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Abstract A finite volume-based numerical modeling frame-
work using a hierarchical fracture representation (HFR) has
been developed to compute flow-induced shear failure. To
accurately capture the mechanics near fracture manifolds,
discontinuous basis functions are employed which ensure
continuity of the displacement gradient across fractures.
With these special basis functions, traction and compressive
forces on the fracture segment can be calculated without
any additional constraints, which is extremely useful for
estimating the irreversible displacement along the fracture
(slip) based on a constitutive friction law. The method is fur-
ther extended to include slip-dependent hydraulic aperture
change and grid convergent results are obtained. Further, the
change in hydraulic aperture is modeled using an asymptotic
representation which respects the experimentally observed
behavior of pore volume dilation due to shear slip. The
model allows the initial rapid increase in hydraulic aper-
ture due to shear slip and asymptotically approaches a finite
value after repeated shearing of a fracture segment. This
aperture increase is the only feedback for mechanics into
the fluid flow for a linear elastic mechanics problem. The
same model is also extended to include poroelastic relations
between flow and mechanics solver. The grid convergence
result in the case of poroelastic flow-mechanics coupling
for flow-induced shear failure is also obtained. This proves
the robustness of the numerical and analytical modeling of
fracture and friction in the extended finite volume method
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(XFVM) set-up. Finally, a grid convergent result for seismic
moment magnitude for single fracture and fracture net-
work with random initial hydraulic and friction properties
is also obtained. The b-value, which represents the slope
of seismic moment occurrence frequency decay vs seismic
moment magnitude, which is approximately constant in a
semi-logarithmic plot, is estimated. The numerical method
leads to converged b-values for both single fracture and
fracture network simulations, as grid and time resolutions
are increased. For the resulting linear system, a sequential
approach is used, that is, first, the flow and then the mechan-
ics problems are solved. The new modeling framework is
very useful to predict seismicity, permeability, and flow evo-
lution in geological reservoirs. This is demonstrated with
numerical simulations of enhancing a geothermal system.

Keywords Slip · Aperture · Friction · XFVM

1 Introduction

The geological domain of a typical deep geothermal reser-
voir is characterized by low matrix and fracture perme-
ability, and therefore, fracturing via high-pressure fluid
injection is required prior to energy extraction. Such per-
meability enhancements occur due to flow-induced shear
slip along existing fracture manifolds and are crucial for
the creation of enhanced geothermal systems (EGS). The
micro-seismicity resulting from these shear failure events
is an important observation and plays a role in managing
both creation and operation of EGS. The termination of the
operations in Basel (2006) is an example of how public
perceptions can hinder the development of EGS plants due
to seismic concerns. Here, improved simulation capabilities
play a vital role in order to make qualified decisions.
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The geological domains contain fractures of different
lengths and orientations. Further, the physical properties
such as aperture, friction coefficients, and modulus of elas-
ticitiy vary over many orders of magnitude. In the presence
of matrix porosity, there exists a further flow-mechanics
coupling in the poroelastic fractured geological domain.
Efficient numerical modeling of such poroelastic, heteroge-
neous, fractured reservoirs is a challenging task. A number
of methods such as boundary element methods, displace-
ment discontinuity methods, and fast multipole methods
have been proposed in the literature to deal with mechanics
simulations of fractured networks. All these methods work
on the fracture degrees of freedom (dof) only. Limitations
of such methods arise in the case of heterogeneous physical
properties and if long-distant intereactions between frac-
tures are important, e.g., in the case of poroelastic media.
However, computing the full matrix-fracture interaction by
adapting the grid around the fractures is a computation-
ally very expensive process. A compromise between solving
only for fracture dof and resolving the full matrix-fracture
interaction is to use a hierarchical fracture representation
(HFR) model. In this approach, large fractures are rep-
resented as lower dimensional manifolds embedded in a
higher dimensional matrix. The mathematical equations
governing the fluid flow problem in such approximate mod-
els is modified to include a consistent mass transfer term
between fracture and matrix [1]. A number of numerical
methods for fluid flow solver in the context of HFR have
been developed over the last decade [2, 3]. The research
in developing a numerical mechanics solver for such HFR
is relatively new. In this regard, one methodology is to use
special discontinuity basis functions to resolve shear slip
in the embedded fractures [4–7]. The extended finite ele-
ment method (XFEM) is one such strategy. Another recently
developed approach is to use a finite volume method and
discontinuity basis functions to account for shear slip along
the fracture manifold and the stress perturbations in the
nearby matrix domain. In a recently submitted paper by
Deb and Jenny [8], this method is further described and
is called extended finite volume method (XFVM). It was
applied in the context of one-way coupling problems, where
fluid pressure induces shear slip. A more general method
would also account for changes in fracture aperture due
to shear slip, but obtaining grid-converged solutions for
such scenarios is difficult. In this paper, generalized two-
way coupling between flow and mechanics, both in fracture
and matrix domains, is considered. The poroelastic cou-
pling between flow and mechanics in the matrix is based
on a fixed stress approach [9]. The hydraulic aperture dila-
tion due to shear slip is modeled using an asymototic
approach, where the properties of initial rapid aperture
change and the slower changes occurring at a later stage are
honored [10].

Section 2 describes the governing equations for flow,
transport, and mechanical equilibrium along with the mod-
els for friction and aperture. The numerical methods of
XFVM and poroelastic coupling are described in the
Section 3. Results of studies with a single fracture and a frac-
ture network are presented in Section 4. Finally, in Section 5,
benefits of the new modeling approach are discussed.

2 Problem description

2.1 Governing equations for mechanics

A fractured reservoir can be approximated as a poroelas-
tic domain with fractures, which have a maximum shear
strength. The fractures can bear a maximum shear, beyond
which slip occurs resulting in micro-seismic events. The
equilibrium of such fractured domains may be disturbed by
increasing the fluid pressure or by changing the boundary
conditions, which both can lead to shear failure. Force bal-
ance in an unit volume of the continuum is described by the
equation below:

∇ ·
(
σ̃ − bpĨ

)
+ f = 0, (1)

where the terms σ̃ , p, and f respectively represents the effec-
tive stress tensor field, local fluid pressure, and the body
force due to gravity. The terms b and Ĩ respectively denote
Biot coefficient and identity tensor. The effective stress σ̃ is
obtained as follows:

σ̃ = λ(∇ · u)Ĩ + G(∇u + ∇uT ). (2)

In Eq. 2, the effective stress σ̃ is linearly dependent on bulk
strain (∇ · u)Ĩ and total strain 1

2 (∇u + ∇uT ). The propor-
tionality constants are respectively the first Lamé constant
λ and the second Lamé constant or shear modulus G. It
is important to note that Eq. 1 is obtained after neglecting
the acceleration term in the dynamic force balance prob-
lem. This is an important assumption in order to efficiently
obtain numerical solutions for fluid injection-induced shear
failures. The assumption to neglect the mechanical wave
propagation timescale for shear failure is related to the
larger timescale of the fluid flow process in the case of
a fractured reservoirs. Since the flow influences the shear
failure by reducing the compressive stress on the fracture
segments, it is important to verify that all the shear and
compressive wave propagation timescales across the reser-
voir is much smaller than the flow propagation timescale in
the fractures. The finite volume-based numerical solution of
the displacement field u honors force balance in each finite
volume. Using Eq. 2, this solution also provides the stress
field, from which effective compressive stress and shear
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traction on each of the fracture segments can be calculated
as follows:

σc = −n̂ · (σ̃ · n̂) (3a)

and τ = (Ĩ − n̂n̂) · σ̃ · n̂, (3b)

respectively. Note that σc and τ are defined with respect to
the local coordinate axes normal and parallel to the fracture
manifold. The unit vector normal to the fracture manifold is
denoted by n̂.

2.2 Shear failure modeling

The shear failure criterion of a fracture segment can be given
as follows:

|τ | ≥ S0 + μs(σc − pf ), (4)

where pf represents the local fluid pressure at the fracture
segment. The coefficients μs and S0 respectively repre-
sent the static friction coefficient and cohesive force. Once
condition (4) is reached, shear failure occurs leading to
irreversible displacement along the fracture manifold, and
finally, a new equilibrium solution gets established with
traction force on the fracture segment constraint to a new
value. Accordingly, the stress field in the neighborhood of
the fracture segment gets rearranged to satisfy the constraint
on the failed fracture segment. A simple model for this
constraint value comes from the Coulomb law. An alter-
native and experimentally verified approach is to apply a
limit for the maximum shear value at the fracture segment
[11]. This model is known as Prakash and Clifton [12] law,
where the maximum shear value relaxes with decreasing
compressive stress over a finite timescale. Further, when it
reaches the shear value of the fracture segment, the fracture
slips in such a way that the new solution of fracture shear
is constraint to this maximum shear value. This allows for
regularization of the shear slip solution and therefore grid
independence for dynamic failure simulations [13]. In the
context of pressure-induced shear failure, the timescale of
shear maximum relaxation due to decreasing compressive
stress should be in the order of the flow timescale [8]. Relax-
ation of the maximum shear value is modeled as follows:

dτmax

dt
= − 1

tf
(τmax − μs(σc − pf )), (5)

where tf represents the shear relaxation timescale, which is
of the order of flow timescale and is crucial for grid conver-
gence. In Eq. 5, the term τmax represents the shear strength
at the fracture segment.

2.3 Governing equations for fluid flow

In the set-up of fractures embedded in a damaged matrix,
large fractures are represented discretely, while small frac-
tures are approximated by an effective matrix permeability.
The HFR leads to the following set of equations for mass
balance in the fractures and the damaged matrix:

∂Ef

∂t
−∇f ·

(bf κf

μ
·(∇f pf −ρg)

)
+�f →m = qf (6)

and
∂φm

∂t
−∇·

(κm

μ
·(∇pm − ρg)

)
+ �m→f = qm. (7)

The operator ∇f represents the gradient along fracture man-
ifolds. The variables in Eq. 6 are pore volume per unit
fracture area given as Ef (void aperture), hydraulic aper-
ture bf , fracture permeability tensor κf , fluid viscosity μ,
fracture pressure pf , fluid density ρ, gravitational accelara-
tion vector g, and the well injection rate qf . The variables
in Eq. 7 are matrix porosity φm, matrix permeability tensor
κm, matrix pressure pm, and the well injection rate qm. The
change in volumetric strain (∇ · u) due to stress in the dam-
aged matrix leads to a change in porosity φm and therefore
affects mass balance. On the other hand, fluid pressure leads
to a change of volumetric stress and therefore of the stress
field in the fractured domain. Neglecting the effect of grav-
ity in Eq. 7, the coupled flow and mechanics equations for
the matrix domain can be expressed as follows:

∇ ·
(
σ̃ − bpmĨ

)
+ f = 0 (8)

and 1
M

∂pm

∂t
+b

∂(∇·u)
∂t

−∇·
(
κm

μ
·∇pm

)
+�m→f =qm, (9)

where M and b are Biot modulus and Biot coefficients,
respectively. Consistent, detailed formulations of fracture
to matrix (�f →m) and matrix to fracture (�m→f ) mass
transfer terms are given in [3] and [2].

2.4 Modeling of slip dilation

Shear slip leads to an increase of hydraulic and void aper-
ture. Various modeling approaches are used to obtain a
relation between shear slip and aperture change. In general,
aperture change as a function of shear slip follows an ini-
tial rapid change and then a slower increase. McClure and
Horne [14] used the following set of equations to determine
hydraulic and void aperture changes:

bf = b
f

0 + β1s1 + β2s2 (10)

and Ef = E
f

0 +
(

Ea

(1+(9(σc−pf )/σnref))

)
+ β1s1 + β2s2. (11)

In Eqs. 10 and 11, terms β1 and β2 respectively accounts for
initial rapid and later slower dilation rate due to shear slip.
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The corresponding variables s1 and s2 denote the initial and
later slip accumulations of a fracture segment. The terms
b

f

0 and E
f

0 denote the initial hydraulic and void aperture,
respectively. The terms Ea and σnref are material constants.
A better approach is one in which the aperture asyomtoti-
cally dilates to a fixed value after repeated shear failure of
a fracture segment. The experimental observation for pore
volume dilation suggests a model which has initial sharp rise
in aperture with shear slip and later saturates to a constant
value after repeated shear slip [10]. Here, the exponential
model

bf = b
f

0 + �b(1 − exp(−s/s0)) (12)

is employed which honors such criterion. Equation 12 is
charactrized by the final asyomtotic increase �b and the
sensitivity s−1

0 . The variable s denotes the total cumula-
tive shear slip since the beginning of fluid injection-induced
shear failure on a fracture segment. The aperture dilation
is rapid for s � s0 and is very slow, if s � s0. The
continuous and differentiable behavior of this model pro-
vides a smooth transition between initial and later stages of
shear slip, which is also beneficial for the numerical solution
algorithm.

3 Numerical methods

3.1 Fracture representation and XFVM

Using discrete fracture manifolds embedded in a matrix
domain is an efficient way to describe fractured reservoirs
without adapting the grid around the fractures. A recently
submitted paper by Deb and Jenny [8] describes how the
finite volume method can be used to accurately resolve the
displacement solution and shear slip around fractures. The
method is named XFVM, in which discontinuity basis func-
tions around embedded fractures are used to resolve the
shear slip. The method is similar to XFEM in the sense that
discontinuity basis functions are used to represent shear slip.
The main difference is that as compared to XFEM, the loca-
tions of the discontinuity dof coincide with the additional
fracture nodes. The basis functions completely respect frac-
ture orientation and location irrespective of the grid around
the fracture. In the case of a constant irreversible jump
across a fracture segment, the corresponding correction of
the strain in the matrix domain is obtained from the discon-
tinuity basis function at the fracture segment and the shear
slip dof. Further details of how shear slip affects the dis-
cretized strain calculation is described in Appendix 1. In the
case of shear failure, an additional constraint for the fric-
tional constitutive relation is solved to get the slip along
with the force balance equations for the matrix node dof.

Therefore, once the failure criterion is reached for a fracture
segment, the constraint relation
∫ L

0
τdL =

∫ L

0
τmaxdL (13)

has to be honored for the fracture segment, in addition to the
force balance equation
∫

d�

(
σ̃ − bpĨ

)
· dA +

∫

�

fd� = 0 (14)

in each of the finite volumes�. Here,L is the length of the frac-
ture segment and τmax its shear strength. The coupled
Eqs. (13) and (14) are solved to obtain the new displa-
cement field and therefore the stress solution. Coupling of
matrix and fracture equilibrium solutions takes care of dis-
tant interactions between fractures and matrix domains. For
example, the matrix force balance (14) is elliptic in nature,
and therefore, any perturbation due to shear failure in one of
the fractures influences the displacement field in the entire
domain. In the XFVM method, a bilinear basis function is as-
sociated with each discretization node in the matrix domain.
The displacement field is now approximated as follows:

u ≈
Ne∑
I=1

uINI (x) +
Ns∑
j=1

sJ NJ (x) (15)

with

NJ (x) =
⎛
⎝

Ne∑
p=1

NJ
p (x)HJ

p (f J (x))

⎞
⎠ , (16)

where HJ
p (f J (x)) = H(f J (x)) − H(f J (xJp)). (17)

Figure 1 depicts the dof of fracture and matrix nodes
in the interaction region of a fracture manifold and the
neighboring matrix domain. The green and red nodes here
respectively store the displacement solutions for the matrix
domain, slip discontinuity and fluid pressure along the frac-
ture manifold. In Eq. 15, the terms uI , NI , sJ , and NJ

respectively represent the dof for displacement at each finite
volume node, the basis function corresponding to the node,
the dof for slip at each of the fracture segments, and dis-
continuous basis functions corresponding to each fracture
segment. The terms Ne and Ns represent the number of
matrix nodes and fracture dof, respectively. Figure 2 depicts
the full discontinuity basis functionNJ (x) (on the right) and
the contributions NJ

p (x)HJ
p (f J (x)) by each neighboring

node (on the left). The term f J (x) represents the distance
function of a point x to the fracture manifold. The function
H(·) represents the heaviside function.

3.2 Coupling with poro-mechanics

The poro-mechanics of the matrix leads to the full coupling of
flowandmechanics at every instant in thewholematrix domain.
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Fig. 1 The left figure shows a stencil involving both matrix and frac-
ture dof. Depicted on the right is a single fracture segment with its four
neighboring matrix nodes

This requires solving a coupled flow-mechanics problem
each timestep in order to obtain correct stress and pressure
fields. Efficient solution algorithms are given by [9] and
[15], in which a fixed stress approach is used in the sequen-
tial mechanics and flow solver. The latter is also used here
and coupled with shear failure calculations for the fractured
reservoir with embedded fracture representation. As given
in the reference [15], iterative update of the pressure field
after the mechanics computation is performed such that
volumetric stress is conserved over the iteration. This is
achieved by solving the following:

∫
b∇ · un+1

K+1dV =
∫ (

b∇·un+1
K + b2

Kv

(
pn+1

K+1−pn+1
K

))
dV

(18)

for pn+1
K+1, where Kv denotes the bulk modulus of elastic-

ity. Note that the superscript n denotes the timestep and the
subscript K the iteration.

3.3 Role of aperture modeling in timestep selection

The choice of an aperture model such as (12) is also impor-
tant in order to obtain grid convergent slip solution. The
shear strength of a fracture segment without the relaxation
criterion can be modeled using the Coulomb friction law as
follows:

τmax = S0 + μs(σc − pf ). (19)

The above equation clearly depicts that the timescale of fail-
ure propagation along the fracture manifold depends on the
flow propagation timescale, if the boundary conditions are
fixed. Based on the grid spacing �xf , bf , μ, and Ef , the
flow propagation timescale can be estimated as follows:

T flow =
(
12�x2

f μ/(bf )3
) ∂Ef

∂pf
. (20)

In the above equation, the cubic law is used to relate the
fracture permeability to the hydraulic aperture. In order to
obtain grid convergent solutions for shear slip, the choice of
the flow timestep size (�t) has to satisfy

�t < T flow. (21)

The flow timescale T flow has an inverse cubic depen-
dence on the hydaulic aperture. The shear slip increases
the hydraulic aperture and therefore leads to a decrease in
the flow propagation timescale. This further reduces the
flow timestep size, which has to be small enough to resolve
the pressure-dependent failure criterion. Further, in the case
of relaxation model (5), the relaxation timescale (tf ) of
the fracture segments has to be in the order of the flow
timescale. The increase in fracture aperture therefore also
leads to a decrease in tf . An upper bound on the hydraulic
aperture obtained from model (12) provides a lower bound
for T flow, and therefore, the choice of maximum timestep
size given by Eq. 20 can be obtained. On the other hand,

Fig. 2 The left figures represent the contributions to the total discontinuity basis function by each neighboring node. The right figure represents
the full discontinuity basis function



1124 Comput Geosci (2017) 21:1119–1134

models such as (10) cannot provide an upper bound for slip-
dependent aperture change. This therefore does not gau-
rantee grid convergent solutions for any choice of timestep
size. With model (12) for hydraulic aperture change and
a timestep size resolving tf and T flow in the cases with
relaxation and without relaxation model respectively, grid
convergence of slip and pressure is guaranteed.

4 Results

4.1 Single fracture with damaged matrix

A single fracture embedded in a damaged matrix is con-
sidered. The problem set-up is depicted in Fig. 3. Total
stress boundary conditions are applied and the fracture is
oriented at an angle of 45o with respect to the system coordi-
nates. Permeable matrix domain is considered and constant
pressure boundary conditions are applied for the flow. The
parameter values for the simulations are provided in Table 1
and simulations are performed to obtain numerical solutions
of shear slip, pressure, and aperture along the fracture. In
Table 1, the terms σ r

yy and σ r
xx denote the components of

total stress tensor along the horizontal and vertical boundary
lines, respectively. The numerical time step of flow simu-
lation is 10 s and the friction relaxation timescale (tf ) is
100 s. This numerical timestep, therefore, well resolves the
relaxation process of drop in shear strength due to propa-
gating fluid pressure front along the fracture manifold. As a
result, the obtained solution for shear slip propagation front
and shear traction on the fracture manifold shows the grid
convergent behavior as demonstrated in Fig. 4. The Fig. 4
depicts results for slip (top left), shear traction (top right),
fluid pressure (bottom left), and fracture aperture (bottom
right) for two grid resolutions. In these simulations, void

Fig. 3 The problem set-up with a single fracture embedded in a
damaged matrix with stress boundary conditions

aperture only varies with fluid pressure in the fracture and
is modeled by Eq. 11 with β1,2 = 0. The main difference
between simulations performed in this section and in the
previously submitted paper of Deb and Jenny [8] is that the
change in hydraulic aperture due to shear failure is mod-
eled here. The grid convergent result for shear slip and shear
traction in this slip front propagation problem under fluid
injection depicts that the combination of XFVM and shear
relaxation method works well numerically in this two-way
coupled set-up.

The evolution of shear strength (τmax) and shear stress
(τ ) for a single point is observed in the left plot of Fig. 5.
Fluid injection in the fracture leads to increasing pressure
and therefore to a decrease of Coulomb stress (CS), which
is defined as follows:

CS = μs(σc − pf ). (22)

The shear strength relaxes to the CS with a timescale of
tf = 100 s. The shear stress remains constant unless it
becomes equal to shear strength. The shear slip, depicted
in the right plot of Fig. 5, constrains the shear stress to the
shear strength. The central plot of the Fig. 5 depicts the
normal stress (σ ), fluid pressure (pf ), and effective nor-
mal stress (σc). It is observed that the normal stress on the
fracture segment is unaffected by the shear slip. Shear fail-
ure also leads to seismic events. A common way to present
micro-seismic statistics is to plot the occurrence frequency
of slipping events against the seismic moment magnitude
(Mw). The latter is defined as follows:

Mw = 2

3
log

(
GA3d

∑
|�si |

)
− 6.06, (23)

according to [16]. Here, SI units are used for all the param-
eters in Eq. 23. Note that |�si | is the slip displacement

Table 1 The values of different parameters used in the simulations

Variable name Value Variable name Value

p
m,f
init 40 MPa tf 100 s

σ r
xx 70 MPa σEnref 95 MPa

σ r
yy 50 MPa μs 0.6

G 10 GPa λ 2.5 GPa

E
f

0 1 mm S0 0

b
f

0 0.1 mm (A3d/L) 100 m

μ 8.9 × 10−4 Pa.s κm 10−14m2

�b 0.5 mm s0 20 mm

t0 100 s σf 1

b0 0.5 mm σb 0.3 mm

μa 0.55 μb 0.65

b 0.44 M 100 GPa

Ea 1 mm
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Fig. 4 Simulation results with a
single oblique fracture
embedded in an impermeable
2-D square matrix domain
obtained with three different
grid resolutions, that is, with 80,
160 and 320 fracture segments:
cumulative slip (top left), shear
traction (top right), fracture
fluid pressure (bottom left), and
fracture aperture (bottom right)
along the fracture after 3500 s x
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fracture segment with length L (in meter) is 100 L m2. Note
that the sum involves all segments, which fail at the same
time and form a connected patch. We define this plot as b-
value curve in the rest of the paper. The two plots in Fig. 6
depict the b-value curves for two different grid (left figure)
and time resolutions (right figure). In the b-value curves,
the term Nv represents the number of events with moment
magnitude greater than Mv

w normalized by the total num-
ber of events. The curves are linear in the semi-logarithmic
plot, essentially grid-independent, and in agreement with
the Gutenberg-Richter law. The slope of these linear lines is
described as b-value.

4.2 Single fracture with poroelastic matrix

The single fracture test case discussed in the previous
section is used here with an additional feature of poroelas-
tic coupling in the matrix domain. In order to resolve the
flow-mechanics coupling in the matrix domain, the fixed
stress approach is used [9]. The XFVM numerical solver for
the fracture domain shear failure, the shear strength relax-
ation model (5), and hydraulic aperture change model (12)
has been used. The boundary conditions and the injection
well location are the same as in the previous test case, but
the fluid is injected at 45 MPa and the initial fluid pressure
is 40 MPa everywhere. Biot coefficient (b), Biot modulus
(M), and matrix permeability (κm) are 0.44, 100 GPa, and
10−14 m2, respectively, and initial hydraulic and void aper-
ture are 1 mm. The grid-converged simulation results for
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Fig. 5 Time-dependent solutions at the domain center for the test case with one fracture embedded in an impermeable matrix. Shear stress, normal
stress, and slip are shown in the left, middle, and right plots, respectively
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Fig. 6 The number of events with moment magnitude greater thanMv
w

normalized by the total number of events is plotted against the moment
magnitude value of Mv

w . The left plot depicts the curve along with the

b-value solutions for different grid resolutions of a single fracture. The
right plot compares the b-value solutions of a single fracture for two
different time resolutions of flow simulation

slip (top left), shear traction (top right), fracture fluid pres-
sure (bottom left), and fracture aperture (bottom right) are
depicted in Fig. 7. The maps in Fig. 8 show the fluid pres-
sure in the matrix (top left), displacement in horizontal (top
center), and vertical (top right) directions, and the stress ten-
sor components σxy , (σxx −bpm), and (σyy −bpm) (bottom)
after 350 s. The simulation result depicts that the matrix
fluid pressure (pm) increases in the region around the frac-
ture. The shear slip leads to a discontinuity across the region
of shear failure for displacement components ux and uy . In
the neighborhood of fracture without any shear failure, the
displacement components are effected by the presence of

increased fluid pressure due to poroelastic effect. Stress ten-
sor field is reoriented at the tip of shear failure regions along
the fracture. This leads to stress peaks for individual stress
tensor components.

The seismic event calculations are best represented by b-
value curve. The b-value curves for a single fracture embed-
ded in a poroelastic domain is depicted on the left of Fig. 9
for two different matrix permeability values. The figure
shows that the Gutenberg-Richter law is followed with
approximately the same b-values for varying matrix perme-
ability. The only difference observed with changing matrix
permeability is that the number of seismic event occurence

Fig. 7 Simulation results with a
single oblique fracture
embedded in a poroelastic 2-D
square matrix domain obtained
for three different grid
resolutions, that is, with 80, 160
and 320 fracture segments:
cumulative slip (top left), shear
traction (top right), fracture
fluid pressure (bottom left), and
fracture aperture (bottom right)
along the fracture after 350 s x
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Fig. 8 Simulation results with a single fracture embedded in a 2-
D poroelastic matrix with a permeability of 10−14 m2 and a Biot
coefficient of 0.44. The subfigures show the pressure field (top left),

displacement in horizontal (top center) and vertical (top right) direc-
tions, and the total stress tensor components σ̃xy , (σ̃xx − bpm), and
(σ̃yy − bpm) (bottom) after 350 s

frequency decreases with increasing matrix permeability.
This is because with increasing matrix permeability, the
mass transfer between fractures and matrix increases, which
results in stabilization of the fracture against shear failure
due to decreasing fluid pressure along the fracture.

4.3 Grid divergence without relaxation

Figure 10 depicts results for slip (top left), shear traction
(top right), fluid pressure (bottom left), and fracture aperture

(bottom right) using three grid resolutions and without
any relaxation modeling approach. Here, the shear strength
decays immediately with decreasing compressive stress and
is given as follows:

τmax = μs(σc − pf ). (24)

The numerical timestep used for this simulation is 10 s.
With this timestep, the numerical flow propagation time-
scale obtained for each of the three grid resolutions cannot
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Fig. 9 The number of events with moment magnitude greater than
Mv

w normalized by the total number of events is plotted against the
moment magnitude value of Mv

w . The left plot depicts this seismic-
ity plot for different values of matrix permeability for the poroelastic

single fracture. The right plot depicts the b-value solutions for two
different grid resolutions for a linear elastic stochastically generated
fracture network domain depicted as gray lines in Fig. 11
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Fig. 10 Simulation results with
a single oblique fracture
embedded in an impermeable
2-D square matrix domain
obtained with three different
grid resolutions, that is, with 80,
160 and 320 fracture segments:
cumulative slip (top left), shear
traction (top right), fracture
fluid pressure (bottom left), and
fracture aperture (bottom right)
along the fracture after 3500 s.
No shear strength relaxation
timescale is used in this example
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Fig. 11 The slip solution (left)
and pressure solution (right)
after 800 s (in the top row) and
1600 s (in the bottom row) for
the fracture network represented
by gray lines in the left figure
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be resolved. Therefore, it leads to diverging slip solutions
for different grid resolutions. Diverging solutions are also
obtained for hydraulic aperture, which directly depends on
the shear slip. As a result, the fluid pressure solutions also
diverge. This is an important consequence of slip-dependent
aperture change. As compared to this solution, the shear
strength relaxation model leads to grid convergent solutions
for all three fields, i.e., slip, aperture, and fluid pressure in
the fracture.

4.4 Fracture network

In order to test the numerical model for more realistic geo-
logical conditions, a fracture network with fluid injection is
studied. The fractures are depicted as solid lines on the left
of Fig. 11. The initial fluid pressure is 40 MPa everywhere
and fluid injection occurs at the center with 44 MPa. The
main model parameters are fracture length L, shear relax-
ation timescale tf , static friction coefficient μs , and fracture
aperture bf . Their probability density functions (PDF) are

f (L) = CL−2.1 for L ∈ [0.17 km, 0.7 km] (25)

f
(
log(tf )

)= 1√
(2πσ 2

f )
exp

(
−(

log(tf /t0)
)2/ 2σ 2

f ), (26)

f (μs) = random[μa μb] (27)

and f (bf ) = 1√
(2πσ 2

b )
exp

(
−

(
bf − b0

)2
/2σ 2

b

)
, (28)

respectively, where Eq. 25 is taken from [17]. The elastic
properties are kept fixed in these simulations. Heterogene-
ity of the friction coefficient plays a very important role
for the micro-seismic behavior and heterogeneity of frac-
ture aperture accounts for the varying flow resistance in the
network. The figures in Fig. 11 depict pressure (right) and
shear displacement (left) after two different time of simula-
tions. The top row figures are for the initial stage of failure
after 800 s and the bottom row figures are for simulations
after 1600 s. It can be observed that at the initial stage, the
fractures which are oriented to have least compressive and
shear strength undergo failure first. Even though these frac-
tures are not directly connected to the central well location
(indicated by black dot on the right of Fig. 11), a very small
pressure perturbation both via matrix and fracture fluid flow
leads to these initial seismic activities. Eventually, the pres-
sure build-up happens throughout the entire domain, and
this leads to failure of other fractures as well, as depicted in
the bottom row of Fig. 11. The simulation is based on the
PDFs (26), (27), and (28) of tf , μs , and bf , respectively. All
required parameters are given in Table 1. The b-value curves
of this fracture network, as depicted in the right plot of
Fig. 9, follow the Gutenberg-Richter law for moment mag-
nitudes greater than a specified minimum value. The latter
was introduced, since a finite grid resolution does not allow
for seismic moment estimation for arbitrarily small failing
segments.The b-values are estimated for different grid res-
olutions. It can be observed that the b-value curves follow

Fig. 12 Matrix pressure and matrix displacement components Ux and Uy are shown after 800 s (in the top row) and 1600 s (in the bottom row)
for the fracture network
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a linear decay in both cases with approximately the same
slope, which further confirms the convergence of the shear
failure model presented in this paper.

Figure 12 depicts the matrix fluid pressure and the matrix
displacement components after 800 s (in the top row) and
1600 s (in the bottom row) for the fracture network. For
better visualization, displacement components are depicted
relative to the initial displacement solution without any
shear failure.

5 Conclusions

A numerical method is presented which can deal with
fractures embedded in a damaged matrix. Shear slip, dis-
placement, shear, and flow are consistently coupled, which
allows to simulate flow induced shear failure. Thanks to a
hierarchical fracture representation and discontinuity basis
functions, the numerical method can be applied without
conforming the grid around the fractures. Grid convergence
of the shear relaxation model for the friction properties
is demonstrated for fluid pressure, slip, and aperture. The
method uses a poroelastic formulation for flow-mechanics
coupling via a fixed stress approach.

The method was also used to study a fractured reser-
voir with heterogeneous friction properties, and it can be
observed that micro-seismicity due to shear slip follows the
Gutenberg-Richter law for moment magnitude. The results
show grid-independent solutions for b-value slope for single
fracture and fracture network problems.
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Appendix 1

The discretized (with the finite volume method) system of
equations is described in this Appendix 1. An interaction
region of matrix and fracture nodes is depicted in Fig. 13.
Assuming that the discretization parameters are the same in
both directions, the length of the square interaction region
is h = �x = �y. The symbols [e, w, n, s] indicate the
bounding area of each finite volume segment within this
interaction region, which contributes to the stress flux or
force applied on each of the four interacting finite volume
segments. The integrated stress can further be obtained from
the integrated strain value along the boundary lines of each
finite volume segment using the constitutive relation (2). In
order to obtain the integrated strain field along the bounding

s s
ew

n

s

Fig. 13 The illustration of the interaction region of basis functions
along with the fracture dof and matrix dof. The left figure describes the
interaction region for a mechanics problem with no poroelastic effects.
The right figure depicts the location where matrix pressure node is
stored for the poroelastic stress-strain relation

areas and the fracture line, a smooth displacement field is
defined using bilinear basis functions corresponding to each
matrix nodes. A local coordinate system is considered in
this interaction region with origin at node u1. Using this
local coordinate system, the bilinear basis functions cor-
responding to each of the four matrix nodes are given as
follows:

N1(x, y) =
(
1 − x

h

) (
1 − y

h

)
, (29)

N2(x, y) = x

h

(
1 − y

h

)
, (30)

N3(x, y) = x

h

y

h
, and (31)

N4(x, y) = x

h

(
1 − y

h

)
. (32)

The integrated displacement derivative along the bound-
ing areas of [e,w, n, s], used in the strain estimation, can
now be estimated using the basis functions and matrix node
displacement dof as follows:
⎡
⎢⎢⎢⎣

Dx,x/y
e

Dx,x/y
w

Dx,x/y
n

Dx,x/y
s

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

(1/4) (1/4)
(1/4) (1/4)
(1/8) (3/8)
(3/8) (1/8)

⎤
⎥⎥⎦

[
(u

x/y

2 − u
x/y

1 )

(u
x/y

3 − u
x/y

4 )

]
and

(33)

⎡
⎢⎢⎢⎣

Dy,x/y
e

Dy,x/y
w

Dy,x/y
n

Dy,x/y
s

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

(1/8) (3/8)
(3/8) (1/8)
(1/4) (1/4)
(1/4) (1/4)

⎤
⎥⎥⎦

[
(u

x/y

4 − u
x/y

1 )

(u
x/y

3 − u
x/y

2 )

]
. (34)

In Eq. 33, the termsDx,x/y
e andDy,x/y

e are defined as follows:

Dx,x/y
e =

∫

e

∂ux/y

∂x
dx (35)

and Dy,x/y
e =

∫

e

∂ux/y

∂y
dx. (36)
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The presence of a fracture line in the interaction region
makes it necessary to define the displacement discontinu-
ity due to shear slip along the fracture manifold, which is
achieved with the discontinuity basis function (17). Using
the bilinear basis functions (29), (30), (31), and (32), the
contributions of each term NJ

p (x)HJ
p (f J (x)) for p ∈

1, 2, 3, 4 are obtained and depicted on the left of Fig. 2. The
full discontinuity basis function, i.e., the sum of the four
individual contributions, is depicted on the right of Fig. 2.
An important property of this discontinuity basis function is
that its gradient is continuous across the fracture line. This
allows to obtain the displacement derivative for this basis
function in the limit of approaching the fracture line. This
property therefore can be used to obtain the contribution of
discontinuity dof in the force balance equation for each of
the matrix node and in the force constraint equations along
the fracture line. The contributions of displacement discon-
tinuity to the integrated displacement derivative calculation
along the bounding areas are given as follows:
⎡
⎢⎢⎢⎣

D̃x,x/y
e

D̃x,x/y
w

D̃x,x/y
n

D̃x,x/y
s

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

(tx/ys/4) (tx/ys/4)
(tx/ys/4) (tx/ys/4)
(tx/ys/8) (3tx/ys/8)
(3tx/ys/8) (tx/ys/8)

⎤
⎥⎥⎦

[
(H2 − H1)

(H3 − H4)

]
and

(37)

⎡
⎢⎢⎢⎣

D̃y,x/y
e

D̃y,x/y
w

D̃y,x/y
n

D̃y,x/y
s

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

(tx/ys/8) (3tx/ys/8)
(3tx/ys/8) (tx/ys/8)
(tx/ys/4) (tx/ys/4)
(tx/ys/4) (tx/ys/4)

⎤
⎥⎥⎦

[
(H4 − H1)

(H3 − H2)

]
.

(38)

In Eq. 37, the terms D̃x,x/y
e,w,n,s represent the corrections of

the integrated displacement derivative calculation due to
shear slip. The first superscript x refers to to x directional
derivative. The second superscript x/y refers to the x or
y directional component of the displacement. Further, Hp,
with p ∈ {1, 2, 3, 4}, represents the value of function (17)
at any point within the interaction region excluding the
fracture manifold. The variable tx/y represents the x or y

directional component of the tangential vector along the
fracture manifold. The variable s represents the shear slip
discontinuity along the fracture manifold. Jointly, Eqs. 33,
34, 37, and 38 provide the contributions of each matrix
node displacement and fracture node displacement to the
discretized form of force balance Eq. 14.

The compressive and shear forces along the fracture man-
ifold can be obtained using the integrated displacement
derivative along the fracture line. The contributions of each
matrix node to this integrated displacement derivative is
given as follows:

⎡
⎣

Dx,x/y
L

Dy,x/y
L

⎤
⎦ =

⎡
⎢⎣

(L/h)
(
1 − (Cy/h)

)
0

(CyL/h2) 0
0 (L/h) (1 − (Cx/h))

0 (CxL/h2)

⎤
⎥⎦

T
⎡
⎢⎢⎣

(u
x/y

2 − u
x/y

1 )

(u
x/y

3 − u
x/y

4 )

(u
x/y

4 − u
x/y

1 )

(u
x/y

3 − u
x/y

2 )

⎤
⎥⎥⎦ . (39)

In Eq. 39, the term Dx,x/y
L represents the integrated value of

the derivative with respect to x for the displacement com-
ponents in x or y direction. The variables L, Cx , and Cy

respectively represent the length of the fracture segment,
and the local x and y coordinates of the fracture centre

within the interaction region. Equation 39 is used to calcu-
late the integrated compressive and shear traction forces on
the fracture manifold. The correction of the integrated dis-
placement derivative calculation along the fracture segment
due to the discontinuity dof is obtained as follows:

⎡
⎣

D̃x,x/y
L

D̃y,x/y
L

⎤
⎦ =

⎡
⎢⎣

(L/h)
(
1 − (Cy/h)

)
(tx/ys) 0

(CyL/h2)(tx/ys) 0
0 (L/h) (1 − (Cx/h)) (tx/ys)
0 (CxL/h2)(tx/ys)

⎤
⎥⎦

T ⎡
⎢⎣

(H2 − H1)

(H3 − H4)

(H4 − H1)

(H3 − H2)

⎤
⎥⎦ . (40)

Jointly, Eqs. 39 and 40 provide the contribution of each
matrix and fracture node displacement to the discretized
form of force constraint Eq. 13. Together, force balance
and force constraint equation constitute the linear system to
be solved for matrix and fracture displacement dof. In the
poroelastic domain, the matrix pressure pm also contributes
to the poroelastic constitutive stress-strain relation (8).
The matrix pressure values of the coupled flow-mechanics

system are represented between the matrix displacement
nodes, as depicted on the right of Fig. 13. This results in
a staggered grid approach with different nodes for matrix
pressure and displacement values. Further, the displace-
ment divergence calculation in the discretized form of Eq. 9
is obtained using the displacement basis functions, matrix
displacement dof, and fracture displacement discontinuity
dof.
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Figure 14 depicts an illustration of deriving the dis-
cretized force balance equation for the displacement u11
at a node. The use of bilinear basis functions lead to a 9-
point stencil for the central node. In order to obtain the
applied forces at the volume boundaries, the stress com-
ponents are integrated along the green dotted line. Using
Eq. 2, the stress components can be replaced by integrated
displacement derivatives along the volume boundaries. The
integrated value of displacement derivative corresponding to
an interaction region is marked with the subscript ij, which
indicates the south western node of the interaction region.
As an example, the contribution to the integrated value of
the displacement derivative along the southern green dotted
line, due to the four corner matrix node dofs, in the interac-
tion region with the south western node u11 is denoted by
Dx/y,x/y
s,11 . The contribution of shear slip in the calculation of

the displacement derivative for the same line is denoted by
D̃x/y,x/y
s,11 . The integrated form of force balance (14) in each

x and y direction (for a 2D problem) is obtained as follows:

∫

d�

(σ̃xx − bp) dy +
∫

d�

σ̃xydx +
∫

�

fxd� = 0 and (41)
∫

d�

(
σ̃yy − bp

)
dx +

∫

d�

σ̃xydy +
∫

�

fyd� = 0, (42)

where σ̃ij represents the individual components of the effec-
tive stress tensor σ̃ . The terms fx and fy , in Eqs. 41 and
(42), respectively, represent the individual components of
the body force f. Further, replacing the effective stress term
using the stress-strain relation (2), the force balance is given
as

∫

d�

(
(λ + 2G)

∂ux

∂x
+ λ

∂uy

∂y
− bp

)
dy

+
∫

d�

G

(
∂ux

∂y
+ ∂uy

∂x

)
dx +

∫

�

fxd� = 0 and (43)
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Fig. 14 The illustration of 9-point stencil for the finite volume dis-
cretization of force balance equations for the displacement node
marked as u11

∫

d�

(
(λ + 2G)

∂uy

∂y
+ λ

∂ux

∂x
− bp

)
dx

+
∫

d�

G

(
∂ux

∂y
+ ∂uy

∂x

)
dy +

∫

�

fyd� = 0. (44)

Replacing each of the displacement derivatives with the
integrated form for the rectangular boundary surrounding
the center node, the force balance equation in x direction is
obtained as follows:

(λ + 2G)
(
Dx,x
s,11 + D̃x,x

s,11 − Dx,x
s,01

)
+ λ

(
Dy,y
s,11 + D̃y,y

s,11 − Dy,y
s,01

)

+ (λ + 2G)
((

Dx,x
n,10 + D̃x,x

n,10

)
−

(
Dx,x
n,00 + D̃x,x

n,00

))

+ λ
((

Dy,y
n,10 + D̃y,y

n,10

)
−

(
Dy,y
n,00 + D̃y,y

n,00

))

+ G
((

Dx,y
w,11 + D̃x,y

w,11

)
−

(
Dx,y
w,10 + D̃x,y

w,10

)
+

(
Dy,x
w,11 + D̃y,x

w,11

)
−

(
Dy,x
w,10 + D̃y,x

w,10

))

+ G
(
Dx,y
e,01 −

(
Dx,y
e,00 + D̃x,y

e,00

)
+ Dy,x

e,01 −
(
Dy,x
e,00 + D̃y,x

e,00

))

+ 0.5b�y
((

pm
01 + pm

00

) − (
pm
11 + pm

10

)) + fx�V = 0. (45)

Similarly, the force balance equation in y-direction is
obtained as follows:

(λ + 2G)
((

Dy,y
w,11 + D̃y,y

w,11

)
−

(
Dy,y
w,10 + D̃y,y
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)
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)
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(
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+ G
((
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)
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(
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)
− Dy,x
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)

+ G
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n,10

)
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(
Dx,y
s,00 + D̃x,y

s,00

)
+

(
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(
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+ 0.5b�x
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pm
10 + pm

00

) − (
pm
11 + pm

01

)) + fx�V = 0. (46)

�V in Eqs. 45 and 46 is the area of the rectangular region
surrounding the center node. It has to be mentioned that the
additional contribution to the integrated value of the dis-

placement derivative
(
D̃x/y,x/y
e/w/n/s,ij

)
appears in the discretized

force balance (45) and (46) only if the interaction region
contains a fracture manifold dof. Using the constitutive rela-
tion (2) and (3b) in Eq. 13, the force constraint relation
becomes

G
(
n2y − n2x

) ∫ L

0

(
∂uy

∂x
+ ∂ux

∂y

)

+ 2Gnxny

∫ L

0

(
∂ux

∂x
− ∂uy

∂y

)
=

∫ L

0
τmax, (47)

where nx and ny respectively represent the x and y direc-
tional component of unit vector n̂, normal to the fracture
manifold. Using the integrated value of the displacement
derivative along the fracture manifold, the force constraint
equation for a fracture segment in the interaction region
with the south western grid node Xij is obtained as
follows:

G
(
n2y − n2x

) ((
Dx,y
L,ij + D̃x,y

L,ij

)
+

(
Dy,x
L,ij + D̃y,x

L,ij

))

+ 2Gnxny

((
Dx,x
L,ij + D̃x,x

L,ij

)
−

(
Dy,y
L,ij+ D̃y,y

L,ij

))
=Lτmax. (48)
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In the finite volume formulation, the mass balance (9) is
integrated over a finite volume segment centered around
each pressure node. The integrated mass balance equation
for a discretized finite volume � is given as follows:

1

M

∂
(∫

�
pmd�

)

∂t
+ b

∂
(∫

d�
u · dA

)

∂t

−
∫

d�

(
κm

μ
· ∇pm

)
· dA +

∫

�

(
�m→f − qm

)
d� = 0. (49)

For the rectangular finite volume centered around the pres-
sure node Xm

11, the Eq. 49 simplified to

�V

M

dpm
11

dt
+ b

d

dt

⎛
⎝∑

f c

u · �A

⎞
⎠ −

∑
f c

(
κm

μ
· ∇pm

)
· �A

+
(
Cmf

(
pm
11 − p

f

11

)
− qm

)
�V = 0, (50)

where Cmf is the mass transfer coefficient between matrix
volume and the fracture segment, and f c represents a rect-
angular boundary line for the finite volume centered around
the node Xm

11. The use of bilinear basis functions simpli-
fies the area integral of the displacement calculation along a
rectangular boundary to u ·�A, where u is the displacement
average of the nodes connecting the boundary line. The inte-
gration of the discontinuity basis function (17) along the
boundary is zero. Therefore, the shear slip dof has no direct
contribution to the discretized mass balance (50). Details
of mass balance equation for the fracture manifold can be
obtained from [18] and details of Cmf can be found in [2].

The displacement derivative terms in the discretized
force balance (45) and (46), and the force constraint rela-
tion (48) are replaced using Eqs. 33, 34, 37, 38, 39,
and 40 to obtain the final force balance and force con-
straint equations in terms of matrix displacement dof,
matrix pressure dof and shear slip dof which are given as
follows:

K̃xxUx + K̃xyUy + C̃xsS = Bx − C̃xmPm, (51)

K̃xyUx + K̃yyUy + C̃ysS = By − C̃ymPm, (52)

and C̃ssS + C̃sxUx + C̃syUy = Bs , (53)

where each matrix K̃ij accounts for the contribution of
the displacment gradient component in j -direction for the
force balance in i-direction. The matrices C̃xs and C̃ys

account for the contribution of shear slip in the calcu-
lation of the integrated displacement derivative given as
D̃x/y,x/y
e/w/n/s,ij. The matrices C̃xm and C̃ym account for the

contribution of matrix pressure in the calculation of force
balance (45) and (46). The matrix C̃ss in Eq. 53 corre-
sponds to the contribution of shear slip in the calculation
of the integrated displacement derivative along the fracture

manifold
(
D̃x/y,x/y
L,ij

)
. Finally, the matrices C̃sx and C̃sy

in Eq. 53 account for the contribution of x and y direc-
tional matrix displacement components in the calculation
of the integrated displacement derivative along the fracture

manifold
(
Dx/y,x/y
L,ij

)
. The discretized mass balance equa-

tions for the matrix and the fracture manifolds in terms of
matrix and fracture dofs are given as follows:

M̃mmPm + M̃f mPf = Bm − M̃mxUx − M̃myUy (54)

and M̃ffPf + M̃mfPm = Bf . (55)

The matrices M̃mm and M̃ff corresponds to the contribu-
tion of the matrix pressure node and fracture dofs in the
discretized mass balance equations for matrix and fracture
node, respectively. The matrices M̃f m and M̃mf account
for mass transfer between discretized matrix finite volume
and the fracture manifold. The matrices M̃mx and M̃my

account for the contribution of matrix displacement nodes in
the calculation of volumetric strain in the discretized mass
balance (50). Trilinos ML package [19] has been used to
solve this coupled system using the fixed stress approach
for the sequential solution of pressure and displacement
values.

Appendix 2

The dipping fault solutions using Volterra’s formula provide
analytical solutions for free surface displacement compo-
nents due to a constant displacement discontinuity along a
fault placed at a depth d with a dip angle δ with respect
to horizontal and a width w. This solution is used to

d
δ

(x, 0)

q

p

w

Fig. 15 The figures depicts the set-up for the analytical dipping fault
solution using Volterra’s formula
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Fig. 16 The figures depict comparison between numerical and analytical solutions of free surface displacement due to a fault placed at a depth
of d with dip angle δ and width w

provide a benchmark for the numerical solutions imposed
by a constant shear slip along the fault using XFVM.
Figure 15 provides the set-up for the simulation. The val-
ues of d, δ, and w are respectively 11.87 km, 1350, and
8.84 km. Free surface at the upper and lower domain
boundaries and the anlytical displacement values at the top
left and right corners are applied. The analytical solution
decays linearly to zero at the bottom left and right cor-
ners of the domain. The analytical solution is obtained from
[20] as

F(η) =
[
cos δ tan−1

(
η

q

)
−

(
qη cos δ + q2 sin δ

q2 + η2

)]
, (56)

G(η) =
[
sin δ tan−1

(
η

q

)
+

(
q2 cos δ − qη sin δ

q2 + η2

)]
, (57)

ux = − s

π
(F (p − w) − F(p)) and (58)

uy = s

π
(G(p − w) − G(p)) . (59)

Here, the variable q represents the normal distance from a
point (x, 0) on the surface to the fault manifold. In Eqs. 56
and 57, the term η represents a function variable. The vari-
able p represents the signed distance from the upper end
of the fault to the projection of the point (x, 0) on the fault
manifold.

Figure 16 compares the numerical results for two dif-
ferent grid resolutions with the analytical solution of the
displacement components. The numerical solutions con-
verge to the analytical one with increasing grid resolution.
These results verify the use of XFVM to obtain fracture
slip-dependent displacement solutions.
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