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Abstract: We consider the time evolution of a system of N identical bosons whose
interaction potential is rescaled by N−1. We choose the initial wave function to describe
a condensate in which all particles are in the same one-particle state. It is well known
that in the mean-field limit N → ∞ the quantum N -body dynamics is governed by the
nonlinear Hartree equation. Using a nonperturbative method, we extend previous results
on the mean-field limit in two directions. First, we allow a large class of singular inter-
action potentials as well as strong, possibly time-dependent external potentials. Second,
we derive bounds on the rate of convergence of the quantum N -body dynamics to the
Hartree dynamics.

1. Introduction

We consider a system of N identical bosons in d dimensions, described by a wave
function �N ∈ H(N ). Here

H(N ) := L2
+(R

Nd , dx1 · · · dxN )

is the subspace of L2(RNd , dx1 · · · dxN ) consisting of wave functions �N (x1, . . . , xN )

that are symmetric under permutation of their arguments x1, . . . , xN ∈ R
d . The

Hamiltonian is given by

HN =
N∑

i=1

hi +
1

N

∑

1�i< j�N

w(xi − x j ), (1.1)

where hi denotes a one-particle Hamiltonian h (to be specified later) acting on the coor-
dinate xi , and w is an interaction potential. Note the mean-field scaling 1/N in front of
the interaction potential, which ensures that the free and interacting parts of HN are of
the same order.
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The time evolution of �N is governed by the N -body Schrödinger equation

i∂t�N (t) = HN�N (t), �N (0) = �N ,0. (1.2)

For definiteness, let us consider factorized initial data �N ,0 = ϕ⊗N
0 for some ϕ0 ∈

L2(Rd) satisfying the normalization condition ‖ϕ0‖L2(Rd ) = 1. Clearly, because of the
interaction between the particles, the factorization of the wave function is not preserved
by the time evolution. However, it turns out that for large N the interaction potential expe-
rienced by any single particle may be approximated by an effective mean-field potential,
so that the wave function�N (t) remains approximately factorized for all times. In other
words we have that, in a sense to be made precise,�N (t) ≈ ϕ(t)⊗N for some appropriate
ϕ(t). A simple argument shows that in a product state ϕ(t)⊗N the interaction potential
experienced by a particle is approximately w ∗ |ϕ(t)|2, where ∗ denotes convolution.
This implies that ϕ(t) is a solution of the nonlinear Hartree equation

i∂tϕ(t) = hϕ(t) +
(
w ∗ |ϕ(t)|2)ϕ(t), ϕ(0) = ϕ0. (1.3)

Let us be a little more precise about what one means with �N ≈ ϕ⊗N (we omit the
irrelevant time argument). One does not expect the L2-distance

∥∥�N − ϕ⊗N
∥∥

L2(RNd )

to become small as N → ∞. A more useful, weaker, indicator of convergence should
depend only on a finite, fixed1 number, k, of particles. To this end we define the reduced
k-particle density matrix

γ
(k)
N := Trk+1,...,N |�N 〉〈�N |,

where Trk+1,...,N denotes the partial trace over the coordinates xk+1, . . . , xN , and
|�N 〉〈�N | denotes (in accordance with the usual Dirac notation) the orthogonal projector
onto�N . In other words, γ (k)N is the positive trace class operator on L2

+(R
kd , dx1 · · · dxk)

with operator kernel

γ
(k)
N (x1, . . . , xk; y1, . . . , yk)

=
∫

dxk+1 · · · dxN�N (x1, . . . , xN )�N (y1, . . . , yk, xk+1, . . . , xN ).

The reduced k-particle density matrix γ (k)N embodies all the information contained in
the full N -particle wave function that pertains to at most k particles. There are two
commonly used indicators of the closeness γ (k)N ≈ (|ϕ〉〈ϕ|)⊗k : the projection

E (k)N := 1 − 〈
ϕ⊗k , γ

(k)
N ϕ⊗k 〉

and the trace norm distance

R(k)N := Tr
∣∣∣γ (k)N − (|ϕ〉〈ϕ|)⊗k

∣∣∣. (1.4)

It is well known (see e.g. [9]) that all of these indicators are equivalent in the sense
that the vanishing of either R(k)N or E (k)N for some k in the limit N → ∞ implies that

limN R(k
′)

N = limN E (k
′)

N = 0 for all k′. However, the rate of convergence may differ

1 In fact, as shown in Corollary 3.2, k may be taken to grow like o(N ).
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from one indicator to another. Thus, when studying rates of convergence, they are not
equivalent (see Sect. 2 below for a full discussion).

The study of the convergence of γ (k)N (t) in the mean-field limit towards (|ϕ(t)〉
〈ϕ(t)|)⊗k for all t has a history going back almost thirty years. The first result is due to
Spohn [13], who showed that limN R(k)N (t) = 0 for all t provided thatw is bounded. His
method is based on the BBGKY hierarchy,

i∂tγ
(k)
N (t) =

k∑

i=1

[
hi , γ

(k)
N (t)

]
+

1

N

∑

1�i< j�k

[
w(xi − x j ) , γ

(k)
N (t)

]

+
N − k

N

k∑

i=1

Trk+1
[
w(xi − xk+1) , γ

(k+1)
N (t)

]
, (1.5)

an equation of motion for the family (γ (k)N (t))k∈N of reduced density matrices. It is a
simple computation to check that the BBGKY hierarchy is equivalent to the Schröding-
er equation (1.2) for �N (t). Using a perturbative expansion of the BBGKY hierarchy,
Spohn showed that in the limit N → ∞ the family (γ (k)N (t))k∈N converges to a family

(γ
(k)∞ (t))k∈N that satisfies the limiting BBGKY obtained by formally setting N = ∞ in

(1.5). This limiting hierarchy is easily seen to be equivalent to the Hartree equation (1.3)
via the identification γ (k)∞ (t) = (|ϕ(t)〉〈ϕ(t)|)⊗k . We refer to [3] for a short discussion
of some subsequent developments.

In the past few years considerable progress has been made in strengthening such
results in mainly two directions. First, the convergence limN R(k)N (t) = 0 for all t has
been proven for singular interaction potentials w. It is for instance of special physical
interest to understand the case of a Coulomb potential, w(x) = λ|x |−1, where λ ∈ R.
The proofs for singular interaction potentials are considerably more involved than for
bounded interaction potentials. The first result for the case h = −� andw(x) = λ|x |−1

is due to Erdős and Yau [3]. Their proof uses the BBGKY hierarchy and a weak com-
pactness argument. In [1], Schlein and Elgart extended this result to the technically more
demanding case of a semirelativistic kinetic energy, h = √

1 −� and w(x) = λ|x |−1.
This is a critical case in the sense that the kinetic energy has the same scaling behav-
iour as the Coulomb potential energy, thus requiring quite refined estimates. A different
approach, based on operator methods, was developed by Fröhlich et al. in [4], where
the authors treat the case h = −� and w(x) = λ|x |−1. Their proof relies on dispersive
estimates and counting of Feynman graphs. Yet another approach was adopted by Rod-
nianski and Schlein in [12]. Using methods inspired by a semiclassical argument of Hepp
[6] focusing on the dynamics of coherent states in Fock space, they show convergence
to the mean-field limit in the case h = −� and w(x) = λ|x |−1.

The second area of recent progress in understanding the mean-field limit is deriv-
ing estimates on the rate of convergence to the mean-field limit. Methods based on
expansions, as used in [13 and 4], give very weak bounds on the error R(1)N (t), while
weak compactness arguments, as used in [3 and 1], yield no information on the rate of
convergence. From a physical point of view, where N is large but finite, it is of some
interest to have tight error bounds in order to be able to address the question whether
the mean-field approximation may be regarded as valid. The first reasonable estimates
on the error were derived for the case h = −� and w(x) = λ|x |−1 by Rodnianski and
Schlein in their work [12] mentioned above. In fact they derive an explicit estimate on
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the error of the form

R(k)N (t) � C1(k)√
N

eC2(k)t

for some constants C1(k),C2(k) > 0. Using a novel approach inspired by Lieb-Robinson
bounds, Erdős and Schlein [2] further improved this estimate under the more restrictive
assumption that w is bounded and its Fourier transform integrable. Their result is

R(k)N (t) � C1

N
eC2keC3t ,

for some constants C1,C2,C3 > 0.
In the present article we adopt yet another approach based on a method of Pickl [10].

We strengthen and generalize many of the results listed above, by treating more singular
interaction potentials as well as deriving estimates on the rate of convergence. Moreover,
our approach allows for a large class of (possibly time-dependent) external potentials,
which might for instance describe a trap confining the particles to a small volume. We
also show that if the solution ϕ(·) of the Hartree equation satisfies a scattering condition,
all of the error estimates are uniform in time.

The outline of the article is as follows. Section 2 is devoted to a short discussion
of the indicators of convergence E (k)N and R(k)N , in which we derive estimates relating
them to each other. In Sect. 3 we state and prove our first main result, which concerns the
mean-field limit in the case of L2-type singularities inw; see Theorem 3.1 and Corollary
3.2. In Sect. 4 we state and prove our second main result, which allows for a larger class
of singularities such as the nonrelativistic critical case h = −� andw(x) = λ|x |−2; see
Theorem 4.1. For an outline of the methods underlying our proofs, see the beginnings
of Sects. 3 and 4.

Notation. Except in definitions, in statements of results and where confusion is possible,
we refrain from indicating the explicit dependence of a quantity aN (t) on the time t and
the particle number N . When needed, we use the notations a(t) and a|t interchangeably
to denote the value of the quantity a at time t . The symbol C is reserved for a generic
positive constant that may depend on some fixed parameters. We abbreviate a � Cb
with a � b. To simplify notation, we assume that t � 0.

We abbreviate L p(Rd , dx) ≡ L p and ‖·‖L p ≡ ‖·‖p. We also set ‖·‖L2(RNd ) = ‖·‖.
For s ∈ R we use Hs ≡ Hs(Rd) to denote the Sobolev space with norm ‖ f ‖Hs =∥∥(1 + |k|2)s/2 f̂

∥∥
2, where f̂ is the Fourier transform of f .

Integer indices on operators denote particle number: A k-particle operator A (i.e.
an operator on H(k)) acting on the coordinates xi1 , . . . , xik , where i1 < · · · < ik , is
denoted by Ai1...ik . Also, by a slight abuse of notation, we identify k-particle functions
f (x1, . . . , xk)with their associated multiplication operators on H(k). The operator norm
of the multiplication operator f is equal to, and will always be denoted by, ‖ f ‖∞.

We use the symbol Q(·) to denote the form domain of a semibounded operator. We
denote the space of bounded linear maps from X1 to X2 by L(X1; X2), and abbreviate
L(X) = L(X; X). We abbreviate the operator norm of L(

L2(RNd)
)

by ‖·‖. For two
Banach spaces, X1 and X2, contained in some larger space, we set

‖ f ‖X1+X2 = inf
f = f1+ f2

(‖ f1‖X1 + ‖ f2‖X2

)
,

‖ f ‖X1∩X2 = ‖ f ‖X1 + ‖ f ‖X2 ,

and denote by X1 + X2 and X1 ∩ X2 the corresponding Banach spaces.
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2. Indicators of Convergence

This section is devoted to a discussion, which might also be of independent interest, of
quantitative relationships between the indicators E (k)N and R(k)N . Throughout this section
we suppress the irrelevant index N .

Take a k-particle density matrix γ (k) ∈ L(H(k)) and a one-particle condensate wave
function ϕ ∈ L2. The following lemma gives the relationship between different elements
of the sequence E (1), E (2), . . . , where, we recall,

E (k) = 1 − 〈
ϕ⊗k , γ (k) ϕ⊗k 〉. (2.1)

Lemma 2.1. Let γ (k) ∈ L(H(k)) satisfy

γ (k) � 0, Tr γ (k) = 1.

Let ϕ ∈ L2 satisfy ‖ϕ‖ = 1. Then

E (k) � k E (1). (2.2)

Proof. Let
(
�
(k)
i

)
i�1 be an orthonormal basis of H(k) with �(k)1 = ϕ⊗k . Then

〈
ϕ⊗k , γ (k) ϕ⊗k 〉 =

∑

i�1

〈
ϕ ⊗�

(k−1)
i , γ (k) ϕ ⊗�

(k−1)
i

〉

−
∑

i�2

〈
ϕ ⊗�

(k−1)
i , γ (k) ϕ ⊗�

(k−1)
i

〉

= 〈ϕ , γ (1) ϕ〉 −
∑

i�2

〈
ϕ ⊗�

(k−1)
i , γ (k) ϕ ⊗�

(k−1)
i

〉
.

Therefore,

〈ϕ , γ (1) ϕ〉 − 〈
ϕ⊗k , γ (k) ϕ⊗k 〉

=
∑

i�2

〈
ϕ ⊗�

(k−1)
i , γ (k) ϕ ⊗�

(k−1)
i

〉

�
∑

i�2

∑

j�1

〈
�
(1)
j ⊗�

(k−1)
i , γ (k) �

(1)
j ⊗�

(k−1)
i

〉

=
∑

i�1

∑

j�1

〈
�
(1)
j ⊗�

(k−1)
i , γ (k) �

(1)
j ⊗�

(k−1)
i

〉

−
∑

j�1

〈
�
(1)
j ⊗ ϕ⊗(k−1) , γ (k) �

(1)
j ⊗ ϕ⊗(k−1)〉

= 1 − 〈
ϕ⊗(k−1) , γ (k−1) ϕ⊗(k−1)〉.

This yields

E (k) � E (k−1) + E (1),

and the claim follows. ��
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Remark 2.2. The bound in (2.2) is sharp. Indeed, let us suppose that E (k) � k f (k) E (1)

for some function f . Then

f (k) � sup
γ (k)

E (k)

k E (1)
� sup

0<α<1

1 − (1 − α)k

kα
� lim
α→0

1 − (1 − α)k

kα
= 1,

where the second inequality follows by restricting the supremum to product states γ (k) =
(|ψ〉〈ψ |)⊗k and writing α = E (1).

The next lemma describes the relationship between E (k) and R(k), where, we recall,

R(k) = Tr
∣∣γ (k) − (|ϕ〉〈ϕ|)⊗k

∣∣.

Lemma 2.3. Let γ (k) ∈ L(H(k)) be a density matrix and ϕ ∈ L2 satisfy ‖ϕ‖ = 1. Then

E (k) � R(k), (2.3a)

R(k) �
√

8 E (k). (2.3b)

Proof. It is convenient to introduce the shorthand

p(k) := (|ϕ〉〈ϕ|)⊗k .

Thus,

E (k) = 1 − 〈
ϕ⊗k , γ (k) ϕ⊗k 〉 = Tr

(
p(k) − p(k)γ (k)

)
� ‖p(k)‖ Tr

∣∣p(k) − γ (k)
∣∣ = R(k),

which is (2.3a). In order to prove (2.3b) it is easiest to use the identity

Tr
∣∣p(k) − γ (k)

∣∣ = 2
∥∥p(k) − γ (k)

∥∥, (2.4)

valid for any one-dimensional projector p(k) and nonnegative density matrix γ (k). This
was first observed by Seiringer; see [12]. For the convenience of the reader we recall the
proof of (2.4). Let (λn)n∈N be the sequence of eigenvalues of the trace class operator
A := γ (k) − p(k). Since p(k) is a rank one projection, A has at most one negative eigen-
value, say λ0. Also, Tr A = 0 implies that

∑
n λn = 0. Thus,

∑
n|λn| = 2|λ0|, which is

(2.4).
Now (2.4) yields

R(k) = Tr
∣∣p(k) − γ (k)

∣∣ = 2 ‖p(k) − γ (k)‖ � 2
√

Tr
(

p(k) − γ (k)
)2
.

Then (2.3b) follows from

Tr
(

p(k)−γ (k))2 =1−2 Tr
(

p(k)γ (k)
)

+ Tr(γ (k))2 � E (k) − Tr
(

p(k)γ (k)
)

+ 1 = 2E (k).

Alternatively, one may prove (2.3b) without (2.4) by using the polar decomposition
and the Cauchy-Schwarz inequality for Hilbert-Schmidt operators. ��
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Remark 2.4. Up to constant factors the bounds (2.3) are sharp, as the following examples
show. Here we drop the irrelevant index k. Consider first

ϕ =
(

1
0

)
, γ =

(
1 − a 0

0 a

)
,

where 0 � a � 1. As above we set p := |ϕ〉〈ϕ|. One finds

E = 1 − 〈ϕ , γ ϕ〉 = a, R = Tr|p − γ | = 2a,

so that (2.3a) is sharp up to a constant factor.
It is not hard to see that if γ and p commute then (2.3b) can be replaced with the

stronger bound R � E . In order to show that in general (2.3b) is sharp up to a constant
factor, consider

ϕ =
(

1
0

)
, γ =

(
1 − a

√
a − a2√

a − a2 a

)
,

where 0 � a � 1. One readily sees that γ is a density matrix (in fact, a one-dimensional
projector). A short calculation yields

E = 1 − 〈ϕ , γ ϕ〉 = a

as well as

Tr
∣∣γ (1 − p)

∣∣ = √
a.

Using

Tr
∣∣γ (1 − p)

∣∣ = Tr
∣∣γ − p + p − γ p

∣∣ � 2 Tr|p − γ |

we therefore find

R = Tr|p − γ | �
√

a

2
=

√
E

2
,

as desired.

3. Convergence for L2-type Singularities

This section is devoted to the case w ∈ L2 + L∞.
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3.1. Outline and main result. Our method relies on controlling the quantity

αN (t) := E (1)N (t). (3.1)

To this end, we derive an estimate of the form

α̇N (t) � AN (t) + BN (t) αN (t), (3.2)

which, by Grönwall’s Lemma, implies

αN (t) � αN (0) e
∫ t

0 BN +
∫ t

0
AN (s) e

∫ t
s BN ds. (3.3)

In order to show (3.2), we differentiate αN (t) and note that all terms arising from the
one-particle Hamiltonian vanish. We control the remaining terms by introducing the
time-dependent orthogonal projections

p(t) := |ϕ(t)〉〈ϕ(t)|, q(t) := 1 − p(t).

We then partition 1 = p(t) + q(t) appropriately and use the following heuristics for
controlling the terms that arise in this manner. Factors p(t) are used to control singular-
ities of w by exploiting the smoothness of the Hartree wave function ϕ(t). Factors q(t)
are expected to yield something small, i.e. proportional to αN (t), in accordance with the
identity αN (t) = 〈�N (t) , q1(t)�N (t)〉.

For the following it is convenient to rewrite the Hamiltonian (1.1) as

HN =
N∑

i=1

hi +
1

N

∑

1�i< j�N

Wi j =: H0
N + H W

N , (3.4)

where Wi j := w(xi − x j ). We may now list our assumptions.

(A1) The one-particle Hamiltonian h is self-adjoint and bounded from below. Without
loss of generality we assume that h � 0. We define the Hilbert space X N =
Q(H0

N ) as the form domain of H0
N with norm

‖�‖X N := ∥∥(1 + H0
N )

1/2�
∥∥.

(A2) The Hamiltonian (3.4) is self-adjoint and bounded from below. We also assume
that Q(HN ) ⊂ X N .

(A3) The interaction potential w is a real and even function satisfying w ∈ L p1 + L p2 ,
where 2 � p1 � p2 � ∞.

(A4) The solution ϕ(·) of (1.3) satisfies

ϕ(·) ∈ C(R; X1 ∩ Lq1) ∩ C1(R; X∗
1),

where 2 � q2 � q1 � ∞ are defined through

1

2
= 1

pi
+

1

qi
, i = 1, 2. (3.5)

Here X∗
1 denotes the dual space of X1, i.e. the closure of L2 under the norm

‖ϕ‖X∗
1

:= ‖(1 + h)−1/2ϕ‖.

We now state our main result.
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Theorem 3.1. Let �N ,0 ∈ Q(HN ) satisfy ‖�N ,0‖ = 1, and ϕ0 ∈ X1 ∩ Lq1 satisfy
‖ϕ0‖ = 1. Assume that Assumptions (A1) – (A4) hold. Then

αN (t) �
(
αN (0) +

1

N

)
eφ(t),

where

φ(t) := 32‖w‖L p1 +L p2

∫ t

0
ds

(‖ϕ(s)‖q1 + ‖ϕ(s)‖q2

)
.

We may combine this result with the observations of Sect. 2.

Corollary 3.2. Let the sequence �N ,0 ∈ Q(HN ), N ∈ N, satisfy the assumptions of
Theorem 3.1 as well as

E (1)N (0) � 1

N
.

Then we have

E (k)N (t) � k

N
eφ(t), R(k)N (t) �

√
k

N
eφ(t)/2.

Remark 3.3. Corollary 3.2 implies that we can control the condensation of k = o(N )
particles.

Remark 3.4. Assumption (A3) allows for singularities in w up to, but not including, the
type |x |−3/2 in three dimensions. In the next section we treat a larger class of interaction
potentials.

Remark 3.5. Assumption (A4) is typically verified by solving the Hartree equation in a
Sobolev space of high index (see e.g. Sect. 3.2.2). Instead of requiring a global-in-time
solution ϕ(·), it is enough to have a local-in-time solution on [0, T ) for some T > 0.

Remark 3.6. If supt φ(t) < ∞, or in other words if ‖ϕ(t)‖q1 and ‖ϕ(t)‖q2 are integrable
in t over R, then all estimates are uniform in time. This describes a scattering regime
where the time evolution is asymptotically free for large times. Such an integrability
condition requires large exponents qi , which translates to small exponents pi , i.e. an
interaction potential with strong decay.

Remark 3.7. The result easily extends to time-dependent one-particle Hamiltonians
h ≡ h(t). Replace (A1) and (A2) with

(A1’) The Hamiltonian h(t) is self-adjoint and bounded from below. We assume that
there is an operator h0 � 0 that such that 0 � h(t) � h0 for all t . Define the
Hilbert space X N = Q(∑

i (h0)i
)

as in (A1).
(A2’) The Hamiltonian HN (t) is self-adjoint and bounded from below. We assume that

Q(HN (t)) ⊂ X N for all t . We also assume that the N -body propagator UN (t, s),
defined by

i∂tUN (t, s) = HN (t)UN (t, s), UN (s, s) = 1,

exists and satisfies UN (t, 0)�N ,0 ∈ Q(HN (t)) for all t .

It is then straightforward that Theorem 3.1 holds with the same proof.
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Remark 3.8. In some cases (see e.g. Sect. 3.2.1 below) it is convenient to modify the
assumptions as follows. Replace (A3) and (A4) with

(A3’) The interaction potential w is a real and even function satisfying
∥∥w2 ∗ |ϕ|2∥∥∞ � K ‖ϕ‖2

X1
(3.6)

for some constant K > 0. Without loss of generality we assume that K � 1.
(A4’) The solution ϕ(·) of (1.3) satisfies

ϕ(·) ∈ C(R; X1) ∩ C1(R; X∗
1).

Then Theorem 3.1 and Corollary 3.2 hold with

φ(t) = 32K
∫ t

0
ds‖ϕ(s)‖2

X1
.

The proof remains virtually unchanged. One replaces (3.24) with (3.6), as well as (3.20)
with

∥∥w ∗ |ϕ|2∥∥∞ � 2K ‖ϕ‖2
X1
,

which is an easy consequence of (3.6).

3.2. Examples. We list two examples of systems satisfying the assumptions of Theorem
3.1.

3.2.1. Particles in a trap. Consider nonrelativistic particles in R
3 confined by a strong

trapping potential. The particles interact by means of the Coulomb potential: w(x) =
λ|x |−1, where λ ∈ R. The one-particle Hamiltonian is of the form h = −� + v, where
v is a measurable function on R

3. Decompose v into its positive and negative parts:
v = v+ − v−, where v+, v− � 0. We assume that v+ ∈ L1

loc and that v− is −�-form
bounded with relative bound less than one, i.e. there are constants 0 � a < 1 and
0 � b < ∞ such that

〈ϕ , v−ϕ〉 � a〈ϕ ,−�ϕ〉 + b〈ϕ , ϕ〉. (3.7)

Thus h + b1 is positive, and it is not hard to see that h is essentially self-adjoint on
C∞

c (R
3). This follows by density and a standard argument using Riesz’s representa-

tion theorem to show that the equation (h + (b + 1)1)ϕ = f has a unique solution
ϕ ∈ {ϕ ∈ L2 : hϕ ∈ L2} for each f ∈ L2.

It is now easy to see that Assumptions (A1) and (A2) hold with the one-particle
Hamiltonian h + c1 for some c > 0. Let us assume without loss of generality that c = 0.
Next, we verify Assumptions (A3’) and (A4’) (see Remark 3.8). We find

∥∥w2 ∗ |ϕ|2∥∥∞ = sup
x

∣∣∣∣
∫

dy
λ2

|x − y|2 |ϕ(y)|2
∣∣∣∣ � 〈ϕ ,−�ϕ〉

� 〈ϕ , hϕ〉 + 〈ϕ , ϕ〉 = ‖ϕ‖2
X1
,

where the second step follows from Hardy’s inequality and translation invariance of �,
and the third step is a simple consequence of (3.7). This proves (A3’).
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Next, take ϕ0 ∈ X1. By standard methods (see e.g. the presentation of [7]) one finds
that (A4’) holds. Moreover, the mass ‖ϕ(t)‖2 and the energy

Eϕ(t) =
[
〈ϕ , hϕ〉 +

1

2

∫
dxdy w(x − y)|ϕ(x)|2|ϕ(y)|2

]∣∣∣∣
t

are conserved under time evolution. Using the identity |x |−1 � 1{|x |�ε}ε|x |−2 +
1{|x |>ε}ε−1 and Hardy’s inequality one sees that

‖ϕ(t)‖2
X1

� Eϕ(t) + ‖ϕ(t)‖2,

and therefore ‖ϕ(t)‖X1 � C for all t . We conclude: Theorem 3.1 holds with φ(t) = Ct .
More generally, the preceding discussion holds for interaction potentialsw ∈ L3

w + L∞,
where L p

w denotes the weak L p space (see e.g. [11]). This follows from a short computa-
tion using symmetric-decreasing rearrangements; we omit further details. This example
generalizes the results of [3,12 and 4].

3.2.2. A boson star. Consider semirelativistic particles in R
3 whose one-particle Hamil-

tonian is given by h = √
1 −�. The particles interact by means of a Coulomb potential:

w(x) = λ|x |−1. We impose the condition λ > −4/π . This condition is necessary for
both the stability of the N -body problem (i.e. Assumption (A2)) and the global well-po-
sedness of the Hartree equation. See [7,8] for details. It is well known that Assumptions
(A1) and (A2) hold in this case.

In order to show (A4) we need some regularity of ϕ(·). To this end, let s > 1 and
take ϕ0 ∈ Hs . Theorem 3 of [7] implies that (1.3) has a unique global solution in Hs .
Therefore Sobolev’s inequality implies that (A4) holds with

1

q1
= 1

2
− s

3
.

Thus q1 > 6, and (A3) holds with appropriately chosen values of p1, p2. We conclude:
Theorem 3.1 holds for some continuous function φ(t). (In fact, as shown in [7], one has
the bound φ(t) � eCt .) This example generalizes the result of [1].

3.3. Proof of Theorem 3.1.

3.3.1. A family of projectors. Define the time-dependent projectors

p(t) := |ϕ(t)〉〈ϕ(t)|, q(t) := 1 − p(t).

Write

1 = (p1 + q1) · · · (pN + qN ), (3.8)

and define Pk , for k = 0, . . . , N , as the term obtained by multiplying out (3.8) and
selecting all summands containing k factors q. In other words,

Pk =
∑

a∈{0,1}N :∑
i ai =k

N∏

i=1

p1−ai
i qai

i . (3.9)

If k �= {0, . . . , N } we set Pk = 0. It is easy to see that the following properties hold:
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(i) Pk is an orthogonal projector,
(ii) Pk Pl = δkl Pk ,

(iii)
∑

k Pk = 1.

Next, for any function f : {0, . . . , N } → C we define the operator

f̂ :=
∑

k

f (k)Pk . (3.10)

It follows immediately that

f̂ ĝ = f̂ g,

and that f̂ commutes with pi and Pk . We shall often make use of the functions

m(k) := k

N
, n(k) :=

√
k

N
.

We have the relation

1

N

∑

i

qi = 1

N

∑

k

∑

i

qi Pk = 1

N

∑

k

k Pk = m̂. (3.11)

Thus, by symmetry of �, we get

α = 〈� , q1�〉 = 〈� , m̂�〉. (3.12)

The correspondence q1 ∼ m̂ of (3.11) yields the following useful bounds.

Lemma 3.9. For any nonnegative function f : {0, . . . , N } → [0,∞) we have
〈
� , f̂ q1�

〉 = 〈
� , f̂ m̂�

〉
, (3.13)

〈
� , f̂ q1q2�

〉
� N

N − 1

〈
� , f̂ m̂2�

〉
. (3.14)

Proof. The proof of (3.13) is an immediate consequence of (3.11). In order to prove
(3.14) we write, using symmetry of � as well as (3.11),

〈
� , f̂ q1q2�

〉 = 1

N (N − 1)

∑

i �= j

〈
� , f̂ qi q j�

〉

� 1

N (N − 1)

∑

i, j

〈
� , f̂ qi q j�

〉 = N

N − 1

〈
� , f̂ m̂2�

〉
,

which is the claim. ��
Next, we introduce the shift operation τn , n ∈ Z, defined on functions f through

(τn f )(k) := f (k + n). (3.15)

Its usefulness for our purposes is encapsulated by the following lemma.
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Lemma 3.10. Let r � 1 and A be an operator on H(r). Let Qi , i = 1, 2, be two
projectors of the form

Qi = #1 · · · #r ,

where each # stands for either p or q. Then

Q1 A1...r f̂ Q2 = Q1τ̂n f A1...r Q2,

where n = n2 − n1 and ni is the number of factors q in Qi .

Proof. Define

Pr
k :=

∑

a∈{0,1}N−r∑
i ai =k

N∏

i=r+1

p1−ai
i qai

i .

Then,

Qi f̂ =
∑

k

f (k) Qi Pk =
∑

k

f (k) Qi Pr
k−ni

=
∑

k

f (k + ni ) Qi Pr
k .

The claim follows from the fact that Pr
k commutes with A1...r . ��

3.3.2. A bound on α̇. Let us abbreviate

Wϕ := w ∗ |ϕ|2.
From (A3) and (A4) we find Wϕ ∈ L∞ (see (3.20) below). Then i∂tϕ = (h + Wϕ)ϕ,
where h + Wϕ ∈ L(X1; X∗

1). Thus, for any ψ ∈ X1 independent of t we have

i∂t 〈ψ , pψ〉 = 〈ψ , [h + Wϕ , p]ψ〉.
On the other hand, it is easy to see from (A3) and (A4) that m̂� ∈ Q(H). Combin-
ing these observations, and noting that � ∈ Q(H) ⊂ X by (A2), we see that α is
differentiable in t with derivative

α̇ = i
〈
� ,

[
H − Hϕ , m̂

]
�

〉
,

where Hϕ := ∑
i (hi + Wϕ

i ). Thus,

α̇ = i

〈
� ,

[
1

N

∑

i< j

Wi j −
∑

i

Wϕ
i , m̂

]
�

〉
.

By symmetry of � and m̂ we get

α̇ = i

2

〈
� ,

[
(N − 1)W12 − N Wϕ

1 − N Wϕ
2 , m̂

]
�

〉
. (3.16)

In order to estimate the right-hand side, we introduce

1 = (p1 + q1)(p2 + q2)
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on both sides of the commutator in (3.16). Of the sixteen resulting terms only three
different types survive:

i
2

〈
� , p1 p2

[
(N − 1)W12 − N Wϕ

1 − N Wϕ
2 , m̂

]
q1 p2�

〉
, (I)

i
2

〈
� , q1 p2

[
(N − 1)W12 − N Wϕ

1 − N Wϕ
2 , m̂

]
q1q2�

〉
, (II)

i
2

〈
� , p1 p2

[
(N − 1)W12 − N Wϕ

1 − N Wϕ
2 , m̂

]
q1q2�

〉
. (III)

Indeed, Lemma 3.10 implies that terms with the same number of factors q on the left
and on the right vanish. What remains is

α̇ = 2(I) + 2(II) + (III) + complex conjugate.

The remainder of the proof consists in estimating each term.

Term (I). First, we remark that

p2W12 p2 = p2Wϕ
1 . (3.17)

This is easiest to see using operator kernels (we drop the trivial indices x3, y3, . . . ,

xN , yN ):

(p2W12 p2)(x1, x2; y1, y2) =
∫

dzϕ(x2) ϕ(z) w(x1 − z) δ(x1 − y1) ϕ(z) ϕ(y2)

= ϕ(x2) ϕ(y2) δ(x1 − y1) (w ∗ |ϕ|2)(x1).

Therefore,

(I) = i

2

〈
� , p1 p2

[
(N − 1)Wϕ

1 − N Wϕ
1 , m̂

]
q1 p2�

〉 = −i

2

〈
� , p1 p2

[
Wϕ

1 , m̂
]
q1 p2�

〉
.

Using Lemma 3.10 we find

(I) = −i

2

〈
� , p1 p2Wϕ

1

(
m̂ − τ̂−1m

)
q1 p2�

〉 = −i

2N

〈
� , p1 p2Wϕ

1 q1 p2�
〉
.

This gives

∣∣(I)
∣∣ � 1

2N
‖Wϕ‖∞ = 1

2N

∥∥w ∗ |ϕ|2∥∥∞.

By (A3), we may write

w = w(1) + w(2), w(i) ∈ L pi . (3.18)

By Young’s inequality,
∥∥w(i) ∗ |ϕ|2∥∥∞ � ‖w(i)‖pi ‖ϕ‖2

ri
,

where r1, r2 are defined through

1 = 1

pi
+

2

ri
. (3.19)
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Therefore,
∥∥w ∗ |ϕ|2∥∥∞ � ‖w(1)‖p1‖ϕ‖2

r1
+ ‖w(1)‖p2‖ϕ‖2

r2

�
(‖w(1)‖p1 + ‖w(2)‖p2

)(‖ϕ‖r1 + ‖ϕ‖r2

)2
.

Taking the infimum over all decompositions (3.18) yields

‖Wϕ‖∞ = ∥∥w ∗ |ϕ|2∥∥∞ � ‖w‖L p1 +L p2

(‖ϕ‖r1 + ‖ϕ‖r2

)2
. (3.20)

Note that (A3) and (A4) imply

2 � ri � q1, (3.21)

so that the right-hand side of (3.20) is finite. Summarizing,

∣∣(I)
∣∣ � 1

2N
‖w‖L p1 +L p2

(‖ϕ‖r1 + ‖ϕ‖r2

)2
. (3.22)

Term (II). Applying Lemma 3.10 to (II) yields

(II) = i

2

〈
� , q1 p2

(
(N − 1)W12 − N Wϕ

2

)(
m̂ − τ̂−1m

)
q1q2�

〉

= i

2

〈
� , q1 p2

(
N − 1

N
W12 − Wϕ

2

)
q1q2�

〉
,

so that

∣∣(II)
∣∣ � 1

2

∣∣〈� , q1 p2W12q1q2�
〉∣∣ +

1

2

∣∣〈� , q1 p2Wϕ
2 q1q2�

〉∣∣. (3.23)

The second term of (3.23) is bounded by

1

2
‖Wϕ‖∞ ‖q1�‖2 � 1

2
‖w‖L p1 +L p2

(‖ϕ‖r1 + ‖ϕ‖r2

)2
α,

where we used the bound (3.20) as well as (3.12).
The first term of (3.23) is bounded using Cauchy-Schwarz by

1

2

√〈
� , q1 p2W 2

12 p2q1�
〉√〈� , q1q2�〉

= 1

2

√〈
� , q1 p2

(
w2 ∗ |ϕ|2)1 p2q1�

〉√〈� , q1q2�〉.

This follows by applying (3.17) to W 2. Thus we get the bound

1

2
‖q1�‖2

√∥∥w2 ∗ |ϕ|2∥∥∞ = 1

2
α

√∥∥w2 ∗ |ϕ|2∥∥∞.

We now proceed as above. Using the decomposition (3.18) we get
∥∥w2 ∗ |ϕ|2∥∥∞ � 2

∥∥(w(1))2 ∗ |ϕ|2∥∥∞ + 2
∥∥(w(2))2 ∗ |ϕ|2∥∥∞.

Then Young’s inequality gives
∥∥(w(i))2 ∗ |ϕ|2∥∥∞ �

∥∥w(i)
∥∥2

pi
‖ϕ‖2

qi
,
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which implies that
∥∥w2 ∗ |ϕ|2∥∥∞ � 2‖w‖2

L p1 +L p2

(‖ϕ‖q1 + ‖ϕ‖q2

)2
. (3.24)

Putting all of this together we get

∣∣(II)
∣∣ � 1

2
‖w‖L p1 +L p2

[√
2
(‖ϕ‖q1 + ‖ϕ‖q2

)
+

(‖ϕ‖r1 + ‖ϕ‖r2

)2
]
α.

Term (III). The final term (III) is equal to

i

2

〈
� , p1 p2

[
(N − 1)W12 , m̂

]
q1q2�

〉 = i

2

〈
� , p1 p2(N − 1)W12

(
m̂ − τ̂−2m

)
q1q2�

〉

= i
N − 1

N

〈
� , p1 p2W12q1q2�

〉
,

where we used Lemma 3.10. Next, we note that, on the range of q1, the operator n̂−1 is
well-defined and bounded. Thus (III) is equal to

i
N − 1

N

〈
� , p1 p2W12 n̂ n̂−1q1q2�

〉 = i
N − 1

N

〈
� , p1 p2 τ̂2n W12 n̂−1q1q2�

〉
,

where we used Lemma 3.10 again. We now use Cauchy-Schwarz to get

∣∣(III)
∣∣ �

√〈
� , p1 p2 τ̂2n W 2

12 τ̂2n p1 p2�
〉√〈
� , n̂−2q1q2�

〉

=
√〈
� , p1 p2 τ̂2n

(
w2 ∗ |ϕ|2)1 τ̂2n p1 p2�

〉√〈
� , m̂−1q1q2�

〉

�
√∥∥w2 ∗ |ϕ|2∥∥∞ ‖τ̂2n�‖

√
N

N − 1

√〈� , m̂�〉

=
√∥∥w2 ∗ |ϕ|2∥∥∞

√
N

N − 1

√〈
� , τ̂2m�

〉√
α

=
√∥∥w2 ∗ |ϕ|2∥∥∞

√
N

N − 1

√
〈
� , m̂�

〉
+

2

N

√
α

�
√∥∥w2 ∗ |ϕ|2∥∥∞

√
N

N − 1

(
α +

√
2α

N

)

�
√∥∥w2 ∗ |ϕ|2∥∥∞

√
N

N − 1
2

(
α +

1

N

)
.

Using the estimate (3.24) we get finally

∣∣(III)
∣∣ � 2

√
2‖w‖L p1 +L p2

(‖ϕ‖q1 + ‖ϕ‖q2

)
√

N

N − 1

(
α +

1

N

)
.

Conclusion of the proof. We have shown that the estimate (3.2) holds with

BN (t) = 2‖w‖L p1 +L p2

[(‖ϕ(t)‖r1 + ‖ϕ(t)‖r2

)2 + 6
(‖ϕ(t)‖q1 + ‖ϕ(t)‖q2

)]
,

AN (t) = BN (t)

N
.
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Using L2-norm conservation ‖ϕ(t)‖ = 1 and interpolation we find ‖ϕ(t)‖2
ri

� ‖ϕ(t)‖qi .
Thus,

BN (t) � 16‖w‖L p1 +L p2

(‖ϕ(t)‖q1 + ‖ϕ(t)‖q2

)
.

The claim now follows from the Grönwall estimate (3.3).

4. Convergence for Stronger Singularities

In this section we extend the results of the Sect. 3 to more singular interaction potentials.
We consider the case w ∈ L p0 + L∞, where

1

p0
= 1

2
+

1

d
. (4.1)

For example in three dimensions p0 = 6/5, which corresponds to singularities up to, but
not including, the type |x |−5/2. Of course, there are other restrictions on the interaction
potential which ensure the stability of the N -body Hamiltonian and the well-posedness
of the Hartree equation. In practice, it is often these latter restrictions that determine the
class of allowed singularities.

In the words of [11] (p. 169), it is “venerable physical folklore” that an N -body
Hamiltonian of the form (3.4), with h = −� and w(x) = |x |−ζ for ζ < 2, produces
reasonable quantum dynamics in three dimensions. Mathematically, this means that such
a Hamiltonian is self-adjoint; this is a well-known result (see e.g. [11]). The correspond-
ing Hartree equation is known to be globally well-posed (see [5]). This section answers
(affirmatively) the question whether, in the case of such singular interaction potentials,
the mean-field limit of the N -body dynamics is governed by the Hartree equation.

4.1. Outline and main result. As in Sect. 3, we need to control expressions of the form
‖w2 ∗ |ϕ|2‖∞. The situation is considerably more involved when w2 is not locally inte-
grable. An important step in dealing with such potentials in our proof is to express w as
the divergence of a vector field ξ ∈ L2. This approach requires the control of not only
α = ‖q1�‖2 but also ‖∇1q1�‖2, which arises from integrating by parts in expressions
containing the factor ∇ · ξ . As it turns out, β, defined through

βN (t) := 〈�N , n̂�N 〉∣∣t , (4.2)

does the trick. This follows from an estimate exploiting conservation of energy (see
Lemma 4.6 below). The inequality m � n and the representation (3.12) yield

α � β. (4.3)

We consider a Hamiltonian of the form (3.4) and make the following assumptions.

(B1) The one-particle Hamiltonian h is self-adjoint and bounded from below. Without
loss of generality we assume that h � 0. We also assume that there are constants
κ1, κ2 > 0 such that

−� � κ1 h + κ2,

as an inequality of forms on H(1).
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(B2) The Hamiltonian (3.4) is self-adjoint and bounded from below. We also assume
that Q(HN ) ⊂ X N , where X N is defined as in Assumption (A1).

(B3) There is a constant κ3 ∈ (0, 1) such that

0 � (1 − κ3)(h1 + h2) + W12,

as an inequality of forms on H(2).
(B4) The interaction potential w is a real and even function satisfying w ∈ L p + L∞,

where p0 < p � 2.
(B5) The solution ϕ(·) of (1.3) satisfies

ϕ(·) ∈ C(R; X2
1 ∩ L∞) ∩ C1(R; L2),

where X2
1 := Q(h2) ⊂ L2 is equipped with the norm

‖ϕ‖X2
1

:= ∥∥(1 + h2)1/2ϕ
∥∥.

Next, we define the microscopic energy per particle

E�N (t) := 1

N
〈�N , HN �N 〉∣∣t ,

as well as the Hartree energy

Eϕ(t) :=
[
〈ϕ , h ϕ〉 +

1

2

∫
dx dyw(x − y)|ϕ(x)|2|ϕ(y)|2

]∣∣∣∣
t
.

By spectral calculus, E�N (t) is independent of t . Also, invoking Assumption (B5) to dif-
ferentiate Eϕ(t) with respect to t shows that Eϕ(t) is conserved as well. Summarizing,

E�N (t) = E�N (0), Eϕ(t) = Eϕ(0), t ∈ R.

We may now state the main result of this section.

Theorem 4.1. Let�N ,0 ∈ Q(HN ) and assume that Assumptions (B1) – (B5) hold. Then
there is a constant K , depending only on d, h, w and p, such that

βN (t) �
(
βN (0) + E�N − Eϕ +

1

Nη

)
eKφ(t),

where

η := p/p0 − 1

2p/p0 − p/2 − 1
(4.4)

and

φ(t) :=
∫ t

0
ds

(
1 + ‖ϕ(s)‖3

X2
1∩L∞

)
.
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Remark 4.2. We have convergence to the mean-field limit whenever limN E�N = Eϕ

and limN βN (0) = 0. For instance if we start in a fully factorized state, �N ,0 = ϕ⊗N
0 ,

then βN (0) = 0 and

E�N − Eϕ = 1

N
〈ϕ0 ⊗ ϕ0 ,W12 ϕ0 ⊗ ϕ0〉,

so that Theorem 4.1 yields

E (1)N (t) � βN (t) � 1

Nη
eKφ(t),

and the analogue of Corollary 3.2 holds.

Remark 4.3. The following graph shows the dependence of η on p for d = 3, i.e.
p0 = 6/5.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1.2  1.4  1.6  1.8  2

η

Remark 4.4. Theorem 4.1 remains valid for a large class of time-dependent one-particle
Hamiltonians h(t). See Sect. 4.4 below for a full discussion.

Remark 4.5. In three dimensions Assumption (B1) and Sobolev’s inequality imply that
‖ϕ‖∞ � ‖ϕ‖X2

1
, so that Assumption (B5) is equivalent to ϕ ∈ C(R; X2

1) ∩ C1(R; L2).

4.2. Example: nonrelativistic particles with interaction potential of critical type. Con-
sider nonrelativistic particles in R

3 with one-particle Hamiltonian h = −�. The inter-
action potential is given by w(x) = λ|x |−2. This corresponds to a critical nonlinearity
of the Hartree equation. We require that λ > −1/2, which ensures that the N -body
Hamiltonian is stable and the Hartree equation has global solutions. To see this, recall
Hardy’s inequality in three dimensions,

〈ϕ , |x |−2ϕ〉 � 4〈ϕ ,−�ϕ〉. (4.5)

One easily infers that Assumptions (B1) – (B3) hold. Moreover, Assumption (B4) holds
for any p < 3/2.

In order to verify Assumption (B5) we refer to [5], where local well-posedness is
proven. Global existence follows by standard methods using conservation of the mass
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‖ϕ‖2, conservation of the energy Eϕ , and Hardy’s inequality (4.5). Together they yield
an a-priori bound on ‖ϕ‖X1 , from which an a-priori bound for ‖ϕ‖X2

1
may be inferred;

see [5] for details.
We conclude: For any η < 1/3 there is a continuous function φ(t) such that Theorem

4.1 holds.

4.3. Proof of Theorem 4.1.

4.3.1. An energy estimate. In the first step of our proof we exploit conservation of energy
to derive an estimate on ‖∇1q1�‖.

Lemma 4.6. Assume that Assumptions (B1) – (B5) hold. Then

‖∇1q1�‖2 � E� − Eϕ +
(
1 + ‖ϕ‖2

X2
1∩L∞

)(
β +

1√
N

)
.

Proof. Write

Eϕ = 〈ϕ , hϕ〉 +
1

2
〈ϕ ,Wϕϕ〉, (4.6)

as well as

E� = 〈� , h1�〉 +
N − 1

2N
〈� ,W12�〉. (4.7)

Inserting

1 = p1 p2 + (1 − p1 p2)

in front of every � in (4.7) and multiplying everything out yields

〈
� , (1 − p1 p2)h1(1 − p1 p2)�

〉

= E� − 〈� , p1 p2h1 p1 p2�〉
− N − 1

2N
〈� , p1 p2W12 p1 p2�〉

− 〈
� , (1 − p1 p2)h1 p1 p2�

〉 − 〈
� , p1 p2h1(1 − p1 p2)�

〉

− N − 1

2N

〈
� , (1 − p1 p2)W12 p1 p2�

〉 − N − 1

2N

〈
� , p1 p2W12(1 − p1 p2)�

〉

− N − 1

2N

〈
� , (1 − p1 p2)W12(1 − p1 p2)�

〉
.

We want to find an upper bound for the left-hand side. In order to control the last term on
the right-hand side for negative interaction potentials, we need to use some of the kinetic
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energy on the left-hand side. To this end, we split the left-hand side by multiplying it
with 1 = κ3 + (1 − κ3). Thus, using (4.6), we get

κ3
〈
� , (1 − p1 p2)h1(1 − p1 p2)�

〉

= E� − Eϕ

−〈� , p1 p2h1 p1 p2�〉 + 〈ϕ , hϕ〉
− N − 1

2N
〈� , p1 p2W12 p1 p2�〉 +

1

2
〈ϕ ,Wϕϕ〉

− 〈
� , (1 − p1 p2)h1 p1 p2�

〉 − 〈
� , p1 p2h1(1 − p1 p2)�

〉

− N − 1

2N

〈
� , (1 − p1 p2)W12 p1 p2�

〉 − N − 1

2N

〈
� , p1 p2W12(1 − p1 p2)�

〉

− N − 1

2N

〈
� , (1 − p1 p2)W12(1 − p1 p2)�

〉

− (1 − κ3)
〈
� , (1 − p1 p2)h1(1 − p1 p2)�

〉
. (4.8)

The rest of the proof consists in estimating each line on the right-hand side of (4.8)
separately. There is nothing to be done with the first line.

Lines 6–7. The last two lines of (4.8) are equal to

− N − 1

2N

〈
� , (1 − p1 p2)W12(1 − p1 p2)�

〉

− 1

2
(1 − κ3)

〈
� , (1 − p1 p2)(h1 + h2)(1 − p1 p2)�

〉

� − N − 1

2N

〈
� , (1 − p1 p2)

[
(1 − κ3)(h1 + h2) + W12

]
(1 − p1 p2)�

〉
� 0,

where in the last step we used Assumption (B3).

Line 2. The second line on the right-hand side of (4.8) is bounded in absolute value by
∣∣〈ϕ , hϕ〉 − 〈� , p1 p2h1 p1 p2�〉∣∣ = 〈ϕ , hϕ〉∣∣〈� , (1 − p1 p2)�〉∣∣

= 〈ϕ , hϕ〉∣∣〈� , (q1 p2 + p1q2 + q1q2)�〉∣∣
� 3α 〈ϕ , hϕ〉
� 3β 〈ϕ , hϕ〉,

where in the last step we used (4.3).

Line 3. The third line on the right-hand side of (4.8) is bounded in absolute value by
∣∣∣∣
1

2
〈ϕ ,Wϕϕ〉 − N − 1

2N
〈� , p1 p2W12 p1 p2�〉

∣∣∣∣

= 1

2

∣∣〈ϕ ,Wϕϕ〉∣∣
∣∣∣∣1 − N − 1

N
〈� , p1 p2�〉

∣∣∣∣

� 1

2
‖Wϕ‖∞

∣∣∣∣
〈
� , (q1 p2 + p1q2 + q1q2)�

〉
+

1

N
〈� , p1 p2�〉

∣∣∣∣

� 3

2
‖Wϕ‖∞

(
α +

1

N

)

� 3

2
‖Wϕ‖∞

(
β +

1

N

)
.
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As in (3.20), one finds that

‖Wϕ‖∞ � ‖w‖L1+L∞‖ϕ‖2
L2∩L∞ .

Line 4. The fourth line on the right-hand side of (4.8) is bounded in absolute value by
∣∣〈� , (1 − p1 p2)h1 p1 p2�

〉∣∣ = ∣∣〈� , (q1 p2 + p1q2 + q1q2)h1 p1 p2�
〉∣∣

= ∣∣〈� , q1h1 p1 p2�
〉∣∣

= ∣∣〈� , q1 n̂−1/2 n̂ 1/2 h1 p1 p2�
〉∣∣

= ∣∣〈� , q1 n̂−1/2 h1 τ̂1n 1/2 p1 p2�
〉∣∣,

where in the last step we used Lemma 3.10. Using Cauchy-Schwarz, we thus get
∣∣〈� , (1 − p1 p2)h1 p1 p2�

〉∣∣ �
√〈
� , q1n̂−1�

〉 √〈
� , p1 p2 τ̂1n1/2 h2

1 τ̂1n1/2 p1 p2�
〉

= √〈� , n̂�〉
√

〈ϕ , h2ϕ〉
√〈
� , τ̂1n p1 p2�

〉
,

where in the second step we used Lemma 3.9. Using

(τ1n)(k) =
√

k + 1

N
� n(k) +

1√
N

we find

∣∣〈� , (1 − p1 p2)h1 p1 p2�
〉∣∣ �

√
β
√

〈ϕ , h2ϕ〉
√

〈� , n̂�〉 +
1√
N

=
√

〈ϕ , h2ϕ〉√β
(√

β +
1

N 1/4

)

� 2
√

〈ϕ , h2ϕ〉
(
β +

1√
N

)
.

Line 5. Finally, we turn our attention to the fifth line on the right-hand side of (4.8),
which is bounded in absolute value by
∣∣〈� , p1 p2W12(1 − p1 p2)�

〉∣∣ = ∣∣〈� , p1 p2W12(p1q2 + q1 p2 + q1q2�
〉∣∣ � 2(a) + (b),

where

(a) := ∣∣〈� , p1 p2W12q1 p2�
〉∣∣, (b) := ∣∣〈� , p1 p2W12q1q2�

〉∣∣.
One finds, using (3.17), Lemma 3.10 and Lemma 3.9,

(a) = ∣∣〈� , p1 p2Wϕ
1 q1�

〉∣∣

= ∣∣〈� , p1 p2Wϕ
1 n̂ 1/2 n̂−1/2 q1�

〉∣∣

= ∣∣〈� , p1 p2 τ̂1n 1/2 Wϕ
1 n̂−1/2 q1�

〉∣∣

� ‖Wϕ‖∞
√〈
� , τ̂1n�

〉 √〈
� , n̂−1 q1�

〉

� ‖Wϕ‖∞

√
〈
� , n̂�

〉
+

1√
N

√〈
� , n̂�

〉

� 2‖Wϕ‖∞
(
β +

1√
N

)
.
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The estimation of (b) requires a little more effort. We start by splitting

w = w(p) + w(∞), w(p) ∈ L p, w(∞) ∈ L∞.

This yields (b) � (b)(p) + (b)(∞) in self-explanatory notation. Let us first concentrate
on (b)(∞):

(b)(∞) = ∣∣〈� , p1 p2W (∞)
12 q1q2�

〉∣∣

= ∣∣〈� , p1 p2W (∞)
12 n̂ n̂ −1 q1q2�

〉∣∣

= ∣∣〈� , p1 p2 τ̂2n W (∞)
12 n̂ −1 q1q2�

〉∣∣

� ‖W (∞)‖∞
√〈
� , τ̂2n2�

〉 √〈
� , n̂−2 q1q2�

〉

� ‖w(∞)‖∞
√
α +

2

N

√
α

� 2‖w(∞)‖∞
(
β +

2

N

)
.

Let us now consider (b)(p). In order to deal with the singularities in w(p), we write
it as the divergence of a vector field ξ ,

w(p) = ∇ · ξ. (4.9)

This is nothing but a problem of electrostatics, which is solved by

ξ = C
x

|x |d ∗ w(p),

with some constant C depending on d. By the Hardy-Littlewood-Sobolev inequality, we
find

‖ξ‖q �
∥∥w(p)

∥∥
p,

1

q
= 1

p
− 1

d
. (4.10)

Thus if p � p0 then q � 2. Denote by X12 multiplication by ξ(x1 − x2). For the fol-
lowing it is convenient to write ∇ · ξ = ∇ρξρ , where a summation over ρ = 1, . . . , d
is implied.

Recalling Lemma 3.10, we therefore get

(b)(p) = ∣∣〈� , p1 p2W (p)
12 n̂ n̂ −1q1q2�

〉∣∣

= ∣∣〈� , p1 p2 τ̂2n W (p)
12 n̂ −1q1q2�

〉∣∣

= ∣∣〈� , p1 p2 τ̂2n (∇ρ
1 Xρ)12 n̂ −1q1q2�

〉∣∣.

Integrating by parts yields

(b)(p) �
∣∣〈∇ρ

1 τ̂2n p1 p2� , Xρ12 n̂ −1q1q2�
〉∣∣

+
∣∣〈τ̂2n p1 p2� , Xρ12∇ρ

1 n̂ −1q1q2�
〉∣∣. (4.11)
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Let us begin by estimating the first term. Recalling that p = |ϕ〉〈ϕ|, we find that the first
term on the right-hand side of (4.11) is equal to

∣∣〈Xρ12 p2(∇ρ p)1τ̂2n� , n̂−1q1q2�
〉∣∣

�
√〈
(∇ρ p)1τ̂2n� , p2 Xρ12 Xσ12 p2(∇σ p)1τ̂2n�

〉 ∥∥n̂−1q1q2�
∥∥

�
√∥∥|ϕ|2 ∗ ξ2

∥∥∞ ‖∇ϕ‖ ∥∥τ̂2n�
∥∥ ∥∥n̂−1q1q2�

∥∥

� ‖ξ‖q ‖ϕ‖L2∩L∞ ‖ϕ‖X1

√
α +

2

N

√
α,

where we used Young’s inequality, Assumption (B1), and Lemma 3.9. Recalling that
β � α, we conclude that the first term on the right-hand side of (4.11) is bounded by

C ‖ϕ‖2
X1∩L∞

(
β +

1

N

)
.

Next, we estimate the second term on the right-hand side of (4.11). It is equal to

∣∣〈Xρ12 p1 p2 τ̂2n� ,∇ρ
1 n̂−1q1q2�

〉∣∣ �
√〈
τ̂2n� , p1 p2 X2

12 p1 p2 τ̂2n�
〉 ∥∥∇1 n̂−1 q1q2�

∥∥

�
√∥∥|ϕ|2 ∗ ξ2

∥∥∞ ‖τ̂2n�‖ ∥∥∇1 n̂−1 q1q2�
∥∥

� ‖ξ‖q ‖ϕ‖L2∩L∞

√
α +

2

N

∥∥∇1 n̂−1 q1q2�
∥∥.

We estimate
∥∥∇1 n̂−1 q1q2�

∥∥ by introducing 1 = p1 + q1 on the left. The term arising
from p1 is bounded by

∥∥p1∇1 n̂−1 q1q2�
∥∥ = ∥∥p1q2 τ̂1n−1 ∇1q1�

∥∥

�
√〈∇1q1� , q2 τ̂1n−2 ∇1q1�

〉

=
√√√√

〈
∇1q1� ,

1

N − 1

N∑

i=2

qi τ̂1n−2 ∇1q1�

〉

�

√√√√
〈
∇1q1� ,

1

N

N∑

i=1

qi τ̂1n−2 ∇1q1�

〉

=
√〈∇1q1� , n̂2 τ̂1n−2 ∇1q1�

〉

� ‖∇1q1�‖.
The term arising from q1 in the above splitting is dealt with in exactly the same way.
Thus we have proven that the second term on the right-hand side of (4.11) is bounded
by

C‖ϕ‖L2∩L∞

√
β +

1

N
‖∇1q1�‖.
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Summarizing, we have

(b)(p) � ‖ϕ‖2
X1∩L∞

(
β +

1

N

)
+ ‖ϕ‖L2∩L∞

√
β +

1

N
‖∇1q1�‖.

Conclusion of the proof. Putting all the estimates of the right-hand side of (4.8) together,
we find

〈
� , (1 − p1 p2)h1(1 − p1 p2)�

〉
(4.12)

� E� − Eϕ +
(
1 + ‖ϕ‖2

X2
1∩L∞

)(
β +

1√
N

)
+ ‖ϕ‖L2∩L∞

√
β +

1

N
‖∇1q1�‖.

Next, from 1 − p1 p2 = p1q2 + q1 we deduce

‖√h1q1�‖ = ∥∥√
h1(1 − p1 p2)� − √

h1 p1q2�
∥∥

�
∥∥√

h1(1 − p1 p2)�
∥∥ + ‖√h1 p1q2�‖.

Now, recalling that p = |ϕ〉〈ϕ|, we find

‖√h1 p1q2�‖ � ‖√h1 p1‖‖q2�‖ � ‖ϕ‖X1

√
β.

Therefore,

‖√h1q1�‖2 �
∥∥√

h1(1 − p1 p2)�
∥∥2 + ‖ϕ‖2

X1
β.

Plugging in (4.13) yields

∥∥√
h1q1�

∥∥2 � E� − Eϕ +
(
1 + ‖ϕ‖2

X2
1∩L∞

)(
β +

1√
N

)

+‖ϕ‖L2∩L∞

√
β +

1

N
‖∇1q1�‖.

Next, we observe that Assumption (B1) implies

‖∇1q1�‖ �
∥∥√

h1q1�
∥∥ +

√
β,

so that we get

∥∥√
h1q1�

∥∥2 � E� − Eϕ +
(
1 + ‖ϕ‖2

X2
1∩L∞

)(
β +

1√
N

)

+‖ϕ‖L2∩L∞

√
β +

1

N
‖√h1q1�‖.

Now we claim that
∥∥√

h1q1�
∥∥2 � E� − Eϕ +

(
1 + ‖ϕ‖2

X2
1∩L∞

)(
β +

1√
N

)
. (4.13)

This follows from the general estimate

x2 � C(R + ax) �⇒ x2 � 2C R + C2a2,

which itself follows from the elementary inequality

C(R + ax) � C R +
1

2
C2a2 +

1

2
x2.

The claim of the lemma now follows from (4.13) by using Assumption (B1). ��
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4.3.2. A bound on β̇. We start exactly as in Sect. 3. Assumptions (B1) – (B5) imply that
β is differentiable in t with derivative

β̇ = i

2

〈
� ,

[
(N − 1)W12 − N Wϕ

1 − N Wϕ
2 , n̂

]
�

〉

= 2(I) + 2(II) + (III) + complex conjugate, (4.14)

where

(I) := i

2

〈
� , p1 p2

[
(N − 1)W12 − N Wϕ

1 − N Wϕ
2 , n̂

]
q1 p2�

〉
,

(II) := i

2

〈
� , q1 p2

[
(N − 1)W12 − N Wϕ

1 − N Wϕ
2 , n̂

]
q1q2�

〉
,

(III) := i

2

〈
� , p1 p2

[
(N − 1)W12 − N Wϕ

1 − N Wϕ
2 , n̂

]
q1q2�

〉
.

Term (I). Using (3.17) we find

2
∣∣(I)

∣∣ = ∣∣〈� , p1 p2
[
(N − 1)W12 − N Wϕ

1 − N Wϕ
2 , n̂

]
q1 p2�

〉∣∣

= ∣∣〈� , p1 p2
[
Wϕ

1 , n̂
]
q1 p2�

〉∣∣

= ∣∣〈� , p1 p2Wϕ
1

(
n̂ − τ̂−1n

)
q1 p2�

〉∣∣,

where we used Lemma 3.10. Define

μ(k) := N
(
n(k)− (τ−1n)(k)

) =
√

N√
k +

√
k − 1

� n−1(k), k = 1, . . . , N .

(4.15)

Thus,

∣∣(I)
∣∣ = 1

N

∣∣〈� , p1 p2Wϕ
1 μ̂ q1 p2�

〉∣∣

� 1

N
‖Wϕ‖∞

√〈
� , μ̂2 q1�

〉

� 1

N
‖Wϕ‖∞

√〈
� , n̂−2 q1�

〉

� 1

N
‖ϕ‖2

L2∩L∞ ,

by (3.13).

Term (II). Using Lemma 3.10 we find

2|(II)| = ∣∣〈� , q1 p2
[
(N − 1)W12 − N Wϕ

2 , n̂
]
q1q2�

〉∣∣ (4.16)

=
∣∣∣∣

〈
� , q1 p2

(
N − 1

N
W12 − Wϕ

2

)
μ̂ q1q2�

〉∣∣∣∣ (4.17)

�
∣∣〈� , q1 p2W12 μ̂ q1q2�

〉∣∣
︸ ︷︷ ︸

=:(a)
+

∣∣〈� , q1 p2Wϕ
2 μ̂ q1q2�

〉∣∣
︸ ︷︷ ︸

=:(b)
. (4.18)
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One immediately finds

(b) � ‖Wϕ‖∞ ‖q1�‖
√

〈� , μ̂2q1q2�〉 � ‖ϕ‖2
L2∩L∞β.

In (a) we split

w = w(p) + w(∞), w(p) ∈ L p, w(∞) ∈ L∞,

with a resulting splitting (a) � (a)(p) + (a)(∞). The easy part is

(a)(∞) � ‖w(∞)‖∞ ‖q1�‖2 � β.

In order to deal with (a)(p) we write w(p) = ∇ · ξ as the divergence of a vector field ξ ,
exactly as in the proof of Lemma 4.6; see (4.9) and the remarks after it. We integrate by
parts to find

(a)(p) = ∣∣〈� , q1 p2(∇ρ
1 Xρ)12 μ̂ q1q2�

〉∣∣

�
∣∣〈∇ρ

1 q1 p2� , Xρ12 μ̂ q1q2�
〉∣∣ +

∣∣〈q1 p2� , Xρ12∇ρ
1 μ̂ q1q2�

〉∣∣. (4.19)

The first term of (4.19) is equal to

∣∣〈Xρ12 p2∇ρ
1 q1� , μ̂ q1q2�

〉∣∣ �
√〈∇ρ

1 q1� , p2 Xρ12 Xσ12 p2∇σ
1 q1�

〉 √〈
� , μ̂2 q1q2�

〉

�
√

‖ξ2 ∗ |ϕ|2‖∞ ‖∇1q1�‖
√〈
� , n̂−2 q1q2�

〉

�
√

‖ξ2 ∗ |ϕ|2‖∞ ‖∇1q1�‖
√

N

N − 1

〈
� , n̂2�

〉

� ‖ξ‖q ‖ϕ‖L2∩L∞ ‖∇1q1�‖√
β

� ‖∇1q1�‖2 ‖ϕ‖L2∩L∞ + β ‖ϕ‖L2∩L∞ ,

where in the second step we used (4.15), in the third Lemma 3.9, and in the last (4.3),
Young’s inequality, and (4.10). The second term of (4.19) is equal to

∣∣〈q1 p2� , Xρ12(p1 + q1)∇ρ
1 μ̂ q1q2�

〉∣∣

�
∣∣〈q1 p2� , Xρ12 p1 τ̂1μ∇ρ

1 q1q2�
〉∣∣ +

∣∣〈q1 p2� , Xρ12q1 μ̂∇ρ
1 q1q2�

〉∣∣, (4.20)
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where we used Lemma 3.10. We estimate the first term of (4.20). The second term is
dealt with in exactly the same way. We find

∣∣〈p1 Xρ12q1 p2� , τ̂1μ∇ρ
1 q1q2�

〉∣∣

�
√〈
� , q1 p2 X2

12 p2q1�
〉 √〈∇1q1� , q2 τ̂1μ

2 q2∇1q1�
〉

�
√

‖ξ2 ∗ |ϕ|2‖∞ ‖q1�‖
√〈∇1q1� , n̂−2 q2∇1q1�

〉

� ‖ξ‖q ‖ϕ‖L2∩L∞
√
α

√√√√ 1

N − 1

N∑

i=2

〈∇1q1� , n̂−2 qi∇1q1�
〉

� ‖ϕ‖L2∩L∞
√
β

√√√√ 1

N − 1

N∑

i=1

〈∇1q1� , n̂−2 qi∇1q1�
〉

= ‖ϕ‖L2∩L∞
√
β

√
N

N − 1

〈∇1q1� , n̂−2 n̂2 ∇1q1�
〉

� ‖ϕ‖L2∩L∞
√
β ‖∇1q1�‖

� β ‖ϕ‖L2∩L∞ + ‖∇1q1�‖2 ‖ϕ‖L2∩L∞ .

In summary, we have proven that

∣∣(II)
∣∣ � β ‖ϕ‖L2∩L∞ + ‖∇1q1�‖2 ‖ϕ‖L2∩L∞ .

Term (III). Using Lemma 3.10 we find

2|(III)| = (N − 1)
∣∣〈� , p1 p2

[
W12 , n̂

]
q1q2�

〉∣∣

= (N − 1)
∣∣〈� , p1 p2W12

(
n̂ − τ̂−2n

)
q1q2�

〉∣∣.

Defining

ν(k) := N
(
n(k)− (τ−2n)(k)

) =
√

N√
k +

√
k − 2

� n−1(k), k = 2, . . . , N ,

(4.21)

we have

2
∣∣(III)

∣∣ �
∣∣〈� , p1 p2W12 ν̂ q1q2�

〉∣∣.

As usual we start by splitting

w = w(p) + w(∞), w(p) ∈ L p, w(∞) ∈ L∞,



Mean-Field Dynamics: Singular Potentials and Rate of Convergence 129

with the induced splitting (III) = (III)(p) + (III)(∞). Thus, using Lemma 3.10, we find

2
∣∣(III)(∞)

∣∣ = ∣∣〈� , p1 p2W (∞)
12 n̂1/2 n̂−1/2 ν̂ q1q2�

〉∣∣

= ∣∣〈� , p1 p2 τ̂2n1/2 W (∞)
12 n̂−1/2 ν̂ q1q2�

〉∣∣

� ‖w(∞)‖∞
√〈
� , τ̂2n�

〉 √〈
� , n̂−1 ν̂2 q1q2�

〉

�

√

β +

√
2

N

√〈
� , n̂−3 q1q2�

〉

�

√

β +

√
2

N

√
N

N − 1
β

� β +
1√
N
,

where in the fifth step we used Lemma 3.9.
In order to estimate (III)(p) we introduce a splitting of w(p) into “singular” and

“regular” parts,

w(p) = w(p,1) + w(p,2) := w(p) 1{|w(p)|>a} + w(p) 1{|w(p)|�a}, (4.22)

where a is a positive (N -dependent) constant we choose later. For future reference we
record the estimates

‖w(p,1)‖p0 � a1−p/p0 ‖w(p)‖p/p0
p , (4.23a)

‖w(p,2)‖2 � a1−p/2 ‖w(p)‖p/2
p . (4.23b)

The proof of (4.23) is elementary; for instance (4.23a) follows from

‖w(p,1)‖p0
p0 =

∫
dx

∣∣w(p)
∣∣p ∣∣w(p)

∣∣p0−p
1{|w(p)|>a}

� a p0−p
∫

dx
∣∣w(p)

∣∣p
1{|w(p)|>a} � a p0−p

∫
dx

∣∣w(p)
∣∣p
.

Let us start with (III)(p,1). As in (4.9), we use the representation

w(p,1) = ∇ · ξ.
Then (4.10) and (4.23a) imply that

‖ξ‖2 � ‖w(p,1)‖p0 � a1−p/p0 . (4.24)

Integrating by parts, we find

2
∣∣(III)(p,1)

∣∣ = ∣∣〈� , p1 p2W (p,1)
12 ν̂ q1q2�

〉∣∣

= ∣∣〈� , p1 p2(∇ρ
1 Xρ12) ν̂ q1q2�

〉∣∣

�
∣∣〈∇ρ

1 p1 p2� , Xρ12 ν̂ q1q2�
〉∣∣ +

∣∣〈p1 p2� , Xρ12∇ρ
1 ν̂ q1q2�

〉∣∣. (4.25)



130 A. Knowles, P. Pickl

Using ‖∇ p‖ = ‖∇ϕ‖ and Lemma 3.9 we find that the first term of (4.25) is bounded by

√〈∇ρ
1 p1� , p2 Xρ12 Xσ12 p2∇σ

1 p1�
〉 √〈

� , ν̂2q1q2�
〉
� ‖∇ p‖ ‖ϕ‖∞‖ξ‖2

√
α

� ‖∇ϕ‖ ‖ϕ‖∞ a1−p/p0
√
β

� ‖∇ϕ‖ ‖ϕ‖∞
(
β + a2−2p/p0

)
,

where in the second step we used the estimate (4.24). Next, using Lemma 3.10, we find
that the second term of (4.25) is equal to

∣∣〈p1 p2� , Xρ12(p1 + q1)∇ρ
1 ν̂ q1q2�

〉∣∣

�
∣∣〈p1 p2� , Xρ12 p1 τ̂1ν ∇ρ

1 q1q2�
〉∣∣ +

∣∣〈p1 p2� , Xρ12q1 ν̂ ∇ρ
1 q1q2�

〉∣∣.

We estimate the first term (the second is dealt with in exactly the same way):

∣∣〈p1 p2� , Xρ12 p1 τ̂1ν ∇ρ
1 q1q2�

〉∣∣ �
√〈
� , p1 p2 X2

12 p1 p2�
〉 √〈∇1q1� , τ̂1ν

2 q2∇1q1�
〉

�
√

‖p2 X2
12 p2‖

√√√√ 1

N − 1

N∑

i=2

〈∇1q1� , n̂−2 qi∇1q1�
〉

� ‖ξ‖2 ‖ϕ‖∞

√√√√ 1

N − 1

N∑

i=1

〈∇1q1� , n̂−2 qi∇1q1�
〉

� a1−p/p0‖ϕ‖∞
√

N

N − 1

〈∇1q1� ,∇1q1�
〉

� ‖ϕ‖∞
(
a2−2p/p0 + ‖∇1q1�‖2).

Summarizing,

∣∣(III)(p,1)
∣∣ � ‖ϕ‖∞

(
β‖ϕ‖X1 + ‖∇1q1�‖2 + a2−2p/p0‖ϕ‖X1

)
.

Finally, we estimate

(III)(p,2) = ∣∣〈� , p1 p2W (p,2)
12 ν̂ q1q2�

〉∣∣ = ∣∣〈� , p1 p2W (p,2)
12 ν̂ (̂χ(1) +̂χ(2))q1q2�

〉∣∣,
(4.26)

where

1 = χ(1) + χ(2), χ(1), χ(2) ∈ {0, 1}{0,...,N },

is some partition of the unity to be chosen later. The need for this partitioning will soon
become clear. In order to bound the term with χ(1), we note that the operator norm of
p1 p2W (p,2)

12 q1q2 on the full space L2(Rd N ) is much larger than on its symmetric sub-

space. Thus, as a first step, we symmetrize the operator p1 p2W (p,2)
12 q1q2 in coordinate
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2. We get the bound

∣∣〈� , p1 p2W (p,2)
12 ν̂̂χ(1) q1q2�

〉∣∣

= 1

N − 1

∣∣∣∣

〈
� ,

N∑

i=2

p1 pi W (p,2)
1i qi q1

̂χ(1) ν̂ q1�

〉∣∣∣∣

� 1

N − 1

∥∥̂ν q1�
∥∥

√√√√
N∑

i, j=2

〈
� , p1 pi W

(p,2)
1i q1qi

̂χ(1) q1q j W (p−2)
1 j p j p1�

〉
.

Using

∥∥̂ν q1�
∥∥ � ‖̂n −1q1�‖ � 1

we find

∣∣〈� , p1 p2W (p,2)
12 ν̂̂χ(1) q1q2�

〉∣∣ � 1

N − 1

√
A + B, (4.27)

where

A :=
∑

2�i �= j�N

〈
� , p1 pi W (p,2)

1i q1qi
̂χ(1) q j W (p,2)

1 j p j p1�
〉
,

B :=
N∑

i=2

〈
� , p1 pi W (p,2)

1i q1qi
̂χ(1) W (p,2)

1i pi p1�
〉
.

The easy part is

B �
N∑

i=2

〈
� , p1 pi

(
W (p,2)

1i

)2
pi p1�

〉

�
N∑

i=2

∥∥(
w(p,2))2 ∗ |ϕ|2∥∥∞〈� , p1 pi�〉

� (N − 1)‖ϕ‖2∞‖w(p,2)‖2
2

� N a2−p ‖ϕ‖2∞.

Let us therefore concentrate on

A =
∑

2�i �= j�N

〈
� , p1 pi W (p,2)

1i q1qi
̂χ(1) ̂χ(1) q j W (p,2)

1 j p j p1�
〉

=
∑

2�i �= j�N

〈
� , p1 pi q j

̂τ2χ(1) W (p,2)
1i q1W (p,2)

1 j
̂τ2χ(1) qi p j p1�

〉

= A1 + A2,
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with A = A1 + A2 arising from the splitting q1 = 1 − p1. We start with

|A1| �
∑

2�i �= j�N

∣∣〈� , p1 pi q j
̂τ2χ(1) W (p,2)

1i W (p,2)
1 j

̂τ2χ(1) qi p j p1�
〉∣∣

=
∑

2�i �= j�N

∣∣〈� , p1 pi q j
̂τ2χ(1)

√
W (p,2)

1i

√
W (p,2)

1 j

√
W (p,2)

1i

√
W (p,2)

1 j
̂τ2χ(1) qi p j p1�

〉∣∣

�
∑

2�i �= j�N

〈
� , ̂τ2χ(1) q j p1 pi

∣∣W (p,2)
1i

∣∣∣∣W (p,2)
1 j

∣∣p1 pi q j
̂τ2χ(1) �

〉
,

by Cauchy-Schwarz and symmetry of �. Here
√· is any complex square root.

In order to estimate this we claim that, for i �= j ,
∥∥∥p1 pi

∣∣W (p,2)
1i

∣∣∣∣W (p,2)
1 j

∣∣p1 pi

∥∥∥ �
∥∥∣∣w(p,2)

∣∣ ∗ |ϕ|2∥∥2
∞. (4.28)

Indeed, by (3.17), we have

p1 pi
∣∣W (p,2)

1i

∣∣∣∣W (p,2)
1 j

∣∣p1 pi = p1 pi
∣∣W (p,2)

1i

∣∣pi
∣∣W (p,2)

1 j

∣∣p1

= p1 pi
(∣∣w(p,2)

∣∣ ∗ |ϕ|2)1

∣∣W (p,2)
1 j

∣∣p1.

The operator p1
(∣∣w(p,2)

∣∣ ∗ |ϕ|2)1

∣∣W (p,2)
1 j

∣∣p1 is equal to f j p1, where

f (x j ) =
∫

dx1ϕ(x1)
(∣∣w(p,2)

∣∣ ∗ |ϕ|2)(x1)
∣∣w(p,2)(x1 − x j )

∣∣ϕ(x1).

Thus,

‖ f ‖∞ �
∥∥∣∣w(p,2)

∣∣ ∗ |ϕ|2∥∥2
∞,

from which (4.28) follows immediately.
Using (4.28), we get

|A1| �
∑

2�i �= j�N

∥∥∣∣w(p,2)
∣∣ ∗ |ϕ|2∥∥2

∞
∥∥̂τ2χ(1)q1�

∥∥2

� N 2‖w(p)‖2
p ‖ϕ‖4

L2∩L∞
〈
� , ̂τ2χ(1) q1�

〉

� N 2 ‖ϕ‖4
L2∩L∞

〈
� , ̂τ2χ(1) n̂2�

〉
.

Now let us choose

χ(1)(k) := 1{k�N 1−δ} (4.29)

for some δ ∈ (0, 1). Then

(τ2χ
(1)) n2 � N−δ

implies

|A1| � ‖ϕ‖4
L2∩L∞ N 2−δ.
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Similarly, we find

|A2| �
∑

2�i �= j�N

∣∣〈� , q j
̂τ2χ(1) pi p1W (p,2)

1i p1W (p,2)
1 j p1 p j

̂τ2χ(1) qi�
〉∣∣

�
∑

2�i �= j�N

∥∥w(p,2) ∗ |ϕ|2∥∥2
∞〈� , ̂τ2χ(1) q1�〉

� N 2‖ϕ‖4
L2∩L∞ N−δ

= ‖ϕ‖4
L2∩L∞ N 2−δ.

Thus we have proven

|A| � ‖ϕ‖4
L2∩L∞ N 2−δ.

Going back to (4.27), we see that

∣∣〈� , p1 p2W (p,2)
12 ν̂̂χ(1) q1q2�

〉∣∣ � ‖ϕ‖2
L2∩L∞ N−δ/2 + ‖ϕ‖∞N−1/2 a1−p/2.

What remains is to estimate is the term of (III)(p,2) containing χ(2),

∣∣〈� , p1 p2W (p,2)
12 ν̂̂χ(2) q1q2�

〉∣∣

= 1

N − 1

∣∣∣∣

〈
� ,

N∑

i=2

p1 pi W (p,2)
1i qi q1

̂χ(2) ν̂1/2 ν̂1/2 q1�

〉∣∣∣∣

� 1

N − 1

∥∥̂ν1/2 q1�
∥∥

√√√√
N∑

i, j=2

〈
� , p1 pi W (p,2)

1i q1qi
̂χ(2) ν̂ q1q j W (p−2)

1 j p j p1�
〉
.

Using
∥∥̂ν1/2 q1�

∥∥ �
√

〈� , n̂−1 n̂2�〉 = √
β

we find

∣∣〈� , p1 p2W (p,2)
12 ν̂̂χ(2) q1q2�

〉∣∣ �
√
β

N − 1

√
A + B, (4.30)

where

A :=
∑

2�i �= j�N

〈
� , p1 pi W (p,2)

1i q1qi
̂χ(2) ν̂ q j W (p,2)

1 j p j p1�
〉
,

B :=
N∑

i=2

〈
� , p1 pi W

(p,2)
1i q1qi

̂χ(2) ν̂ W (p,2)
1i pi p1�

〉
.

Since

χ(2)(k) = 1{k>N 1−δ}
we find

χ(2) ν � χ(2) n−1 � N δ/2.
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Thus, ‖q1qi
̂χ(2) ν̂‖ � N δ/2 and we get

B � N δ/2
N∑

i=2

〈
� , p1 pi

(
W (p,2)

1i

)2
pi p1�

〉
� N 1+δ/2

∥∥(
w(p,2))2 ∗ |ϕ|2∥∥∞

� N 1+δ/2 ‖w(p,2)‖2
2 ‖ϕ‖2∞ � N 1+δ/2 a2−p ‖ϕ‖2∞,

by (4.23b).
Next, using Lemma 3.10, we find

A =
∑

2�i �= j�N

〈
� , p1 pi q j W (p,2)

1i
̂χ(2) ν̂1/2 q1

̂χ(2) ν̂1/2 W (p,2)
1 j qi p j p1�

〉

=
∑

2�i �= j�N

〈
� , p1 pi q j

̂τ2χ(2) τ̂2ν
1/2 W (p,2)

1i q1W (p,2)
1 j

̂τ2χ(2) τ̂2ν
1/2 qi p j p1�

〉

= A1 + A2,

where, as above, the splitting A = A1 + A2 arises from writing q1 = 1 − p1. Thus,

|A1| �
∑

2�i �= j�N

∣∣〈� , p1 pi q j
̂τ2χ(2) τ̂2ν

1/2 W (p,2)
1i W (p,2)

1 j
̂τ2χ(2) τ̂2ν

1/2 qi p j p1�
〉∣∣

=
∑

2�i �= j�N

∣∣〈�p1 pi q j
̂τ2χ(2) τ̂2ν

1/2
√

W (p,2)
1i

√
W (p,2)

1 j

√
W (p,2)

1i

×
√

W (p,2)
1 j

̂τ2χ(2) τ̂2ν
1/2 qi p j p1�

〉∣∣

�
∑

2�i �= j�N

〈
� , q j

̂τ2χ(2) τ̂2ν
1/2 p1 pi

∣∣W (p,2)
1i

∣∣∣∣W (p,2)
1 j

∣∣pi p1
̂τ2χ(2) τ̂2ν

1/2 q j�
〉
,

by Cauchy-Schwarz and symmetry of �. Using (4.28) we get

|A1| � N 2
∥∥∣∣w(p,2)

∣∣ ∗ |ϕ|2∥∥2
∞

〈
� , τ̂2ν q1�

〉

� N 2‖w(p,2)‖2
p ‖ϕ‖4

L2∩L∞ 〈� , n̂�〉
� N 2 ‖ϕ‖4

L2∩L∞β.

Similarly,

|A2| �
∑

2�i �= j�N

∣∣〈� , pi q j
̂τ2χ(2) τ̂2ν

1/2 p1W (p,2)
1i p1W (p,2)

1 j p1
̂τ2χ(2) τ̂2ν

1/2 qi p j�
〉∣∣

�
∑

2�i �= j�N

∥∥w(p,2) ∗ |ϕ|2∥∥2
∞

〈
� , τ̂2ν q1�

〉

� N 2‖w(p)‖2
p ‖ϕ‖4

L2∩L∞ 〈� , n̂�〉
� N 2 ‖ϕ‖4

L2∩L∞ β.

Plugging all this back into (4.30), we find that

∣∣〈� , p1 p2W (p,2)
12 ν̂̂χ(2) q1q2�

〉∣∣ � β
(‖ϕ‖2

L2∩L∞ + ‖ϕ‖∞
)

+ ‖ϕ‖∞a2−p N δ/2−1.
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Summarizing:
∣∣(III)(p,2)

∣∣ �
(
1 + ‖ϕ‖2

L2∩L∞
)(
β + a2−p N δ/2−1 + N−δ/2 + N−1/2a1−p/2

)
,

from which we deduce
∣∣(III)(p)

∣∣ � ‖ϕ‖∞‖∇1q1�‖2

+
(
1 + ‖ϕ‖X1∩L∞

)(
β + a2−p N δ/2−1 + N−δ/2 + N−1/2a1−p/2 + a2−2p/p0

)
.

Let us set a ≡ aN = N ζ and optimize in δ and ζ . This yields the relations

ζ(2 − p) + δ = 1, − δ
2

= 2ζ

(
1 − p

p0

)
,

which imply

δ

2
= p/p0 − 1

2p/p0 − p/2 − 1
,

with δ � 1. Thus,
∣∣(III)(p)

∣∣ � ‖ϕ‖∞‖∇1q1�‖2 +
(
1 + ‖ϕ‖X1∩L∞

)(
β + N−η),

where η = δ/2 satisfies (4.4).

Conclusion of the proof. We have shown that

β̇ � ‖ϕ‖L2∩L∞‖∇1q1�‖2 +
(
1 + ‖ϕ‖X1∩L∞

)(
β + N−η).

Using Lemma 4.6 we find

β̇ �
(

1 + ‖ϕ‖3
X2

1∩L∞
)(
β + E� − Eϕ +

1

Nη

)
. (4.31)

The claim then follows from the Grönwall estimate (3.3).

4.4. A remark on time-dependent external potentials. Theorem 4.1 can be extended to
time-dependent external potentials h(t) without too much sweat. The only complica-
tion is that energy is no longer conserved. We overcome this problem by observing that,
while the energies E�(t) and Eϕ(t) exhibit large variations in t , their difference remains
small. In the following we estimate the quantity E�(t)− Eϕ(t) by controlling its time
derivative.

We need the following assumptions, which replace Assumptions (B1) – (B3).

(B1’) The Hamiltonian h(t) is self-adjoint and bounded from below. We assume that
there is an operator h0 � 0 that such that 0 � h(t) � h0 for all t . We define
the Hilbert space X N = Q(∑

i (h0)i
)

as in (A1), and the space X2
1 = Q(h2

0)

as in (B5) using h0. We also assume that there are time-independent constants
κ1, κ2 > 0 such that

−� � κ1 h(t) + κ2

for all t .
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We make the following assumptions on the differentiability of h(t). The map
t �→ 〈ψ , h(t)ψ〉 is continuously differentiable for all ψ ∈ X1, with derivative
〈ψ , ḣ(t)ψ〉 for some self-adjoint operator ḣ(t). Moreover, we assume that the
quantities

〈ϕ(t) , ḣ(t)2ϕ(t)〉, ∥∥(1 + h(t))−1/2 ḣ(t) (1 + h(t))−1/2
∥∥

are continuous and finite for all t .
(B2’) The Hamiltonian HN (t) is self-adjoint and bounded from below. We assume

that Q(HN (t)) ⊂ X N for all t . We also assume that the N -body propagator
UN (t, s), defined by

i∂tUN (t, s) = HN (t)UN (t, s), UN (s, s) = 1,

exists and satisfies UN (t, 0)�N ,0 ∈ Q(HN (t)) for all t .
(B3’) There is a time-independent constant κ3 ∈ (0, 1) such that

0 � (1 − κ3)(h1(t) + h2(t)) + W12

for all t .

Theorem 4.7. Assume that Assumptions (B1’) – (B3’), (B4), and (B5) hold. Then there
is a continuous nonnegative function φ, independent of N and �N ,0, such that

βN (t) � φ(t)

(
βN (0) + E�N (0)− Eϕ(0) +

1

Nη

)
,

with η defined in (4.4).

Proof. We start by deriving an upper bound on the energy difference E(t) := E�(t)−
Eϕ(t). Assumptions (B1’) and (B2’) and the fundamental theorem of calculus imply

E(t) = E(0) +
∫ t

0
ds

(
〈�(s) , ḣ1(s)�(s)〉 − 〈ϕ(s) , ḣ(s)ϕ(s)〉︸ ︷︷ ︸

=: G(s)

)
.

By inserting1 = p1(s)+q1(s) on both sides of ḣ1(s)we get (omitting the time argument
s)

G = 〈� , p1ḣ1 p1�〉 − 〈ϕ , ḣϕ〉 + 2 Re〈� , p1ḣ1q1�〉 + 〈� , q1ḣ1q1�〉. (4.32)

The first two terms of (4.32) are equal to
(〈� , p1�〉 − 1

)〈ϕ , ḣϕ〉 = α〈ϕ , ḣϕ〉 � β|〈ϕ , ḣϕ〉|.
The third term of (4.32) is bounded, using Lemmas 3.9 and 3.10, by

2
∣∣〈� , p1ḣ1 n̂1/2 n̂−1/2 q1�

〉∣∣ = 2
∣∣〈ḣ1 p1 τ̂1n1/2� , n̂ −1/2 q1�

〉∣∣

�
√〈
τ̂1n1/2� , p1ḣ2

1 p1 τ̂1n1/2�
〉 ∥∥n̂ −1/2 q1�

∥∥

�
√

|〈ϕ , ḣ2ϕ〉|
√〈
� , τ̂1n�

〉 √〈
� , n̂−1 q1�

〉

�
√

|〈ϕ , ḣ2ϕ〉|
√

β +
1√
N

√
β,

�
√

|〈ϕ , ḣ2ϕ〉|
(
β +

1√
N

)
.
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The last term of (4.32) is equal to

〈
� , q1(1 + h1)

1/2(1 + h)−1/2ḣ1(1 + h1)
−1/2(1 + h)1/2q1�

〉

�
∥∥(1 + h)−1/2ḣ(1 + h)−1/2

∥∥ ∥∥(1 + h1)
1/2q1�

∥∥2
.

Thus, using Assumption (B1’) we conclude that

G(t) � C(t)

(
β(t) +

1√
N

+
∥∥h1(t)

1/2q1(t)�(t)
∥∥2

)
(4.33)

for all t . Here, and in the following, C(t) denotes some continuous nonnegative function
that does not depend on N .

Next, we observe that, under Assumptions (B1’) – (B3’), the proof of Lemma 4.6
remains valid for time-dependent one-particle Hamiltonians. Thus, (4.13) implies

∥∥h1(t)
1/2q1(t)�(t)

∥∥2 � E(t) +
(
1 + ‖ϕ(t)‖2

X2
1∩L∞

)(
β(t) +

1√
N

)
.

Plugging this into (4.33) yields

G(t) � C(t)

(
β(t) +

1√
N

+ E(t)
)
.

Therefore,

E(t) � E(0) +
∫ t

0
ds C(s)

(
β(s) + E(s) +

1√
N

)
. (4.34)

Next, we observe that, under Assumptions (B1’) – (B3’), the derivation of the esti-
mate (4.31) in the proof of Theorem 4.1 remains valid for time-dependent one-particle
Hamiltonians. Therefore,

β(t) � β(0) +
∫ t

0
ds C(s)

(
β(s) + E(s) +

1

Nη

)
. (4.35)

Applying Grönwall’s lemma to the sum of (4.34) and (4.35) yields

β(t) + E(t) �
(
β(0) + E(0)) e

∫ t
0 C +

1

Nη

∫ t

0
ds C(s) e

∫ t
0 C .

Plugging this back into (4.35) yields

β(t) � C(t)

(
β(0) + E(0) +

1

Nη

)
,

which is the claim.
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