     = Rect(...), T_OPT, 4
el_debit_check_box  = Rect(...), T_OPT, 5
el_total_check_box  = Rect(...), T_OPT, 6
el_next_button      = Rect(...), T_REQ | T_CONFIRM_EL, 7

0 -> 1 -> 2 -> 3 -> 4 -> 5 -> 6

Similarly to our state tracking approach, we also require a UI model
for fingerprinting. However, the UI model in this case is simpler, as no UI
transitions are modeled. In Listing 4.1 we provide a real example of a UI
model from one of the e-banking websites. The model consists of two parts.
The first part specifies the elements, their relative positions, and their types
(required or optional). The second part is the tabbing order, i.e., the order
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in which the elements are traversed in case a tab key is pressed. We note
that specifying arbitrary UIs is simple using our notation.

In Figure 4.10, we illustrate our fingerprinting approach on a concrete
example. The critical UI in this case is simple, and consists of three elements:
two text-boxes and a button. We require one text-box to be filled out with
keyboard input, while the other is optional. The latest event (at time t0)
the attack device observes is a mouse click. The attack device assumes the
click was performed on the confirmation element, and traverses the event
history backwards in time to check if the user was indeed interacting with
the critical UI, according to the specified model.

The first encountered event is a mouse move, so the device moves the
mouse uncertainty region accordingly. The following two events are a click
and a key press, so the device creates two trackers (the uncertainty region
was over two different elements), and shrinks the uncertainty region over
the corresponding elements. The next event in the history is another move,
followed by a click and a keyboard press. In the lower tracker, the click
would have originated over no element, but in the upper tracker, both
required text-boxes would be filled with text, at which point the attack
device concludes that the user is interacting with the targeted UI state.

4.4.4 Attack Launch Techniques
Once the attack device has identified the attack state with sufficiently small
uncertainty area, it is ready to launch the attack. In a simple approach,
the adversary moves the mouse cursor over one of the attack elements,
modifies its value, moves the mouse cursor over the confirmation button,
and clicks it. The process is fast and the user has little chances of preventing
the attack. However, the user is likely to notice such an attack. For example,
if the doctor never clicked the confirm button, the doctor may be reluctant
to implant the pacemaker into a patient. For this reason, we focus on more
subtle attack launch techniques. Below we describe two such techniques
and in Section 4.6 and Section 4.7 we evaluate their user detection.

Element-driven attack. The adversary first identifies that the user inter-
acts with one of the target elements. This can be easily done when the
mouse uncertainty area is smaller than the target element. Once the user
has modified the value of the target element, the adversary waits a short
period of time and during it tracks the mouse movement, then quickly
moves the mouse cursor back to the target element, modifies its value, and
returns the mouse cursor to its location. After that, the adversary lets the
legitimate user confirm the safety-critical operation. The technique only

81



Adaptive User Interface Attacks

Figure 4.11: Attack device prototype. It consists of two Beagle Bone Black
boards that run the state estimator and attack launch implementation.

requires little mouse movement, but the modified value remains visible to
the user for a potentially long time, as the adversary does not know when
the user will confirm the safety-critical operation.

Confirmation-driven attack. The adversary identifies that the system
is on the attack state and lets the user to set the attack element values
uninterrupted. When the user clicks the confirmation button, the attack
activates. The adversary blocks the incoming click event, moves the mouse
cursor over one of the attack elements, modifies its value, moves the mouse
cursor back over the confirmation button, and then passes the click event
to the target system. After that, the adversary changes the modified attack
element back to its original value. In this technique, the mouse cursor may
have to be moved more, but the modified attack element settings remain
visible to the user only for a very short period of time.

4.5 Attack Device Protoype
We built a prototype of the attack device by implementing the entire at-
tack system in C++ and deployed it on two BeagleBone Black boards
(Figure 4.11). The two boards communicate over ethernet, because each
board has only one set of USB ports and we evaluate an attack where the
adversary controls both mouse and keyboard input. A custom attack device
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Figure 4.12: Case study UI: custom cardiac implant programmer. The
attack and the confirmation elements are highlighted.

would consists of a single embedded device. The BeagleBone boards we
use have processing power comparable to a modern low-end smartphone
(1GHz CPU, 512MB RAM).

The boards are conveniently powered through USB, and no external
power supplies are required. Each board intercepts one USB device (key-
board and mouse, respectively), and the two boards communicate through
a short ethernet cable. We emphasize that the complete attack software is
running on the boards themselves, and no remote communication with the
attacker is either required or performed. We purposefully optimized the
C++ code for execution speed.

4.6 Case Study: Pacemaker Programmer UI
To evaluate our state tracking based attack on terminals, we focus on a
simulated pacemaker programmer user interface (Figure 4.12). We imple-
mented the user interface based on the publicly available documentation of
an existing cardiac implant programmer [32]. Such a programmer terminal
is used by doctors to configure medical implant settings. For example, when
a doctor prepares a pacemaker for implantation, the doctor configures its
settings based on the heart condition of the receiving patient. The terminal
can also be used to monitor the implant and potentially update its settings,
and the user interface was designed for both mouse and keyboard use.
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The model of this user interface consists of approximately ten states and
contains three types of user input elements: buttons, text fields and sliders.
All state transitions are triggered by button clicks. The attack elements are
the user input elements that are used to configure the pacemaker settings.
Threshold is set using a text field (keyboard), while amplitude and rate are
set using slider elements (mouse), see Figure 4.12. All attack elements are
on the same state. The model creation was a manual process that took a
few hours. We load the UI model to the attack device prototype.

We implemented the user interface using the Haxe language that was
compiled to the HTML5 (JavaScript) backend. The UI implementation
serves two different purposes. First, we use it to demonstrate the attack
and evaluate attack detection on-site. For this use, we run the user interface
on a standard PC, instead of a terminal device (Figure 4.11). Second, we
use the same UI to collect user traces and evaluate the detection of different
attack variants online.

4.6.1 Trace Collection
To evaluate the tracking algorithm we collected user traces for the program-
mer user interface online.
Participant recruitment. We recruited 400 participants for trace collection
using the crowd sourcing platform CrowdFlower. The platform enables the
definition of typically small online jobs that human contributors complete in
return of a small payment. We recruited participants globally and required
them to be at least 18 years old. Each contributor was allowed to complete
only one job for trace collection. On CrowdFlower platform our job had a
title “Program an implanted pacemaker” and its description stated:

“We are evaluating the user interface of an experimental medical
device. Your task is to configure a pacemaker device by interacting
with the pacemaker programming software. Note that this is a
test! The shown user interface is not connected to a real patient.”

Task details. In each job, we asked the participants to fill in a short
questionnaire that we used to collect demographics information. The
questionnaire also included a test question, with a known answer, that we
used to filter out participants that were clearly not attentive. After the
questionnaire, the participants were shown more detailed task instructions
and the pacemaker programmer user interface. The participants interacted
with the user interface using a mouse and a keyboard on their browsers.

In the instructions, we asked the participant to find saved patient data
that matches a given medical condition, copy that patient’s pacemaker
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Age
18-29 41%
30-39 41%
40-49 13%
50-59 4%
60 or above 1%

Gender
Male 74%
Female 26%
Education
Primary school 2%
High school 32%
Bachelor 66%

Table 4.1: User trace collection demographics.

settings to the programming screen, and finally, to program the device by
pressing the confirmation element. They remained visible to the participant
while they interacted with the UI. We recorded all user input during the
task, but no private information on study participants was collected.

Trace analysis. In total, 400 contributors completed the task and Table 4.1
provides their demographics. We divided the collected traces randomly
into 200 training traces and 200 evaluation traces, and we analyzed all the
training traces. The time required to complete the task varied greatly. The
traces had 29 (±22) clicks on average, and 98% of the traces had at least ten
clicks. We profiled each user interface state and calculated how often each
button was pressed. We also analyzed conditional button press frequencies,
i.e., how often a button was pressed given that the user transitioned to
the current state from a given previous state. By analyzing the traces, we
observed that approximately 7% of user input gestures were over wrong or
non-existent elements. For example, users sometimes habitually clicked
when the mouse cursor was not over a button element.

4.6.2 Estimation Accuracy
We ran our estimator implementation on all our evaluation traces. As our
algorithm is event-based, after each click we measured (a) the size of the
mouse uncertainty area, expressed as the percentage of the overall screen
size, and (b) the probability that we correctly estimate the real state the
user is currently in. Figure 4.13 shows our results.

We say that our algorithm correctly estimates the current state when it
assigns the highest probability for the correct state among all states. As all
our traces start from the same state, to evaluate the situation where the
tracking begins from an unknown state, we cut the first 10% from all our
evaluation traces. As tracking options, we used the element-area transition
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Figure 4.13: State tracking accuracy. On the left, tracking from a known
state. The uncertainty area reduces fast, and after ten clicks we estimate the
correct state with high probability. On the right, tracking from an unknown
start state. The uncertainty area reduces slower and we estimate the correct
state with slightly lower probability.

probabilities together with element detection (scaling parameter 0.95) and
a priori probabilities that we obtained by profiling the training traces.

First, we discuss the case where the state tracking begins from a known
start state (shown left in Figure 4.13). The uncertainty area is the full
screen at first and the probability for estimating the correct state is 100%
(known start state). As the estimation algorithm gathers more user input
events, the uncertainty area size reduces quickly and already after three
clicks the area is less than 1% of the screen size. The estimation probability
decreases first, as the first click adds uncertainty to the tracking process,
but after additional click events, the probability steadily increases, and after
ten clicks the algorithm can estimate the correct state with 90% probability.

Next, we consider the scenario where the state tracking begins from an
unknown target system state (shown right in Figure 4.13). In the beginning,
the uncertainty area is the entire screen and the probability for the state
estimate is low, as all states are equally likely. As the tracking algorithm
gathers more user events, the uncertainty area reduces, but not as fast as
in the case of known start state. The uncertainty area becomes less than
1% of the screen size after eight clicks. The probability for the correct state
estimate increases and after ten clicks we can estimate the correct state
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with approximately 90% probability. We do not report results past ten
clicks, as many of our traces were shorter than that.

We conclude that in both cases we can identify the correct system state
with high probability after observing only ten clicks, and the uncertainty
area becomes very small (below 1%, which equals to a small 50× 50 pixel
rectangle). We note that in our user interface, the target and confirmation
elements are significantly larger than 1% of screen size. If the user enters
the attack state after ten clicks, we can launch the attack accurately.

In an older version of our implementation, we compared the perfor-
mance of our different tracking options. We evaluated the two transition
probability assignment schemes (equal transition and element area) and
tested both schemes with and without element detection and a priori prob-
abilities. We measured the probability that we estimate the correct state
after ten clicks and we noticed that both transitions option performed com-
parably. Element detection gave a major detection accuracy improvement.
A priori probabilities did not improve accuracy significantly.

4.6.3 Attack Launch Success Rate
To evaluate if our system successfully detects the correct time to launch the
attack, we ran through our algorithm all the user traces we recorded from
our user study, in an offline manner. In 83% of traces, our system correctly
identified the attack launch time, namely right after the user programs the
pacemaker. In 16% of the traces, our system did not identify a suitable
attack time and, as a result, no attack would be launched. Only in 1% of
the traces our system launched the attack at the wrong time. We conclude
that our system correctly identifies the attack launch time in most cases.

4.6.4 Estimation Overhead
To analyze how fast our state and location estimation algorithm runs, we
measured the runtime overhead of processing each user input event from
the collected 200 evaluation traces. The estimation algorithm was run on
the two BeagleBone boards (1GHz, 512MB) with element tracking enabled,
using equal transition probabilities.

Both mouse movement and keyboard events require little computation.
The processing overhead per event is very small (below 0.5ms) and such
events can be easily processed in real-time. Mouse click events require more
computation, as those cause generation of new trackers, and the processing
delay is relative to the number of state trackers that the algorithm maintains.
Figure 4.14 shows the average processing delay for mouse clicks from
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Figure 4.14: State tracking overhead on BeagleBone boards. The tracking
overhead per user input event increases over time as the state tracking
algorithm accumulates more trackers, but is overall low.

our evaluation traces. When we start tracking from a known state, the
overhead increases slightly over time, but remains under 7ms per event.
When we start tracking from an unknown state, the algorithm accumulates
significantly more trackers, and thus the processing overhead increases
faster. After ten clicks, processing a single input event takes approximately
43ms on our test platform. From the analyzed traces we observed that
the interval between consecutive clicks is typically in the order of seconds,
which gives the attack device ample time to process incoming click events.

We conclude that our implementation is fast. Mouse movement and
keyboard events are processed in real-time and the processing overhead
for mouse clicks is significantly smaller than the typical interval between
clicks. The target UI remains responsive, with no observable “processing
lag” that would indicate to the user that an attack is taking place.

4.6.5 Online Attack Detection User Study
To evaluate how many users would detect our attacks, we conducted two
user studies. Here we describe the first, large-scale online study.

Recruitment and procedure. We created a new job on the same crowd
sourcing platform with similar description and recruited 1200 new study
participants. We divided the participants into 12 equally large attack groups
of 100 participants each. We tested two element-driven attack variants:
one where we modify a text input element and another we modify a slider
input element. We also tested two confirmation-driven attack variants: one
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Age
18-29 42%
30-39 39%
40-49 13%
50-59 4%
60 or above 2%

Gender
Male 70%
Female 30%
Education
Primary school 2%
High school 30%
Bachelor 68%

Table 4.2: Online attack detection study demographics.

with text and another with slider input. For each four attack variant we
tested three separate speeds of the attack.

For all participants, we provided the same task description as before,
but depending on the group, we launched an attack during the task. Once
the task was over, we asked the participants: “Do you think you programmed
the pacemaker correctly?” with yes/no answer options. We also asked the
participants to give freeform feedback on the task.

If participants noticed the UI manipulation, they had three possible
ways to act on it. First, the participants were able to program the pacemaker
again with the correct values. Second, the participants could report that
the device was not programmed correctly in the post-test question. Third,
the participants could write to the freeform feedback that they noticed
something suspicious in the application user interface.

Study results. In total, 987 participants completed the task and we report
their demographics in Table 4.2. We consider that the attack succeeded
when the participant did none of the above mentioned three actions, and
the results are shown in Table 4.3. The success rate for the element-driven
text attacks was 37-50% and for the element-driven slider attacks 6-12%,
depending on the speed of the attack. The success rate for the confirmation-
driven text attacks was 93-96% and for the confirmation-driven slider
attacks 90-95%.

All the tested confirmation-driven attacks had high success rates (over
90%). In the element-driven attacks the UI manipulation remains visible
longer, and this is a possible explanation why the attacks do not succeed
equally well. We conclude that confirmation-driven attacks are a better
strategy for the adversary and focus the rest of our analysis on those.

We compared the success rates of text and slider manipulation on
confirmation-driven attacks, but found no statistically significant difference
(χ2(1, N = 484) = 0.12), p = 0.73). This implies that both variants are
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Attack
group

Attack
succeeded

Task
completed

1. Element, text, 5 ms 50% 84
2. Element, text, 62 ms 37% 84
3. Element, text, 125 ms 48% 86
4. Element, slider, 5 ms 12% 80
5. Element, slider, 62 ms 9% 83
6. Element, slider, 125 ms 6% 86
7. Confirmation, text, 10 ms 93% 81
8. Confirmation, text, 125 ms 96% 79
9. Confirmation, text, 250 ms 93% 78
10. Confirmation, slider, 10 ms 95% 85
11. Confirmation, slider, 125 ms 90% 82
12. Confirmation, slider, 250 ms 95% 79
Total 987

Table 4.3: Attack detection study results. For each attack group we report
the the percentage of users against which the attack succeeded, and the
number of participants that completed the task.

equally effective. We also compared the success rates of different attacks
speeds on confirmation-driven text attacks (χ2(2, N = 238) = 0.42), p =
0.81) and slider attacks (χ2(2, N = 246) = 2.20), p = 0.33), but found no
significant difference. This implies that the adversary has at least a few
hundred milliseconds of time to perform the user interface manipulation
without sacrificing its success rate.

4.6.6 Discussion
We analyzed the freeform text responses, and none of the users associated
the observed UI changes to a malicious attack. Only two users commented
on the changing values of UI elements and both attributed the changes to
a software glitch. One user noted “Possible bug when working with sliders.
Threshold value changed from 88 back to 80, had to correct”. This result
shows that users are habituated to software errors in user interfaces.

Out of the 987 study participants only 21 answered negatively to the
question “Do you think you programmed the pacemaker correctly?”. A pos-
sible explanation is that users misinterpreted the results of positive UI
feedback. To reduce chances of errors, it is common for safety-critical
systems to have strong positive feedback mechanisms (e.g., clearly visible
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user action notifications). Even though an attack was performed, the users
could have been fooled into believing that nothing out of the ordinary
happened by the reassuring nature of our “Device Programmed” notification.
A user remarked: “I was told at the end that the pacemaker was programmed,
so I assume I did it correctly”.

4.6.7 On-Site Attack Detection User Study
Our online study participants were not domain experts, i.e., users that
would commonly operate a pacemaker programmer. To understand how
domain experts react to our UI attacks, we performed a preliminary on-site
user study on two medical professionals (one male doctor and one female
nurse). The doctor was 33 and the nurse 24 years old. The doctor has
a specialization in internal medicine, and the nurse works in the field of
anesthesiology. Both study participants regularly work with medical devices
that have similar UI complexity to our simulated pacemaker programmer.

The participants had the same task as in our online study: to program
the pacemaker with patient-specific values. Our on-site study setup is
similar to Figure 4.11. The pacemaker programmer application is running
on a laptop, to which a USB keyboard and mouse are connected. The attack
device is installed, but was hidden from sight. Both participants failed to
detect our attack, and were under the impression they programmed the
pacemaker correctly.

The results of this follow-up and on-site user study give further confi-
dence on the previous results of the large-scale online study, namely that
our attacks are difficult to detect.

4.7 Case Study: Online Banking UI
In this section we describe our experiments on e-banking user interface. We
first explain our trace collection and analysis, followed by our user study.

4.7.1 Trace Collection and Analysis
We installed keyboard and mouse logging software on the author’s laptops.
The programs collected every mouse and keyboard event, and stored them
in a heavily filtered manner (e.g., we did not log which key was pressed,
but only if the “tab” key was pressed or some “other” key was pressed).
We collected over 72 hours worth of regular mouse and keyboard usage
patterns. During those 72 hours, the authors never visited real e-banking
websites. We then fed all traces through our attack code. The code had no
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false positives, i.e., the code did not erroneously detect that an e-banking
website was used, when in reality it was not.

To analyze how fast our fingerprinting algorithm runs, we measured the
runtime overhead of processing each user input event from the collected
traces. The estimation algorithm was also run on the two BeagleBone
boards. Both mouse movement and keyboard events require little compu-
tation. The processing overhead per event is very small (below 0.5ms) and
such events can be easily processed in real-time. Mouse click events require
more computation, as it is at this point where the algorithm determines
whether the user is interacting with the critical UI. Since we limited the
history to a 5 minute interval, the processing delay remains fairly constant,
averaging approximately 49ms and for 96% of the clicks the delay is less
than 100ms on our test platform.

4.7.2 On-Site Attack Detection User Study
To evaluate how successful our attack is in fingerprinting UIs and com-
promising the integrity of e-banking payments, we performed a separate
on-site user study, similar to the previous on-site attack detection study.
We created partial local replicas of three major e-banking websites (we
only copied the payment parts of the sites). The replicas were nearly the
same as their online counterparts, with minor differences inadvertently
introduced through the replication process.

Recruitment. We recruited 20 domain experts. To participate in our study,
each participant was required to be a regular e-banking user of one of the
three banks we replicated the websites of, and use either Chrome of Firefox
during e-banking sessions.

Procedure. Each participant was presented with a sheet of paper, contain-
ing the following instructions steps.

“(1) Open the browser you usually use for e-banking. (2) Click
on your e-banking site link, located in the browser bookmarks.
(3) Imagine you already performed the login procedure, as the
replica website requires no login. (4) Navigate to the payment
site, and (5) make a payment to the account provided on the
study sheet. (6) To complete the task, close the browser.”

As in our previous user study, the attack device was already installed
to the laptop and was hidden from sight. First step of our attack was
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Attack results
Attack successful, not noticed 80%
Attack successful, noticed 10%
Attack failed, not noticed 5%
Attack failed, noticed 5%

Table 4.4: Online banking UI user study results.

to automatically detect that the user is interacting with a critical UI, i.e.,
that payment information is filled in, and which of the three banks was
being used. The second step of the attack was to detect when the "Confirm
payment" button was clicked. The attack device then inserted mouse and
keyboard input that changed the payment field containing the amount
of money transmitted, and injected a small javascript snipplet through
the URL bar, that masked the changed value in the upcoming "Payment
confirmation" screen. The whole attack was done in approximately 0.5
seconds. A video which demonstrates our attack is available online3.

After completing the user study, we presented each participant with
an exit questionnaire, consisting of two questions: “1. Was the payment
experience comparable to your regular e-banking experience?” and “2. What
do you think the user study was about?”

Results. We present the results of our attack in Table 4.4. Our attack suc-
cessfully detected the precise point in time when the users were interacting
with the critical UI (making a payment) in 90% of the cases. Our attack
failed in only 10% of the cases (two users). In both of these cases the attack
state detection succeeded, but the attack input event injection failed in
both cases, due to implementation flaws.

Over 90% of participants positively answered to the first question,
noting that it was similar to their regular e-banking experience. Out of
those, some users noted that the UI looked slightly different, which was due
the imperfections introduced by our replication process. Only 10% noted
that the experience was not the same, due to the missing second-factor
authentication step. Out of 20 participants, 30% had no idea about the
true nature of the user study. Another 30% suspected that some form of
attack was performed (phishing, key-logging, removal of second-factor
authentication), while another 30% thought the study was a usability test.

3https://goo.gl/kdkRDC
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Only two users detected our attack, and correctly guessed the true nature
of the study. We conclude that our attack was stealthy to most users.

4.7.3 Discussion
We did not perform any security priming in our user study, however we
acknowledge that the role-playing bias of study participant not using their
real e-banking could be present. Users might have been less careful, because
they knew that their own money is not at risk. At the same time, our study
setup introduces another bias. Since the study was performed under our
supervision, some study participants may have been more alert than if they
would have done the online payment on their own.

We tested our attack on various browsers, various e-banking sites and
various screen resolutions as well as browser window locations, and we
conclude that our attacks can successfully perform UI fingerprinting and
e-banking session hijacking, with no false positives, and very low false
negatives. Furthermore, we showed that our attacks were not detected by
the majority of users.

The user study was performed on a custom laptop that we provided,
that was disconnected from the internet. The e-banking website replicas
required no logins of any kind, and at no point in time did we require
the study participants to disclose any kind of private information, such as
their their e-banking credentials. No real money was exchanged during our
study, as the performed e-banking transaction were purely fictional. We
de-briefed each study participant at the end of the user study, where we
described what the user study was about and we reassured each participant
that no real transaction was performed, and that their e-banking credentials
were not compromised in any manner.

4.8 Countermeasures
In this section we analyze possible countermeasures and their limitations
regarding the attacks presented in this chapter.

Trusted input devices. One way to address our attacks is to mandate
usage of trusted input devices. We call a user input device trusted, when it
securely shares a key with the target system. For example, USB input devices
communicate using polling. The host sends periodic requests and the input
device sends responses that report a possibly occurred user event. With a
shared key all request and responses can be encrypted and authenticated
which prevents the adversary from observing and injecting events. If the
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responses also include freshness, such as a nonce, the adversary cannot
replay events either.

However, secure deployment of trusted input devices is challenging.
Assuming that the target system and the input device have a certified key,
and the two devices run a mutually authenticated key agreement protocol
at connection establishment. If the certified input device is temporarily
unavailable (e.g., lost or broken), the safety-critical terminal cannot be
operated with another, non-certified device. For example, doctors need be
able to operate medical terminals at all times. Additionally, the adversary
can purchase a certified input device, extract a key from it, and install it
to the attack device. Standard approaches to address compromised keys,
such as online revocation checks, are ill-suited to this setting, as many
safety-critical embedded terminals are disconnected from the Internet to
limit their attack surface.

Increased user feedback. The user interface can provide visual feedback
on each change on attack elements [90]. For example, the user interface
can draw a thick border around a recently edited element and keep it visible
for some amount of time. In a confirmation-driven attack, the user would
see the border, but as the adversary changes the attack element value back
to the original, the content of the user interface element would appear as
expected. Noticing such attacks may not be easy for the user.

Change rate limiting. The user interface could limit rate at which the
values of the user interface elements can be changed. However, our study
results show that the majority of users do not notice even relatively slow UI
manipulations that take 250ms. Finding a rate limit that efficiently prevents
user interface manipulation attacks, but does not prevent legitimate user
interactions can be challenging.

Randomized user interfaces. Another way to address our attacks is to
randomize parts of the safety-critical system user interface. Both our state
tracking algorithm and the attack launch techniques assume a static model
of the target system user interface. If the user input elements change their
location for every execution, the system state tracking becomes significantly
harder. Also attack launch can be complicated by using randomized element
locations. Randomized user interfaces have been proposed for smartphone
screen lock to prevent shoulder surfing and smudge attacks [174, 185].
For example, the Intel IPT technology randomizes PIN input to prevent
malware from stealing it [91].
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Attack type CAPTCHA placement
Confirmation Element mod.

confirmation-driven attack possible attack prevented
element-driven attack possible visibility increased

Table 4.5: Placement options for human user tests.

While UI randomization can complicate, or even prevent our attacks,
it also increases the chances of human error. In contrast to smartphone
screen lock, on safety-critical terminals an increased error rate is typically
not acceptable. For example, medical device evaluations consider lack of
UI consistency a critical safety violation [80]. Randomization can increase
attack resistance, and thus improve safety, but at the same time increase
human errors, and thus decrease safety. Finding the optimum is an inter-
esting direction for further research, but outside the scope of this chapter.

Human user tests. Passwords are often used to authenticate that the
correct user is interacting with a computing system. Passwords do not
protect against our attacks, because the adversary can learn any entered
passwords. CAPTCHAs are a common technique to verify that the user
input originates from a human. In our scenario, the attack device cannot
solve a CAPTCHA, as it cannot read from the screen, and observing the
user to solve one test does not help in future tests.

The terminal user interface can require that the user must solve a hu-
man user test to confirm the safety-critical operation. This approach does
not prevent element-driven attacks. Once the adversary has detected in-
teraction with the attack elements, it can wait, modify their values, and
after that let the user to complete the test in order to confirm the operation.
Also confirmation-driven attacks remain possible with this approach. The
user can also be asked to solve a test to be allowed to modify the attack el-
ements. This prevents confirmation-driven attacks. When the user chooses
to confirm the safety-critical operation, the adversary cannot return to the
attack elements and modify their values without user involvement. For
element-driven attacks the adversary has to adjust his attack strategy. The
adversary must perform the modification when the user interacts with one
of the attack elements (and not shortly after it). Table 4.5 summarizes
these options. Human user tests can improve attack resistance, but forcing
the user to solve such a test for every modification of a safety-critical UI
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element is not be acceptable in many systems we consider.

Continuous user authentication. While traditional user authentication
systems require the user to log in once, continuous authentication systems
monitor user input over a period of time to detect if the usage deviates from
a previously recorded user profile. Many such systems track mouse velocity,
acceleration and movement direction [38,165], together with click events
[38, 165], angle-based curvature metrics and click-pause measurements
[211]. Typically these systems collect user input events for a fixed period
of time and then analyze the input to detect unauthorized usage.

The proposed systems that demonstrate low false rejection rates, typi-
cally require a significant number of consecutive impostor actions (e.g., 20
consecutive mouse clicks [211] or 70 consecutive mouse actions [135]).
Even when tailored for higher false rejection rates, the systems need to
observe the impostor for significant amount of time (e.g., 12 consecutive
seconds [164]). Our attacks require only brief mouse movement and one
or few clicks, and the attacks can be performed well under a second. Our
state estimation works fully passively. Thus, the current continuous authen-
tication systems are not directly applicable to detection of our attacks.

Summary. We conclude that all the reviewed countermeasures have some
limitations. Finding better protective measures that are both effective and
practical to deploy remains an open problem.

4.9 Discussion
In this chapter, we presented a novel adaptive approach to attack systems
through input integrity violation under uncertainty about the target system
state. In this section we discuss the applicability of the proposed approach
to other scenarios and directions for future work.

User interface complexity. We experimented our attacks on a terminal
user interface that consists of approximately ten states. We consider this
typical UI complexity for embedded dedicated-purpose terminals. Evalu-
ating our attack on more complex UIs would be an interesting direction
for further work. Another improvement of our current work would be to
extend our probabilistic tracking algorithms to handle non-deterministic
UIs. We also experimented on real (and replica) online banking websites.
These user interfaces represent typical complexity of many online services.
While evaluation of all possible user interfaces is infeasible, we believe that
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these examples capture different types of security-critical user interfaces.

System output. In our attack scenario, the adversary has only access to
the user input channel. An attack device that is attached to an interface
that connects a touchscreen to the terminal mainboard is an example of
a scenario where the adversary may be able to access the system output
channel as well. Video interfaces can have high bandwidths and running
image recognition algorithms on a small embedded device may be challeng-
ing. In many scenarios, the adversary might be left with some uncertainty
about the target system state, and our probabilistic tracking techniques can
help launch a more accurate attack. In this chapter, we focused on tracking
mouse and keyboard events, but many terminals are operated through
touchscreens. State tracking based on touchscreens is easier compared to
mouse events, as such events have no location uncertainty.

User presence. We tailor our attack for the case where the legitimate user
is operating the device. The presence of the legitimate user both helps and
complicates our attack. Observing specific input events (e.g., mouse clicks
that presumably take place over buttons) help the adversary to determine
the current user interface state. At the same time, the adversary must inject
the attack events in a subtle manner to avoid user detection. If the attack
is performed without the presence of the user (e.g., when the system is
idle), a different strategy is needed for state estimation. Exploring such
state estimation strategies is another interesting direction for future work.

Attacks in the wild. While the proposed attack approach is unconventional
and the types of attacks described in this chapter have not been reported
before, we believe that the attack scenario is realistic. In fact, similar attacks
may already be taking place in the wild. For example, the NSA cottonmouth
project4 is a malicious USB connector that can both inject and observe user
input. Such and similar devices are ideally suited to perform our attacks.

4.10 Related Work
In Chapter 2, we reviewed related work in the domain of user interface
security, and in this section we compare our work to key areas in more detail.

USB attacks. Key loggers are small devices that the adversary can attach
between a keyboard and the target system. The key logger records user

4https://nsa.gov1.info/dni/nsa-ant-catalog/usb/index.html
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input and the adversary collects the device later to learn any entered user
secrets such as passwords. Such attacks are limited to passive information
leakage, while our approach enables active runtime attacks with severe
safety or security implications.

A malicious user input device, or a smartphone that impersonates
one [187], can attack PC platforms by executing pre-programmed attack
sequences [40, 50, 123]. For example, a malicious keyboard can issue
dedicated key sequence to open a terminal and execute malicious system
commands. The input device might also be able to copy malicious code
to the target system. Such attacks are typically not possible on hardened
embedded terminals where the user cannot escape the application UI, and
installation and execution of unsigned code is prevented.

USB firewalls. In recent research, USB firewall architectures have been
proposed [19,179,180]. Similar to network firewalls, these architectures in-
clude packet filtering functionality (e.g., in the OS kernel). These firewalls
can prevent a USB peripheral of one class masquerading as an instance of
another class (e.g., mass storage device masquerades as keyboard). Such
protective measures do not prevent our attacks, where all injected USB
packets match the device class of the benign peripheral.

USB fingerprinting. Researchers have demonstrated fingerprinting of PCs
based on their USB communication timing patterns [28]. Similar approach
could be applied to fingerprint USB input devices. The processing delays
that our attack incur are so small that users cannot observe them, but it
remains an open question if timing-based fingerprinting could be used to
detect the attack.

Terminal protection. Software-based attestation is a technique that al-
lows a host platform to verify the software configuration of a connected
peripheral [106]. Such attestation would address the variant of our attack,
where the adversary replaces a benign user input device with a malicious
one, but not the variant where the attack device sits between the benign pe-
ripheral and the terminal. Power analysis can be used to identify unknown
(malicious) software processes running on embedded terminals, such as
medical devices [46]. Such approaches would not detect our attack where
no malicious code is running on the embedded terminal. Our concrete
attack device prototype is susceptible to such power-analysis as it draws
power from the host USB connection. However, the attack device could
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easily be designed to include on-board battery power.

User deception attacks. In systems where multiple applications or web-
sites share the same display, the user can be tricked to interact with false UI
elements. For example, a malicious website may be able to draw an overlay
over a button that causes the user click the button unintentionally. Such
attacks are called clickjacking [90] or UI redressing [139]. In our attack
scenario, the adversary can only modify and injects user events.

4.11 Conclusion
In this chapter, we have presented a new way to attack security-critical user
interfaces. In the attack, the adversary installs an attack device between a
user input device and the target system, and the attack is launched when
the authorized user is performing a security-critical operation, by modifying
or injecting new user input events. Our approach is easy to deploy on the
location, invisible to traditional malware detection, difficult for the user
to notice, and surprisingly robust to noise. Many of the attack variants we
tested had success rate over 90%. We analyzed several countermeasures
and noticed that all of them have limitations. We conclude that our attack
presents a serious threat to many safety-critical terminals and general-
purpose PC applications.

Attack limitations. Our attack approach is, by nature, a targeted attack. An
attacker therefore needs to tailor it for the targeted system (or application)
beforehand, by creating UI models or fingerprinting attack states.
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Introduction
In the first part of this thesis, our goal was to better understand the attack
surface in the context of modern user interfaces. In the second part, we
focus on countermeasures for a widespread and damaging kind of UI
attacks; namely mobile application visual impersonation attacks, such as
spoofing or phishing.

Applying existing malware detection approaches to phishing applica-
tions is challenging. There is a large body of work in the general domain
of malware detection, and the underlying assumption is that malware be-
haves fundamentally differently from benign applications in a way that
enables detection. However, compared to regular mobile malware, spoofing
applications (e.g., phishing apps) can be considerably stealthier, as such
malware does not necessarily perform any suspicious actions, other than
drawing on the device screen.

A common approach is to extract similarity metrics by analyzing datasets
of known malware. However, such approaches have drawbacks: (1) such
malware datasets may not always be available, and (2) the extracted simi-
larity features may not necessarily capture what users consider as similar.
Furthermore, existing approaches are often susceptible to simple obfusca-
tion attacks, where an attacker slightly modifies the malicious application in
order to produce different fingerprints, and thereby evade detection. To de-
tect spoofing apps in a manner that is accurate and resilient to obfuscation,
a new approach is needed.

We observe that mobile application user interfaces are significantly
simpler and visually cleaner when compared to common desktop user inter-
faces (Figure 4.15). We therefore take a conceptually different approach,
and we use metrics based on visual similarity, through screenshot analysis
and comparison.

Visual similarity offers new possibilities, as well as new challenges. In
the following two chapters, we propose two systems for detecting visual
impersonation attack. In Chapter 5, we propose a detection system that
runs on the user’s device, and in Chapter 6 we present an alternative
(and complementary) system that runs on the marketplace and can detect
malware prior to infecting the user’s devices.
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Figure 4.15: Complexity of user interfaces. (Left) Mobile login screens
commonly exhibit a clean design, with few user interface elements present.
(Right) Desktop login screens are significantly more complex.
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Chapter 5

On-device Spoofing
Detection

5.1 Introduction
Mobile application spoofing is an attack where a malicious mobile applica-
tion mimics the visual appearance of another one. The goal of the adversary
is to trick the user into believing that she is interacting with a genuine
application while she interacts with one controlled by the adversary and,
if such an attack is successful, the integrity of what the user sees (system
output) as well as the confidentiality of what the user inputs into the system
can be violated by the adversary. This includes login credentials, personal
details that users typically provide to applications, as well as the decisions
that they make based on the information provided by the applications.

A common example of mobile application spoofing is a phishing at-
tack where the adversary tricks the users into revealing their password,
or similar login credentials, to a malicious application that resembles the
legitimate app. Several mobile application phishing attacks have been seen
in the wild [118,171,203]. For example, a recent mobile banking spoofing
application infected 350,000 Android devices and caused significant finan-
cial losses [69]. More sophisticated attack vectors are described in recent
research [31,42,64,197].

The problem of spoofing has been studied extensively in the context
of phishing websites [2, 3, 56, 88, 93]. Web applications run in browsers
that provide visual cues, such as URL bars, SSL lock icons and security
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skins [55], that can help the user to authenticate the currently displayed
website. Similar application identification cues are not available on modern
mobile platforms, where a running application commonly controls the
whole visible screen. The user can see a familiar user interface, but the
interface could be drawn by a malicious spoofing application — the user is
unable to authenticate the contents of the screen.

Security indicators for smartphone platforms have been proposed [61,
162], but their effectiveness relies on user alertness and they typically re-
quire either hardware modifications to the phone or a part of the screen to
be made unavailable to the apps. Application-specific personalized indica-
tors [121,197] require no platform changes, but increase the application
setup effort. Static code analysis can detect API call sequences that enable
certain spoofing attacks [31]. However, code analysis is limited to known
attack vectors and many spoofing attacks do not require any specific API
calls, as they only draw on the screen.

We propose a novel spoofing detection approach that is tailored to the
protection of mobile app login screens using visual similarity. Our system pe-
riodically grabs screenshots on the user’s device and extracts visual features
from them, with respect to reference values — the login screens of legitimate
apps (on the same device) that our system protects. If a screenshot demon-
strates high similarity to one of the reference values, we label the currently
running app potentially malicious, and report it to the platform provider
or warn the user. As our system examines screenshots, it is agnostic to the
spoofing screen implementation, in contrast to approaches that examine
screen similarity through code analysis. While straight-forward approaches
based on visual similarity can detect simple cases of spoofing, where the
attacker creates a perfect copy of the target app, or introduces other minor
changes (e.g., changes the background color), our system can detect also
more sophisticated spoofing.

In order to label spoofing apps accurately, our system needs to under-
stand what kind of attacks are successful in reality, i.e., how much and
what kind of visual similarity the two compared applications should have,
so that the user would mistake the spoofing app as the legitimate one and
fall for the attack. We capture this notion as a novel similarity metric called
deception rate. For example, when deception rate is 20%, one fifth of the
users are estimated to consider the spoofing app genuine and enter their
login credentials into it. Deception rate is a conceptually different similarity
metric from the ones previously proposed for similarity analysis of phishing
websites. These works extract structural [12,111,154,205,208] as well as
visual [43,72,125] similarity features and combine them into a similarity
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score that alone is not expressive, but enables comparison to known attack
samples [111, 129]. While existing metrics essentially tell how similar
the spoofing app is to one of the known attacks, our metric determines
how likely the attack is to succeed. Deception rate can be seen as a risk
measure and we consider it a powerful new way to address spoofing attacks,
especially in cases where a large dataset of known attacks is not available.

Our system requires a good understanding of how users perceive and
react to changes within mobile app user interfaces. Change perception has
been studied extensively in general [131,151,168], but not in the context
of mobile apps. We conducted a large-scale online study on mobile app
similarity perception. We used a crowd sourcing platform to carry out
a series of online surveys where approximately 5,400 study participants
evaluated more than 34,000 spoofing screenshot samples. These samples
included modified versions of Facebook, Skype and Twitter login screens
where we changed visual features such as the color or the logo. For most
of the experimented visual modifications we noticed a systematic user
behavior: the more a visual property is changed, the less likely the users
are to consider the app genuine.

We used the results of our user study to train our system using common
supervised learning techniques. We also developed novel visual feature
extraction and matching techniques. Our system shows robust screenshot
processing and good deception rate accuracy (6–13% error margin), i.e.,
our system can precisely determine when an application is so similar to one
of the protected login screens that the user is in risk of falling for spoofing.
No previous visual similarity scheme gives the same security property.

Additionally, we describe a novel collaborative detection model where
multiple devices take part in screenshot extraction. We show that runtime
detection is effective with very little system overhead (e.g., 1%). Our results
can also be useful to other spoofing detection systems, as they give insight
into how users perceive visual change.

5.2 Problem Statement
In mobile application spoofing, the goal of the adversary is to either violate
the integrity of the information displayed to the user or the confidentiality
of the user input. Application phishing is an example of a spoofing attack
where the goal of the adversary is to steal confidential user data. The
adversary tricks the user into disclosing her login credentials to a malicious
app with a login screen resembling the legitimate one. A malicious stock
market app that resembles a legitimate one, but shows fake market values,
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is an example of an attack where the adversary violates the integrity of
the visual information displayed to the user and affects the user’s future
stock market decisions. Below we review different ways of implementing
application spoofing attacks.

The simplest way to implement a spoofing attack is a repackaged or
otherwise cloned application. To the user, the application appears identical
to the target application, except for subtle visual cues such as a different de-
veloper name. Application repackaging has become a prevalent problem in
the Android ecosystem, and the majority of Android malware is distributed
using repackaging [41,213].

In a more sophisticated variant of mobile application spoofing, the
malicious app masquerades as a legitimate application, such as a game.
The user starts the game and the malicious app continues running in the
background from where it monitors the system state, such as the list of
currently running applications. When the user starts the target application,
the malicious application activates itself on the foreground and shows a
spoofing screen that is similar, or exactly the same, to the one of the target
app. On Android, background activation is possible with commonly used
permissions and system APIs [31,64] and such attacks are difficult for the
user to notice. While API call sequences that enable background attacks can
be detected using code analysis [31], automated detection is complicated
by the fact that the same APIs are frequently used by benign apps.

A malicious application can also present a button to share information
via another app. Instead of forwarding the user to the suggested target
app, the button triggers a spoofing screen within the same, malicious appli-
cation [64]. Fake forwarding requires no specific permissions or API calls
which makes such attack vectors difficult to discover using code analysis.
Further spoofing attack vectors are discussed in related work [31].

Mobile application spoofing attacks are a recent mobile malware type
and a large corpus of known spoofing apps is not yet available. However,
serious attacks have already taken place. The Svpeng malware infected
350,000 Android devices and caused financial loss worth of nearly one
million USD [69]. The malware presents a spoofed credit card entry dialog
when the user starts the Google Play application and monitors startup
of targeted mobile banking applications to mount spoofing attacks on
their login screens. As spoofing detection using traditional code analysis
techniques has inherent limitations and many spoofing attacks are virtually
impossible for the users to notice, the exact extent of the problem remains
largely unknown. Due to the already seen serious attacks, we believe it is
useful to seek novel ways to address the problem of mobile app spoofing.
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The problem of mobile application spoofing has many similarities to the
one of web phishing. The majority of the existing web phishing detection
schemes [12, 111, 154, 205, 208] train a detection system using a large
dataset of known phishing websites. As a similar dataset is not available
for mobile apps, these approaches are not directly applicable to mobile
app spoofing detection. We also argue that the specific nature of mobile
applications benefits from a customized approach, and in the next section,
we introduce a novel detection approach that is tailored to mobile app
login screens. The focus of this work is on mobile app spoofing and web
phishing is explicitly out of scope.

5.3 Our Approach
In this section, we first describe the rationale behind our approach and
introduce deception rate as a similarity metric. We then describe how this
approach is instantiated into a case study on login screen spoofing detection.
Finally, we describe our attacker model.

5.3.1 Visual Similarity and Deception Rate
The problem of application spoofing can be approached in multiple ways.
Code analysis has been proposed to detect API call sequences that enable
spoofing attacks [31]. However, code analysis is limited to known attack
vectors and cannot address spoofing attacks that do not require specific
API calls (e.g., fake forwarding). Another approach is to analyze the ap-
plication code or website DOM trees to identify apps with structural user
interface similarity [12,111,154,205,208]. A limitation of this approach
is that the adversary can complicate code analysis, e.g., by constructing
the user interface pixel by pixel. Third, the mobile platform can be en-
hanced with security indicators [61,162]. However, indicator verification
imposes a cognitive load on the user and their deployment typically re-
quires either part of the screen to be made unavailable to the applications
or hardware modifications to the device. Application-specific personalized
indicators [121,197] can be deployed without platform changes, but their
configuration increases user effort during app setup.

In this chapter, we focus on a different approach and study the de-
tection of spoofing attacks based on their visual similarity. Previously,
visual similarity analysis has been proposed for detection of phishing web-
sites [72,194,205]. Designing an effective spoofing detection system based
on visual similarity analysis is not an easy task, and we illustrate the chal-
lenges by providing two straw-man solutions.
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Figure 5.1: Spoofing application example. The legitimate Netflix app and
the Android.Fakeneflic malware [176]. The spoofed user interface includes
subtle visual modifications.

The first straw-man solution is to look for mobile apps that have exactly
the same visual appearance. To avoid such detection, the adversary can
simply create a slightly modified version of the spoofing screen. For example,
small changes in the login screen element positions are hard to notice
and are unlikely to retain the user from entering her login credentials.
Consequently, this approach would fail to catch many spoofing attacks.
Such visually modified attacks are observed in the wild. For example,
the Android.Fakeneflic malware [176], discovered on Google’s Android
market, impersonated the legitimate Netflix application with minor visual
modifications (Figure 5.1). Such attacks would not be detected by a simple
comparison scheme that looks for an exact visual match. To summarize, we
do not focus on detection of perfect copies, as such detection is easy to avoid,
and spoofing apps seen in the wild often show minor visual differences.
The adversary has an incentive to introduce enough visual change to evade
simple detection, but not enough for users to become alarmed. The primary
contribution of this chapter is to explore this space; to determine how much
change do users tolerate.

The second straw-man solution is to flag all applications that have high
similarity to a reference application, with regards to a common image
similarity metric, e.g., converting a screenshot to gray-scale, and scaling it
down to a fixed size (64× 64 pixels). Comparing such thumbnails by pixel
difference is tolerant to many minor visual modifications. For example,
screenshots with change of colors, or other minor pixel differences, would
be deemed highly similar, and the metric would detect such spoofing attacks.
However, the metric would fail on more complex examples (Figure 5.2), as
it does not capture the visual properties that users consider relevant. As
our user study shows (Section 5.4), many screens are perceived as similar
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Figure 5.2: Examples of simple (changing background color) and more
complex spoofing (repositioning elements).

by users, even though the screens are very dissimilar in terms of their pixel
values. For example, many users mistook a pink Facebook screen with
perturbed element positions as genuine. Such advanced spoofing would
not be caught by the above simple metric — for robust detection more
sophisticated techniques are needed.

In this chapter we explore visual similarity as perceived by the users.
We take a different approach and design a spoofing detection system that
estimates how many users would fall for a spoofing attack. We use deception
rate as a novel similarity metric that represents the estimated attack success
rate. Given two screenshots, one of the examined app and one of the
protected reference app, our system (Figure 5.3) estimates the percentage
of users that would mistakenly identify the examined app as the reference
app (deception rate). This estimation is done by leveraging results from a
study on how users perceive visual similarity on mobile app user interfaces.
The deception rate can be seen as a risk measure that allows our system
to determine if the examined application should be flagged as a potential
spoofing application. An example policy is to flag any application where
the deception rate exceeds a threshold.

Deception rate is a conceptually different similarity metric from the
ones previously proposed for similarity analysis of phishing websites. These
works extract structural [12,111,154,205,208] as well as visual [43,72,125]
similarity features and combine them into a similarity score that alone is
not expressive, but enables comparison to known attack samples [111,
129]. The extracted features can also be fed into a system that is trained
using known malicious sites [72, 194, 205]. Such similarity metrics are
interpreted with respect to known attacks, and may not be effective in
detecting previously unseen spoofing attacks.
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Figure 5.3: Approach overview. The spoofing detection system takes as
inputs screenshots of a reference app and an examined app. Based on
these screenshots and knowledge on mobile application user perception,
the system estimates deception rate for the examined app.

Deception rate has different semantics, as it captures the perceived
similarity of spoofing screens. For example, a mobile app login screen where
elements have been reordered may have different visual features but, as
our user study shows, is perceived similarly by many users. Deception rate
estimates how many people would mistakenly identify the spoofing app as
the genuine one (risk measure) and, contrary to previous similarity metrics,
is applicable also in scenarios where a large dataset of known spoofing
samples are not available. We emphasize that our system is complementary
to existing approaches, and that realization of such a system requires good
understanding of what type of mobile app interfaces users perceive as
similar and what type of visual modifications users are likely to notice. This
motivates our user study, the results of which we describe in Section 5.4.

5.3.2 Case Study: Login Screen Spoofing
We focus on spoofing attacks against mobile application login screens,
as they are the most security-sensitive ones in many applications. We
examined the login screens of 230 different apps and found that they all
follow a similar structure. The login screen is a composition of three main
elements: (1) the logo, (2) the username and password input fields, and
(3) the login button. Furthermore, the login screen can have additional,
visually less salient elements, such as a link to request a forgotten password
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Figure 5.4: Model for mobile app login screens. The login screen has
three main elements: logo, username and password input fields, and login
button. The login functionality is either (a) standalone or (b) distributed.

or register a new account. Some mobile apps distribute these elements
across two screens: the first (initial) screen contains the logo, or a similar
visual identifier, as well as a button that leads to the login screen, where
the rest of the main elements reside.

The common structure of mobile app login screens enables us to model
them, and their simple designs provide a good opportunity to experiment
on user perception. Mobile app login screens have fewer modification
dimensions to explore, as compared to more complex user interfaces, such
as websites. Throughout this work we use the login screen model illustrated
in Figure 5.4 that captures both standalone and distributed logins screens.
Out of the 230 apps we examined, 136 had a standalone login screen,
while 94 had a distributed one. All apps conformed to our model. We
experiment on user perception with respect to this model, as the adversary
has an incentive to create spoofing screens that resemble the legitimate
login screen. Our study confirms this assumption.

5.3.3 Attacker Model
We assume a strong attacker capable of creating arbitrary spoofed login
screens, including login screens that deviate from our model. We distinguish
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between two spoofing attack scenarios regarding user expectations and
goals. In all the spoofing attacks listed in Section 5.2, the user’s intent is to
access the targeted application. This implies that the user expects to see a
familiar user interface and has an incentive to log in. The adversary could
also present a spoofing screen unexpectedly, when the user is not accessing
the target application. In such cases, the user has no intent, nor similar
incentive, to log in. We focus on the first case, as we consider such attacks
more likely to succeed.

We assume an attacker that controls a malicious spoofing app running on
the user smartphone. Besides the spoofing screen, the attacker-controlled
app appears to the user as entirely benign (e.g., a game). The attacker
can construct the spoofing screen statically (e.g., using Android manifest
files) or dynamically (e.g., creating widgets at runtime). In both cases, the
operating system is aware of the created element tree, a structure similar to
DOM trees in websites. The attacker can draw the screen pixel by pixel, in
which case the operating system sees only one element, a displayed picture.
The attacker can also exploit the properties of human image perception.
For example, the attacker can display half of the spoofed screen in one
frame, and the other half in the subsequent frame. The human eye would
average the input signal and perceive the complete spoofing screen.

5.4 Change Perception User Study
Visual perception has been studied extensively in general, and prior studies
have shown that users are surprisingly poor at noticing changes in succes-
sively shown images (change blindness) [151,168]. While such studies give
us an intuition on how users might notice, or fail to notice, different login
screen modifications, the results are too generic to be directly applied to the
spoofing detection system outlined above. User perception of visual change
in mobile app user interfaces has not been studied thoroughly before.

We conducted a large-scale online study on the similarity perception
of mobile app login screens. The purpose of this study was three-fold: we
wanted to (1) understand the effect of different types of visual login screen
modifications, (2) gather training data for the spoofing detection system,
and (3) gain insights that could aid us in the design of our system. The
study was performed as online surveys on the crowd-sourcing platform
CrowdFlower. The platform allows creation of online jobs that human
participants perform in return of a small payment. In each survey, the
participants evaluated a single screenshot of a mobile app login screen by
answering questions (see Appendix A).

114



5.4 Change Perception User Study

Figure 5.5: Examples of Facebook login screen spoofing samples. The
original login screen is shown on the left. We show an example of each
type of visual modification we performed: color, general modifications, and
logo modifications.

We first performed an initial study, where we experimented with visual
modifications on the Android Facebook application. We chose Facebook, as
it is a widely used application. After that, we carried out follow-up studies
where we tested similar visual modifications on Skype and Twitter apps, as
well as combinations of visual changes. Below, we describe the Facebook
study and summarize the results of the follow-up studies. We did not collect
any private information about our study participants. The ethical board of
our institution reviewed and approved our study.

5.4.1 Sample Generation
A sample is a screenshot image presented to a study participant for eval-
uation. We created eight datasets of Facebook login screens, and in each
dataset we modified a single visual property. The purpose of these datasets
was to evaluate how users perceive different types of visual changes as well
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as to provide training data for the spoofing detection system. Figure 5.5
illustrates each performed modification:

• Color modification. We modified the hue of the application login
screen. The hue change affects the color of all elements on the login
screen and the dataset contained samples representing uniform hue
changes over the entire hue range.

• General modifications. We performed three general modifications on
the login screen elements. (1) We reordered and (2) scaled down
the size of the elements. We did not increase the size of the elements,
as the username and the password fields are typically full width of
the screen. Furthermore, (3) we removed any extra elements from
the login screen.

• Logo modifications. We performed four modifications on the logo:
we (1) cropped the logo to different sizes, taking the rightmost part
of the logo out, (2) added noise of different intensity, (3) rotated
the logo both clockwise and counterclockwise, and (4) performed
projective transformations on the logo.

We created synthetic spoofing samples as no extensive mobile spoofing
app dataset is available. While the chosen modifications cover some known
spoofing attacks (e.g., Figure 5.1), they are certainly not exhaustive, as
the attacker can change the interface in many different ways, e.g., adding
different background images, replace logo with text. The goal of our work
is not to optimize the system for the detection of known attacks, but rather
to create a system that is able to detect also previously unseen spoofing
screens. The sample set could be extended in many ways, but a single user
study cannot cover all possible modifications.

5.4.2 Recruitment and Tasks
Participant recruitment. We recruited test participants by publishing sur-
vey jobs on the crowd sourcing platform. An example survey had a title
“Android Application Familiarity” and the description of the survey was “How
familiar are you with the Facebook Android application?”. We specified in
the survey description that the participant should be an active user of the
tested application, and we recruited 100 study participants for each sample,
accepted participants globally, and required the participants to be at least
18 years old. The study participants were allowed to evaluate multiple
samples from different datasets, but only one sample from each dataset.
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Unique study participants 2,910
Participants that completed multiple surveys 1,691
Screenshot samples 59
Total evaluations 5,900
Accepted evaluations after filtering 5,376
Average number of accepted evaluations per sample 91

Table 5.1: Statistics of the Facebook user study.

Age
18-29 55.12%
30-39 29%
40-49 11.82%
50-59 3.33%
60 or above 0.72%

Gender
Male 72.54%
Female 27.45%
Education
Primary school 2.06%
High school 34.57%
Bachelor 63.36%

Table 5.2: Demographics of the Facebook user study.

For example, a study participant could complete two surveys: one where
we evaluated color modification samples and another regarding logo crop,
but the same participant could not complete multiple surveys on color
modification. In total 2,910 unique participants evaluated 5,900 Facebook
samples. Our study statistics and participant demographics are listed in
Table 5.1 and Table 5.2.

Study tasks. Each survey included 12 to 16 questions. We asked pre-
liminary questions on participant demographics, tested application usage
frequency, and a control question with a known correct answer. We showed
the study participant a sample login screen screenshot and asked the par-
ticipant the following questions: “Is this screen (smart phone screenshot)
the Facebook login screen as you remember it?” and “If you would see this
screen, would you login with your real Facebook password?”. We provided
Yes and No reply alternatives on both questions. Using the percentage of Yes
answers, we compute as-remembered rate and login rate for each sample.
We also asked the participants to comment on their reason to log in or
retain from logging in. For the interested reader, we provide the full list of
questions in Appendix A.
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Through the chosen design of our user study, we purposefully primed
the participants to expect to see a login screen of the studied apps. We
simulate the setting in which the user wants to login, but is presented with
a login screen that is different than the user remembers.

5.4.3 Results
We discarded survey responses where the participants did not indicate
active usage of the Facebook app or gave an incorrect reply to the control
question. After filtering, we had 5,376 completed surveys and, on the
average, 91 user evaluations per screenshot sample.

Color modification. The color modification results are illustrated in Fig-
ure 5.6. We plot the observed login rate in green and the as-remembered
rate in blue for each evaluated sample. The red bars indicate bootstrapped
95% confidence intervals. We performed a chi-square test of independence
with a significance level of p = 0.05 to examine the relation between the
login responses and the sample color. The relation between these variables
was significant (χ2(16, N = 1551) = 194.44), p < 0.001) and the study
participants were less likely to log in to screens with high hue change.
When the hue change is maximal, approximately 40% of the participants in-
dicated that they would still log in. For several samples we noticed slightly
higher login rate compared to as-remembered rate. This may imply that
some users were willing to log in to an application, although it looked
different from their recollection. We investigated reasons for this behavior
from the survey questions and several participants replied that they noticed
the color change, but considered the application genuine nonetheless. One
participant commented: “Probably Facebook decided to change their color.”
However, our study was not designed to prove or reject such hypothesis.

General modifications. The general element modification results are
shown in Figure 5.7. Both element reordering (χ2(5, N = 546) = 15.84, p =
0.007) and scaling (χ2(9, N = 916) = 245.56, p < 0.001) had an effect
on the observed login rates. Samples with scaling 50% or less showed
login rates close to the original, but participants were less likely to login
to screens with high scaling. This could be due to users’ habituation of
seeing scaled user interfaces across different mobile device form factors
(e.g., smartphone user interfaces scaled for tablets). One participant com-
mented his reason to login: “looks the same, just a little small.” When the
elements were scaled more than 50%, the login rates decreased fast. At this
point the elements became unreadably small. Removal of extra elements
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(forgotten password or new account link) had no effect on the login rate
(χ2(1, N = 180) = 0.0, p = 1.0).

Logo modifications. The logo modification results are shown in Figure 5.8.
The relation between the login rate and the amount of crop was significant
(χ2(5, N = 540) = 83.75, p < 0.001). Interestingly, we noticed that the
lowest login rate was observed at 40% crop. This implies that the users
may find the login screen more trustworthy when the logo is fully missing
compared to seeing a partial logo.

The amount of noise in the logo had an effect on login rates (χ2(4, N =
460) = 75.30, p < 0.001), as users were less likely to log in to screens
with noise. Approximately half of the study participants answered that
they would login even if the logo was unreadable due to noise. This re-
sult may imply habituation to software errors and one of the participants
commented the noisy logo: “I would think it is a problem from my phone
resolution, not Facebook.” Participants were less likely to log in to screens
with a rotated logo (χ2(4, N = 462) = 57.25, p < 0.001) or a projected
logo (χ2(5, N = 542) = 102.45, p < 0.001).

Conclusions. The experimented eight visual modifications were perceived
differently. While some modifications caused a predominantly systematic
pattern (e.g., color), in others we did not notice a clear relation between
the amount of the modification and the observed login rate (e.g., crop).
One modification (extra element removal) caused no effect. We conclude
that the system should be trained with samples that capture various types
of visual modifications.

5.4.4 Follow-up Studies and Study Method
We performed similar studies for the Skype and Twitter apps. Skype results
were comparable to those of Facebook. Twitter app has a distributed
login screen and we noticed different patterns than in the previous two
studies. Additionally, we evaluated combinations of two and three visual
modifications. In total we collected 34,240 user evaluations from 5,438
unique study participants, and we used the cumulative collected data to
train our spoofing detection system.

We measured login rates by asking study participants questions in
contrast to observing participants under login operation. We chose this
approach to allow large-scale data collection for thousands of sample evalu-
ations. Participants in our study were allowed to evaluate multiple samples
from different datasets which may have influenced the results.
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Figure 5.9: Detection system overview. The system pre-processes legiti-
mate apps offline (e.g., at the marketplace) to obtain reference values, and
trains an estimator. On the user’s device, the system periodically extracts
screenshots and estimates their deception rate.

5.5 Spoofing Detection System
Through our user study we gained insight into what kind of visual modifi-
cations users notice, and more importantly, fail to notice. In this section
we design a spoofing detection system that leverages this knowledge. We
instantiate the system for Android, while many parts of the system are
applicable to other mobile platforms as well.

5.5.1 System Overview
Our system is designed to protect reference applications, i.e., legitimate apps
with login functionality. The goal of our system is to, given a screenshot,
estimate how many users would mistake it for one of the known reference
apps. The system (Figure 5.9) consists of two parts: a training and pre-
processing component that runs on the market and a runtime detection
system on users’ phones. On the market, each reference app’s login screen
is detected, pre-processed, and a deception rate estimator is trained using
the user perception data from our user study. The analyzed login screens
serve as the reference values for the on-device detection.

On the device, the system periodically extracts a screenshot of the
currently active app. We analyze screenshot extraction rates needed for
effective detection in Section 5.8. Each extracted screenshot is analyzed
using the estimator with respect to the reference values of the protected
apps. Both the trained estimator and the reference values are downloaded
from the market (e.g., upon installing an app). The system outputs a
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Figure 5.10: Detection system details. The system consist of four main
components: reference app analysis, screenshot analysis, estimator training
and deception rate estimation.

deception rate for each analyzed screenshot, with respect to each protected
app. The deception rates can be used to warn the market or the user.

The apps that should be protected (i.e., labeled as reference apps),
can be determined in multiple ways: the user can choose the apps that
require protection, the system can automatically select the most common
spoofing targets (e.g., Facebook, Skype, Twitter), or all installed apps with
login functionality. We focus on the approach where the protected apps
are chosen by the user. A complete view of the system is illustrated in
Figure 5.10, and we proceed by describing each system component.

5.5.2 Reference Application Analysis
Our system protects reference apps from spoofing. To analyze an extracted
screenshot with respect to a reference value, we first obtain the reference
app login screen and identify its main elements (reference elements) ac-
cording to our login screen model (Figure 5.4). We assume reference app
developers that have no incentive to obfuscate their login screen implemen-
tations. On the contrary, developers can be encouraged to mark the part of
the user interface (activity) that contains the login screen that should be
protected. The reference app analysis is a one-time operation performed,
e.g., at the marketplace on every app update, and its results distributed to
the mobile devices. To find the activity that represents the login screen, we
developed a tool that automatically explores a specified application and
stores any found login screens. From the login screens, the tool detects and
stores reference elements into a tree structure.
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5.5.3 Screenshot Analysis
The goal of the screenshot analysis is to, given the screenshot of the ex-
amined application, as well as the reference elements, produce suitable
features for deception rate estimation and estimator training. The screen-
shot analysis includes three operations: decomposition, element matching,
and feature extraction, as shown in Figure 5.10.

Decomposition. Mobile application UIs commonly exhibit a clean and
simple design, when compared to more complex ones, e.g., web sites. Such
design simplicity enables us to efficiently split the screenshot into con-
stituent elements, and we illustrate the steps in Figure 5.11. To identify
element borders we perform a set of image processing steps, including
edge-detection, dilation, closure and gradient.

Element matching. The next step is to match the detected elements to the
reference elements. To find the element that is the closest match to the
reference logo, we use the ORB feature extractor [155]. While SIFT extrac-
tors [115] have been successful in detecting logos in natural images [157],
we found SIFT to be ill-suited for mobile app logos, especially in cases where
only partial (cropped) logos were present. We compute ORB keypoints
over the reference logo as well as the whole examined screenshot and we
match the two sets. The element that matches with the most keypoints, and
exceeds a minimum point density threshold, is declared as the logo. For
the remaining elements, we perform template matching to every reference
element (username field, password field, login button), on different scaling
levels. Keypoint extraction is generally not effective, as the login screen
elements are typically simple, and have few keypoints. After these steps,
we have a mapping between the examined and reference elements.

Feature extraction. Once the elements are matched, we extract two com-
mon visual features (color and element scaling) and more detailed logo
features, as users showed sensitivity to logo changes. The extracted fea-
tures are relative, rather than absolute, as their values are computed with
respect to the reference elements or entire reference screen. We explain
our features below:

1. Hue. The difference between the average hue value of the examined
screenshot and the reference screen.

2. Element Scaling. The ratio of minimum-area bounding boxes between
all reference and examined elements, except the logo.
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3. Logo Rotation. The difference between the angles of minimum-area
bounding boxes of the examined and reference logos.

4. Logo Scaling. We perform template matching between the examined
and reference logos at different scales and express the feature as the
scale that produces the best match.

5. Logo Crop. We calculate the amount of logo crop as the ratio of logo
bounding box areas.

6. Logo Degradation. As precise extraction of logo noise and projection is
difficult, we approximate similar visual changes with a more generic
feature that we call logo degradation. Template matching algorithms
return the position and the minimum value of the employed similarity
metric and we use the minimum value as the feature.

We illustrate the element matching and feature extraction steps in
Figure 5.12. In cases where no logo was identified in the matching phase,
all logo features are set to null (except logo crop which is set to 100%).
Our analysis is designed to extract features from screenshots that follow
our login screen model. Many of these features (color change, scaling) are
seen known in spoofing apps (Android.Fakeneflic).

5.5.4 Training and Deception Rate Estimation
The detection system is trained once, using the available user perception
data from our user study, and subsequently used for all apps. We extract
features from every sample of the study and augment the resulting feature
vectors with the observed login rate. In feature extraction, as the reference
value we use the unmodified login screen of the app that the sample
represents. As deception rate (i.e., the percentage of users that would
confuse the examined screenshot with the reference app) is a continuous
variable, we estimate it using a regression model. Training can be performed
offline for each reference app separately.

Deception rate estimation is performed on the device at detection system
runtime. As shown in Figure 5.10, the extracted screenshot is first analyzed.
The decomposition phase of the analysis is performed once, and the rest
of the analysis steps are repeated for each reference app. The extracted
features are used to run the trained estimator. The result of the estimation
operation is a set of deception rates, one for each protected app. If any
of the deception rates exceeds a threshold value, one or more possible
spoofing apps have been found and their identities can be communicated
to the application marketplace or the user can be warned.
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5.5.5 Implementation
We implemented the reference application analysis tool as a modified An-
droid emulator environment. Similar analysis can be implemented by
instrumenting the reference application, but we modified the runtime
environment to support the analysis of native applications as well. We
implemented the remaining offline tools as various Python scripts using
the OpenCV [34] library for image processing and scikit-learn for estimator
training. The on-device detection system can be implemented in multiple
ways, including a modification to the Android runtime or as a standalone
application. For ease of deployment, we implemented the on-device com-
ponents as a regular Android (Java) app using OpenCV.

5.6 Evaluation
In this section, we evaluate the estimation accuracy and the runtime per-
formance of the detection system.

5.6.1 Accuracy Evaluation
Reference Application Analysis Accuracy. We evaluated the accuracy of
our reference app analysis tool (Section 5.5.2) on 1,270 apps, downloaded
from Google Play and other marketplaces. The tool reported 572 potential
login screens. Through manual verification, we found 230 login, 153 user
registration, and 77 password change screens. The remaining 120 screens
contained no login functionality, and those we classify as false positives.

We manually verified 50 random apps from the set of 698 apps our
tool reported as not having a potential login screen. We found 3 false
negatives due to an implementation bug that was since fixed. We conclude
that the tool can effectively find all login screens that require protection.
The tool provides an over approximation, but a small number or false posi-
tives does not hamper security, as they only introduce additional reference
values for similarity comparison. Moreover, developers have an incentive
to help the reference login screen detection and they can explicitly mark
which activity constitutes the login screen for even more accurate detection.

Decomposition Accuracy. To evaluate the accuracy of our screenshot
decomposition algorithm, we decomposed 230 login screen screenshots.
We manually verified the results and found that we detected all login screen
elements correctly on 175 screens. We found 29 screens that correctly
decomposed all but one element, and 9 screens with correct decompositions
for all but two elements. Our algorithm failed to decompose 18 screens.
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Figure 5.13: Decomposition examples. The login screen decomposition
algorithm works well in practice. We outline in red the borders of detected
elements, while the red diamond represent element centroids. Some login
screens (tumblr, last screenshot) are visually complex and are inherently
hard for our approach to analyze.

Certain types of login screens are challenging for our approach. For
example, the login screen of the Tumblr application contained a blurred nat-
ural image in the background, and our algorithm detected many erroneous
elements (see Figure 5.13). Our current implementation is optimized for
clean login screens, as those are the pre-dominant login screen types. The
majority (92%) of analyzed screenshots were visually simple and decom-
posed. We discuss noisy spoofing screens as a possible detection avoidance
technique in Section 5.8.

5.6.2 Estimation Accuracy
To evaluate the deception rate estimation accuracy, and to demonstrate
the feasibility of this approach, we trained our detection system using the
results of our user study (a deployed system would, of course, be trained
with more data). Our total training data consists of 316 user-evaluated
samples of visual modifications and each sample was evaluated either by
100 (single modification) or 50 (two and three modifications) unique users.
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Figure 5.14: Deception rate accuracy. Evaluation of five regression and
four baseline models (B1–B4) trained on the combined datasets of Facebook
and Skype. The random forest regressor performs the best.

We omitted training samples that express visual modifications that our
current implementation is unable to extract (e.g., noise).

We experimented with several regression models of different complexi-
ties and trained two linear models (Lasso and linear regression), a decision
tree, as well as two ensemble learning methods (gradient boosting, random
forests). To compare our detection accuracy to straightforward approaches,
we use four baseline models out of which the latter two utilize prior knowl-
edge obtained from our user study:

• B1 Linear. The deception rate drops linearly with the amount of visual
modification from 1 to 0.

• B2 Constant. The deception rate is always 0.75.
• B3 Linear. The deception rate drops linearly with the amount of visual

modification from 1 to 0.2. Login rates stayed predominantly above
20% in our study.

• B4 Random. The deception rate is a random number in the the most
observed range in our study (0.3–0.5).

To estimate the deception rate, we extract features from the analyzed
screenshot with respect to a reference app and we feed the feature vector
to the trained regressor. The estimator outputs a deception rate that can
be straightforwardly converted into a spoofing detection decision. We
performed two types of model validation: leave-one-out and 10-fold cross-
validation. We report the results in Figure 5.14 and we observe that the
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more complex models perform significantly better than our baseline models.
The best model was random forest, with a root mean square (RMS) error of
6% and 9% for the leave-one-out and 10-fold cross validations respectively
(95% of the estimated deception rates are expected to be within two RMS
errors from their true values). The low RMS values show that a system
trained on user perception data can accurately estimate deception rates for
mobile application spoofing attacks.

The detection system should estimate deception rate accurately even
for applications it did not encounter before. To evaluate the estimation
accuracy of attacks that target apps that were not present in the training
data, we trained a random forest regressor using Facebook samples, and
evaluated it on Skype samples, and vice-versa. We observed an RMS error of
13% in both cases. When samples from the spoofing target application are
not part of the training dataset, the estimation accuracy decreases slightly.
We conclude that our system is able to accurately estimate deception rate
in the tested scenarios, even if the target app is not part of the training
data. Our training set has limited size and with more extensive training
data we expect even better accuracy.

To evaluate false negatives of our system, we estimated the deception
rates of various screenshots that we extracted by crawling the user interfaces
of randomly chosen mobile apps, with regards to the Facebook reference
login screen. Due to the large difference between the login screens, as
expected, all screenshots reported very low deception rates. We do not
provide a ROC analysis, as it would require a significant dataset of spoofing
apps. At the moment such a dataset does not exist.

5.6.3 Performance Evaluation
We evaluated the performance of the on-device screenshot analysis and de-
ception rate estimation. For the offline (marketplace) components we only
evaluated accuracy, as those are fast and are not time-critical operations.
We measured the performance on three devices: an older smartphone
model (Samsung Galaxy S2) and two more recent devices (Nexus 5 and
Nexus 6). Averaged over 100 runs, a single reference app comparison takes
183± 28 ms (Nexus 5), 261± 26 ms (Nexus 6) and 407± 69 ms (Galaxy
S2). The process scales linearly with the number of protected apps: the
decomposition of the extracted screenshots is performed once, and the
remaining analysis steps are repeated for each reference value. Assuming
five protected apps, the complete analysis takes 667 ms (Nexus 5). We
argue that the number of apps requiring protection would be low, as the
majority of apps running on the phone are commonly not security-sensitive.
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Galaxy S2 Nexus 5 Nexus 6
Screenshot extraction 10± 3 ms 21± 13 ms 19± 7 ms
Decomposition 99± 19 ms 41± 10 ms 42± 8 ms
Element matching 147± 35 ms 54± 16 ms 106± 16 ms
Feature extraction 150± 34 ms 67± 12 ms 94± 13 ms
Estimator 0.5± 0.9 ms 0.1± 0.3 ms 0.4± 0.5 ms
Total 407± 69 ms 183± 28 ms 261± 26 ms

Table 5.3: Performance evaluation of our implementation.

The detection system extracts and analyzes screenshots only when an
untrusted (i.e., not whitelisted) app is active. For example, the platform
provider can whitelist popular apps from trusted developers (Facebook,
Twitter, Whatsapp). The detection system can also perform a less expensive
pre-filtering operation to determine, and only proceed with the full analysis,
if the examined screenshot vaguely resembles a login screen. We leave
development of such pre-filtering mechanisms as future work.

The on-device performance primarily depends on the size of the ana-
lyzed screenshot. Modern smartphones have high screen resolutions (e.g.,
1080× 1920) and analyzing such large images is expensive and does not
increase system accuracy. It is important to note that screenshot extraction
time depends only on the output screenshot resolution and not on the
physical screen resolution itself. For all our measurements we extracted
screenshots of size 320× 455 pixels as the resolution provides a good ratio
of element detection accuracy and runtime performance. Our initial exper-
iments show that the image resolution (and with it, execution time) can be
decreased even further, and determining the optimal resolution we leave
as future work.

5.7 Detection Probability Analysis
In this section, we explain how often screenshots can be extracted on the
device, given a pre-defined amount of allocated system resources. If a
spoofing attack takes place, we analyze the probability that at least one
screenshot of the spoofing application is captured. We also present a
collaborative detection model that enables significantly fewer screenshot
analysis operations per device.
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Figure 5.15: Analysis intuition. System parameters, user behavior assump-
tions, and a user-chosen number of protected apps define the screenshot
rate, the detection probability for a single spoofing attack, and the number
of devices required for effective collaborative detection.

5.7.1 Detection Probability on a Single Device
In Figure 5.15, we illustrate the intuition of our analysis. The system has
two controllable parameters: the share of the system resources s that are
allocated for spoofing detection and the number of reference apps na the
system protects. Together with device performance and the observed user
habits (the share of time spent on unknown apps u), these two parameters
define the screenshot rate r which in turn determines the detection proba-
bility for a single spoofing attempt ps, as well as the number of devices n
needed for efficient collaborative detection. In what follows, we introduce
the rest of the terms gradually and, for ease of reference, summarize our
terminology in Table 5.4.

In a typical deployment, the share of system resources allocated for
the detection system would be chosen by the platform provider. For our
analysis, we use s = 1%, as we assume that one percent overhead does
not hinder user experience nor overly drain the battery. The number of
protected applications is chosen by the user. We assume that in most cases
the user would choose to protect a small number of important services
(e.g., banking, e-mail, Facebook, Skype, Twitter) and use the value na = 5
for our analysis.

For analysis simplicity, we assume that the user spends a constant time
t l on the spoofed login screen. In a recent study [121], users spent 4 –
28 seconds on the login screen, so t l = 5 seconds is a safe assumption.
We also assume that the user spends a constant share u of her time on
unknown (non-whitelisted) apps. According to [49], smartphone users
spend 88% of their time on five of their favorite apps, so setting u= 0.25
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s Share of allocated system resources
System Presets td Decomposition time (device perf.)

ta Analysis time (device perf.)
Observed t l Time spent on login screen
User Habits u Share of time spent on unknown apps
User Chosen na Number of protected applications

r Screenshot rate
Detection ps Detection probability, single spoofing
Properties p Detection prob., collaborative system

n Number of devices with spoofing app

Table 5.4: Summary of analysis terminology.

is a safe assumption. The detection system can monitor the runtime usage
of unknown apps and adjust a user-specific u accordingly.

For device performance, we use the values from our implementation
evaluation on Nexus 5, where the analysis time of a single screenshot
is approximately 180 ms. The screenshot extraction and decomposition
time td is approximately 60 ms, while the remaining screenshot analysis
time ta that needs to be repeated for each reference app is approximately
120 ms. Using such device performance, system parameters and analysis
assumptions, we compute the screenshot rate r as follows:

r =
u
s
(td + na ta)≈ 16.5 s

That is, given 1% of allocated system resources, a screenshot can be ana-
lyzed on average once per 16.5 seconds when an unknown app is active.

The detection probability for a single spoofed login screen ps is the
probability that, when a spoofed login screen is shown to the user for
t l = 5 seconds, the detection system captures, and analyzes, at least one
screenshot during that time. To avoid simple detection evasion where
the malware never shows spoofed screens at pre-determined screenshot
extraction times, we assume that screenshots are taken at random points
in time, according to the chosen screenshot rate. Given the randomized
screenshot extraction model, we model ps as a random number from the
Poisson distribution P(x;µ), where x is the number of successes in a given
time period (zero successes means that no screenshots are taken in the
time period) an µ is the mean of successes in the same time period. The
number of screenshots taken on the average can be calculated as t l/r (e.g.,
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5/16.5 in our example scenario). The detection probability ps becomes:

ps = 1− P(0,
t l

r
)≈ 0.26

We observe that the probability of detecting a single spoofed login operation
is low. Moreover, the adversary does not have an incentive to repeat a
successful attack on the same device. Once the user’s login credentials have
been stolen, the malicious app can, e.g., remove itself. For these reasons we
focus on a more effective collaborative deployment model that leverages
the many eyes principle.

5.7.2 Collaborative Detection
An instance of the detection system can be running on a large number of
devices (e.g., all devices from the same platform provider), where each
device takes screenshots at random points in time, according to the chosen
screenshot rate. When one of the devices finds a potential spoofing login
screen, the identity of the application is reported to the platform provider
(or the app marketplace) which can examine the application and remove
it from all of the devices, if confirmed malicious. For analysis simplicity,
we assume that all participating devices have similar performance and use
the same, previously chosen system parameters, but deployments where
devices are configured differently are, of course, possible. The detection
probability p of the collaborative system, i.e., the probability that at least
one device will detect the spoofing attack, is defined as:

p = 1− (1− ps)
n

where n is the number of devices infected with the spoofing app. Assuming
our example parameters, to reach detection probability p = 0.99, we need
the malicious application to be installed and active on only 16 devices:

n= dlog1−ps
(1− p)e= 16

Spoofing apps that infected thousands of devices have been reported [69],
so we consider this a very low number for common wide-spread attacks that
target globally used apps, such as Facebook, Skype or Google. Figure 5.16
illustrates the detection probability p as a function of infected devices n,
and we observe that detection is practical even with few infected devices.

The goal of the collaborative detection system is to keep a constant, high
detection probability at all times. This can be achieved with fewer devices
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Figure 5.16: The detection probability p as a function of infected devices n.
We consider allocated system resources s = {0.5, 1, 2}% and assume na = 5.
Detection is practical even with very low number of infected devices.

sampling more often or more devices sampling less often. For example,
the screenshot rate can be controlled based on the popularity (global
install count) of the currently running, unknown app. The marketplace
can send periodic updates on the popularity of each application installed
on the device. If an app is present on many devices (e.g., 50 or more),
the detection system can safely reduce the screenshot rate to save system
resources without sacrificing detection probability. If an application is
installed in only a small number of devices (e.g., less than 10), the system
can increase the screenshot rate for better detection probability. Such
adjustments can be done so that, in total, no more than the pre-allocated
amount of system resources are spent for spoofing detection.

Our analysis has shown that collaborative detection provides an efficient
way to detect spoofing attacks in the majority of practical spoofing scenarios.

5.8 Analysis
Collaborative detection. Extracting screenshots frequently and analyzing
each of them can be expensive. However, if multiple devices take part in
detection, we can reduce the overhead on every device without sacrificing
detection probability. This can be achieved with fewer devices sampling
more often or more devices sampling less often. For example, the screenshot
rate can be controlled based on the popularity of the currently running,
unknown app. If an app is present on many devices (e.g., 50 or more),
the detection system can safely reduce the screenshot rate to save system
resources without sacrificing detection probability. If an application is
installed in only a small number of devices (e.g., less than 10), the system
can increase the screenshot rate for better detection probability. Such
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adjustments can be done so that, in total, no more than the pre-allocated
amount of system resources are spent for spoofing detection.

We show that collaborative detection provides an efficient way to de-
tect spoofing attacks in the majority of practical spoofing scenarios. For
example, only 10 devices, each dedicating 1% of computation overhead,
are needed to detect phishing attacks with a probability upwards of 95%.

Detection avoidance. The adversary can try to avoid runtime detection by
leveraging the human perception property of averaging images that change
frequently (e.g., quickly and repeatedly alternate between showing the
first and second halves of the spoofing screen). The user would perceive
the complete login screen, but any acquired screenshot would cover only
half of the spoofing screen. Such attacks can be addressed by extracting
screenshots frequently and averaging them out, prior to analysis.

While the adversary has an incentive to create spoofing screens that
resemble the original login screen, the adversary is not limited to these
modifications. To test how well our system is able to estimate deception
rate for previously unseen visual modifications and spoofing samples that
differ from the login screen model, further tests are needed. This limitation
is analogous to the previously proposed similarity detection schemes that
compare website to known phishing samples – the training data cannot
cover all phishing sites.

Our current implementation has difficulties in decomposing screenshots
with background noise, and consequently the adversary could try to avoid
detection by constructing noisy spoofing screens. Developers could be
encouraged to create clean login screen layouts for improved spoofing
protection. While we did not experiment with noisy backgrounds, our
study shows that the more the adversary deviates from the legitimate
screen, the less likely the attack is to succeeded.

The goal of this work was to demonstrate a new spoofing detection
approach, and we recommend that a deployed system be trained with more
samples including (a) more visual modifications and (b) more apps.

False positives. Many mobile apps use single sign-on functionality from
popular services, such as Facebook. An unknown application with a legiti-
mate single sign-on screen matching to one of the reference values would be
flagged by our detection system. Flagged applications should be manually
verified and in such cases found benign.
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5.9 Related Work
Spoofing detection systems. Static code analysis can be effective in de-
tecting spoofing apps that leverage known attack vectors, such as ones
that query running tasks and after that create a new activity [31]. Our
approach is more agnostic to the attack implementation technique, but
has a narrower focus: protection of login screens. We consider our work
complementary to code analysis.

Many web phishing detection systems analyze a website DOM tree and
compare its elements and structure to the reference site [12,111,154,205,
208]. We assume an adversary that constructs spoofing apps in arbitrary
ways (e.g., per pixel), and thus complicates structural code analysis.

Another approach is to consider the visual presentation of a spoof-
ing application (or a website), and compare its similarity to a reference
value [43, 72, 125]. Previous schemes typically derive a similarity score
for a website and compare it to known malicious sites, while our metric
determines how many users would confuse the application for another one.

Spoofing detection by users. Similar to web browsers, the mobile OS can
be enhanced with security indicators. The OS can show the name of the
running app in a dedicated part of the screen [31,64,162]. Such schemes
require that parts of the mobile device screen are made unavailable to
applications or need hardware changes to the device. A mobile app can
also allow the user to configure a personalized security indicator (e.g., a
personal image) that is shown by the app during each login [121].

Several studies, in the context of web sites, show that users tend to
ignore the absence of security indicators [56, 160, 192]. A recent study
shows that personalized security indicators can be more effective on mobile
apps [121]. We are the first to study how likely the users are to notice
spoofing attacks, where the malicious application resembles, but is not a
perfect copy of, the legitimate application.

5.10 Conclusion
In this chapter, we have proposed a novel mobile app spoofing detection
system that in collaborative fashion extracts screenshots periodically and
analyzes their visual similarity with respect to protected login screens. We
expressed similarity in terms of a new metric called deception rate that
represents the fraction of users that would confuse the examined screen
for one of the protected login screens. We conducted an extensive online
user study and trained our detection system using its results. Our system
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estimates deception rate with good accuracy (6% to 13% error) and low
overhead (only 1%), and our system tells how likely the user is to fall for a
potential attack. We consider this a powerful and interesting security prop-
erty that no previous schemes provide. In addition to supporting a spoofing
detection system, the results of our user study, on their own, provide in-
sight into the perception and attentiveness of users during the login process.

System limitations. The main drawback of this approach is that the system
runs on the user’s device and performing complex visual similarity compar-
ison is challenging, due to device constraints. We address this limitation in
the following chapter.
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Chapter 6

Cloud-based Spoofing
Detection

6.1 Introduction
In the previous chapter, we proposed an on-device spoofing detection
approach based on visual similarity. However, such an approach is reactive
and can be considered as a last line of defense as malware is already
installed on user devices. In this chapter, we propose a proactive approach,
that detects malware before it reaches user devices.

Mobile application visual impersonation is the case where one appli-
cation intentionally misrepresents itself in the eyes of the user. Such ap-
plications impersonate either the whole, or only a small part of the user
interface (Figure 6.1). The most prominent example of whole UI imperson-
ation is application repackaging; the process of republishing an app to the
marketplace under a different author. It’s a common occurrence [213] for
an attacker to take a paid app and republish it to the marketplace for less
than it’s original price. In such cases, the repackaged application is stealing
sales revenue from the original developers.

In the context of mobile malware, the attacker’s goal is to distribute a
malicious application to a wide user audience while minimizing the invested
effort. Repackaging a popular app, and appending malicious code to it, has
become a common malware deployment technique. Recent work [214]
showed that 86% of analyzed malware samples were repackaged versions
of legitimate apps. As users trust the familiar look and feel of their favorite
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Figure 6.1: Taxonomy of mobile app visual impersonation. Existing works
primarily focused on detecting repackaging. Our goal is to detect all types
of impersonation.

apps, such a strategy tricks the users into believing that they are installing,
and interacting with, a known app.

Application fingerprinting [21, 65, 79, 81, 86, 204, 207, 212, 215] is a
common approach to detect repackaging. All such works compare fin-
gerprints extracted from some feature of the application, such as their
code or runtime behaviour. However, an adversary that has an incentive
to avoid detection can easily modify all such features without affecting
the appearance of the app, as seen by the user. For example, an attacker
can obfuscate the app by adding dummy instructions to the application
code. Code comparison approaches would fail because the new fingerprint
would be significantly different, and we demonstrate that such detection
avoidance is both effective and simple to implement.

Instead of impersonating the whole UI, malicious apps can also imper-
sonate only a small part of the UI by, e.g., creating a fake login screen in
order to phish login credentials. Phishing apps that target mobile bank-
ing have become a recurring threat, with serious incidents already re-
ported [173, 176]. Prior works on repackaging detection and common
malware detection [21,75,147,184,198] are ill-suited for detecting such
phishing cases as the malicious apps share little resources with the original,
they don’t exhibit specific system call patterns, nor do they require any
special permissions — they only draw to the device screen.

Due to these inherent limitations of previous detection techniques, we
propose a conceptually different approach. Our goal is to design an imper-
sonation detection system that is resistant to common detection evasion
techniques (e.g., obfuscation) and that can be configured to efficiently
detect different types of impersonation; from repackaging (whole UI) to
phishing (partial UI). We observe that, for visual impersonation to succeed,
and irrespective of possible modifications introduced to the app, the ad-
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versary must keep the runtime appearance of the impersonation app close to
the original. Our work in Chapter 5 showed that the more the visual ap-
pearance of a mobile app is changed, the more likely the user is to become
alarmed. We propose a detection system that leverages this unavoidable
property of impersonation.

Our system complements the one from Chapter 5 as well as existing
fingerprint-based approaches, it runs on the marketplace and can analyze
large amounts of Android apps using dynamic analysis and visual com-
parison, prior to their deployment onto the market. Our system runs the
app inside an emulator for a specified time (e.g., 20 min), dynamically
explores the mobile app user interface and extracts screenshots using GUI
crawling techniques. If two apps have more than a threshold amount of
screenshots in common (either exact or near matches), the apps are labeled
as an instance of impersonation. In contrast to previous works, we do not
base our detection on some easily modified feature of the app’s resources,
but rather on the final visual result of executing any app — the screenshot
presented to the user. As a result, our system is robust towards introduced
perturbations to either application resources, or to the way the UI is created
— as long as the application looks the same at runtime, our system will detect
the impersonation. No existing similar detection schemes offer this property.

To realize a system that is able to analyze a large number of apps, we
had to overcome technical challenges. The existing GUI crawling tools [13,
130,138] require application-specific knowledge or manual user input, and
are therefore not applicable to automated, large-scale analysis. To address
those challenges, we developed novel GUI crawling techniques that force
the analyzed app to draw its user interface. Our system requires no user
input, no application-specific knowledge, it supports the analysis of native
applications, and thus enables automated analysis of apps at the scale
of modern application marketplaces. Our system uses locality-sensitive
hashing (LSH) [53] for efficient screenshots retrieval.

To evaluate our system, we dynamically analyzed over 150,000 appli-
cations downloaded from Google Play and other mobile app markets. Our
system extracted approximately 4.3 million screenshots and found over
40,000 cases of impersonation; predominantly repacks (whole UI) but also
apps that impersonate only a single registration screen (partial UI). These
experiments demonstrate that impersonation detection through dynamic
user interface extraction is effective and practical, even in the scale of large
mobile application marketplaces.
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6.2 Background on Android UIs
In this section we provide a concise primer on Android application user
interfaces. Android apps with graphical user interfaces are implemented
using activity components. A typical app has multiple activities, one for
every separate functionality. For example, a messaging app could have
activities for reading a message, writing a message, and browsing received
messages. Each activity provides a window to which the app can draw its
user interface, that usually fills the entire device screen, but it may also be
smaller and float on top of other windows. The Android system maintains
the activities of recently active apps in a stack. The window surface from
the top activity is shown to the user or if the window of the top activity
does not cover the entire screen, the user sees also the window beneath
it. The user interface within a window is constructed using views, where
each view is either a visible user interface element (e.g., a button or an
image) or a set of subviews. The views are organized in a tree hierarchy
that defines the layout of the user interface.

The recommended way to define user interface layouts in Android is
using XML resource files, but Android apps can also construct view hier-
archies (UI element trees) programmatically. Furthermore, Android apps
can construct their user interfaces using OpenGL surfaces and WebViews.
The OpenGL user interfaces are primarily used by games, while WebView
is popular with many cross-platform apps. Inside a WebView, the user
interface is constructed using common HTML. All of the methods stated
above can be implemented in Java, as well as native code.

Every Android application contains a manifest file that defines the
application’s activities. One activity is defined as the application entry point,
but the execution of the application can be started from other activities as
well. When an activity is started, the Android framework automatically
renders (inflates) the layout files associated with the activity.

6.3 Motivation and Case Study
Whole UI impersonation. The first type of impersonation we consider is
whole UI impersonation (Figure 6.1). Since a typical repackaged app shares
majority of its code and runtime behaviour with the original application,
fingerprinting can be an effective way to detect such impersonation. Known
techniques leverage static application features, such as code structure [65],
imported packages [215] and dynamic features [21, 75, 147, 184, 198],
such as system call [108] or network traffic patterns [163]. Using fin-
gerprinting, large number of repacks have been detected from several
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Figure 6.2: Obfuscation example. We developed a small obfuscation tool
that modifies the activity transition graphs of an app without affecting
user experience. The obfuscation introduces additional proxy activities
that mediate UI screen transitions. In the original app, the user transitions
(e.g., by clicking a button) A1 → A5. Afterwards, the transition becomes
A1→ P → A5. The transition occurs so fast that the user does not notice it.

Android application marketplaces [41]. The inherent limitation of finger-
printing approaches is that the adversary can easily modify the above listed
(or any similar) features without affecting the runtime appearance of the
application towards the user. In this section we demonstrate that such mod-
ifications are both easy to implement and effective in avoiding detection.

Case study. We present a case study on MassVet [41], a recent static
analysis system that has demonstrated good results in detecting repackaging.
MassVet extracts two types of static fingerprints from a mobile application:
m-cores define application code flow graph and sequence of instructions
and v-cores express UI state transitions from one activity to another. The
rationale behind these fingerprints is that repackaged apps typically share
majority of their functionality, as well as user interface structure.

We built a simple obfuscation tool (less than 200 lines of code) that
modifies both extracted features (m-cores and v-cores). Our tool adds
blocks of unused code, as well as proxy activities that modify activity tran-
sitions. Our modifications have no visible effect on the user experience
(see Figure 6.2). To evaluate the tool, we took 1259 apps from the Android
Malware Genome project [1]. We ran those apps through the MassVet
tool online interface1 and 559 applications were identified as potentially
malicious repackaged apps. We obfuscated all of these apps using our tool
and rerun them on the MassVet system — 92% of the obfuscated apps
were no longer detected. We argue that similar limitations apply to any

1http://www.appomicsec.com/
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fingerprinting solution and adoption of obfuscation introduces little to no
cost to repackaging adversaries, as it merely implies running an automated
tool. We demonstrated only one possible approach, and such obfuscation
tools can be implemented for all prior fingerprinting approaches (both
static and dynamic), in a similar manner and level of complexity.

Partial UI impersonation. The second type of visual impersonation are
apps that only impersonate a small portion of the UI. Application phishing
is an example of impersonation, where a malicious application constructs a
single screen that visually resembles one of a another app, but otherwise
shares no similarities (e.g., no shared code or resources) with the original
app. For example, a malicious game asks the user to perform an in-app pur-
chase, but instead of starting the legitimate banking app, the game presents
a phishing screen that mimics the login screen of the bank. Distinguishing
the phishing screen from the genuine login screen is difficult for the user, as
modern mobile platforms do not enable the user to identify the application
currently drawing on the screen.

Fingerprinting is not effective against such impersonation apps, as the
malicious app does not share large parts of resources (e.g., code). Further-
more, traditional mobile malware detection schemes that, e.g., examine API
call patterns [31] and permissions [27] are also ill-suited for the detection
of phishing. Such applications differ from regular malware as they often
require no special permissions, nor necessarily perform suspicious actions.
They only perform a single operation — drawing on the device screen.

Adversarial model. We consider a strong attacker that can implement
impersonation in various ways. The attacker can create the UI by, e.g.,
using standard OS libraries, implement it in a custom manner, or show static
images of the interface. On Android, the attacker could implement the app
in Java, native code, or as a web app. For a more thorough introduction of
the various ways of creating user interfaces in Android, we refer the reader
to Section 6.2. On top of that, the adversary can modify the application code
or resource files in arbitrary ways (e.g., obfuscation). Such an adversary is
both realistic and practical. The attacker can freely create the impersonated
screens by any means allowed by the underlying Android system. Running
an (off-the-shelf or custom) obfuscation tool comes at little to no cost to
the adversary.
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Figure 6.3: An overview of the impersonation detection system that works
in two phase. First, we extract user interfaces from a large number of appli-
cations. Then we analyze the extracted screenshots to detect repackaging
and impersonation.

6.4 Visual Impersonation Detection System
As demonstrated in the previous section, the adversary has significant
implementation freedom in performing an impersonation attack and, at the
same time, the adversary has a clear incentive to keep the visual appearance
of the app close to the original. Our work in Chapter 5 has shown that the
more the adversary deviates from the appearance of the original mobile
application user interfaces, the more likely the user is to become alarmed.
We say that the adversary has limited visual freedom and our solution
leverages this property.

Our goal is to develop a robust visual impersonation detection mech-
anism that is based on visual similarity — a feature the attacker cannot
modify without affecting the success of the attack. More precisely, the
system should: (i) detect both whole (e.g., repackaging) and partial UI
impersonation (e.g., phishing), (ii) be robust towards the used imperson-
ation implementation type and applied detection avoidance method (e.g.,
obfuscation), (iii) analyze large numbers of apps in an automated manner
(e.g., on the scale of modern app stores).

Figure 6.3 shows an overview of our system that works in two main
phases. In the first phase, the system extracts user interfaces from a large
number of mobile apps in a distributed and fully autonomous manner.
The system takes as input only the application binary, and requires no
application-specific knowledge or manual user input. We run each analyzed
app in an emulated Android environment, and explore its user interface
through crawling. An attacker could develop a malicious app that detects
emulated environments. However our system can be executed on real
hardware as well (Section 6.8). In a best-effort manner, we extract as
many screenshot as possible within a specified time limit. Full exploration
coverage is difficult to achieve [24,181], and as our results in Section 6.5
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show, not necessary for effective impersonation detection. During crawling,
our system also automatically identifies reference screens (e.g., ones with
login and registration functionality) that benefit from our protection.

In the second phase, the system examines the extracted screenshots to
find cases of impersonation. To detect whole UI impersonation, our system
finds applications that share the majority of their screenshots with a queried
app. To detect partial UI impersonation, our system finds applications that
share a similar (e.g., login or user registration) screen with the reference
app, but have otherwise different screenshots.

Our system can be deployed on the marketplace and used to detect
impersonation, e.g., upon submitting the application to the market. We
emphasize that our system can be combined with existing approaches to
enhance impersonation detection. For example, only applications that
are considered as benign by a fast fingerprint-based approach could be
submitted to our, more costly analysis.

6.4.1 Design Challenges
To realize the system outlined above, we must overcome a number of
technical challenges. First, the existing GUI crawling approaches were
designed for development and testing, and a common assumption is that
the test designers have access to application-specific knowledge, such as
source code, software specifications or valid login credentials. Login screens
are a prominent example of how crucial application-specific knowledge
is in GUI exploration, as such tools need to know a valid username and
password to explore beyond the login screens of apps. Another example
are games where, in order to reach a certain GUI state, the game needs to
be won. In such cases, the exploration tool needs to be instructed how to
win the game. Previous crawling tools address these issues of reachability
limitations using application-specific exploration rules [24,199] and pre-
defined crawling actions [201]. As our system is designed to analyze a
large number of mobile apps, similar strategies that require app-specific
configuration are not possible. In Section 6.4.2 we describe a mobile app
crawler that works fully autonomously, and in Section 6.4.3 we describe
new user interface exploration techniques that increase its coverage.

Second, dynamic code analysis is significantly slower than static finger-
printing. In Section 6.4.2 we describe a distributed analysis architecture
that enables us to analyze applications in a fully scalable manner. And third,
many repackaged apps and known phishing malware samples [176] contain
minor visual differences to their target apps. Our system must efficiently
find screenshots that are exact or near matches, from a large set of screen-
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shots. In Section 6.4.4 we describe a system that uses locality-sensitive
hashing [53] for efficient screenshot analysis.

6.4.2 Automated Crawling
We designed and implemented a UI crawler as part of the Android core
running inside an emulator (Figure 6.3). The crawler uses the following
basic strategy. For each new activity, and every time the view hierarchy
(tree of UI elements) of the current activity changes, our crawler takes a
screenshot. The crawler continues exploration in a depth-first manner [24],
as long as there are clickable elements (views) in the user interface. To
support autonomous user interface exploration, our crawler must determine
which views are clickable without prior knowledge. We implemented the
crawler as a part of the Android core, which gives it full access to the state
of the analyzed app, and we examine the current state (i.e., traverse the
view tree) to identify clickable elements. We observed that in many apps,
activities alter their view hierarchy shortly after their creation. For example,
an activity might offload a lengthy initialization process to a background
thread, show a temporary UI layout first, and the final one later. To capture
such changes, our crawler waits a short time period after every transition.

To increase the robustness of crawling, we made an additional modifi-
cation to the Android core. If the crawled application creates an Intent that
triggers another app to start, we immediately terminate it, and resume the
execution of the analyzed app. In practice this approach turned out to be
an efficient way to continue automated user interface exploration.

Reference screen identification. To enable partial UI impersonation de-
tection, our system automatically identifies screens that benefit from im-
personation protection. We have tailored our implementation to identify
screens that contain login or registration functionality. While crawling an
app, we traverse the view hierarchy tree of each screen and consider the
screen a possible login or user registration screen, when the hierarchy con-
tains at least one password field, one editable text field, and one clickable
element or meets other heuristics, such as the name of the activity contain
word “login” or “register”. If such a screen is found, we save it as a reference
screen for partial UI impersonation detection (Section 6.4.4). Reference
screen identification is intended for benign apps that have no incentive
to hide their UI structure, but we repeat the process for all crawled apps,
since we do not know which apps are benign.
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Distributed architecture. We built a distributed analysis architecture that
leverages cloud platforms for analysis of multiple apps. Our architecture
consists of a centralized server and an arbitrary number of analysis instances.
The server has a database of apps, orchestrates the distributed analysis
process, and collects the extracted user interfaces. Each analysis instance
is a virtual machine that contains our dynamic analysis tools.

6.4.3 Coverage Improvements
In this section we describe techniques we implemented to increase the
coverage of our user interface exploration.

Out-of-order execution. The crawler starts from the entry-point activity
defined in the manifest file. For some apps only a small part of the user
interface is reachable from the entry point without prior application-specific
knowledge (e.g., a login screen requires valid credentials to proceed). To
improve our crawling coverage, we additionally force the application to
start all its activities out of order. This is a best-effort approach, as starting
the execution from an arbitrary activity may crash the app without correct
Intent or application state.

Layout file inflation. We implemented a tool that automatically renders
(inflates) mobile app user interfaces based on XML layout files and web
resources. As many apps customize the XML layouts in code, the final
visual appearance cannot be extracted from the resource file alone. We
perform resource file inflation from the context of the analyzed app which
ensures that any possible customization will be applied to UI elements
defined in the resource file. We implemented a dedicated enforcer activity
and force each app to load it at startup. This activity iterates through the
app’s layout files, renders them one by one and takes a screenshot. We
noticed that increasingly many mobile apps build their user interface using
web technologies (e.g., HTML5). To improve the coverage of such apps,
we perform similar inflation for all web resources. Our enforcer activity
loads all local web resources of the application one by one.

Layout file inflation is conceptually different from, e.g., extracting fin-
gerprints from resources. The attacker can modify layout files without
affecting our analysis, as we take a screenshot of the final rendered layout.

User interface decomposition. Our crawling approach relies on the as-
sumption that we can determine all clickable UI elements by analyzing
the view hierarchy of the current activity. While this assumption holds for
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many apps, there are cases where clickable elements cannot be identified
from the view tree, and therefore our crawler cannot proceed. For instance,
mobile apps that implement their user interfaces in OpenGL (mostly games)
and malicious apps that intentionally attempt to hide parts of their user
interface from crawling.

We integrated a user interface decomposition outlined in Chapter 5 to
our crawler to improve its coverage and attack resistance. Our experiments
(Section 6.5) show that by using this extension we are able to crawl a
number of apps whose UIs we would not be able to crawl otherwise.

6.4.4 Screenshot Analysis
Our initial experiments showed that many screenshots extracted from
repackaged apps have minor visual differences in them. Some of the
observed differences are caused by the application (e.g., different version,
language or color scheme) while others are artifacts of our exploration
approach (e.g., a blinking cursor visible in one screenshot but not in the
other). Also the phishing screens seen in known malware samples contain
minor visual differences to their target apps [176].

Our system handles visual differences in the extracted screenshots using
perceptual hashing. The goal of a perceptual hash is to provide a compact
representation of an image that maintains its main visual characteristics.
In contrast to a cryptographic hash function, a small modification in the
image produces a hash value that is close to the hash of the original image.
Perceptual hashing algorithms reduce the size and the color range of an
image, average color values and reduce their frequency. The perceptual
hash algorithm we use [35] produces 256-bit hashes and the visual similar-
ity of two images can be calculated as the Hamming distance between two
hashes. To enable analysis of large number of screenshots, we leverage
locality-sensitive hashing [53] (LSH). LSH algorithms are used to perform
fast approximate nearest neighbour queries on large amounts of data.

Using these two techniques (perceptual hashing and LSH), we built
a screenshot analysis system (Figure 6.4). The system consists of three
operations: (1) indexing, as well as detection for both (2) whole and (3)
partial UI impersonation attacks.

Indexing. In the indexing phase, a perceptual hash is created for each
extracted screenshot and all hashes are fed to our LSH implementation.
We use bit sampling for reducing the dimensionality of input items, as our
perceptual hashing algorithm is based on the Hamming distance. We set
the LSH parameters through manual experimentation (Section 6.5). To
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Figure 6.4: Screenshot analysis system for impersonation detection. All
extracted screenshots are indexed to a database using locality-sensitive
hashing (LSH). To find impersonation applications from a large dataset, we
first find nearest neighbor screenshots using the LSH database, and then
perform an more expensive pairwise comparison.

reduce false positives, we manually created a list of screenshots belonging
to shared libraries (e.g., ad or game frameworks), and we removed all such
screenshots from the database.

Whole UI impersonation detection. To detect impersonation, we use the
intuitive metric of containment (C), i.e., how many screenshots of one
app are included in the screenshot set of another app. To find whole UI
impersonation apps, our system takes as input a queried app, and finds all
apps whose user interface has high similarity to it. We note that, while our
system is able to detect application pairs with high user interface similarity,
it cannot automatically determine which of the apps in the relationship (if
any) is the original one.

Our system analyzes one app at a time, and the first step in whole UI
impersonation detection is to obtain the set of all screenshots (Q) of the
current queried app. For every screenshot, we hash it and query the indexed
LSH database. For each query, LSH returns a set of nearest neighbour
screenshot hashes, their app identifiers and distances to the queried hash.
For returning the nearest neighbours, we use the cutoff hamming distance
d = 10, as explained in Section 6.5.
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We sort this dataset based on the application identifiers to construct
a list of candidate applications, where Pi is the set of their screenshots.
For each candidate app we find the best screenshot match to the queried
app. As a result, we get a set of matching screenshots for each candidate
app. We consider the candidate app as a potential impersonation app when
(1) the ratio (containment C) between the number of matched app and
reference app screenshots is larger than a threshold Tw, and (2) the number
of considered screenshots meets a minimum threshold Ts. Without loss of
generality, we assume |Pi | ≤ |Q|.

C =
|Pi ∩Q|
|Pi |

≥ Tw (6.1)

|Pi | ≥ Ts (6.2)

In Section 6.5 we describe the experiments we used to set these thresh-
olds (Tw, Ts). To find all potential repacks from a large dataset of applica-
tions, the same procedure is repeated for each application.

Partial UI impersonation detection. For partial UI impersonation, we no
longer require a significant visual similarity between the two apps (target
and malware). Only specific screens, such as login or registration screens,
must be visually similar to perform a convincing impersonation attack
of this kind. To scan our dataset for such applications, we adjusted the
search criteria accordingly. Given our set of potential reference screens
(Section 6.4.2) extracted during our dynamic analysis phase, we target
applications that contain the same or a very similar screen but otherwise do
not share a significant visual similarity in other aspects of the application.
We only consider applications to be of interest if their containment with
the queried application is less than a threshold (C ≤ Tp), as long as the
app contains the queried login or registration screen.

6.5 Evaluation
In this section we evaluate the detection system. For evaluation we down-
loaded 158,449 apps from Google Play and other Android application
repositories (see Table 6.1). From Google Play we downloaded approxi-
mately 250 most popular apps per category. Our rationale was that popular
apps would be likely impersonation targets. We also included several
third-party markets, as repacks are often distributed via such stores [41].
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Marketplace apps
play.google.com (US) 14,323
coolapk.com (CN) 5666
m.163.com (CN) 24,069
1mobile.com (CN) 24,173
mumayi.com (CN) 29,990
anzhi.com (CN) 36,202
slideme.org (US) 19,730
android.d.cn (CN) 4635
Total 158,449

Table 6.1: Application dataset. The list of downloaded and analyzed
applications (per application market).

6.5.1 User Interface Extraction
Analysis time. We deployed our system on the Google Cloud Compute
platform. The analysis time of a single application varies significantly,
as apps have user interfaces of different size and complexity. While the
majority of apps have less than 20 activities, few large apps have up to 100
activities. Furthermore, some applications (e.g., games) may dynamically
create a large number of new user interface states and in such cases the
dynamic user interface exploration is an open ended process. To address
such cases, in our tests we set the maximum analysis time to generous 45
minutes. On the average, the analysis of one mobile app took only 7 minutes
and we plot the distribution of analysis time in Figure 6.5. Extracting
screenshots is the most time-consuming part of our system. Once the
screenshots are extracted, querying LSH and deciding if any impersonation
exists is fast (few seconds per app).

At the peak of our analysis we used 1000 computing instances on the
Google Cloud Compute platform and the entire analysis of over 150,000
apps took 36 hours. At the same rate and similar computing platform,
the entire Google Play market (1.6 million apps) could be analyzed in
approximately two weeks. We consider this a feasible one-time invest-
ment and the overall analysis time could be further reduced by limiting
the maximum analysis time further (e.g., to 20 minutes as discussed below).

Analysis coverage. From the successfully analyzed 139,656 apps we ex-
tracted over 4.3 million screenshots after filtering out duplicates from
the same application and low-entropy screenshots, e.g., single-color back-
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Figure 6.5: The distribution of anal-
ysis time.

Figure 6.6: Average number of
screenshots extracted from an app,
as a function of time.

grounds that are not useful in impersonation detection. The majority of
applications produced less than 50 screenshots, but we were able to extract
up to 150 screenshots from some apps. Figure 6.6 plots the percentage of
extracted screenshots as a function of analysis time. We extract approxi-
mately 75% of all the screenshots during the first 20 minutes of analysis.
The steeper curve during the first 7 minutes of the analysis is due to the
fact that we run the inflater tool first and after that we start our crawler.
The crawler tool extracted 58% of the screenshots and the inflater con-
tributed additional 42%. Majority (97%) of the extracted screenshots come
from user interfaces implemented using standard Android user interface
elements and a small share originates from user interfaces implemented
using web techniques or as an OpenGL surface. Figure 6.10 summarizes
the user interface extraction results.

We use activity coverage as a metric to compare the coverage of our
crawler to previous solutions. Activity coverage is defined as the number
of explored activities with respect to the total number of activities in an
app [24]. While activity coverage does not account for all possible user
interface implementation options, it gives a good indication of the extraction
coverage when analyzing large number of apps. Our tool achieves 65%
activity coverage, and is comparable to previous solutions (e.g., 59% in
[24]). However, previous crawling tools that achieve similar coverage
require application-specific configuration or manual interaction.

We separately tested our user interface decomposition extension on
200 apps (mostly games) that implement their UI using OpenGL surface.
Without the decomposition extension, our crawler was only able to extract
a single screenshot from each of the tested apps (the entry activity). With
decomposition, we were able to extract several screenshots (e.g., 20) from
30% of the tested apps. This experiment demonstrates that there is a class
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Figure 6.7: Manual evaluation of
hamming distances of screenshot
hashes.

Figure 6.8: Manual evaluation of
false positives and false negatives.

Figure 6.9: False positive and
false negative rates. Equal-error
rate is at cont. 45%.

Number of successfully analyzed apps 139,656
Number of extracted screenshots 4,302,413
Extracted by the crawler 57.89%
Extracted by the inflater 42.11%
Originated from widget-based UI 96.95%
Originated from a HTML asset 2.17%
Originated from an OpenGL surface 0.88%

Figure 6.10: User interface ex-
traction results.

of mobile apps whose user interfaces can be crawled with better coverage
using decomposition.

6.5.2 Screenshot Comparison
Perceptual hash design. We investigated two different perceptial hash-
ing techniques, based on image moments [177] and DCT [35] (pHash).
Preliminary analysis of the results from both hashing techniques revealed
that the image moments based approach is not suitable for the hashing
and comparing of user interface screenshots, as both very similar as well as
very dissimilar pairs of screenshots resulted in almost equivalent distances.
The pHash [202] based approach yielded promising results with a good
correlation between visual similarity of user interface screenshots and the
hamming distance between their respective hashes. Screenshots of user
interfaces are quite different from typical natural images: clearly defined
boundaries from UI elements, few color gradients, and a significant amount
of text. To account for these characteristics and improve the performance
of the hashing algorithm, we performed additional transformations (e.g.,
dilation) to the target images as well as the final hash computation.
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To find a good cutoff hamming distance threshold below which we
consider images to be visually similar, we randomly selected pairs of im-
ages and computed their distance until we had 100 pairs of screenshots
for the first 40 distances. We then manually investigated each distance
bucket and counted the number of screenshot pairs we considered to be
visually similar. The result are shown in Figure 6.7, and we concluded that
a distance d = 10 is a reasonable threshold.

Containment threshold. Similar to the distance threshold evaluation, we
randomly selected pairs of apps from our dataset and computed their con-
tainments, creating 10 buckets for possible containment values between
[0, 100] percent, until we had 100 unique pairs of apps for all containment
values. We then manually examined those apps and counted the number
of application pairs which we consider to be whole UI impersonations, as
shown in Figure 6.8. The false negative and false positive rates are shown
in Figure 6.9, yielding Tw = 0.45 containment to be a reasonable threshold
for whole UI impersonation detection, above which applications within a
pair are considered impersonation cases of each other. To verify that our
manually derived false negatives rates were representative, we performed
an additional check outlined below. To detect partial UI impersonation,
in our experiments, we found that setting the containment threshold to
Tp = 0.10 gave good results.

Containment threshold verification. To further verify our manual con-
tainment threshold evaluation, we created a large ground truth of appli-
cation pairs known to be trivial repacks of each other. We define a trivial
repacks as any pair of applications where both applications have at least
90% identical resource files as well as a code similarity (computed using
Androguard) of 90% or higher. For such pairs, we can be confident that the
apps are indeed repacks. Over the course of several days, we compiled a
list of 200,000 pairs to serve as a ground truth of known repacks. We then
ran our system against every pair in this list, querying either app of the pair.
If the system did not find the corresponding app, or if their containment is
below the threshold value of 45%, we consider this a false negative. We re-
peated this exercise for different threshold values and compared the results
to the expected false negative rates, confirming that the pairs considered
in our manual verification are indeed representative for our large data-set.
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6.6 Detection Results
To demonstrate that our system is able to catch impersonation attacks, we
analyzed each application in our dataset and we report the following results.

Whole UI impersonation. Using perceptual hash distance d = 10 and con-
tainment threshold Tw = 0.45, our system detected 43,904 impersonating
apps out of 137,506 successfully analyzed apps. Such a high number of im-
personation instances is due to the fact that a large part of our apps are from
third-party markets. From the set of detected apps, our system does not
automatically detect which apps are originals and which are impersonators.

At Tw = 0.45 our system has an estimated 15% false negatives. We
remind the reader that these false negatives refer to missed application pairs,
and not missed repacks. To illustrate, let us consider a simple example
where our system is deployed on a market, and 3 apps are submitted (the
original Facebook app, and 2 apps that impersonate it). The first app will
be added and no impersonation can be detected. On the second app, our
system has a 15% to miss the relation between the queried app and the
one already in the store. However, the third app has approximately only
0.152 = 0.02 chance of missing both relations and not being identified as
impersonation with regards to the other two apps in the store. During our
experiments, we found instances of clusters containing up to 200 apps, all
repackaging the same original app.

Similarly, at Tw = 0.45 our system has also 15% false positives, which
is arguably high. However, due to the fact that apps are repacked over and
over again, on a deployed system we can set the containment threshold
to be higher (e.g., Tw = 0.60). At that value, our system has only 3%
false positives, and 31% false negatives. However, if the app is repacked
a modest number of 5 times, the chances of missing all impersonation
relationships becomes less than half a percent 0.315 = 0.002.

In the above examples, we assumed that the analysis of each app is an
independent event. In reality, this may not be the case. For example, if one
impersonation app is missed, a closely related impersonation app may be
missed with higher probability (i.e., the events are not independent). How-
ever, the more apps impersonate an original app, the higher the chances of
our system catching it.

Partial UI impersonation. Using the metric described in Section 6.4.4,
and Tp = 0.10, we found approximately 1,000 application pairs that satisfy
the query. We randomly selected and manually inspected 100 pairs of apps
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to understand their relationships. In most cases, we found repackaged apps
with a large number of additional advertising libraries attached.

Among these results, we also found an interesting case of a highly
suspicious impersonation application. In this sample, the impersonation
target is a dating app. The registration screen of the impersonation app
appears visually identical to original. However, manually inspecting the
code reveals that a new payment URL has been added to the application,
no longer pointing to the dating website, but instead to a different IP. We
uploaded the sample to virustotal.com to confirm our suspicions, and the
majority of scanners indicated maliciousness. The code similarity between
the original and impersonating apps (according to Androguard) is only
22%, largely due to added advertising libraries.

Our similarity metric allows us to find specialized kinds of impersonation
attacks that deviate from the more primitive repackaging cases. Interesting
user interfaces with certain characteristics (e.g. login behaviour) can be
queried from a large data-set of analysed applications to find various kinds
of impersonation, drastically reducing the necessary manual verification
done by humans.

6.7 Security Analysis
Detection avoidance. Our user interface extraction system executes ap-
plications in an emulator environment. A repackaging adversary could
try to fingerprint the execution environment and alter the behavior of the
application accordingly (e.g., terminate execution if it detects emulator).
The obvious countermeasure is to perform the user interface exploration
on real devices. While the analysis of large number of apps would require
a pool of many devices (potentially hard to organize), user interface explo-
ration would be faster on real devices [136] compared to an emulator. Our
user interface extraction system could be easily ported from the emulator
environment to real Android devices.

A phishing adversary could construct the phishing screen in a way
that complicates its extraction. To avoid the inflater, the adversary can
implement the phishing screens without any resource files. To complicate
extraction by crawling, the adversary could try to hide the phishing screen
behind an OpenGL surface that is hard to decompose and therefore ex-
plore or make the appearance of the phishing screen conditional to an
external event or state that does not necessarily manifest itself during the
application analysis. Many such detection avoidance techniques reduce the
likelihood that the phishing screen is actually seen by the user (a necessary
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precondition of any phishing attack). While our solution does not make
impersonation impossible, it raises the bar for attack implementation and
reduces the chances that users fall for the attack.

6.8 Discussion
Improvements. Our crawler could be extended to create randomized
events and common touch screen gestures (e.g., swipes) for improved
coverage. Our current out-of-order execution could be improved as well.
Currently, startup of many activities fails due to missing arguments or
incompatible application state. One could try to infer these from the appli-
cation code through static analysis. Static code analysis could be also used
to identify sections of application code that perform any drawing on the
screen and the application could be attempted to force the execution of
this code segment, e.g., leveraging symbolic execution. We consider such
out-of-order execution a challenging problem.

Deployment. The primary deployment model we consider is one where a
marketplace, mobile platform provider, anti-virus vendor or a similar entity
wants to examine a large number of mobile apps to detect impersonation
in the Android ecosystem. As shown in Section 6.5, the analysis of large
number of apps requires significant resources, but is feasible for the types
of entities we consider. Once the initial, one-time investment is done, de-
tection for new applications is inexpensive. User interface extraction for
a single application takes on the average 7 minutes and finding matching
repacks or phishing apps can be done in the matter of seconds. As a com-
parison, the Google Bouncer system dynamically analyzes each uploaded
app for approximately 5 minutes [141]. Our system streams screenshots to
the central analysis server as they are extracted. The system can therefore
stop further analysis if a decision can be made.

Post-detection actions. Once an application has been identified as a poten-
tial impersonation app, it should be examined further. Ad revenue stealing
repacks could be confirmed by comparing the advertisements libraries
and their configurations in two apps with matching user interfaces; sales
revenue stealing repacks could be confirmed by comparing the publisher
identities; repacks with malicious payload could be detected using analysis
of API calls [20], comparison of code differences [41], known malware
fingerprints or manual analysis; and phishing apps could be confirmed
by examining the network address where passwords are sent. Many post-
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detection actions could be automated, but implementation of these tools is
out of scope for this work.

6.9 Related Work
Repackaging detection. The previous work on repackaging detection is
mostly based on static fingerprinting. EagleDroid [175] extracts fingerprints
from Android application layout files. ViewDroid [204] and MassVet [41]
statically analyze the UI code to extract a graph that expresses the user in-
terface state and transitions. The rationale behind these works is that while
application’s code can be easily obfuscated, the user interface structure
must remain largely unaffected. We have showed that detection based on
static fingerprinting can be easily avoided (Section 6.3) and our solution
provides a more robust means of repackaging detection, at the cost of
increased analysis time.

Phishing detection. The existing application phishing detection systems
attempt to identify API call sequences that enable specific phishing attacks
vectors (e.g., activation from the background when the target application
is started [31]). While such schemes can be efficient to detect certain,
known attacks, other attacks require no specific API calls. Our solution ap-
plies to many types of phishing attacks, also ones that leverages previously
undiscovered attack vectors.

User interface exploration. The previous work on mobile application user
interface exploration focuses on maximizing GUI coverage and providing
means to reason about the sequence of actions required to reach a certain ap-
plication state for testing purposes [13,24,101,199]. These approaches re-
quire instrumentation of the analysis environment with application-specific
knowledge, customized companion applications, or even source code mod-
ifications to the target application. Our crawler works autonomously and
achieves similar (or better) coverage.

6.10 Conclusion
In this chapter, we have proposed and demonstrated a novel approach for
mobile app impersonation detection. Our system extracts user interfaces
from mobile apps and finds applications with similar user interfaces. Using
the system we found thousands of impersonation apps. In contrast to pre-
vious fingerprinting systems, our approach provides improved resistance
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to detection avoidance, such as obfuscation, as the detection relies on the
final visual appearance of the examined application, as seen by the user.
Another benefit of the system is that it can be fine-tuned for specialized
cases, like the detection of phishing apps. Finally, the novel user interface
exploration techniques that we have developed as part of this chapter, may
have numerous other applications besides impersonation detection.

System limitations. The main drawback of our approach is the significantly
increased analysis time, when compared to static analysis. However, our
experiments show that such dynamic impersonation detection at the scale
of large application stores is practical.
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Chapter 7

Closing Remarks

In this final chapter, we summarize our findings, state lessons learned, as
well as opinions on both the problem of user interface security, and possible
future directions for the field.

7.1 Summary
We began this thesis by motivating the problem of user interface security.
We summarized related work in Chapter 2, and pointed out their benefits
as well as drawbacks. We showed that there is room for improving the
state-of-the-art both in terms of known user interface attacks, as well as
countermeasures.

In the first part of the thesis, we demonstrated two novel attacks that
overcome the limitations of prior work. In Chapter 3, we demonstrated an
input inference attack for Android smartphones that enables precise and
continuous inference of user clicks, and that can be implemented without
any special permissions. We achieved that goal by utilizing a previously
unknown side-channel based on hover technology. Through our attack, we
illustrated how the introduction of new input methods can have unexpected
and far-reaching consequences on the security of the overall system. In
Chapter 4, we proposed a new class of accurate and stealthy command
injection attacks. We showed how our attack approach can infer system
state by only observing the constant stream of user input, and can launch
precise and damaging UI attacks. Through a proof-of-concept attack device,
we demonstrated how such attacks can operate on low-end hardware,
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and are realistic threats to a wide range of devices (from regular desktop
systems, to dedicated terminals).

In the second part of the thesis we focused on preventing a widespread
and efficient user interface attack; namely mobile application phishing. Con-
trary to prior works, we approached the problem by using visual similarity,
as perceived by the user. In Chapter 5, we proposed an on-device spoofing
detection system that acquires and compares screenshots at runtime. We
performed user studies and we gained insight into how users perceive
visual modifications in login screens. We have shown that our approach
is more resilient to obfuscation attacks, as the more the attacker changes
the visual presentation of the phishing attack, the more the attacker risks
users detecting it. In Chapter 6, we explored our visual similarity approach
further. We proposed a system tailored for detecting spoofing attacks at
large scales (e.g., at the level of a whole marketplace). We implemented
the system, and demonstrated that it can both efficiently and accurately
detect spoofing attacks in a scalable manner.

7.1.1 Future Work
In this thesis, we considered widespread attack scenarios where an adver-
sary could either (1) run a malicious application on the system, or could
(2) through physical access exchange existing or introduce new peripherals
to the system. Others considered the problem when the OS is compromised
(e.g., trusted paths). However, alternative types of user interface attacks
are also possible.

Clark and Blumenthal [45] wrote an insightful paper on what the con-
cept of end-to-end security means on modern computer systems. Although
their work was written in the context of computer networks, their reasoning
also applies to the field of user interface security. The authors describe their
“ultimate insult”, namely the observation that if a user does not trust their
own end-point (e.g., their own device), then having a secure end-to-end
channel between their local end-point and a another remote end-point
(e.g., server) is rendered meaningless.

If as end-points we consider not the devices themselves, but the input
and output peripherals through which the user is interacting with the
system, we can interpret the observation in the following way. If the users
do not trust their input and output peripherals then, irrespective of the
applied protection mechanisms, user interface attacks are possible.

To illustrate the idea, consider the following setting. The user interacts
with a computer system that enforces secure boot and enables only signed
and manually vetted applications to run. Therefore, the system prevents any
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kind of malware from running on the device (unless the attacker acquires
the signing key). Furthermore, the system enforces the use of trusted
input and output peripherals that, e.g., share keys with the system and
can therefore ensure that user input is both authenticated and confidential
while in transit, which would prevent command injection or man-in-the-
middle attacks. We can then ask the following question: “Is such a system
secure against user interface attacks?”.

The attacker can still perform various physical attacks. For example,
the attacker could violate the confidentiality of input and output through
shoulder-surfing. The attacker could also physically apply a thin layer over
the peripherals (e.g., similar to a skimming device) and thereby compromise
both confidentiality and integrity. We can conclude that the adversary can
also perform attacks against the channel between the user and the periph-
erals, and that user interface attacks are therefore possible as long as the
user interacts with peripherals in an environment the attacker can influence.

Securing the user-to-peripheral channel. A possible approach to reduce
the impact of such attacks is to enable the user constant control over the
peripherals. For example, if users carry their own optical head-mounted
displays such as Google Glass [8] or future direct neural user interfaces, it
is significantly harder for the attacker to compromise such devices than,
e.g., devices the user leaves unattended for extended periods of time (e.g.,
input peripherals). However, securing the channel between the user and
the peripherals remains an open problem.

Preventing adaptive attacks. In Chapter 4, we presented a new kind of
physical attack where the malicious hardware device injects commands
through the legitimate input channel that the user would normally use. Pre-
venting such class of attacks is an open question, and possible approaches
could include biometric solutions (e.g., fingerprinting the typing pattern, or
other forms of biometry) that would enable the target system to distinguish
if input comes from the legitimate user.

Modeling human perception. The overarching idea in the second part of
this thesis (Chapter 5 and Chapter 6) was that users are bad at detecting
security indicators, and are overall susceptible to phishing attacks, and
that spoofing detection systems should therefore be automated instead of
relying on the user’s attention. To that end, we proposed two automated
systems that detect mobile application spoofing attacks. Both of our sys-
tems are based on visual similarity, and knowledge extracted (modeled)
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from users. However, our user studies were but an initial step towards
that direction, as the better we model user perception, the higher quality
inferences about detecting UI attacks we can make. A possible future work
is to explore other kinds of visual modifications that we did not consider
in this thesis (e.g., horizontally or vertically displacing UI elements), and
include those in the model as well.

Assisting automated approaches. We observed that some security-critical
user interfaces (e.g., login screens) are visually much more complex than
others. For example, some login screens featured background natural
images, while others did not. For a spoofing detection system based on
visual similarity, visual complexity is an obstacle, and the simpler the login
screen design, the better our approaches would work in detecting attacks.

User interfaces have strict requirements. They have to be intuitive,
and easy to use, which often requires giving UI designers full freedom to
explore and innovate. Currently, UI designers have no visual constrains
when it comes to designing login screens. However, by imposing moderate
restrictions on how designers can create such security-critical UIs (e.g.,
only a certain number of elements, positioned at pre-determined positions,
etc.), automated approaches such as ours could be made more accurate.
However, proposing such a set of restrictions is a challenge on its own,
i.e., how to create it so that designer as well as end user experience are
minimally impacted, yet that it enables automated approaches based on
visual similarity to protect the user in a more accurate manner. Although
countermeasures of this thesis were focused on Android, such approaches
could potentially be applied to other platforms as well.

7.2 Final Remarks
In this thesis, we described why the security of user interfaces is a funda-
mental component for the overall security of the system. Guided by the
observation that users are bad at protecting themselves (e.g., in noticing
security indicators), we have proposed automated countermeasures based
on visual similarity as well as modeling user perception. We have shown
that the mix offers unique benefits (e.g., obfuscation resilience), but our
proposed techniques are not limited to detecting spoofing attacks, and
could potentially be employed to detect other classes of UI attacks as well.
Before our countermeasures, the attacker was incentivized to create pixel-
perfect spoofing copies, and such attacks are often impossible to detect for
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users. We have therefore forced the attacker to visually deviate from the
perfect copies, or otherwise risk detection.

Due to the many different possible attack vectors, fully preventing user
interface attacks is a challenging task. However, we can significantly raise
the bar for the attacker, and this thesis is a step in that direction.
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Appendices

A User Study Questions
In Chapter 5, we presented the user study we performed on how users
perceive visual modifications. For the interested reader, below we list all
the questions we used in our user study.

Q1: “What is your gender?”

• “Male”, “Female”

Q2: “How old are you?”

• 18-29, 30-39, 40-49, 50-59, Above 60

Q3: “What is your current education level?”

• “Primary school”, “High School”, “Bachelor”

Q4: “Do you actively use an Android device?”

• “Yes”, “No”

Q5: “Do you use the Android Facebook application?”

• “Yes”, “No, I don’t use Facebook on Android”

Q6: “When was the last time you had to enter your password into the Android
Facebook login screen?”

• “Less than one week ago”
• “Less than one month ago”
• “More than one month ago”
• “I don’t use Facebook on Android”
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Q7: “What is the Facebook application good for?”

• “Driving a car”
• “Brushing your teeth”
• “Petting a cat”
• “Keeping in touch with friends and family”

Q8: “Is this screen (smart phone screenshot) the Facebook login screen as you
remember it?”

• “Yes”, “No”

Q9: “How similar is this screen to the Facebook login screen you remember?”

• with reply alternatives from 1: “Completely different” to 5: “Exactly
the same”

Q10: “If you would see this screen, how comfortable would you feel logging
in?”

• with reply alternatives from 1: “Very uncomfortable” to 5: “Very
comfortable”

Q11: “If you would see this screen, would you login with your real Facebook
password?”

• “Yes”, “No”

Q12: “In one short sentence, describe your reason for the previous answer”

• with text input.

Additional questions for the Twitter application that has a distributed login
screen.

A1: “Is this screen (smart phone screenshot) the Twitter initial screen as you
remember it?”

• “Yes”, “No”

A2: “How similar is this screen to the Twitter initial screen you remember?”

• with reply alternatives from 1: “Completely different” to 5: “Exactly
the same”
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A3: “If you would see this screen, how comfortable would you feel clicking
’Log in’?”

• with reply alternatives from 1: “Very uncomfortable” to 5: “Very
comfortable.”

A4: “If you would see this screen, would you click ’Log in’?”

• “Yes”, “No”
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