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S U M M A R Y
Parametrized convection, which has long been used to reconstruct the thermal history of
planetary mantles, is based on scaling relationships between observables (including heat
flux) and controlling parameters (the most important being the Rayleigh number, Ra). To
explore the influence of spherical geometry on heat transfer, we have conducted two series
of numerical experiments of thermal convection (one with bottom heating and the other
with mixed heating) in an isoviscous spherical shell with various curvatures. Using these
calculations and a generalized non-linear inversion, we then derive scaling laws for the average
temperature and for the surface heat flux. In the case of bottom heating, we found that the non-
dimensional average temperature is given by θm = f 2/(1 + f 2), where f is the ratio between
the core and total radii. The non-dimensional surface heat flux is fitted well by Nutop =
0.36 f 0.32 Ra(0.273+0.05f ) θ0.6

m . This scaling indicates that the available heating power decreases
with increasing curvature (decreasing f ). There exist strong trade-offs between the inverted
parameters, that is, different sets of parameters explain our calculations well within error bars.
For mixed heating, the non-dimensional average temperature and surface heat flux are well
explained by θH = θm + (1.68 − 0.8 f )[(1 + f + f 2)/3]0.79 h0.79/Ra0.234, where h is the
non-dimensional rate of internal heating, and Nutop = 0.59 f 0.05 Ra(0.300−0.003f ) θ1.23

H . Due to a
competition between the radiogenic and convective powers, and for given values of h and Ra,
there is a curvature for which the Urey ratio reaches a minimum. Applied to the Earth’s mantle,
the mixed heating scaling predicts a Urey ratio between 0.4 and 0.6, depending on the Rayleigh
number. Additional parameters, including the thermal viscosity ratio, phase transitions, the
presence of dense material in the deep mantle, and variability of the flow pattern in time, may
enter an appropriate modelling of the Earth’s mantle thermal history.

Key words: Mantle processes; Dynamics: convection currents, and mantle plumes; Heat
generation and transport; Planetary interiors.

1 I N T RO D U C T I O N

Convection is the most efficient process of heat and mass transfer
through planetary mantles. Reconstruction of the thermal history
of planetary mantles requires a good description of the heat flux
that can be accommodated by these mantles and released at the sur-
face. A major difficulty in this reconstruction is that the Rayleigh
number (the vigour of convection) is likely varying with time, ei-
ther because mantle temperature was higher in the past (Archean
Earth’s mantle), or because the thickness of the convective layer in-
creases with time (icy moons of giant planets). Furthermore, there
still exist large uncertainties in the physical properties (e.g. the
average viscosity, the thermal expansion, and the thermal diffusiv-
ity) of planetary mantles, and calculations with specific values of
these parameters may not correctly describe the dynamics of these
mantles. Despite the constant increase in computational power, the

calculation of high-resolution convection models with 3-D spheri-
cal geometry is still time consuming, and a full reconstruction of
the thermal evolution accounting for time variation in the Rayleigh
number and uncertainties in the mantle properties would require an
excessive computational time in 3-D spherical geometry. Note that
calculations in 2-D spherical annulus (Hernlund & Tackley, 2008)
are a promising alternative to model the evolution of planetary man-
tle, since they require much less computational resources than 3-D
spherical calculations and predict heat transfer that compare well
with those observed in 3-D spherical geometry. A more general
method that has been extensively used to reconstruct the thermal
evolution of planetary mantles is parametrized convection (e.g. for
early studies, Sharpe & Peltier, 1978; Schubert et al. 1979; Davies,
1980; Stevenson et al. 1983). This method is based on the man-
tle energy balance and the use of scaling relationships for various
observables (including the surface heat flux), and it uses simple
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and time sparing numerical methods. In the case of the Earth, how-
ever, plate tectonics may trigger changes of mantle flow patterns
in time, and simple scaling laws fail to describe the mantle’s ther-
mal evolution (Labrosse & Jaupart, 2007). Despite this limitation,
parametrized convection remains a good strategy to describe plan-
etary mantle evolution to the first order. Furthermore, scaling laws
provide a more general framework that can be applied to various
planets (including hypothetical super-Earths) or moons rather than
to one specific body, and that is essential to better understand the
influence of individual parameters.

Thermal boundary layer (TBL) analysis provides a theoretical
background to scaling laws, which are often considered as empiri-
cal relationships. This analysis is based on the balance between the
convective and conductive heat flux at the boundary between the
TBL and the bulk of the fluid. Cold descending slabs and hot rising
plumes are generated from local instabilities in the top and bottom
TBL, respectively. For an isoviscous fluid in Cartesian geometry,
TBL analysis predicts that the heat flux scales as the Rayleigh num-
ber to the power 1/3 (Moore & Weiss, 1973; Turcotte & Schubert,
1982). This prediction has been extensively verified by numerical
studies (e.g. Jarvis & Peltier, 1982; Christensen, 1984; Schubert &
Anderson, 1985), but with a Rayleigh exponent b slightly smaller
than 1/3 (most studies have found values of b between 0.31 and
0.32). Similar analyses were used for other setups, in particular for
a mixed heated fluid in 3-D Cartesian geometry (Sotin & Labrosse,
1999; Choblet & Parmentier, 2009), and for a strongly temperature-
dependent viscosity fluid in 2-D Cartesian geometry (Deschamps &
Sotin, 2000). It should be noted, however, that the TBL analysis was
developed asymptotically at very high Rayleigh number. Labrosse
(2002), and more recently Moore (2008), argued that for a system
with small (<109) Rayleigh number, the cold sinking slabs play a
significant role in the growth of instabilities in the bottom TBL.

Planetary mantles are spherical shells, and it is important to un-
derstand the influence of spherical geometry on the heat flux scaling
laws. Vangelov & Jarvis (1994) and Jarvis et al. (1995) performed
calculations in axisymetric spherical shells with various curvatures.
Using a TBL analysis, they showed that at any curvature the Nus-
selt number in spherical geometry can be deduced from the Nusselt
number in Cartesian geometry, provided that the aspect ratio of
the flow (defined as the ratio of the distance between neighbour-
ing plumes at mid-depth to the shell thickness) is similar in both
geometries. Ratcliff et al. (1996) conducted experiments in a spher-
ical shell with Earth’s mantle curvature for tetrahedral and cubic
flow patterns, and for both isoviscous and slightly temperature-
dependent viscosity fluids. They found that the Nusselt number
slightly depends on the pattern, and proposed that the Nusselt num-
ber scales as the ratio between the Rayleigh number of the fluid
layer and the Rayleigh number for the onset of convection. Iwase
& Honda (1998) found that for a spherical shell with a curvature
similar to that of the Earth’s mantle the Rayleigh number exponent
of the Nusselt number scaling law is similar to that in Cartesian
geometry. Still in the case of a spherical shell with Earth’s mantle
curvature, Reese et al. (1999, 2005) derived heat flux scaling in
the case of stagnant lid convection (i.e. for a fluid with large ther-
mal viscosity ratios), and found only small differences compared
to the Cartesian case. More recently, Shahnas et al. (2008) and
Wolstencroft et al. (2009) proposed scalings for mixed and basal
heating, respectively.

In this paper, we calculated models of isoviscous thermal con-
vection for both basal and mixed heating in spherical geometry,
from which we derive scaling laws that explicitly account for the
spherical shell curvature.

2 N U M E R I C A L M O D E L L I N G

The numerical experiments reported in this study were performed
with STAGYY (Tackley, 2008), a spherical version of STAG3D
(Tackley, 1998). We solved the conservation equations of mass,
momentum, and energy for an incompressible, isoviscous, infinite
Prandtl number fluid in a spherical shell modelled by a yin-yang
grid. At each depth, the yin-yang grid consists of two strips of equal
size, which are combined like the two patches of tennis ball to
generate a spherical surface (Kageyama & Sato, 2004). The strips’
geometry induces small overlaps at the strips boundaries. STAGYY
uses the minimum overlap defined by Kageyama & Sato (2004),
in which the cells located at the corners of one strip, which are
entirely contained within the other strip, are deleted. Each strip is
used to calculate the boundary conditions for the other strip. In our
calculations, the strips have a resolution of either 384 × 128 or
192 × 64 points. The vertical resolution is 64 points, and the grid
is refined at the top and at the bottom of the shell to model TBLs
more accurately. The shell thickness D is taken as unit length, and
the ratio f of the core radius to the total radius of the sphere can be
written

f = Rc

Rc + D
= rc

1 + rc
, (1)

where Rc and rc are the dimensional and non-dimensional core
radius, respectively. The curvature of the convecting spherical shell
is thus inversely proportional to f . As rc → ∞, f → 1, that is,
the geometry of the system tends to 3-D Cartesian. The second
important parameter in our experiments is the Rayleigh number,
which measures the vigour of convection and is defined by

Ra = αρg�T D3

ηκ
, (2)

where α, ρ, η and κ are the fluid thermal expansion, density, viscos-
ity and thermal diffusivity, g is the gravitational acceleration and
�T is the superadiabatic temperature difference between the bottom
and the top of the shell. Scalar and vectorial quantities are calcu-
lated at the centre and on the side of each cell, respectively. The
surface and core–mantle boundaries are free slip and isothermal.
We considered two modes of heating. In one series of experiments,
the fluid is heated from below and cooled from the top. In a second
series, the fluid is heated both from below and from within, and
cooled from the top. In the latter case, an additional input parameter
is the non-dimensional rate of internal heating,

h = ρH D2

k�T
, (3)

where H is the internal heating rate per unit mass, and k the ther-
mal conductivity. At each time step, the conservation equations are
solved using a Jacobi relaxation method. To speed up the conver-
gence of the momentum and pressure equation, we used a multi-
grid algorithm (e.g. Stüben & Trottenberg, 1982). Time stepping
(in the conservation of energy) is achieved by an explicit MPDATA
(Smolarkiewicz, 1984) algorithm for advective terms, and a second-
order finite difference scheme for diffusive terms. The initial condi-
tion for the temperature consists of 3-D-random perturbations, and
the calculations are carried on until a stationary or quasi-stationary
state is reached. For quasi-stationary cases, we averaged the tem-
perature and heat flux over a time interval covering a significant
number of the average temperature oscillations.
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3 T H E R M A L B O U N DA RY L AY E R
A NA LY S I S

Heat transfer through a convective system is controlled by the prop-
erties of the TBLs that develop in this system. TBLs transfer heat
by conduction, and the limit between a TBL and the bulk of the
convective system may be defined as the place where the radial
conductive and advective heat transfers are balancing. Using this
definition, and noting that for an infinite Prandtl number the vis-
cous and buoyancy forces are balancing everywhere in the system,
the non-dimensional heat flux across a TBL, Qadim, scales as (e.g.
Moore & Weiss, 1973; Sotin & Labrosse, 1999)

Qadim ∝ Ra1/3

(
δT

�T

)4/3

, (4)

where δT is the temperature difference across the TBL. Following
Howard (1966), the proportionality constant in eq. (4) is sometimes
expressed in terms of a TBL Rayleigh number, Raδ ,

Qadim =
(

Ra

Raδ

)1/3 (
δT

�T

)4/3

, (5)

where Raδ = αρgδT d3

ηκ
=

(
δT

�T

)(
d

D

)3

Ra, (6)

and d is the thickness of the TBL. Raδ can be understood as a
measure of the TBL stability. The larger its value, the more difficult
it is for instabilities to be generated and grow. In the asymptotic
limit, Raδ is a constant, but 2-D and 3-D numerical studies pointed
out that Raδ is a power law function of Ra,

Raδ = a0 Raβ, (7)

where the values of a0 and β depend on the properties of the sys-
tem, and in particular on the applied boundary conditions. Inserting
eq. (7) into eq. (5), one gets

Qadim = a Rab

(
δT

�T

)(1+b)

, (8)

where Qadim is the non-dimensional heat flux, a = a−1/3
0 (δT /�T )β

and b = (1 − β)/3.
In a system that is cooled on top and (at least partially) heated
from below, two TBLs are present, and eq. (8) leads to expressions
for the non-dimensional heat flux across the top and bottom TBLs
(hereafter called top and bottom Nusselt numbers, Nutop and Nubot),

Nutop = atop Rabtopθ
(1+btop)
m (9a)

and Nubot = abot Rabbot (1 − θm)(1+bbot) , (9b)

where θm is the non-dimensional average temperature of the sys-
tem. For a classical Rayleigh–Bénard system—Cartesian geometry,
isoviscous fluid, basal heating only, similar surface and bottom me-
chanical boundary conditions—the top and bottom thermal bound-
ary are symmetric, that is, that θm is equal to 0.5, atop = abot and
btop = bbot. Following eq. (6), the Rayleigh number of the top and
bottom TBL are equal, that is, that the abilities of the top and bottom
TBL to develop instabilities are similar. Additional complexities,
including spherical geometry, internal heating, and variations of the
fluid properties (viscosity, thermal expansion and thermal diffusiv-
ity) with temperature and/or depth, break this symmetry, and θm is
no longer equal to 0.5.

In spherical geometry, symmetry between the top and bottom
TBL is simply broken by the fact that their lateral extents are differ-
ent. Conservation of energy requires that the top and bottom power
are equal, which implies that heat flux is larger at the bottom of the
shell than at its top. If there is no internal heating, the conservation
of energy is thus written

Nutop

Nubot
= f 2. (10)

Assuming that the conditions atop = abot, and btop = bbot are still
valid, that is, that the Rayleigh number of the top and bottom TBL
are equal, and that β = 0 (i.e. (1 + b) = 4/3) as predicted by TBL
analysis, one gets an expression for the average non-dimensional
temperature as a function of f (Vangelov & Jarvis, 1994; Sotin &
Labrosse, 1999):

θm = f 3/2

1 + f 3/2
. (11)

The presence of internal heating, in addition to the basal heating,
modifies the relative strength of the TBLs (i.e. their ability to de-
velop instabilities). The strength of the bottom TBL decreases as the
amount of internal heating increases, that is, ascending plumes are
less vigorous and the heat transfer is less efficient (e.g. McKenzie
et al. 1974; Travis & Olson, 1994; Sotin & Labrosse, 1999;
McNamara & Zhong, 2005). The conservation of energy must ac-
count for the internal source of heating, and the non-dimensional
top and bottom heat flux, Nutop and Nubot, now follow:

Nutop = f 2 Nubot +
(
1 + f + f 2

)
3

h. (12)

Sotin and Labrosse (1999) pointed out that TBL analysis cannot
be applied to the bottom TBL, but is still valid to describe the top
one. They suggest that in 3-D Cartesian geometry the average non-
dimensional temperature is the sum of the temperatures for bottom
and internal heating, and scales as

θH = 0.5 + C
h3/4

Ra1/4
. (13)

They found that C = 1.236 fit well their numerical experiments. By
analogy with eq. (13), Sotin & Labrosse (1999) propose a scaling
for spherical geometry

θH = f 3/2

1 + f 3/2
+ C( f )

(
1 + f + f 2

3

)3/4
h3/4

Ra1/4
, (14)

where C(f ) is a coefficient that depends on f only and is equal to
1.236 for f = 1. Note that the f polynomial in the expression of
the temperature for internal heating results from the conservation
of energy.

It should be noted that TBL analysis is an asymptotic theory and
that heat transfer is dominated by TBL instabilities for high enough
Rayleigh number only. The calculations of Lenardic & Moresi
(2003) showed the TBL regime is valid for Rayleigh number of
at least 109. For the range of Rayleigh numbers usually considered
in planetary mantles studies (104–108), Labrosse (2002) and Moore
(2008) suggested that the interaction between the sinking slabs and
the bottom TBL plays a significant role in the heat transfer. Using
2-D and 3-D Cartesian calculations with free-slip boundaries and
mixed heating, Choblet & Parmentier (2009) showed that the hot
plumes rising from the bottom TBL modify the vertical velocity
structure close by the top TBL, which in the case pure basal heating
results in a 20–30 per cent decrease in the temperature difference
across the top TBL compared to the scaling expected for a pure vol-
umetric heating. This is consistent with eq. (7), which introduces a
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slight departure from the TBL analysis and imposes the Rayleigh
exponent of the heat flux scaling to be slightly lower than 1/3 (typ-
ically by 0.01 in the case of isoviscous, bottom heated convection).
The heat transfer through the fluid layer is less efficient than pre-
dicted by the asymptotic TBL theory, which may be explained by
the fact that the arrival of cold slabs (hot plumes) at the bottom
(top) of the fluid slightly reduces the amount of heat that can be
injected in (extracted from) the system. From that point of view,
eq. (7) quantifies the interaction between plumes (or slabs) and
TBLs.

4 B O T T O M H E AT E D F LU I D

We conducted a total of 60 numerical experiments with bottom
heating and the setup described in Section 2, varying the ratio f
of the core to total radii between 0.3 and 0.8, and the Rayleigh
number between 104 and 107 (Table 1). Figs 1 and 2 plot tem-
perature isosurfaces and slices for various Rayleigh numbers and
various f , and give qualitative information about the influence of
each of these two parameters. With increasing Ra, the vigour of
convection increases, and for a fixed value of f , the number of
plume increases and the plumes becomes thinner (Fig. 1). With
increasing f (decreasing curvature) the surface area of the bottom
boundary increases, which allows the formation of a larger num-
ber of hot plumes (Fig. 2). For f = 0.4, thermal plumes have a
spherical harmonics degree 1 distribution, that is, one plume only is
generated (Figs 2a and b). For f = 0.8, on the contrary, we observe
10 plumes with an irregular distribution (Figs 2e and f). These re-
sults are consistent with linear stability analysis for a spherical shell
(Chandrasekhar, 1961; Zebib et al. 1983) and numerical experi-
ments in spherical geometry (Schubert et al. 1990; Behounkova &
Choblet, 2009), which suggests that due to the increase in aspect
ratio, the wavelength of the preferentially generated structures de-
creases with increasing f . Temperature profiles in Fig. 3(a) indicate
that the average temperature decreases with decreasing f (increas-
ing curvature), as previously pointed out by Jarvis et al. (1995) for
an isoviscous fluid, and more recently for a temperature-dependent
viscosity fluid (Behounkova & Choblet, 2009). This is related to the
fact that the power available at the base of the shell is decreasing
with decreasing f . To obtain more quantitative information that can
be used to study the thermal evolution of a planetary mantle, it is
essential to derive scaling laws for the temperature and the heat
flux.

4.1 Temperature

A close examination at the average temperatures listed in
Table 1 shows that our experiments do not follow eq. (11) (com-
pare, for instance, the calculated temperatures at f = 0.4, 0.6 and 0.8
with the expected ones, 0.202, 0.317 and 0.417, respectively). Our
values are smaller than those predicted by eq. (11) by 20 per cent
on average, and the difference decreases as f increases, which is
consistent with the fact that geometry tends towards 3-D Cartesian
as f converges to 1. The increasing disagreement with decreasing
f may be explained by the fact that the flow pattern converges to a
spherical harmonics degree 1 distribution as f goes to zero (Jarvis
et al. 1995). Shahnas et al. (2008) have also reported departure from
eq. (11), and noted that their data are better explained by

θm = f 2

1 + f 3/2
. (15)

Table 1. Bottom heating: average temperature and surface Nusselt number.

f Ra Resolution θm Nutop

0.30 104 192×64×64×2 0.089 0.843
– 3.2×104 192×64×64×2 0.073 1.142
0.35 104 192×64×64×2 0.109 1.062
0.40 104 192×64×64×2 0.132 1.292
– 105 192×64×64×2 0.145 2.354
– 2.1×105 192×64×64×2 0.140 2.946
– 4.6×105 192×64×64×2 0.134 3.748
– 106 192×64×64×2 0.122 4.713
– 2.0×106 384×128×64×2 0.138 6.181
– 4.7×106 384×128×64×2 0.135 8.021
– 107 384×128×64×2 0.132 10.098
0.45 104 384×128×64×2 0.184 1.467
– 105 192×64×64×2 0.172 2.913
– 106 384×128×64×2 0.178 6.090
0.48 106 384×128×64×2 0.185 6.470
0.50 104 192×64×64×2 0.212 1.851
– 3.2×104 192×64×64×2 0.205 2.494
– 105 192×64×64×2 0.199 3.447
– 3.2×105 192×64×64×2 0.200 5.028
– 106 384×128×64×2 0.189 7.153
0.54 4.7×105 384×128×64×2 0.220 6.273
– 106 384×128×64×2 0.215 8.127
– 2.0×106 384×128×64×2 0.213 9.799
– 4.7×106 384×128×64×2 0.210 12.749
– 107 384×128×64×2 0.211 16.086
0.55 104 192×64×64×2 0.222 2.128
– 2.1×104 192×64×64×2 0.237 2.564
– 4.6×104 192×64×64×2 0.235 3.162
– 105 192×64×64×2 0.235 4.071
– 2.1×105 192×64×64×2 0.222 5.141
– 106 384×128×64×2 0.218 8.281
0.60 104 192×64×64×2 0.265 2.414
– 105 192×64×64×2 0.266 4.689
– 106 384×128×64×2 0.259 9.491
0.65 104 192×64×64×2 0.299 2.713
– 105 384×128×64×2 0.299 5.102
– 106 384×128×64×2 0.289 10.850
0.70 104 192×64×64×2 0.322 2.992
– 2.1×104 192×64×64×2 0.313 3.602
– 4.6×104 192×64×64×2 0.329 4.625
– 105 192×64×64×2 0.312 5.834
– 2.1×105 192×64×64×2 0.315 7.442
– 106 384×128×64×2 0.326 12.150
0.74 104 384×128×64×2 0.356 3.111
– 2.1×104 384×128×64×2 0.352 3.993
– 4.6×104 384×128×64×2 0.348 5.006
– 105 384×128×64×2 0.352 6.334
– 4.6×105 384×128×64×2 0.348 10.421
– 106 384×128×64×2 0.356 13.688
0.75 104 192×64×64×2 0.357 3.298
– 105 384×128×64×2 0.360 6.465
– 106 384×128×64×2 0.358 13.64
0.80 104 192×64×64×2 0.388 3.587
– 3.2×104 192×64×64×2 0.376 4.892
– 105 384×128×64×2 0.383 7.024
– 3.2×105 192×64×64×2 0.377 10.379
– 106 384×128×64×2 0.384 15.178
– 2.0×106 384×128×64×2 0.382 18.491
– 4.7×106 384×128×64×2 0.380 24.139
– 107 384×128×64×2 0.379 30.551
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Thermal convection scalings in spherical geometry 141

Figure 1. Effect of the Rayleigh number. The curvature is f = 0.55 (rc = 1.222), and the Rayleigh number is equal to 104 (top row), 105 (middle row), and
106 (bottom row). The left column shows isosurfaces of the non-dimensional temperature. From top to bottom, the blue and red contour levels are T = 0.005,
0.0075 and 0.015, and T = 0.55, 0.55 and 0.50, respectively. The right-hand column shows slices of the non-dimensional temperature (scale indicated below).
The green contours levels on the slices are from 0.0 to 1.0 with interval of 0.1.

eqs (11) and (15) are two particular cases of a more general family
of functions of f ,

θm = α f β1

1 + (2α − 1) f β2
, (16)

which satisfy the boundary conditions on temperature (θm→ 0.5 for
f → 1 and θm→ 0 for f → 0). To determine the values of α, β1 and

β2, we inverted the temperature listed in Table 1 according to eq.
(16), using a generalized non-linear inversion method (Tarantola &
Valette, 1982), and an a posteriori analysis (Sotin, 1986;
Appendix A) including the calculation of a χ 2 (eq. A4) to check the
validity of the inversion. This approach has previously been used
to infer scaling relationships for temperature and Nusselt number
(Sotin & Labrosse, 1999; Deschamps & Sotin, 2000). Note that
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142 F. Deschamps, P. J. Tackley and T. Nakagawa

Figure 2. Effect of the curvature. The Rayleigh number is Ra = 105, and the curvature is equal to 0.4 (rc = 0.667, top row), 0.6 (rc = 1.5, middle row), and
0.8 (rc = 4.0, bottom row). The left column shows isosurfaces of the non-dimensional temperature. From top to bottom, the blue and red contour levels are
T = 0.005, 0.010 and 0.017, and T = 0.55, 0.55 and 0.60, respectively. The right-hand column shows slices of the non-dimensional temperature (scale indicated
below). The green contours levels on the slices are from 0.0 to 1.0 with interval of 0.1.

given uncertainties in the observables, the non-linear generalized
inversion provides uncertainties in the parameters. Inversion indi-
cates that our data are best explained for α = 1.0 ± 0.2, β1 = 2.0
± 0.12 and β2 = 2.0 ± 0.10, that is,

θm = f 2

1 + f 2
. (17)

Fig. 4 compares the observed (red circles) and modelled (dashed
black curve) values of θm. Modelled and observed temperatures
differ by 1.6 per cent on average. Errors in the modelled θm were
calculated from the a posteriori errors in the parameters (Table 3),
and are represented by the grey dashed area in Fig. 4. Note that the
expression proposed by Shahnas et al. (2008) (eq. 15, blue curve in
Fig. 4) and the calculations of Jarvis et al. (1995) (green squares)
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Figure 4. Observed (red dots) and modelled (dashed black curve and grey
shaded area) internal temperature in the bottom heating case. The grey
shaded area covers one error bar around the inverted scaling relationship
(eq. 17), and error bars were calculated from a posteriori errors in the
inverted paramaters (Table 3). For comparison, the green squares plot the
calculations of Jarvis et al. (1995), and the plain black and blue curves show
the temperature predicted by TBL analysis (Sotin & Labrosse, 1999) and by
the calculations of Shahnas et al. (2008), respectively.

fall within our error bars, but that eq. (11) (thick black curve) does
not.

Assuming that the temperature drops in the top and bottom TBLs
are given by θm and (1 − θm), respectively, and combining eqs. (5),
(10) and (17), the ratio between the Rayleigh numbers of the top
and bottom TBLs can be written

Raδ,top

Raδ,bot
= f 2. (18)

If one understands the TBL Rayleigh number as a critical value
for instabilities to grow in the TBL, eq. (18) indicates that hot
instabilities (rising from the bottom TBL) are more difficult to

generate than cold instabilities (sinking from the top TBL), and that
this discrepancy increases with increasing curvature (decreasing f ).
An alternative interpretation considers the TBL Rayleigh numbers
as local Rayleigh numbers. According to this view, eq. (18) leads
to the opposite conclusion, that is, the bottom TBL is more active
than the top one.

4.2 Heat flux

For a bottom heated fluid, the input and output powers are equal, and
spherical geometry implies that the heat flux is larger at the bottom
of the shell than at its top. The non-dimensional top and bottom heat
flux, Nutop and Nubot, hereafter called surface and bottom Nusselt
numbers, are related by eq. (10). In addition, for comparison with
previous studies (Jarvis et al. 1995; Ratcliff et al. 1996; Shahnas
et al. 2008), it is convenient to define the Nusselt number by

Nu = Nutop

f
= f Nubot, (19)

which is equivalent to spread the power transported by convection on
a sphere of radius r = √

rc(1 + rc). In this study, we independently
calculated the top and bottom Nusselt numbers, Nutop and Nubot,
checked that they verify the energy conservation (eq. (10)), and
inverted our Nutop values (Table 1) for an appropriate scaling law.
Scaling relationships for Nubot and Nu can be deduced from the
Nutop scaling and from eqs (10) and (19), respectively.

The relationship we inferred for temperature (eq. 17) suggests
that the parameters in eq. (9) may explicitly depend of the curvature
(note that eq. 9 implicitly depend on curvature through the temper-
ature, θm), and that they may be different for the top and bottom
TBL. It is not unreasonable to assume that the pre-exponential fac-
tor, a, is different for the top and bottom TBL and may depend on f .
On the contrary, different values of the Rayleigh number exponent,
b, for the top and bottom TBL would make it difficult to satisfy
the conservation of energy (eq. 10), which our experiments obey
very well. Our experiments suggest that b is indeed similar for the
top and bottom Nusselt number, but that it slightly depends on f .
Finally, one may consider the possibility that the internal tempera-
ture exponent, c, is not equal to (1 + b). Following these remarks,
eq. (9a) can be rewritten

Nutop = a1 f a2 Ra(b1+b2 f )θ c
m . (20)
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Assuming that θm is given by eq. (17), we have inverted our ob-
served Nutop (Table 1) for the five parameters in eq. (20), and found
that c strongly trades off with a2 and, to a lesser extent, with a1.
This result is not surprising given eq. (17). A more straightforward
expression for Nutop would be to write the product a = a1 f a2θ c

m as
the ratio of two polynomials of f . eq. (20) has however the advan-
tage to explicitly relate the surface Nusselt number to the internal
temperature. The minimum χ2 is obtained for a1 = 0.36 ± 0.04,
a2 = 0.32 ± 0.4, b1 = 0.273 ± 0.007, b2 = 0.05 ± 0.01 and c =
0.6 ± 0.2, but other solutions with slightly larger χ 2 also explain
our calculations well within error bars. A specific solution may be
chosen by fixing a range of values for c, provided that the χ 2 remains
reasonable (i.e. comparable to the number of experiments, 60 in our
case) within this range. For instance, when fixing the temperature
exponent to c = 4/3 ± 0.1, as suggested by TBL analysis, we found
that a1 = 0.50 ± 0.05, a2 = −1.0 ± 0.2, b1 = 0.257 ± 0.007 and
b2 = 0.08 ± 0.01, with a good χ 2 (Table 3). Whatever the curvature,
the two scalings we proposed differ from one another by less than
10 per cent for Rayleigh numbers in the range 103–109.

For comparison and presentation of the results it is convenient to
define a reduced Nusselt number, in which the dependence on f has
been balanced,

Nur = Nutop

f a2 Rab2 f θ c
m

= a1 Rab1 . (21)

The reduced Nusselt number is then a power law of the Rayleigh
number. Fig. 5 compares our calculations (red dots) and the scal-
ing obtained for the minimum χ2 (dotted curve and shaded area).
Modelled and observed Nusselt number differ by 4.0 per cent on
average. Note that within error bars, our scaling for the surface heat
flux also explains the results of Jarvis et al. (1995) (green squares),
Ratcliff et al. (1996) (brown triangles) and Wolstencroft et al. (2009)
(blue diamonds). Similarly, the scaling obtained by fixing c to 4/3
explains our calculations and those of Jarvis et al. (1995), Ratcliff
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Figure 5. Reduced Nusselt (eq. 21) number as a function of Rayleigh num-
ber in the bottom heating case. The Nusselt number is calculated from
eq. (20) and the minimum χ2 values of the parameters (Table 3). Red
dots represent our calculations, and the green squares, brown triangles
and blue diamonds those of Jarvis et al. (1995), Ratcliff et al. (1996) and
Wolstencroft et al. (2009), respectively. Note that the Nusselt number listed
in these studies correspond to the definition of Nu in eq. (19), and must
be multiplied by f for comparison with our Nutop. The grey band covers
one error bar around the value predicted by inversion (black dashed curve).
Error bars were calculated from the a posteriori uncertainties in a2, b2 and c
(Table 3), and assuming an a priori 3 per cent error on the calculated Nutop.

et al. (1996) and Wolstencroft et al. (2009) very well. Note that
our scaling law explains the calculations of Ratcliff et al. (1996),
but differs from the scaling law proposed by these authors for f =
0.55. Part of the disagreement is due to the fact that Ratcliff et al.
(1996) built their scaling laws using both isoviscous and slightly
temperature-dependent viscosity (up to a ratio of 30) fluids. Most
of the discrepancy, however, may result from the fact that we try to
fit experiments with flow patterns having different aspect ratio to
one single scaling law (see discussion in Section 7).

Scalings for the bottom Nusselt number can be deduced from
eqs (10) and (20). However, to validate our inversion procedure, it
is important to directly invert our observed values of Nubot for an
independent relationship. Following the same approach as for Nutop,
we assumed that the internal temperature θm is given by eq. (17),
and that Nubot fits well along

Nubot = a1 f a2 Ra(b1+b2 f ) (1 − θm)c . (22)

Again, strong trade-offs exist between a1, a2 and c. The minimum
χ 2 solution is a1 = 0.37 ± 0.04, a2 = −0.35 ± 0.08, b1 = 0.274 ±
0.007, b2 = 0.05 ± 0.01 and c = 0.6 ± 0.2, which is fully consistent
with eq. (10) and the minimum χ 2 solution found for Nutop. In
particular, note that the Rayleigh number and temperature exponents
(b1, b2 and c) are unchanged. Fixing c to 4/3 ± 0.1, we found a1 =
0.50 ± 0.05, a2 = −0.33 ± 0.09, b1 = 0.257 ± 0.007 and b2 = 0.08
± 0.01, with χ 2 = 52.6. Again, this specific solution is consistent
with eq. (10) the scaling found for Nutop and c = 4/3.

5 M I X E D H E AT I N G

Mixed heating is better suited to model convection and heat transfer
in planetary mantles. Sources of internal heating include the decay
of radiogenic elements, the mantle’s secular cooling (Krishnamurti,
1968; Daly, 1980; Choblet & Sotin, 2000), and tidal heating (e.g.
Galilean moons). Calculations in various geometries showed that
the flow pattern and heat transfer are very sensitive to the relative
amount of bottom and internal heating (Travis & Olson, 1994;
Sotin & Labrosse, 1999; McNamara & Zhong, 2005; Shahnas et al.
2008). Increasing the volumetric heating rate h reduces the strength
of the bottom TBL. Hot plumes are less vigorous and, if h is large
enough, they may not reach the surface (Labrosse, 2002). The heat
transfer through the convective layer is less efficient than in the
bottom heating case, and the average temperature of the bulk interior
increases.

We performed 56 numerical experiments with mixed heating in
spherical geometry, varying f , Ra and the non-dimensional rate
of internal heating h (eq. (3)) (Table 2). Note that the grid size is
384 × 128 × 64 × 2 in all calculations. Fig. 6 plots tempera-
ture slices for a few cases. In agreement with previous studies, the
average temperature increases as h increases, hot plumes are less
vigorous, and the geotherm is sub-adiabatic over a thicker layer
(Fig. 3b). For h = 40 and Ra = 105, the geotherm is subadiabatic
throughout most of the shell thickness and the bottom TBL has dis-
appeared, that is, the convective shell does not extract heat from the
core. Following Sotin & Labrosse (1999), we assumed that the inter-
nal temperature θH can be explained by the sum of the temperature
for bottom heating, θm, and a term that depends on h. In spherical
geometry, this additional term also depends on the curvature, and
the internal temperature can be written

θH = θm + (α1 + α2 f )

(
1 + f + f 2

3

)β
hβ

Raγ
. (23)
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Table 2. Mixed heating: average temperature and surface Nusselt
number.

f Ra h θH Nutop

0.40 104 5.0 0.486 3.740
– 104 20.0 1.159 10.290
– 104 40.0 1.763 19.629
– 3.2 × 104 40.0 1.418 20.028
– 105 5.0 0.324 4.815
– 105 10.0 0.473 7.001
– 105 20.0 0.721 11.342
– 105 30.0 0.915 15.840
– 105 40.0 1.120 20.602
– 105 50.0 1.309 25.419
– 3.2 × 105 40.0 0.896 21.491
– 106 5.0 0.245 7.466
– 106 20.0 0.474 13.747
– 106 40.0 0.724 22.836
0.50 105 5.0 0.388 6.019
– 105 10.0 0.549 8.331
– 105 20.0 0.804 12.940
– 105 30.0 0.995 17.625
– 105 40.0 1.215 22.892
0.55 104 5.0 0.603 4.492
– 104 20.0 1.278 11.743
– 3.2 × 104 20.0 1.024 12.602
– 105 20.0 0.848 13.735
– 3.2 × 105 20.0 0.708 15.342
– 106 20.0 0.593 17.644
– 104 40.0 1.938 22.276
– 3.2 × 104 40.0 1.560 23.112
– 105 40.0 1.257 24.056
– 3.2 × 105 40.0 1.021 25.538
– 106 40.0 0.839 27.691
– 105 50.0 1.461 29.510
0.60 105 5.0 0.457 7.261
– 105 10.0 0.632 9.659
– 105 20.0 0.884 14.472
– 105 30.0 1.085 19.528
– 105 40.0 1.306 25.197
0.70 105 5.0 0.523 8.560
– 105 10.0 0.706 10.879
– 105 20.0 0.955 15.979
– 105 30.0 1.165 21.655
– 105 40.0 1.397 27.523
0.80 104 5.0 0.766 5.921
– 104 20.0 1.436 14.432
– 104 30.0 1.821 20.505
– 104 40.0 2.206 26.734
– 3.2 × 104 40.0 1.805 28.205
– 105 5.0 0.593 9.722
– 105 10.0 0.776 11.982
– 105 20.0 1.025 17.418
– 105 30.0 1.255 24.528
– 105 40.0 1.489 29.809
– 105 50.0 1.711 36.390
– 3.2 × 105 40.0 1.214 31.980
– 106 5.0 0.475 18.183
– 106 20.0 0.753 24.146
– 106 40.0 0.982 35.596

Grid size is 384×128×64×2 for all calculations

Shahnas et al. (2008) introduced a more complex expression for
the coefficient C (eq. 14), assuming that it depends on the Rayleigh
number. Here, we prefer to remain close to the expression predicted
by TBL analysis (eq. 14), and assume that C is a linear function
of f . Our inversion procedure treats the Rayleigh exponent γ as

a free parameter, and thus insures that any dependence of C on
the Rayleigh number will be accounted for. The choice to impose
the same exponent β to the geometric factor (1 + f + f 2)/3 and
to the internal heating rate h was dictated by the conservation of
energy (eq. 12) at the limit of very high internal heating (Nubot =
0). Assuming that θm is given by eq. (17), we have inverted the
temperature in Table 2 for the parameters in eq. (23), and found
that α1 = 1.68 ± 0.07, α2 = −0.8 ± 0.04, β = 0.779 ± 0.006 and
γ = 0.234 ± 0.003. With these values, and within error bars, Eq.
(23) explains well our calculations (red dots in Fig. 7) and those
from Shahnas et al. (2008) (blue dots in Fig. 7). The relative differ-
ence between modelled and observed temperatures is 0.6 per cent
on average, with a maximum of 2.0 per cent. Average and maxi-
mum discrepancies between our scaling and the results of Shahnas
et al. (2008) are 0.8 and 2.8 per cent, respectively. In 3-D Cartesian
geometry, the average temperature for isoviscous convection with
mixed heating is well described by θH = 0.5 + 1.02h0.729/Ra0.232

(Sotin & Labrosse, 1999). The value of C predicted by our scal-
ing for f = 1 is slightly smaller than the value found by Sotin &
Labrosse (1999) (0.87 ± 0.11 instead of 1.02), but this is compen-
sated by a slightly larger exponent of the internal heating rate (0.779
± 0.006 instead of 0.729). As a result, our scaling for f = 1 ex-
plains very well the 3-D Cartesian calculations of Sotin & Labrosse
(1999) (green squares in Fig. 7). Sotin & Labrosse (1999) have also
inverted their results following TBL analysis (the internal heating
rate and Rayleigh number exponents are fixed to 3/4 and 1/4, respec-
tively, eq. 13) and found C = 1.236. Again, our value of C for f =
1 is smaller, but is compensated by a slightly larger exponent of the
internal heating rate and a slightly lower exponent of the Rayleigh
number. Within error bars, our scaling for f = 1 is fully consistent
with that predicted by TBL analysis in 3-D Cartesian geometry.

Using the same approach as in the bottom heating case, we have
then inverted the surface Nusselt numbers in Table 2 according to

Nutop = a1 f a2 Ra(b1+b2 f )θ c
H , (24)

where θH is given by eq. (23) and parameter values in Table 3.
Again, strong trade-offs exist between the parameters in eq. (24).
Unlike the bottom heating case, however, only a small range of
values of c explain our calculations well, that is, with a reasonable
χ2. Parameter values are overall less well constrained than in the
bottom heating case. The minimum χ 2 solution is obtained for a1 =
0.59 ± 0.06, a2 = 0.05 ± 0.15, b1 = 0.300 ± 0.01, b2 = −0.003 ±
0.02 and c = 1.23 ± 0.02. Fixing c to 4/3 ± 0.03 leads to solutions
with χ2 between 65 and 100. Fig. 8 compares the observed (red
dots) and modelled (dotted curve and grey shaded area) reduced
surface Nusselt number. Because uncertainties in the inverted values
of the parameters are large, we observe more dispersion than in
the bottom heating case. The relative difference between modelled
and observed Nusselt numbers is 2.0 per cent on average with a
maximum of 16 per cent (note that this difference is still within the
error bars of our scaling). Our scaling also explains the calculation
of Shahnas et al. (2008) for f = 0.547 (blue diamonds; note that the
Qs in their Table 4 correspond to our Nu = Nutop/f ).

The scaling laws we inferred for temperature (eq. 23) and the
surface heat flux (eq. 24 with minimum χ 2 values of the inverted
parameters) indicate that for a fixed value of h, both the average
temperature and surface heat flux increase with f . The temperature
decreases with increasing Rayleigh number, and this effect is am-
plified with increasing h. Also, note that the increase in surface heat
flux with f strongly increases with Rayleigh number.

One may point out that the scaling laws we inferred for bottom
and mixed heating are not continuous at h = 0. Sotin & Labrosse
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Figure 6. Effect of the rate of internal heating. Left and right columns show slices of the non-dimensional temperature (scale indicated below) for f = 0.50
(rc = 1.0) and f = 0.70 (rc = 2.333), respectively. The top row is for bottom heating only, and the middle and bottom rows for a non-dimensional rate of
internal heating h = 10, 20 and 40, respectively. The green contours levels on the slices are start from 0.0 with interval of 0.1 (top row), 0.2 (middle rows) and
0.4 (bottom row).
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Figure 7. Comparison between observed and modelled average tempera-
tures in the mixed heating case. Modelled temperatures are calculated from
eq. (23) with parameters value listed in Table 3. Red and blue dots rep-
resent our calculations and those from Shahnas et al. (2008), respectively.
Green squares show the 3-D Cartesian calculations of Sotin & Labrosse
(1999). The error bars are calculated from the a posteriori uncertainties in
the parameter values.

(1999) reported a similar disagreement in 3-D Cartesian geometry.
Whatever the curvature and the Rayleigh number, the scaling ob-
tained for mixed heating with h = 0 predicts a surface heat flux
lower than that predicted by the scaling for bottom heating. To in-
vestigate further this disagreement, we performed a joint inversion
of all the experiments for bottom heating Table 1) and mixed heating
(Table 2) following eq. (24). The minimum χ 2 solution is obtained
for a1 = 0.51 ± 0.03, a2 = −0.28 ± 0.08, b1 = 0.263 ± 0.007,
b2 = 0.05 ± 0.01 and c = 1.01 ± 0.07, but the minimum χ 2 is high,
around 330. Thus, assuming that the surface heat flux is described
by eq. (24), our experiments with bottom and mixed heating cannot
be explained by a single scaling law. This suggests that convection
undergoes two distinct regimes depending on whether volumetric
heating is present or not, that is, the flow pattern and the mechanism
that control the heat transfer are different. As the rate of volumetric
heating increases, instabilities in the bottom TBL are weakening
(if h is large enough, the bottom TBL even vanishes), and the
heat transfer is mostly controlled by instabilities in the top TBL
(Sotin & Labrosse, 1999).

6 I N F LU E N C E O F C U RVAT U R E O N
T H E H E AT T R A N S F E R T H RO U G H
P L A N E TA RY M A N T L E S

Because they do not account for important physical complexities
(see discussion in Section 7), our scaling laws may not be ideally
suited to study the cooling of the Earth’s mantle. However, they
allow studying the influence of curvature on the cooling of planetary
mantle, which we do in this section.

With eqs (20) and (24), we can estimate the heating power trans-
ported by convection as a function of the curvature and of the rate
of internal heating. For bottom heating, Fig. 9(a) indicates that for
a fixed value of the Rayleigh number, heat transfer becomes more

efficient with increasing f . This is consistent with the observation
that plumes are more easily generated with increasing f . In the case
of mixed heating, it is convenient to define the convective Urey ratio
between the volumetric heating, and the total surface power. For a
planet of radius Rp and core radius Rc, the Urey ratio can be written

Ur =
4π

3

(
R3

p − R3
c

)
Hρm

4π R2
p Fsur f

, (25)

where ρm the density of the mantle, Fsurf is the surface convective
heat flux and H is the internal heating rate per unit mass. Note
that the convective Urey ratio (eq. (25)) differs from the observed
Urey ratio, which is defined as the ratio between the radiogenic
heating power and the total surface heat flow. The convective and
observed Urey ratios are equal if the only source of internal heating
is radiogenic heating, but they may significantly differ if the contri-
bution of mantle secular cooling is important (i.e. if the mantle is
not in a statistically steady state). Using the definition of the non-
dimensional rate of internal heating (eq. 3), scaling the heat flux
as k�T /D (where D = Rp – Rc is the mantle thickness, and �T
the superadiabatic temperature difference across the mantle), and
noting that f = Rc/Rp, we obtain

Ur = h

Nutop

(
1 + f + f 2

3

)
. (26)

The Urey ratio measures the fraction of the surface power that
originates from internal heating, and its complement to one (1 – Ur)
measures the amount of energy that is extracted from the core and
transferred to the surface. This amount decreases with increasing
Urey ratio, and a Urey ratio larger than 1 indicates that convection
is not able to cool down the core (the bottom heat flux is negative).
Fig. 9(b) displays the Urey ratio (eq. 26) as a function of the Rayleigh
number, and for f = 0.55 and several values of h. As expected, the
Urey ratio increases with the rate of internal heating, that is, the
fraction of heat that can be extracted from the core and transferred
to the surface decreases with increasing h. More interestingly, for
fixed values of h and Ra, the Urey ratio reaches a minimum for a
value of f that increases with Ra (Fig. 9c) and decreases with h (not
shown here). Thus, given the thickness of a spherical shell (i.e. the
volume of the shell is only controlled by the radius of the core or
equivalently, f ), there is a ratio f 0 of core to total radii ratio for which
the heat transfer through this shell is largest. This effect results from
a competition between the total radiogenic power, which increases
with increasing volume of the shell (thus, with increasing Rc and
f ), and the convective heat flow, which increases with f . Note that
f 0 increases with Ra (because the convective heat flow increases
with Ra) and decreases with increasing h (because the radiogenic
power increases with h) (Fig. B1a). The values of f 0 and Urmin as
a function of Ra and h are calculated in Appendix B. If Ra is large
enough (e.g. > 107 for h = 20, Fig. 9c), the convective heat flow
remains dominant for all curvatures.

In the case of an isoviscous spherical shell with properties similar
to that of the Earth’s mantle (f = 0.55, D = 2891 km, k = 5.6 W m−1

K, �T = 2500 K, and ρm = 4500 kg m−3), thermal convection
can extract heat from the core and transport it to the surface for
non-dimensional rate of internal heating up to h = 60 for Ra = 106

and h = 120 for Ra = 107. Assuming that radiogenic heating is the
only source of internal heating (i.e. the Earth’s mantle is in steady
state), these values of h correspond to radiogenic heating between
H = 1.63 × 10−11 and 3.26 × 10−11 W kg−1, that is, much larger
than the estimated present-day value (H = 6.0 × 10−12 W kg−1).
Still neglecting the mantle secular cooling, the present-day value of
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Table 3. Scaling laws for internal temperature and surface heat flux in
spherical geometry.

Scaling Inverted parameters χ2a

Bottom heating
Average temperature (bottom heating)

θm = α f β1

1+(2α−1) f β2
α = 1.0 ± 0.20 55.4

β1 = 2.0 ± 0.12
β2 = 2.0 ± 0.10

Surface Nusselt number (minimum χ2)
Nu = a1 f a2 Ra(b1+ f b2)θ c

m a1 = 0.360 ± 0.040 40.7
a2 = 0.320 ± 0.400
b1 = 0.273 ± 0.007
b2 = 0.050 ± 0.010
c = 0.600 ± 0.200

Surface Nusselt number (c = 1.33 ± 0.1)

Nu = a1 f a2 Ra(b1+ f b2)θ
4/3
m a1 = 0.500 ± 0.050 51.0

a2 = −1.000 ± 0.200
b1 = 0.257 ± 0.007
b2 = 0.080 ± 0.010

Mixed heating
Average temperature (mixed heating)

θH = θm + (α1 + α2 f )
(

1+ f + f 2

3

)β
hβ

Raγ α1 = 1.680 ± 0.070 52.7

α2 = −0.800 ± 0.040
β = 0.779 ± 0.006
γ = 0.234 ± 0.003

Surface Nusselt number (minimum χ2)
Nu = a1 f a2 Ra(b1+ f b2)θ c

H a1 = 0.590 ± 0.060 50.4
a2 = 0.050 ± 0.150
b1 = 0.300 ± 0.010
b2 = −0.003 ± 0.020
c = 1.230 ± 0.020

Surface Nusselt number (c = 1.33 ± 0.03)

Nu = a1 f a2 Ra(b1+ f b2)θ
4/3
H a1 = 0.520 ± 0.080 82.8

a2 = 0.080 ± 0.160
b1 = 0.320 ± 0.016
b2 = −0.014 ± 0.020

aThe χ2 is defined in Appendix A, eq. (A4).
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Figure 8. Reduced Nusselt number as a function of Rayleigh number in the
mixed heating case. The Nusselt number is calculated from eq. (24) and the
minimum χ2 values of the inverted parameters (Table 3). Red dots represent
our calculations, and the blue diamonds those of Shahnas et al. (2008). The
grey band cover one error bar around the value predicted by inversion (black
dashed curve). Error bars were calculated from the a posteriori uncertainties
in a2, b2 and c (Table 3).

the non-dimensional rate of internal heating for the Earth mantle
is about h = 16, which leads to a Urey ratio between 0.43 for
Ra = 107 and 0.62 for Ra = 106. Table 4 lists numerical applications
for other planets. Note that the uncertainty in the radius of Mars’
core results in significant differences in the Urey ratio estimates. In
this case, our calculations indicate that the cooling increases with
increasing core radius.

Due to the formation of a stagnant lid at the top of the system, the
efficiency of heat transfer is significantly reduced when large ther-
mal viscosity ratios are present (e.g. Christensen, 1984; Moresi and
Solomatov, 1995; Deschamps & Sotin, 2000). Thus, if convection
in planetary mantles undergoes the stagnant lid regime, the Urey
ratios listed in Table 4 are underestimated. Note that compared to
the ‘pure’ stagnant lid regime, the heat transfer is slightly more effi-
cient when depth-dependent viscosity is also included in the models
(Dumoulin et al. 1999). In the case of the Earth, however, the stag-
nant lid regime is unrealistic because it would prevent plate tecton-
ics.

The Earth’s mantle Urey ratio predicted by our scaling is signif-
icantly larger than the observed one, which is currently estimated
to be between 0.2 and 0.4 (Korenaga, 2008). First, it should be
pointed out that our estimates are based on the convective Urey
ratio (eq. (25)), which is equivalent to the observed Urey ratio if the
Earth’s mantle is in steady state, but overestimates it if the contribu-
tion of mantle secular cooling to internal heating is important. The
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Table 4. Urey ratio estimates for various planets.

Planeta Rc (km) f �T (K) Ra h Ureyb

Earth 3480 0.55 2500 106–107 16 0.43–0.62
Mercury 1800 0.74 1500c 2.0 × 104–2.0×105 1 0.11–0.19
Mars 1500 0.44 1750d 3.0 × 105–3.0×106 8 0.41–0.58

1900 0.56 – 6.0 × 105–6.0×106 5 0.22–0.35
aThermal expansion, diffusivity, and conductivity of Mars and Mercury are
assumed similar to those of the Earth’s Mantle. We assumed ρm = 3800 and 3500
kg m−3 for Mars and Mercury mantle density, respectively, and the reference bulk
viscosity is assumed one order of magnitude smaller than for the Earth lower
mantle. We considered two values for Mars’ core radius corresponding to the
current lower and upper estimates.
bConvective Urey ratio. The secular cooling is neglected, and the only source of
internal heating is radiogenic heating with H = 6.0 × 10−12 W kg−1.
cExtrapolated from the Martian geotherm of Khan & Connolly (2008).
dFrom Khan & Connolly (2008).

presence of reservoirs of dense material enriched in radiogenic ele-
ments is buried in the deep mantle (Kellogg et al. 1999) may further
explain the disagreement between predicted and observed values.
For instance, assuming that these reservoirs are enriched in radio-
genic elements by a factor 10 and represent 10 per cent of the mantle
in volume, the observed Urey ratio would rise by a factor 2. An-
other possible explanation is that due to changes in the aspect ratio
of convection cells induced by change in the plate tectonic regime,
the mantle heat flux strongly fluctuates (up to 25 per cent), and its
long term average may be significantly lower than its present-day
value (Grigné et al. 2005; Labrosse & Jaupart, 2007). Similarly,
2-D Cartesian experiments with large aspect ratio and evolving
plate boundaries exhibit strong variations in surface and basal heat
flux (Gait & Lowman, 2007).

7 D I S C U S S I O N A N D C O N C LU S I O N S

Trade-offs between the parameters of eq. (20) for bottom heating
and eq. (24) for mixed heating indicate that there is not a unique so-
lution explaining our numerical experiments of thermal convection
in a spherical shell. The minimum χ 2 solutions significantly differ
from those predicted by TBL analysis. In the case of bottom heating,
a solution with a temperature exponent equal to 4/3 fits our calcu-
lations well, but the Rayleigh number exponent is still smaller than
1/3, as is also the case in 3-D Cartesian studies. These discrepancies
may be due to the fact that the top and bottom TBLs are interacting
with one another, that is, that the heat transfer in the bottom (top)
TBL is described by the superposition of TBL instabilities and of
slab (plume) arrivals (Labrosse, 2002; Moore, 2008). The change in
the vertical velocity structure with increasing fraction of basal heat-
ing observed by Choblet & Parmentier (2009) and its consequences
on the temperature drop across the top TBL further illustrates the
importance of plume/TBL interactions. In spherical geometry, the
role of these interactions, relative to that of the TBL instabilities,
is enhanced because of the geometrical asymmetry between the top
and bottom TBLs. Deviations from the TBL analysis may also be
related to the fact that the aspect ratio of the flow pattern changes
with curvature and Rayleigh number. Because the Nusselt number
slightly depends on the aspect ratio (Jarvis et al. 1995; Ratcliff
et al. 1996; Grigné et al. 2005), one different scaling law should
be designed for each aspect ratio, or the aspect ratio should be a
parameter of the scaling law. Our scaling laws, however, do not
explicitly depend on the aspect ratio of the flow pattern. The fact
that we try to fit all our experiments using a single scaling law may

partly explain the trade-offs we observe. Interestingly, differences
between the scaling laws for each aspect ratio are small (Ratcliff et
al. 1996), and overall the solutions we propose explain our calcula-
tions and those from previous studies very well. From that point of
view, our scaling laws can be understood as empirical descriptions
of heat transfer through an isoviscous spherical shell, and may thus
be used to study the influence of curvature on heat transfer.

Viscous flows in planetary mantles include more complexities
than the case of an isoviscous fluid studied in this paper. The ther-
mal viscosity ratio is an essential ingredient for planetary mantle
dynamics and heat transfer, a major effect of temperature-dependent
viscosity being to reduce the heat transfer through the planetary
mantles. The stagnant lid regime, obtained for large viscosity ra-
tios, yields a Rayleigh number exponent of the heat flux scaling
law between 0.20 and 0.26, depending on the study (Christensen,
1984; Moresi & Solomatov, 1995; Deschamps & Sotin, 2000). This
regime is suitable in the case of monoplate planets, for example,
Venus (Solomatov & Moresi, 1996), and icy moons of giant planets
(Deschamps & Sotin, 2001), but is unrealistic in the case of the
Earth, since it would prevent plate tectonics.

A key ingredient in the case of the Earth is plate tectonics. Plate
tectonics may modify the mantle flow pattern, including changes
in the aspect ratio, with the consequence that simple scaling laws
cannot properly model the thermal evolution of the mantle (Grigné
et al. 2005; Gait & Lowman, 2007; Labrosse & Jaupart, 2007).
Another parameter that may play a significant role in the case of
the Earth, is the presence of chemical heterogeneities at the bottom
of the mantle, as mapped by normal modes (Trampert et al. 2004).
Numerical models of thermochemical convection have shown that
chemical layering at the CMB plays an important role in reducing
core cooling (Nakagawa & Tackley, 2004a, 2005a). Similarly, the
survival of large pools of dense primitive material, as observed in
other numerical models (McNamara & Zhong, 2004; Deschamps
& Tackley, 2008, 2009) may have an influence on the average and
distribution in heat flux at the bottom of the mantle, and on the heat
transfer through the mantle layer. Furthermore, if these reservoirs
are richer than the regular mantle in radiogenic elements (Kellogg
et al. 1999), the present-day Urey ratio may be higher than what is
usually estimated (Korenaga, 2008).

Our models and scaling relationships also do not account for the
presence of phase transition(s) in planetary mantles. In the case
of the Earth, the endothermic phase transition to perovskite and
ferro-periclase strongly modifies the flow pattern by reducing the
mass exchange between the upper and lower mantles (e.g. Machetel
& Weber, 1991; Tackley et al. 1993). In thermochemical models

C© 2010 The Authors, GJI, 182, 137–154

Journal compilation C© 2010 RAS



150 F. Deschamps, P. J. Tackley and T. Nakagawa

N
u

1

10

100

30

3

(a)

Bottom heating

0.8

0.3

0.4

0.5

0.6

0.7

0.9

Mixed heating, f = 0.55

(b)

0.0

0.5

1.0

1.5

U
re

y

10
9

10
3

10
4

10
5

10
6

10
7

10
8

Ra

120

5

402010

10
9

10
3

10
4

10
5

10
6

10
7

10
8

Ra

60
80

0.0

0.5

1.0

1.5

U
re

y

0.0 0.2 0.4 0.6 0.8 1.0

f

Mixed heating, h = 20

(c)

104

105

106

107

108

109

Figure 9. Influence of the curvature and the fraction of internal heating on
the heating power transferred by convection through an isoviscous spherical
shell. (a) Nusselt number as a function of the Rayleigh number, and for
various values of f (labels on curves), in the case of bottom heating (eq.
20 and the minimum χ2 values of inverted parameters). (b) Urey ratio as
a function of the Rayleigh number, and for f = 0.55 and various values of
the non-dimensional rate of internal heating (labels on curves), in the mixed
heating case (eq. 24 and the minimum χ2 values of inverted parameters).
(c) Urey ratio as a function of curvature, and for h = 20 and various val-
ues of the Rayleigh number (labels on curves), in the mixed heating case
(eq. 24 and the minimum χ2 values of inverted parameters).

that include an initial layer of dense material (Deschamps &
Tackley, 2009) a 660-km phase transition with a Clapeyron slope of
−2.5 MPa K−1 strongly inhibits the rise of dense material above
the phase transition and reduces the surface heat flux by about

40 per cent. Depending on Mars’ core radius, which remains poorly
constrained, the phase transition from ringwoodite to perovskite and
magnesio-wüstite may be present or not in the Martian mantle. If
present, the layer of perovskite and magnesio-wüstite would be thin
(200 km at most), which may result in a decrease in the number of
hot rising plumes and in the efficiency of mantle and core cooling
(Breuer et al. 1998; Harder, 1998). In addition, 2-D-cylindrical cal-
culations of van Thienen et al. (2006) showed that strong localized
upwellings can be generated from a thin layer of perovskite. In the
case of the Earth, the phase transition to post-perovskite (Murakami
et al. 2004; Oganov & Ono, 2004) may also influence the mantle
dynamics, and thus the heat transfer through the Earth’s mantle
(Nakagawa & Tackley, 2004b, 2005b).

Heat transfer through the Earth’s mantle thus requires one to ac-
count for more complexities than curvature and volumetric heating.
Performing full studies and deriving scaling laws in spherical ge-
ometry for these parameters is however beyond the scope of this
paper.

Due to the limitations discussed above, the scaling relationships
derived in this paper may not be well suited to describe heat trans-
fer through the Earth’s mantle. However, they provide a good de-
scription of the influence of curvature on the heat transfer through
planetary mantles. Furthermore, they may be useful to model the
thermal history of icy moons of giant planets. An interesting finding
is that in the case of mixed heating, there exists an optimal curvature
for which the Urey ratio reaches a minimum, and whose value is
decided by the competition between the radiogenic power and the
predicted convective heat flow. Next steps should focus on build-
ing scaling laws for other parameters, most importantly the thermal
viscosity ratio, and on combining scaling relationships obtained for
different modes of convection to model the thermal history of the
Earth’s mantle.
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We are grateful to Gaël Choblet, Julian Lowman, an anonymous
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A P P E N D I X A : I N V E R S I O N ’ S
A P O S T E R I O R I A NA LY S I S

Throughout this study, we used the non-linear generalized inverse
method of Tarantola & Valette (1982) to invert our observations for
the parameters of the scaling laws following a theoretical model
(e.g. in this study, eqs. 16 or 23 for temperature or eqs 20 or 24
for heat flux). This iterative process is initiated by prescribing some
a priori knowledge on the parameters (approximate values, and
a priori error bars to search in). The inverse matrix is built from
the a priori covariance matrix (built from the uncertainties in the
observed data and the a priori uncertainties in the parameters) and
the matrix of the partial derivatives of the theoretical model. These
derivatives are recalculated at each iteration of the process. The
iterative process is stopped when the solution (parameter values) is
stationary. In addition to the parameter values, the inversion provides
an a posteriori covariance matrix,

C = C0 − C0 · FT · (
F · C0 · FT

)−1 · F · C0, (A1)

where C0 is the a priori covariance matrix, and F is the matrix of
partial derivatives at the last iteration of the inversion. Uncertainty
σ j

p in the jth parameter is calculated from the jth diagonal element
of the covariance matrix,

σ j
p = √

C j j . (A2)

The a posteriori analysis designed by Sotin (1986) allows an estima-
tion of the quality of the inversion. A first indicator is the distribution
of the difference between the observed and modelled data relative
to the observed uncertainties in the data,

ei
d =

(
di

mod − di
obs

)
σ i

obs

, (A3)

where di
obs and di

mod are the ith observed and modelled data, and
σ i

obs is the observed uncertainty on ith observed data. Uncertainties

originate both from small inaccuracies in the calculations (which
can be estimated from convergence tests) and, for quasi-stationary
cases, small oscillations around the average solution. Here, we as-
sumed a 3 per cent error on the Nusselt number and on the average
temperature for calculations listed in Tables 1 and 2 which is a
conservative estimate. The better the inversion, the closer its dis-
tribution in ed to a Gaussian distribution centred around the zero
value. Histograms in Fig. A1 show the distributions obtained for
the heat flux scaling laws discussed in this study. The minimum χ 2

solutions obtained for bottom heating (Fig. A1a) and mixed heat-
ing (Fig. A1c) explain well the observed data sets. In addition, the
solution obtained for bottom heating and c = 1.33 (Fig. A1b) also
explains well bottom heating data. By contrast, the solutions ob-
tained for the joint inversion of bottom heated and mixed heated
cases show strong dispersion in ed (Figs A1e and f), indicating that
these inversions fail to simultaneously explain the bottom heating
and mixed heating observations.

Second, the χ 2 function, which sums up the difference between
the observed and modelled data relatively to the uncertainties in the
observed data,

χ 2 =
N∑

i=1

(
di

mod − di
obs

)2

σ i
obs

2
, (A4)

provides a good indication of the quality of the inversion. Inversion
is considered as good if χ 2 ≤ 2N , where N is the number of data.
The χ2 obtained for the inversion performed in this study are listed
in Table 3. The inversion process leads to the set of parameters that
minimizes the χ 2. However, depending on the presence of trade-
offs between the inverted parameters, several sets of parameter may
satisfy the condition χ 2 ≤ 2N , and explain observations within their
error bar.

Finally, the off-diagonal elements of covariance matrix indicate
possible trade-off between the inverted parameters. Ideally, if the
parameters i and j are independent, the diagonal element Cij should
be equal to zero. The normalized element,

C̃i j = Ci j√
σ i

pσ
j
p

, (A5)

measures the degree of correlation between parameters i and j.
The correlation (anticorrelation) between the parameters i and j
increases as C̃i j gets closer to 1 (−1). In this study, inversions of the
observed surface heat flux for bottom heating (Table 1) following
eq. (20) indicate substantial trade-off between the parameters of this
relationship. Moderate trade-offs between the parameters of the heat
flux scaling for mixed heating (eq. 24) are also present.

A P P E N D I X B : M I N I M U M U R E Y R AT I O

The scaling laws we inferred for mixed heating ( eqs 23 and 24)
predict that given the Rayleigh number Ra and the non-dimensional
rate of internal heating h, the Urey ratio reaches a minimum for
a ratio f 0 of the core to total radii (Fig. 9c). The position of this
minimum depends on Ra and h, and can be calculated by deriving
eq. (26) with respect to f :

∂Ur

∂ f
= h

3Nutop

[
(1 + 2 f ) − (

1 + f + f 2
) ∂ ln

(
Nutop

)
∂ f

]
, (B1)

where Nutop is given by eq. (24) and

∂ Nutop

∂ f
= Nutop

[
a2

f
+ b2 ln (Ra) + c

∂ ln (θH )

∂ f

]
(B2)
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Figure A1. Normalized frequency of the relative error (eq. A3) in non-dimensional surface heat flux. (a) Inversion of bottom heating data
(Table 1) following eq. (20), minimum χ2 solution. (b) Inversion of bottom heating data (Table 1) following eq. (20) with c fixed to 1.33. (c) Inversion
of mixed heating data (Table 2) following eq. (24), minimum χ2 solution. (d) Inversion of mixed heating data (Table 2) following eq. (24) with c fixed to 1.33.
(e) Simultaneous inversion of bottom heating and mixed heated data following eq. (24), minimum χ2 solution. (f) Simultaneous inversion of bottom heating
and mixed heated data following eq. (24) with c fixed to 1.33.

∂θH

∂ f
= ∂θm

∂ f
+

(
1 + f + f 2

3

)β

× hβ

Raγ

[
α2 + (α1 + α2 f )

β (1 + 2 f )

(1 + f + f 2)

] (B3)

∂θm

∂ f
= αβ1 f (β1−1)

[1 + (2α − 1) f β2 ]2
(B4)

We solved eq. (B1) using a Newton–Raphson method and values
of the parameters obtained for the minimum χ 2 solutions of our
inversions (Table 3), that is, α = 1.0, and β1 = β2 = 2.0 for θm,
α1 = 1.68, α1 = −0.8, β = 0.779 and γ = 0.234 for θH and a1

= 0.59 a2 = 0.05, b1 = 0.3, b2 = −0.003, c = 1.23 for Nutop.
Results are shown in Fig. B1, which indicates that f 0 increases with
Ra, and decreases with increasing h. (Fig. B1a), and that the mini-
mum Urey ratio increases with h and decreases with increasing Ra
(Fig. B1b).
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Figure B1. (a) Ratio f0 of the core-to-total radii at the minimum Urey ratio, calculated by solving eq. (B1). Results are presented as a function of the Rayleigh
number and for several values of the non-dimensional rate of internal heating (labels on curves). (b) Minimum Urey ratio as a function of Rayleigh number,
and for several values of the non-dimensional rate of internal heating (labels on curves).
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