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Abstract

The basic principles of electronic spectroscopy of atoms and molecules in the gas phase are presented.

In the first part, the elementary concepts necessary to describe the electronic structure of atoms,

diatomic molecules and polyatomic molecules are introduced in a systematic manner, with an effort to

classify the different interactions (electrostatic, spin-orbit, hyperfine) and types of motions (electronic,

vibrational, rotational) which determine the energy level structures. In the second part, electronic

transitions are discussed, with their spin-rovibrational structures. Examples ranging from the simple

band stucture of Σ+
u ← Σ+

g electronic transitions of homonuclear diatomic molecules to the highly

complex band structure of polyatomic molecules subject to strong vibronic interactions are used to

illustrate the richness of electronic spectra.
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1 Introduction

Electronic spectroscopy aims at studying the structure and dynamics of atoms and molecules by

observing transitions between different electronic states induced by electromagnetic radiation.

The notion of an electronic state of a molecule follows from the Born-Oppenheimer approximation,

which enables one to separate the Schrödinger equation into an equation describing the motion of the

electrons at fixed configurations of the much heavier nuclei, and an equation describing the motion

of the nuclei on the 3N − 6- (3N − 5-) dimensional adiabatic electronic potential energy surface of a

nonlinear (linear) molecule consisting of N atoms. This separation and the very different timescales of

the different types of motion in a molecule lead to the approximate description of stationary states as

products of electronic ϕe(~qi), vibrational ϕ
(e)
v ( ~Qα), rotational ϕ

(ev)
r (θ, φ, χ) and nuclear spin φ

(evr)
ns (mα)

wave functions

Ψ = ϕe(~qi)ϕ
(e)
v ( ~Q)ϕ(ev)

r (θ, φ, χ)φ(evr)
ns (mα), (1)

and sums of electronic Ee, vibrational Ev, rotational Er, and hyperfine Ens energies

E = Ee + Ev + Er + Ens. (2)

In Equation (1), ~qi represents the coordinates of the electrons including spin, ~Q stands for the 3N −
6(5) normal coordinates used to describe the vibrations of the nuclear framework, (θ, φ, χ) are the

Euler angles specifying the relative orientation of the space-fixed and molecule-fixed axis systems,

and mα describes the spin state of the nuclei. The spectrum of an electronic transition α′ ← α′′

between a lower electronic state α′′ and an upper electronic state α′ of a molecule never consists of

a single line, but usually of a very large number of lines corresponding to all possible vibrational

(v′i), rotational (J ′, K ′a, K
′
c) and hyperfine levels of the upper electronic state accessible from all

populated vibrational (v′′i ), rotational (J ′′, K ′′a , K
′′
c ) and hyperfine levels of the lower electronic state.

An electronic spectrum thus consists of a system of vibrational bands, each of which possesses a

rotational fine structure. Neglecting the hyperfine structure, the transition wave numbers can be

expressed as differences of rovibronic term values

ν̃ = T ′e +G′(v′1, v
′
2, . . .) + F ′(J ′, K ′a, K

′
c)− T ′′e −G′′(v′′1 , v′′2 , . . .)− F ′′(J ′′, K ′′a , K ′′c ) (3)

where T ′′e and T ′e represent the electronic term values (i.e., the positions of the minima of the Born-

Oppenheimer potential surfaces of the corresponding electronic states), G′′ and G′ the vibrational

term values discussed in detail in chapter hrs003 (Quack and coworkers 2010), and F ′′ and F ′ the

rotational term values discussed in detail in chapter hrs002 (Bauder 2010). An electronic spectrum

offers the possibility of obtaining information not only on the electronic structure of a molecule, but

also on the vibrational, rotational and hyperfine structures of the relevant electronic states. The

purely electronic origin of the transition is at ν̃e = T ′e−T ′′e , and each band of the system has its origin

at ν̃e +G′−G′′, so that the origin of the band system is at ν̃00 = ν̃e +G′(0, 0, . . . , 0)−G′′(0, 0, . . . , 0).
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The hierarchy of motion upon which Equations (1) and (2) rely implies that the energetic separation

between electronic states is much larger than that between vibrational and rotational levels of a given

electronic state. Consequently, the populations in the electronically excited states are negligible at

room temperature, and electronic transitions, particularly those from the ground electronic state,

are usually observed at shorter wavelengths than vibrational and pure rotational transitions, i.e., in

the visible or the ultraviolet regions of the electromagnetic spectrum. The rovibrational levels of

electronically excited states are usually located at energies where the density of rovibronic states is

very large, or even above one or more dissociation and ionization limits, in which case they form

resonances in the dissociation and/or ionization continua.

Interactions with neighboring electronic states and radiationless decay processes such as autoion-

ization, predissociation, internal conversion and intersystem crossings are unavoidable and represent

a breakdown of Equations (1) and (2). These interactions can cause perturbations of the spectral

structures and can limit the lifetimes of the upper levels of the transitions leading to a broadening of

the spectral lines and to diffuse spectra. The complex structure of electronic spectra and the frequent

breakdown of the Born-Oppenheimer approximation in electronically excited states render electronic

spectra more difficult to interpret than vibrational and pure rotational spectra. Their information

content, however, may be larger, particularly when the spectral structures are sharp.

Despite the frequent breakdown of the Born-Oppenheimer approximation, the way electronically

excited states and electronic transitions are labeled rely on the approximate description provided by

Equations (1) and (2), particularly for small molecules: Vibrational and rotational levels are labeled

as explained in Chapters hrs003 (Quack and coworkers 2010) and hrs002 (Bauder 2010), respectively;

the electronic states are labeled with a letter, representing the ”name” of the state, followed by a

symmetry label or term symbol which can be derived either from the spectra themselves or from the

symmetry of the occupied molecular orbitals, if these are known.

The eigenstates of a molecule with an associated Hamiltonian Ĥ remain invariant under the sym-

metry operations Si of the point group. The operators Ŝi corresponding to the symmetry operations

Si therefore commute with Ĥ ([Ĥ, Ŝi] = 0). Consequently, the eigenfunctions Ψn of Ĥ can be chosen

such that they are also eigenfunctions of Ŝi and can be designated with the eigenvalues of the opera-

tors Ŝi. These eigenvalues correspond to the characters of one of the irreducible representations of the

point group. The eigenfunctions Ψn of Ĥ thus transform as one of the irreducible representations of

the corresponding symmetry group, and the irreducible representations are used to label the electronic

states.

The ground electronic state is labeled by the letter X for diatomic molecules and X̃ for polyatomic

molecules. Electronically excited states are designated in order of increasing energy by the letters A,

B, C, . . . (Ã, B̃, C̃, . . . for polyatomic molecules) if they have the same total electron spin quantum

number S as the ground electronic state, or by the letters a, b, c . . . (ã, b̃, c̃, . . . for polyatomic

molecules) if they have a different spin multiplicity. The “˜” in the designation of electronic states



HRS004 Fundamentals of electronic spectroscopy 3

of polyatomic molecules is introduced to avoid confusion with the letters A and B that are used

as group-theoretical labels. This labeling scheme occasionally poses problems, for instance when an

electronic state thought to be the first excited state when it was first observed turns out later to be

the second or third, or when several local minima of the same potential energy surface exist and lead

to distinct band systems in an electronic spectrum, or because of initial misassignments. Whereas

misassignments of symmetry labels are usually corrected, incorrect A, B, . . . labels sometimes survive,

especially when they have been accepted as names.

As the molecules become larger and/or less symmetric, this nomenclature tends to be replaced by

a simpler one which uses a letter (S for singlet (S = 0), D for doublet (S = 1/2), T for triplet (S = 1),

. . .) to indicate the electron spin multiplicity, and a subscript i = 0, 1, 2, . . . to indicate the energetic

ordering, 0 being reserved for the ground electronic state. For example, the lowest three electronic

states of benzene are sometimes designated as X̃ 1A1g, ã 3B1u and Ã 1B2u using D6h-point-group

symmetry labels, or as S0, T1, and S1 using the second, simpler labeling scheme.

The different electronic states of a molecule can have Born-Oppenheimer potential energy surfaces

of very different shapes and which reflect different binding mechanisms. Figure 1, which displays

only a small subset of the adiabatic potential energy functions of molecular hydrogen illustrates this

diversity and the complexity of the electronic structure of this seemingly simple molecule. In selected

regions of internuclear distances, the states can be classified as

• valence states, i.e., states in which the valence electrons occupy molecular orbitals with significant

amplitudes at the positions of more than one atom. Valence states can be entirely repulsive if

the valence electrons occupy predominantly antibonding molecular orbitals, or attractive if they

occupy predominantly bonding orbitals, in which case rigid molecular structures usually result.

• Rydberg states, i.e., states in which one of the valence electron has been excited to a diffuse

orbital around a positively charged molecular ion core, resembling an excited orbital of the

hydrogen atom. In such a state, the excited electron, called the Rydberg electron, is bound to

the molecular ion core by the attractive Coulomb potential and can be labeled by a principal

quantum number n. At sufficiently high values of n, the Rydberg electron is located, on average,

at large distances from the ion core and only interacts weakly with it. The Born-Oppenheimer

potential energy functions (or hypersurface in the case of polyatomic molecules) of Rydberg

states thus closely resemble that of the electronic state of the molecular ion core to which the

Rydberg electron is attached. Rydberg states form infinite series of states with almost identical

potential energy functions (or hypersurfaces), and can also be labeled by the orbital angular

momentum quantum number ` of the Rydberg electron. Rydberg states of H2 can easily be

identified in Figure 1 as the states with potential energy functions parallel to that of the X 2Σ+
g

ground state of H+
2 .

• ion-pair states, i.e., states in which the molecule can be described as composed of two atoms
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Figure 1: Potential energy functions of selected electronic states of H2, H+
2 and H−2 . Adapted from

Sharp (1971).

A+ and B− (or two groups of atoms) of opposite charge that are held together by a Coulomb

potential. The potential energy of these states is proportional to −1/R (R is the distance

between the atoms of opposite charge) and dissociate at large distances into a cation (A+) and

an anion (B−). At short internuclear distances, the potential energy function falls rapidly and

starts overlapping with valence states with which they interact strongly, giving rise to charge

transfer processes and electronic states with multiple potential wells. Ion-pair states are not

only encountered in molecules such as NaCl, but also in homonuclear diatomic molecules, an

example being the potential function in Figure 1 which coincides with the outer wall of the

potential functions of the E,F 1Σ+
g and B 1Σ+

u states.

• states in which the atoms (or group of atoms) are held together by weak van der Waals inter-

actions which give rise to shallow potential wells at large internuclear distances. The ground
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electronic states of the rare gas dimers are prototypes of such states.

As all classifications, the classification of electronic states and binding mechanisms as valence,

ion-pair, Rydberg and van der Waals represents a simplification based on idealized limiting situations.

Because of configuration interactions, an electronic state that can be described as a valence state at

short internuclear distances may evolve into a Rydberg state or an ion-pair state at larger distances,

or even display shallow van der Waals potential wells.

The complexity of the electronic structure of even the simplest molecular systems illustrated by

Figure 1 is reflected by the complexity of electronic spectra. Not only does each molecule represent

a special case with its particular symmetry properties, number and arrangement of atoms, and mag-

netic and electric properties, but the large number and the diversity of electronic states of any given

molecule, the interactions between these states, and the possibility of interactions with dissociation

and ionization continua also contribute to make an exhaustive treatment of electronic spectroscopy

impossible. In this chapter, we seek to present, at an introductory level, the general principles that

form the basis of electronic spectroscopy, and emphasize common aspects of the electronic structure

and spectra of atoms and molecules, particularly concerning the use of group theory and the classifi-

cation of interactions. These aspects are best introduced using atoms, diatomic molecules and small

polyatomic molecules.

More advanced material is presented in other chapters of this handbook: The determination of

potential energy surfaces and rovibronic energy levels of polyatomic molecules by ab initio quantum

chemical methods is the object of chapters hrs006 (Yamaguchi and Schäfer 2010), hrs007 (Tew et al.

2010), hrs009 (Breidung and Thiel 2010), hrs010 (Mastalerz and Reiher 2010), hrs013 (Marquardt

and Quack 2010), hrs018 (Carrington 2010), and hrs019 (Tennyson 2010). The calculation of the

spectral and dynamical properties of Rydberg states by ab initio quantum theory is reviewed in hrs015

(Jungen 2010b) and by multichannel quantum defect theory in hrs024 (Jungen 2010a). Experimental

and theoretical investigations of the photodissociation of electronically excited states are presented

in hrs092 (Ashfold et al. 2010) and hrs093 (Schinke 2010), respectively. The valence and inner-shell

photoionization dynamics of molecules, including studies of autoionization processes in electronically

excited states, are reviewed in hrs065 (Pratt 2010b) and hrs066 (Miron and Morin 2010), respectively.

The use of electronic spectroscopy to study specific classes of molecular systems and electronic states

is illustrated by hrs053 (Guennoun and Maier 2010), hrs056 (Schmitt and Meerts 2010), hrs054 (Pratt

2010a), hrs064 (Callegari and Ernst 2010), and hrs079 (Eikema and Ubachs 2010). The Jahn-Teller

effect and nonadiabatic effects in manifolds of near-degenerate electronic states are treated in hrs060

(Köppel et al. 2010), the treatment of fine structure in electronically excited states using effective

Hamiltonians is the object of hrs061 (Field et al. 2010), and studies of ultrafast electronic processes

taking place on the (sub)femtosecond timescale are reviewed in hrs085 (Wörner and Corkum 2010).

The use of photoelectron spectroscopy to study the electronic states of molecular cations is described

by (Merkt et al. 2010). These chapters also provide information on the wide range of experimental
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techniques and spectroscopic instruments that are employed to measure electronic spectra.

Until the second part of the 20th century, electronic spectra were almost exclusively obtained by

monitoring the radiation transmitted by a given probe gas, or the radiation emitted by a sample after

production of electronically excited atoms or molecules using electric or microwave discharges, flash

lamps, or in flames, as a function of the wavelength. In the second half of the 20th century, the use

of intense and/or highly monochromatic laser sources has greatly extended the range of applications

of electronic spectroscopy, enabling studies at very high spectral resolution and unprecedented sensi-

tivity. Multiphoton processes started to be exploited systematically to 1) study electronically excited

states not accessible from the ground state by single-photon excitation, 2) reduce spectral congestion

in electronic spectra by carrying out the multiphoton excitation via selected rovibrational levels of

suitable intermediate electronic states, and 3) efficiently detect the resonant multiphoton transitions

by monitoring the resonance-enhanced multiphoton ionization (REMPI) signal.

In combination with laser radiation, highly sensitive spectroscopic techniques, many of them en-

abling the background-free detection of the electronic transitions, such as laser-induced fluorescence

(LIF) spectroscopy, REMPI spectroscopy, photofragment excitation spectroscopy, degenerate four-

wave mixing spectroscopy, cavity-ring-down spectroscopy, and a wide range of modulation techniques

have revolutionized the field of high-resolution electronic spectroscopy, revealing for the first time the

finest details of the energy level structure of atoms and molecules, and allowing systematic studies of

the electronic spectra and structure of unstable and/or highly reactive species such as weakly-bound

molecular complexes, free radicals and molecular ions.

The different techniques currently in use in high-resolution electronic spectroscopy are presented in

the articles of this handbook mentioned above and will not be described in this introductory chapter.

Instead, we provide the elementary knowledge and introduce the most important concepts that are

necessary to access and optimally use the scientific literature related to electronic spectra of atoms and

molecules. The chapter consists of two main parts, one devoted to the electronic structure of atoms

and molecules, the other to their electronic spectra. Because the spectra of atoms are not complicated

by the vibrational and rotational fine structures, they reveal most aspects of the electronic structure

and dynamics more purely and clearly than molecular spectra and are ideally suited to introduce

many important concepts. We have therefore chosen to begin the sections on electronic structure and

electronic spectra by a treatment of the electronic structure and spectra of atoms. This choice enables

the subsequent presentation of the electronic structure and spectra of molecules in a more compact

manner.

2 Electronic structure

The electronic structure of atoms and molecules is characterized by the electronic wave function

that corresponds to the solution of the electronic Schrödinger equation. When the effects of electron
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correlation are not dominant, the electronic wave function can be approximated by a single electronic

configuration, i.e., a product of single-electron wave functions or orbitals, reflecting the occupancy of

these orbitals.

A given electronic configuration gives rise to several states, or terms, corresponding to the different

relative orientations of the electronic orbital and spin angular momentum vectors. To distinguish the

different terms of a given configuration, term symbols are used which indicate the electronic symme-

try and the relative orientation of the orbital and spin angular momentum vectors. The symmetry

properties of the orbitals and of the electronic wave functions are conveniently described in the point

group of the molecule of interest.

When electron correlation is important, the electronic wave function must be described by a sum of

contributions corresponding to electronic configurations differing in the occupation of one, two or more

orbitals. The configurations contributing to a given electronic state have the same electronic symmetry,

which is therefore an essential element of the electronic structure. The symmetry properties of the

electronic states also determine whether a transition between two electronic states can be induced by

electromagnetic radiation or not.

The general principles that enable one to classify the electronic structure in terms of symmetry

properties and to exploit these properties in the analysis of electronic spectra are the same for atoms

and molecules. However, whereas nonlinear polyatomic molecules belong to point groups with a finite

number of symmetry elements, and thus a finite number of irreducible representations, atoms and

linear molecules belong to point groups with an infinite number of symmetry elements and irreducible

representations. This difference justifies the treatment of the electronic structure of atoms, linear, and

nonlinear molecules in separate subsections.

2.1 Atoms

Atoms belong to the point group Kh, the character and direct-product tables of which are presented

in Tables 1 and 2. The symmetry operations of the point group Kh consist of the identity (E),

the inversion (i), all rotation (∞Cϕ∞), rotation-reflection (∞Sϕ∞) symmetry operations of a sphere,

and of the operations that can be obtained by combining them. The quantum states of an atom

can therefore be designated by the symmetry labels S, P, D, F, . . ., which reflect the symmetry of

the wave functions with respect to rotation and rotation-reflection operations, and a label g/u (from

the german words “gerade”(=even)/“ungerade”(=odd)), which gives the symmetry with respect to

inversion through the symmetry center (i). This widely used group-theoretical nomenclature actually

originates from observations of the spectral characteristics of the electronic spectra of the alkali metal

atoms: s=sharp series, p=principal series, d=diffuse series, f=fundamental series. The states of u

symmetry are often labeled with a superscript “o” for “odd”.

Neglecting the motion of the heavy nucleus, the Hamiltonian operator of a N -electron atom can
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Table 1: Character table of the point group Kh appropriate to label the electronic states of atoms.

Kh E ∞Cϕ∞ ∞Sϕ∞ i

Sg 1 1 1 1 x2 + y2 + z2

Pg 3 1 + 2 cosϕ 1− 2 cosϕ 3 Rx, Ry, Rz

Dg 5 1 + 2 cosϕ+ 2 cos 2ϕ 1− 2 cosϕ+ 2 cos 2ϕ 5 x2 + y2 − 2z2,

x2 − y2,

xy, xz, yz

Fg 7 1 + 2 cosϕ+ 2 cos 2ϕ+ 2 cos 3ϕ 1− 2 cosϕ+ 2 cos 2ϕ− 2 cos 3ϕ 7

. . . . . . . . . . . . . . .

Su 1 1 −1 −1

Pu 3 1 + 2 cosϕ −1 + 2 cosϕ −3 x, y, z

Du 5 1 + 2 cosϕ+ 2 cos 2ϕ −1 + 2 cosϕ− 2 cos 2ϕ −5

Fu 7 1 + 2 cosϕ+ 2 cos 2ϕ+ 2 cos 3ϕ −1 + 2 cosϕ− 2 cos 2ϕ+ 2 cos 3ϕ −7

. . . . . . . . . . . . . . .

Table 2: Direct product table of the point group Kh. In addition, the rules g ⊗ g = u ⊗ u = g and

g ⊗ u = u⊗ g = u are obeyed.

⊗ S P D F . . .

S S P D F . . .

P P S, P, D P, D, F D, F, G . . .

D D P, D, F S, P, D, F, G P, D, F, G, H . . .

F F D, F, G P, D, F, G, H S, P, D, F, G, H, I . . .

. . . . . . . . . . . . . . . . . .
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be written as

Ĥ =

N∑

i=1

(
p̂2
i

2me
− Ze2

4πε0ri

)

︸ ︷︷ ︸
ĥi

+

N∑

i=1

N∑

j>i

e2

4πε0rij
︸ ︷︷ ︸

Ĥ′

+Ĥ ′′ , (4)

where
∑
i ĥi represents a sum of one-electron operators each containing a kinetic energy term and

a potential energy term representing the interaction with the nucleus. Ĥ ′ represents the repulsion

between the electrons, and Ĥ ′′ all the very small contributions to Ĥ that can be neglected in first

approximation (e.g., hyperfine interactions, see below).

2.1.1 The hydrogen atom and one-electron atoms

In one-electron atoms such as H, He+, Li2+, . . ., Ĥ ′ = 0 in Equation (4). If Ĥ ′′ is neglected,

the Schrödinger equation can be solved analytically, as demonstrated in most quantum mechanics

textbooks. The eigenvalues En`m`
and eigenfunctions Ψn`m`

are then described by Equations (5)

and (6), respectively

En`m`
= −hcZ2RM/n

2 (5)

Ψn`m`
(r, θ, φ) = Rn`(r)Y`m`

(θ, φ). (6)

In Equation (5), Z is the nuclear charge, RM is the mass-corrected Rydberg constant for a nucleus of

mass M

RM =
µ

me
R∞, (7)

where R∞ = mee
4/(8h3ε20c) = 109737.31568527(73) cm−1 (Mohr et al. (2008)) represents the Rydberg

constant for a hypothetical infinitely heavy nucleus and µ = meM/(me +M) is the reduced mass of

the electron-nucleus system. The principal quantum number n can take integer values from 1 to ∞,

the orbital angular momentum quantum number ` integer values from 0 to n − 1, and the magnetic

quantum number m` integer values from −` to `. In Equation (6), r, θ,and φ are the polar coordinates.

Rn`(r) and Y`m`
(θ, φ) are radial wave functions and spherical harmonics, respectively. Table 3 lists

the possible sets of quantum numbers for the first values of n, the corresponding expressions for Rn`(r)

and Y`m`
(θ, φ), and the symmetry designation n`m` of the orbitals.

The energy eigenvalues given by Equation (6) do not depend on the quantum numbers ` and m`

and have therefore a degeneracy factor of n2. They form an infinite series which converges at n =∞
to a value of 0. Positive energies thus correspond to situations where the electron is no longer bound

to the nucleus, i.e., to an ionization continuum. Expressing the energy relative to the lowest (n = 1)

level

En`m`
= hcZ2RM

(
1− 1

n2

)
= hcTn, (8)

one recognizes that the ionization energy of the 1s level is hcZ2RM , or, expressed as a term value in

the wave-number unit of cm−1, Tn=∞ = RM .

The functions Ψn`m`
(r, θ, φ) represent orbitals and describe the bound states of one-electron atoms;

their norm Ψ∗n`m`
Ψn`m`

represent the probability densities of finding the electron at the position
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Table 3: Quantum numbers, wave functions and symmetry designation of the lowest eigenstates of the

hydrogen atom. Linear combinations of the complex-valued Rn`(r)Y`m`
(θ, φ) can be formed that are

real and correspond to the orbitals actually used by chemists with designations given in parentheses

in the last column. a = a0
me

µ and ρ = 2Z
na r.

n ` m` Rn`(r) Y`m`
(θ, φ) orbital designation

1 0 0 2
(
Z
a

)3/2
e−ρ/2

√
1

4π 1s

2 0 0 2−3/2
(
Z
a

)3/2
e−ρ/2(2− ρ)

√
1

4π 2s

2 1 0 1
2
√

6

(
Z
a

)3/2
ρe−ρ/2

√
3

4π cos θ 2p0 (or 2pz)

2 1 ±1 1
2
√

6

(
Z
a

)3/2
ρe−ρ/2 −

√
3

8π sin θe±iφ 2p±1 (or 2px,y)

3 0 0 3−5/2
(
Z
a

)3/2
e−ρ/2(6− 6ρ+ ρ2)

√
1

4π 3s

3 1 0 1
9
√

6

(
Z
a

)3/2
ρe−ρ/2(4− ρ)

√
3

4π cos θ 3p0 (or 3pz)

3 1 ±1 1
9
√

6

(
Z
a

)3/2
ρe−ρ/2(4− ρ) −

√
3

8π sin θe±iφ 3p±1 (or 3px,y)

3 2 0 1
9
√

30

(
Z
a

)3/2
ρ2e−ρ/2

√
5

16π (3 cos2 θ − 1) 3d0 (or 3dz2)

3 2 ±1 1
9
√

30

(
Z
a

)3/2
ρ2e−ρ/2 −

√
15
8π sin θ cos θe±iφ 3d±1 (or 3dxz,yz)

3 2 ±2 1
9
√

30

(
Z
a

)3/2
ρ2e−ρ/2

√
15

32π sin2 θe±i2φ 3d±2 (or 3dxy,x2−y2)

(r, θ, φ) and imply the following general behavior, which is also important to understand the properties

of polyelectronic atoms and of molecular Rydberg states:

• The average distance between the electron and the nucleus is proportional to n2, in accordance

with Bohr’s model (Bohr 1914) of the hydrogen atom, which predicts that the classical radius

of the electron orbit should grow with n as a0n
2, a0 = 0.52917720859(36) Å being the Bohr

radius. This implies that, in polyelectronic atoms and in molecules, very similar electronically

excited states also exist as soon as n is large enough for the excited electron to be located mainly

outside the positively charged atomic or molecular ion core consisting of the nuclei and the other

electrons. These states are called Rydberg states. They have already been mentioned in the

introduction and will be discussed further in Subsection 2.1.6.

• The probability of finding the electron in the immediate vicinity of the nucleus, i.e., within a

sphere of radius on the order of a0, decreases with n−3. This implies that all physical properties

which depend on this probability, such as the excitation probability from the ground state, the

radiative decay rate to the ground state, or relativistic effects such as the spin-orbit coupling or

hyperfine interactions involving the excited electron should also scale with n−3.

• The same probability decreases exponentially, and rapidly becomes negligible with increasing

value of ` because the centrifugal barrier in the electron-ion interaction potential increases with

`2, effectively suppressing the tunneling probability of the excited electron into the region close to
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the nucleus, or close to the atomic/molecular core in the case of Rydberg states of polyelectronic

atoms and molecules. Low-` states are thus called penetrating Rydberg states, and high-` states

nonpenetrating. In polyelectronic atoms and molecules, the latter behave almost exactly as in

the hydrogen atom.

The orbital angular momentum quantum number `, which comes naturally in the solution of the

Schrödinger equation of the hydrogen atom, is also a symmetry label of the corresponding quantum

states. Indeed the 2`+ 1 functions Ψn`m`
(r, θ, φ) with m` = −`,−`+ 1, . . . , ` transform as the 2`+ 1

components of the irreducible representations of theKh point group listed in Table 1. These irreducible

representations are designated by letters as s (` = 0), p (` = 1), d (` = 2), f (` = 3), g (` = 4), with

subsequent labels in alphabetical order, i. e., h, i, k, l, etc. for ` = 5, 6, 7, 8, etc. The reason for

using small letters to label orbitals, instead of using the capital letters designating the irreducible

representations of the Kh point group, is that capital letters are reserved to label electronic states.

The distinction between electronic orbitals and electronic states is useful in polyelectronic atoms.

The nodal structure of the s, p, d, f, . . . spherical harmonics also implies that s, d, g, . . . orbitals

with even values of ` have g symmetry, and that p, f, h, . . . orbitals with odd values of ` have u

symmetry. Orbitals with ` = 2k + 1 (k being an integer number) of g symmetry and orbitals with

` = 2k of u symmetry do not occur.

The operators ~̀̂2 and ˆ̀
z describing the squared norm of the orbital angular momentum vector

and its projection along the z axis commute with Ĥ and with each other. The spherical harmonics

Y`m`
(θ, φ) are thus also eigenfunctions of ~̀̂2 and ˆ̀

z with eigenvalues given by the eigenvalue equations

~̀̂2Y`m`
(θ, φ) = ~2`(`+ 1)Y`m`

(θ, φ) (9)

and

ˆ̀
zY`m`

(θ, φ) = ~m`Y`m`
(θ, φ). (10)

2.1.2 Polyelectronic atoms

The Schrödinger equation for atoms with more than one electron cannot be solved analytically. If Ĥ ′ in

Equation (4) is neglected, Ĥ becomes separable inN one-electron operators ĥi(p̂i, q̂i) [ĥi(p̂i, q̂i)φi(qi) =

εiφi(qi)] (To simplify the notation, we use here and in the following the notation qi instead of ~qi to

designate all spatial xi, yi, zi and spin msi coordinates of the polyelectron wave function):

Ĥ0 =

N∑

i=1

ĥi(~̂pi, ~̂qi) (11)

with eigenfunction

Ψk(q1, . . . , qN ) = φ
(k)
1 (q1)φ

(k)
2 (q2) . . . φ

(k)
N (qN ) (12)

and eigenvalues

Ek = ε1 + ε2 + ...+ εN , (13)
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where φ
(k)
i (qi) = Rn`(ri)Y`m`

(θi, φi)φms
represents a spin orbital with φms

being the spin part of the

orbital, either α for ms = 1/2 or β for ms = −1/2 .

The electron wave function [Equation (12)] gives the occupation of the atomic orbitals and rep-

resents a given electron configuration [e.g., Li: Ψ1(q1, q2, q3) = 1sα(q1), 1sβ(q2), 2sα(q3)]. Neglecting

the electron-repulsion term in Equation (4) is a very crude approximation, and Ĥ ′ needs to be con-

sidered to get a realistic estimation of the eigenfunctions and eigenvalues of Ĥ. A way to consider

Ĥ ′ without affecting the product form of Equation (12) is to introduce, for each electron, a potential

energy term describing the interaction with the mean field of all other electrons. Iteratively solving

one-electron problems and modifying the mean-field potential term leads to the so-called “Hartree-

Fock Self-Consistent Field” (HF-SCF) wave functions, which still have the form (Equation (12)) of

a single electronic configuration but now incorporate most effects of the electron-electron repulsion

except their instantaneous correlation. Because polyelectronic atoms, like hydrogen, belong to the Kh

point group, the angular part of the improved orbitals can also be described by spherical harmonics

Y`m`
(θi, φi). However, the radial functions Rn`(r) and the orbital energies (εi in Equation (14)) differ

from the hydrogenic case because of the electron-electron repulsion term Ĥ ′.

An empirical sequence of orbital energies can be determined that can be used to predict the

ground-state configuration of most atoms in the periodic system using Pauli’s Aufbau-principle:

ε1s ≤ ε2s ≤ ε2p ≤ ε3s ≤ ε3p ≤ ε4s ≤ ε3d ≤ ε4p ≤
ε5s ≤ ε4d ≤ ε5p ≤ ε6s ≤ ε4f ≤ ε5d ≤ ε6p ≤ ε7s ≤
ε5f ≤ ε6d.

(14)

This sequence of orbital energies can be qualitatively explained by considering the shielding of the nu-

clear charge by electrons in inner shells and the decrease, with increasing value of `, of the penetrating

character of the orbitals.

When instantaneous correlation effects in the electronic motion are also considered, the wave

functions depart from a simple product form of the type of Equation (12) and must be represented by

a sum of configurations. One therefore says that electron correlation leads to configuration mixing.

For most purposes and in many atoms, single-configuration wave functions represent an adequate

description, or at least a useful starting point in the discussion of electronic structure and spectra.

Equation (12) is, however, not compatible with the generalized Pauli principle. Indeed, electrons have a

half-integer spin quantum number (s = 1/2) and polyelectronic wave functions must be antisymmetric

with respect to the exchange (permutation) of the coordinates of any pair of electrons. Equation (12)

must therefore be antisymmetrized with respect to such an exchange of coordinates. This is achieved

by writing the wave functions as determinants of the type:
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Ψ(q1, . . . , qN ) =
1√
N !

det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(q1) φ1(q2) . . . φ1(qN )

φ2(q1) φ2(q2) . . .

.

.

.

φN (q1) . . . . . . φN (qN )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(15)

in which all φi are different spin orbitals. Such determinants are called Slater determinants and rep-

resent suitable N -electron wave functions which automatically fulfill the Pauli principle for fermions.

Indeed, exchanging two columns in a determinant, i.e., permuting the coordinates of two electrons,

automatically changes the sign of the determinant. The determinant of a matrix with two identical

rows is zero so that Equation (15) is also in accord with Pauli’s exclusion principle, namely that any

configuration with two electrons in the same spin orbital is forbidden. This is not surprising given

that Pauli’s exclusion principle can be regarded as a consequence of the generalized Pauli principle

for fermions. The ground-state configuration of an atom can thus be obtained by filling the orbitals

in order of increasing energy (see Equation (14)) with two electrons, one with ms = 1/2, the other

with ms = −1/2, a procedure known as Pauli’s Aufbau-principle.

2.1.3 States of different spin multiplicities with the example of singlet and triplet states

The generalized Pauli principle for fermions also restricts the number of possible wave functions

associated with a given configuration, as illustrated with the ground electronic configuration of the

carbon atom in the following example.

———————————————————

Example: C (1s)2(2s)2(2p)2

Because the full (1s)2 shell and the full (2s)2 subshell are totally symmetric, only the (2p)2 open subshell need

be considered. There are six spin orbitals and therefore 36(=62) possible configurations (2pmlms)(2pm′lm
′
s) with

ml,m
′
l = 0,±1 and ms,ms = ±1/2:

Electron 1

Electron 2

φ2p1α φ2p1β
φ2p0α φ2p0β

φ2p−1α φ2p−1β

φ2p1α x *

φ2p1β
x

φ2p0α * x

φ2p0β
x

φ2p−1α x

φ2p−1β
x

corresponding to the 36 entries of the table. Diagonal elements of the table (designated by a cross) are forbidden

by the Pauli principle because both electrons are in the same spin orbital. According to Equation (15), each pair of

symmetric entries with respect to the diagonal can be used to make one antisymmetric wave function. For example,
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the entries of the table marked by an asterisk lead to the wave function

Ψ(q1, q2) = (φ2p0α(q1)φ2p1α(q2)− φ2p1α(q1)φ2p0α(q2))/
√

2, (16)

which is antisymmetric with respect to permutation of q1 and q2 and thus fulfills the generalized Pauli principle for

fermions, and to one symmetric wave function

Ψ(q1, q2) = (φ2p0α(q1)φ2p1α(q2) + φ2p1α(q1)φ2p0α(q2))/
√

2 (17)

which is forbidden by the Pauli principle. In total there are 15 wave functions for the (2p)2 configuration that fulfill

the Pauli principle. Not all of these 15 wave functions correspond to states of the same energy.

———————————————————

For an excited configuration with two unpaired electrons such as He (1s)1(2s)1, the Pauli principle

does not impose any restriction, because the two electons are in different orbitals. However, the

electrostatic repulsion between the two electrons leads to an energetic splitting of the possible states.

In this configuration, four spin orbitals (1sα, 1sβ, 2sα, and 2sβ) need to be considered, because

each electron can be either in the 1s or the 2s orbital with either ms = 1/2 or ms = −1/2. Four

antisymmetrized functions fulfilling the Pauli principle result, which can be represented as products of

a symmetric/antisymmetric spatial part depending on the xi, yi and zi coordinates of the two electrons

(i = 1, 2) and an antisymmetric/symmetric spin part:

(1/
√

2) [1s(1)2s(2)− 1s(2)2s(1)]α(1)α(2) = ΨT,MS=1 (18)

(1/
√

2) [1s(1)2s(2)− 1s(2)2s(1)]β(1)β(2) = ΨT,MS=−1 (19)

(1/
√

2) [1s(1)2s(2)− 1s(2)2s(1)] (1/
√

2) [α(1)β(2) + α(2)β(1)] = ΨT,MS=0 (20)

(1/
√

2) [1s(1)2s(2) + 1s(2)2s(1)] (1/
√

2) [α(1)β(2)− α(2)β(1)] = ΨS,MS=0, (21)

where the notation 1s(i)α(i) has been used to designate electron i being in the 1s orbital with spin

projection quantum number ms = 1/2.

The first three functions (Equations (18), (19) and (20)), with MS = ms1 +ms2 = ±1, 0, have an

antisymmetric spatial part and a symmetric electron-spin part with respect to the permutation of the

two electrons. These three functions represent the three components of a triplet (S = 1) state. The

fourth function has a symmetric spatial and an antisymmetric electron-spin part with MS = 0 and

represents a singlet (S = 0) state. These results are summarized in Tables 4 and 5, where the spin part

of the wave functions are designated with an superscript ”S” and the spatial parts with a superscript

”R”. The subscripts ”a” and ”s” indicate whether the functions are symmetric or antisymmetric with

respect to the permutation of the coordinates of the two electrons.

The contribution to the energy of the electron-repulsion term Ĥ ′ = e2/(4πε0r12) in Equation (4)
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Table 4: Permutationally symmetric and antisymmetric two-electron spin functions

α(1)α(2) MS = 1

ΨS
(s)(m1,m2) 1√

2
(α(1)β(2) + α(2)β(1)) MS = 0 S = 1(triplet)

β(1)β(2) MS = −1

ΨS
(a)(m1,m2) 1√

2
(α(1)β(2)− α(2)β(1)) MS = 0 S = 0(singlet)

Table 5: Permutationally symmetric and antisymmetric two-electron spatial functions

ΨR
(s)(q1, q2) 1√

2
(φ1(1)φ2(2) + φ1(2)φ2(1)) (singlet)

ΨR
(a)(q1, q2) 1√

2
(φ1(1)φ2(2)− φ1(2)φ2(1)) (triplet)

can be evaluated in the first order of perturbation theory as:

e2

(8πε0)
〈1s(1)2s(2)− 1s(2)2s(1)| 1

r12
|1s(1)2s(2)− 1s(2)2s(1)〉 =

e2

(8πε0)
[〈1s(1)2s(2)| 1

r12
|1s(1)2s(2)〉

+ 〈1s(2)2s(1)| 1

r12
|1s(2)2s(1)〉

− 〈1s(1)2s(2)| 1

r12
|1s(2)2s(1)〉

− 〈1s(2)2s(1)| 1

r12
|1s(1)2s(2)〉]

= [J12 + J21 −K12 −K21]/2

= J12 −K12 (22)

for the triplet state, and as

e2

(8πε0)
〈1s(1)2s(2) + 1s(2)2s(1)| 1

r12
|1s(1)2s(2) + 1s(2)2s(1)〉 = J12 +K12 (23)

for the singlet state. In Equations (22) and (23), the integral J12 = J21 and K12 = K21 represent

so-called Coulomb and exchange integrals, respectively. The Coulomb integral can be interpreted as

the energy arising from the repulsion between the electron clouds of the 1s and 2s electrons. The

exchange integral is more difficult to interpret and results from the repulsion between the two electron

having ”exchanged” their orbitals.

Because J12 and K12 are both positive in this case, the triplet state lies lower in energy than the

singlet state by twice the exchange integral. The energy splitting between the singlet and triplet states

can therefore be formally viewed as resulting from an electrostatic (including exchange) coupling of

the motion of the two electrons with spin vectors ~s1 and ~s2, resulting in states of total spin angular

momentum ~S = ~s1 + ~s2 with S = 1 for the triplet state, and S = 0 for the singlet state.

These considerations can easily be generalized to situations with more than two unpaired electrons.

In atoms with configurations with three unpaired electrons, such as, for instance, N ((1s)2(2s)2(2p)3,

quartett (S = 3/2) and doublet (S = 1/2) states result.
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2.1.4 Terms and term symbols in atoms: LS and jj coupling

For all atoms extensive lists of term values are tabulated (see, e.g., Moore (1949, 1952, 1958)). To

understand how the different terms arise and derive the term symbols used to label them, it is nec-

essary to understand how the different orbital and spin angular momenta in an atom are coupled by

electromagnetic interactions and in which sequence the angular momentum vectors are added to form

the total angular momentum vector ~J . This can be achieved by ordering the different interactions

according to their relative strengths and by adding the angular momentum vectors that are most

strongly coupled first.

Each angular momentum vector can be described quantum mechanically by eigenvalue equations

of the type of Equations (9) and (10), e.g.,

~̂S2|SMS〉 = ~2S(S + 1)|SMS〉, (24)

Ŝz|SMS〉 = ~MS |SMS〉, (25)

~̂L2|LML〉 = ~2L(L+ 1)|LML〉, (26)

L̂z|LML〉 = ~ML|LML〉, (27)

~̂J2|JMJ〉 = ~2J(J + 1)|JMJ〉, (28)

Ĵz|JMJ〉 = ~MJ |JMJ〉. (29)

In the absence of coupling between the different angular momenta, all quantum numbers arising from

eigenvalue equation of this type are good quantum numbers. In the presence of couplings between the

different angular momenta, however, only a subset of these quantum numbers remain good quantum

numbers, and the actual subset of good quantum numbers depends on the hierarchy of coupling

strengths (see Zare (1988)).

Two limiting cases of angular momentum coupling hierarchy are used to label the terms of atoms:

the LS coupling hierarchy, which adequatly describes the ground state of almost all atoms except the

heaviest ones and is also widely used to label the electronically excited states of the lighter atoms,

and the jj coupling hierarchy, which is less frequently encountered and becomes important in the

description of the heaviest atoms and of electronically excited states.

a) The LS coupling hierarchy:

~L =
∑N
i=1

~̀
i strong coupling of orbital angular momenta resulting from

electrostatic interactions

~S =
∑N
i=1 ~si strong coupling of spins resulting from exchange terms

in the electrostatic interaction (see Equations (22) and (23))

~J =~L+ ~S weaker coupling between ~S and ~L resulting from

the spin-orbit interaction, a relativistic effect.
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In LS coupling, one obtains the possible terms by first adding vectorially the orbital angular momenta

~̀
i of the electrons to form a resultant total orbital angular momentum ~L. Then, the total electron

spin ~S is determined by vectorial addition of the spins ~si of all electrons. Finally, the total angular

momentum ~J is determined by adding vectorially ~S and ~L (see Figure 5a below). For a two-electron

system, one obtains:

~L = ~̀
1 + ~̀

2; L = `1 + `2, `1 + `2 − 1, . . . , |`1 − `2| (30)

ML = m`1 +m`2 = −L,−L+ 1, . . . , L (31)

~S = ~s1 + ~s2; S = 1, 0 (32)

MS = ms1 +ms2 = −S,−S + 1, . . . , S (33)

~J = ~L+ ~S; J = L+ S,L+ S − 1, . . . , |L− S| (34)

MJ = MS +ML = −J,−J + 1, . . . , J. (35)

The angular momentum quantum numbers L, S and J that arise in Equations (30), (32), and (34)

from the addition of the pairs of coupled vectors (~̀1, ~̀2), (~s1, ~s2) and (~L, ~S), respectively, can be

derived from angular momentum algebra as explained in most quantum mechanics textbooks. For the

addition of the angular momentum vectors, the values of L resulting from the addition of ~̀1 and ~̀2 can

be obtained from the direct products of the corresponding representations of the Kh point group (see

Table 2). For instance, if `1 = 1 (irreducible representation P) and `2 = 3 (irreducible representation

F), the direct product P ⊗ F = D ⊕ F ⊕ G yields L = 2, 3 and 4, a result that can be generalized to

Equations (30), (32) and (34).

The different terms (L, S, J) that are obtained for the possible values of L, S and J in Equa-

tions (30), (32), and (34) are written in compact form as term symbols

(L, S, J) =2S+1 LJ . (36)

However, not all terms that are predicted by Equations (30), (32), and (34) are allowed by the Pauli

principle. This is best explained by deriving the possible terms of the C (1s)2(2s)2(2p)2 configuration

in the following example.

———————————————————

Example: C (1s)2(2s)2(2p)2. Only the partially filled 2p subshell needs to be considered. In this case l1 = 1, l2 = 1

and s1 = s2 = 1/2. From Eqs. (30), (32), and (34) one obtains, neglecting the Pauli principle:

L = 0(S), 1(P), 2(D)

S = 0(singlet), 1(triplet)

J = 3, 2, 1, 0,

which leads to the following terms:

Term 1S0
3S1

1P1
3P0

3P1
3P2

1D2
3D1

3D2
3D3.

Degeneracy factor (gJ = 2J + 1) 1 3 3 1 3 5 5 3 5 7
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Taking the (2J + 1) degeneracy factor of each term (which corresponds to all possible values of MJ), a total

of 36 states result. As discussed above, only 15 states are allowed by the Pauli principle for the configuration

(1s)2(2s)2(2p)2. The terms allowed by the Pauli principle can be determined by first finding the ML, MS and MJ

values resulting from all 15 possible occupations of the six 2p spin-orbitals with the two electrons in different spin

orbitals, as explained in the following table:

El. 1 El. 2 ML MS MJ

φ2p1α φ2p1β 2 0 2

φ2p0α 1 1 2

φ2p0β 1 0 1

φ2p−1α 0 1 1

φ2p−1β 0 0 0

φ2p1β φ2p0α 1 0 1

φ2p0β 1 -1 0

φ2p−1α 0 0 0

φ2p−1β 0 -1 -1

φ2p0α φ2p0β 0 0 0

φ2p−1α -1 1 0

φ2p−1β -1 0 -1

φ2p0β φ2p−1α -1 0 -1

φ2p−1β -1 -1 -2

φ2p−1α φ2p−1β -2 0 -2

The maximum value of ML is 2 and occurs only in combination with MS = 0. This implies a 1D term with five

MJ components corresponding to (ML MS) = (2 0), (1 0), (0 0), (-1 0) and (-2 0). Eliminating these entries from

the table, the remaining entry with the highest ML value has ML = 1 and comes in combination with a maximal

MS value of 1. We can conclude that the corresponding term is 3P (consisting of 3P0, 3P1 and 3P2). There are

9 components corresponding to (ML MS) = (1 1), (1 0), (1 -1), (0 1), (0 0), (0 -1), (-1 1), (-1 0) and (-1 -1).

Eliminating these entries from the table, only one component remains, (0 0), which corresponds to a 1S0 state.

The terms corresponding to the (2p)2 configuration allowed by the Pauli principle are therefore 1D2, 3P2, 3P1, 3P0

and 1S0. As in the case of the He (1s)1(2s)1 configuration discussed above, the electrostatic exchange interaction

favors the triplet state over the singlet states.

———————————————————

The lowest energy term of the ground electronic configuration of almost all atoms can be predicted

using three empirical rules, know as Hund’s rules in honor of the physicist Friedrich Hund. These

rules state that

1. The lowest term is that with the highest value of the total spin angular momentum quantum

number S.

2. If several terms have the same value of S, the term with the highest value of the total angular

momentum quantum number L lies lowest in energy.

3. If the lowest term is such that both L and S are nonzero, the ground state is the term component

with J = |L − S| if the partially filled subshell is less than half full, and the term component

with J = L+ S if the partially filled subshell is more than half full.
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According to Hund’s rules, the ground state of C is the term component 3P0, and the ground state of

F is the term component 2P3/2, in agreement with experimental results. Hund’s rules do not reliably

predict the energetic ordering of electronically excited states.

15 states
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Figure 2: Schematic energy level structure of the (2p)2 configuration in LS coupling.

The energy level splittings of the components of a term 2S+1L can be described by considering the

effect of the effective spin-orbit operator

ĤSO =
hcA

~2
~̂L · ~̂S (37)

on the basis functions |LSJ〉 ( ~̂J = ~̂L + ~̂S). In Equation (37), the spin-orbit coupling constant A is

expressed in cm−1. From ~̂J2 = ~̂L2 + ~̂S2 + 2~̂L · ~̂S one finds

~̂L · ~̂S =
1

2

[
~̂J2 − ~̂L2 − ~̂S2

]
. (38)

The diagonal matrix elements of ĤSO, which represent the first-order corrections to the energies in a

perturbation theory treatment, are

〈LSJ |ĤSO|LSJ〉 =
1

2
hcA[J(J + 1)− L(L+ 1)− S(S + 1)], (39)

from which one sees that two components of a term with J and J + 1 are separated in energy by

hcA(J + 1). However, one should bear in mind that first-order perturbation theory breaks down

when the energetic spacing between different terms is of the same order of magnitude as the spin-

orbit splittings calculated with Equation (39). Hund’s third rule implies that the spin-orbit coupling

constant A is positive in ground terms arising from less than half-full subshells and negative in ground

terms arising from more than half-full subshells.

To illustrate the main conclusions of this subsection, Figure 2 shows schematically by which in-

teractions the 15 states of the ground-state configuration of C can be split. The strong electrostatic
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interactions (including exchange) lead to a splitting into three terms 3P, 1D and 1S. The weaker

spin-orbit interaction splits the ground 3P term into three components 3P0, 3P1 and 3P2. Each term

component can be further split into (2J + 1) MJ levels by an external magnetic field, an effect known

as the Zeeman effect, which is discussed in more detail in Subsection 2.1.7.

b) The jj coupling hierarchy:

~li + ~si =~ji strong spin-orbit coupling
∑
~ji = ~J weaker electrostatic coupling.

In heavy atoms, relativistic effects become so large that the spin-orbit interaction can become com-

parable in strength, or even larger, than the electrostatic (including exchange) interactions that are

dominant in the lighter atoms. In jj coupling, the dominant interaction is the spin-orbit coupling

between ~li and ~si. The possible terms are obtained by first adding vectorially the orbital angular

momentum vector ~li and the electron spin vector ~si of each electron (index i) to form a resultant

electronic angular momentum ~ji. The total electronic angular momentum ~J results from the vectorial

addition of all ~ji.

For a two electron system, one obtains, using the same angular momentum addition rules that led

to Equations (30), (32), and (34):

~j1 = ~l1 + ~s1; j1 = l1 +
1

2
, |l1 −

1

2
| (40)

mj1 = ml1 +ms1 = −j1,−j1 + 1, . . . , j1 (41)

~j2 = ~l2 + ~s2; j2 = l2 +
1

2
, |l2 −

1

2
| (42)

mj2 = ml2 +ms2 = −j2,−j2 + 1, . . . , j2 (43)

~J = ~j1 +~j2; J = j1 + j2, j1 + j2 − 1, . . . , |j1 − j2| (44)

MJ = mj1 +mj2 = −J,−J + 1, . . . , J. (45)

The total orbital and spin angular momentum quantum numbers L and S are no longer defined in

jj coupling. Instead, the terms are now specified by a different set of angular momentum quantum

numbers: the total angular momentum ji of all electrons (index i) in partially filled subshells and the

total angular momentum quantum number J of the atom. A convenient way to label the terms is

(j1, j2, . . . , jN )J . Alternatively, the jj-coupling basis states may be written as

(j1, j2, . . . , jN )J = ΠN
i=1|ji,mji〉. (46)

———————————————————

Example: The (np)1((n+ 1)s)1 excited configuration:

LS coupling: S = 0, 1; L = 1. Termsymbols: 1P1, 3P0,1,2, which give rise to 12 states.

jj coupling: l1 = 1, s1 = 1
2
, j1 = 1

2
, 3

2
and l2 = 0, s2 = 1

2
, j2 = 1

2
. Termsymbols: [(j1, j2)J ] : ( 1

2
, 1

2
)0; ( 1

2
, 1

2
)1; ( 3

2
, 1

2
)1; ( 3

2
, 1

2
)2,



HRS004 Fundamentals of electronic spectroscopy 21

which also gives rise to 12 states.

———————————————————

The evolution from LS coupling to jj coupling can be observed by looking at the evolution of the

energy level structure associated with a given configuration as one moves down a column in the periodic

table. Figure 3 illustrates schematically how the energy levels arising from the (np)1((n+1)s)1 excited

configuration are grouped according to LS coupling for n = 2 and 3 (C and Si) and according to jj

coupling for n = 6 (Pb). The main splitting between the (1/2, 1/2)0,1 and the (3/2, 1/2)1,2 states of

1
P

J=0

1st + 2nd row
C, Si

1

2

3
P

J=1

(1/2, 1/2)J=1

J=0

(3/2, 1/2)J=1

J=2

Pb

Figure 3: Correlation diagram depicting schematically, and not to scale, how the term values for

the (np)((n + 1)s) configuration evolve from C, for which the LS coupling limit represents a good

description, and Pb, the level structure of which is more adequately described by the jj coupling limit.

Pb is actually much larger than the splitting between the 3P and 1P terms. Figure 3 is a so-called

correlation diagram, which represents how the energy level structure of a given system (here the states

of the (np)1((n+1)s)1 configuration) evolves as a function of one or more system parameters (here the

magnitude of the spin-orbit and electrostatic interactions). States with the same values of all good

quantum numbers (here J) are usually connected by lines and do not cross in a correlation diagram.

The actual evolution of the energy level structure in the series C, Si, Ge, Sn and Pb, drawn to scale

in Figure 4 using reference data on atomic term values (Moore 1958), enables one to see quantitatively

the effects of the gradual increase of the spin-orbit coupling. For the comparison, the zero point of

the energy scale was placed at the center of gravity of the energy level structure. In C, the spin-

orbit interaction is weaker than the electrostatic interactions, and the spin-orbit splittings of the 3P

state are hardly recognizable on the scale of the figure. In Pb, it is stronger than the electrostatic

interactions and determines the main splitting of the energy level structure.

2.1.5 Hyperfine coupling

Magnetic moments arise in systems of charged particles with nonzero angular momenta to which

they are proportional. In the case of the orbital angular momentum of an electron, the origin of the

magnetic moment can be understood by considering the similarity between the orbital motion of an
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Figure 4: Evolution from LS coupling to jj coupling with the example of the term values of the

(np)1((n+ 1)s)1 configuration of C, Si, Ge, Sn and Pb. The terms symbols are indicated without the

value of J on the left-hand side for the LS coupling limit and on the right-hand side for the jj coupling

limit. The values of J are indicated next to the horizontal bars corresponding to the positions of the

energy levels.

electron in an atom and a ”classical” current generated by an electron moving with velocity v in a

circular loop or radius r. The magnetic moment is equal to

~µ = − e

2me
~r ×me~v = − e

2me

~̀= γ~̀. (47)

For the orbital motion of an electron in an atom, Equation (47) can be written using the correspondence

principle as

~̂µ = γ~̀̂= −µB

~
~̀̂, (48)

where γ = −e/(2me) represents the magnetogyric ratio of the orbital motion and µB = e~/(2me) =

9.27400915(23) · 10−24 JT−1 is the Bohr magneton. By analogy, similar equations can be derived for

all other momenta. The electron spin ~s and the nuclear spin ~I, for instance, give rise to the magnetic

moments

~̂µs = −geγ~̂s = ge
µB

~
~̂s, (49)

and

~̂µI = γI ~̂I = gI
µN

~
~̂I, (50)
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respectively, where ge is the so-called g value of the electron (ge = −2.0023193043622(15)), γI is

the magnetogyric ratio of the nucleus, µN = e~/(2mp) = 5.05078324(13) · 10−27 JT−1 is the nuclear

magneton (mp is the mass of the proton), and gI is the nuclear g factor (gp = 5.585 for the proton).

Because µN/µB = me/mp, the magnetic moments resulting from the electronic orbital and spin

motions are typically 2 to 3 orders of magnitude larger than the magnetic dipole moments (and higher

moments) of nuclear spins.

The hyperfine structure results from the interaction between the magnetic moments of nuclear

spins, electron spins and orbital angular momenta. The interaction between two angular momentum

vectors (such as ~̂L or ~̂S to form a resulting angular momentum vector ~̂J (see subsection 2.1.4)) can be

interpreted in the realm of a vector model (Zare 1988), based on a classical treatment and illustrated

schematically in Figures 5a and b. This vector model is used here to discuss the hyperfine coupling.

(a)

~L

~S

~J

Jz

Jy

Jx

h̄MJ

~L

~S

~J

Jz

Jy

Jx

(b)

~F

~I

~J

Jz

Jy

Jx

~L

~S
h̄MF ~F

~J

~I

~I

Jz

Jy

Jx

Figure 5: a) Schematic illustration of the vector model for the addition of two interacting angular

momentum vectors with the example of the LS coupling. The interacting vectors ~L and ~S precess

around the axis defined by the resultant vector ~J , which has a well-defined projection ~MJ along the

space-fixed z axis. b) In the presence of a nuclear spin, the hyperfine interaction, which is typically

much weaker than the spin-orbit interaction can be described as an interaction between ~J and ~I.

The interaction between the two angular momentum vectors leads to a precession of both vectors

around the axis defined by the resulting vector ( ~J in the case of the interaction of ~S and ~L) which is

a constant of motion (see left-hand side of Figure 5a). Quantum mechanically, this implies constant

norms |~L|2 = ~2L(L+1), |~S|2 = ~2S(S+1), and | ~J |2 = ~2J(J+1) for ~L, ~S, and ~J , respectively, and a

constant component Jz = ~MJ along a quantization axis usually chosen as the z axis. The projections

of ~L and ~S along the z axis are not longer defined, nor is the direction of ~J , except that the tip of

the vector must lie on the dashed circle on the right-hand side of Figure 5a), which corresponds to

a specific value of MJ . The possible values of the quantum number J and MJ that result from the

addition of ~L and ~S are given by Equations (34) and (35). The larger the interaction, the faster the

precession of ~L and ~S around ~J .

The spin-orbit interaction is in general much stronger than the interactions involving nuclear spins.

On the timescale of the slow precession of nuclear spin vectors, the fast precession of ~L and ~S thus
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appears averaged out. The hyperfine interaction can therefore be described as an interaction between

~I, with magnetic moment (gIµN/~)~̂I, and ~J , with magnetic moment

~̂µJ = gJγ ~̂J, (51)

rather than as two separate interactions of ~I with ~L and ~S (see Figure 5b). In Equation (51), gJ is

the g factor of the LS-coupled state, also called Landé g factor, and is given in good approximation

by

gJ = 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
. (52)

The hyperfine interaction results in a total angular momentum vector ~F of norm |~F |2 = ~2(F (F + 1))

and z-axis projection ~MF . The possible values of the quantum numbers F andMF can be determined

using the usual angular momentum addition rules:

F = |J − I|, |J − I|+ 1, . . . , J + I, (53)

and

MF = −F, −F + 1, . . . , F. (54)

The hyperfine contribution to Ĥ arising from the interaction of ~̂µJ and ~̂µI is one of the terms included

in Ĥ ′′ in Equation (4) and is proportional to ~̂µI · ~̂µJ , and thus to ~̂I · ~̂J . Following the same argument

as that used to derive Equation (39), one obtains

~̂I · ~̂J =
1

2

[
~̂F 2 − ~̂I2 − ~̂J2

]
(55)

with ~̂F = ~̂I + ~̂J and ~̂F 2 = ~̂I2 + ~̂J2 + 2~̂I · ~̂J . The hyperfine energy shift of state |IJF 〉 is therefore

〈IJF |ha
~2
~̂I · ~̂J |IJF 〉 =

ha

2
[F (F + 1)− I(I + 1)− J(J + 1)] (56)

as can be derived from Equation (55) and the eigenvalues of ~̂F 2, ~̂I2 and ~̂J2. In Equation (56), a is the

hyperfine coupling constant in Hz. Note that choosing to express A in cm−1 and a in Hz is the reason

for the additional factor of c in Equation (37). As examples, we now briefly discuss the hyperfine

structures of H (I = 1/2) and 83Kr+(I = 9/2).

For the H atom in the (1s)1 2S1/2 ground state, ` = 0 and ~̂µJ = ~̂µS . The hyperfine interaction goes

through direct contact of the electron and the nucleus, and is proportional to the electron probability

density at the position of the nucleus (r = 0), |Ψ(0)|2 = 1
π a30

. This interaction is known as Fermi-

contact interaction and the value of the hyperfine coupling constant is a=1420.4057517667(16) MHz

(Essen et al. 1971). The hyperfine structure of the ground state of H is depicted in Figure 6a. The

absolute ground state is therefore the F = 0, MF = 0 component of the hyperfine doublet and is

separated by only 1420 MHz (= 0.0475 cm−1) from the upper F = 1, MF = 0,±1, levels which

are degenerate in the absence of external fields. This three-fold degeneracy of the upper hyperfine

component is lifted in the presence of a magnetic field, as will be explained in the next subsection.
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Because the electron density in the immediate vicinity of the nucleus scales as n−3, the hyperfine

splitting of excited members of the s Rydberg series can be obtained directly from that of the ground

state by dividing by n3, and rapidly becomes negligible. The hyperfine coupling constant in the

Figure 6: a) Hyperfine structure of (a) the 1 2S1/2 ground state of H and b) the two spin-orbit

components of the 2PJ ground term of Kr with J = 1/2, 3/2 (Schäfer and Merkt 2006; Paul et al.

2009)

ground state of atomic hydrogen is almost the same as in the ground state of ortho H+
2 , because the

1σg orbital has the form ( 1sa+1sb√
2

) and the electron density at each nucleus is to a good approximation

half that of the H atom (see also Subsection 2.2.1).

The . . . (4p)5 ground-state configuration of 83Kr+ leads to two spin-orbit components 2P3/2 and

2P1/2 separated by 5370.27 cm−1 (Paul et al. 2009). The hyperfine structure is well represented by

Equation (57)

ν̃(J, F ) = ν̃J +
AJC

2
+BJ

3
4C(C + 1)− I(I + 1)J(J + 1)

2I(2I − 1)J(2J − 1)
, (57)

in which ν̃J is the position of the barycenter of the hyperfine structure of the spin-orbit component

with total angular momentum quantum number J , and C = F (F+1)−I(I+1)−J(J+1). The second

term on the right-hand side of the equation represents the splitting arising from the magnetic-dipole

interaction and is proportional to the magnetic-dipole hyperfine coupling constant AJ . The third

term is the next hyperfine coupling term in Ĥ ′′ in Equation (4) and describes the electric quadrupole

hyperfine interaction (Kopfermann 1958), which is proportional to the electric quadrupole hyperfine

coupling constant BJ . BJ is zero for the upper spin-orbit component with J = 1/2. Indeed dipole,

quadrupole, octupole, . . . moments are nonzero only in systems with angular momentum quantum

numbers J ≥ 1/2, 1, 3/2, . . . , respectively (Zare 1988). The octupole coupling in the 2P3/2 state is

negligible. The values of the hyperfine coupling constants of the 2P3/2 and 2P1/2 components of the

ground state of Kr+ are A1/2 = −0.0385(5) cm−1, A3/2 = −0.00661(3) cm−1 and B1/2 = −0.0154(7)

cm−1 (Schäfer and Merkt 2006; Paul et al. 2009).

2.1.6 Rydberg states

Rydberg states are electronic states in which one of the electrons (called Rydberg electron) has been

excited to an hydrogen-like orbital having a principal quantum number n larger than the quantum
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number of the valence shell. The properties of these states can therefore be understood from the

properties of the electronic states of the hydrogen atom described in Subsection 2.1.1. The expectation

value of the distance between the electron and the proton in the hydrogen atom increases as n2, and

the amplitude of the Rydberg electron wave function in the immediate vicinity of the proton decreases

as n−3/2 so that, in a polyelectronic atom, the electron density in the region of the positively charged

core, where the Rydberg electron interacts with the other electrons, decreases as n−3. The electron

density in the core region also decreases rapidly with the orbital angular momentum quantum number

` because of the centrifugal barrier in the electron-ion-core interaction potential, which is proportional

to `(`+ 1).

Electronic states with a given value of ` but different values of n (n > `) form infinite series of

electronic states known as Rydberg series. The energetic positions of the different members of a given

Rydberg series can be described in good approximation by Rydberg formula

En`m`
= EI(α

+)− hcRM
(n− δ`)2

, (58)

where EI(α
+) represents the energy of a given quantum state α+ of the ionized atom (or molecule)

and δ` is the so-called quantum defect which is to a good approximation constant in a given series. δ`

only appreciably differs from zero in s, p and d Rydberg states and rapidly decreases with increasing

` value.

Figure 7 depicts the energy level structure characteristic of Rydberg states of the hydrogen atom

(panel (a)), polyelectronic atoms (panel (b)), and molecules (panel (c)) at high n values. In poly-

electronic atoms, the energy level structure resembles closely that of the hydrogen atom with the

only exception that the low-` states are displaced to lower energies because the Rydberg electron is

exposed to an increasing nuclear charge when in penetrates through the inner electron shells (their

quantum defect is positive). In molecules, the situation is additionally complicated by the fact that

series of core-penetrating and core-nonpenetrating Rydberg series converge on every rotational (de-

noted by N+ in Figure 7), vibrational (denoted by v+) and electronic states of the molecular cation.

Because the potential that binds the Rydberg electron to the positively charged ion core can be well

approximated by a Coulomb potential, the Rydberg electron wave functions in polyelectronic atoms

and molecules are hydrogen-like and can be labeled by the same quantum numbers.

Most properties of Rydberg states scale as integer powers of the principal quantum number, as

summarized by Table 6, so that Rydberg states of high principal quantum number behave very dif-

ferently from other electronic states. The scaling laws in Table 6 can be derived from the well-known

properties of the eigenstates of the hydrogen atom (see Gallagher (1994); Bethe and Salpeter (1957)).

Properties of particular relevance for electronic spectroscopy are (i) the very long lifetimes of

high Rydberg states (the lifetimes scale as n3), which result in very narrow spectral lines, (ii) the

absorption cross sections from the ground or a low-lying electronic state, which decrease very rapidly

with n (as n−3) and make high Rydberg states difficult to observe in single-photon absorption spectra
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Figure 7: a) Energy level structure of the Rydberg states of a) the hydrogen atom, b) polyelectronic

atoms, and c) molecules.

Table 6: Properties of Rydberg atoms a

Property n dependence Na(10d) b H(100d)

Binding energy n−2 1100 cm−1 11 cm−1

Energy between adjacent n states n−3 190 cm−1 0.22 cm−1

Threshold ionization field n−4 33 kV cm−1 3.3 V cm−1

Orbital radius n2 147 a0 1.50× 104 a0

Geometric cross section n4 6.8× 104 a2
0 7.1× 108 a2

0

Dipole moment 〈n`|er|n(`+ 1)〉 n2 143 ea0 1.50× 104 ea0

Polarizability n7 0.21 MHz cm2 V−2 2× 106 MHz cm2 V−2

Radiative lifetime n3 c 1.0 µs 0.53 ms d

a Atomic units: Bohr radius a0 = 0.5292× 10−10 m; dipole moment ea0 = 8.478× 10−30 C m = 2.542 D.

b From Gallagher (1988).

c In the presence of electric fields the lifetimes scale as n4 and if the electric fields are inhomogeneous even as

n5 (Merkt 1997).

d Extrapolated from the values given by Lindg̊ard and Nielsen (1977).

from the ground state, (iii) the fine-structure (e.g., from the spin-orbit interaction) and hyperfine-

structure (e.g., from the Fermi contact interaction) splittings involving the Rydberg electron, which

are proportional to the Rydberg electron density in the core region, i.e., to n−3, and become negligible

at high n values, (iv) the spacings between neighboring Rydberg states of a given series, which also
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decrease as n−3 and make it difficult to spectrally resolve adjacent members of a Rydberg series at

high n values, (v) the very high sensitivity to electric and magnetic fields (the polarizability scales as

n7), and (vi) the binding energies, which decrease as n−2 and vanish at n =∞ and make it possible

to derive precise ionization energies and ionic energy levels by extrapolation of the Rydberg series.

Chapters hrs024 (Ch. Jungen, 2010) and hrs015 (M. Jungen, 2010) of this handbook are specifically

devoted to Rydberg states, and Chapter hrs071 (Merkt et al., 2010) illustrates the use of high Rydberg

state in high-resolution photoelectron spectroscopy.

2.1.7 Atoms in magnetic fields

In the presence of a magnetic field, an additional term,

−~̂µm · ~B, (59)

arises in the Hamiltonian of a system having a magnetic moment ~µm. In the case of a homogeneous

magnetic field ~B = (0, 0, B) applied along the z axis of the laboratory frame, this term simplifies to

−µ̂zB and induces energy shifts and/or lifts the degeneracy of the magnetic sublevels. The effect of

a magnetic field on the spectrum of an atom or a molecule is called the Zeeman effect, the physicist

P. Zeeman being the first to observe it as a broadening of the sodium D lines. This subsection sum-

marizes the main aspects of the Zeeman effect on the energy levels of atoms.

The normal Zeeman effect

The simplest situation is that of an atom with S = 0, for which the effect of the magnetic field is

referred to as the normal Zeeman effect for historical reasons. In this case, J = L and MJ = ML, and

the magnetic moment originates from the orbital motion of the electrons (see Equation (48)):

µ̂m,z = −µB

~
L̂z. (60)

In first-order perturbation theory, the energy shift caused by the magnetic field is, according to

Equations (59) and (60), given by

∆E = −µm,zB = µBBML. (61)

A given term with L = J thus splits into 2L+ 1 magnetic sublevels corresponding to the possible ML

values. The energy separation of two sublevels differing in ML by 1 is simply µBB, grows linearly

with B, and does not depend on the atom nor on the state of the atom under consideration. The

normal Zeeman effect on the energy level structure of 1S, 1P, and 1D terms is illustrated in Figure 8.

Particularly simple spectra result, as will be discussed in Subsection 3.2.3. The normal Zeeman effect

is primarily used to unambiguously distinguish S = 0 from S 6= 0 terms and can also be used to

measure magnetic field strengths, the value of the Bohr magneton being known with high precision

(see above).
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Figure 8: The normal Zeeman effect on the energy level structure of a) 1S, b) 1P, c) 1D and d) 1F

terms

The anomalous Zeeman effect

When S 6= 0, the component of the magnetic moment along the field axis (taken here as the z axis)

is given by

µ̂m,z = −gJ
µB

~
Ĵz, (62)

and the energy levels are shifted by

∆E = gJµBBMJ . (63)

The shifts and splittings of the energy levels now depend on the state under investigation through

the dependence of gJ on S, L and J (see Equation (52)). The anomalous Zeeman effect thus leads

to more complex spectra than the normal Zeeman effect (see Subsection 3.2.3), and the observed

splittings permit the unambiguous determination of the term symbols. In the early part of the 20th

century, the interpretation of the anomalous Zeeman effect represented a real puzzle and played an

important role in the discovery of the electron spin (Enz 2002). Today the distinction between normal

and anomalous Zeeman effect seems artificial because the normal Zeeman effect is merely a special

case of Equation (63) for S = 0 and gJ = 1.

The Paschen-Back effect

In the limit of very high magnetic field strength, the interaction of the magnetic moments ~̂µS and

~̂µL of a state subject to LS coupling at zero magnetic field strength with the magnetic field becomes

stronger than the spin-orbit interaction. This situation is know as the Paschen-Back effect. In terms

of the vector model discussed in the context of Figure 5, this limit implies that the precession of ~L and

~S around the axis determined by the magnetic field vector (i.e., the z axis of the laboratory frame)

is faster than that of ~L and ~S around the axis determined by the direction of ~J in the absence of

magnetic field. Consequently, the spin-orbit interaction can be described as taking place between the

”averaged” spin and orbital angular momentum vectors, i.e., their z components, as is illustrated by
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Figure 9a. The corresponding operator (see Equation (37)) can be approximated by (2πc/~)AL̂zŜz.

In this high-field limit, the Zeeman level shifts ∆E can be described by

∆E = µBB(ML − geMS) + hcAMLMS . (64)

(a)
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~S

Jz

Jy

Jx

h̄ML

h̄MS

h̄MJ

(b)

~J

~I

~L

~S

Jz

Jy

Jx

h̄MJ

h̄MF

h̄MI

Figure 9: Vector model illustration of (a) the Paschen-Back effect and (b) the nuclear Paschen-Back

effect

The Paschen-Back effect is only observable in atoms subject to a particularly weak spin-orbit

interaction and/or at extremely large magnetic field strengths. Below 1 T, the anomalous Zeeman

effect discussed above is typically observed. The anomalous Zeeman and Paschen-Back effects can

thus be recognized as low- and high-field limits of the interaction between LS coupled states and

magnetic fields. The treatment of intermediate cases leads to more complicated energy level patterns

than predicted by Equations (63) and (64). An effect similar to the Paschen-Back effect can also be

observed in electric fields and, indeed, the electronic angular momentum coupling scheme for diatomic

molecules discussed as case (a) in Subsection 2.2.5 can be regarded as a Paschen-Back effect induced

by the electric field along the internuclear axis of a diatomic molecule.

The nuclear Paschen-Back effect

The hyperfine interaction being much weaker than the spin-orbit interaction, even moderate magnetic

fields lead to precessions of ~J and ~I around the axis determined by the field vector that are faster

than that of ~J and ~I around ~F (see Figure 9b). In this case, referred to as the nuclear Paschen-Back

effect, the effect of the magnetic field on the hyperfine structure can be described as

∆E = B(µBgJMJ − µNgIMI) + haMJMI . (65)

The nuclear Paschen-Back effect is usually encountered at field strengths large enough to resolve

the nuclear Zeeman effect in electronic spectra. As a simple illustration, Figure 10 shows the evolution

of the hyperfine structure of the H atom with the magnetic field. At field strengths beyond ≈ 1 T,

the energy level pattern reveals a main splitting arising from the first term of Equation (65) with
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Figure 10: The hyperfine structure of the H atom in its 2S1/2 ground state and its dependence on the

magnetic field.

MJ = MS = ms and gJ = −ge ≈ 2. Each of the two groups of ms levels are further split by the other

two terms. After Figure 3, which illustrated the evolution from LS to jj coupling, Figure (10) is a

second example of a correlation diagram and shows how the energy level structure of the (1s)1 2S1/2

ground state of H evolves from the situation described by Equation (56) and depicted in Figure 6a at

B = 0 to that described by Equation (65) at B = 1 T. In the presence of a homogeneous magnetic

field, the anisotropy of free space is broken, and even F ceases to be a good quantum number. The

only good quantum number that can be used as a label for the states through the entire diagram is

MF .

2.1.8 Atoms in electric fields

Atomic energy levels are also affected by electric fields and the resulting energy shifts and splittings are

referred to as the Stark effect. The effect of the electric fields is particularly pronounced in Rydberg

states which are highly polarizable (the polarizability scales as n7, see Table 6). The primary effect of

an electric field is to couple energy levels from configurations differing by one spin-orbital only, with

the additional restriction that the coupled spin-orbitals should only differ by one unit of the orbital

angular momentum quantum number `. The hydrogen atom represents a very special case because

all orbitals of the same principal quantum number n are degenerate. If the field is applied along the

z axis ( ~E = (0, 0, E)), the term eEz = eEr cos θ has to be added to the Hamiltonian operator which

becomes:

Ĥ = − ~2

2me
∇2

e −
e2

4πε0r
+ eErcosθ = Ĥo + Ĥ ′, (66)
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At low field strength, the effect of the electric field can be treated adequately with first-order per-

turbation theory for degenerated states. The matrix elements of Ĥ ′ in the |n`m〉 basis (we use m

instead of m` to simplify the notation) can be written as 〈n′`′m′|Er cos θ|n`m〉. These elements can

be expressed as products of radial and angular matrix elements E〈n′`′|r|n`〉〈`′m′| cos θ|`m〉 and imply

the perturbation selection rules:

∆m = m′ −m = 0, ∆` = `′ − l = ±1, ∆n = 0,±1,±2, . . . . (67)

The ∆` selection rule can be derived using Tables 1 and 2 if one uses the fact that z = r cos θ

transforms as the irreducible represention Pu of the Kh point group. The selection rule of the magnetic

quantum number can be rationalized by the fact that m remains a good quantum number in cylindrical

symmetry. Because of the degenerate nature of all |n`m〉 states having the same n value in the

hydrogen atom at zero fields, the perturbation leads to a linear splitting of the degenerate energy

levels (the linear Stark effect) represented in Figure 11a for n = 5. The electric field breaks the

central symmetry, so that the orbital angular momentum quantum number ` ceases to be a good

quantum number. Instead, states of different angular momentum quantum number ` but the same

values of m are mixed by the electric field. The atoms are polarized by the electric field, as illustrated

in Figure 11b, in which the electron density in a plane containing the z axis is displayed for the five

m = 0 levels. The energy levels are more easily expressed as a function of the so-called parabolic

quantum numbers n1 and n2 that arise from the solution of Schrödinger equation of the H atom in

parabolic coordinates (Gallagher 1994) than as a function of `, because the |nn1n2m〉 basis functions

are adapted to the cylindrical symmetry of the problem. The quantum numbers n1 and n2 can each

take the values between 0 and n − 1. In atomic units, the energy levels are given to first order of

perturbation theory by

Enn1n2m = − 1

2n2
+

3

2
(n1 − n2)nE (68)

and depend linearly on the field strength. One thus speaks of the linear Stark effect. To label the

states, it is useful to use the difference k between n1 and n2. For given values of n and |m|, k takes

values ranging from −(n − |m| − 1) to (n − |m| − 1) in steps of 2 (see Figure 11a). The plots of

the electron density represented in Figure 11b enable one to see that all states except the k = 0

states have electric dipole moments and to understand why the states with a positive value of k are

shifted to higher energies by the field, whereas those with a negative value of k are shifted to lower

energies. Equation (68) can be converted to SI units using the fact that the ratio between the atomic

unit of energy and the atomic unit of electric field is ea0 with e = 1.602176487(40) · 10−19 C and

a0 = 5.2917720859(36) · 10−11 m:

Enn1n2m = −hcRH

n2
+

3

2
ea0(n1 − n2)nE. (69)

Expressing the positions in the spectroscopic unit of cm−1, one obtains:

ν̃nn1n2m/cm−1 = −RH/cm−1

n2
+ 6.40215 · 10−5(n1 − n2)n(E/(V/cm)). (70)
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Figure 11: The linear Stark effect in the n = 5 state of atomic hydrogen. (a) Energy level diagram;

(b) Electron density in the xz plane of the m = 0 states. The position of the nucleus is at the origin

of the coordinate system. k represents the difference n1 − n2.

In polyelectronic atoms, the levels that can be coupled by the electric field are nondegenerate and the

Stark effect is quadratic, i.e., the energies depend quadratically on E, as is expected from second-order

perturbation theory. However, nonpenetrating Rydberg states, which are degenerate at zero-field (see

Figure 7), represent an exception to this behavior, and behave very similarly in an electric field to

the states of the hydrogen atom. Stark spectra of Ar Rydberg states are discussed in Subsection 3.2.3

(see Figure 43).

2.2 Diatomic molecules

Homonuclear diatomic molecules (H2, N2,. . .) and heteronuclear diatomic molecules (NO, HCl,. . .)

belong to the D∞h and C∞v point groups, respectively. The character tables of these point groups

are given in Tables 7 and 8, and the corresponding product table is presented in Table 9.
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Table 7: Character table of the C∞v point group.

C∞v E 2Cϕ∞ . . . ∞σv
Σ+(= A1) 1 1 . . . 1 z x2 + y2, z2

Σ−(= A2) 1 1 . . . −1 Rz

Π(= E1) 2 2 cosϕ . . . 0 x, y;Rx, Ry xz, yz

∆(= E2) 2 2 cos 2ϕ . . . 0 x2 − y2, xy

Φ(= E3) 2 2 cos 3ϕ . . . 0

. . . . . . . . . . . . . . .

Table 8: Character table of the D∞h point group.

D∞h E 2Cϕ∞ . . . ∞σv i 2Sϕ∞ . . . ∞C2

Σ+
g 1 1 . . . 1 1 1 . . . 1 x2 + y2, z2

Σ−g 1 1 . . . −1 1 1 . . . −1 Rz

Πg 2 2 cosϕ . . . 0 2 −2 cosϕ . . . 0 Rx, Ry xz, yz

∆g 2 2 cos 2ϕ . . . 0 2 2 cos 2ϕ . . . 0 x2 − y2, xy

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Σ+
u 1 1 . . . 1 −1 −1 . . . −1 z

Σ−u 1 1 . . . −1 −1 −1 . . . 1

Πu 2 2 cosϕ . . . 0 −2 2 cosϕ . . . 0 x, y

∆u 2 2 cos 2ϕ . . . 0 −2 −2 cos 2ϕ . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .
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Table 9: Direct product table of the point groups C∞v and D∞h. For D∞h: g × g = u × u = g und

g × u = u× g = u.

× Σ+ Σ− Π ∆ Φ . . .

Σ+ Σ+ Σ− Π ∆ Φ . . .

Σ− Σ+ Π ∆ Φ . . .

Π Σ+,Σ−,∆ Π,Φ ∆,Γ . . .

∆ Σ+,Σ−,Γ Π,H . . .

Φ Σ+,Σ−, I . . .

. . . . . . . . . . . . . . . . . . . . .

The orbitals and electronic states of molecules are labeled σ+, π, δ,. . . and Σ+, Σ−, Π, ∆, . . .,

respectively, according to the irreducible representations of the corresponding point groups. Nonde-

generate orbitals (or states) belong to one-dimensional irreducible representations (σ (Σ)), whereas

doubly-degenerate orbitals (or states) belong to two-dimensional irreducible representations (π (Π), δ

(∆), φ (Φ),. . . ).

The symmetry labels of molecular orbitals and electronic states of diatomic molecules are deter-

mined using the same procedure as for atoms: Molecular orbitals are designated by lower-case Greek

letters (σ+, π, δ, . . . for heteronuclear diatomic molecules and σ+
g , σu, πg, πu, . . . for homonuclear di-

atomic molecules). Electronic states are designated by capital Greek letters (Σ+,Σ−,Π,∆, . . . for het-

eronuclear diatomic molecules and Σ+
g ,Σ

−
g ,Σ

+
u ,Σ

−
u ,Πg,Πu, . . . for homonuclear diatomic molecules).

As in atoms, the symmetry labels also contain information on the electronic angular momentum. In

the absence of spin-orbit coupling, the orbital angular momentum is a conserved quantity in a spher-

ically symmetric potential. L and ` are therefore good quantum numbers in atoms (see Section 2.1).

In diatomic molecules, the symmetry of the potential is reduced to cylindrical symmetry, so that

only the projection of the total orbital angular momentum onto the internuclear axis is conserved as

long as spin-orbit coupling can be neglected. The irreducible representations σ, π, δ, . . . correspond to

orbitals with values of 0, 1, 2, . . . of the orbital angular momentum projection quantum number λ

on the internuclear axis. Similarly, Σ,Π,∆, . . . are used to label electronic states with total orbital

angular momentum projection quantum number Λ = 0, 1, 2, . . . on the internuclear axis, respectively.

Orbitals of σ− symmetry do not exist because no σ molecular orbital can be formed that has a nodal

plane containing the internuclear axis, but electronic states of Σ− result from configurations in which

at least two orbitals of symmetry π, or δ, or φ, . . . are singly occupied (See Tables 7, 8, and 9, and

also Table 10 below).

How the quantum number λ arises in a linear molecule can also be understood by writing the
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Schrödinger equation for a single electron in an axially symmetric potential in cylindrical coordinates:

∂2Ψ

∂z2
+
∂2Ψ

∂ρ2
+

1

ρ

∂Ψ

∂ρ
+

1

ρ2

∂2Ψ

∂ϕ2
+

8π2m

h
(E − V )Ψ = 0, (71)

where z is the coordinate of the electron along the symmetry axis, ρ its distance from the axis and ϕ

the azimuthal angle.

Inserting the ansatz

Ψ(z, ρ, ϕ) = χ(z, ρ)f(ϕ) (72)

in Eq. (71) and multiplying the equation with ρ2/Ψ gives

ρ2

χ

∂2χ

∂z2
+
ρ2

χ

∂2χ

∂ρ2
+
ρ

χ

∂χ

∂ρ
+

8π2mρ2

h
(E − V (z, ρ)) = − 1

f

∂2f

∂ϕ2
. (73)

Equating both sides to a constant λ2, one obtains the differential equation in ϕ

∂2f(ϕ)

∂ϕ2
+ λ2f(ϕ) = 0, (74)

which has the solutions

f±(ϕ) = e±iλϕ. (75)

Because f(ϕ) = f(ϕ + 2π), λ must be an integer number. The general solution of Equation (71) is

therefore

Ψ±(z, ρ, ϕ) = χ(z, ρ)e±iλϕ. (76)

Since the Ψ± are energetically degenerate (the ±λ solutions have identical eigenvalues), an arbitrary

linear combination is also a solution. The Ψ± have a well-defined value of λ, but their linear combi-

nation does not. The labels σ, π, δ,. . . give the absolute value of λ.

2p

1s

1s 1s

+ -

+

+ -

+

+ +

�u

+
1s

�g 1s
+

Figure 12: Correlation diagram from the two 1s atomic orbitals of two identical separated atoms to

the 1s and 2pz orbitals of the corresponding united atom through the σ+
u and σ+

g molecular orbitals
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2.2.1 Molecular orbitals

In the qualitative representation of molecular orbitals, it is helpful to discuss two extreme situations:

the united-atom limit and the separated-atom limit. In the united-atom limit, the atoms that form

the molecule are considered to have coalesced into a single atom. The united atom limit of 16O2 and

H2 are 32S and 2He, respectively. The molecular structure is determined by progressively separating

the atomic components of the molecule towards the equilibrium internuclear separation. In the limit

of the separated atoms, the atoms forming the molecule are considered at an infinite internuclear sep-

aration. Molecular states are formed by progressively approaching the atoms towards the equilibrium

internuclear separation. The expected form and energetical order of the molecular orbitals can be

predicted by linking the two limiting cases in a correlation diagram by making sure that curves of the

same symmetry do not cross. Figure 12 shows how the two 1s atomic orbitals of the two separated

H atoms correlate through the σ+
u and σ+

g molecular orbitals with the 1s and 2pz orbitals of the

united atoms. By convention the z axis is chosen to be the internuclear axis. Figures 13 and 14

display the correlation diagrams connecting the energy levels of the separated atoms with those of the

united atoms in the case of homonuclear and heteronuclear diatomic molecules, respectively. Different

molecules with their specific internuclear separation occupy different positions along the horizontal

axis of these figures.

The determination of molecular orbitals often relies on the LCAO (linear combination of atomic

orbitals) method. Molecular orbitals φj are formed from symmetry-adapted linear combinations of

atomic orbitals ϕi following

φj =
∑

i

cjiϕi. (77)

Several conditions must be fulfilled to form molecular orbitals that are distinct from the original

atomic orbitals:

• The energies of the atomic orbitals that are combined must be similar.

• The atomic orbitals must overlap at the equilibrium internuclear separation.

• The atomic orbitals must be symmetry compatible.

Figure 15a shows the structure of molecular orbitals of homonuclear diatomic molecules consisting

of atoms of the second row of the periodic system. For Li+2 , Li2, Li−2 , B+
2 , B2, B−2 , C+

2 , C2, C−2 , N+
2

and N2, the energetic ordering of the orbitals is

1σg(1s) < 1σ∗u(1s) < 2σg(2s) < 2σ∗u(2s) < 1πu(2p) < 3σg(2p) < 1π∗g(2p) < 3σ∗u(2p). (78)

In the case of O+
2 , O2, O−2 , F+

2 , F2, F−2 and Ne+
2 , it is

1σg(1s) < 1σ∗u(1s) < 2σg(2s) < 2σ∗u(2s) < 3σg(2p) < 1πu(2p) < 1π∗g(2p) < 3σ∗u(2p). (79)

These two cases are depicted schematically in Figure 15b and c, respectively.
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Figure 13: Correlation diagram illustrating the evolution of molecular orbitals between the separated

atoms limit (right) and the united atoms limit (left) for homonuclear diatomic molecules (Adapted

from Herzberg (1989)).
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Figure 14: Correlation diagram between separated atoms (right) and united atoms (left) for heteronu-

clear diatomic molecules. (Adapted from Herzberg (1989)).
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Figure 15: (a) Schematic representation of molecular orbitals in homonuclear diatomic molecules

made from 1s, 2s and 2p atomic orbitals. Molecular orbital energy diagram for homonuclear diatomic

molecules formed from the lighter (b) and the heavier (c) atoms from the second row of the periodic

system of elements.

2.2.2 Electronic configurations

Electronic configurations are obtained by filling the spatial orbitals according to the Pauli principle

with no more than two electrons. The ground-state configuration of N2, e.g., is

(1σg)2(1σ∗u)2(2σg)2(2σ∗u)2(1πu)4(3σg)2 (80)

and the first two excited configurations are

(1σg)2(1σ∗u)2(2σg)2(2σ∗u)2(1πu)4(3σg)1(1π∗g)1 (81)

and

(1σg)2(1σ∗u)2(2σg)2(2σ∗u)2(1πu)3(3σg)2(1π∗g)1. (82)

The ground-state configuration of O2 is

(1σg)2(1σ∗u)2(2σg)2(2σ∗u)2(3σg)2(1πu)4(1π∗g)2. (83)

If two electrons are located in the same spatial orbital, they must have opposite spins. As in

the case of atoms, an electronic configuration leads in general to several electronic terms and several

electronic states.
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2.2.3 Electronic wave functions and electronic terms

As explained in Subsection 2.1.2, N -electron wave functions Ψ(q1, q2, . . . , qN ) of molecules must obey

the generalized Pauli principle. Consequently, they must be antisymmetric under the pairwise permu-

tation of electrons, which is automatically fulfilled by Slater determinants of the general form given

by Equation (15). The spatial part of the one-electron functions φi corresponds to a molecular orbital

of the form (76) and (77). To determine the possible electronic terms, only shells and subshells with

partially filled orbitals need be considered, because full shells and subshells are totally symmetric

(1Σ+
g and 1Σ+ for homonuclear and heteronuclear diatomic molecules, respectively.). The character

Γ of the spatial part of the electronic term is determined from the direct product (see Table 9) of the

irreducible representations

Γ = Γ(f(qi))⊗ Γ(f(qj))⊗ . . . (84)

of the molecular orbitals, where the product extends over all electrons in partially filled molecular

orbitals.

Applying Eq. (84) to the configurations (80)-(83), one can draw the following conclusions:

1. Since all orbitals of the configuration (80) are fully occupied, the totally-symmetric representa-

tion Σ+
g results. Moreover, because all electrons are paired, a unique singlet term of symmetry

1Σ+
g is obtained. Consequently, the ground electronic state of N2 is designated as X 1Σ+

g .

2. The (3σg)1(1π∗g)1 part of configuration (81) leads to a Πg term. The corresponding spin multi-

plicities are derived below in Subsection 2.2.4.

3. Because (1πu)3 can be considered as a (1πu)1 electron hole, the (1πu)3(1π∗g)1 part of the config-

uration (82) can be treated as the configuration 1(πu)1(1π∗g)1, which leads to the terms Σ+
u , Σ−u

and ∆u. Their energetic order and multiplicities are derived in the next subsection.

2.2.4 Spin multiplicity

As explained in Subsection 2.1.3, polyelectron wave functions can be written as a product of a spatial

part (ΨR(qi)) and a spin part (ΨS(mi)).

Ψ(q1,m1, q2,m2, . . .) = ΨR(q1, q2, . . .)×ΨS(m1,m2, . . .). (85)

For simplicity, we consider here only two-electron wave functions and can therefore use the results

presented in Tables 4 and 5. The extension to more complicated situations is straightforward. Because

a two-electron wave function must be antisymmetric under permutation of the coordinates of the

electrons, it must have either a symmetric spatial part (ΨR
(s)(qi)) and an antisymmetric spin part

(ΨS
(a)(mi)) or vice versa (ΨR

(a)(qi) and ΨS
(s)(mi)).

In the determination of the multiplicity of an electronic term in accordance to Tables 4 and 5,

three cases have to be distinguished:
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• case 1:

The two electrons are located in different molecular-orbital shells, as in the configuration (81)

((3σg)1(1π∗g)1). Both the symmetric and the antisymmetric spatial parts are nonzero. Conse-

quently, both singlet and triplet states are allowed, and configuration (81) leads to the two terms

1Πg and 3Πg.

• case 2:

The two electrons are located in the same molecular-orbital shell and in the same spatial orbital

(φ1 = φ2), so that ΨR
(a)(q1, q2) = 0. The triplet state thus does not exist. This situation arises

in the (1πg)2 configuration of O2, when both electrons are located in either the λ = 1 or the

λ = −1 orbital. In this case, Λ is equal to ±2 and the corresponding term is 1∆g.

• case 3:

The two electrons are located in the same MO-shell but in different orbitals. This situation also

arises in the (2πg)2 configuration of O2, when each of the two λ = ±1 orbitals is occupied by

one electron (Λ = 0). The spatial part may be either symmteric (ΨR
(s)(q1, q2) = (π+(1)π−(2) +

π+(2)π−(1))/
√

2), which results in a 1Σg term, or antisymmetric (ΨR
(a)(q1, q2) = (π+(1)π−(2)−

π+(2)π−(1))/
√

2), which corresponds to a 3Σg term. To determine whether these 1Σg and 3Σg

terms are Σ−g or Σ+
g , one has to determine their symmetry with respect to the operation σv (see

Table 8), which represents the reflection through an arbitrary plane containing the internuclear

axis. Using the ansatz (76) for the π+ and π− functions, we obtain

ΨR
(a)(q1, q2) =

1√
2

[
χ(z1, ρ1)eiϕ1χ(z2, ρ2)e−iϕ2 − χ(z2, ρ2)eiϕ2χ(z1, ρ1)e−iϕ1

]

=
1√
2
χ(z1, ρ1)χ(z2, ρ2)

(
ei(ϕ1−ϕ2) − e−i(ϕ1−ϕ2)

)

=
√

2iχ(z1, ρ1)χ(z2, ρ2) sin(ϕ1 − ϕ2). (86)

for the 3Σ term, and

ΨR
(s)(q1, q2) =

√
2χ(z1, ρ1)χ(z2, ρ2) cos(ϕ1 − ϕ2) (87)

for the 1Σ term.

A σv reflection inverts the sign of (ϕ1 − ϕ2). Because of the relations sin(−x) = − sin(x) and

cos(−x) = cos(x), ΨR
(s)(q1, q2) corresponds to the 1Σ+

g term and ΨR
(a)(q1, q2) to the 3Σ−g term.

Consequently, the (1πg)2 configuration of O2 possesses the three terms 3Σ−g , 1Σ+
g und 1∆g. The

energetically favorable exchange interaction in the triplet term causes the X 3Σ−g state to be the

ground state of O2.

This procedure can be applied to arbitrary configurations. Table 10 summarizes the terms resulting

from the most common electronic configurations of diatomic molecules.
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Table 10: Terms belonging to the most frequent electronic configurations of diatomic molecules. The

index i designates inverted term multiplets. The g and u labels relevant for homonuclear diatomic

molecules can determined from the number N of electrons in MO orbitals of u symmetry, When N is

gerade, the terms are g, otherwise they are u.

config. terms config. terms

σ2 1Σ+ π2σδ 1Σ+,1 Σ−,1 ∆(2),1 Γ,3 Σ+,3 Σ−,3 ∆(3),
3Γ,5 ∆

π2 1Σ+,3 Σ−,1 ∆ π2ππ 1Σ+(3),1 Σ−(3),1 ∆(4),1 Γ,3 Σ+(4),
3Σ−(4),3 ∆(5),3 Γ,5 Σ+,5 Σ−,5 ∆

π3 2Πi π2π2 1Σ+(3),1 Σ−,1 ∆(2),1 Γ,3 Σ+(2)
3Σ−(2),3 ∆(2),5 Σ+

π4 1Σ+ π3σ 1Π,3 Πi

δ2 1Σ+,3 Σ−,1 Γ π3π 1Σ+,1 Σ−,1 ∆,3 Σ+,3 Σ−,3 ∆

δ3 2∆i π3δ(π3δ3) 1Π,1 Φ,3 Π,3 Φ

δ4 1Σ+ π3σσ 2Π(2),4 Π

π2σ 2Σ+,2 Σ−,2 ∆,4 Σ− π3π2 2Πi,
2 Π(2),2 Φi,

4 Πi

π2π 2Π,2 Πi(2),2 Φ,4 Π π3π3 1Σ+,1 Σ−,1 ∆,3 Σ+,3 Σ−,3 ∆i

π2δ 2Σ+,2 Σ−,2 ∆,2 ∆i,
2 Γ,4 ∆ π3π2σ 1Π(3),1 Φ,3 Πi(2),3 Π(2),3 Φi,

5 Πi

π2σσ 1Σ+,1 Σ−,1 ∆,3 Σ+,3 Σ−(2),3 ∆,5 Σ− π3π3σ 2Σ+(2),2 Σ−(2),2 ∆,2 ∆i,
4 Σ+,4 Σ−,4 ∆i

π2σπ 1Π(3),1 Φ,3 Π(2),3 Πi(2),3 Φ,5 Π

The classification of terms presented in this subsection relies on the assumption that electrostatic

(including exchange) interactions are dominant and the effects of spin-orbit coupling can be disre-

garded. This assumption is justified as long as the 2S+1Λ terms are separated in energy by an amount

larger than the spin-orbit interaction. This tends to be case in molecules made of light atoms, for

which spin-orbit inteactions are genuinely weak, and at short internuclear distances, where the atomic

orbitals significantly overlap, the electronic motion is strongly coupled to the internuclear axis, and

the exchange interaction is substantial. Consideration of the spin-orbit interaction makes it necessary

to extend the classification of electronic terms.

2.2.5 Spin-Orbit Coupling

To assess the effects of the spin-orbit coupling on the electronic structure of diatomic molecules,

one needs to establish the relative strength of the interactions that couple the different electronic

angular momenta. The treatment is similar to that discussed for atoms in Subsection 2.1.4, with

the important difference that only the projections ~λi (~Λ; Λ =
∑
i λi) of the (total) orbital angular

momentum vectors ~̀i (~L) along the internuclear axis, rather than the vectors ~̀i and ~L themselves,

are constants of motion in the absence of spin-orbit coupling.
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The strength of the spin-orbit coupling depends on the molecule, the electronic configuration and

the internuclear separation. It is convenient to classify and label the electronic states according to ide-

alized limiting cases, presented as cases (a)-(d) below, which form the starting point of the widely used

classification of angular momentum coupling in rotating molecules originally introduced by F. Hund

(Hund 1926b,a, 1927a,c,b,d, 1928, 1930, 1933) and extended by Mulliken (Mulliken 1930a,b,c; Mul-

liken and Christy 1931; Mulliken 1931). If the rotational motion is neglected, the relevant interactions

are:

1. The interactions of the orbital motion of the electrons with the cylindrically symmetric electro-

static field of the nuclei. This interaction causes a precession of the orbital angular momentum

vectors around the internuclear axis. Whereas neither ~̀i nor ~L are constants of motion in cylin-

drical symmetry (compare Table 1 with Tables 7 and 8), λi and Λ are good quantum numbers

in the absence of spin-orbit coupling. When the electrostatic interactions between electrons

and nuclei are strong, the terms resulting from the different configurations are widely spaced in

energy, and even the different terms of a given configuration are energetically well separated.

2. The electrostatic exchange interaction. This interaction gives rise to an energetic splitting

between states of different total electron spin quantum number S, as discussed in the previous

subsection.

3. The spin-orbit interaction. The spin-orbit interaction can be regarded as an interaction between

the magnetic moments resulting from the spin and orbital angular momentum vectors. This

interaction can be described as inducing a precession of ~S (or ~si) and ~L (or ~̀
i) around the

resultant vectors ~J (or ~ji) (see Subsection 2.1.4). When the spin-orbit interaction becomes

larger than the exchange interaction, S ceases to be a good quantum number.

Angular momentum coupling cases of the ”LS-coupling” type

When interactions 1 and 2 above are larger than interaction 3, situations analogous to LS coupling

in atoms result that can be described by two limiting cases, called cases (a) and (b) below. In both

cases, S and Λ are good quantum numbers.

Case (a):

In this first case, the electrostatic coupling of the orbital motion to the internuclear axis induces a

fast precession of ~L around the internuclear axis. On the longer time scale of the weaker spin-orbit

interaction, the precession of the orbital anular momentum vector is effectively averaged out and is

perceived as a vector of length ~Λ pointing along the internuclear axis, with magnetic moment −γeΛ~.

The orbital motion leads to a magnetic field pointing along the internuclear axis which then becomes

the quantization axis for the electron spin vector ~S. ~S precesses with projection quantum number Σ

around the internuclear axis as a result of the spin-orbit interaction (see Figure 16a). Next to S, the

projection quantum numbers Λ and Σ and their sum Ω are good quantum numbers. Because of the

spin-orbit coupling, the total energy depends on the relative sign of Σ and Λ, so that usually only the
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absolute values of Λ and Ω are used to designate the terms. The nomenclature 2S+1ΛΩ is used, and

the 2S+ 1 components of the spin multiplet are split according to their spin-orbit interaction energies

which can be well approximated by

ESO = hcAΛΣ, (88)

where A (in cm−1) represents an effective spin-orbit coupling constant (compare with Equations (37)).

The spin-orbit splittings usually depend on the internuclear distance and thus on the vibrational level

so that the spin-orbit coupling constant of a given vibrational level is further labeled with the subscript

”v“ as Av. A and Av can be negative, in which case one speaks of inverted multiplets. Equation (88)

can be regarded as a Paschen-Back effect induced by the electrostatic field of the nuclei (see last term

on the right-hand side of Equation (64)).

“L”
S

�� ��

��

��

“L”

S

J

a) b)

Figure 16: Electronic angular momentum coupling in the limit of (a) weak spin-orbit interaction (Case

(a)) and (b) strong spin-orbit interaction (case (c)). ”~L” is used instead of ~L to stress that L is usually

not a good quantum number in molecules.

———————————————————

Example: The [. . .][σ(2p)]2[π(2p)]4[π∗(2p)]1 X 2Π ground electronic state of NO is separated from the first elec-

tronically excited state by ≈ 44000 cm−1. The two spin-orbit components with Ω = 1/2, 3/2 are only sep-

arated by ≈ 120 cm−1, and the ground state is X 2Π1/2. A weak coupling between the vibrational and the

electronic motion causes a dependence of the spin-orbit constant (A in Equation (88)) on the vibrational state

(Av/(cm−1)= 123.26− 0.1906(v + 1/2)− 0.018(v + 1/2)2) (Huber and Herzberg 1979).

———————————————————

Case (b):

In this second case, the spin-orbit interaction is negligible and ~S is not quantized along the internuclear

axis. Consequently Σ is not defined and the 2S+1 components of the spin multiplet remain degenerate

in the nonrotating molecule. This case is characteristic of Λ = 0 states. The good electronic angular

momentum quantum numbers in this case are Λ and S.



HRS004 Fundamentals of electronic spectroscopy 46

———————————————————

Example: The [. . .][πu(2p)]4[σg(2p)]1 X 2Σ+
g ground electronic state of N+

2 is separated from the first electronically

excited state by about 9000 cm−1 (Huber and Herzberg 1979). Except for the twofold spin degeneracy, the situation

is similar to that in a 1Σ+
g state.

———————————————————

Angular momentum coupling cases of the ”jj-coupling” type

When the spin-orbit interaction is stronger than the electrostatic interactions, ~S is not a constant

of motion, nor are the projections ~Λ and ~Σ of the orbital and spin angular momentum vectors.

This situation can arise either when the spin-orbit interaction is particularly large, for instance in

molecules containing heavy atoms (see case (c) below), or when the electrostatic coupling of the

electronic angular momenta to the internuclear axis is particularly weak, for instance in weakly bound

molecules or in Rydberg states (see case (d) below).

Case (c):

In this case, the strong spin-orbit interaction couples the spin (~si or ~S) and orbital (~̀i or ~L) angular

momentum vectors, which can be viewed as precessing around the resultant vectors (~ji or ~Ja). The

weaker electrostatic coupling of the orbital motion to the internuclear axis leads to a slower precession

of the resultant vectors around the internuclear axis with projection ~Ω. The only good quantum

number of the nonrotating molecule is Ω (see Figure 16b).
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Hund’s cases

(a) + (b)

Hund’s case (c)

(a) (b)

Figure 17: a) Lowest four electronic configurations of Xe+
2 in the notation introduced by Mulliken

(1970). The bold arrows indicate the electrons that are missing in the respective configurations. b)

Potential energy functions of the six corresponding low-lying electronic states which can be described

by cases (a) and (b) at short internuclear distances and by case (c) at large internuclear distances.

———————————————————

Example: The low-lying electronic states of Xe+
2 (see Mulliken (1970); Zehnder and Merkt (2008)). Neglecting the

spin-orbit interaction, the electronic configurations A = [. . .][σg(5p)]2[πu(5p)]4[π∗g(5p)]4[σu
∗(5p)]1,
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Table 11: Spin-orbit interaction matrix describing the coupling between the states of 2Σ+ and 2Π

symmetry in the homonuclear rare gas dimer ions.

———————————————————

2Σ+
1/2

2Π1/2
2Π3/2

2Σ+
1/2 VΣ(R) − a√

2
0

2Π1/2 − a√
2

VΠ(R) + a
2 0

2Π3/2 0 0 VΠ(R)− a
2

B = [. . .][σg(5p)]2[πu(5p)]4[π∗g(5p)]3[σu
∗(5p)]2, C = [. . .][σg(5p)]2[πu(5p)]3[π∗g(5p)]4[σu

∗(5p)]2, and

D = [. . .][σg(5p)]1[πu(5p)]4[π∗g(5p)]4[σu
∗(5p)]2 give rise to four electronic states A 2Σ+

u , B 2Πg , C 2Πu and

D 2σg (see Figure 17a). At short internuclear distances, the electrostatic interactions lead to splittings that are

larger than those resulting from the spin-orbit interaction. Consequently, the two 2Σ+ and the two 2Π states

can be approximately described by the cases (b) and (a) presented above, respectively, and six states result: A

2Σ+
u , B 2Π3/2g, B 2Π1/2g, C 2Π3/2u C 2Π1/2u and D 2Σ+

g (see left-hand side of Figure 17b). As the internuclear

distance increases, the electrostatic coupling to the internuclear axis weakens, and the spin-orbit interaction starts

dominating. As the internuclear distance goes towards infinity, two dissociation limits result, the lower one being

Xe 1S0 + Xe+ 2P3/2, and the upper one Xe 1S0 + Xe+ 2P1/2. The energetic splitting between these two limits

corresponds to the spin-orbit splitting of the Xe+ ion (see right-hand side of Figure 17b). The lower limit has

Ja = 3/2, and thus four states, two Ω = 3/2 and two Ω = 1/2 states, designated by ”I”, dissociate to this limit,

whereas only two Ω = 1/2 states, designated by ”II”, dissociate to the upper limit which has Ja = 1/2. The

Ω = 1/2 states of g (u) symmetry become equal mixtures of the B 2Π1/2g and D 2Σ+
g states (A 2Σ+

u and C 2Π1/2u

states) at large internuclear distances, and the Λ label becomes inadequate. The evolution from the coupling cases

(a) and (b) at short distances to case (c) at large distances can be described semi-quantitatively by considering

the spin-orbit coupling matrix in Table 11 (Cohen and Schneider 1974). The matrix, in the derivation of which the

spin-orbit coupling constant is assumed to be independent of the internuclear separation, clearly shows that the

spin-orbit interaction does not only split the 2Π state into two components with Ω = 3/2 and 1/2 but also mixes

the two Ω = 1/2 states.

———————————————————

Case (d):

This case arises when the electrostatic coupling of the electron orbital motion to the internuclear

axis becomes negligible. This case is encountered in Rydberg states at large values of the principal

quantum number of the Rydberg electron. In these states, the Rydberg electron density in the region

of the diatomic molecular ion core, and thus the coupling of the electron to the internuclear axis, are

very small, so that λ and Λ are not defined. Usually, the Rydberg electron spin is not coupled to the

internuclear axis either, and the spin-orbit interaction of the Rydberg electron is negligible. A J+, j-

type coupling scheme [(2S
++1)Λ+

Ω+ ]|n`(sj)〉 similar to that described for atoms by Equation (46), and
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which represents the state as a product of the electronic functions of the ion core and of the Rydberg

electron, is adequate.

——————————————–

Example: N2: |[N+
2 ] . . . (1πu)4(1σg)1 2Σ+

g 〉|20p〉.

——————————————–

2.2.6 Vibronic Structure

Diatomic molecules only possess one vibrational degree of freedom, and thus one vibrational mode

that corresponds to a totally-symmetric representation (1Σ+
g in D∞h and 1Σ+ in C∞v). The vibronic

symmetry is thus the same as the electronic symmetry. The energetic position of the vibrational

energy levels relative to the minimum Tαe of the potential curve of the αth electronic state is given by

Eαv = Tαe + ωαe (v + 1/2)− ωex
α
e (v + 1/2)2 + ωey

α
e (v + 1/2)3 − . . . , (89)

where the second and subsequent terms are a consequence of the anharmonicity of the potential curve.

2.2.7 Rovibronic Structure

The treatment of the rotational structure of diatomic molecules is sometimes reduced to the well-

known formula

EROT = BvJ(J + 1)−Dv(J(J + 1))2, (90)

which includes centrifugal distortion effects and also the variation of the rotational and centrifugal

distortion constants that results from the anharmonicity of the vibrational motion. Equation (90) is

adequate to describe the rotational structure of states of 1Σ+ symmetry, but it does not account for the

details of the rotational energy structure of states of other electronic symmetry, for which the coupling

of rotational, orbital and spin angular momenta must be considered. To present a complete treatment

would extend beyond the scope of this introductory chapter. We limit ourselves here to qualitative

considerations and a presentation of the rotational structures of the simplest situations. The interested

readers are referred to the original articles of F. Hund and R. S. Mulliken (Hund 1926a, 1927c,d, 1928,

1930, 1933; Mulliken 1930b,c; Mulliken and Christy 1931) and to the excellent overviews by Herzberg

(Herzberg 1989), Hougen (Hougen et al. 1970), Zare (Zare 1988), Watson (Watson 1999b), Lefebvre-

Brion and Field (Lefebvre-Brion and Field 2004) and Brown and Carrington (Brown and Carrington

2003) for more detailed treatments.

Since diatomic molecules have a vanishing moment of inertia along the internuclear axis, the

angular momentum vector ~R describing the rotation of the nuclei lies perpendicular to the internuclear

axis. The total angular momentum (without nuclear spins) ~J of a rotating molecule is equal to

~J = ~S + ~L+ ~R = ~S + ~N, (91)
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where ~N represents the total angular momentum without electron spins. The quantum number R

associated with ~R is only a good quantum number in molecules without electronic angular momentum,

i.e., in 1Σ states ( ~J = ~N = ~R), and this is why Equation (90) can only be used for such states. In

all other cases, the coupling between the spin, orbital and rotational motions must be considered

explicitly. The spin-orbit and rotational motions can be described by the effective Hamiltonian

Ĥ = Ĥel + TN(Q) + ĤROT + ĤSO, (92)

where the kinetic energy of the nuclei has been divided into rotational motion ĤROT and vibrational

motion TN (Q). The spin-orbit coupling is described by

ĤSO = A
~̂
L · ~̂S = A(L̂xŜx + L̂yŜy + L̂zŜz), (93)

which is adequate as long as the spin-orbit interaction can be treated in an ”LS”-like coupling manner,

and the rotational motion by

ĤROT =
1

2µR2

~̂
R2 = B(r)[

~̂
J − ~̂L− ~̂

S]2. (94)

The classification in the cases (a)-(d) made in Subsection 2.2.5 can be generalized to rotating

molecules, as was first done by F. Hund (Hund 1927c, 1930, 1933). The angular momentum coupling

schemes can be described by the vector models depicted in Figures 18(a)-(d) (Zare 1988). The basis

for the classification is a hierarchical ordering of the interactions similar to that introduced above

for the nonrotating molecules, but which now includes the interaction between the rotational and

electronic motion. The rotation of the molecule, with its inhomogeneous charge distribution, leads to

a magnetic moment along ~R which couples the rotational motion to the electronic orbital and spin

motions.

Hund’s angular momentum coupling case (a)

This case arises when the energy splittings resulting from the spin-orbit interaction (Equation (88))

are significantly larger than the separation ≈ 2BJ of two neighboring rotational states. In this case,

the hierarchy of interactions of the angular momenta is:

electrostatic coupling of L to internuclear axis� spin− orbit coupling (95)

� coupling between rotational and electronic motion.

The total angular momentum ~J results from the vectorial addition of ~R and the components ~Ω =

~(Λ+Σ) of the electronic angular momentum along the internuclear axis (see Figure 18a). J, Ω, Λ, S

and Σ are good quantum numbers in this case. The rotational motion can be described as a rotation

(nutation) of ~R and ~Ω around ~J .

The coupling between the rotational motion and the electronic motion increases with the degree of

rotational excitation. As J increases to large values, the coupling of the electron spin (and ultimately

also of the orbital) motion with the rotational motion becomes larger than the spin-orbit coupling
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Figure 18: (a) Coupling scheme of angular momenta in Hund’s case (a)-(d)

(and ultimately also larger than the electrostatic coupling of the orbital angular momentum to the

internuclear axis), so that this coupling case evolves first toward Hund’s case (b) and than toward

Hund’s case (d) as R increases and ~S and ~L get decoupled from the internuclear axis. These phenomena

are referred to as S and L uncoupling, respectively, and will be described in more detail below.

Hund’s angular momentum coupling case (b)

In Hund’s case (b), the spin-orbit coupling is negligible and ~S is not coupled to the orbital motion of

the electrons. The hierarchy of angular momentum coupling is

coupling of ~L to internuclear axis � interaction between rotational and electronic motion

� spin− orbit coupling (96)

The total angular momentum ~J results from (1) the vectorial addition of ~R with the component ~Λ

to form a total angular momentum without spin ~N , and (2) the addition of ~N and ~S (see Figure 18b).

The good quantum numbers in Hund’s case (b) are Λ, N, S und J .

Hund’s angular momentum coupling case (c)

In Hund’s case (c), the hierarchy of angular momentum coupling is

spin− orbit interaction � coupling of L̃ to internuclear axis (97)

� coupling of rotational and electronic motion. (98)

~S and ~L couple to form an electronic angular momentum Ja, with component ~Ω along the internuclear

axis. ~J represents the vectorial sum of ~R and ~Ω (siehe Figure 18c). The good quantum numbers in

this case are Ω und J .

Hund’s angular momentum coupling case (d)

In Hund’s case (d), all angular momentum couplings are weak. Neither ~L nor ~S are coupled to the

internuclear axis. ~J is formed from (1) the vector addition of ~R and ~L to ~N , and (2) the vector

addition of ~N and ~S to ~J . The good quantum numbers are R, S, L und J .

———————————————————

Example: NO (1σ)2(1σ∗)2(2σ)2(2σ∗)2(3σ)2(1π)4(np)1. The electronic state can be represented by a closed-shell
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ground-state X 1Σ+ NO+ cationic core surrounded by a weakly bound electron in a diffuse Rydberg orbital of

principal quantum number n and orbital angular momentum quantum number ` = 1. Consequently, L = 1 and

S = 1/2. The rotational quantum number R is equal to that of the ionic core. The weak interaction between ~L

and ~R splits each rotational level into three levels with N = R, R ± 1 which are each further split into doublets

with J = N ± 1/2 by the still weaker interaction with the Rydberg electron spin.

———————————————————

Angular momentum coupling case (e):

The treatment of Rydberg states with Λ > 0, S+ > 0 open-shell ion cores and of the rotational motion

of weakly bound open-shell molecules such as KrHe+ makes it necessary to introduce an additional

angular momentum coupling case, case (e), which exists in several variants as discussed in more detail

by Carrington et al. (1996); Watson (1999b); Brown and Carrington (2003); Lefebvre-Brion and Field

(2004).

The situations described above as Hund’s cases (a)-(e) represent idealized limiting cases. The sets

of good quantum numbers in these limiting cases are helpful in defining the basis functions with which

the Hamiltonian matrix describing the rotational motion is most conveniently expressed. Convenience

can either mean that one would like to have a Hamiltonian matrix that is as close as possible to a

diagonal matrix, in which case one chooses the basis provided by the coupling case which describes

the molecular system under study most closely. This approach has the advantage that the eigenvalues

of the rotational matrix can be determined more easily, an advantage that was important in earlier

days, when computers were not available. Alternatively, convenience can mean that one would like

to set up the Hamiltonian matrix using the basis providing the largest number of quantum numbers,

i.e., the basis corresponding to Hund’s case (a), regardless of which coupling case best describes the

system under study. This procedure, advocated by Hougen et al. (1970), has the advantage that

the treatment of the rotational structure can be made in a universal and straightforward manner.

Although the Hamiltonian matrix has more off-diagonal elements in this case, the determination of

the eigenvalues does not pose significant problems to present-day computers.

The reasons why Hund’s angular momentum coupling cases still need to be introduced today are

twofold: First, the hierarchy of interactions upon which the classification is based is reflected by

distinct spectral patterns. Second, the electronic states are labeled by their good quantum numbers,

and the nomenclature thus depend on the Hund’s coupling case that best describe them: For instance,

the ground electronic state of NO is labeled as X 2Π3/2, as appropriate for a system that can be

approximately described by Hund’s case (a). The ground state of Xe+
2 , on the other hand, is labeled

X 1/2u, or I(1/2u), as appropriate for a system that can be approximately described by Hund’s case

(c).

In the treatment of the rotational structure of diatomic molecules, ĤROT +ĤSO is set up in matrix

form using standard relations of angular momentum algebra

Ĵ± = Ĵx ± iĴy, (99)
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Ĵ2 = Ĵ2
x + Ĵ2

y + Ĵ2
z =

Ĵ+Ĵ− + Ĵ−Ĵ+

2
+ Ĵ2

z (100)

~̂J1 · ~̂J2 = Ĵ1xĴ2x + Ĵ1yĴ2y + Ĵ1zĴ2z =
Ĵ1+Ĵ2− + Ĵ1−Ĵ2+

2
+ Ĵ1zĴ2z, (101)

where ~̂J , ~̂J1 and ~̂J2 represent arbitrary angular momentum vectors and could also stand for ~̂S and ~̂L.

Using these expressions, Equation (94) can be rewritten as

ĤROT + ĤSO = ALzSz +B(Ĵ2 + Ŝ2 − L2
z − 2JzSz)

− B(J+S− + J−S+)

− B(J+L− + J−L+) (102)

+ (A/2 +B)(L+S− + L−S+)

+ (B/2)(L+L− + L−L+).

The matrix elements arising from the different terms can be determined from standard results of

angular momentum algebra, e.g., using the Hund’s case (a) basis |JΩ,Λ, SΣ〉

〈JΩ,Λ, SΣ|Ĵ2|JΩ,Λ, SΣ〉 = ~2J(J + 1) (103)

〈JΩ,Λ, SΣ|Ĵz|JΩ,Λ, SΣ〉 = ~Ω (104)

〈JΩ∓ 1|Ĵ±|JΩ〉 = ~
√
J(J + 1)− Ω(Ω∓ 1) (105)

〈JΩ,Λ, SΣ|Ŝ2|JΩ,Λ, SΣ〉 = ~2S(S + 1) (106)

〈JΩ,Λ, SΣ|Ŝz|JΩ,Λ, SΣ〉 = ~Σ (107)

〈SΣ± 1|Ŝ±|SΣ〉 = ~
√
S(S + 1)− Σ(Σ± 1) (108)

〈JΩ,Λ, SΣ|L̂z|JΩ,Λ, SΣ〉 = ~Λ. (109)

Instead of setting up the Hamiltonian matrix (102) using the Hund’s case (a) basis functions |JΩ,Λ, SΣ〉,
which do not have a well-defined parity, it is more convenient to use as basis functions the linear com-

binations

|JΩ,Λ, SΣ±〉 = |JΩ,Λ, SΣ〉 ± (−1)J−S+s|J − Ω,−Λ, S − Σ〉 (110)

which have a well-defined parity (±). s in Equation (110) is 1 for Σ− states and 0 otherwise.

If the rotational and spin-orbit Hamiltonian matrix is expressed in Hund’s coupling case (a) basis

set, the first line of Equation (102) only gives rise to diagonal elements, with value AΛΣ + B(J(J +

1) + S(S + 1) − Λ2 − 2ΩΣ). The second line leads to off-diagonal elements of the rotational matrix.

Its effect is to mix states with values of Σ and Ω differing by ±1, i.e., it mixes different components

of a spin-orbit multiplet. The mixing becomes significant when the value of the off-diagonal element

(≈ BJ) becomes comparable to, or larger than, the energy separation (≈ A) between neighboring

spin-orbit components. This term thus (1) decouples S from the internuclear axis (corresponding to
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the S uncoupling towards Hund’s case (b) mentioned above) and causes a splitting of the otherwise

doubly degenerate rotational levels, with basis functions |JΩ,Λ, SΣ±〉, of each spin-orbit component.

The term in the third line of Equation (102) couples electronic states with Λ and Ω values differing

by ±1, e.g., Σ states with Π states. When such states are energetically well separated, this term

does not play a significant role, but it can lead to noticeable perturbations of the rotational structure

if the separations between Σ and Π states are accidentally small at certain J values. At very high

values of J , this term starts to efficiently mix states of different Λ values and to decouple ~L from the

internuclear axis (corresponding to the L uncoupling towards case (d) mentioned above).

The term in the fourth line of Equation (102) couples states of the same Ω value but differing in

their Λ and Σ values by ±1 and ∓1, respectively. In cases where the spin-orbit constant A becomes

comparable or larger than the spacing between, for instance, a 2Σ1/2 state and a 2Π1/2 state, efficient

mixing of these states results, but the other spin-orbit component of the Π state (2Π3/2) remains

unaffected. This situation has already been encountered in the example discussed in the previous

section (see Table 11) and leads to Hund’s case (c).

The term in the fifth line of Equation (102) does not directly affect the rotational and spin-orbit

structures but can shift the origin of a given electronic state. Chapter hrs004 (Western 2010) in

this handbook discusses the rotational energy level structure of several molecules. Here, we limit

ourselves to the treatment of the simplest cases of 1Σ+, 1Π, 2Σ+, and 2Π states. These examples

can be generalized to more complex cases. However, when studying a specific case, it is advisable to

first consult the extensive literature on diatomic molecules, in particular the textbooks by Herzberg

(1989); Lefebvre-Brion and Field (2004); Brown and Carrington (2003). The rotational energy level

structures (with symmetry labels) of the most commonly encountered electronic states of diatomic

molecules are depicted schematically in Figure 19.

———————————————————

Examples:

1Σ+ states:

The rotational energy level structure of a diatomic molecule in a 1Σ+ state can be described to a good approximation

by Equation (90). The parity of the rotational functions is determined in this case by the even/odd nature of the

angular momentum quantum number J (J=R in a 1Σ+ state).

1Π states:

Only the first, third and fifth lines of Equation (102) need be considered in this case, because S = 0. The term in

the fifth line does not lead to any J dependence, and its effects are incorporated into the purely electronic term

value. The term in the third line can couple the 1Π state with neighboring 1Σ+ and 1Σ− states. In the absence of

such perturbations, the rotational levels of a 1Π state are given by

E(1Π, J,±)/(hc) = B[J(J + 1)− 1], (111)

and each rotational level is doubly degenerate and has one component of positive and one of negative parity.

Because |Λ| = |Ω| = 1, the lowest rotational level has J = 1. Perturbations caused by the term in the third line of
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Equation (102) may cause a J-dependent splitting of the two components of each rotational level, an effect known

as Λ doubling.

2Σ+ states:

The rotational energy level structure of a 2Σ+ state is very similar to that of a 1Σ+ state, with the difference that

each rotational level is now split into a doublet because of the magnetic interaction between the rotational and

electron spin motions. The energy level structure can be described phenomelogically by the following expressions

(the ± signs in the parentheses label the parity)

E(2Σ+, N,+)/(hc) = BN(N + 1) +
γN

2
(112)

E(2Σ+, N,−)/(hc) = BN(N + 1)− γ(N + 1)

2
, (113)

where γ represents the spin-rotation coupling constant and N the quantum number associated with the total

angular momentum excluding spin. This situation is characteristic of Hund’s case (b).

2Π states:

The rotational energy level structure of a molecule in a 2Π state can be obtained from the matrix ĤROT + ĤSO

as described above. Because both the total angular momentum quantum number J and the parity (p = ±) are

good quantum numbers, the matrix has a block-diagonal form. Each block can be characterized by its parity and

J value and be represented by a (2 x 2) matrix

2Π3/2, J, p
2Π1/2, J, p

2Π3/2, J, p B(J(J + 1)− 7/4) +A/2 −B
√
J(J + 1)− 3/4 (114)

2Π1/2, J, p −B
√
J(J + 1)− 3/4 B(J(J + 1) + 1/4)−A/2.

The diagonal elements (AΛΣ +B(J(J + 1) +S(S+ 1)−Λ2− 2ΩΣ) correspond to the first line of Equation (102)

and the off-diagonal elements to its second line. The matrix (114) has the eigenvalues

E(2Π, J, p)/(hc) = B[(J − 1/2)(J + 3/2)±

√
(J − 1/2)(J + 3/2) +

(
A

2B
− 1

)2

]. (115)

The eigenfunctions have mixed 2Π3/2 and 2Π1/2 character, the mixing being caused by the off-diagonal elements

which are approximately equal to BJ . When BJ is much less than the energy difference (≈ A) between the

diagonal elements, the mixing becomes negligible and the rotational levels retain their 2Π3/2 or 2Π1/2 character.

This situation corresponds to a pure Hund’s case (a). When BJ is much larger than A, the splitting between the

two levels is primarily given by the value of the off-diagonal elements, and the Ω = 1/2 and 3/2 characters are fully

mixed. This situation corresponds to Hund’s case (b). This example serves to show how the ”S-uncoupling” term in

the second line of Equation (102) decouples S from the internuclear axis and recouples it to the rotational motion.

It also shows that it is the relative magnitude of BJ and A which determines whether the angular momentum

coupling scheme is better described by Hund’s case (a) or (b). Each energy level described by Equation (115)

corresponds to two rotational states of opposite parity.

Coupled 2Σ+ and 2Π states:

When there is a strong mixing between neighboring 2Σ+ and 2Π states, induced by the term in the fourth line

of Equation (102), as in the case of Xe+
2 discussed in the previous subsection (see Table 11), a Hund’s case (c)

situation arises. The rotational energy levels can in this case also be derived in a Hund’s case (c) formalism (Veseth
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Figure 19: Rotational energy level structures of 1Σ+, 1Σ−, 2Σ+, 2Σ−, 3Σ+, 3Σ−, 1Π, 1∆, 2Π, and

2∆ states. The ± labels next to the rotational levels indicate the parity of the rotational levels. The

a/s label is only appropriate for homonuclear diatomic molecules and designates the symmetry of the

rovibronic wave functions with respect to permutation of the coordinates of the identical nuclei (see

Subsection 3.3.4 for more details). The g/u labels are also only relevant in homonuclear diatomic

molecules and describe the symmetry of the electronic function with repect to inversion through the

center of symmetry.
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1973; Carrington et al. 1999)

E(Ω = 1/2, J) = T3/2 +B1/2

[
J(J + 1)− 1

2

]
+ (−1)(J− 1

2
+q)P

(
J +

1

2

)
(116)

E(Ω = 3/2, J) = T3/2 +B3/2

[
J(J + 1)− 9

2

]
. (117)

In Equations (116) and (117) TΩ, BΩ, and P represent the vibronic term energies, the rotational constants, and

the Ω-doubling constant, respectively. The phase factor (−1)q in Equation (116) (with q = 0 and 1 for electronic

states of u and g symmetry, respectively), which is not present in the equation for heteronuclear diatomic molecules

or molecules with nuclei I 6= 0, was introduced in order to treat both sets of states in 40Ar+
2 with the same formula

(Rupper and Merkt 2002).

———————————————————

2.2.8 Hyperfine Structure

As in the case of atoms, the hyperfine structure in molecules results from the interaction of the

magnetic dipole and/or electric quadrupole moments of the nuclei having a nonzero nuclear spin ~I

(|~I|2 = ~2I(I + 1)) with the electric and magnetic field distributions arising from other motions. In

addition to the electron orbital and spin motions, the rotational motion of the molecular framework

must be considered in the treatment of the hyperfine structure of molecules. A systematic classification

of the possible angular momentum coupling cases can be made following the same general principles

as used in the discussion of Hund’s angular momentum coupling cases in the previous subsection.

However, the necessity to include the hyperfine interactions in the hierarchical ordering of angular

momentum couplings leads to an explosion of the number of limiting cases, particularly if Rydberg

states are considered.

The following nomenclature, introduced by Frosch and Foley (1952) (see also Dunn (1972)), is used

to label the limiting cases of the angular momentum coupling: The letters (a)-(e) are used to describe

the angular momentum coupling scheme without nuclear spins. A right subscript (α or β) is added to

indicate whether the nuclear spin motion is coupled to the internuclear axis or not. In the former case

(subscript α) the projection ~Iz of the nuclear spin vector on the internuclear axis is well defined. In

the latter case (subscript β), the nuclear spin vector is coupled to another angular momentum vector,

i.e., ~R, ~N , ~S or ~J , which is added in the subscript next to β. For example, ”aα” implies a Hund’s

case (a) coupling situation (see Figure 18a) in which the nuclear spin ~I is coupled to the internuclear

axis. ”bβS” refers to a Hund’s case (b) coupling situation (see Figure 18b) in which the nuclear spin

is coupled to the electron spin vector ~S, in which case the total spin vector ~G = ~S + ~I results. ”cβJ”

describes a Hund’s case (c) situation (see Figure 18f) in which the nuclear spin is coupled to ~J .

In general, the hyperfine interactions are much weaker than the electrostatic (including exchange)

and spin-orbit interactions. Moreover, the Fermi-contact hyperfine interaction, which is only of ap-

preciable strength in electronic states with a significant electron-spin density at the nuclei, is weak in

Λ 6= 0 states because the nuclei are located in the nodal plane of the partially filled molecular orbitals.
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Consequently ”α-type” coupling cases, which can only arise as aα and cα cases, are rather unusual

and more probable in Hund’s case (c) situations because the electronic wave functions often contain

significant Σ contributions, even when Ω 6= 0.

Figure 20 illustrates schematically the vector models corresponding to several of the angular

momentum coupling schemes mentioned above. The hyperfine structure of the ground state (X

2Σ+
g (v+ = 0, N+ = 1) of ortho H+

2 and of para D+
2 depicted in Figure 27 of hrs071 (Merkt et al.

2010) represents an example of case bβS .

An exhaustive discussion of the hyperfine structure of diatomic molecules, which would go beyond

the scope of this introductory chapter, would need to include cases in which both nuclei have a

(different) nuclear spin and would need to describe the many coupling cases arising in Rydberg states

with their specific coupling cases (d) and (e). We refer here to the ”Further reading list” at the end

of this chapter for more extensive treatments.

2.3 Polyatomic molecules

The electronic structure of polyatomic molecules can be described using the same principles as those

introduced for diatomic molecules in the previous subsection. However, the same polyatomic molecule

can have different geometries and belong to different point groups depending on its electronic state.

The variety of possible electronic states and molecular structures is so large that it is impossible to give

a complete overview in this chapter. We therefore restrict the discussion to only a few representative

molecular systems: Molecules of the form HAH as prototypical small molecules, the cyclopentadienyl

cation and benzene as typical highly symmetrical molecules and adenine as example of a nonsymmet-

rical large molecule. The principles that we describe are easily generalized to arbitrary molecules.

2.3.1 Molecular orbitals, electronic configurations, and electronic states

a) Small polyatomic molecules with the example of HAH molecules. Molecules possessing

the chemical formula HAH (A designates an atom, e.g., Be, B, C, N, O, etc.) are either linear and

belong to the D∞h point group, or bent and belong to the C2v point group, the character table of

which is given in Table 12. Molecular orbitals are therefore classified either in the D∞h (see Table 8

in Section 2.2) or the C2v point group. For simplicity we consider here only valence states of HAH

molecules with A being an atom from the second or third row of the perodic table, so that ` ≥ 2

atomic orbital can be ignored in the discussion of the electronic structure.

The determination of the molecular orbitals may proceed along the following scheme:

(a) Identification of all atomic orbitals participating in the formation of molecular orbitals. Symmetry

restricts the number of these orbitals. In the case of HAH molecules, the required orbitals are the two

1s orbitals of the hydrogen atoms and the ns and np valence orbitals of the central atom A, where

n ≥ 2 represents the row of the periodic system of elements to which A belongs. Orbitals belonging
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Figure 20: Selected illustrative angular momentum coupling schemes in diatomic molecules, including

nuclear spins. a) case aα; b) case aβ(J); c) case bβS ; d) bβJ ; e) cα; f) cβ(J). The nomenclature used

to label these schemes is explained in the text. More complex situations arise when two nuclear spins

(~I1 and ~I2) are considered or in the treatment of the hyperfine structure of Rydberg states.
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Table 12: Character table of the C2v point group.

C2v I C2 σv(xz) σ′v(yz)

A1 1 1 1 1 Tz αxx, αyy, αzz

A2 1 1 −1 −1 Rz αxy

B1 1 −1 1 −1 Tx, Ry αxz

B2 1 −1 −1 1 Ty, Rx αyz

Figure 21: Symmetry adapted linear combinations of 1s orbitals that participate in the construction

of molecular orbitals of (a) linear and (b) bent HAH molecules.

to inner shells of the central atom usually lie so deep in energy and are so strongly localized on the

nucleus that they hardly contribute to molecular bonds.

(b) Formation of i symmetry-adapted molecular orbitals from the set of i atomic orbitals determined

under (a) (i = 6 in the case of HAH molecules). Symmetry-adapted molecular orbitals transform as

irreducible representations of the corresponding point group. In molecules such as HAH in which two

or more atoms are equivalent, it is convenient to first build symmetry-adapted linear combinations

of the orbitals of these equivalent atoms, i.e., of the H 1s orbitals in the case of HAH molecules (see

Figure 21). These orbitals are then used to form molecular orbitals with the orbitals of the central

atom A (or of other atoms in the case of other molecules) having the corresponding symmetry, as

shown in Figure 22 for the point group D∞h.

The ns (σg) and npz (σu) orbitals of the central atom can be combined with the symmetry-adapted

orbitals of the H atoms in two ways each, resulting in four molecular orbitals of σ symmetry. The

energetic ordering of these molecular orbitals can be derived from the number of nodal planes of

the wave functions. The 2σg (zero nodal plane) and 1σu (one nodal plane) orbitals in Figure 22 are

bonding, whereas the 3σg (two nodal planes) and 2σu (three nodal planes) orbitals are antibonding.

For symmetry reasons, the 2px and 2py orbitals of the central atom (both of πu symmetry) cannot

combine with the 1s orbitals of the H atoms and are therefore nonbonding orbitals.

The energetic ordering of these molecular orbitals is given on the right-hand side of Figure 23

which also shows how the energies of the molecular orbitals change as the molecule is progressively

bent from the linear D∞h structure (∠(HAH)= 180◦) toward the C2v structure with ∠(HAH)= 90◦.

The orbitals of the bent molecules displayed on the left-hand side of Figure 23 are given symmetry

labels of the C2v point group according to their transformation properties (see Table 12). The two
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Figure 22: Linear combinations of atomic orbitals in linear HAH molecules

lowest-lying orbitals are invariant under rotations around the C2 (z) axis, and also under reflection in

both the σxz and σyz planes, and are therefore totally symmetric (a1). The next higher-lying orbital is

antisymmetric under C2 rotation and under σxz reflection, but symmetric under σyz reflection, and is

thus of b2 symmetry. As in the linear geometry, the energetic ordering essentially follows the number

of nodal planes.

The degeneracy of the two nonbonding πu orbitals is lifted as the molecule bends. The molecular

orbital corresponding to the p orbital in the molecular plane becomes bonding and correlates with

the 3a1 molecular orbital of the bent molecule. The other molecular orbital, which is perpendicular

to the molecular plane, remains a nonbonding orbital and correlates with the 1b1 orbital of the bent

molecule. The angle dependence of the 1πu − 3a1 orbital energy is of particular importance, because

this orbital is the only one that becomes significantly more stable in the nonlinear geometry. All other

molecular orbitals are destabilized when the HAH angle is decreased. The occupation of this orbital

with one or two electrons can result in a bent equilibrium structure of the molecule. Correlation

diagrams as the one shown in Figure 23 are known as Walsh diagrams.

As in the case of atoms and diatomic molecules, the electronic configurations of polyatomic

molecules are obtained by filling the molecular orbitals with a maximum of two electrons. Whether

a molecule of the form HAH is linear or bent depends on the occupation of the orbitals, especially of

the 3a1 orbital, as discussed above. The symmetries of the electronic states that result from a given

configuration are obtained from the direct product of the irreducible representations of the occupied

molecular orbitals (see Equation (84)). Finally, the multiplicities (2S+1) are derived following exactly

the same procedure as discussed for atoms and diatomic molecules in the previous subsections (see

also subsection 2.3.2 below).

Examples:

BeH2: . . . (2σg)2(1σu)2
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Figure 23: Walsh diagram for HAH molecules. The symmetry labels on the left-hand side correspond

to C2v point-group symmetry, those on the right-hand side to D∞h symmetry.
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The dependence of the energies of the occupied orbitals favors a linear structure (see Figure 23) and the

ground electronic state is therefore the X̃ 1Σ+
g state.

BeH2: . . . (2a1)2(1b2)1(3a1)1

The first excited configuration leads to a bent structure because the 3a1 − 1πu orbital is occupied. The

electronic configuration is thus given using C2v symmetry labels. The two electronic states resulting from this

configuration are of 3B2 and 1B2 symmetry.

H2O: . . . (2a1)2(1b2)2(3a1)2(1b1)2

Because the 3a1 orbital in H2O is doubly occupied, the electronic ground state is also bent. The ground

electronic state is thus the X̃ 1A1 state.

H2O+: . . . (2a1)2(1b2)1(3a1)2(1b1)1 X̃+ 2B1.

Walsh diagrams such as that displayed in Figure 23 are also useful in the discussion of vibronic

interactions because they enable one to see how the degeneracy of π orbitals and of the Π,∆,Φ, . . .

electronic states are lifted, and how the electronic character changes, when the molecules bend out

of their linear structures. The coupling of electronic motion and bending vibrations can significantly

perturb the energy level structure and gives rise to the Renner-Teller effect that will be discussed

further in Section 2.3.6.

b) Larger symmetric molecules. To determine the molecular orbitals of larger polyatomic molecules

that have a high symmetry, it is useful to introduce a systematic approach. The symmetrized linear

combination of atomic orbitals (LCAO) are determined using projection operators p̂γ that are applied

onto one of the atomic orbitals of the set of identical atoms. The projectors are defined as

p̂γ =
1

h

∑

R

χγ(R)∗ · R̂ “Projection formula′′, (118)

where R̂ are the geometrical operations of the point group, χγ(R) is the character of the irreducible

representation γ under the operation R̂ and h is the order of the point group.

To illustrate the application of the projection formula (Equation (118)), we use it to derive the

system of π molecular orbitals of benzene in the D6h point group by building symmetry-adapted linear

combinations

ϕ(s)
γ =

6∑

i=1

cγ,iϕi (119)

of the carbon 2pz orbitals ϕi (i = 1 − 6). From the six 2pz atomic orbitals involved in the π orbital

system, which form a six-dimensional reducible representation of the D6h point group, a total of 6

orthogonal molecular orbitals can be formed. The reducible representation Γ of the carbon 2pz orbitals

can be constructed using the character table of the D6h point group presented in Table 13.

Under the group operations of D6h, the 2pz orbitals ϕi have the same symmetry properties as the

components zi of the nuclear displacement vectors of the carbon atoms. The 2pz orbitals are mapped

onto each other by the symmetry operations of the group. From the properties of the representation

matrices, it can be easily established that
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Table 13: Character table of the D6h point group.

D6h E 2C6 2C3 C2 3C ′2 3C ′′2 i 2S3 2S6 σh 3σd 3σv

A1g 1 1 1 1 1 1 1 1 1 1 1 1

A2g 1 1 1 1 -1 -1 1 1 1 1 -1 -1 Rz

B1g 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1

B2g 1 -1 1 -1 -1 1 1 -1 1 -1 -1 1

E1g 2 1 -1 -2 0 0 2 1 -1 -2 0 0 Rx, Ry

E2g 2 -1 -1 2 0 0 2 -1 -1 2 0 0

A1u 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1

A2u 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 z

B1u 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1

B2u 1 -1 1 -1 -1 1 -1 1 -1 1 1 -1

E1u 2 1 -1 -2 0 0 -2 -1 1 2 0 0 x, y

E2u 2 -1 -1 2 0 0 -2 1 1 -2 0 0

• each orbital that is left unchanged by a symmetry operation R̂ adds 1 to the character χ(R),

• each orbital that is inverted adds -1 to the character,

• each orbital that is mapped onto another orbital gives no contribution to the character.

Thus, the characters of the reducible representation Γ of the six 2pz orbitals under the different classes

of symmetry operations R̂ are:

c: E 2C6 2C3 C2 3C ′2 3C ′′2 i 2S3 2S6 σh 3σd 3σv

χ(c): 6 0 0 0 -2 0 0 0 0 -6 0 2

This representation must now be transformed into a sum of irreducible representations using the

reduction formula

aγ =
1

h

∑

R

n(R)χΓ(R)χγ(R), (120)

where aγ is the number of times the irreducible representation γ is contained in the reducible repre-

sentation Γ, h (= 24) is the order of the group, n(R) is the number of operations of a particular class

of operations, χΓ(R) is the character of the reducible representation corresponding to the class of the

operation R̂, and χγ(R) is the corresponding character of the irreducible representation γ.

Reducing Γ using Equation (120) yields the symmetries of the six π molecular orbitals:

Γ = b2g ⊕ a2u ⊕ e1g ⊕ e2u, (121)

each of the two e irreducible representations being two-dimensional. The orthonormal set of symmetry-

adapted basis functions {ϕ(s)
i } is constructed by projecting the ϕi on their irreducible components

using Equation (118) and Table 13:
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1. a2u :

ϕ(s)
a2u

=
1

N
p̂a2u

ϕ1 =
1√
6

(
ϕ1 + ϕ2 + ϕ3 + ϕ4 + ϕ5 + ϕ6

)
, (122)

where N is a normalization constant. The same result is obtained by applying the projector to

any other ϕi, i 6= 1.

2. b2g :

ϕ
(s)
b2g

=
1

N
p̂b2g

ϕ1 =
1√
6

(
ϕ1 − ϕ2 + ϕ3 − ϕ4 + ϕ5 − ϕ6

)
. (123)

3. e1g : For multi-dimensional subspaces, the projection technique usually yields nonorthogonal

linear combinations of the original basis vectors. To construct the symmetry-adapted basis, it

is sufficient to determine di linearly independent vectors and then choose suitable orthogonal

linear combinations of them:

ϕ
(s)
e1g,1

=
1

N
p̂e1gϕ1 =

1√
12

(
2ϕ1 + ϕ2 − ϕ3 − 2ϕ4 − ϕ5 + ϕ6

)
, (124)

ϕ
(s)
e1g,2

=
1

N
p̂e1gϕ2 =

1√
12

(
ϕ1 + 2ϕ2 + ϕ3 − ϕ4 − 2ϕ5 − ϕ6

)
. (125)

The set of vectors {ϕ(s)
e1g,1

, ϕ
(s)
e1g,2
} is linearly independent, but not orthogonal. A set of orthogonal

basis vectors can be obtained by using the Schmidt orthogonalization algorithm: if φ1, φ2 are

nonorthogonal, normalized basis vectors, then a basis vector φ⊥2 which is orthogonal to φ1 can

be constructed using Equation (126)

φ⊥2 = φ2 −
〈
φ2

∣∣φ1

〉
φ1, (126)

where 〈.|.〉 denotes the scalar product. Thus:

ϕ
(s),⊥
e1g,2

= ϕ
(s)
e1g,2

−
〈
ϕ

(s)
e1g,2

∣∣ϕ(s)
e1g,1

〉
ϕ

(s)
e1g,1

= ϕ
(s)
e1g,2

− 1

2
ϕ

(s)
e1g,1

. (127)

After normalization, one obtains

ϕ
(s),⊥
e1g,2

=
1

2

(
ϕ2 + ϕ3 − ϕ5 − ϕ6

)
. (128)

The set of symmetry-adapted basis vectors {ϕ(s)
e1g,a, ϕ

(s)
e1g,b
} = {ϕ(s)

e1g,1
, ϕ

(s),⊥
e1g,2
} for the e1g subspace

is thus:

ϕ(s)
e1g,a =

1√
12

(
2ϕ1 + ϕ2 − ϕ3 − 2ϕ4 − ϕ5 + ϕ6

)
, (129)

ϕ
(s)
e1g,b

=
1

2

(
ϕ2 + ϕ3 − ϕ5 − ϕ6

)
. (130)

4. e2u : Similarly, one obtains an orthonormal set of symmetry-adapted basis vectors for the e2u

subspace:

ϕ(s)
e2u,a =

1√
12

(
2ϕ1 − ϕ2 − ϕ3 + 2ϕ4 − ϕ5 − ϕ6

)
, (131)

ϕ
(s)
e2u,b

=
1

2

(
ϕ2 − ϕ3 + ϕ5 − ϕ6

)
. (132)
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These molecular orbitals are depicted in Figure 24. Their energetic ordering can be determined

from the number of nodal planes. The a2u orbital must be the most stable because it possesses a single

nodal plane (the plane containing the carbon atoms). The e1g orbital possesses two nodal planes and

has therefore the second lowest energy. The e2u and b2g orbitals possess three and four nodal planes

and are thus the orbitals of second highest and highest energy, respectively.

A more quantitative estimate of the relative energies of the molecular orbitals can be achieved

using the Hückel moleclar orbital (HMO) model. The HMO model represents a simple semi-empirical

method to calculate the electronic energy level structure of molecules that exhibit conjugated π molec-

ular orbitals such as polyenes and aromatic molecules. The model is useful to gain a semi-quantitative

description of the π molecular orbitals and their relative energies and is widely used in physical-organic

chemistry. Within the framework of the HMO model, the π molecular orbitals are constructed by

linear combinations of orthogonal 2pz atomic orbitals centered on the carbon atoms. The energies Ek

of the π molecular orbitals are obtained by solving the secular determinant

det
∣∣Hij − EkSij

∣∣ = 0, (133)

where Hij are the matrix elements of a formal Hamiltonian operator H describing the π electron

system (the ”Hückel operator”) and Sij denotes the overlap integral between the pz orbitals of atoms

i and j. The expansion coefficients c
(k)
i of the molecular orbital Φk in the basis of the atomic 2pz

orbitals {ϕi} are obtained by solving the set of secular equations

∑

i

c
(k)
i

(
Hij − EkSij

)
= 0. (134)

The following approximations are introduced:

• All overlap integrals vanish (Sij = 0) unless i = j, in which case Sii = 1.

• All diagonal elements of H are the same: Hii = α.

• All off-diagonal elements of H are set to zero, except those between neighboring atoms, which

are Hij = β. β is usually negative (β < 0).

α and β are treated as effective parameters that can in principle be estimated from calorimetric data.

The matrix representation of the Hückel operator H describing the π molecular orbital system can

be derived in the basis of the carbon 2pz atomic orbitals {ϕi}, and is

[
Hij

]
=




α β 0 0 0 β

β α β 0 0 0

0 β α β 0 0

0 0 β α β 0

0 0 0 β α β

β 0 0 0 β α




. (135)
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The eigenvectors and eigenvalues of the matrix (135) represent the molecular orbitals and their en-

ergies, respectively. Alternatively, the Hückel operator can be expressed in the basis of symmetry-

adapted basis function {ϕ(s)
i } by evaluating the matrix elements according to

H
(s)
ij =

〈
ϕ

(s)
i

∣∣H
∣∣ϕ(s)
j

〉
(136)

using the basis functions given in Equations (122, 123, 129, 130, 131, 132). For the ϕ
(s)
a2u orbital

(Equation (122)), one finds, for instance:

〈
ϕ(s)

a2u

∣∣H
∣∣ϕ(s)

a2u

〉
=

1

6

〈
ϕ1 + ϕ2 + ϕ3 + ϕ4 + ϕ5 + ϕ6

∣∣H
∣∣ϕ1 + ϕ2 + ϕ3 + ϕ4 + ϕ5 + ϕ6

〉

= α+ 2β. (137)

Figure 24: Energy level diagram and schematic representation of the π molecular orbitals of benzene.

The size of the circles represents the weight of the atomic orbital in the molecular orbital wave

function. The two grey tones of the shading indicate the relative sign of the 2pz orbitals which form

the molecular orbital. The energies of the molecular orbitals increase with the number of nodal planes

and are expressed, on the right-hand side of the figure, as a function of the Hückel parameters α and

β. The arrows represent schematically the occupation of the molecular orbitals in the ground-state

configuration of benzene.
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Matrix elements between functions of different symmetry and matrix elements between orthogonal

basis functions within the e1g and e2u subspaces are zero because H is totally symmetric, so that one

obtains the following Hückel matrix

[
H

(s)
ij

]
=




α+ 2β 0 0 0 0 0

0 α− 2β 0 0 0 0

0 0 α+ β 0 0 0

0 0 0 α+ β 0 0

0 0 0 0 α− β 0

0 0 0 0 0 α− β




, (138)

which is already in diagonal form. The symmetry-adapted orthonormal basis functions {ϕ(s)
i } are

thus the eigenvectors of the Hückel operator and represent the π molecular orbitals {Φi} of benzene

depicted in Figure 24. One should note that a group theoretical treatment normally only divides

the Hamiltonian matrix in as many diagonal blocks as there are irreducible representations, i.e., in

the present case, in two 1× 1 diagonal blocks corresponding to A2u and A2g and two 2× 2 diagonal

blocks corresponding to E1g and E2u. The fact that the Hamiltonian matrix is fully diagonal in

Equation (138) is a consequence of the particular choice made during the Schmidt orthogonalization

procedure.

The lowest energy configuration of π electrons in benzene can thus be written (a2u)2(e1g)4, giving

rise to a single electronic state of symmetry 1A1g. The first excited electronic configuration of benzene

is (a2u)2(e1g)3(e2u)1. This configuration gives rise to several electronic states as will be discussed in

Section 2.3.2. The direct product of the partially occupied orbitals is e1g⊗e2u = b1u⊕b2u⊕e1u. Since

two different spatial orbitals are partially occupied, there is no restriction on the total electron spin

imposed by the generalized Pauli principle (see Section 2.2.4), and all electronic states contained in

the direct product can exist as either singlet or triplet states. The configuration (a2u)2(e1g)3(e2u)1

thus gives rise to the electronic states 3B1u, 1B1u, 3B2u, 1B2u, 3E1u and 1E1u.

To illustrate the case where each orbital of a degenerate pair of orbitals is singly occupied, we now

present the group theoretical and HMO treatments of the electronic structure of the cyclopentadienyl

cation C5H+
5 using the D5h point group, the character table of which is presented in Table 14.

The matrix representation of the Hückel operator can be determined in analogy to benzene and

takes the form

[
Hij

]
=




α β 0 0 β

β α β 0 0

0 β α β 0

0 0 β α β

β 0 0 β α



. (139)

Diagonalization of this matrix gives rise to the five eigenvalues α + 2β, α + ω1β and α + ω2β, where

ω1 and ω2 are defined in Table 14. The application of the reduction formula (Equation (120)) to the

five-dimensional reducible representation of the five pz orbitals and of the projection operators gives

rise to five eigenvectors of symmetries a′′2 , e′′1 and e′′2 . The energetic ordering of the corresponding
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Table 14: Character table of the D5h point group.

D5h E 2C5 2C2
5 5C2 σh 2S5 2S2

5 5σd

A′1 1 1 1 1 1 1 1 1

A′2 1 1 1 -1 1 1 1 -1 Rz

E′1 2 ω2 ω1 0 2 ω2 ω1 0 x, y

E′2 2 ω1 ω2 0 2 ω1 ω2 0

A′′1 1 1 1 1 -1 -1 -1 -1

A′′2 1 1 1 -1 -1 -1 -1 1 z

E′′1 2 ω2 ω1 0 -2 -ω2 -ω1 0 Rx, Ry

E′′2 2 ω1 ω2 0 -2 -ω1 -ω2 0

where ω1 = 2 cos(4π/5) and ω2 = 2 cos(2π/5)

orbitals is depicted in Figure 25a in the form of a so-called Frost-Musulin diagram. A Frost-Musulin

diagram is derived by drawing a regular polygone representing the cyclic polyene into a circle, placing

one vertex on the lowest point of the circle. The vertices of the polygone then provide the energies

of the π orbitals of the polyene. Such diagrams provide an elegant graphical method to determine

the sequence and degeneracy of the HMO of cyclic polyenes. Looking back at Figure 24, it becomes

apparent that a Frost-Musulin diagram indeed adequately describes the HMOs of benzene.

Figure 25: a) Frost-Musulin diagram of the π molecular orbitals of the cyclopentadienyl cation. The

arrows indicate the occupation corresponding to the lowest-lying electronic configuration. b) Energetic

ordering of the corresponding electronic states in D5h symmetry (right-hand side). K23 represents the

exchange integral (see text; adapted from Wörner and Merkt (2007))

The most stable electronic configuration of C5H+
5 is ((a′′2)2(e′′1)2), as depicted in Figure 25a. The

direct product of the irreducible representations of the partially occupied orbitals is e′′1⊗e′′1 =a′2⊕
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e′2⊕a′1. In this case, the two components of a degenerate orbital may both be singly occupied. The

total electronic wave function must be antisymmetric under the exchange of the two electrons in

the e′′1 orbitals, which restricts the number of possible states, as will be discussed in general terms

in Section 2.3.2. The electronic symmetry of the singlet states, which have an antisymmetric (with

respect to permutation of the electrons) electron spin function, must be determined from the symmetric

(rather than the direct) product of the irreducible representations [e′′1 ⊗ e′′1 ] = e′2 ⊕ a′1, resulting in

a 1E′2 and a 1A′1 state. Correspondingly, the electronic symmetry of the triplet state is obtained

from the antisymmetric product {e′′1 ⊗ e′′1} =a′2, resulting in a single 3A′2 state (Compare with the

analogous discussion of the electronic structure of O2 in Subsection 2.2.4). The energetic ordering

of the three states 3A′2, 1E′2 and 1A′1 is given in Figure 25b. The Hartree-Fock energies of these

three states are 2h + J23 −K23, 2h + J23 + K23 and 2h + J22 + K23, respectively, where h, Jij and

Kij represent the one-electron orbital energy, the Coulomb and the exchange integrals, respectively,

and the indices designate the π molecular orbitals in order of increasing energy (Borden 1982; by

symmetry, J22 − J23 = 2K23). Using the Hückel molecular orbital approach, one can determine the

one-electron energy to be h = α+ ω1β.

c) Large polyatomic molecules

Unlike small polyatomic molecules, most large molecules have a low symmetry, and the classification

of electronic states by their irreducible representations loses its relevance. When the molecule possesses

no symmetry elements, all electronic transitions involving nominally a single electron are allowed by

symmetry. Consequently, a different nomenclature is used to label both the electronic states and the

electronic transitions of large molecules, as already mentioned in the introduction.

The electronic states are designated by a capital letter representing their spin multipicity: S for

singlets, D for doublets, T for triplets etc. A numerical subscript is used to indicate the ground state

(e.g. S0) and the higher-lying excited states of the same multiplicity (S1, S2 etc...). States of another

multiplicity of the same molecule are also labeled in order of increasing energies but starting with the

subscript ”1” rather than ”0” (e.g. T1, T2 etc.).

Electronic transitions in polyatomic molecules are often labeled according to the type of molecular

orbitals involved. One distinguishes between bonding orbitals of σ or π type, the corresponding

anti-bonding orbitals (σ∗ or π∗) and nonbonding orbitals (n). This nomenclature has the advantage

that it highlights the nature of the electronic transition, from which qualitative predictions of their

intensities can be made: Transitions involving the excitation of an electron from a bonding to the

corresponding antibonding orbital (σ → σ∗ or π → π∗) are usually associated with a large oscillator

strength, whereas transitions from nonbonding to anti-bonding orbitals (n→ σ∗ or n→ π∗) are weak.

The nomenclature outlined above is often used in the discussion of the photochemistry and pho-

tophysics of larger molecules, like the DNA bases. Although the isolated DNA bases absorb strongly

in the ultraviolet (200-300 nm), they hardly show any fragmentation, unlike many other molecules.
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This property may be of importance in preserving the genetic information (Sobolewski and Domcke

2002) and arises from the ability of the molecules to convert the energy of the photon to vibrational

energy, as will be discussed in Section 3.5.3.

Adenine also represents a good example illustrating the difficulty associated with all nomencla-

ture systems for large molecules. The sequence of singlet states consists of the S0 ground state

with the configuration . . . (π)2(n)2(π∗)0, followed by two electronic states of dominant configurations,

. . . (π)2(n)1(π∗)1 and . . . (π)1(n)2(π∗)1, respectively. One can only indicate the dominant configu-

rations for these two electronic states because they lie energetically very close, and configuration

interaction between them is important. Since the energetic ordering of these states has been debated

in the literature (see Sobolewski and Domcke (2002), and references therein), it is difficult to apply

the usual labels S1 and S2 to these electronic states. To avoid this difficulty, the recent literature uses

the designation 1nπ∗ and 1ππ∗ for these two states, the 1 superscript designating the spin multiplicity.

Figure 26 shows a resonant two-photon ionization spectrum of adenine in a supersonic expansion and

a diagram of the electronic energy levels as derived from this spectrum (Kim et al. 2000). The band

labeled ”A” was assigned to the origin of the 1nπ∗ state, whereas band ”D” was assigned to the origin

of the 1ππ∗ state. The wave number scale on top of Figure 26 is given with respect to band ”A”. The

energy-integrated absorption of the 1ππ∗ state is strong, and the band turns into a broad absorption

band above 36230 cm−1.

2.3.2 Spin multiplicity

As in the treatment of diatomic molecules in Subsection 2.2.4, we will only consider two-electron

wave functions. Because of the Pauli principle, the two-electron wave function must either have a

symmetric spatial part (ΨR
(s)(qi)) and an antisymmetric spin part (ΨS

(a)(mi)) or vice versa (ΨR
(a)(qi))

and (ΨS
(a)(mi)), see Tables 4 and 5.

The situation is slightly different from the case of diatomic molecules, because the components of

degenerate orbitals can no longer be classified according to a good quantum number (λ in the case of

diatomic molecules). However, group theory provides a simple approach to determining the existing

multiplicities. Two cases can be distinguished:

1. The two electrons are located in different MO-shells. Both the symmetric and the antisymmetric

spatial parts of the wave functions are nonzero in this case. No restrictions result from the Pauli

principle: The electronic states are given by the direct product of the representations of the

partially occupied orbitals, and all terms contained in the direct product exist as both singlet

and triplet states. This situation arises in the first excited states of BeH2 arising from the

configuration . . . (2a1)2(1b2)1(3a1)1. Since b2⊗a1 =b2, the two electronic states 3B2 and 1B2

are obtained. The same applies to the (a2u)2(e1g)3(e2u)1 configuration of benzene discussed in

Section 2.3.1b, giving rise to the electronic states 3B1u, 1B1u, 3B2u, 1B2u, 3E1u and 1E1u.
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Figure 26: Resonance-enhanced two-photon ionization spectrum of adenine in the gas phase (adapted

from Kim et al. (2000)). The bands A and D are assigned to the origins of the n → π∗ and π → π∗

excitations, respectively. The bands B, C and E are vibronic levels of mixed electronic character. The

right-hand side of the figure shows an energy level diagram of the three lowest electronic singlet states

of adenine.

2. The two electrons are located in the same MO-shell. If the MO-shell is nondegenerate, the

spatial part of the wave function is necessarily symmetric. The spin part must therefore be

antisymmetric, resulting in a totally symmetric (A′1) singlet state. If the MO-shell is degenerate,

the spatial part has both symmetric and anti-symmetric components. The symmetry properties

of these components is determined by the symmetric and antisymmetric parts, respectively, of

the direct product of the orbital symmetry with itself. This situation arises in the (a′′2)2(e′′1)2

configuration of C5H+
5 discussed in Section 2.3.1b. The symmetric spatial part of the wave

function is given by [e′′1 ⊗ e′′1 ] = e′2 ⊕ a′1, resulting in a 1E′2 and a 1A′1 state. Correspondingly,

the triplet state is obtained from the antisymmetric product {e′′1 ⊗ e′′1} = a′2, resulting in a single

3A′2 state.

2.3.3 Spin-orbit coupling

Spin-orbit coupling in polyatomic molecules can lead to very complex spectral patterns and dynamical

behaviors (e.g., intersystem crossings, see Section 3.5.3). In order to keep the discussion simple, we only

discuss here the limiting cases where the spin-orbit coupling is small compared to the energy intervals

between neighboring rotational energy levels, and the opposite case, where the spin-orbit coupling is
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Table 15: Character table of the spin double group C2
2v. The first five rows and columns correspond

to the C2v point group (see Table 12).

C2v I C2 σv(xz) σ′v(yz) R

A1 1 1 1 1 1 Tz

A2 1 1 −1 −1 1 Rz

B1 1 −1 1 −1 1 Tx, Ry

B2 1 −1 −1 1 1 Ty, Rx

E1/2 2 0 0 0 −2

Table 16: Character table of the spin double group C2
3v. The first four rows and columns correspond

to the C3v point group

C3v I 2C3 σv R 2C2
3

A1 1 1 1 1 1 Tz

A2 1 1 −1 1 1 Rz

E 2 −1 0 2 −1 Tx,y, Rx,y

E1/2 2 1 0 −2 −1

E3/2 2 −2 0 −2 2

very large, even larger than the splitting between electronic states of different multiplicities caused by

the exchange interaction. The first case is related to the Hund’s case (b), the second case to the Hund’s

case (c) describing the angular momentum coupling in diatomic molecules (see Subsection 2.2.5).

The description of spin-orbit coupling in polyatomic molecules requires the use of the spin double

groups already introduced in the discussion of intercombination transitions in diatomic molecules

(see Subsection 3.3.2). The character table of the spin double group for C2v and C3v molecules

are presented in Tables 15 and 16, respectively, and Table 17 shows how the spin functions with

S = 0, 1/2, 1, 3/2, . . . transform in these spin double groups.

We first consider the case where spin-orbit coupling is small compared to the rotational intervals

of the molecule. Spin-orbit interaction splits a rotational state of total angular momentum (without

spin) N into (2S+1) nearly degenerate states. As an example we consider a C2v molecule in its 2B1

Table 17: Transformation properties of the spin functions in the spin double groups C2v and C3v.

S 0 1/2 1 3/2 2 5/2

Γ (C2v) A1 E1/2 A2 + B1 + B2 2E1/2 2A1 + A2 + B1 + B2 3E1/2

Γ (C3v) A1 E1/2 A2 + E E1/2 + E3/2 A1 + 2E 2E1/2 + E3/2
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electronic ground state. The ground rovibronic state has the symmetry Γrve = B1. The spin-rovibronic

symmetries of this level are thus Γsrve = Γrve ⊗ ΓS=1/2 = B1 ⊗ E1/2 = E1/2, showing that the spin-

rovibronic ground state is doubly degenerate. The same holds true for all other rovibronic levels of

this electronic state. However, the degeneracy may be lifted in the rovibronic levels of a C2v molecule

in a 3B2 electronic state. In this case, the rovibronic ground state gives rise to spin-rovibronic levels

of symmetries Γsrve = Γrve ⊗ ΓS=1 = B1 ⊗ (A2 + B1 + B2) = B2 ⊕A1 ⊕A2.

A more interesting case occurs in molecules of the C3v point group, as, e.g., the methyl halides

CH3X (X=halogen atom) and their cations. The cations CH3X+ have 2E ground electronic states.

Neglecting vibronic interactions (see Section 2.3.6), spin-orbit coupling splits their ground electronic

state into two components of symmetry E⊗E1/2 = E1/2⊕E3/2. In CH3I+, these two components are

separated by ≈ 0.5 eV, corresponding to a case where spin-orbit coupling gives rise to much larger

splittings than the vibronic interactions. We note that, in this case, the vibronic interactions (the

Jahn-Teller effect) are suppressed (see chapter hrs060 for details).

We now illustrate the transition between the limiting cases of weak and strong spin-orbit coupling

with the example of the (X̃ 2E)(ns) Rydberg states of CH3X (X=halogen), which have the electronic

configuration . . . (e)3(a1)1. In low Rydberg states, the exchange interaction between the Rydberg

electron and the ionic core is larger than the spin-orbit coupling, resulting in a 3E state and a 1E state,

as illustrated in Figure 27. Spin-orbit coupling splits the 3E state into E⊗ (E⊕A2) =A1⊕A2⊕E⊕E

states. The 1E state remains unaffected in the weak-coupling limit. In high Rydberg states, the spin-

orbit interaction in the CH3X+ ion is much larger than the exchange interaction between the Rydberg

electron and the core electrons, and the level structure displayed on the right-hand side of Figure 27

is obtained. In that limit, the spin of the ion core is coupled to its orbital angular momentum, giving

rise to the E3/2 and E1/2 levels discussed in the previous paragraph. The Rydberg electron is only

coupled weakly to the ion core by the exchange interaction, which scales as n−3. The symmetries of

the electronic states can thus be obtained by taking the direct product of the symmetry of the ionic

state and the Rydberg electron. Each Rydberg levels of the ns series converging to the 2E3/2 ground

state give rise to two E levels (E3/2⊗E1/2=E⊕E), whereas levels converging to the 2E1/2 level split into

three levels (E1/2⊗E1/2=A1⊕A2⊕E). Figure 27 bears a close resemblance to Figure 3 representing

the transition from LS to jj-coupling in atoms.

2.3.4 Vibronic structure and symmetry

The vibrational structure of polyatomic molecules is discussed in detail in hrs003 (Quack and cowork-

ers 2010), so that only a very brief description of the vibronic structure of polyatomic molecules is

presented here.

Linear and nonlinear polyatomic molecules have 3N−5 and 3N−6 vibrational degrees of freedom,

respectively. The transformation properties of the vibrational modes can be determined in a normal

coordinate analysis. The vibronic symmetry of a vibrationally excited molecule can be determined
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Figure 27: Energy levels of an electronic state of configuration . . . (e)3(a1)1 of a C3v molecule for small

and large spin-orbit coupling constants. On the right-hand side the lower two E states correlate with

the E3/2 electronic state resulting from the . . . (e)3 configuration of the ion, whereas the upper group

of states correlates with the E1/2 ionic electronic state of the same configuration (adapted from Ref.

Herzberg (1991)).

from the direct product

Γev = Γe ⊗ Γn1
v1 ⊗ Γn2

v2 ⊗ . . . , (140)

where the product extends over all normal vibrations, and ni is the number of vibrational quanta in

the individual vibrational modes.

Example: H2O has three vibrational modes, two of A1 symmetry (the symmetric stretching mode (ν1) and the

bending mode (ν2) and one of B2 symmetry (the asymmetric stretching mode (ν3)). The vibronic symmetry

of the (0,0,1) vibrational state of the electronic ground state of H2O is therefore A1 ⊗ B2 = B2.

Degenerate vibrational modes create a vibrational angular momentum that can couple with the

electronic angular momentum.

Example: CO+
2 in its ground electronic state (X 2Πig) is a linear molecule with four vibrational modes: the

symmetric stretching mode, the twofold-degenerate bending mode and the asymmetric stretching mode. Single

excitation of the bending mode (Γv = Πu) results in a vibrational angular momentum ~l with l = 1 along

the C∞ axis. The interaction of this vibrational angular momentum with the electronic angular momentum

(the Renner-Teller effect, see also chapter hrs060 (Köppel et al. 2010) and Section 2.3.6) leads, according to

Equation (140) and Table 9, to four vibronic states of symmetries 2Σ+
u , 2Σ−u , 2∆u3/2 und 2∆u5/2.
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2.3.5 Rovibronic structure and symmetry

The rotational structure of polyatomic molecules is discussed in detail in chapter hrs002 (Bauder

2010).

Since the interactions between rotational, spin and orbital motions can often be neglected in

polyatomic molecules, their rotational structure can be treated in simple terms as eigenstates of a

purely rotational Hamiltonian (see chapter hrs002 (Bauder 2010)). If the electron spins play a role,

the rovibronic states split into multiplets that can be classified in the appropriate spin double group,

as explained in Subsections 2.3.2 and 2.3.3.

2.3.6 Vibronic coupling: The Renner-Teller and Jahn-Teller effects

The Born-Oppenheimer approximation (see Section 1) allows the separation of nuclear and electronic

degrees of freedom, provided that the separation between the electronic states is significantly larger

than the vibrational intervals. In many polyatomic molecules, particularly in excited electronic states,

this condition is not fulfilled, which results in a coupling of electronic and nuclear motions called vi-

bronic coupling. Vibronic coupling is ubiquitous in electronically excited states, especially in the

vicinity of intersecting potential energy surfaces (conical intersections) where it is essential in under-

standing photochemical and photophysical processes. Special cases characterized by a high molecular

symmetry, such as the ”Renner-Teller” and ”Jahn-Teller effects” are particularly interesting because

they enable one to study the vibronic interactions in detail thanks to symmetry selection rules. Com-

prehensive theories of vibronic coupling have been formulated (see, e.g., hrs060 Köppel et al. 2010,

or Bersuker 2006). Here we provide a brief overview of the Renner-Teller and Jahn-Teller effects and

refer to chapter hrs060 for details.

The Renner-Teller effect occurs in degenerate electronic states (Π,∆,Φ, ...) of linear molecules.

These states are characterized by an electronic angular momentum ±Λ~ along the internuclear axis

as shown in Figure 28. Vibrationally excited bending levels possess a vibrational angular momentum

`~ about the axis as shown in Figure 28. The two angular momenta couple to form a total vibronic

angular momentum ±~K with K = | ± Λ± `|.
As an example, we consider C3, with point group D∞h in the linear configuration, in its Ã 1Πu first

excited singlet electronic state. If only the bending vibrational mode is excited with a single quantum

(vbend = 1), |Λ| = |`| = 1, which leads to four vibronic levels with K = 2, 2, 0, 0. The symmetry of the

resulting vibronic levels is easily predicted from group theory: Γev = Πu(e)⊗Πu(v) = Σ+
g + Σ−g + ∆g.

The two Σ states have K = 0 and the ∆ state possesses two components with K = 2. The energetic

ordering of these vibronic states is as shown in Figure 28.

In general, a vibrational level with vbend quanta of excitation has a vibrational angular momentum

quantum number ` = −vbend,−vbend + 2, ...,+vbend − 2,+vbend. The vibronic levels of a Π state thus

have the vibronic quantum numbers K = −vbend − 1,−vbend + 1, ...,+vbend − 1,+vbend + 1 with the

following vibronic symmetries: K = 0 : Σ; |K| = 1 : Π; |K| = 2 : ∆, . . ..
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Figure 28: Electronic and vibrational angular momenta in the Renner-Teller effect of a linear molecule

in a 1Π electronic state, with its bending mode being excited with a single quantum. The left-hand

side of the figure illustrates the case of electronic (vibrational) angular momentum projection quantum

number Λ = +1 (` = −1). The right-hand side shows the splitting of the vbend = 1 level into three

sublevels of vibronic symmetries Σ− and Σ+ (Λ + ` = 0), and ∆ (|Λ − `| = 2) arising from the

Renner-Teller effect.

The Renner-Teller effect has a strong influence on the potential energy surfaces. The degeneracy

of the two components of a Π electronic state in the linear configuration is lifted when the molecule

bends, resulting in two potential energy surfaces V + and V −. For symmetry reasons, the functional

form of the potential energy surface of a Π electronic state in the absence of a Renner-Teller effect

can only contain even powers of the bending coordinate Q

V 0 = aQ2 + bQ4 + .... (141)

For the same symmetry reasons, the splitting between the V + and V − surfaces can also only contain

even powers of Q

V + − V − = αQ2 + βQ4 + .... (142)

In general, three qualitatively different types of potential energy functions along the bending

coordinate can be obtained, as illustrated in Figure 29. In the first case, (a), the RT effect is so weak

that it preserves the linearity of the molecule and only affects the curvature of the potential energy

surface along the bending mode. In the second case, (b), the lower-lying surface has a minimum at a

bent geometry, whereas the higher-lying surface retains its minimum at the linear geometry. Finally,

in the last case, (c), both surfaces have their minimum shifted to a bent geometry. In cases (b) and

(c), the molecules are permanently distorted only if the depth of the potential minimum significantly

exceeds the zero-point energy of the bending vibration. If the potential energy minimum occurs at
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a nonlinear geometry but the well depth is comparable to or smaller than the zero-point energy of

the bending vibration, the molecule essentially behaves like a linear molecule. This is a special case

of so-called ”quasilinear” molecules, however quasilinearity is also encountered in the absence of the

Renner-Teller effect.

Figure 29: Adiabatic potential energy surfaces resulting from a Renner-Teller effect in a degenerate

electronic state of a linear molecule induced by the bending mode.

A classical example of the Renner-Teller effect represented in Figure 29c is the Ã 2A1 ← X̃ 2B1

transition of NH2. The potential energy minima in the X̃ and Ã states occur at very different bending

angles (103.4◦ and 144◦, respectively), resulting in a long progression of the bending vibration in the

electronic spectrum (Johns et al. 1976). Examples for cases (a) and (b) are the Ã 1Πu state of C3 and

the X̃ 2A1 and Ã 2Πu states of BH2, respectively.

The Jahn-Teller (JT) effect describes the geometrical distortion of nonlinear molecules in degen-

erate electronic states (Jahn and Teller 1937) of symmetries E, Fa, G and H. As stated by Jahn

and Teller ”any nonlinear molecular system in a degenerate electronic state will be unstable and will

undergo distortion to form a system of lower symmetry and lower energy thereby removing the degen-

eracy”. The theorem of Jahn and Teller does not state how large the distortion should be or which

of the distortions allowed by symmetry will be the dominant one. As in the case of the Renner-Teller

effect, the driving force for the molecular distortion is the stabilization of the electronic structure that

is achieved in the distorted configuration.

The JT effect profoundly modifies the potential energy surfaces. They are best described in Taylor

expansions around a reference geometry ~Q0, most conveniently chosen as the geometry of highest

symmetry. At this geometry, the electronic state has its maximal degeneracy (see, e.g., Bersuker

(2006); Domcke et al. (2004); Köppel et al. (1984); Barckholtz and Miller (1998); Wörner and Merkt

aHistorically, threefold degenerate states were designated with the letter T instead of the letter F. Both nomenclatures

are in use in the literature.
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(2009))

V̂ ( ~Q) =

∞∑

k=1

1

k!

3N−6∑

i=1

(
∂kV̂

∂Qki

)

0

Qki + V ( ~Q0), (143)

where Qi represents the vibrational coordinates. In many cases, the expansion can be truncated at

k = 1 or 2, corresponding to linear and quadratic Jahn-Teller activity, respectively.

Group theory can be used to predict which modes are Jahn-Teller ”active”. The general selection

rule for vibronic coupling between two electronic states of irreducible representations ΓA and ΓB

mediated by a vibrational mode of symmetry Γν is

ΓA ⊗ ΓB ⊇ [Γν ]
k
, (144)

where [Γν ]
k

is the symmetric kth power of the irreducible representation of the vibrational mode ν.

When Eq. (144) is fullfilled, the vibrational mode is said to be an active mode of order k. According

to Eq. (144), vibronic coupling of order k between the different components of a degenerate electronic

state of irreducible representation Γel,deg., which is the simplest case of the Jahn-Teller effect, is allowed

along mode ν if

[Γel,deg.]
2 ⊇ [Γν ]

k
. (145)

Vibronic coupling between a degenerate state (Γel,deg.) and a nondegenerate state (Γel,nondeg.), the

so-called Pseudo-Jahn-Teller effect, can only occur along mode ν if

Γel,deg. ⊗ Γel,nondeg. ⊇ [Γν ]
k
. (146)

To illustrate the Jahn-Teller and Pseudo-Jahn-Teller effects, we now consider the examples of the

cyclopentadienyl radical (C5H5) and cation (C5H+
5 ), which are subject to a Jahn-Teller effect and a

Pseudo-Jahn-Teller effect in their ground doublet and singlet states, respectively.

In their most symmetric configuration, C5H5 and C5H+
5 have D5h symmetry (see character table

in Table 14). Relevant for a discussion of the low-lying electronic states of C5H5 is the π-system of

molecular orbitals already presented in Subsection 2.3.1b. C5H5 has the ground electronic configu-

ration ((a′′2)2(e′′1)3) which gives rise to a single electronic ground state of 2E′′1 symmetry. In the D5h

point group, [E′′1 ]
2

= A′1 ⊕ E′2 (see Table 18), so that the vibrational modes of e′2 symmetry mediate

a linear Jahn-Teller coupling. Since [e′1]
2

and [e′′1 ]
2

both contain e′2, vibrational modes of symmetry

e′1 and e′′1 are quadratically Jahn-Teller active (see Eq. (145)). In D5h(M), linear and quadratic

Jahn-Teller activities are therefore mutually exclusive, which leads to cylindrically symmetric poten-

tial energy surfaces in the respective two-dimensional subspaces of degenerate vibrational coordinates.

The ground-state potential energy surface of C5H5 is schematically represented in Figure 30.

A vibrational mode of symmetry E can be represented using two Cartesian coordinates (x, y) or

two cylindrical coordinates (ρ,θ) related by

x = ρ cos(θ) and y = ρ sin(θ). (147)
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Figure 30: Adiabatic potential energy surfaces resulting from a linear Jahn-Teller effect in a doubly

degenerate electronic state induced by a single doubly degenerate vibrational mode with coordinates

x and y.

In the case of a single linearly JT-active mode of symmetry E, the potential energy surface of a doubly

degenerate electronic state takes the form

VE±(ρ, θ) = VE±(ρ) = VE(0) +
ωJT

2
ρ2 ± gρ, (148)

where VE(0) is the electronic potential energy at the reference geometry, ωJT is the frequency of the

vibrational mode and g is the JT coupling constant. The corresponding shape of the potential energy

surfaces is illustrated in Figure 30. The linear Jahn-Teller effect thus decreases the potential energy

of the lower component of the E electronic state by the stabilization energy

Estab =
g2

2ωJT
. (149)

The Pseudo-Jahn-Teller effect occurs when a vibrational mode couples a degenerate and a non-

degenerate electronic state, according to Eq. (146), and is discussed here using the cyclopentadienyl

cation as an example. The three lowest electronic states of the cyclopentadienyl cation result from the

configuration ((a′′2)2(e′′1)2) and have the electronic symmetries 3A′2, 1E′2 and 1A′1 (in order of increasing

energy, see Subsection 2.3.1). These electronic states have been investigated by photoelectron spec-
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Table 18: Irreducible representations Γ of D5h and their symmetrized squares [Γ]2.

Γ a′1 a′2 e′1 e′2 a′′1 a′′2 e′′1 e′′2

[Γ]
2

a′1 a′1 a′1+e′2 a′1+e′1 a′1 a′1 a′1+e′2 a′1+e′1

troscopy (Wörner et al. 2006; Wörner and Merkt 2007, 2009). The triplet ground state is not involved

in vibronic coupling and therefore has a D5h equilibrium geometry. The doubly-degenerate 1E′2 state

undergoes both Jahn-Teller and Pseudo-Jahn-Teller effects. From Equation (145) and Table 18, one

can conclude that the e′1 vibrational modes are linearly Jahn-Teller active, and that the e′2 and e′′2

vibrational modes are quadratically active in the 1E′2 state. However, the Jahn-Teller effect in an elec-

tronic state having two electrons in two degenerate orbitals (configuration e2) vanishes in the absence

of configuration interaction (Watson 1999a) and will therefore be negelected. The Pseudo-Jahn-Teller

coupling between the 1E′2 and 1A′1 states (e′2⊗a′1 = e′2) is mediated by vibrational modes of e′2 symme-

try in first order and modes of e′1 or e′′1 symmetry in second order. The potential energy surfaces of the

second and third lowest electronic states of C5H+
5 are represented schematically in Figure 31. For a

single doubly-degenerate PJT-active mode with Cartesian coordinates (x, y) or cylindrical coordinates

(r, φ), two of the surfaces repel each other whereas the third remains unchanged. Assuming identical

vibrational frequencies in the A and E states, the following potential surfaces are obtained

VA(r, φ) = VA(r) =
VE(0) + VA(0)

2
+
ωPJT

2
r2 +

√[
VA(0)− VE(0)

2

]2

+ 2λ2r2

VEy
(r, φ) = VEy

(r) = VE(0) +
ωPJT

2
r2

VEx(r, φ) = VEx(r) =
VE(0) + VA(0)

2
+
ωPJT

2
r2 −

√[
VA(0)− VE(0)

2

]2

+ 2λ2r2,

(150)

where VE(0) and VA(0) are the electronic potential energies at the reference geometry, ωPJT is the

frequency of the vibrational mode, and λ is the PJT coupling constant. The corresponding shape of

the potential energy surfaces is illustrated in Figure 31.

The spectroscopic characterization of the Jahn-Teller and Pseudo-Jahn-Teller effect in C5H5 and

C5H+
5 is discussed in Subsection 3.4.3.

3 Electronic spectra

3.1 Transition moments and selection rules

The intensity I(νfi) of a transition between an initial state of an atom or a molecule with wave function

Ψi and energy Ei and a final state with wave function Ψf and energy Ef is proportional to the square of

the matrix element V̂fi, where the matrix V̂ represents the operator describing the interaction between
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Figure 31: Adiabatic potential energy surfaces resulting from a linear Pseudo-Jahn-Teller effect be-

tween a lower-lying doubly degenerate electronic state (E) and a higher-lying nondegenerate state (A)

induced by a single doubly degenerate vibrational mode

the radiation field and the atom or the molecule

I(ν) ∝ |〈Ψf |V̂ |Ψi〉|2 = 〈f|V̂ |i〉2 = V̂ 2
if . (151)

The transition is observed at the frequency νfi = |Ef − Ei|/h.

A selection rule enables one to predict whether a transition can be observed or not on the basis

of symmetry arguments. If 〈Ψf |V̂ |Ψi〉 = 0, the transition f ← i is said to be “forbidden” , i.e., not

observable; if 〈Ψf |V̂ |Ψi〉 6= 0, the transition f ← i is said to be “allowed”.

The interaction between molecules and electromagnetic radiation of a wavelength much larger than

the molecular size is dominated by the interaction between the electric dipole moment and the electric

field of the radiation

V̂ = − ~̂
M · ~E, (152)

and, in the following, we restrict the discussion to this interaction.

In the case of linearly polarized radiation, the electric field vector, defined in the laboratory-fixed

(X,Y, Z) frame, is (0, 0, E), and, therefore, V̂ = −M̂ZE. When studying the spectra of atoms, the

laboratory-fixed (or space-fixed) reference frame is the only relevant frame, because it can always be

chosen to coincide with an internal, ”atom-fixed” reference frame. Indeed, the point-like nature of the

nucleus implies that there are no rotations of the nuclear framework. For this reason, atomic spectra

are simpler to treat than molecular spectra.
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Figure 32: Relationship between the dipole moment ~µ = (µx, µy, µz), which is naturally expressed

in the molecule-fixed reference frame (x, y, z), and the dipole moment ~M = (MX ,MY ,MZ) in the

space-fixed (X,Y, Z) reference frame. For the molecule CH3Cl used as illustration, the permanent

dipole-moment vector ~µ lies along the z axis of the molecule-fixed reference frame.

In molecules, the components µ̂ξ of the electric dipole moment have a simple expression, and can

be computed or interpreted easily, in the molecule-fixed reference frame (x, y, z) in which they are

given by

µ̂ξ =
∑

j

qjξj with ξ = x, y, oder z, (153)

where qj and ξj are the charge and the ξ coordinate of the jth particle, and the sum extends over all

particles (electrons and nuclei) in the molecule. The important quantities for the interaction defined in

Equation (152) are the space-fixed components M̂X , M̂Y and M̂Z of
~̂
M . To evaluate Equation (151)

using Equations (152) and (153) the relative orientation of the molecule-fixed and space-fixed reference

frames must be considered, as illustrated by Figure 32.

Figure 33 shows how the relative orientation of the space-fixed and molecule-fixed frames can be

defined using three angles known as the three Euler angles (θ, φ and χ) (see Zare (1988)).

The rotation matrices corresponding to the three rotations represented in Figure 33 allow one to

express the space-fixed components of
~̂
M as a function of the molecule-fixed components µ̂ξ. The Z

component, for instance, is given by

M̂Z = λxZ µ̂x + λyZ µ̂y + λzZ µ̂z =
∑

α

λαZ µ̂α, (154)

where the values of the direction cosines λiJ are easily obtained from the form of the rotation matrices
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Figure 33: Euler angles θ, φ, χ defining the relative orientation of the space-fixed reference frame

(X,Y, Z) and the molecule-fixed reference frame (x, y, z). Starting from the space-fixed reference

frame, the molecule-fixed reference frame is obtained by 1) rotation by an angle φ around the Z axis,

leading to the intermediate (x′, y′, z′) frame; 2) rotation by an angle θ around the y′ axis, leading to

the second intermediate (x′′, y′′, z′′) frame; and 3) rotation by an angle χ around the z′′ axis.

(see, e.g., Zare (1988); p78-81). The selection rules can be derived from the integral

〈Ψf |M̂z|Ψi〉. (155)

We begin the discussion of electronic transitions and selection rules by considering wave functions

of the form given by Equation (1). The product form of such functions is based on the assump-

tion that the electronic, spin, vibrational and rotational motions are separable, which represents an

approximation. The interactions between the various types of motion, e.g. spin-orbit interaction

(see Subsection 2.1.4) or the interaction between rotational and electronic motions (see Subsection

2.2.7), or interactions between vibrational and electronic motion (see subsection 2.3.6) are often sig-

nificant, in which case the selection rules derived on the basis of Equation (1) may be violated.

Using Equations (1) and (154), Equation (155) can be written as

〈Φ′elecΦ′espinΦ′vibΦ′rotΦ
′
nspin|

∑

α

λαZ µ̂α|Φ′′elecΦ′′espinΦ′′vibΦ′′rotΦ
′′
nspin〉. (156)

The electric-dipole-moment operator (Equation (153)) is independent of the spin variables. The

integration over electron and nuclear spin coordinates in Equation (156) may thus be performed

separately from the integration over spatial (rovibronic) coordinates

〈Φ′espin|Φ′′espin〉〈Φ′nspin|Φ′′nspin〉〈Φ′elecΦ′vibΦ′rot|
∑

α

λαZ µ̂α|Φ′′elecΦ′′vibΦ′′rot〉. (157)
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The wave functions corresponding to different electron-spin and nuclear-spin states are orthogonal,

so that the first two integrals in Equation (157) are zero, unless |Φ′espin〉 = |Φ′′espin〉 and |Φ′espin〉 =

|Φ′′espin〉. The resulting selection rules imply the conservation of the total electron spin

∆S = 0, (158)

and the total nuclear spin

∆I = 0, (159)

and also the conservation of nuclear-spin symmetry.

In the absence of interactions between the vibronic and rotational degrees of freedom, the vibronic

wave functions ΦelecΦvib are independent of the Euler angles, and so are the molecule-fixed components

µ̂α of the electric-dipole-moment operator. Morever, the direction cosine matrix elements λαZ and the

rotational functions Φrot do not depend on the vibronic coordinates. Consequently, the integration

over the vibronic coordinates and the Euler angles in the last factor of Equation (157) can be performed

separately to a good approximation:

〈Φ′elecΦ′vibΦ′rot|
∑

α

λαZ µ̂α|Φ′′elecΦ′′vibΦ′′rot〉 =
∑

α

〈Φ′rot|λαZ |Φ′′rot〉〈Φ′elecΦ′vib|µ̂α|Φ′′elecΦ′′vib〉. (160)

The first, angle-dependent factor on the right-hand side of Equation (160) implies the conservation

of angular momentum. The electric-dipole moment operator ~̂M is a vector and can therefore be

represented as a spherical tensor of rank J = 1 (Zare 1988). Consequently, the transition moment

〈Ψ′| ~̂M |Ψ′′〉 vanishes unless

∆J = J ′ − J ′′ = 0,±1 (0↔ 0 forbidden). (161)

Considering the polarization of the radiation leads to the following selection rules for the magnetic

quantum number:

∆MJ = M ′J −M ′′J = 0 (linear polarization parallel to Z axis) (162)

∆MJ = M ′J −M ′′J = ±1 (linear polarization perpendicular to Z axis) (163)

∆MJ = M ′J −M ′′J = 1 (circular polarization with positive helicity) (164)

∆MJ = M ′J −M ′′J = −1 (circular polarization with negative helicity). (165)

The electric-dipole moment operator is also antisymmetric with respect to the parity operation which

reverses the sign of all coordinates in the laboratory-fixed frame. Given that the parity is a conserved

quantity as long as parity violation by the weak force is neglected (see Quack (2010)), transitions can

only occur between rovibronic states of opposite parity, i.e.,

+↔ − (+↔ + and − ↔ − are forbidden). (166)

It is important to note that the ± signs in Equation (166) refer to the total (rovibronic) parity of the

energy levels (see Equation (110)), and must be distinguished from the ± signs in the electronic term



HRS004 Fundamentals of electronic spectroscopy 85

symbol. The parity selection rule will be discussed in more detail in Subsection 3.3.4 in the treatment

of the rotational structure of electronic transitions.

Equations (161)-(166) are general to all electric-dipole transitions in all systems, not only atoms.

When the transitions connect hyperfine levels, J ′′ and (J ′) must be replaced by F ′′ and (F ′), respec-

tively. Equations (158) and (159) are also general to all electric-dipole transitions but hold less strictly

because they result from the approximation of separable wave functions.

These considerations make it obvious that two-photon transitions (e.g., Raman transitions), or

magnetic-dipole transitions do not obey the same set of selection rules. The treatment of such tran-

sitions can be made in an analogous manner, but by using the appropriate form of the interaction

operators.

Further selection rules, specific of the symmetry properties of the atomic or molecular systems

under investigation, result from the second, angle-independent term on the right-hand side of Equa-

tion (160). These selection rules can be derived from group-theoretical arguments on the basis of the

following considerations:

1. electronic Φelec and vibrational Φvib wave functions transform as irreducible representations of

the appropriate point group,

2. the molecule-fixed components µ̂ξ of the electric-dipole-moment operator transform as the trans-

lations Tx, Ty und Tz,

3. a product of two or more functions transforms as the product of the corresponding representa-

tions, and

4. the integral over a product of functions differs from zero only if the product of the corresponding

representations contains the totally-symmetric representation, usually A1 (or Σ+ in diatomic

molecules, and S in atoms; we use A1 in this section to designate this representation).

An allowed transition between the states i and f with the irreducible representations Γi and Γf must

therefore fullfill the condition in the electric-dipole approximation

Γi ⊗ Γ(Tα)⊗ Γf ⊇ A1, with α = x, y, z. (167)

Considering the last, vibronic, factor in Equation (160):

〈Φ′elecΦ′vib|µ̂α|Φ′′elecΦ′′vib〉 = 〈Φ′ev|µ̂α|Φ′′ev〉, (168)

one concludes that a transition is vibronically allowed if

Γ′′ev ⊗ Γ(Tα)⊗ Γ′ev ⊇ A1. (169)

———————————————————

Example: In the C2v point group, Tx, Ty and Tz transform as B1, B2 and A1, respectively (see Table 12). Vibronic



HRS004 Fundamentals of electronic spectroscopy 86

wave functions of symmetry Γ′ev = B1,B2 or A1 can thus be excited from an initial vibronic state of symmetry

Γ′′ev = A1 (e.g., the ground state of H2O), and the corresponding transition moment lies along the x, y and z

axis of the molecule-fixed reference frame, respectively. Transitions to levels of vibronic symmetry Γ′ev = A2 are

vibronically forbidden.

———————————————————

Within the Born-Oppenheimer approximation, the electronic motion can be separated from the

vibrational motion of the nuclear framework, and the integration over the electronic coordinates in

Equation (168) can be performed for any given value of the nuclear coordinates ~Q

〈Φ′vib[〈Φ′elec|µ̂α|Φ′′elec〉e]Φ′′vib〉 = 〈Φ′vib|µe
α( ~Q)|Φ′′vib〉. (170)

In Equation (170)

µe
α( ~Q) = 〈Φ′elec|µ̂α|Φ′′elec〉e (171)

depends on the nuclear coordinates ~Q and thus on the 3N − 6 (or 3N − 5 for linear molecules)

symmetrized normal coordinates Qi. When this dependence is weak, µe
α( ~Q) can be expanded in a

Taylor series around a reference geometry, e.g. the equilibrium geometry ~Qeq of the initial electronic

state of the transition,

µe
α( ~Q) = µe

α( ~Qeq) +
∑

j

∂µe
α

∂Qj
|eqQj + . . . , (172)

where the summation extends over all normal coordinates Qj . Retaining only the constant and linear

terms of the Taylor series of µe
α( ~Q), Equation (170) can be expressed as a sum of two terms

µe
α|eq〈Φ′vib|Φ′′vib〉+

∑

j

∂µe
α

∂Qj
|eq〈Φ′vib|Qj |Φ′′vib〉. (173)

Equation (173) forms the basis of the classification of electronic transitions as electronically allowed

transitions, on the one hand, and as electronically forbidden, but vibronically allowed transitions, on

the other. These two types of electronic transitions are now described in more detail.

Electronically allowed transitions:

In the case of an electronically allowed transition, the contribution arising from the first term of

Equation (173) is nonzero, which implies that

Γ′elec ⊗ Γ(Tα)⊗ Γ′′elec ⊇ A1 with α = x, y, z. (174)

Neglecting the second term in Equation (173) leads to the following two conclusions. Firstly, the in-

tensity of an electronically allowed transition is proportional to the square of the electronic transition

moment evaluated at the equilibrium geometry of the initial state, i.e., to |〈Φ′elec|µ̂α( ~Qeq)|Φ′′elec〉e|2.

Secondly, the intensity of a transition from the vibrational level Φ′′vib of the initial state to the vibra-

tional level Φ′vib of the final state is proportional to the square of the overlap of the vibrational wave

functions, i.e., to

|〈Φ′vib|Φ′′vib〉|2, (175)
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a quantity known as a Franck-Condon factor. Group-theoretical arguments further lead to the con-

clusion that the Franck-Condon factors are nonzero only if

Γ′vib ⊗ Γ′′vib ⊇ A1 (or Σ+). (176)

For example, transitions from the ground vibrational level of a molecule, which must have Γ′′vib =

A1, are observable only to totally-symmetric vibrational levels of the final electronic state, i.e., to

vibrational levels with Γ′vib = A1. This condition is fulfilled by all vibrational levels having only

even numbers of vibrational quanta in non-totally-symmetric vibrational modes. More generally,

Equation (176) can be expressed as

∆vi = v′i − v′′i = 0,±2,±4, . . . (177)

for all non-totally-symmetric vibrational modes i, and as

∆vj = v′j − v′′j = 0,±1,±2, . . . (178)

for all totally-symmetric vibrational modes j. When the Born-Oppenheimer potential energy hyper-

surface of the two electronic states connected by an electronic transition are identical, the observed

transitions are characterized by ∆vi = 0 for all modes i, because of the orthogonality of the vibrational

wave functions (see Figure 44 below). The observation of long vibrational progressions in electronic

spectra indicates that the initial and final electronic states have different equilibrium geometries and

the length of a progression in a given mode can be correlated to the change of geometry along this

mode.

Electronically forbidden but vibronically allowed transitions:

The second term of Equation (173) becomes the dominant term when the transition is electronically

forbidden. This term is nonzero if

Γ′vib ⊗ ΓQi ⊗ Γ′′vib ⊇ A1 (or Σ+), (179)

in which case one speaks of electronically forbidden but vibronically allowed transitions. Such tran-

sitions gain intensity by the vibronic coupling of the final electronic state to another electronic state

which is connected to the initial electronic state by an electronically allowed transition. The vibronic

coupling is mediated by the non-totally-symmetric normal mode with coordinate Qi. Consequently,

observable vibronic transitions are characterized by

∆vi = v′i − v′′i = 1,±3,±5, . . . , (180)

and would be forbidden in an electronically allowed transition. The vibronic coupling leading to the

observation of electronic forbidden transition is known as Herzberg-Teller coupling, or Herzberg-Teller

intensity borrowing mechanism, and results from a breakdown of the Born-Oppenheimer approxima-

tion. The observation of vibrational progressions following the selection rule (180) provides important
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information on vibronic coupling in that it enables one to identify the modes responsible for the

coupling.

——————————————————–

Example: A1 ↔ A1, B2 ↔ A1 and B1 ↔ A1 transitions of C2v molecules are electronically allowed, but

A2 ↔ A1 transitions are electronically forbidden in the electric dipole approximation. Such transitions may

become observable by vibronic coupling to electronic states of A1, B2, and B1 electronic symmetry induced

by vibrational modes of A2, B1, and B2 symmetry, respectively.

——————————————————–

Specific selection rules, which depend on the point-group symmetry of the molecular system under

consideration, can be derived from the general results presented above. Such selection rules are now

discussed in more detail, and separately, for atoms, diatomic (and linear) molecules and polyatomic

molecules in the next subsections.

When discussing selection rules of the kind presented above, it is important to always keep in mind

that all equations derived in this subsection are the result of approximations, approximations in the

treatment of the interaction between the atomic or molecular systems with the radiation field, approx-

imations concerning the separability of the different types of motion, and approximations resulting

from the truncation of expansions. These approximations are helpful in the interpretation of electronic

spectra, but, often, a fully satisfactory treatment of intensity distributions makes it necessary to go

beyond them, for instance (i) by considering the interaction between the rotational, vibrational and

electronic motions and the spin-orbit interaction, (ii) by accounting for the fact that the normal modes

of the initial electronic state do not always coincide with the normal modes of the final electronic state,

or even, in some cases, (iii) by recognizing that the initial and final electronic states belong to different

point groups.

Point groups are convenient and adequate to discuss vibronic selection rules in many molecular

systems. Rovibronic selection rules and selection rules in electronic transitions connecting electronic

states subject to large-amplitude motions or belonging to different point-group symmetry, are more

conveniently treated in symmetry groups representing the true symmetry properties of the Hamiltonian

describing the molecular system, such as the complete-nuclear-inversion-permutation groups or the

molecular symmetry groups (Bunker and Jensen 1998). Further information on such groups and their

applications in high-resolution spectroscopy are discussed in the articles by Schnell (2010); Oka (2010);

Quack (2010) in this handbook.

3.2 Electronic spectra of atoms

An immense body of data exists on the electronic spectra of atoms. Extensive tables of atomic energy

levels and transition frequencies have been published (see, for instance, Moore (1949, 1952, 1958)).

Data exist on almost all atoms, in almost all charge states. Rather than trying to recompile these

data, the present chapter introduces elementary aspects of the electronic spectra of atoms that are
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necessary to make good use of the published material. After a brief summary of electric-dipole selection

rules in Subsection 3.2.1, the elementary aspects of electronic atomic spectroscopy are illustrated in

Subsection 3.2.2 with the examples of hydrogen and hydrogen-like atoms, alkali-metal atoms, and

rare-gas atoms. The first example was chosen because of the immense importance of the spectrum

of the H atom in the development of quantum mechanics and electronic spectroscopy. It also gives

an idea of the extreme precision of spectroscopic measurements and how high-resolution electronic

spectroscopy can be used to reveal the finest details of the energy level structure of atoms. The

second example presents the electronic spectra of the alkali-metal atoms, which were at the origin of

the s, p, d, f,. . . nomenclature used to label atomic states. Alkali-metal atoms play a dominant role in

current research in atomic physics. For instance, the knowledge of the fine and hyperfine structures of

selected transitions is required to understand laser cooling. With the electronic spectra of the rare-gas

atoms, we discuss atomic systems with more than one unpaired electron, which have electronic states

of different spin multiplicity.

3.2.1 Selection rules

Selection rules complementing the general ones already presented in Equations (161)-(166) can be

derived using the point group Kh (see Table 1) if the electron spin and orbital motions can be

separated, in which case ∆S = 0 (see Equation (158)). As mentioned in the previous subsection,

the laboratory-fixed reference frame is the only relevant frame when determining selection rules for

atoms. The X, Y and Z components of the electric-dipole-moment operator ~̂M transform as the

Pu irreducible representation of Kh so that the single-photon selection rules corresponding to the

transition moment 〈Ψ′| ~̂Mi|Ψ′′〉 with i = X,Y, Z can be expressed as

Γ′ ⊗ Γ′′ ⊇ Pu. (181)

Using the direct-product table (Table 2), this equation leads to the selection rule known as Laporte

rule

∆L = L′ − L′′ = 0,±1 (0↔ 0 forbidden). (182)

and to

g↔ u (g↔ g and u↔ u forbidden). (183)

Whenever electron-correlation effects are negligible and the electronic wave function can be represented

as a single determinant (see Equation (15)), absorption of a single photon leads to a final electronic

state differing from the initial one by a single spin-orbital, say φ`, so that the selection rules (182)

and (183) reduce to 〈φ`′ | ~̂M |φ`′′〉
∆` = `′ − `′′ = ±1. (184)

The same argumentation can easily be extended to the derivation of magnetic-dipole or electric-

quadrupole selection rules as well as selection rules for multiphoton processes.
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3.2.2 Selected examples

Hydrogen and other one-electron atoms

The spectra of hydrogen and hydrogen-like atoms have been of immense importance for the develop-

ment of quantum mechanics and for detecting and recognizing the significance of fine, hyperfine and

quantum-electrodynamics effects. They are also the source of precious information on fundamental

constants such as Rydberg’s constant and the fine-structure constant. The desire to observe the spec-

trum of the H atom at ever higher spectral resolution and to determine the transition frequencies at

ever higher accuracy has been one of the major driving forces in methodological and instrumental

developments in high-resolution electronic spectroscopy.

If fine, hyperfine, and quantum-electrodynamics effects are neglected, the energy level structure

of the hydrogen atom is given by Equation (5) and is characterized by a high-degree of degeneracy.

The allowed electronic transitions can be predicted using Equation (184) and their wavenumbers

determined using Equation (185)

ν̃ = RM/n
′′2 −RM/n′2 (185)

which, for n′′ = 2, reduces to Balmer’s formula. The transitions obeying the selection rule (184) are

depicted schematically in Figure 34a, in which, for simplicity, only transitions from and to the n = 1

and n = 2 levels are indicated by double-headed arrows. Because of their importance, many transitions

have been given individual names. Lines involving n = 1, 2, 3, 4, 5, and 6 as lower levels are called

Lyman, Balmer, Paschen, Brackett, Pfund, and Humphrey lines, respectively. Above n = 6, one uses

the n value of the lower level to label the transitions. Lines with ∆n = n′ − n′′ = 1, 2, 3, 4, 5, . . .

are labeled α, β, δ, γ, φ, . . ., respectively. Balmer β, for instance, designates the transition from n = 2

to n = 4. The spectral positions of the allowed transitions are indicated in the schematic spectrum

presented in Figure 34b.

The degeneracies implied by Equation (5) make the spectrum of the hydrogen atom and single-

electron atoms simpler than the spectrum of other atoms at low resolution, but more complex at high

resolution. Precision measurements have revealed the fine and hyperfine structure of many lines of

hydrogen and hydrogen-like atoms, and even of energy shifts resulting from the interaction of the

atoms with the zero-point radiation field, so-called Lamb shifts (Lamb and Retherford 1947). Today,

the energy level structure of the hydrogen atom are known with exquisite precision (see Figure 35, in

which the level positions calculated without hyperfine structure from Mohr (2008) are given and the

fine and hyperfine structures are taken from Brodsky and Parsons (1967); Essen et al. (1971); Fischer

et al. (2004); Lundeen and Pipkin (1986); Kolachevsky et al. (2009); Mohr et al. (2008). The splitting

of ≈ 0.0475 cm−1 of the 1s 2S1/2 ground state results from the hyperfine interaction. This splitting

scales with n−3 and rapidly decreases with increasing n value, and also with increasing ` value. The

spin-orbit splittings, which are zero for s levels, are largest for p levels and also scale as n−3. The two

components of the 2P level with J = 1/2 and 3/2 are separated by ≈ 0.365 cm−1. Dirac’s relativistic

treatment predicts two components for n = 2, a lower, doubly degenerate spin-orbit level with J = 1/2
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Figure 34: a) Energy level diagram of the H atom neglecting fine, hyperfine, and quantum electro-

dynamics effects. Possible single-photon transitions to and from the n = 1 and 2 levels are indicated

by double-headed arrows. b) Schematic spectrum of H showing that the electronic spectrum extends

from the microwave to the vacuum ultraviolet ranges of the electromagnetic spectrum.
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Figure 35: Fine and hyperfine structure of the (a) n = 1 and (b) n = 2 levels of the hydrogen atom.

Numerical values were taken from Mohr (2008) for the positions without hyperfine structure and from

Refs. Brodsky and Parsons (1967); Essen et al. (1971); Fischer et al. (2004); Lundeen and Pipkin

(1986); Kolachevsky et al. (2009); Mohr et al. (2008) for other intervals.

and an upper, nondegenerate level with J = 3/2. The interaction with the zero-point radiation field

removes the degeneracy of the lower component and induces a splitting of ≈ 0.0354 cm−1.

High-resolution spectroscopy of hydrogen-like atoms such as H, He+, Li2+, Be3+ . . . and their

isotopes continues to stimulate methodological and instrumental progress in electronic spectroscopy.

Measurements on ”artificial” hydrogen-like atoms such as positronium (atom consisting of an electron

and a positron), protonium (atom consisting of a proton and an antiproton), antihydrogen (atom

consitsting of an antiproton and a positron), muonium (atom consisting of a positive muon µ+ and

an electron), antimuonium (atom consisting of a negative muon µ− and a positron), etc., have the po-

tential of providing new insights into fundamental physical laws and symmetries and their violations,

such as those discussed in hrs076 (Quack 2010).

Alkali-metal atoms

A schematic energy level diagram showing the single-photon transitions that can be observed in the

spectra of the alkali-metal atoms is presented in Figure 36. The ground-state configuration corresponds
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Figure 36: Schematic diagram showing the transitions that can be observed in the single-photon

spectrum of the alkali-metal atoms.

to a closed-shell rare-gas-atom configuration with a single valence n0s electron with n0 = 2, 3, 4, 5 and

6 for Li, Na, K, Rb and Cs, respectively. The energetic positions of these levels can be determined

accurately from Rydberg’s formula (Equation (58)). The Laporte selection rule (Equation (182))

restricts the observable single-photon transitions to those drawn as double-headed arrows in Fig-

ure 36. Neglecting the fine and hyperfine structures, their wave numbers can be determined using

Equation (186)

ν̃ = RM/(n
′′ − δ`′′)2 −RM/(n′ − δ`′)2. (186)

The deviation from hydrogenic behavior is accounted for by the `-dependent quantum defects. Tran-

sitions from (or to) the lowest energy levels can be grouped in Rydberg series, which have been called

principal, sharp, diffuse and fundamental. Comparing Figure 36 with Figure 34, one can see that the

principal series of the alkali metal atoms (called principal because it is observed in absorption and

emission) corresponds to the Lyman lines of H, the diffuse and sharp series to the Balmer lines, and

the fundamental series to the Paschen lines.

The quantum defects are only very weakly dependent on the energy. Neglecting this dependence,

the quantum defects of the sodium atom are δs ≈ 1.35, δp ≈ 0.86, δd ≈ 0.014, and δf ≈ 0, so that

the lowest-frequency line of the principal series (called the sodium D line because it is a doublet, see

below) lies in the yellow range of the electromagnetic spectrum, and not in the VUV as Lyman α. The

fact that the n0p← n0s lines of the alkali metal atoms lie in the visible range of the electromagnetic

spectrum makes them readily accessible with commercial laser sources, and therefore extensively

studied and exploited in atomic-physics experiments.

Most transitions of the alkali-metal atoms reveal fine and hyperfine structures. As in the case

of H, the hyperfine-structure splittings are largest in the ground state (3s 2S1/2 in the case of Na)
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Figure 37: Schematic diagram showing the fine and hyperfine structure of the 3s and 3p levels involved

in the lowest-frequency line of the principal series of 23Na.

and the fine-structure splittings are largest in the lowest-lying p level (3p 2PJ with J = 1/2, 3/2 in

the case of Na). The details of the structure of these two levels of Na are presented in Figure 37.

At low resolution, the 3p←3s line appears as a doublet with two components at 16960.9 cm−1 and

16978.1 cm−1, separated by an interval of 17.2 cm−1 corresponding to the spin-orbit splitting of the 3p

state. The second largest splitting (≈ 0.06 cm−1) in the spectrum arises from the hyperfine splitting of

1772 MHz of the 3s state. Finally, splittings of less than 200 MHz result from the hyperfine structure

of the 3p levels.

The level structures depicted in Figure 37 are characteristic of the n0p← n0s transitions of all

alkali-metal atoms, which are nowadays widely used in the production of cold and ultracold atoms by

laser cooling. Laser-cooling experiments exploit so-called closed transitions, and achieve a reduction of

velocity of the sample in the direction opposite to the laser propagation direction as a result of a large

number of subsequent absorption-emission cycles. If a narrow-band laser is tuned to the low-frequency

side of a spectral line, only atoms with a positive Doppler shift, i.e., atoms moving towards the laser

light source can absorb radiation. By doing so, they also acquire a momentum ~k (k = 2π/λ) in

the direction opposite to their motion, which reduces their velocity. Spontaneous re-emission of the

absorbed photons occurs with an isotropic probability distribution so that, on average, the momentum

of the atoms is reduced by ~k per absorption-emission cycle. Several thousand cycles are required to

stop a sodium atom initially leaving an oven in an effusive beam.

The efficiency of the cooling process is reduced if the optical cycle is not closed, i.e., if spontaneous

emission can populate other hyperfine levels of the ground state. Inspection of Figure 37 leads to the
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conclusion that only two of the 10 possible hyperfine components of the 3p 2PJ ← 3s 2S1/2 transition

correspond to closed transitions, the F ′ = 3 ← F ′′ = 2 and the F ′ = 0 ← F ′′ = 1 components.

Near-resonant excitation of the F ′ = 1 and 2 hyperfine components, however, occasionally lead to

emission to the F ′′ = 1 and F ′′ = 2 levels, which lie too far from the F ′ = 3 ← F ′′ = 2 and the

F ′ = 0← F ′′ = 1 transitions, respectively, for further efficient absorption, so that the optical cycling

is terminated. This problem is usually overcome by repumping the F ′′ = 1 or the F ′′ = 2 level

with other lasers. The efficiency of the laser cooling process can also be increased by using circularly

polarized radiation, exploiting the selection rules (164) and (165).

These considerations illustrate the importance of high-resolution spectroscopic measurements of

electronic transitions in atoms, and the understanding of their structures, without which important

applications would never have been developed. Indeed, to fully exploit the potential of laser cooling,

a very detailed knowledge of the fine and hyperfine structure of electronic transitions is mandatory.

If one desires to load the cold atoms in traps, it is also necessary to study the effects of electric and

magnetic fields on the hyperfine structure levels. For further details on laser cooling, the reader is

referred to the article by Metcalf and van der Straten (2003).

Rare gas atoms

The 1S0 ground state of the rare-gas atoms (Rg=Ne, Ar, Kr and Xe) results from the full-shell

configurations ([. . .](n0p)6 with n0 = 2, 3, 4 and 5 for Ne, Ar, Kr, and Xe, respectively. Single-

photon absorption by electrons in the (n0p)6 orbitals leads to the excitation of J = 1 states of the

configurations [. . .](n0p)5(ns)1 and [. . .](n0p)5(nd)1.

Compared to H and the alkali-metal atoms discussed in the previous examples, the lowest excited

electronic configurations contain two, instead of only one, unpaired electrons, which leads to both

S = 0 and S = 1 states. Moreover, these states form Rydberg series that converge on two closely

spaced ionization limits corresponding to the two spin-orbit components (J+ = 1/2, 3/2) of the 2PJ+

ground state of Rg+, rather than on a single ionization limit, as is the case for H and the alkali-metal

atoms. This situation, which is encountered in most atoms, results in spectrally more dense spectra

with pronounced perturbations. Figure 38 depicts schematically the J = 1 Rydberg series of the rare-

gas atoms located below the 2PJ+ (J+ = 1/2, 3/2) ionization thresholds that are optically accessible

from the 1S0 ground state.

Two angular momentum coupling schemes are used to label these Rydberg states. The first one

corresponds to the familiar LS-coupling scheme discussed in Section 2.1.4 and tends to be realized, if

at all, only for the lowest Rydberg states and the lightest atoms. Five series are optically accessible,

two s series ((n0p)5(ns)1 3P1 and 1P1) and three d series ((n0p)5(nd)1 3D1, 3P1 and 1P1). The second

one is a variant of the jj coupling scheme, and becomes an increasingly exact representation at high

n values, when the spin-orbit coupling in the 2PJ+ ion core becomes stronger than the electrostatic

(including exchange) interaction between the Rydberg and the core electrons. As a result, the core
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Figure 38: Schematic diagram showing Rydberg series converging to the two spin-orbit components

2PJ (J = 1/2, 3/2) of the rare gas atomic ions Rg+. The series are designated in Racah notation as

n`′[k]J , the ′-sign designating series converging on the upper (2P1/2) ionization threshold. Interaction

between series are represented by horizontal arrows.

and Rydberg electrons are decoupled, and J+ becomes a good quantum number instead of S. In this

labeling scheme, the states are designated (2PJ+)n`[k]J , k being the quantum number resulting from

the addition of ~J+ and ~̀. The five optically accessible J = 1 series are labeled ns[3/2]1, ns′[1/2]1,

nd[1/2]1, nd[3/2]1, nd′[3/2]1, the ”prime” being used to designate the two series converging to the

2P1/2 ionization limit (see Figure 38).

The interactions between the series converging to the different ionization limits lead to pronounced

perturbations below the 2P3/2 ionization limit and to the autoionization of the ns′ and nd′ series in

the energetic region between the 2P3/2 and 2P1/2 ionization limits. Because of the series interactions,

the spectral positions are not accurately described by Rydberg’s formula, but are best described by

multichannel quantum defect theory (Lee and Lu 1973; see also Jungen (2010a) in this handbook).

Several sections of the single-photon VUV spectrum of Ar are presented in Figure 39. Figure 39a)

corresponds to the region where Rydberg states of principal quantum number n ≥ 33 below the 2P3/2

ionization limit can be excited from the ground state. In the region below 127060 cm−1, only the

nd[3/2]1 and ns[3/2]1 carry intensity. These two series are almost degenerate. The splittings can

hardly be seen on the wave-number scale used to draw the spectrum, but are clearly visible on the

expanded scale of the spectrum labeled B, which corresponds to the region of principal quantum

number around n = 55. The high-n region of the spectrum is also displayed on an enlarged scale in

the spectrum labeled C. The nd[1/2]1 series is extremely weak at n values below 50, but becomes the

dominant series beyond n = 80. In an unperturbed Rydberg series, the intensity should decrease as

n−3, as explained in Subsection 2.1.6. The anomalous intensity distribution of the nd[1/2]1 series has
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Figure 39: High-resolution VUV laser spectra of Ar recorded with a narrow-band laser. a) Region

below the 2P3/2 ionization threshold showing the perturbed ns/d[k]J=1 series. The spectra shown

labeled B and C represent sections of the spectrum labeled A presented on an enlarged scale. b)

Region above the 2P3/2 revealing the broad asymmetric nd′[3/2]1, and the narrow, symmetric ns′[1/2]1

resonances (adapted from Hollenstein (2003)).
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its origin in the interactions with the series converging to the 2P1/2 ion core, which are such that,

in some spectral regions, it has almost pure S = 1 character and cannot be excited from the S = 0

ground state. Figure 39b displays a section of the VUV spectrum of Ar in the region between the

2P3/2 and 2P1/2 ionization limits. The ns′[1/2]1 and nd′[3/2]1 series appear as sharp, symmetric, and

broad, asymmetric autoionization resonances in this region, respectively.

The VUV absorption spectra of Ne, Kr and Xe are qualitatively similar to that of Ar. Ne, Kr and

Xe all have several isotopes, some of which have a nonzero nuclear spin and a hyperfine structure. The

hyperfine structures in the VUV absorption spectrum of 83Kr, 129Xe, and 131Xe appear complex at

first sight but can be quantitatively described by MQDT using the same series-interaction parameters

as the I = 0 isotopes (Wörner et al. 2003, 2005; Schäfer and Merkt 2006; Paul et al. 2009; Schäfer

et al. 2010; see also discussion of spin-orbit and hyperfine autoionization in Subsection 3.5.1).

The fact that several low-lying levels of the rare-gas atoms have almost pure S = 1 character results

in the metastability of these levels. The radiative decay of the lowest electronically excited S = 1

state with J = 0 and 2 to the S = 0 ground state is strongly forbidden by single-photon electric-dipole

selection rules. Consequently, these states are very long-lived, so that, for many purposes, they can

be used in experiments as if they were stable ground state atoms: their long lifetimes enable precision

measurements, they give access to spectroscopic investigation of other S = 1 states, they can be laser

cooled using closed transitions in the triplet manifold of states, they can be used in reactive scattering

experiments, etc.

3.2.3 Stark and Zeeman effects in atomic spectra

When considering the effects of static electric and magnetic fields on electronic transitions, it is

convenient to discuss the effects of these fields on the selection rules and on the spectral positions

separately. The effects of magnetic and electric fields on the energy level structure of atoms have been

described in Subsections 2.1.7 and 2.1.8, respectively. We therefore focus here on the selection rules

and their manifestations in electronic spectra of atoms.

In the presence of a homogeneous electric (or magnetic) field, the symmetry of space is reduced

from spherical (isotropic) to cylindrical. Consequently, the total angular momentum quantum number

J (or F ) ceases to be a good quantum number, the only good quantum number being the magnetic

quantum number MJ (or MF ) associated with the projection of ~J (~F ) along the direction of the field

vector. The Z axis of the laboratory-fixed reference frame is commonly chosen to lie parallel to the

static field vector, i.e., ~E = (0, 0, E) and ~B = (0, 0, B).

The electric-dipole selection rules depend on the relative orientation of the polarization vector of

the radiation field and the static field vector. If the radiation is linearly polarized with polarization

vector perpendicular to the static field vector, then

∆MJ = ±1 (or ∆MF = ±1), (187)
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Figure 40: The normal Zeeman effect in the electronic spectrum of atoms. a) 1S0 ↔1 P1 transition,

b) 1P1 ↔1 D2 transition, c) schematic representation of the spectra.

in which case one speaks of a σ configuration, from the German word ”senkrecht” (= perpendicular),

replacing the first letter by its Greek equivalent, s → σ. If the radiation is linearly polarized with

polarization vector parallel to the static field vector, then

∆MJ = ±0 (or ∆MF = ±0), (188)

and the configuration is referred to as π (from the German word ”parallel”, p → π). The use of

circularly polarized radiation leads to the most restrictive selection rule on MJ (MF ) if the radiation

propagates in a direction parallel to the static field vector, in which case one has either

∆MJ = 1 (∆MF = 1), (189)

or

∆MJ = −1 (∆MF = −1), (190)

depending on the helicity.

Magnetic fields and Zeeman effect

Because the electron-Zeeman effect is much larger than the nuclear Zeeman effect, we consider here

only the influence of the former on electronic transitions of atoms. If the states connected by the

transitions are singlet states (S = 0), the Zeeman effect arises solely from the orbital motion and

particularly simple spectral structures result (see Figure 8, and Equations (60) and (61) describing

the normal Zeeman effect). Equation (61) implies that, in this case, the frequency intervals between

neighboring Zeeman levels are the same (µBB/h) in the lower and upper electronic states. The

transitions allowed by the selection rules (187)-(190) are indicated in Figure 40a and b for 1S0 ↔1 P1

and 1P1 ↔1 D2 transitions, respectively, from which one sees that only three lines can be observed,

two in σ and one in π polarization configuration, separated by a frequency interval of µBB/h. The
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level diagram in which the allowed transition for π and σ polarization configurations are indicted. b)

Schematic representation of the spectra.

schematic spectra displayed in Figure 40c illustrate the fact that the appearance of the spectra is

entirely determined by the polarization configuration and does not depend on the L value of the

states involved in the transition.

The situation is more complicated in S ≥ 1/2 states because, in this case, the Zeeman effect is

anomalous and the Zeeman level shifts are given by Equation (63) and depend on the values of L,

S, and J via the dependence of gJ on these quantum numbers (see Equation (52)). For example,

Figure 41 illustrates the case of a 2S1/2 ↔2 PJ (J = 1/2, 3/2) transition, for which, according to

the selection rules (187)-(190), 10 lines can be observed with the different polarization arrangements.

Because the Zeeman splittings now depend on the values of L, S, and J , the spectral patterns are

characteristic of the terms involved in the electronic transitions, which can be used to assign them.

Electric fields and Stark effect

To illustrate the effect of electric fields on atomic spectra, we first discuss the Stark effect in the

Lyman α transition of H. The Stark effect leads to a coupling of the closely spaced n = 2 s and p

states which are split at zero field by the Lamb shift and the spin-orbit interaction (see Figure 35).

Figures 42a and b depict the calculated electric-field dependence of the n = 2 energy levels, and VUV

spectra of the Lyman α line of H recorded in a field of 5465 V/cm, respectively, as reported by Rottke
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Figure 42: a) Stark effect in the n = 2 levels of H. At low electric fields, the levels are labeled with

the usual term symbols. At high fields, the levels are labeled using the parabolic quantum numbers

n1, n2, and m` defined in Section 2.1.8 as |n1, n2, |m`|〉|mS〉. The vertical dashed line indicates the

field used for the measurements presented in panel b), and σ and π designate the levels that can be

excited from the 1 2S1/2 level using σ and π polarization configurations, respectively. b) Experimental

spectra of the Lyman α line of atomic hydrogen recorded in σ (top spectrum) and π (bottom spectrum)

polarization configurations. Each line is labeled by the parabolic quantum numbers |n1, n2, |m`|〉 and

by the dominant contribution to the wave function of the n = 2 level. The hyperfine structure is not

resolved in the experiment (Adapted from Rottke and Welge (1986)).

and Welge (1986).

Because of the near degeneracy of these levels, the Stark effect rapidly becomes linear with increas-

ing electric field, but a fine structure remains noticeable. In the absence of fine-structure splittings,,

the Stark level structure would consist of three levels (see Figure 11): Two outer components with

m` = 0 corresponding to the |n1, n2, |m`|〉 = |1, 0, 0〉 and |0, 1, 0〉 Stark states, i.e., to values of k of ±1,

and one central component corresponding to the |0, 0, 1〉 Stark state. With the selection rules for σ

(∆m` = ±1) and π (∆m` = ±0) polarization configurations, one would expect to see either the central

|0, 0, 1〉 component (σ configuration) or the |1, 0, 0〉 and |0, 1, 0〉 components (π configuration). This

expectation corresponds to the experimental observations, which, however, also reveal fine-structure

effects and weak lines corresponding to the ”forbidden” Stark components. These components are

observed because mj , rather than m`, is the good quantum number when spin-orbit coupling is con-

sidered, and also because the polarization of the VUV laser radiation was not perfectly linear, as

discussed by Rottke and Welge (1986).

In Rydberg states of atoms and molecules, the Stark effect leads to very characteristic spectral
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structures. Figure 43 presents π-polarized VUV laser spectra of transitions from the 1S0 ground state

of Ar to Stark states belonging to the n = 22 (MJ = 0) manifold of states located below the 2P3/2

ground state of Ar+ (Vliegen et al. 2004). The spectra recorded at different fields have been shifted

along the vertical axis, so that the origins of their intensity scale coincide with the values of the electric

field (in V/cm) used to record them. At low fields (bottom spectra), the optically allowed J = 1 series

converging to the 2P3/2 ground state of Ar+ (23d[1/2]1, 24s[3/2]1 and 23d[3/2]1) are observed. As

the field increases, transitions to the 24 and 25 p[1/2]0 levels gain intensity by Stark mixing with the

d levels following the Stark-mixing selection rule ∆` = ±1 (see Equation (67)). Stark mixing also

takes place with the f levels which are almost degenerate with the ` ≥ 4 levels and form with them a

manifold of states subject to a linear Stark effect. This high-` manifold of Stark states becomes the

dominant spectral pattern at high fields.

Series of spectra such as those presented in Figure 43 are referred to as Stark maps and have been

recorded for many atoms (e.g., alkali metal atoms (Zimmerman et al. 1979), rare gas atoms (Ernst

et al. 1988; Brevet et al. 1990; Grütter et al. 2008)) and even molecules (e.g. H2, (Fielding and Softley

1991; Hogan et al. 2009)). The strong field dependence of the outer members of the linear Stark

manifolds is indicative of very large electric dipole moments, which have been recently exploited to

decelerate beams of Rydberg atoms and molecules (Procter et al. 2003; Vliegen et al. 2004) and to

load cold Rydberg atom and molecule samples in electric traps (Vliegen et al. 2007; Hogan et al. 2009).

High-resolution electronic spectroscopy of Rydberg Stark states in cold, high-density samples has also

been used to study dipole-dipole interactions between neighboring Rydberg atoms (Mourachko et al.

1998).

3.3 Electronic spectra of diatomic molecules

This section describes elementary aspects of the electronic spectra of diatomic molecules, with em-

phasis on selection rules and the overall structure of electronic transitions.

3.3.1 Selection rules

The set of selection rules presented in Equations (161)-(166) can be extended by considering those

that can be derived using the point groups D∞h for homonuclear diatomic molecules, and C∞v for

heteronuclear diatomic molecules. In diatomic molecules, the vibronic symmetry Γev = Γelec⊗Γvib is

always equal to the electronic symmetry Γelec because the only vibrational mode is totally symmetric

Γvib = Σ+
g for D∞h (191)

and

Γvib = Σ+ for C∞v. (192)

Electronically forbidden transitions are therefore necessarily also vibronically forbidden (see Equa-

tions (174) and (179)).
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Figure 43: Stark effect in the n = 22, MJ = 0 levels of Ar located below the 2P3/2 ground state of

Ar+. The spectra recorded at different fields have been shifted along the vertical axis so that the

origins of their intensity scale coincide with the values of the electric field (in V/cm) used to record

them, from bottom to top 0 V/cm, 70 V/cm, 136 V/cm, 204 V/cm, 272 V/cm, and 340 V/cm. The

linear high-` Stark manifold is situated between the dotted lines. The states labeled a,a’,b,b’,c,c’

and d correspond to the 22d[1/2]1, 23d[1/2]1, 22d[3/2]1, 24s[3/2]1, 23p[1/2]0, 24p[1/2]0 and 24p[1/2]2

states, respectively. The top panel shows the fine structure of three Stark states with k = −19,−17

and −15, where k represents the difference n1 − n2 (Adapted from Vliegen et al. (2004)).
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Electronically allowed transitions fulfill either

Γ′elec ⊗ Γ(Tz)⊗ Γ′′elec ⊇ Σ+
(g) (193)

or

Γ′elec ⊗ Γ(Tx,y)⊗ Γ′′elec ⊇ Σ+
(g), (194)

where the (g) subscripts only applies to homonuclear diatomic molecules. Because Tx and Ty transform

as the Πu irreducible representation of the D∞h point group (or as the Π representation of the C∞v

group), and Tz transforms as Σ+
g (or Σ+), Equations (193) and (194) can be written as

Γ′elec ⊗ Γ′′elec ⊇ Σ+
(u), (195)

in which case the transition moment lies parallel to the internuclear (z) axis and one speaks of a

parallel transition, and

Γ′elec ⊗ Γ′′elec ⊇ Π(u), (196)

respectively, in which case the transition moment lies perpendicular to the internuclear (i.e., along

the x or y) axis and one speaks of a perpendicular transition. Evaluating Equations (195) and (196)

using the direct-product table (Table 9) leads to the selection rules

∆Λ = 0, (u↔ g) (197)

for parallel transitions and

∆Λ = ±1, (u↔ g) (198)

for perpendicular transitions.

————————————————

Examples: In D∞h molecules, Σ+
g ↔ Σ+

u , Πg ↔ Πu,. . . transitions are allowed parallel transitions, and

Σ+
g ↔ Πu, Σ+

u ↔ Πg, Πg ↔ ∆u, Πu ↔ ∆g, . . . are allowed perpendicular transitions.

————————————————–

Additional selection rules are given by Equations (158) and (159). As stated above, the ∆MJ selection

rule depends on the polarization of the radiation field. When the electronic states involved in the

transition are not well described by Hund’s angular momentum coupling cases (a) or (b), but rather

by Hund’s case (c), the ∆S = 0 selection rule no longer applies, and Λ must be replaced by Ω in

Equations (197) and (198), i.e.,

∆Ω = 0, (u↔ g) (199)

for parallel transitions and

∆Ω = ±1, (u↔ g) (200)

for perpendicular transitions (see also below).
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3.3.2 Forbidden electronic transitions

Electronically (and vibronically) forbidden single-photon transitions in diatomic molecules may nev-

ertheless be observable experimentally. Such transitions can be classified in two categories.

1. Magnetic dipole and electric quadrupole transitions

Absorption results from the interaction of the electromagnetic radiation field with the magnetic

dipole or the electric quadrupole moment of the molecule. Since the (x, y, z) components of the

magnetic dipole moment transform as the rotations Rx, Ry and Rz and the components of the

quadrupole moment transform as Γ(αij) (see Tables 7 and 8), the corresponding selection rules

can be derived as in the case of an electric-dipole transition. The selection rule for magnetic-

dipole transitions is thus

Γi ⊗ Γ(Rα)⊗ Γf ⊇ 1Σ+
(g) with α = x, y, z (201)

and that for electric-quadrupole transitions is

Γi ⊗ Γ(α(ij))⊗ Γf ⊇ 1Σ+
(g). (202)

———————————————————

Example: 1Σ+
g ↔ 1Σ−g transitions are electric-dipole-forbidden, but magnetic-dipole-allowed transitions,

because Rz transforms as Σ−g in D∞h molecules (see Table 8).

———————————————————

2. Intercombination transitions

Intercombination transitions violate the ∆S = 0 selection rule (Equation (158)). Such transitions

mainly occur in molecules possessing a significant spin-orbit interaction. In this case, the Hund’s

angular momentum coupling cases (a) and (b) upon which the selection rules (197) and (198)

rely, are no longer a perfect description, and neither Σ, nor Λ are good quantum numbers.

When the spin-orbit interaction is dominant, a Hund’s case (c) nomenclature is more appro-

priate and the selection rules (199) and (200) must be used instead of the selection rules (197)

and (198). When the spin-orbit interaction is weak, so that Hund’s case (a) or (b) represen-

tations remain good approximations, group theoretical arguments can still be used to predict

which intercombination transitions are observable, but spin double groups are required for this

task. Such groups are obtained from the corresponding point groups by including 2π rotations

with negative character to take into account the fact that a half-integer spin function has a

periodicity of 4π. The character table of the C
(2)
∞v spin double group is represented in Table 19,

and Table 20 shows how the electron spin functions transform in the D
(2)
∞h and the C

(2)
∞v point

groups. The symmetry Γes of the electronic wave functions (now including electron spin) can be

determined from the product

Γes = Γelec ⊗ Γespin, (203)
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Table 19: Character table of the extended C
(2)
∞v point group. The character table of the extended

D
(2)
∞h point group can be obtained from the D∞h by making the corresponding changes.

C
(2)
∞v E 2Cϕ∞ 2C2ϕ

∞ 2C3ϕ
∞ . . . ∞σv R 2Cϕ∞R . . .

Σ+(= A1) 1 1 1 1 . . . 1 1 1 . . . z

Σ−(= A2) 1 1 1 1 . . . −1 1 1 . . . Rz

Π(= E1) 2 2 cosϕ 2 cos(2ϕ) 2 cos(3ϕ) . . . 0 2 2 cosϕ . . . x, y;Rx, Ry

∆(= E2) 2 2 cos(2ϕ) 2 cos(4ϕ) 2 cos(6ϕ) . . . 0 2 2 cos(2ϕ) . . .

Φ(= E3) 2 2 cos(3ϕ) 2 cos(6ϕ) 2 cos(9ϕ) . . . 0 2 2 cos(3ϕ) . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

E1/2 2 2 cos(ϕ/2) 2 cosϕ 2 cos(3ϕ/2) . . . 0 −2 −2 cos(ϕ/2) . . .

E3/2 2 2 cos(3ϕ/2) 2 cos(3ϕ) 2 cos(9ϕ/2) . . . 0 −2 −2 cos(3ϕ/2) . . .

E5/2 2 2 cos(5ϕ/2) 2 cos(5ϕ) 2 cos(15ϕ/2) . . . 0 −2 −2 cos(5ϕ/2) . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 20: Transformation properties of the electron spin functions in the extended point group D
(2)
∞h.

The transformation properties in the extended point group C
(2)
∞v can be obtained by disregarding the

subscript g.

S 0 1/2 1 3/2 . . .

ΓS Σ+
g E1/2,g Σ−g + Πg E1/2,g + E3/2,g . . .

which can be evaluated using the transformation properties of the electron-spin functions sum-

marized in Table 20. An intercombination transition is only observable if Equation (204) is

fulfilled instead of Equations (193) and (194)

Γ′es ⊗ Γ(Tα)⊗ Γ′′es ⊇1 Σ+
(g) with α = x, y, z. (204)

———————————————————

Example: We consider the electronically forbidden 1Σ+
g → 3Πu transition with ∆S = 1 (singlet-triplet

transition). With the help of Tables 19, 20 and 9, one obtains Γ′′es = Σ+
g and Γ′es = Γ′elec ⊗ Γ′espin =

Πu ⊗ (Σ−g + Πg) = Πu + Σ+
u + Σ−u + ∆u. The transformation properties of Tx,y,z in D∞h imply that

only the Πu and Σ+
u components of the 3Πu state can be accessed from an initial state of symmetry 1Σ+

g .

Alternatively, one may choose to express the selection rules in Hund’s coupling case (c) as ∆Ω = 0, ±1

which does not necessitate the specification of the total electron spin quantum number S.

———————————————————
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3.3.3 Vibronic structure and the Franck-Condon principle

Equation (173) implies that the intensity Iα′,v′,α′′,v′′ of a transition between two vibronic states should

be approximately proportional to the square of the overlap integral 〈Φ′vib|Φ′′vib〉 of the vibrational wave

functions

Iα′,v′,α′′,v′′ ∝ |〈Φ′vib|Φ′′vib〉|2 = |〈v′|v′′〉|2. (205)

The square of the integral 〈Φ′vib|Φ′′vib〉, which is called the Franck-Condon factor (see Subsec-

tion 3.1), thus indicates how the intensity of an electronically allowed transition between the electronic

states α′′ and α′ is partitioned among the various vibrational bands.

Figure 44 shows two schematic illustrations of the Franck-Condon principle applied to the absorp-

tion spectrum of diatomic molecules in their ground state. In Figure 44a, the Born-Oppenheimer

potential energy functions of the two electronic states are almost identical. In this case, vibrational

wave functions of the same vibrational quantum number (v′ = v′′) are also almost identical in the

two electronic states. The orthogonality of the vibrational wave functions implies the selection rule

∆v = 0 and the electronic spectrum consists of a single dominant vibrational band corresponding to

the v′ = 0← v′′ = 0 band (labeled 0-0 in the spectrum drawn at the bottom of the figure).

In Figure 44b, the potential energy functions of the two states differ from each other. The equilib-

rium internuclear separation R′e of the upper potential function is larger than that of the lower state.

Consequently, transitions originating from the v′′ = 0 level of the lower electronic state can access

several vibrational levels of the upper state. The Franck-Condon factors are therefore nonzero in the

energetic region where the repulsive part of the upper potential energy function lies vertically above

the region where the ground state vibrational function has a nonzero amplitude. The expected vi-

brational structure of the corresponding band is represented schematically below the potential energy

diagram and extends beyond the dissociation limit of the upper electronic state where the spectrum

becomes continuous. The shaded areas in Figure 44 represent the regions where the vibrational wave

function of the initial state has a significant amplitude. They help to see which vibrational levels of

the final state are accessible from the ground state.

Franck-Condon factors represent an approximation of the relative intensities which relies on the

assumption that the electronic transition moment does not vary with internuclear separation, at least

not over the range where the relevant vibrational functions have a significant amplitudes. Given

that diatomic molecules have zero dipole moments both in the separated-atoms and the united-atoms

limits, the dipole moment function must go through at least one maximum at intermediate distances.

Neglecting its variation with R thus represents an approximation, and indeed it is often necessary to

include higher terms than the first in Equation (172) to properly account for the vibrational intensity

distribution of an electronic spectrum. The dependence of the electric dipole moment on the nuclear

geometry has the largest consequences in the spectra of polyatomic molecules, because it can lead to

the observation of electronically forbidden transitions, as explained in Subsection 3.1 and illustrated

by the electronic spectrum of benzene in Subsection 3.4.2.
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Figure 44: Illustration of the Franck-Condon principle for (a) an electronic transition between two

electronic states having almost identical Born-Oppenheimer potential energy functions and (b) an

electronic transition between two electronic states with R′′e << R′e. The shaded areas in Figure 44

represent the regions where the vibrational wave function of the initial state has a significant ampli-

tude. The spectra displayed below the potential energy diagrams represent schematically the expected

appearance of electronic spectra recorded from the v = 0 level of the lower electronic state.
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3.3.4 Rovibronic structure

The description of the rotational structure of electronic transitions requires the parity selection rule

(Equation (166)) and also, in homonuclear diatomic molecules, consideration of the conservation of

nuclear spin symmetry, in addition to the selection rules discussed in the previous subsections. The

parity of a rovibronic state indicates whether its rovibronic wave function remains invariant under

inversion of all space-fixed coordinates, or whether it changes sign. In the former case, one speaks of

positive parity (labeled as ’+’) and, in the latter, of negative parity (labeled as ’−’). Since

1. the dipole moment operator has negative parity,

2. wave functions in isotropic space have a well-defined parity,

3. the parity of a product of functions corresponds to the product of their parities,

4. the integral of a function of negative parity is zero,

the intensity of an electric-dipole transition of the form (155) differs from zero only if Ψf and Ψi

possess opposite parities. The parities of rovibrational levels of diatomic molecules can be determined

using Equation (110) and are indicated in the energy level diagrams presented in Figure 19.

Combined with the generalized Pauli principle, the conservation of nuclear-spin symmetry implied

by the second factor of Equation (157) leads to a further selection rule for homonuclear diatomic

molecules

s↔ s, a↔ a, (s↔ a forbidden), (206)

where the ”s” and ”a” labels indicate whether the rovibronic wave function is symmetric or antisym-

metric with respect to permutation of the coordinates of the identical nuclei, respectively. If the nuclei

are bosons (fermions), rovibronic wave functions of ”a” symmetry combine with nuclear-spin func-

tions of ”a” symmetry (”s” symmetry), whereas rovibronic wave functions of ”s” symmetry combine

with nuclear wave functions of ”s” symmetry (”a” symmetry). For a given value of the nuclear spin

quantum number I of the identical nuclei, the numbers Ns and Na of symmetric and antisymmetric

nuclear spin wave functions, respectively, are given by

Ns =
(2I + 1)2 + (2I + 1)

2
and Na =

(2I + 1)2 − (2I + 1)

2
, (207)

and are refered to as nuclear-spin statistical factors. The parity (±) and permutation (a/s) symmetry

of the rovibrational levels of the most common electronic states are indicated in the energy level

diagrams presented in Figure 19. 16O, for instance, is a boson with I = 0, so that in 16O2, Ns = 1

and Na = 0. The fact that, in the X 3Σ−g ground state of O2, the rotational levels of even N values

have ”a” symmetry (see Figure 19), implies that such states cannot be populated according to the

generalized Pauli principle. Consequently, all lines originating from even N levels of the ground state

of O2 are missing in an electronic spectrum, and all observable transitions connect rovibronic levels

of ”s” rovibronic symmetry. In the X 1Σ+
g ground state of H2, rotational levels of even J = N
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values have s symmetry. H is a fermion, with I = 1/2, so that Ns = 3 and Na = 1. Because

the total wave function must be of ”a” symmetry with respect to permutation of the coordinates of

fermions, states of rovibronic ”s” (”a”) symmetry only exist if their nuclear-spin symmetry is ”a”

(”s”). Consequently, transitions from odd-J rotational levels of the ground state of H2, which have

”a” symmetry, are three-times more intense than those from even-J rotational levels, which have ”s”

symmetry. The conservation of nuclear-spin symmetry implied by the second factor of Equation (157)

means that rovibronic states of ”a” and ”s” symmetry are not connected by transitions induced

by electromagnetic radiation and can therefore be considered as belonging to two distinct forms of

homonuclear diatomic molecules, called para and ortho forms. One should, however, note that the

product form of Equation (157) is an approximation, and that hyperfine interactions can couple the

nuclear-spin motion to other motions.

The rotational states (with parity and nuclear permutation symmetry) that are involved a 1Σ+
u ←

1Σ+
g (parallel) and 1Πu ← 1Σ+

g (perpendicular) transitions are drawn schematically in the upper parts

of Figures 45a and b, repectively. The allowed transitions are marked by arrows and grouped in P,

Q and R branches. Figures 45a and b present schematic spectra corresponding to the two type of

transitions. The alternation of intensities of the lines results from the fact that the spectra have been

calculated for a homonuclear diatomic molecule made of atoms with a nuclear spin I = 1.

Only ∆J = ±1 transitions are allowed in a parallel transition, and the rotational structure of

the vibronic transition consists of two branches, one with ∆J = 1 (so-called R-branch) and one

with ∆J = −1 (so-called P-branch; see Figures 45a and c). In a perpendicular transition, ∆J = 0

transitions are also observable which leads to a third branch (so-called Q-branch; see Figures 45b and

d)).

In the case of transitions between singlet states, the rotational structure of the bands can be

approximately described by Equation (3))

ν̃ = ν̃v′v′′ +B′J ′(J ′ + 1)−D′(J ′(J ′ + 1))2 − [B′′J ′′(J ′′ + 1)−D′′(J ′′(J ′′ + 1))2], (208)

where J ′ = J ′′ for the Q-branch, J ′ = J ′′ + 1 for the R-branch, J ′ = J ′′ − 1 for the P-branch.

In the case of transitions between doublet or triplet states, the rotational structure is more com-

plicated. The spectral positions ν̃ of the rovibronic transitions are given by (see Equation (3))

ν̃ = ν̃v′v′′ + F ′(J ′, . . .)− F ′′(J ′′, . . .), (209)

where F ′ and F ′′ represent the rotational term value and the ”. . .” symbolize the quantum numbers

necessary to designate the rotational levels, which depend on the Hund’s angular momentum coupling

case used to describe the rotational structure. F ′ and F ′′ must be evaluated, for each state, using the

rotational (including spin-orbit interaction) Hamiltonian presented in Equation (102). The allowed

transitions can then be determined from the selection rules in the same way as used in the simple

cases illustrated in Figure 45. The rotational energy level diagrams presented in Figure 19 are helpful
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Figure 45: (a) Rotational states (with parity and nuclear permutation symmetry) that are involved

in a 1Σ+
u ←1 Σ+

g transition. (b) Rotational states (with parity and nuclear permutation symmetry)

that are involved in a 1Πu ←1 Σ+
g transition. (c) and (d) Schematic structure of the rotational

structure of the vibrational bands of a 1Σ+
u ←1 Σ+

g and 1Πu ←1 Σ+
g transitions, respectively. The

intensity alternation results from the fact that intensities have been calculated for a homonuclear

diatomic molecules composed of atoms with a nuclear spin I = 1. The diagrams are also appropriate

to qualitatively predict the rotational structures of 0+
u ← 0+

g , and 1u ← 0+
g transitions, respectively.
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in predicting the overall rotational branch structure of electronic transitions of diatomic molecules,

because they provide the parity and nuclear permutation symmetry of the rotational levels of the most

common types of electronic states.

3.3.5 Selected examples

The literature on the electronic spectra of diatomic molecules is extremely rich. High-resolution

spectra of electronic (allowed and forbidden) transitions connecting states of almost all possible term

symbols in all Hund’s cases have been reported. Rather than giving a comprehensive overview of all

possible types of electronic transitions in diatomic molecules, we limit ourselves here to a few simple

cases, from work in our laboratory, which illustrate the general principles in an elementary manner.

Further examples of electronic spectra of diatomic molecules can be found, in this handbook, in the

articles by Eikema and Ubachs (2010); Jungen (2010a); Western (2010). For a more complete and

systematic overview of the broad diversity of electronic spectra of diatomic molecules, we refer to the

books by Herzberg (1989); Lefebvre-Brion and Field (2004); Brown and Carrington (2003).

Figure 46 illustrates, with the example of the C 0+
u ← X 0+

g electronic band system of Xe2,

the Franck-Condon principle and some of the limitations in its use that result from the experimental

methods chosen to record electronic transitions. The electronic states of Xe2 are conveniently described

in Hund’s case (c), and the figure also gives an example of the rotational structure of a 0+
u ← 0+

g

transition, which conforms to the energy level diagram presented in Figure 45a.

Whereas the ground electronic state of Xe2 is only weakly bound by van der Waals forces, the A,

B, and C electronic states are the lowest members of Rydberg states belonging to series converging

on the low-lying electronic states of Xe+
2 (see Figure 17) that are more strongly bound and thus have

equilibrium internuclear distances shorter than the ground state. This geometry change results in a

long progression of vibrational bands corresponding to excitation of vibrational levels of the C state

with v′ = 14-26 (see Figure 46b). The rotational structure of the bands with the lower v′ values are

strongly degraded to the high wave number side of the spectrum (see Figure 46c), which also indicates

a shortening of the interatomic distance (B′v′ > B′′v′′).

Because the rotational constant of the v′ = 20 level of the C state is significantly larger than that

of the ground v′′ = 0 level, the P-branch of the of the C 0+
u (v′ = 20)← X 0+

g (v′′ = 0) band displayed

in Figure 46c possesses a band head at low J ′′ values (J ′′ = 3). The rotational structure does not show

the intensity alternations between lines originating from even- and odd-J ′′ ground state levels that are

characteristic of the spectra of homonuclear diatomic molecules (see Figure 45c). The reason is that

the spectrum has been recorded by measuring the ionization signal corresponding to the 131Xe136Xe

isotopomer. One should note that one retains the g/u labels in this case because isotopic substitution

does not affect the electronic structure within the Born-Oppenheimer approximation.

The intensity distribution of the spectrum only partially reflects the Franck-Condon factors. In-

deed, the intensity of the ion signal can be significantly reduced by predissociation of the C level.
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Figure 46: (a) Potential energy functions of the X 0+
g , A 1u, B 0+

u , and C 0+
u electronic states of Xe2.

The Franck-Condon region for excitation from the ground vibrational level of the X state is indicated

by the gray area. (b) Spectrum of the C 0+
u ← X 0+

g (v′′ = 0) transition recorded with a narrow-band

pulsed VUV laser. The transitions are detected by ionizing the levels of the C state with a pulsed UV

laser and monitoring the current of 131Xe136Xe+ ions as a function of the wave number of the VUV

laser. The Xe2 molecules were formed in a supersonic expansion and the population of the rotational

levels corresponds to a temperature of 4 K. The vibrational bands are labeled by the vibrational

quantum number of the C state. (c) Rotational structure of the C 0+
u (v′ = 20) ← X 0+

g (v′′ = 0)

band. The numbers along the assignment bars corresponding to the P and R branches designate the

rotational quantum number J ′′ of the ground state (Adapted from Hollenstein (2003)).
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Moreover, the overall intensity distribution can be affected if the predissociation rate depends on the

degree of vibrational excitation of the C state.

Next to information on the internuclear distances of the states involved in the transitions by means

of the rotational constants, the spectrum also contains information on the potential energy functions

and the electronic symmetry of the electronic states involved in the transition. The same transition

can also be recorded by monitoring the electronically excited Xe atom fragment that result from the

predissociation of the C state (not shown), so that the electronic spectrum also contains information

on the dynamics of the excited state.

A more reliable way to measure intensities of electronic transitions is by recording the absorption

signal. Examples of VUV absorption spectra of CO and N2 are presented in panels a) and b) of

Figure 47. In these spectra, the normalized transmission signal I/I0 of the VUV radiation is displayed

as a function of the VUV wave number. The CO and N2 gas samples are cold (T ≈ 12 K), skimmed

supersonic expansions of CO and N2, which are crossed at right angles by the VUV laser beam to

avoid Doppler broadening. Normalization is achieved by dividing the intensity of the VUV radiation

transmitted through the sample by the intensity of a reference VUV laser beam (see Sommavilla et al.

(2002)).

The rotational structure of the bands represents an essential element of the assignment procedure.

Bands recorded from a lower level of 1Σ+ symmetry which have P, Q and R branches must have a 1Π

state as upper level, whereas those which do not have a Q branch are likely to have a 1Σ state as upper

level. Consequently, the bands centered around 109562 cm−1 in the spectrum of N2 (Figure 47b),

and the band centered around 109564 cm−1 in the spectrum of CO (Figure 47a) must have a 1Π

state as upper level, because they have a Q-branch. However, the absence of a Q-branch does not

automatically imply that the upper level is 1Σ state, because P and R lines access the components of

the rotational doublets with Π+ electronic character, and Q lines the components with a Π− electronic

character. The absence of the Q branch in a 1Π←1 Σ transition may therefore occasionally also result

from a perturbation of the Π− state, for instance by a neighboring Σ− state. Consequently, Σ+ states

can only be unambiguously assigned by the observation of a P(1) transition. Indeed, J = 0 rotational

levels do not exist in 1Π states. The two bands centered around 109449 cm−1 and 109481 cm−1 in the

spectrum of CO and the band centered around 109542 cm−1 in the spectrum of N2 must therefore

have a 1Σ state as upper level.

The rotational constant of the upper vibronic state provides a further important indication for

the assignment, particularly when a spectrum consists of overlapping transitions to Rydberg states

belonging to series converging on different ionic states. Because the rotational constants of Rydberg

states are almost identical to the rotational constants of the ionic states to which the Rydberg series

converge, the determination of the rotational constant of the upper level of an electronic transition

can often either enable one to confirm, or rule out possible assignments by comparison with the

rotational constants of the vibronic levels of the ion, if these are known. Such comparison, in addition
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Figure 47: (a) VUV absorption spectrum of CO in the region between 109420 cm−1 and 109580 cm−1

displaying transitions from the 1Σ+ (v′′ = 0) ground state to the 4pπ 1Π and 4pσ 1Σ+ Rydberg states

belonging to series converging to the v+ = 3 level of the X + 2Σ+ ground electronic state of CO+

and to the 3sσ 1Σ+ Rydberg state belonging to series converging to the v+ = 4 level of the X+ 2Σ+

ground electronic state of CO+. (b) VUV absorption spectrum of N2 in the region between 109530

cm−1 and 109580 cm−1 displaying transitions from the 1Σ+
g (v′′ = 0) ground state to the 4sσ 1Πu

Rydberg state belonging to series converging to the v+ = 2 level of the A+ 2Πu first excited electronic

state of N+
2 , and to the v′ = 8 level of the b′ 1Σ+

u valence state of N2 (Adapted from Sommavilla

(2004)).
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to information on the quantum defects, can be used to assign two bands of the spectrum of CO to

transitions to Rydberg states with a X+ 2Σ+ (v+ = 3) CO+ ion core, and one to a Rydberg state with

a X+ 2Σ+ (v+ = 4) CO+ ion core. Similarly, the band centered around 109564 cm−1 in the spectrum

of N2 can be assigned to a transition to a Rydberg state with an A+ 2Πu (v+ = 2) N+
2 ion core. The

much smaller rotational constant of the upper level of the transition centered around 109542 cm−1

in the spectrum of N2, which results in an R-branch band head at J ′′ = 1, is incompatible with an

assignment of the upper level to a Rydberg state, and must be assigned to the b′ valence state.

The bands observed in the VUV absorption spectra of CO and N2 have different linewidths

and, therefore, different predissociation rates. A measurement of the same transitions by resonance-

enhanced two-photon ionization spectroscopy would therefore have led to different relative intensities:

the bands with broad lines would have appeared less intense in these spectra compared to those with

narrow lines than in the case of the absorption spectra displayed in Figure 47.

Finally, one could note that the transitions from J ′′ = 0 and 2 levels are more intense compared

to the J ′′ = 1 and 3 lines in the spectrum of N2 than they are in the spectrum of CO. This difference

is the manifestation of the nuclear spin statistical factors of 2(1) of rotational levels of even-(odd-) J ′′

levels of N2 (see Equation (207)).

3.4 Electronic spectra of polyatomic molecules

The general principles needed to rationalize or predict the structure of electronic spectra of polyatomic

molecules have been presented in Subsection 3.1, and only differ from those needed in studies of

diatomic molecules as a result of the larger number of vibrational degrees of freedom and the different

point-group symmetries. The transitions are classified as electronically allowed if Equation (174)

is fulfilled, in which case the vibrational intensity distribution can approximately be described by

Franck-Condon factors (Equation (176)) and the selection rules (177) and (178). If Equation (174)

is not fulfilled, electronic transitions may nevertheless be observed, in which case they fall into three

categories, two of which have already been discussed for diatomic molecules in Subsection 3.3.2:

1. Magnetic dipole transitions and electric quadrupole transitions

This case can be treated in analogy to the discussion, in Subsection 3.3.2, of magnetic dipole

and electric quadrupole transitions in diatomic molecules

Example: The Ã 1A2 ← X̃ 1A1 transition in H2CO is electronically forbidden (see Table 8). However,

the transition is observed as a magnetic dipole transition (Γ(Rz) = A2 in this C2v molecule).

2. Intercombination transitions

Intercombination transitions in polyatomic molecules can also be treated following the same

procedure as that introduced in Subsection 3.3.2 to treat such transitions in diatomic molecules.

Example: We consider the Ã 3F2 ← X̃ 1A1 transition in a tetrahedral molecule. The character table

of the spin double group of a tetrahedral molecule is given in Table 21. Γ(Tx,y,z) = F2 in this group.
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Table 21: Character table of the spin double group of tetrahedral molecules T
(2)
d .

Td I 8C3 6σd 6S4 3S2
4 R 8C2

3 6S3
4

A1 1 1 1 1 1 1 1 1

A2 1 1 −1 −1 1 1 1 −1

E 2 −1 0 0 2 2 −1 0

F1 3 0 −1 1 −1 3 0 1 Rx, Ry, Rz

F2 3 0 1 −1 −1 3 0 −1 x, y, z

E1/2 2 1 0
√

2 0 −2 −1 −
√

2

E5/2 2 1 0 −
√

2 0 −2 −1
√

2

G3/2 4 −1 0 0 0 −4 1 0

Table 22: Transformation properties of electron spin functions in the T
(2)
d spin double group.

S 0 1/2 1 3/2 2 5/2

ΓS A1 E1/2 F1 G3/2 E + F2 E5/2 + G3/2

According to Table 22, the S = 0 and S = 1 electron spin functions transform as the A1 and F1

irreducible representations, respectively. We therefore obtain Γ′′es = A1 and Γ′es = Γ′elec ⊗ Γ′espin =

F2 ⊗ F1 = A2 + E + F1 + F2. Consequently, only the F2 component corresponds to an observable

intercombination transition.

3. Electronically forbidden but vibronically allowed transitions

The mechanism by which such transitions are observed is the Herzberg-Teller intensity bor-

rowing mechanism mentioned in Subsection 3.1 in the context of electronically forbidden but

vibronically allowed transitions. In this case, the selection rule (179) applies and requires an

odd change in the number of vibrational quanta in non-totally-symmetric modes (see Equa-

tion (180)). Electronically forbidden, but vibronically allowed transitions are not possible in

diatomic molecules, because the only vibrational mode is totally symmetric.

Example: Consider the electronically forbidden transition between the X̃ 1A1 vibrationless ground state

and the Ỹ 1A2 electronic state of a C2v molecule. Excitation of a B1 vibration in the upper electronic

state results in an excited state of vibronic symmetry Γev = A2 ⊗ B1 = B2. A transition to this

state originating in the A1 state is vibronically allowed. However, the transition only carries significant

intensity if the B2 vibronic state interacts with a close-lying electronic state Z̃ of electronic symmetry

B2. The intensity of the transition is ’borrowed’ from the Z̃← X̃ by the Herzberg-Teller effect.
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Table 23: Character table of the D3h point group.

D3h I 2C3 3C2 σh 2S3 3σv

A′1 1 1 1 1 1 1

A′2 1 1 −1 1 1 −1 Rz

E′ 2 −1 0 2 −1 0 x, y

A′′1 1 1 1 −1 −1 −1

A′′2 1 1 −1 −1 −1 1 z

E′′ 2 −1 0 −2 1 0 Rx, Ry

3.4.1 Electronically allowed transitions - an example

The general symmetry selection rules governing electronic transitions in polyatomic molecules have

been formulated in Equations (158), (159), (161)-(166), (174), and (176)-(178). In polyatomic molecules,

an electronic transition can be induced by any of the three Cartesian components of the transition

dipole moment. When an electronic transition is allowed, the relative intensities of the transitions

to different vibrational levels of the electronically excited state approximately correspond to Franck-

Condon factors (see Equation (175)), and the vibrational structure of an electronically allowed transi-

tion contains information on the relative equilibrium geometries of the two electronic states connected

through the transition.

An illustrative example of an electronically allowed transition is the absorption spectrum of am-

monia, which is displayed in Figure 48. The electronic ground state of ammonia has an equilibrium

structure of pyramidal C3v point-group symmetry. However, two pyramidal configurations are sepa-

rated by a low barrier along the symmetric bending (umbrella) mode, which leads to inversion of the

molecule through tunneling on the picosecond time scale and to a tunneling splitting of 0.8 cm−1.

When this tunneling splitting is resolved, the appropriate point group to treat the energy level struc-

ture is D3h, the character table of which is given in Table 23. The vibrational wave functions are

nevertheless mainly localized at the minima of the potential energy surfaces corresponding to a C3v

geometry. In the C3v point group, the electronic configuration of ammonia in the X̃ ground electronic

state is (1a1)2(2a1)2(1e)4(3a1)2. The lowest-lying electronically allowed transition corresponds to the

excitation of an electron from the 3a1 orbital, which is a nonbonding orbital (lone pair) of the nitrogen

atom, into the diffuse 3s Rydberg orbital with a NH+
3 planar ion core. In the electronically excited

state, the molecule has a planar structure with D3h point-group symmetry. In this point group, the

excited electronic configuration and the electronic state are labeled (1a′1)2(2a′1)2(1e′)4(1a′′2)1(3sa′1)1

Ã 1A′′2 .

The absorption spectrum of the Ã ← X̃ transition recorded using a room-temperature sample

in which only the ground vibrational level of the X̃ state is significantly populated is displayed in

Figure 48. The spectrum consists of a single progression in the out-of-plane bending (umbrella) mode
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Figure 48: Absorption spectrum of the Ã← X̃ transition of ammonia (data from Cheng et al. (2006)).

The origin of the electronic transition is labeled as 00
0 and the dominant progression in the out-of-plane

bending mode ν2 is labeled 2n0 . The members of this progression originate in the vibrational ground

state of the X̃ state and end in the v2 = n level of the Ã excited state.

ν2 of the Ã state. The origin band is labeled as 00
0 and the members of the progression as 2n0 , indicating

that the electronic transition originates in the vibrational ground state of the X̃ state of ammonia

and ends in the v2 = n vibrationally excited level of the Ã state. The weak band observed at lower

wave numbers than the origin band is the hot band 20
1. The very long progression, extending beyond

n = 15, is characteristic of a large change in equilibrium geometry between the two electronic states

involved in the transition.

The simplest way to understand the fact that transitions to both even and odd vibrational levels

are observed without noticeable intensity alternations between even and odd levels is to evaluate the

selection rules in the C3v point group (see top left part of Table 16). In this group, the electronic

transition is allowed, and the umbrella mode is totally symmetric, so that the vibrational selection

rule and intensity distribution can be described by the vibrational selection rule (178) and the Franck-

Condon factors given by Equation (175), respectively.

The vibrational intensity distribution can also be explained in the D3h point group. However,
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in this group, the umbrella mode ν2 is not totally symmetric, but of a′′2 symmetry. Consequently,

one would predict on the basis of Equation (177) that the vibrational bands corresponding to odd

values of the vibrational quantum number v2 of the umbrella mode should be missing in an absorption

spectrum from the ground vibrational level. The reason why transitions to vibrational levels with odd

values of v2 are observed is that they originate from the upper tunneling component of the ground

state which has A′′2 vibronic symmetry (and thus may be regarded as the first excited vibrational level

of the ground state). Transitions to vibrational levels with even values of v2 originate from the lower

tunneling component of the ground state, which has A′1 symmetry. The two tunneling components are

almost equally populated under the experimental conditions used to record the spectrum displayed in

Fig. 48, so that no intensity alternations in the ν2 progression are observed.

This example also served the purpose of illustrating some of the difficulties one encounters in

interpreting electronic states with equilibrium structures corresponding to different point groups.

3.4.2 Electronically forbidden but vibronically allowed transitions - an example

Electronically forbidden transitions may gain intensity from an allowed transition through vibronic

coupling mediated by a non-totally-symmetric mode (the Herzberg-Teller effect), as discussed above.

A prototypical example of this situation is the electronically forbidden Ã 1B2u ← X̃ 1A1g transition

of benzene (C6H6). This transition is also referred to as the S1 ← S0 transition, according to the

nomenclature introduced in Section 2.3.1. The excited electronic state arises from the electronic

configuration (a2u)2(e1g)3(e2u)1 (showing the π molecular orbitals only). The direct product of the

irreducible representations of the partially occupied orbitals is e1g ⊗ e2u = b1u ⊕ b2u ⊕ e1u, giving rise

to the electronic states 3B1u, 1B1u, 3B2u, 1B2u, 3E1u, and 1E1u. In both the Ã 1B2u and the X̃ 1A1g

state, the benzene molecule has D6h point-group symmetry. The dipole moment operator transforms

as A2u⊕E1u and thus the only allowed electronic transitions originating from the ground electronic

state end in states of electronic symmetry A2u or E1u. The Ã 1B2u ← X̃ 1A1g transition in benzene is

thus forbidden, while the C̃ 1E1u ← X̃ 1A1g transition is allowed (see Table 13). However, vibrational

modes of symmetry b2u⊗e1u=e2g induce vibronic coupling between the Ã and C̃ electronic states.

Figure 49 shows a low-resolution overview spectrum of benzene in the region of 37000-42000 cm−1,

which was first analyzed by Callomon et al. (1966). The spectrum is dominated by a strong regular

progression of absorption bands connecting the ground vibrational level of the X̃ state to vibrationally

excited levels of the Ã state. The nomenclature 1n0 61
0 indicates that the lower level of the transition

has the quantum numbers v1 = v6 = 0, i.e. both ν1 and ν6 are unexcited, whereas the upper level of

the transition has v1 = n and v6 = 1. The origin of the band system, designated as 00
0, does not carry

intensity, as expected for an electronically forbidden transition. The ν1 and ν6 vibrational modes have

A1g and E2g symmetry, respectively, in both electronic states. The vibronic symmetry of the upper

levels of the observed transition is thus Γe ⊗ Γv = b2u ⊗ [a1g]
n ⊗ e2g = e1u which can be accessed

from the ground vibronic state through the E1u component of the electric-dipole-moment operator
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(see Table 13).

All strong transitions in this band system end in v6 = 1 levels, which indicates that, among all

vibrational modes of benzene, ν6 is the mode primarily involved in mediating the vibronic interaction.

Below the origin of the band, the weak transition labeled as 60
1 originates from the thermally populated

v6 = 1 vibrationally excited level of the ground electronic state and ends in the vibrational ground

state of the Ã 1B2u state. Such a transition is a hot band and is not observed when the vibrational

temperature of the molecule is sufficiently low. One should note that the 61
0 band is vibronically

allowed, which explains why it is observed, whereas transitions from other thermally populated excited

vibrational levels of the ground state are not detected.

Figure 49: Low-resolution absorption spectrum of benzene in the 38000-42000 cm−1region (data from

Etzkorn et al. (1999)). The transitions labeled 1n0 61
0 originate from the vibrational ground state of the

X̃ 1A1g state and end in the (v1 = n,v6 = 1) vibrational states of the Ã 1B2u electronically excited

state. The origin of the band (marked as 00
0) does not carry intensity. The vibronically allowed hot

band 60
1 is observed below the origin band.

3.4.3 Electronic transitions and the Jahn-Teller effect

The distortions of molecular structures which result from the Jahn-Teller effect have a profound im-

pact on the vibrational structure and intensity distribution of electronic spectra. The reduction of
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molecular symmetry which follows from Jahn-Teller distortions leads to the observation of dense man-

ifolds of vibronic transitions, and the observation of vibrational progressions in certain modes usually

indicates that these modes are Jahn-Teller active. In cases where the Jahn-Teller effect is accompanied

by large-amplitude motions, such as pseudorotations along the potential troughs in Figures 30 and 31,

progressions in low-frequency modes with irregular spacings are observed, the interpretation of which

often requires extensive modeling. Rather than providing an exhaustive treatment of the possible

cases, we only present here two examples, involving C5H5 and C5H+
5 , without providing any detailed

and comprehensive treatment, with the primary goal to draw the attention to the fact that electronic

spectra of molecules subject to the Jahn-Teller effect are very complex, and thus particularly interest-

ing. We refer to Subsection 2.3.6, and mostly also to the bibliography, for more comprehensive and

exhaustive treatments of the Jahn-Teller effect.

The Jahn-Teller effect in the X̃ 2E′′1 state of C5H5 has been discussed in section 2.3.6. The X̃ 2E′′1 of

C5H5 has been characterized experimentally through the measurement of the laser-induced dispersed

fluorescence from the first excited electronic state Ã 2A′′2 back to the ground state (Applegate et al.

2001b,a). The emission spectrum from the Ã 111 state is shown in Figure 50. The vibrational mode

ν11 is of e′2 symmetry and linearly Jahn-Teller active. The emission spectrum is dominated by two

progressions that are labeled by the axes on top of the figure. The quantum number j represents

the total vibronic angular momentum and nj represents the harmonic oscillator quantum number. In

the electronically nondegenerate Ã state, the vibronic and vibrational angular momentum quantum

numbers are identical (j = `), and, consequently, integer numbers. In the doubly degenerate X̃ state,

` is no longer a good quantum number and each vibronic level with ` ≥ 1 splits into two levels with

j = |`| ± 1/2. Since the mode ν11 is degenerate, it possesses a vibrational angular momentum |`| = 1,

and thus the Ã 111 state can fluoresce back to both j = 1/2 and j = 3/2 states. The complexity of the

spectrum in Figure 50 is typical of electronic transitions in molecules subject to the Jahn-Teller effect.

The irregular spacings of vibronic levels in the ground electronic state of C5H5 and the high density

of vibronic levels at low energies are characteristic of a strong multimode JT effect. The assignment

of the spectra often require extensive theoretical modeling and many measurements exploiting the

excitation of selected vibronic levels. The reader is referred to Applegate et al. (2001b,a) and to the

reading list at the end of the chapter for further information.

The PJT effect in the ã+ 1E′2 state of C5H+
5 has been discussed in section 2.3.6. The ã+ 1E′2 state of

C5H+
5 has been characterized by pulsed-field-ionization zero-kinetic-energy (PFI-ZEKE) spectroscopy

following resonance-enhanced two-photon excitation through selected vibrational levels of the Ã state

of C5H5 Wörner and Merkt (2006, 2007, 2009). The PJT effect in the ã+ 2E′1 is very strong, leading

to a stabilization by about 4000 cm−1. Moreover, the absence of significant quadratic coupling results

in a vibronic structure that is close to the limit of a pseudorotational motion. This limit corresponds

to an unhindered large-amplitude motion along the minimum of the trough of the lowest potential

energy surface displayed in Figure 31. The corresponding vibronic progressions are labeled along the
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Figure 50: (A) Experimental emission spectrum of the Ã 2A′′2 , 111 → X̃ 2E′′1 transition of C5H5. (D)

Calulated spectrum of Jahn-Teller active modes using the Jahn-Teller parameters derived from ab

initio calculations. The assignment bars above the spectrum indicate the |j, nj〉 assignment of each

feature in the spectrum. (E) Simulated spectrum of Jahn-Teller active modes using the Jahn-Teller

parameters as determined from fitting the experimental spectrum. (F) Simulated emission spectrum.

(From Ref. Applegate et al. (2001a)), with permission of the authors).

assignment bars at the top of Figure 51. By contrast to the JT effect in C5H5, which is characterized

by half-integer vibronic angular momentum quantum numbers j (see Figure 50), the PJT effect

in C5H+
5 is associated with integer quantum numbers. The lowest progression (u = 0) shows the

simple appearance expected for the case of free pseudorotation, i.e. vibronic level positions following

a quadratic dependence on their vibronic quantum number, i.e., E ∝ j2. At higher energies, the

vibronic structure becomes very complicated because three vibrational modes of e′2 symmetry are

involved in the PJT effect. The alternation in the intensities of the three lowest vibronic levels

observed following excitation through different intermediate states is reproduced by a simple vibronic

coupling calculation (shown as stick spectra in Figure 51) assuming that the intensity of the forbidden
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Figure 51: PFI-ZEKE photoelectron spectra of C5H5 recorded following two-photon resonant excita-

tion to the lower component of the ã+ 1E′2 state via selected vibrational levels of the Ã 2A′′2 state. The

intermediate level is indicated on the right-hand side above the spectra. The spectra are compared to

calculations (vertical stick spectra) of the vibronic structure including the modes ν10, ν11, and ν12 in

C5H+
5 . The bands marked with an asterisk coincide with lines of the precursor C5H6 (adapted from

Ref. Wörner and Merkt (2007)).

ã+ ← Ã photoionization transition is borrowed from the allowed ((a′′2)1(e′′1)3) 1E′1 ← Ã state through

a Herzberg-Teller effect (see Wörner et al. (2007); Wörner and Merkt (2009) for more details).

3.4.4 Electronic excitations in complex molecules: the exciton model

Large polyatomic molecules typically have a low point-group symmetry and, therefore, selection rules

provide much less qualitative understanding of their electronic spectra than is the case for highly
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symmetric molecules. In large polyatomic molecules, electronic transitions are often localized to

certain groups of atoms, also called ”chromophores”. This property is widely used in analytical

chemistry to identify functional groups of molecules through their ultraviolet absorption spectrum

(see, for instance, Skoog et al. (2000)). The corresponding transitions are labeled according to the

type of orbitals involved in the transitions, as discussed in Section 2.3.1. The aldehyde group -CHO

is an example of a chromophore that possesses a weak absorption around 280 nm, corresponding to a

π∗ → n promotion. Benzene rings show weak absorptions close to 260 nm corresponding to π → π∗

excitations, as discussed in the previous subection. C=C double bonds show intense absorption

feartures in the region around 180 nm, just as ethylene itself.

In larger molecules possessing several chromophores, electronic excitations rarely occur indepen-

dently but the chromophores are often coupled to each other. In the case of several identical chro-

mophores, the coupling can lead to the splitting of otherwise degenerate electronic transitions. In

general, the coupling can also lead to energy transfer between different chromophores. In all these

cases, the electronic spectrum can be qualitatively understood from the interaction of several localized

excitations which are referred to as ”excitons” (Coffman and McClure 1958).

Diphenylmethane, depicted in Figure 52 is a prototyipcal molecule with two nearly degenerate

interacting aromatic chromophores (Stearns et al. 2008). The π − π∗ excitations occur in the phenyl

rings and interact with each other. Diphenylmethane has a C2 equilibrium structure with the phenyl

rings at dihedral angles of approximatley 60◦ with respect to the plane bisecting the methylene C-

H bonds. Labeling the two chromophores A and B, one can define zero-order states |A∗B〉, E0
A∗B

and |AB∗〉, E0
AB∗ corresponding to excited states with electronic excitation localized on a single

chromophore. The inclusion of the coupling V between the two states leads to the exciton states with

spectral positions

E± =
E0
A∗B + E0

AB∗

2
±
√

(E0
A∗B + E0

AB∗)
2 − 4E0

A∗BE
0
AB∗ + 4V 2

2
. (210)

and wave functions:

Ψ+ = c1|A∗B〉+ c2|AB∗〉 and Ψ− = c2|A∗B〉 − c1|AB∗〉. (211)

In the limiting case of degenerate zero-order states (E0
A∗B = E0

AB∗ = E0), Equations (210) and (211)

become

Ψ± =
1√
2

(|A∗B〉 ± |AB∗〉) , E± = E0 ± V. (212)

The magnitude and sign of the interaction between the two states depends on the distance between

the chromophores and the relative orientation of their transition dipole moments. The dominant

interactions are electrostatic. When the separation between the chromophores is large compared to

the extension of the orbitals, only the long-range dipole-dipole electrostatic interaction usually needs

to be considered. The electronic excitation of one of the chromophores induces a polarization of

the orbitals of the other that can be described by a local transition dipole moment on either of the
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chromophores. The interaction of the two dipole moments is then described by the dipole-dipole

interaction

V (θa, θb, φ) =
µaµb

4πε0R3
(2 cos θa cos θb + sin θa sin θb cosφ), (213)

where θa,b are the angles between the transition dipoles of the two chromophore and the axis connecting

them, φ is the dihedral angle between them, and µa,b are the magnitudes of the two transition

dipole moments. Figure 52 shows three different geometric configurations of diphenylmethane with

point-group symmetries C2 (a), Cs (b) and C2v (c). On the potential energy surface of the ground

electronic state, structure (a) corresponds to the global minimum which possesses two energetically

equivalent enantiomeric forms, whereas (b) and (c) are saddle points. To anticipate the manifestations

of electronic excitation in this molecule, we apply Equation (213) to these structures. In the C2v-

symmetric structure (c), the interaction between the transition dipole moments is maximized and the

electronic excitation delocalized over the two rings. In the Cs-symmetric structure, the transition

dipole moments are perpendicular to each other and V = 0, leading to localized electronic excitations.

The analysis of the electronic spectra of a diphenylmethane crystal at low temperatures (Coffman

and McClure 1958; McClure 1958) revealed a weak absorption band 145 cm−1above the origin of the

first absorption band which was attributed to the upper member of the exciton pair. An excited state

geometry of C2 symmetry was inferred with a very similar geometry to that of the ground electronic

state. In a delocalized excited system with C2 symmetry, one exciton state has a transition dipole

parallel to the C2 axis and therefore has A symmetry, whereas the other has a transition dipole

perpendicular to the C2 axis and B symmetry. McClure (1958) thus concluded from Equation (213)

that the sequence of excitons was A below B in diphenylmethane crystals, where A and B refer to the

symmetry of the transition dipole in the C2 point group.

The electronic transitions to these two electronic states, also labeled S1 and S2, were recently

investigated by rotationally resolved laser-induced fluorescence spectroscopy in the unperturbed envi-

ronment of a molecular jet (Stearns et al. 2008). The origins of the S1 ←S0 and S2 ←S0 transitions in

(doubly deuterated) diphenylmethane-d1,2 are shown in Figure 53(a) and Figure53(b), respectively.

The rotational analysis of the S1 ←S0 transition of diphenylmethane and diphenylmethane-d1,2 shows

that a-type and c-type Q-branch transitions dominate the spectrum, which establishes the S1 state

as the delocalized antisymmetric combination of the two chromophore excitations (the principal axes

a, b and c are defined in the caption of the figure). The origin of the S2 ←S0 transition, which

appears shifted toward higher wave numbers by +123 cm−1 in diphenylmethane and +116 cm−1 in

diphenylmethane-d1,2, displays b-type Q-branch transitions and lacks the a-type Q-branch features

present in the S1 ←S0 transition. This observation demonstrates that the transition dipole moment

giving rise to the upper excitonic state is parallel to the C2 axis, which further implies that the S2

state corresponds to the symmetric combination of the two excitations. However, a complete rota-

tional analysis of the S2 ←S0 transition was not possible because the vibronic coupling between the S2

and S1 states strongly perturbs the spectra. This example shows that rotationally resolved electronic
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Figure 52: Geometric structures of diphenylmethane possessing C2 (a), Cs and C2v point-group

symmetries, respectively. Structure (a) corresponds to the geometry of the global minimum of the

ground electronic state potential energy surface. Structures (b) and (c) correspond to saddle points

of this surface (Stearns et al. 2008). The principal axis system of structure c) has the b axis along the

C2 symmetry axis, the c axis pointing out of the plane of the page, and the a axis parallel to the line

connecting the centers of mass of the two chromophores.

spectroscopy is possible in large molecules, and that it can provide insight into electronic excitations

of complex systems. Further examples of rotationally resolved electronic spectra of large molecules

are discussed in hrs054 (Pratt 2010a; Schmitt and Meerts 2010)

3.5 Nonradiative transitions

Electronically excited states of molecules can decay by fluorescence to lower-lying states. This process

is governed by the same selection rules as photoexcitation. The excited states can also undergo

nonradiative transitions which can have profound effects on the intensity distribution of electronic
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Figure 53: Rotationally resolved fluorescence excitation spectra of the S1 ←S0 (panel a) and S2 ←S0

(panel b) origin bands of diphenylmethane-d1,2. The top panel in (a) shows the observed spectrum

(blue line) and the residuals from a fit of the rotational structure (red line). The lower panel in (a)

shows the central part of the spectrum and the residuals from a fit to a- and c-type transitions on an

increased scale. (adapted from Stearns et al. (2008))

spectra. Nonradiative decay of an electronic state of an atom can only be observed above the lowest

ionization threshold and leads to the emission of an electron. This process is termed autoionization

(or preionization (Herzberg 1991)) and is illustrated schematically in Figure 54. Molecules can also

decay through predissociation, if the electronic state lies above at least one dissociation threshold.

Autoionization and predissociation are usually much faster than radiative decay and contribute to

broaden absorption lines in electronic spectra by reducing the lifetime of the electronically excited

state. In most molecular systems, several effects are in competition. Considering an isolated level (or,

more correctly, an isolated resonance) of an electronic state that can decay through a nonradiative

process, its linewidth Γ is proportional to its inverse lifetime τ−1 and, if further sources of decay

(such as internal conversion, intersystem crossings, intramolecular energy redistribution, see below)

are ignored, can be expressed as the sum of the autoionization Γa, predissociation Γp and radiative
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Γr decay widths:

Γ = Γa + Γp + Γr. (214)

Figure 54: Generic illustration of the occurence of a resonance in autoionization or predissociation: an

electronic level |1〉 is coupled to an (electronic or dissociative) continuum. The coupling is described

by an interaction operator V̂ .

3.5.1 Autoionization

When an atom or a molecule is excited above its lowest ionization threshold, it can ionize either

directly if excitation takes place to an ionization continuum or it can reach an excited state that

decays subsequently by autoionization (i.e., an autoionization resonance). In this case, the electron is

ejected by exchanging energy with the ionic core. Autoionization is classified according to the type

of energy that is exchanged between the core and the electron as electronic, rotational, vibrational,

spin-orbit and hyperfine autoionization. The process of autoionization is discussed in detail by Pratt

(2010b) and its treatment by multichannel quantum defect theory by Jungen Jungen (2010a).

Autoionization occurs because the resonance that is populated is not an eigenstate of the molecular

system. Usually, a resonance can decay to different final states of the molecular cation. Whereas the

linewidth only provides information on the total decay rate, a measurement of the photoelectron

kinetic energy distribution can provide information on the product states of the ion. It is useful to

define a ”partial linewidth” for the decay of an initial state characterized by the electronic, vibrational

and rotational quantum numbers α, J, v to a final state of the molecular cation with the quantum
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numbers α+, J+, v+ and a photoelectron of energy ε. Defining the interaction matrix element between

the discrete level |1〉 and the continuum to which it is coupled as H1,α,J,v;2,ε,α+,J+,v+ , the partial

autoionization width can be estimated with Fermi’s Golden Rule formula (Lefebvre-Brion and Field

2004)

Γ1,α,J,v;2,ε,J+,v+ = 2π
∣∣H1,α,J,v;2,ε,J+,v+

∣∣2 (215)

In the case of an autoionizing Rydberg state with effective principal quantum number n∗, the electronic

part I of the matrix element H1;2 between the bound state and the continuum varies slowly with energy

and the partial autoionization width becomes

Γn,v;ε,v+ = 2π
2RM

(n∗)
3 I

2〈v|v+〉2, (216)

where RM is the Rydberg constant. Autoionization proceeds through an exchange of energy between

the Rydberg electron and the ionic core and, therefore, its probability is proportional to the Rydberg

electron density in the region of the ionic core (∝ n−3, see Section 2.1.6). The conceptually simplest

case is that of purely electronic autoionization. Rydberg levels converging to an electronically excited

level of the cation decay into the continuum of a lower-lying electronic state. The total electronic

symmetry of the ion core - electron system must be the same for the discrete level and the continuum.

An example is given by the nsσg
1Πu Rydberg series converging to the A 2Πu state of N+

2 which lies

∼ 9000 cm−1 above the X 2Σ+
g ground state of N+

2 . The levels with n ≥ 5 are located above the

ionization threshold and can decay into the εpπu
1Πu continuum associated with the ground electronic

state. In general, this type of electronic autoionization is allowed when the two states (quasibound and

continuum) are derived from configurations that differ by at most two orbitals because the interaction

is mediated by electrostatic interactions between electron pairs, and is proportional to 1/rij . Electronic

autoionization is thus an example of processes that cannot be explained within the Hartree-Fock

approximation.

Rotational autoionization has been studied in greatest details in the H2 molecule (Herzberg and

Jungen 1972; Jungen and Dill 1980). As an example, we consider the np-Rydberg states converging

to the N+ = 0 and N+ = 2 thresholds of the vibronic ground state of H+
2 . The lowest-lying members

of these Rydberg series (n ≤ 9) are best described in Hund’s case (b) and have either 1Σ+
u or 1Πu

symmetry. Their energetic positions are given by Equation (58), where the quantum defect is µσ for

1Σ+
u levels and µπ for 1Πu levels. Higher-lying Rydberg states are better described in Hund’s case (d)

(see Subsection 2.1.6). The autoionization width for the decay of a high Rydberg state of principal

quantum number n converging to the threshold N+ = 2 into the continuum of N+ = 0 is given by

Γn,J = 2π
2RM

(n∗)
3

J(J + 1)

(2J + 1)2
(µπ − µσ)

2
, (217)

where µπ and µσ are the quantum defects and J is the total angular momentum quantum number

of the autoionizing level (Herzberg and Jungen 1972; Jungen and Dill 1980). The rate of rotational

autoionization is thus seen to be related to the energy splitting between Σ and Π states that originates
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from the nonspherical nature of the ionic core, or, equivalently, from the interaction between the

Rydberg electron and the electric quadrupole of the ionic core.

Vibrational autoionization occurs when a Rydberg state converging to a vibrationally excited level

of the cation decays into the continuum of a lower-lying vibrational state. The interaction is mediated

by the nuclear kinetic energy operator. The potential energy curve of a Rydberg state with electronic

angular momentum projection quantum number Λ, Vn,Λ(R) is not strictly parallel to that of the

molecular cation V +(R), which leads to a weak R-dependence of the quantum defect µλ(R) according

to

UnΛ(R) = U+(R)− RM
(n− µλ(R))2

. (218)

Defining n∗ = n − µλ,(R=R+
e ) and keeping only the linear term of a Taylor expansion of µλ(R), one

can express the linewidth for vibrational autoionization of the level n, v+ into the continuum v+ − 1

as (Herzberg and Jungen 1972)

Γn,v+−1 = 2π
2RM

(n∗)
3

[
dµλ
dR

]2

〈φv+ |R̂−R+
e |φv

+−1〉. (219)

In the harmonic approximation, the only nonzero matrix elements of the (R̂ − R+
e ) operator are

∆v = ±1, which gives rise to a strong propensity rule in vibrational autoionization (Berry 1966;

Herzberg and Jungen 1972). In H2, the width for ∆v = −2 autoionization is typically two orders of

magnitude smaller than for ∆v = −1 (Lefebvre-Brion and Field 2004).

Spin-orbit autoionization affects Rydberg levels lying between different multiplet components of

the cation. The best known example are the rare gas atoms Rg= Ne, Ar, Kr and Xe (see e.g. Beutler

(1935); Lu (1971); Wörner et al. (2005), and also Figures 38 and 39). Rydberg levels converging

to the 2P1/2 level of the Rg+ ion can decay into the continuum associated with the 2P3/2 level.

Spin-orbit autoionization also occurs in molecules, for example in O2. Rydberg states converging to

the 2Π3/2 upper spin-orbit component of the X+ ground state of O+
2 can decay into the continuum

associated with the 2Π1/2 lower spin-orbit component. As an example, we consider the (pπ)(nsσ) 3Π1

and 1Π1 Rydberg series converging to the X+ 2Π state of O+
2 . The lowest members of these series

are best described in Hund’s case (a) because the exchange interaction is much larger than the spin-

orbit interaction in the cation (see analogous discussion for the rare gas atoms in Subsection 3.2.2).

Therefore, their energetic position follows the Rydberg formula (Eq. (58)) with quantum defects

µ3 and µ1 for the 3Π1 and 1Π1 levels, respectively. The autoionization linewidth of the Rydberg

levels converging to the X+ 2Π3/2 substate into the continuum of the X+ 2Π1/2 substate is given by

(Lefebvre-Brion and Field 2004)

Γn = 2π
2R

(n∗)
3

(
µ3 − µ1

2

)2

. (220)

Consequently, spin-orbit autoionization can be considered to be a consequence of the nondegeneracy

of singlet and triplet levels that is caused by the exchange interaction.
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Hyperfine autoionization has been discussed only very recently (Wörner et al. 2005) because it can

only be observed at very high spectral resolution and in very high Rydberg states. It occurs when

Rydberg levels converging to an excited hyperfine structure component of an ionic fine-structure level

decay into the continuum associated with a lower-lying hyperfine component of the same fine-structure

level. The simplest case is the decay of np Rydberg levels converging to the F+ = 0 level of the 2S1/2

ground state of 3He+ (with nuclear spin I = 1/2) into the continuum of the lower-lying F+ = 1 level.

The hyperfine autoionization linewidth can also be estimated with Eq. (220) where µ3 and µ1 are the

quantum defects in LS coupling of the 3P1 and 1P1 Rydberg series of He, respectively. The hyperfine

interval of the 2S1/2 state of 3He+ amounts to only 0.2888 cm−1 (Fortson et al. 19660, setting a lower

limit of n ≈ 620 for the lowest level that can decay by hyperfine autoionization. In the heavier rare gas

atoms, e.g. 83Kr, 129Xe, and 131Xe, hyperfine autoionization rates have been predicted by calculations

(Wörner et al. 2005; Paul et al. 2009).

The discussion so far on was based on the implict assumption of Lorentzian line shapes, which are

observed when photoexcitation populates exclusively the resonance and direct ionization is forbidden

(see Figure 5b of Merkt et al. (2010)). In most atomic and molecular systems, the selection rules

allow both the excitation of the quasibound state and the continuum. Two pathways to the same final

state exist, which results in interference phenomena and in deviations of the observed line shapes from

Lorentzian profiles (Fano 1961). In the case of an isolated resonance interacting with one continuum,

the line shape is described by the Beutler-Fano formula Fano (1961)

σa = σd + σi
(q + ε)

2

1 + ε2
, (221)

where σd represents the cross-section for direct excitation of the continuum and σi that for the exci-

tation of the quasibound state. The lineshape is characterized by the parameters ε = (E−Er)/(Γ/2),

where Er and Γ are the energy and full width of the resonance state, and q characterizes the interac-

tion between the bound state and the continuum (see Fano (1961)). The limit q → ±∞ corresponds

to a Lorentzian line shape, whereas for q = 0, the resonance appears as a local minimum in the

cross-section also called a “window resonance” (see Figure 5 of Merkt et al. (2010)).

The Beutler-Fano formula has been generalized to the case overlapping resonances by Mies (1968)

and to the case of two interacting continua by Beswick and Lefebvre (1975). In most systems, mul-

tiple overlapping resonances interact with multiple continua. In such cases, multichannel quantum

defect theory (see Jungen (2010a)) is required to achieve a quantitative understanding of the spectral

structures.

3.5.2 Predissociation

Predissociation is a process by which a nominally bound vibrational level decays into atomic or molec-

ular fragments through coupling to a dissociation continuum. Two different types of predissociation

have been characterized: predissociation by rotation and electronic predissociation.
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Predissociation by rotation occurs for levels with J > 0 when the centrifugal energy ~2J(J +

1)/2µR2 added to the potential energy curve is large enough to lead to the appearance of quasibound

levels. Such levels lie above the dissociation threshold of their electronic state but are trapped behind

a centrifugal barrier (see also hrs093Schinke (2010)).

Electronic predissociation occurs when a bound vibrational level of an electronically excited state

decays by coupling to the dissociation continuum of another electronic state. The potential energy

curves of the two electronic states do not necessarily have to cross.

The mixing of a bound state Ψ1,α,v,J with a state in a dissociation continuum Ψ2,α,E,J is described

by the matrix element

Hv,J;E,J = 〈Ψ1,α,v,J |V |Ψ2,α,E,J〉 = 〈φ1(~r, ~R)χv,J(~R)|H|φ2(~r, ~R)χE,J(~R)〉, (222)

where ~r and φ are the electronic coordinates and wave functions, respectively, ~R and χ are the

vibrational coordinates and wave functions, respectively, and E is the kinetic energy of the free

nuclei in the continuum. The continuum states are taken to be energy normalized. Fano’s theory of

resonances shows how the discrete state amplitude is mixed into the continuum eigenfunctions (Fano

1961). When Hv,J;E,J varies slowly with energy, the admixture of the bound level into the continuum

is a Lorentzian function, with predissociation linewidth ΓE,α,v,J given by

ΓE,α,v,J = 2π |Vv,J;E,J |2 . (223)

In diatomic molecules, if the electronic matrix element Hv,J;E,J varies slowly with the internuclear

separation R, the matrix element can be factorized into an electronic and a vibrational part

Hv,J;E,J = 〈φ1(r,R)|V |φ2(r,R)〉〈χv,J(R)χE,J(R)〉, (224)

in which case the predissociation linewidth can be expressed as a product of an electronic and a

vibrational factor

ΓE,J = 2π |Ve|2 〈χv,J(R)|χE,J(R)〉2. (225)

3.5.3 Dynamics in large polyatomic molecules

In addition to the decay mechanisms of predissociation and autoionization discussed above, and which

are the dominant decay mechanisms in small molecules, large polyatomic molecules can be subject to

additional types of nonradiative transitions. The different kinds of dynamics are often described in

terms of so-called “bright” and “dark” states, which can be regarded as “fictive” zero-order levels in

the absence of interactions between the levels. The bright state can be populated by the absorption

of a photon as illustrated in Figure 55 while the excitation to the dark states is forbidden. When

the interaction between bright and dark states is considered, the dark state becomes optically accessi-

ble. The Herzberg-Teller coupling mechanism discussed in Subsection 3.4.2 may be described in this

language, the dark state being the electronically forbidden but vibronically allowed state.
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Different types of couplings can be distinguished, associated with the phenomena known as in-

tersystem crossing (ISC), internal conversion (IC) and internal vibrational redistribution (IVR). In a

time-dependent picture, the molecule can be thought of as being first excited to a bright state and

subsequently evolving according to the couplings to isoenergetic dark states. When only few states

are coupled, for instance because the molecule is small or it possesses a high symmetry, periodic

motions occur, leading to distinct structures in the absorption spectrum and recurrence phenomena

in time-domain experiments. If the bright state is coupled to a dense manifold of dark states, the

long-time behavior mimics an irreversible decay following Fermi’s Golden Rule. This usually results

in structureless absorption spectra.

Figure 55: Schematic representation of the potential energy surfaces of a polyatomic molecule as a

function of a vibrational coordinate Q of the molecule. The absorption of a photon excites the molecule

from the singlet electronic ground state S0 into a bright state S2, which subsequently decays into a

set of dark states through internal conversion (to another singlet state, S1) or through intersystem

crossing into a triplet state (T1).

Intersystem crossing (ISC) arises from the spin-orbit coupling between electronic states of different

multiplicities. Typically, it occurs between the vibrational levels of an excited singlet state that are

mixed with the dense manifold of vibronic levels of a lower-lying triplet state. In diatomic molecules,

the singlet-triplet (spin-orbit) interaction matrix element is easily decomposed into an electronic and

a vibrational overlap factor. The situation is more complex in polyatomic molecules. The interaction

between two electronic states of similarly shaped potential energy surfaces decreases continuously

with increasing energy separation (an effect often refered to as the ”energy-gap rule”). If the potential
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energy surfaces differ significantly in shape, a small number of ”active” vibrational modes usually

mediate the coupling and the corresponding vibrational levels are called ”doorway states”. In this

case, ISC becomes mode specific.

Internal conversion (IC) is a dynamical process that conserves the total spin of the molecule

(∆S = 0). In diatomic molecules, potential energy functions of the same symmetry cannot cross (a

fact refered to as the ”noncrossing rule”). In polyatomic molecules, this rule no longer applies because

certain vibrational modes distort the molecule and change its point-group symmetry. Two electronic

states may thus have different quantum numbers in a high-symmetry region but the same quantum

numbers in a region of lower symmetry, leading to conical intersections. A special case of conical

intersections arises from the Jahn-Teller effect and has been discussed in Section 2.3.6 (see 30).

Figure 56: Schematic representation of the mechanism of internal vibrational redistribution. The level

initially populated by photoabsorption decays into a set of ”first tier” states that are usually strongly

coupled to the bright state. The molecule subsequently decays into a denser ”second tier” of states

that are more weakly coupled to the first tier.

Intramolecular vibrational redistribution (IVR) differs from ISC and IC in that it does not result

from the coupling of different electronic states. It occurs between near-resonant vibrational levels

of the same electronic state by rovibrational interaction (Coriolis interaction, Fermi interaction and

high-order anharmonic interaction, see Quack and coworkers (2010)) and is also highly specific to the

molecule. A bright state is typically only strongly coupled to a relatively sparse group of dark levels,

known as the ”first tier” of states as represented in Figure 56. These levels are also called ”doorway

states” because they are usually more weakly coupled to a second denser set of states, known as

”second tier”. The molecule is prepared in the bright state through the absorption of a photon and

subsequently decays through the first tier into the second tier of levels. IVR thus leads to a rapid

redistribution of the energy of the absorbed photon into vibrational degrees of freedom of the molecule.
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