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Abstract

This work focuses on the magnetism of spin-1
2 moments in BiCu2PO6, which is believed to be described

by an effectively one-dimensional frustrated spin-ladder model. In accordance with this model, magnetic
order is induced by externally-applied magnetic fields. This phenomenon is studied both experimentally,
using nuclear-magnetic resonance (NMR) in high magnetic fields, and theoretically, through numerical
calculations. The corresponding methods, as well as other relevant concepts, are introduced in chapter
1. The subsequent presentation is divided into two parts.

Part I concerns selected developments related to NMR instrumentation. Besides serving as an illustration
of certain technical aspects of the method, these topics are considered interesting in their own right.

• In chapter 2, the development of an NMR spectrometer is reported. The design attempts to perform
a majority of the required signal processing in the digital domain. This simplifies the experimental
setup and allows for the use of general-purpose hardware. A firmware-defined solution, based on
a commercially-available radio-processor device, is adopted. The spectrometer is implemented
by writing suitable application software and extending the firmware of a field-programmable gate
array (FPGA). This approach is advantageous in terms of flexibility and reproducibility. Tests
demonstrate the suitability for typical condensed-matter NMR experiments.

• Chapter 3 concerns the construction of NMR probes for measurements at low temperatures. After
describing a more conventional probe, intended to be used in a 4He-flow cryostat, the design of an
NMR probe for a top-loading “cryogen-free” dilution refrigerator is presented. Selected aspects of
the accomplished work are reported, with a particular emphasis on the heat-sinking of the coaxial
transmission lines used for the high-frequency signals. Finally, remaining challenges and possible
solutions are discussed.

The main part of this work (part II) is dedicated to the aforementioned field-induced magnetic phases of
BiCu2PO6. A detailed introduction to this material is given in chapter 4.

Chapters 5 and 6 reconsider and extend previous estimates of the parameters (hyperfine couplings and
g-tensors) required for a quantitative description of the 31P-NMR spectra in BiCu2PO6. Moreover, the
effect of various parameters of the frustrated-ladder model on the magnetic susceptibility and specific
heat is examined through exact-diagonalization calculations. This includes possible Dzyaloshinskii-
Moriya (DM) interactions and site-dependent g-factors.

Chapter 7 presents density-matrix renormalization group (DMRG) calculations performed for the frus-
trated spin-ladder model. Numerical and physical consequences of ground-state degeneracy are consid-
ered in detail. The previously-reported appearance of long-range chiral correlations is confirmed, and
additional calculations clarify that the onset of chiral order coincides with the closing of a gap in the
magnetic-excitation spectrum (spin gap). The dependence of the chiral phase on the exchange couplings
is studied. The results suggest that, consistently with previous results for the related zigzag-chain model,
field-induced chiral order is generally observed in the frustrated spin ladder, provided magnetic frustra-
tion is strong enough to induce incommensurate correlations. Furthermore, the chiral phase is stabilized
with increasing rung coupling, and its occurrence is robust against symmetry-allowed DM interactions
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and site-dependent g-factors. Chiral order is known to be a precursor of spiral magnetic order (helical
magnetic order). By considering suitable correlation functions, the details of the expected spiral struc-
ture, including the distortions induced by various DM interactions, are studied.

Quantitative comparison between calculation results and published experimental data indicates that the
one-dimensional frustrated spin-ladder model is incomplete. In particular, only one field-induced phase
transition is predicted in the relevant range of magnetizations, whereas at least two transitions are ob-
served experimentally. While part of the discrepancies may be related to the neglect of interladder
couplings, it is argued that magnetoelastic effects are likely to play a decisive role in BiCu2PO6.

The results of 31P-NMR experiments performed in the field-induced phases of BiCu2PO6 are presented in
chapter 8. To my knowledge, these data represent the first microscopic local-probe measurements of the
field-induced magnetic order realized above approximately 35 T (for magnetic fields applied along the
b-axis of the crystal). Symmetry arguments and quantitative considerations show that the NMR data are
consistent with a spiral magnetic structure. Combined with other experimental reports, and the numerical
calculations performed in this work, this is interpreted as persuasive evidence for a previously-proposed
field-induced spiral order, and hence field-induced chirality, in BiCu2PO6.

Note that this work benefited from contributions from many individuals and sources (see Acknowledg-
ments for details).



Zusammenfassung

Diese Arbeit befasst sich mit dem Magnetismus der lokalen Spin-1
2 -Momente in BiCu2PO6, welche als

quasi-eindimensionale, frustrierte Spinleiter beschrieben werden, deren quantenmechanischer Grundzu-
stand eine Spinflüssigkeit ist. Externe Magnetfelder induzieren Phasenübergänge mit einhergehender
magnetischer Ordnung. In der vorliegenden Arbeit wird dieses Phänomen sowohl theoretisch, mit-
tels numerischer Berechnungen, als auch experimentell, mittels Kernspinresonanzspektroskopie (NMR-
Spektroskopie) in hohen Magnetfeldern, untersucht. Die entsprechenden Methoden werden in Kapitel 1
erläutert. Die darauffolgende Arbeit ist in zwei Teile untergliedert.

In Teil I werden ausgewählte technische Entwicklungen rund um die NMR-Spektroskopie beschrieben.
Im Hinblick auf den wissenschaftlichen Teil dieser Arbeit (Teil II), können diese auch als Veranschaulichung
diverser praktischer Aspekte der Methode aufgefasst werden.

• Kapitel 2 beschreibt die Entwicklung eines NMR-Spektrometers, welches im Gegensatz zu den
meisten konventionellen Systemen, die Aus- und Eingangssignale direkt abtastet, sodass ein Großteil
der Signalverarbeitung digital erfolgen kann. Der Einsatz leistungsfähiger Komponenten ermöglicht
eine Überabtastung bei typischen Signalfrequenzen. Dieser Ansatz erlaubt zudem die Verwen-
dung generischer, kommerziell erhältlicher Hardware. Somit werden sämtliche NMR-spezifischen
Funktionen mittels Software und programmierbarer Logik (field-programmable gate array, FPGA)
festgelegt, wodurch etwaige zukünftige Erweiterungen, sowie eine mögliche Replikation des Auf-
baus, vereinfacht werden. Auch wenn es sich hierbei nicht um die erste Implementierung eines
Systems dieser Art handelt, belegen die beschriebenen Testmessungen, dass die entwickelte Lö-
sung den speziellen Anforderungen der NMR-Spektroskopie in der Festkörperphysik gerecht wer-
den kann.

• Kapitel 3 behandelt NMR-Probenstäbe für den Einsatz bei tiefen Temperaturen. Die kurze Vorstel-
lung eines Probenstabes für einen 4He-Flusskryostaten dient dabei auch als Kontrast zum an-
schließend beschriebenen Entwurf eines Probenstabes für einen 3He-4He-Mischungskryostaten.
Eine Besonderheit des letzteren Projektes besteht darin, dass es sich um ein System mit “Toploading”-
Fähigkeit handelt, bei welchem kein direkter Kontakt zwischen Probe und Mischung vorgesehen
ist. Auf die Beschreibung der bereits umgesetzten Arbeit, mit besonderem Augenmerk auf der
Kühlung der Innenleiter der Hochfrequenzsignalleitungen zur NMR Spule, folgt ein Überblick
über die noch verbleibenden Herausforderungen sowie mögliche Lösungen.

Der Hauptteil dieser Arbeit (Teil II) ist den eingangs erwähnten feldinduzierten magnetischen Phasen
von BiCu2PO6 gewidmet. Kapitel 4 enthält eine detaillierte Beschreibung dieses Materials.

In den anschließenden Kapiteln 5 und 6 werden vormals beschriebene Analysen der für eine quanti-
tative Interpretation der 31P-Hochfeld-NMR-Spektren benötigten Kopplungsparameter (g-Tensoren und
Hyperfeinkopplungskonstanten) nachvollzogen und erweitert. Des Weiteren wird der Einfluss der ver-
schiedenen Austauschkonstanten des frustrierten Spinleitermodells auf die magnetische Suszeptibilität
und die spezifische Wärmekapazität numerisch, mittels exakter Diagonalisierung untersucht. Diese
Berechnungen beziehen mögliche Anisotropien, wie Dzyaloshinskii-Moriya-Wechselwirkung (DM) und
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positionsabhängige g-Tensoren, mit ein.

In Kapitel 7 werden die Ergebnisse von Dichte-Matrix-Renormierungs-Gruppen-Berechnungen (DMRG)
für das frustrierte Spinleitermodell vorgestellt. Der durch ein externes Magnetfeld induzierte Grundzu-
stand ist zweifach entartet, was wichtige numerische und physikalische Auswirkungen hat. Die Rech-
nungen bestätigen das zuvor beobachtete Auftreten langreichweitiger chiraler Korrelationen und zeigen,
dass dieses zeitgleich mit dem Schließen der Energielücke im Anregungsspektrum erfolgt. Die Unter-
suchung des Einflusses der Austauschkonstanten auf die chirale Phase deutet auf das Vorhandensein
einer solchen Phase in allen frustrierten Spinleitern mit ausreichend starker Frustration hin, im Einklang
mit früheren Ergebnissen für das verwandte Zickzack-Spinleiter-Modell. Der Stabilitätsbereich dieser
Phase wächst zudem mit der Sprossenkopplung. Des Weiteren ist die chirale Ordnung robust gegen
schwache bis mittelstarke DM-Wechselwirkungen sowie positionsabhängige g-Faktoren. Im Zusam-
menspiel mit Zwischenleiter-Kopplungen impliziert die chirale Ordnung im idealisierten, eindimension-
alen Modell üblicherweise die Entstehung klassischer Spiralstrukturen. Durch Berechnung geeigneter
Korrelationsfunktionen werden die erwarteten Spiralstrukturen, einschließlich der Auswirkungen der
DM-Wechselwirkung, im Detail untersucht.

Der quantitative Vergleich zwischen den Modellrechnungen und veröffentlichten Daten weist darauf hin,
dass das Modell unvollständig ist. Insbesondere prognostiziert das Modell nur einen Phasenübergang,
wohingegen experimentell mindestens zwei Phasengrenzen beobachtet werden. Auch wenn möglicher-
weise relevante Zwischenleiter-Kopplungen nicht in den Rechnungen berücksichtigt werden konnten,
werden diese Diskrepanzen als indirektes Indiz für eine wesentliche Rolle magnetoelastischer Kopplun-
gen in BiCu2PO6 interpretiert.

Die Ergebnisse der im Rahmen dieser Arbeit durchgeführten 31P-Hochfeld-NMR-Experimente an BiCu2PO6

werden schlussendlich in Kapitel 8 vorgestellt. Dabei handelt es sich, soweit bekannt, um die er-
sten mikroskopisch-aufgelösten lokalen Messungen in der oberhalb von etwa 35 T auftretenden feldin-
duzierten magnetischen Phase (für entlang der b-Kristallrichtung angelegte Magnetfelder). Symme-
triebetrachtungen, sowie phänomenologische, quantitative Modellierung zeigen, dass die NMR-Spektren
mit einer magnetischen Spiralstruktur konsistent sind. Unter Hinzunahme der o. g. numerischen Berech-
nungen, sowie unabhängiger experimenteller Ergebnisse, rechtfertigen diese Beobachtungen die Schlussfol-
gerung, dass BiCu2PO6, wie in vorausgehenden Arbeiten vorgeschlagen, in der entsprechenden Hochfeld-
phase tatsächlich eine magnetische Spiralstruktur annimmt, welche aus der in den Modellrechnungen
untersuchten feldinduzierten chiralen Phase erwächst.

Zuletzt sei an dieser Stelle noch ausdrücklich auf die sich am Ende dieser Arbeit befindenden Danksa-
gungen (Acknowledgments) hingewiesen.



Formal conventions

Citations

• No strict distinction between “cf.” and “see” (cf. , e. g. , [84]) is made in this work, and either word,
or none, can refer to similar, related, or underlying works. In particular, this includes cases in
which arguments developed, reenacted, or extended; or conclusions made in this work are similar
to, equivalent to, influenced by, or based on a given reference.

• Irrespectively of any possibly associated citation signals, references to sections, figures, equations,
or other elements of this work generally imply any sources directly or indirectly referenced within
these elements or within the context of these elements, even if explicit remarks like “and references
therein” are omitted for the sake of readability.

• For readability, citations (except footnotes) are typeset within punctuation, including citations
which apply to an entire sub-clause or sentence.

General notation Most of the notation used in this work should adhere to common conventions.
Potentially particular symbols are listed below.

• The canonical basis vector along a spatial direction k is denoted as ek.

• Unit vectors are denoted by v̂ “ ‖v‖´1v.

• The notation Bx is used as a short-hand for B{Bx.

Dates Numerical dates are formatted in either day-month-year or year-month-day formats.
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1 Introduction

This chapter introduces well-known general concepts required for this work. Section 1.1 illustrates
how strong electron correlations give rise to effective spin-Hamiltonians and anisotropic interactions.
Relevant model Hamiltonians are presented in section 1.3 and selected numerical methods are discussed
in section 1.4. The chapter concludes with an introduction to the experimental technique of nuclear
magnetic resonance (section 1.5).

Since the first part of this work (part I, chapters 2-3) describes selected technical developments, the
introduction of BiCu2PO6, which is at the focus of the scientific part of this work (part II), is postponed
to chapter 4.

1.1 Spin Hamiltonians

1.1.1 Effective Hamiltonians

Note that, while this introduction was initially motivated by reading the advanced discussions in [68,
179, 196, 275, 276, 359, 451], the arguments and definitions below are considered general knowledge
these days. Nonetheless, it is remarkable that essentially all aspects of what follows have already been
described by P. W. Anderson over fifty years ago [31]. Strongly correlated electron materials are typically
described within the tight-binding framework, using variants of the Hubbard Hamiltonian [178] (see also
[31, eqs. 6 and 9] and [68, eq. 2])

H “ ´
ÿ

xi,jy,σ

´

tij c
:

iσ cjσ ` H.c.
¯

loooooooooooooooomoooooooooooooooon

V

`U
ÿ

i

niÒniÓ
looooomooooon

H0

, (1.1)

with hopping integrals tij “ t˚ji and on-site repulsion U . The sum runs over pairs of sites xi, jy, without
double counting. The fermionic creation (annihilation) operators are denoted as c:iσ (ciσ) and niσ “
c:iσ ciσ. In the study of magnetic insulators, one considers the large-U limit, U " |tij |, and half filling,
i. e. , exactly one electron per lattice site. Then, V can be treated as a perturbation to H0.

The Hilbert space can be decomposed into eigenspaces Ωe of H0 with energies e. Here, e “ nU with
n P N0 denoting the number of doubly-occupied sites [68]. At half filling, for a lattice with N sites, a
basis of Ω0 is given by

|tσiuiy “
´

śN
i“1 c

:

iσi

¯

|0y ,

where |0y denotes the state containing no conduction-band electrons (vacuum). Thus, each basis state is
fully specified by the choice of the spin configuration tσiui, which allows the states to be reinterpreted
as Sz-basis states of an effective spin model [68]. Using spin operators Sαi “ c:iβσ

βγ
α ciγ ,1 second-order

1This standard definition (see, e. g. , [68, eq. 3]) is a straightforward reformulation of [31, eq. 16].

1
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perturbation theory yields the well-known anti-ferromagnetic Heisenberg super-exchange Hamiltonian
[31, eq. 21],

Heff “
ÿ

xi,jy

4|tij |
2

U
pSi ¨ Sjq|Ω0

` const. .

Despite being essentially identical to the established calculation [31], the derivation of the effective
Hamiltonian using the formalism of Ref. [374] is considered instructive and is therefore provided in the
appendix (section A.5.1). In particular, the above notation was chosen for consistency with [374]. As
already noted in [31, p. 7], at higher orders, energy sectors ΩnU with n ą 1 and multiple virtual states
can contribute to a single process. For example, this gives rise to a four-spin interaction of order t4ij{U
for the Hubbard model on the square lattice (e. g. , [451]).

1.1.2 Dzyaloshinskii-Moriya (DM) interaction

In a tight-binding description, the spin-orbit interaction [276]

HSOI “
~

2m2c2
S ¨ p∇V prq ˆ pq ,

leads to a spin-dependent hopping integral [179], which can be treated using the perturbative approach
illustrated in section 1.1.1 (and A.5.1) [276]. To leading order, this gives rise to anisotropic spin-spin
interactions of the form [179, 196, 359, 451]

D ¨ pS1 ˆ S2q ` S1 ¨ Γ ¨ S2 .

The first term is antisymmetric and known as the Dzyaloshinskii-Moriya (DM) interaction [117, 275,
276]. The symmetric tensor Γ is given by [359, 451]

Γ “
D bD

2 J
´
D2

4 J
. (1.2)

Although Γ is often neglected (e. g. in [15]), this approximation is not valid in general [119, 359, 451].
The transformation properties ofD are reviewed in the appendix (section A.5.2).

1.1.3 Symmetric anisotropies

To lowest order in the spin operators, spin-spin (dipolar) and spin-orbit interactions also give rise to
magnetic anisotropies of the form Si ¨ Vij ¨ Sj , where Vij is a symmetric tensor [403, p. 61]. While the
so-called one-ion anisotropy terms with i “ j are trivial (constant) for quantum spin-1{2 operators, bond
anisotropies corresponding to i ‰ j are generally allowed (cf. [403, ch. 2]). However, in order to limit
the number of model parameters, no such terms—besides (1.2)—are considered in this work.

1.2 Quantum spin liquids

A spin liquid is an intrinsically disordered phase without long-range magnetic correlations [32]. To
emphasize that low-dimensional systems consisting of interacting entities with small spin are strongly
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influenced by quantum fluctuations, one usually speaks of quantum-spin liquids (QSLs) in these cases
(e. g. , [42]). This work focuses on spin-1

2 systems. Quite generally, an energy gap towards magnetic
excitations (a so-called spin gap) implies short-ranged, i. e. , exponentially-decaying spin correlations,
much like the forces mediated by massive bosons are described by short-ranged Yukawa-type potentials
[247, pp. 19-20] (see, e. g. , [101]). Accordingly, the gapped phases of the models discussed below can be
considered QSLs (e. g. , [333]). External magnetic fields can suppress the excitation gap, which typically
gives rise to field-induced magnetic order [437].

1.3 Model systems

1.3.1 Spin chain

The simplest model system is the Heisenberg spin-1
2 chain [53], whose Hamiltonian is (e. g. , [93])

H “ J
ÿ

i

Si ¨ Si`1 . (1.3)

The ideal system does not order magnetically [233, 296], but is in critical regime with quasi long-ranged,
i. e. , algebraically-decaying (power-law) correlations [239]. The gapless spin-1 excitations [92, 93]
fractionalize into spin-1

2 spinons corresponding to defects (domain walls) in the Néel-type correlations
[128, 137]. Quite intuitively, residual interchain couplings induce attractive interactions between spinons,
leading to the formation of bound states [225, 412]. Lastly, it should be noted that spin chains consisting
of integer spins are fundamentally different from the half-integer case described here [14, 351].

1.3.2 Spin ladder

An n-leg Heisenberg spin ladder is a finite array of n coupled Heisenberg spin chains [102]. A two-leg
ladder is depicted in Fig. 1.1. Typically, spin-1

2 ladders with antiferromagnetic exchange interactions
are considered. Similarly to spin chains with half-integer and integer spin, spin-1

2 ladders with an odd
number of legs differ fundamentally from ladders with an even number of legs, the former being gapless
whereas the latter exhibit a spin gap [102, 333, 440]. For this work, the case n “ 2 is relevant. The
ground state of this model is a non-degenerate [381] singlet [246] with purely antiferromagnetic and
short-ranged spin-spin correlations [360].

Figure 1.1: A finite-length segment of a simple two-leg spin ladder. Circles represent localized spins and solid
black edges correspond to exchange interactions.

1.3.3 Zigzag chain

Magnetic frustration can also give rise to a spin gap. An important member of this class of models
is the so-called zigzag chain shown in Fig. 1.2(a), which is also known as the Majumdar-Ghosh (MG)
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model [241, 242]. It consists of a spin-1
2 chain with nearest-neighbor (NN) interaction J1 and next-

nearest neighbor (NNN) interaction J2. Note that frustration of the NNN interaction clearly requires
antiferromagnetic J2.

-1 0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

J2 / |J1|

op
t
/

J1 > 0
J1 < 0

Figure 1.2: (a): A finite-length segment of a zigzag chain (frustrated spin chain). Circles represent localized spins
and solid black edges correspond to exchange interactions. (b): Optimal pitch angle for classical zigzag chain.

For a sinusoidal magnetic structure formed by classical unit-length spins, the energy is J1 cosφ `
J2 cos 2φ per site (e. g. , [419]) and optimization w. r. t. the pitch angle φ yields Fig. 1.2(b). Thus, beyond
a critical frustration ratio J2{|J1| “ 1

4 , the classical ground-state is an incommensurate spiral (see, e. g. ,
[164, 419]). In the absence of external magnetic fields, the models with exchange couplings pJ1, J2q and
p´J1, J2q are obviously related by a gauge symmetry, so that J1 ą 0 without loss of generality. While
the quantum model resembles the unfrustrated spin chain for small frustration J2{J1 (e. g. , [69]), a spin
gap appears for J2{J1 ą 0.2411p1q [69, 358] and the ground-state becomes dimerized2 [69, 443]. The
elementary excitations are spinons [227, 375]. Another important point is the so-called disorder point
[69] J2{J1 “ 0.5, at which the model is exactly solvable [242] (see [459] for a modern derivation). Be-
yond the disorder point, frustration induces incommensurate real-space correlations [24, 69, 86].3 The
influence of single-axis bond anisotropies on the ground state was studied in the literature [295], as was
the effect of extrinsic dimerization terms [86].

1.3.4 Frustrated ladder

The zigzag-chain (section 1.3.3) and ladder (section 1.3.2) models can be combined to obtain the frus-
trated spin ladder [228, 412]. For the present work, the two-leg frustrated spin ladder depicted in Fig. 1.3
is relevant. Its zero-field phase diagram and excitations were studied in [228, 385, 412].

The ground state of the model is a spin singlet (e. g. , [228]). Any such state can be represented as a
superposition of so-called valence-bond states, i. e. , product states consisting of pairs of spins bound
into singlets [230], which constitutes the resonating valence-bond (RVB) picture [32]. For example,
the ground-state doublet of the zigzag chain (section 1.3.3) at the disorder point J2{J1 “ 0.5 [69]
is given exactly by two valence-bond states corresponding to the two possible dimerization patterns
[242]. Because the valence-bond configuration of the dimerized ground state does not exhibit quantum
fluctuations at the disorder point [242], the corresponding states qualify as a valence-bond solid (VBS)
[16]. An application of the RVB picture to the simple spin ladder can be found in [440]. For the frustrated

2Note that the latter is required by the Lieb-Schultz-Mattis theorem [88, 233, 440].
3Sometimes, correlations are represented in Fourier space and considered incommensurate as soon as there is a splitting of

the peak in the spin-structure factor. Since the peaks have an intrinsic width, this results in a slightly larger threshold [69] (see
also [348]). However, unlike many scattering techniques, NMR is sensitive to the real-space correlations, such that this subtlety
can be safely ignored.
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Figure 1.3: A finite-length segment of a two-leg frustrated spin ladder. Circles represent localized spins and solid
black edges correspond to exchange interactions.

ladder, two different regimes are observed [228] (cf. Fig. 1.4). At low rung coupling, the system behaves
essentially like a zigzag chain, except that JK provides a confining potential binding the spinons into
triplons [228, 412]. Frustration gives rise to a dimerized phase (columnar-dimer phase) which closely
resembles the dimerized state of the zigzag chain [228]. Larger rung couplings yield a non-degenerate
and more ladder-like ground-state with dominant contributions from singlet bonds along the rungs (rung-
singlet phase) [228]. In all cases, sufficient frustration J2{J1 gives rise to incommensurate real-space
correlations [228].
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Figure 1.4: (a): Schematic representation of the dominant valence-bond configurations in the ground-state of
the frustrated spin ladder in the columnar-dimer (CD) and rung-singlet (RS) phases (redrawn after [228]). (b):
Phase diagram of the frustrated ladder as function of rung coupling JK{J1 and frustration J2{J1 (J1 ą 0) [228].
The green dashed line separates commensurate and incommensurate real-space correlations. (c): Evolution of
wavevector with model parameters [228]. The authors of [228] distinguish real-space correlations (q), momentum-
space correlations (position of peak in spin-structure factor, q̄), and the location of the spin gap (q‹). (Reprinted
figures (b) and (c) with permission from Ref. [228]. Copyright 2011 by the American Physical Society.)

A singlet-excitation gap closes at the Ising-like second-order transition from the rung-singlet (RS) to the
columnar-dimer (CD) phase, whereas the spin gap persists [228, 412]. Correspondingly, the dimer-dimer
correlation length diverges at the transition, while the spin-spin correlation length does not [228]. The
low-energy singlet excitations in the vicinity of the CD phase should be visible in the specific heat, but
not in the magnetic response [228].
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1.4 Numerical methods

1.4.1 Exact diagonalization

The most direct approach consists in the numerical diagonalization of the matrix representing the Hamil-
tonian in a suitable basis. This standard method is known as exact diagonalization (ED) and two variants
are usually distinguished (see, e. g. , [130, ch. 18] for details).

Full diagonalization, or full-spectrum ED, calculations determine a complete eigensystem of the Hamil-
tonian. The results enable the evaluation of various finite-temperature properties. Full-spectrum ED
typically requires Opd2q memory (for matrix and eigenbasis storage) and Opd3q (worst-case; see, e. g. ,
[168, p. 42-22]) time, where d denotes the dimension of the Hilbert space which increases exponentially
with system size.

In this work, full diagonalization was found impracticable for systems consisting of more than 20 spin-
1{2 entities. However, Hamiltonians are often sparse—the Heisenberg interaction in the Sz-basis being a
good example. Matrix-vector products with a sparse Hamiltonian can be computed efficiently, making
iterative diagonalization algorithms an attractive alternative. The associated methods are called sparse
diagonalization. Typical algorithms calculate the extremal, i. e. , lowest- or highest-energy, eigenpairs
of a system using Opdq memory and time. A popular choice is the Lanczos algorithm (e. g. , [130,
ch. 18]), which is also used by the software employed in this work [49]. Unfortunately, this algorithm
does not allow for a reliable determination of the eigenvalue multiplicities [130, p. 542], which are
required for the correct prediction of ground-state degeneracy and finite-temperature properties. For
this purpose, the application would need to be modified to make use of, e. g. , the block-Lanczos or the
Jacobi-Davidson method (e. g. , [130, ch. 18]). Another interesting algorithm is FEAST [222, 321]. It
may seem tempting to use sparse diagonalization to extract a part of the spectrum, in order to obtain
low-temperature approximations to various finite-temperature properties. However, the density-of-states
in the quasi-continuous regions of the spectrum usually still scales exponentially with system size.4

Together with the orthogonalization step required by most algorithms, the resulting complexity becomes
comparable to full-spectrum ED. Therefore, as is well-known, sparse diagonalization is mainly useful
for determining a few spectrally-isolated (or extremal) eigenpairs.

1.4.2 Monte Carlo

The application of Monte-Carlo techniques to classical models is well-known [261]. Several extensions
to quantum models exist, the related techniques being known as Quantum Monte Carlo (QMC) (see [344]
for an introduction). In general, QMC is a very efficient method for calculating various finite-temperature
properties. However, negative sampling weights are known to arise for frustrated quantum spin systems.5

This so-called sign problem results in exponential scaling and thus inhibits large-scale simulations of
frustrated spin models at low temperatures (e. g. , [130]). Although the sign problem is basis dependent,
it is NP hard, making the existence of a generic polynomial-time solution highly unlikely [400].

4This was seen explicitly for the calculations reported in chapter 5.
5For the stochastic-series expansion (SSE) representation (see, e. g. , [390]), this problem appears whenever the interaction

graph contains cycles of magnetic bonds with an odd number of anti-ferromagnetic (transverse) couplings (this is a straightfor-
ward consequence of, e. g. , [390, eq. 11] and the surrounding discussion in [390]).
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1.4.3 Density-matrix renormalization group

One of the few techniques capable of simulating large frustrated systems is density-matrix renormal-
ization group (DMRG). While the method owes its name to the original formulation using a real-space
decimation procedure [441], it can be equivalently understood as a variational method acting on a spe-
cific class of trial states called matrix-product states (MPS), which enables the application to a variety
of models [350]. The DMRG code used in this work (see section A.1.5 for details) is based on the MPS
formulation and can handle degenerate ground states [49, 111]. Degenerate and excited states are ob-
tained iteratively, by projection onto the orthogonal complement of the previously-found (approximate)
eigenstates [111].

For a system consisting of N subsystems (e. g. , spins) with internal states |σiy, a global state |ψy is an
MPS6 if it can be represented as

|ψy “
ÿ

σ1,...,σN

Aσ1Aσ2 . . . AσN´1AσN |σ1, . . . σNy ,

with matrices Aσi [350, section 4.1.3]. The approximation made in the DMRG method consists in
restricting the dimension of these matrices such that it does not exceed a so-called bond dimension m
[111, 350].

The optimization of the variational ansatz |ψy relies on an iterative procedure, which adjusts the matrices
associated with individual sites or pairs of sites, one at a time [111]. Typically, the lattice is traversed in
an ordered fashion during each optimization sweep, with alternating left-to-right and right-to-left sweeps
[111]. As the number of sweeps s increases, the MPS ansatz is assumed to converge towards a good
approximation of the ground state ([350, p. 149] and [111]). However, it can happen that the optimization
procedure gets trapped in a local minimum or advances very slowly ([350, p. 149] and [111]). Therefore,
the convergence of the results clearly needs to be checked in practice.

The computational complexity is OpNq (e. g. , [314]) and Opm3q [111, 349]. However, it should be noted
that any long-range entanglement in the system requires an increase of m along with N to maintain a
given accuracy (see [349, p. 16.4]). It seems to be established that finite-system DMRG works best with
open boundary conditions [444]. Typically, the entanglement structure of the ground state of a periodic
system requires much larger values of m for a given degree of approximation [380]. On the other hand,
open boundary conditions often give rise to boundary effects, such as Friedel oscillations, which can
make it difficult to draw reliable conclusions about the properties of the bulk (see, e. g. , [111, 112]).
At least for specific models, so-called soft boundary conditions can reduce such effects [361]. In the
present work, open boundary conditions are used and boundary effects are excluded by checking that the
conclusions do not depend on the system size.

1.4.4 Symmetries

Whenever a system with Hamiltonian H exhibits a symmetry described a group G whose representation
on the Hilbert space satisfies rg,Hs “ 0 @ g P G, the Hamiltonian can be block-diagonalized by de-
composing the Hilbert space into irreducible representations of G. In practice, this can greatly reduce
the computational effort needed to diagonalize H (see, e. g. , [130, ch. 18] for details). The following
standard symmetries are relevant for this work.

6Normalization conventions and other details are neglected here, see [350] for more information.
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• Lattice models with periodic boundary conditions are invariant under the group of lattice transla-
tions. Since this group factorizes into subgroups corresponding to translations along each lattice di-
mension, the one-dimensional case is considered without loss of generality. As is well known, this
abelian and cyclic group yields one-dimensional irreducible representations labeled by k “ 2πn

L
(n “ 0, 1, . . . , L´1), withL the extent of the lattice. Denoting the lattice translation by j unit cells
as Tj , a state |sky transforms according to representation k if @j : Tj |sky “ expp´i k jq |sky.

• Rotation symmetries in spin-space can result in additional conserved quantities, like magnitude
and/or z-component of total spin Stot “

ř

i Si. Whenever the system is rotation-invariant about
the z-axis (without loss of generality), rSztot,Hs “ 0 and the Hamiltonian is block-diagonal in the
Sz-basis. It is easy to see that, for the Sztot “ k ´ L

2 sector of a system consisting of L spin-1{2

entities, this reduces the Hilbert space dimension from 2L to L!
k!pL´kq! .

Symmetries are generally represented by unitary (or anti-unitary) operators [446, pp. 251-254] (see also
[43]), which implies that traces and hence quantum-statistical averages of local observables are invariant
under G. Thus, exact calculations will never directly reveal any symmetry breaking. This well-known
fact is already manifest in classical systems like the Ising ferromagnet and is usally circumvented by
inclusion of an external symmetry-breaking field, certain Monte-Carlo techniques (see, e. g. , [55]), or
the indirect study of the symmetry-breaking tendency through correlations.

1.4.5 Site-dependent g-tensors

The magnetic moment created by a spin Si,p is given by µi,p “ ´µB gi Si,p, where p denotes the lattice
position of the spin and gi the g-tensor (see section 1.5.9). As is well known (see, e. g. , [15]), the presence
of different g-tensors in a material, as suggested by the additional sub-lattice index i, can have important
effects on the low-temperature magnetic susceptibility (see appendix for details, section A.5.3).

Consider a generic spin system with internal magnetic interactions described by a Hamiltonian H0.
Including the Zeeman interaction with an external magnetic field B, the full Hamiltonian H takes the
form

H “ ´
ÿ

i,p

B ¨ µi,p `H0 .

The local magnetic susceptibility χi,p is then

χαβi,p “
Bxµαi,py

BBβ
“

ÿ

i

µ2
B

N

`

giCij g
T
j

˘αβ
, (1.4)

where xAy denotes the thermal and quantum-mechanical average of the observable A. For the sake
of brevity, equation (A.5.3) and the machinery required to calculate Cij are developed in the appendix
(section A.5.3).

1.5 Pulsed nuclear-magnetic resonance

Most atomic nuclei have a nuclear spin I [229, p. 12], which interacts with its environment. These
interactions determine the energy levels of the nucleus. Nuclear-magnetic resonance (NMR) is a spec-
troscopic technique which probes the transitions between these nuclear-spin energy levels. If the nucleus
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is embedded in a solid, the data provide information about the magnetic and electric fields at the site of
the nucleus, which is why NMR is commonly classified as a microscopic local probe.

The purpose of this section is to provide a brief introduction to NMR by illustrating the basic concepts.
For the sake of simplicity, the treatment is not the most general. In particular, the primary focus is on
I “ 1{2 nuclei in a strong external magnetic field, since this case is relevant for part II of this work.
For more complete discussions, the reader is referred to the topical literature. The following, standard
introduction to nuclear magnetic resonance is based on [8, 229, 422] and [74, ch. 2], as well as general
knowledge corresponding to graduate-level physics courses (e. g. , [96, 343]).

1.5.1 Nuclear moments

The nuclear magnetic moment is [74, p. 15]

µN “ h γ I ,

with the Planck constant h and the nuclear gyromagnetic ratio γ. Typically, γ is specified in MHz{T to
ensure the correct units of the nuclear Zeeman energy

HZ “ ´µN ¨B .

Here,B denotes the magnetic field at the position of the nucleus, which can be applied externally and/or
be created by the sample. Furthermore, nuclei with spin I ą 1{2 feature an electric quadrupole moment
Q, which couples to the electric-field gradient tensor V (Vij “ BiEj with the electric field E) through
the nuclear quadrupole interaction [229, p. 208] (see also [95])

HQ “
eQ

2Ip2I ´ 1q~
I ¨ V ¨ I .

Higher moments with corresponding interactions arise for nuclei with higher spin [8], but are usually
neglected.

1.5.2 Magnetic resonance

In general, the interactions HZ and HQ lift the degeneracy of the 2I ` 1 nuclear-spin levels. Resonant
radio-frequency (RF) magnetic fields can then be used to drive transitions between these energy levels, as
exemplified below for the case I “ 1{2 (section 1.5.4). In the following, the term nuclear magnetic res-
onance (NMR) will be used generically for resonances arising due to arbitrary combinations of HZ and
HQ. In addition, the expression nuclear quadrupole resonance (NQR) is commonly used to emphasize
the contribution of HQ. Although this discussion focuses on nuclear magnetic moments, similar reso-
nance effects can be observed in other systems; e. g. , electron spins give rise to electron spin resonance
(ESR) (e. g. , [9]), or the related ferromagnetic resonance (FMR) (e. g. , [204]).

1.5.3 Nuclear magnetization

Real applications involve finite temperatures and macroscopic numbers of nuclear spins, which is why a
formulation using density matrices is appropriate [229, pp. 259 ff.]. The macroscopic nuclear magnetiza-
tion created by a set of nuclei is then given by MN “ xµNy “ h γ Tr ρ I (up to normalization), where
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ρ denotes the density matrix, whose time evolution is described by the Liouville-von Neumann equation
[353, p. 16]

i~
Bρ

Bt
“ rH, ρs . (1.5)

While most of the concepts can be extended to nuclear spins I ą 1{2 [229], the discussion is restricted to
I “ 1{2 hereafter (cf. section 1.5.1).

Consider the standard basis p|`y , |´yq corresponding to the quantization axis z. Since ρ is Hermitian,
positive semi-definite, and Tr ρ “ 1 [343, pp. 181-182], there exists a P R3 with ‖a‖2 ď 1, such that
ρ “ 1

2 p1` a ¨ σq (cf. [343, eq. 3.2.38 and p. 182]). Here, σ denotes the vector formed by the Pauli
matrices [434]. Thus, any mixed state represented by the density matrix ρ can be identified with a point
inside the unit sphere. The surface of the sphere corresponds to the pure states, for which ρ2 “ ρ [343,
p. 182]. This is the so-called Bloch sphere representation (see, e. g. , [12] for further details) depicted in
Fig. 1.5. Note that the Bloch vector a corresponds to the macroscopic nuclear magnetization (cf. [74,
p. 16]), sinceMN “

h
2γ a.7

Figure 1.5: Bloch sphere representation of quantum states. The poles (red points) correspond to |˘y. A generic
(pure) state |ψy is depicted by a blue point. Blue solid and dashed lines illustrate precession and nutation, respec-
tively. See text for details.

1.5.4 Dynamics of nuclear magnetization

For a time-independent Hamiltonian H, it is easy to check that the solution of (1.5) is given by ρptq “
e´iHt{~ ρ eiHt{~. The particular case H “ ~

2ωn ¨ σ, with ‖n‖ “ 1, yields8

ρptq “ 1
2 t1` rpa ¨ nqn` cospωtq pa´ pa ¨ nqnq ` sinpωtqpnˆ aqs ¨ σu . (1.6)

7This is easy to see using the identities in footnote 8.
8The following identities are useful [343, p. 170]

exppiαn ¨ σq “ cosα` ipn ¨ σq sinα

pa ¨ σq pb ¨ σq “ a ¨ b` iσ ¨ paˆ bq .
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Thus, the time evolution corresponds to a rotation of the Bloch vector a by an angle ωt about the axis n,
which simplifies the following discussion.

Consider first the effect of a static magnetic field B0 “ B0 ez . The corresponding Zeeman Hamiltonian
is H0 “

~
2ω0σz , with ω0 “ ´2πγB0. The resulting time evolution of an arbitrary Bloch vector is

precession around the z-axis (blue solid trajectory in Fig. 1.5). IfB0 corresponds to an external magnetic
field, this motion is called Larmor precession and ω0 is the (angular) Larmor frequency. Moreover, if
the external magnetic field is dominant, it is clear that only the longitudinal component of the internal
magnetic field created by the sample contributes to the precession frequency ω to leading order (see [74,
p. 162]).

As mentioned in section 1.5.2, resonant radio-frequency (RF) pulses are an important building block
of any NMR experiment. The frequency ωr of the pulses is called reference frequency. It will be
convenient to decompose the Hamiltonian according to H “ H0 ` H1 with H0 “

~
2ωrσz , and to

work in the interaction picture [343, pp. 336-339] corresponding to H0. The transformed density matrix
ρI “ eiH0t{~ ρ e´iH0t{~ [343, p. 338] satisfies a modified Liouville-von Neumann equation,

i~
BρI
Bt

“ rHI , ρIs , (1.7)

with HI “ eiH0t{~H1e
´iH0t{~ (cf. [8, p. 105]). Intuitively, this represents a transformation into a rotat-

ing reference frame, i. e. , a Bloch sphere which is following the precession induced by H0 (see [229,
pp. 241 ff.]). This standard modification is very helpful when dealing with time-dependent magnetic
fields, as described below.

In a typical NMR experiment, the sample is placed in a strong external magnetic field Bext “ Bext ez .
As mentioned before, the transverse components of the magnetic field created by the sample are usually
negligible, such that the average field at the nucleus is written as B0 “ B0 ez . This field gives rise
to the free precession frequency ω. In addition, a small oscillating magnetic field Brfptq is applied
perpendicular toBext. Without loss of generality,Brfptq “ B1 cospωrt´ ϕq ex. Almost-resonant pulses
are assumed, i. e. , ωr « ω. After defining ω1 “ ´2πγB1{2,

H1 “
~
2pω ´ ωrqσz ` ~ω1 cospωrt´ ϕqσx .

The interaction-picture Hamiltonian is then obtained analogously to, or by re-using, equation (1.6), fol-
lowed by some standard trigonometric manipulations,

HI “ ei
~
2
ωrσzt{~H1ptq e

´i ~
2
ωrσzt{~

“ ~
2ω1 rcospϕqex ` sinpϕqey ` cosp2ωrt´ ϕqex ` sinp2ωrt´ ϕqeys ¨ σ `

~
2pω ´ ωrqσz .

In most cases B1 ! B0 and the non-resonant components with frequency 2ωr can be neglected [229,
p. 247], yielding the so-called rotating wave approximation (see [229, eq. 10.26] and, e. g. , [96, pp. 357 ff.]),9

HI “
~
2 pω1 cospϕq, ω1 sinpϕq, ω ´ ωrq ¨ σ . (1.8)

The radio-frequency magnetic field B1 is usually pulsed, and pulse durations are generally long com-
pared to ω´1. It is therefore justified to integrate the equation of motion (1.7) with piecewise-constant,
i. e. , time-independent, HI . However, (1.7) is formally equivalent to (1.5), whose solution is (1.6). The
two experimentally relevant cases are described below.

9Similarly, any longitudinal components of the oscillating field are negligible. The factor 2 in the definition of ω1 arises
because half the amplitude of the oscillating field corresponds to the non-resonant component.
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1. If the driving field is off, B1 “ 0, the time evolution of the Bloch vector aI , representing the state
ρI in the rotating reference frame, corresponds to precession (see [229, pp. 245 ff.]) around the
z-axis with an angular frequency ω ´ ωr (blue solid trajectory in Fig. 1.5).

2. To visualize the effect of an RF pulse, if is sufficient to consider the hard-pulse limit |ω1| "
|ω ´ ωr|. In this case, aI rotates around the axis pcosϕ, sinϕ, 0q at frequency ω1. This motion is
known as nutation (see [229, p. 251]), and corresponds to the blue dashed trajectory in Fig. 1.5 (in
the case ϕ “ 0). The pulse widths τ are generally measured in units of the nutation angles, e. g. ,
for a π{2-pulse the length τ is chosen such that ω1τ “ π{2. Similarly, the phase settings ϕ “ 0,
π
2 , π, and 3π

2 are often denoted by the resulting rotation axes x, y, x, and y, respectively.

1.5.5 Experimental aspects

Typically, the sample is placed inside a coil, which is used to generate the radio-frequency (RF) field B1

(see section 1.5.4). The precession of the Bloch vector a observed in the absence of B1 corresponds to a
precession of the macroscopic nuclear magnetization (section 1.5.3). The resulting oscillating magnetic
field generates an electromotive force in the coil (e. g. , [175]), which can be detected and recorded
electronically. The setup typically involves (i) a magnet which creates the longitudinal magnetic field
Bext (see section 1.5.4), (ii) a sample environment (cryostat) with an NMR probe which supports the
sample with the surrounding RF coil, and (iii) a spectrometer which generates RF-pulses and records the
electronic signal induced by the precessing nuclear magnetization. Some of these elements are covered
in greater detail in part I of this work.

Conceptually, standard NMR experiments consist of two building blocks: (i) pulses which manipulate
the nuclear magnetization, and (ii) periods during which the nuclear magnetization evolves freely and is
observed passively. The nuclear-spin system is assumed to be in thermal equilibrium before each pulse
sequence. The time required for the approximate realization of this initial state depends on the internal
dynamics of the sample and ultimately limits the rate at which measurements can be performed. The
static magnetic fieldB0 induces a net nuclear magnetization in thermal equilibrium [229, eqs. 11.18 and
11.22]. It is the Bloch vector a0 “ p0, 0,´a0q corresponding to this equilibrium magnetization which is
manipulated and observed during the NMR experiment.

1.5.6 Spectrum

In real samples, the distribution of magnetic fields B is non-uniform. This can either be caused by the
properties of the sample, or be due to experimental aspects such as inhomogeneity of the external mag-
netic field. The resulting distribution ppωq of precession frequencies ω for a certain type of nucleus is
called the NMR spectrum (see also [74, p. 20]), and entails a distribution of Bloch vectors (cf. isochro-
matic magnetic moments in [155]). Since the detection procedure outlined in section 1.5.5 is linear, the
distribution ppωq corresponds to the real-part of the Fourier transform of the detected signal (cf. [74,
pp. 22-23]), for a suitable choice of reference phase (see, e. g. , [229, pp. 102 ff.]). In practice, the de-
tection bandwidth is limited by the bandwidth of the pulses (cf. hard-pulse condition in section 1.5.4).
Therefore, broad spectra are often measured by scanning the reference frequency and combining the
partial spectra during post-processing of the data [91].
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1.5.7 Basic experiments

1.5.7.1 Single-pulse experiment

As explained in section 1.5.5, NMR detects the precession of the nuclear magnetization. However,
a non-trivial time-evolution only arises if the Bloch vector a has a component orthogonal to z. The
corresponding off-diagonal entries of the density matrix are called coherences [229, p. 261]. The simplest
way to generate such components is by applying an individual RF pulse. The result of applying a π

2 -
pulse is illustrated in Fig. 1.6(a). The pulse creates a transverse nuclear-magnetization component which
precesses about the z-axis and thus can be detected inductively.

0 2 4 6 8 10
t

0 2 4 6 8 10
t

Figure 1.6: Schematic timing diagrams and trajectories on the Bloch sphere (cf. Fig. 1.5), corresponding to a
single-pulse (a) and a spin-echo experiment (b) (figure inspired by [74, Fig. 2.3(a-b)]). In the timing diagrams,
gray blocks represent resonant pulses pαqk with pulse width α and phase k (see section 1.5.4 for notation), while
the blue curves show the envelope of the acquired radio-frequency signals (section 1.5.5). The radius of the spheres
corresponds to a0 (section 1.5.5) and hard pulses are assumed for simplicity. See text for details.

1.5.7.2 Spin-echo experiment

Since some nuclei precess faster than others (cf. section 1.5.6), the distribution of Bloch vectors spreads
along the equator of the Bloch sphere. This dephasing is illustrated by differently-colored arrows in
Fig. 1.6(b) and contributes to the decay of the signal amplitude shown in Fig. 1.6(a). The central idea of
the spin-echo experiment [155] is to apply a second pulse after a time delay τ . As shown in Fig. 1.6(b),
this so-called refocusing pulse places the slowly-precessing nuclei before the faster ones, such that the
distribution of Bloch vectors shrinks upon subsequent time evolution [dashed trajectory in Fig. 1.6(b)]
(see also [74, p. 23]). Neglecting the effects of the finite pulse lengths, a spin echo forms at a time τ after
the second pulse.
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1.5.8 Relaxation

As illustrated in Fig. 1.6(a), the transverse nuclear magnetization decays with time. As discussed in
section 1.5.7.2, the effect of static inhomogeneities can be circumvented by using a spin-echo sequence.
However, there exist other dephasing mechanisms which cannot be refocused in general. Clearly, besides
random fluctuations of the longitudinal magnetic-field component, dephasing can occur due to redistri-
bution of angular momentum within the nuclear-spin population, e. g. , through direct nuclear-nuclear
couplings or indirectly via interactions with other (electronic) magnetic moments (see [422, pp. 19-20],
and also [74, p. 17]). Therefore, the intensity of the spin echo decays with τ in practice. Often, the decay
is Gaussian and the associated time constant is called spin-spin relaxation rate T´1

2g (e. g. , [422, p. 20]).

While dephasing yields an evolution towards the z-axis of the Bloch sphere, the decay towards the ther-
mal equilibrium requires an exchange of energy with the environment and usually occurs on longer time
scales [cf. Fig. 1.6(a)]. The decay is typically exponential10 and the associated time constant is called
spin-lattice relaxation rate T´1

1 (e. g. , [422, p. 23]). The decay can be measured in a pump-probe fashion:
First, a single pulse is applied to create a non-equilibrium population of the energy levels and then the
longitudinal magnetization is detected after a time delay t, e. g. , by means of a spin-echo sequence. If
the nuclear Zeeman interaction HZ is dominant, spin-lattice relaxation mainly occurs through magnetic-
dipole transitions driven by fluctuations of the transverse component of the magnetic field at the nucleus
(see, e. g. , [422, pp. 24-25]). Being analogous to controlling the populations of the nuclear-spin energy
levels using transverse RF fields (section 1.5.4), the relaxation-process is most effective if the fluctua-
tions are resonant. Typical NMR frequencies are of order 100 MHz and hence correspond to energies on
the µeV scale. Since most electron dynamics involve higher energies, an adiabatic approximation is thus
justified for the nuclei (cf. , e. g. , [372]).11 Hence, under the above assumptions which are representative
for the scientific part of the present work, the spin-lattice relaxation rate is predominantly sensitive to
slow fluctuations of the transverse component of the magnetic field at the site of the nucleus.12

1.5.9 Hyperfine interactions and g-tensor

The effective magnetic field Be created by an itinerant electron at relative position r can be calculated
([67, 329] and [8, pp. 170 ff.]),

Be “ ´
µ0µB

4π

"

gLL

r3
`

„

3pgsS ¨ r̂qr̂ ´ gsS

r3
`

8π

3
δprq gsS

*

, (1.9)

where L and S denote the orbital and spin angular momenta, and corresponding g-factors gL « 1
and gs « 2 were added. The first term, called orbital term [67], arises due to the minimal-coupling
substitution p ÞÑ p ` eA (cf. [8, p. 171]). The second, spin-dipolar term [67] corresponds to the usual
Zeeman interaction of the electrons, with the Fermi-contact term [67] proportional to δprq ensuring
correct behavior in the limit r Ñ 0 [8, pp. 171-172]. Note that the orbital angular momentum of the
Cu2` ions relevant for part II of this work is typically mostly quenched by crystal-field effects ([371,
pp. 89-91] and [114, p. 49]).

10Neglecting correlations between nuclei, a first-order treatment based on Fermi’s golden rule results in a system of coupled
first-order differential equations (detailed balance), whose general solution is a linear combination of exponential functions.
For I “ 1{2, only a single non-trivial exponential component appears. See, e. g. , [422, pp. 25-26] for details.

11Conversely, the effect of the manipulations of the nuclear magnetization during an NMR experiment upon the electronic
system is usually neglected.

12This is easy to see and discussed, e. g. , in [74, appendix C].
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For localized moments with average position r0, it is customary to write (e. g. , [74, 409])

Be “ pA`Dqµ ,

with the magnetic moment µ “ ´µB gsS. Here, the dipolar coupling is written separately,

D “
µ0

4π r3
0

`

3r̂0 r̂
T
0 ´ 1

˘

,

whereas the hyperfine coupling A accounts for all remaining effects. If the electronic wavefunction
factorizes into a spatial and a spin component, i. e. , orbital and spin-degrees of freedom are not entangled,
the matrix A can in principle be obtained from (1.9). In this case, A is clearly symmetric. However, this
assumption breaks down if spin-orbit interactions are present. In this case, S is replaced by an effective
angular momentum [10] and gs is promoted to a matrix, the so-called g-tensor [428, ch. 4 and p. 113].
Although the g-tensor is not symmetric in general [104, 149, 366], it is often approximated as such
[366].13 Similarly, the hyperfine coupling A is not symmetric in general [149, 366]. In principle, the
hyperfine field Be may also involve interactions of higher order in S after integrating out the spatial
degrees of freedom [60, 216]. However, in the case I “ 1{2 and S “ 1{2 relevant for part II of this work,
only bi-linear hyperfine interactions of the form IαSβ arise [150]. With regard to the discussion of the
high-field experiments presented later, it is emphasized that this does not exclude the possibility of a
field-dependent coupling matrix A`D (cf. [150]).

13Note that the resonance frequency in electron-spin resonance (ESR) is typically determined by the symmetric tensor
a

gs gTs [428, p. 93].
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2 A firmware-defined direct-sampling NMR spectrometer

Remark The bulk of the work presented in the following chapter was performed by the author of
the present work and subsequently published as a research article, written jointly with T. Shiroka, H.-
R. Ott, and J. Mesot [311] (copyrighted by AIP Publishing LLC). Text, ideas, figures, and tables from
the pre-print version of said publication [311] are reused in this chapter. To credit the contributions of all
co-authors, the form ’we’ is preserved in the corresponding sections of the text.

2.1 Introduction

As described in section 1.5, typical pulsed magnetic-resonance experiments require a spectrometer. De-
spite the focus on nuclear magnetic resonance (NMR), most of the following considerations also apply
to related techniques, such as those mentioned in section 1.5.2, or even ultrasound measurements [1].

The spectrometer (i) generates the radio-frequency (RF) pulses used to manipulate the nuclear spins
and (ii) records the resulting time evolution of the nuclear magnetic moment (see sections 1.5.4 and
1.5.5). Time-domain signal averaging improves the signal to noise ratio (SNR) (e. g. , [229, p. 86]),
and allows for cancellation of certain undesired contributions by suitable variations of the signal phases
(phase cycling) [106, 175]. This requires phase coherence, i. e. , a well-defined phase relation between
the excitation pulses and the recorded signal (see, e. g. , [327]).

A laboratory NMR spectrometer should handle frequencies up to about 500 MHz (cf. , e. g. , [398]).
Moreover, special requirements arise in typical condensed-matter physics applications: (i) Wide NMR
spectra require a broad signal bandwidth [26]. (ii) In addition, efficient measurements of rapidly-relaxing
nuclei require short receiver dead time and fast averaging rates [26].

2.2 Motivation

2.2.1 Signal conversion

Even for wide NMR lines, NMR signals are narrow-band compared to typical spectrometer reference
frequencies (cf. section 1.5.4). Thus, the modern understanding of the Cardinal Theorem of Interpolation
Theory [445] (also known as the Sampling Theorem, see [238]) implies that relatively low sampling rates
are sufficient to describe the information content of such signals (see, e. g. , [148]). Typically, the signal is
explicitly down-converted to a lower frequency by multiplication with a reference signal and subsequent
filtering [197].

Since the continuous Fourier transform of a periodic lattice is a lattice (cf. , e. g. , [397]), the (idealized)
sampling process itself corresponds, by virtue of the convolution theorem for the Fourier transform, to
an implicit down-conversion which motivates the so-called undersampling (or super-Nyquist sampling)
[148, 197, 310, 369]. An application of this idea to phase-coherently digitize NMR signals at 180 MHz
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was demonstrated in [393, p. 365]. However, this places high requirements on the employed analog-to-
digital converters (ADCs) and, unless an external analog bandpass filter is added to constrain the signal,
the resulting data are ambiguous [197], which can be problematic when searching for signals in the
presence of unknown spurious response and environmental noise.

By contrast, a fixed analog low-pass filter before the ADC is sufficient if the sampling rate satisfies the
limits imposed by the sampling theorem [197]. In addition, even higher sampling rates (oversampling)
are generally expected to improve the signal-to-noise ratio [416] (see also [74, p. 26]).1 In particular,
the analog down-conversion used by most conventional NMR spectrometers [197] can be completely
avoided if the sampling rate of the ADCs is sufficiently high [197]. This direct sampling results in what
is known as a direct-digital receiver [369, 395]. It is obvious that very similar considerations apply to
the transmitter section of the spectrometer, where the corresponding approach is known as direct-digital
synthesis (DDS) [231, 273].

Finally, NMR signals are usually down-converted to zero intermediate frequency for analysis and quadra-
ture detection is employed in order to distinguish positive and negative frequencies (e. g. , [197, 416]).
Although typically implemented using analog components, this can also be achieved in the digital do-
main, by using a complex-valued local-oscillator signal in the explicit down-conversion scheme outlined
above [197, 369, 416], resulting in a process known as digital down-conversion (DDC) (e. g. , [341,
395]). An important advantage of DDC is the absence of artifacts created by low-frequency noise and
mixer imbalance [197, 416].

2.2.2 Hardware aspects

Based on the preceding discussion, an NMR spectrometer employing direct-sampling in transmission
and reception without undersampling appears conceptually most appealing. In particular, such a design
avoids the cumbersome and error-prone manual routing of analog and digital signals associated with the
construction of most conventional NMR spectrometers [cf. , e. g. , Fig. 2.1(a)].

Among the previous reports on NMR and magnetic-resonance imaging (MRI) instrumentation involving
digital signal processing known to me [7, 148, 197, 231, 232, 264, 288, 310, 327, 341, 369, 391, 394,
395, 398, 454], which include demonstrations of direct sampling and DDC, the maximal sampling rate
appears limited to 100 MS{s (1 MS “ 106 samples).2 On the other hand, signal-processing hardware
with sampling rates up to several GS{s was available at the time of the work reported in this chapter.

For a typical width of 2 bytes per sample, a sampling rate of 1 GS{s yields data rates of about 2 GB{s.
Although pulsing, DDS, and DDC can be performed in software (e. g. , [369, 398]), implementations
based on digital-logic circuits are generally preferred since they allow for real-time data processing and
correspondingly accurate timing control. Each of the aforementioned functions can be provided by ded-
icated integrated circuits (e. g. , [232, 394]), or programmable logic like field-programmable gate arrays
(FPGAs) (e. g. , [391]). FPGAs are a well-established platform for digital signal processing, and several
applications to NMR, including FPGA-based spectrometers, were reported [7, 231, 232, 341, 391, 394].
Their main advantages (see, e. g. , [391, 393]) are (i) parallel data processing, (ii) code portability (see
below), and (iii) the possibility to simulate and test the design prior to implementation. Besides generic

1Note, however, that in practice the SNR is usually limited by noise picked up by the external NMR circuit, as well as the
noise figure of the pre-amplifier (see [165, 416]).

2Note that [310] used incoherent detection.
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logic units providing combinatorial logic gates and memory elements (flip-flops), modern FPGAs contain
specialized circuits such as multipliers (e. g. , [420]). The configuration of the programmable intercon-
nects linking these elements is described by a binary file called firmware, which can be changed as often
as desired [391]. The firmware is programmed using high-level hardware description languages (HDLs),
like VHDL or Verilog (e. g. , [391]), and typically organized in modules (see, e. g. , [393, p. 358]). Thus,
the same code can be re-used with different FPGA hardware. In addition, highly-optimized implemen-
tations of commonly-used circuits are available, e. g. , through the Xilinx CORE Generator System used
in this work.

From a hardware perspective, an NMR spectrometer requires a transmitter (TX) output, a receiver (RX)
input, and possibly a few digital general-purpose input/output (GPIO) lines for controlling auxiliary com-
ponents. There exists a large variety of computer-controllable hardware products offering these rather
generic features—sometimes even in a single device, as in the case of the product used in this work
[see Fig. 2.1(b)]. By employing such general-purpose hardware, the implementation of the spectrom-
eter reduces to manipulating the digital data and ensuring correct timing. This usually corresponds to
developing suitable application software and, possibly, FPGA firmware, resulting in what is known as
a software-defined or firmware-defined instrument, respectively. An early application of the software-
defined design paradigm to NMR was reported in [167]. Furthermore, a firmware-defined NMR spec-
trometer based on general-purpose hardware was described in [7], but not demonstrated as part of a real
experimental setup or at high frequencies.

In summary, knowledge about the practical feasibility of a direct-sampling digital NMR spectrometer
capable of operating, without undersampling, at frequencies corresponding to the magnetic fields cre-
ated by typical superconducting magnet systems appeared limited at the time, despite the commercial
availability of suitable radio transceivers.

(a) (b)

Figure 2.1: (a): Internals of a conventional hard-wired NMR spectrometer. (b): The radio-processor board used
in this work (SDR14, Signal Processing Devices AB, Sweden), alongside with an overview of its key features (see
text for details). The device is reproduced at a two-fold magnification with respect to the scale of panel (a).

2.3 Design

Following the considerations in section 2.2.2, a firmware-defined direct-sampling NMR spectrometer
was implemented in the context of this work. It relies on a commercially-available general-purpose radio-
processor device with user-programmable FPGA [see Fig. 2.1(b) for details]. Note that similar hardware
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is available from various manufacturers and the implementation described here could, in principle, be
easily adapted to a different device. In electrical and telecommunications engineering, the firmware-
based approach is also known as software-defined radio (SDR) (e. g. , [57, 160]), which also explains the
variety of corresponding hardware. However, SDRs typically process input and output data in streams
(e. g. , [160]). Although SDR-based NMR spectrometers were reported, e. g. , recently in [160], the
synchronization of transmitter and receiver usually requires work-arounds like loopback analog signals
(cf. [160]). An implementation of an SDR transceiver based on the hardware used in the work was
reported in [57]. While this previous work [57] inspired certain design choices in this work,3 dedicated
FPGA firmware components were developed instead, in order to have direct control over the timing of
the relevant signals inside the FPGA.

Radioprocessor board

Control

so!ware

Data analysis

so!ware

DAC

FPGA firmware

ADC GPIODRAM

Power

amplifier

Duplexer

Sample environment with NMR probe

Sample

environment

controller

Preamplifier

Figure 2.2: Hardware components of the NMR setup (see text for details). Firm- and software components are
marked in red. Lines and arrows indicate signal and information flow; high-frequency analog signals are high-
lighted using thick blue lines.

Before describing the details, we show how the spectrometer integrates into the NMR setup (Fig. 2.2)
(cf. [7, 197]). As discussed in section 2.2.2, the spectrometer can be considered a black box with three
ports: (i) RX, (ii) TX, and (iii) amplifier unblank (TTL). The unblank signal is used to shut off the
external power amplifier4, needed to generate sufficiently-strong excitation pulses, in order to reduce
the noise while receiving (see, e. g. , [26]). Modern NMR probes use a single coil for excitation and
reception, necessitating an additional routing device called duplexer [94]. Signal levels in condensed
matter NMR experiments can be as low as ´100 to ´85 dBm, which is why one or more wideband pre-
amplifiers are inserted into the receive path of the NMR setup (cf. , e. g. , [197]). Computer-controlled
attenuators are placed between the spectrometer and the power amplifier, as well as between the pre-
amplifier and the spectrometer. They allow for the scaling of the input signals to make the most effective
use of the receiver’s dynamic range, as well as for the adjustment of the excitation-pulse amplitude (cf. ,
e. g. , [26]).

3This was primarily the use of half-band FIR filters (see section 2.3.4). Note that same choice of hardware and baseband
sampling rate entails other similarities between the DDC units. For instance, a sample width of 24 bits allows for efficient
use of the 48-bit DSP elements of the employed FPGA [57, 395, 420] and the need to process several samples in parallel is
mandated by the system clock, which is imposed by the hardware manufacturer.

465 dB gain with up to 60 dBm output in our case.
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Figure 2.3: FPGA firmware block diagram of the digital spectrometer (see text for details). External and inter-
nal I/O refer to input/output connections to hardware outside and inside the measurement computer, respectively
(cf. Fig. 2.2). Lines and arrows indicate information propagation; the flow of waveform data towards and from the
radio-frequency front-end is highlighted using thick blue lines.

The layout of the FPGA logic developed in order to implement the NMR spectrometer is shown in
Fig. 2.3. Its individual sub-components are described in the following subsections.

2.3.1 Interface, software and pulse programming

The radio-processor board used in this work provides a PCI express (PCIe) interface, enabling fast data
transfers to and from the host computer. Drivers for Windows and Linux operating systems, an applica-
tion programming interface (API) for the C programming language, and an FPGA development kit built
around the Xilinx ISE FPGA development package are supplied by the hardware manufacturer. Hard-
ware initialization, data acquisition, and data transfers are handled by the manufacturer’s firmware and
drivers. A set of user-programmable registers is provided to communicate with the user-defined logic
components. These registers can be accessed at rates of over 80 000 reads/writes per second and are used
to program, reset, and trigger the NMR experiments.

On the software side, a shared library (written in C++) controls the NMR logic implemented inside the
FPGA and handles the acquired data. The library provides a high-level interface for performing NMR
experiments. Currently, MathWorks MATLAB is used to both control and monitor the execution of the
experiments. The data are analyzed following standard methods, implemented through a set of MATLAB
scripts routinely used in our laboratory and originally developed by G. Allodi.

Timing relies on a 48-bit timer counting the number of clock cycles elapsed since the start of the NMR
pulse sequence. Given the 200 MHz clock frequency of the firmware, this yields a time granularity of
5 ns and a maximum sequence duration of about 16 days, which is sufficient for our purposes. The
pulser units are very simplistic: Each one stores a zero-terminated program table, containing pulse start
and pulse duration (along with auxiliary data like TX phase, as applicable), and thus defining the time
intervals during which the pulser output should be asserted (i. e. , set to logical ‘1’). Currently, three such
pulsers are responsible for RX gating, TX gating, and amplifier blanking, respectively.
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2.3.2 Data transfer and averaging

The recorded signals are down-converted in real-time. Therefore, the memory required for storing the
complex baseband data (two channels at 25 MS{s, 2 bytes per sample, records of typically 1 ms duration)
is small and many records can be stored in the 512 MiB (1 MiB “ 220 bytes) DRAM (dynamic random-
access memory) of the radio-processor device. Typical data transfer rates for the hardware used in this
work are of the order of 100 to 400 MiB{s, which is of the order of the output data rate and therefore may
represent a significant overhead. Our solution, inspired by common computer-science knowledge, is to
divide the receiver DRAM into segments and to implement an on-device looping feature within our NMR
logic (scanner block in Fig. 2.3). One memory segment can be read out while the other segment is being
written to. This interleaved read-out process enables a simultaneous measurement and data transfer, such
that the repetition rate of the NMR experiment is effectively only limited by the relaxation time of the
studied nuclei.

On-device averaging would require simultaneous read and write access to the receiver DRAM by the
FPGA, which is not supported by the hardware used in this work (according to the manufacturer). In-
stead, we use the interleaved read-out technique and perform averaging in software. The employed data
types are 16-bit signed integer for the raw data, 32-bit integer for the average (1st moment), and 64-bit
integer for a variance estimate (2nd moment). Tests have shown that the averaging speed is solely limited
by the memory bandwidth of the host computer, most of which is required for loading and updating the
aggregated data (sums and sums of squares). Following standard practice, subsequent chunks of records
are therefore split into pages, in order to improve the locality of reference and hence make better use of
the processor cache. Different pages are averaged in parallel. This optimized implementation can aver-
age over 2 GS{s on our test system (Intel Xeon E3-1240 with dual-channel DDR3-1333 memory), which
is sufficient even for raw-data acquisition without DDC. The performance could be improved yet further
by optimizing chunk and page sizes, upgrading the host computer hardware, or delegating the task to
a suitable co-processor device. Finally, although not implemented in this work, on-device averaging of
short waveforms is possible using memory cells within the FPGA [35].

2.3.3 Transmitter

The transmitter section of the spectrometer uses direct-digital synthesis (DDS, see section 2.2.1 and
references therein). Due to the FPGA clock frequency of 200 MHz, eight phase-offset complex DDS
cores are used in parallel in order to generate data at the DAC (digital-to-analog converter) sampling rate
of 1.6 GS{s (such a design was previously evaluated in [57, pp. 45-46,53] in the more general context of
digital up-conversion). These data also serve as a local oscillator (LO) signal for the receiver described
below. The quadrature phase-shift keying (QPSK) modulator is needed for phase cycling.5 The 32-bit
width of the phase accumulator results in a frequency resolution of less than 0.5 Hz, enough for our
application. Fast phase-switching is possible, and frequency switching (see, e. g. [341]) or additional
DDS units could be added with little effort. The latter are especially interesting for spin-lattice relaxation
experiments using different nuclear transitions for excitation and detection [422, p. 26].6 If required, soft
pulses [138] and arbitrary waveform generation could be included as well (cf. , e. g. , [232]).

5Note that changing the phase in steps of 90˝ simply amounts to selecting the right quadrature and negating it as needed.
6In principle, such experiments can already be performed by disabling the firmware-based DDC function, which essentially

yields the software-based DDC approach described in [369], with all its associated performance challenges.
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2.3.4 Receiver

The receiver uses the DDC technique reviewed in section 2.2.1. The DDC unit consists of a complex
multiplier and a digital low-pass filter which removes the mixing image and reduces the data rate from
800 MS{s to 25 MS{s per quadrature. The baseband sampling rate was chosen to coincide with the max-
imal sampling rate of the conventional spectrometers used in our laboratory, which has proven sufficient
in the past. Following [57], a filter chain consisting of five half-band finite impulse response (FIR) deci-
mation filters (see, e. g. , [263, p. 172]) is used. The filter coefficients were obtained using the MathWorks
MATLAB DSP System Toolbox. Some of the filters require the processing of several samples per clock
cycle, which prevents the use of automatic code-generation tools (see also [57, p. 65]). The internal data
processing is performed with 24-bit precision. Whenever truncation is required, convergent rounding to
even (unbiased rounding) with saturation is used. Each filter stage reduces the sample rate by a factor of
two. Therefore, for a given sample rate fs before the filter, spectral components in a frequency interval
r
fs
2 ´ ν,

fs
2 s will give rise to aliases [416] in the range r0, νs.7 Our filters are designed for a 10 MHz

bandwidth (for each quadrature). The filter parameters have been chosen such that aliases within this
band are suppressed by at least 70 dB. The passband ripple is less than 0.01 dB for the combined filter
chain. While these values are sufficient for our application, they could be improved further if required.

Clock jitter [392] is a lesser concern given the large line widths typically encountered in condensed-
matter NMR experiments. Moreover, as supported by the hardware used in this work and already noted
in [392], such problems can obviously be solved with little effort by using an external sampling-clock
source. Likewise, an external clock reference may be used whenever a higher frequency accuracy is
desired.

Finally, we included an option to bypass the mixer, which is useful for experiments at very low frequen-
cies (below about 7 MHz), where the mixer images are no longer rejected by the decimation filters. In
order to ensure phase-coherent averaging also in this case, the DDS phase accumulators are reset before
every single scan.

2.3.5 Implementation

The FPGA logic modules have been implemented in Verilog. Most of the modules use an AXI4-stream
interface to simplify data-flow management [36]. Due to the large amount of data processed per clock
cycle, register slices [37] had to be added in order to ensure timing closure. The resource usage of the
final design is summarized in Table 2.1. Given the total resources available, the requirements of the
NMR-specific logic are very reasonable and leave plenty of room for future extensions.

NMR logic Manufacturer’s logic Available
Slices 2862 16457 37680
BRAM 44 277 416
DSP48 69 151 768

Table 2.1: Overview of the resources used by the spectrometer logic and the manufacturer’s firmware, as well as
the total resources available on the FPGA chip. We distinguish logic slices, block random-access memory (BRAM)
and 48-bit multipliers (DSP48).

7Aliasing is equivalent to Brillouin zone folding upon doubling the lattice constant in a crystal.
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2.4 Testing

2.4.1 Synthetic tests

To demonstrate the performance of the digital receiver, we applied a fixed-frequency test signal to the
receiver. In Fig. 2.4, we plot the power of the strongest spectral component in the recorded signal as
a function of the spectrometer reference frequency, excluding frequencies outside the ˘10 MHz pass-
band of the digital quadrature detector. The results are in very good agreement with the filter response
simulated using MATLAB.
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The spurious-free dynamic range (SFDR), defined as the intensity ratio (in dB) between the strongest
spurious signal and a given signal, was chosen as a figure of merit for the RF properties of the hardware
and is shown in Fig. 2.5.8 The hardware used in this work employs interleaved sampling and a proprietary
technique is used to compensate for imperfections of the ADCs [236]. These circuits were configured
for the first Nyquist band, which explains the deterioration of the otherwise excellent input SFDR upon
approaching 400 MHz. Since the noise floor of the radio-processor board is lower than the one of our
oscilloscope, we use a loopback measurement to characterize the output-signal quality. Therefore, the
output SFDR values above 390 MHz are worst-case estimates only. Finally, the combined gain of output
and input (see inset of Fig. 2.5) is found to be reasonably flat up to 800 MHz.

The construction of a conventional spectrometer resembling the one depicted in Fig. 2.1(a) was part
of a Master’s thesis supervised by the author [212]. For this conventional spectrometer, the SFDRs of
the transmitter and the receiver were of the order of 30 dBc and 50 dBc, respectively [212]. Although
the corresponding parameters are better for the digital spectrometer, the practical relevance of this is
limited, since the relatively narrow-band nature of nuclear-magnetic resonance implies that in most cases
only spurious signals close to the resonance frequency need to be small, which is the case for both
spectrometer designs. Still, direct sampling of the high-frequency signal has the conceptual advantage

8Harmonic distortion, known to originate from the test-signal source, has been excluded in the data analysis.
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that spurious harmonics typically fall outside the passband of the digital receiver (e. g. , [323, point 3.2]).

2.4.2 Magnetic resonance experiments

Several NMR experiments were made to assess the performance of the new spectrometer. The results are
compared with data obtained using a conventional spectrometer under the same experimental conditions
(magnet, probe, and sample). All measurements were carried out at room temperature.

Figure 2.6 shows the spectrum of 2H in heavy water in a magnetic field of 7 T. The spectrum was ob-
tained by averaging two free-induction decay signals following a π{2 pulse. The linewidth of 0.7 kHz
(FWHM) results from imperfect shimming of our magnet. The reference frequencies of both spectrom-
eters were set to 46.155 MHz and the resulting data are in good agreement. In addition, the comparison
also illustrates the absence of artifacts caused by low-frequency noise (“video” noise) and mixer imbal-
ance (“ghost”) [197, 416].
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As a test case complementary to the slowly-relaxing, narrow-band deuterium resonance, NMR measure-
ments were made on 59Co in ferromagnetic cobalt powder in zero external magnetic field. The internal
magnetic field gives rise to a rather broad spectrum spanning the range of 210-225 MHz, with two dom-
inant peaks originating from different crystallographic phases [153, 376]. Because both, the detected
signal as well as the driving RF field, are dramatically enhanced due to the magnetic order [334] (cf.
also [376]), very short pulses can be used, which increases the excitation bandwidth. Figure 2.7 shows
the 59Co spectrum recorded with the digital spectrometer using a spin-echo sequence with 50 ns pulse
duration and 20 µs pulse separation. The gray trace was obtained by varying the frequency in steps of
1 MHz and combining the individual spectra [91]. The shaded curve instead was recorded at a fixed
reference frequency of 216.123 MHz. After correcting for the finite spectral width of the refocusing
RF pulse9, the two spectra are in good agreement. Although such short pulses are rather exceptional in
NMR, the data confirm the broad bandwidth of the spectrometer.

9Instead of the expected shape [155], for short pulses, we observe a linear relation between pulse width and signal ampli-
tude.
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2.5 Discussion and Conclusions

Motivated by the availability of suitable hardware, a digital NMR spectrometer adapted to the needs
of condensed matter research was realized. The instrument relies on a commercially-available general-
purpose radio-processor device with user-programmable FPGA, such that most NMR functionality is
defined through the FPGA firmware and the application software. By adopting this firmware-defined
approach [7], the amount of NMR-specific hardware is reduced (cf. Fig. 2.2) and the replication of an
experimental setup is simplified. Also, additional functions can be implemented and tested without risk,
since previous “known-to-work” configurations can be quickly restored at any time. Possible future ex-
tensions include soft pulses [138], multi-frequency operation [369] (see section 2.3.3), or even stochastic
excitation [122, 195] (see also [62, 166]). Maintenance is reduced by relying on specified and well-tested
hardware, which can be used for non-NMR purposes as well. As a side effect, the spectrometer is very
compact and hence can in principle be easily transported (cf. [394]).

The use of direct sampling in both transmitter and receiver results in an SFDR which is superior to that
of typical conventional spectrometers (section 2.4.1). Moreover, artifacts caused by low-frequency noise
and mixer imbalance are absent in the digital receiver [197, 416] (section 2.4.2). Note that the absence of
the aforementioned artifacts is known to be a general advantage of heterodyne over homodyne detection
[416].10 The passband of the digital down-conversion filter is 20 MHz wide (˘10 MHz) and extremely
flat. A comparable filter based on analog components would be difficult to realize (cf. [416]).

NMR nuclei are usually divided into two groups according to their gyromagnetic ratio: Low-frequency
nuclei, up to and including 31P, and the high-frequency nuclei 203,205Tl, 3He, 19F, and 1,3H. The
400 MHz Nyquist frequency of the presented spectrometer corresponds to a magnetic field of over 23 T
for the low-frequency nuclei (cf. [308]), which are the ones most commonly studied in condensed mat-
ter physics. This is comparable to the maximum fields of the best superconducting laboratory-NMR
magnets available at the time of this writing [355]. Moreover, as shown in section 2.4.1, performance
in undersampling mode is good up to 800 MHz. External analog filters need only to be changed when
switching between undersampling and direct sampling. Furthermore, extending the firmware (Fig. 2.3)
to handle quadrature input and output signals requires almost no modifications, so that external mixers
for frequency up- and down-conversion could easily be incorporated in order to access frequencies be-
yond 800 MHz. Such configurations could be interesting, e. g. , for measurements in pulsed magnetic
fields.

Besides presenting and discussing synthetic benchmarks, we have shown that the spectrometer performs
well in typical laboratory NMR experiments, which demonstrates the suitability of the chosen design for
applications at signal frequencies well above 100 MHz (see section 2.2.2). Moreover, the considered test
cases demonstrate that such a setup can compete with and even outperform conventional spectrometers.
With regard to condensed-matter physics [26], a low dead-time (effectively solely limited by the recovery
time of the external components shown in Fig. 2.2) and the ability to sustain fast repetition rates are
emphasized (see section 2.3.2). Since the publication of the developments presented in this chapter [311],
other spectrometer designs based on FPGAs have been described (e. g. , [80, 382]). New software-defined
solutions were also reported, e. g. , in [287] (using components manufactured by National Instruments)
and [160] (using the open-source SDR framework GNU Radio and a commercial SDR transceiver).

10For instance, similar observations were reported previously in [264] (unclear if direct sampling has been used) and inde-
pendently in the context of an evaluation of transceivers for magnetic-resonance imaging [158].
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3.1 Introduction

The NMR probe is an integral part of any NMR setup (cf. sections 1.5.5 and 2.3). Despite the existence
of related literature (see, e. g. , [98, 113] for introductions), there is no universal agreement regarding
the technical details of probe construction, partly because the requirements differ from case to case. In
our case, the NMR probe has three primary functions: (i) Supporting the sample and the surrounding
radio-frequency (RF) coil, (ii) thermalizing the sample to the cooling apparatus, and (iii) providing an
electrical connection to the coil.

Two NMR probes were developed within the context of this work. The first probe is intended to be used
in conjunction with a 4He flow cryostat, whereas the second is designed for a “cryogen-free” 4He/3He
dilution refrigerator. The first one represents an evolution of an earlier design [74, 364]. Nevertheless,
it is believed that a brief discussion of the differences to the previous version should be interesting for
other researchers in the field. Furthermore, the basic design of this probe provides a good starting point
for explaining the particular challenges associated with the development of an NMR apparatus based on
the particular type of dilution refrigerator used in this work.

3.2 Tuning

In order to efficiently exchange energy with the NMR coil, the electrical circuit must be impedance-
matched to the spectrometer [98]. This is usually achieved by incorporating the coil into a resonant circuit
(“tank circuit”). Since impedances are complex-valued, the circuit must possess at least two adjustable
parameters. Two standard technical approaches are particularly relevant for this work. The first approach,
commonly referred to as bottom tuning (e. g. , [220, p. 22] and [74, p. 31]), places the resonant circuit
close to the coil and involves two adjustable capacitors [Fig. 3.1(a-b)]. While this typically allows for
a high quality factor, the accessible frequency range is limited by the tuning range of the adjustable
capacitors. Furthermore, the high signal levels used for exciting the nuclear spins (amplifiers with a
radio-frequency output level of 1 kW are not uncommon) necessitate mechanically-adjustable capacitors,
which must be supported by the design of the NMR probe. The alternative approach, called top tuning
[Fig. 3.1(c)] (e. g. , [74, p. 31]; cf. also [220, p. 22]), uses an adjustable-length coaxial line and one
adjustable capacitor, which can be connected in parallel [as shown in Fig. 3.1(c)] or in series [2]. The
main advantage of top tuning is that all adjustable elements of the circuit can be located outside the
cryostat. Therefore, no practical limitations of the accessible frequency range arise, which is why this
approach is often preferred when the magnetic fields are varied, e. g. , during measurements in high
magnetic fields.

The mathematical analysis of the circuits shown in Fig. 3.1(a-b) is straightforward. These two arrange-
ments are sometimes called high- and low-frequency configuration, respectively (e. g. , [74, Fig. 2.7]). In
practice, the former arrangement is preferable, since it tends to yield larger accessible frequency intervals

29
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Figure 3.1: Examples of resonant electrical circuits commonly used to impedance-match NMR probes (e. g. , [176,
Fig. 5], [220, Fig. 2.7], [74, Fig. 2.7], [98, Fig. 6]). The symbol used for the coaxial transmission line should be
self-explanatory. The outer conductor of the coaxial line is connected to ground.

for a given type of capacitor (i. e. , frequency intervals rνlo, νhis with larger νhi{νlo). Moreover, only C2

needs to handle very high voltages in this case. The top-tuning circuit [Fig. 3.1(c)] can be studied in a
similar way, e. g. , by using the well-known result for the effective impedance of a device connected to a
transmission line (e. g. , [324, p. 60]). However, since coil inductance L and variable capacitance C rep-
resent discontinuities of the transmission line, a formulation based on the reflection and interference of
directional radio-frequency signals (see, e. g. , [324, Fig. 5.13 and eq. 5.40]) is considered more intuitive.

Finally, as has been seen by explicit calculation, the mathematical expressions corresponding to the
circuits depicted in Fig. 3.1 only yield solutions for a non-zero resistance R [Fig. 3.1(a-b)], or a non-zero
attenuation of the coaxial line [Fig. 3.1(c)]. Indeed, energy conservation clearly requires a dissipative
element, since the circuits do not reflect any power once adjusted to the characteristic impedance of the
signal source (power amplifier). Thus, besides the aforementioned mechanical aspects, an important
difference between bottom and top tuning is the location where the energy of the high-power RF pulses
is dissipated.

3.3 Thermal aspects

A special challenge when designing NMR probes for condensed-matter physics is that typically a trade-
off between electrical characteristics (signal loss) and low-temperature performance (heat load) needs to
be made (see, e. g. , [98]). Three main mechanisms for heat transport are considered: Radiative transfer,
thermal conduction of the solid components, and convection. In this section, a brief reminder of the
corresponding general cryogenics knowledge is given in order to provide a context for the subsequent
discussion (see [320] for a more complete introduction).

Convection For this work, convection is only relevant in section 3.4, which deals with an NMR probe
for a 4He flow cryostat. In this case, convective heat transfer provides the main cooling mechanism. The
effective cooling power depends on various operation parameters of the cryostat, like mass flow and
pressure of the gas. Although, e. g. , the effective surface area of a probe may clearly affect the heat-
transfer and thus the cooling efficiency, such effects are neglected in the following discussion.

Radiation The radiative heat flow Q
pradq
1Ñ2 between two surfaces with temperatures T1 and T2, emissiv-

ities ε1 and ε2, and equal areas A is given by the Stefan-Boltzmann equation,

Q
pradq
1Ñ2 “ σ

ε1ε2
ε1 ` ε2 ´ ε1ε2

A
`

T 4
1 ´ T

4
2

˘
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where σ « 5.67¨10´8 W m´2 K´4 (e. g. , [320, pp. 117-118]). Most low-temperature apparatus involves
cylindrical probes with long and narrow support structures. It is common to interrupt such structures by
baffles [320, pp. 118 ff.] [see Fig. 3.2(a) for an example]. Assuming predominantly radiative heat transfer
and N thermally-floating baffles with areas A and emissivities ε, energy conservation implies1

Q “
1

N ` 1

εσA

2´ ε

`

T 4
1 ´ T

4
2

˘

.

Thus, even in the absence of any other heat-transport mechanisms, the baffles help reducing the radiative
heat load. This effect is used heavily in cryogenics, especially in the form of so-called superinsulation
materials consisting of thermally weakly-coupled stacks of metallized plastic foil with low emissivity
(see [320, p. 123]). In case of a flow cryostat, the gas flow provides additional cooling of the baffles,
such that the radiative heat load is reduced even further.

Conduction Thermal conduction is described by Fourier’s law q “ ´κ∇T (see, e. g. , [213, p. 236]),
with heat flux density q, temperature T , and thermal conductivity κ. It is instructive to consider an
approximately one-dimensional geometry following a curve γ with constant cross-sectional area A. If
the endpoints are held at temperatures T0 and T1, and the structure is thermally isolated, the net heat load
flowing from point 0 to point 1 is easily found,

Q
pcondq
0Ñ1 “

A

L

ż T0

T1

κpT q dT “
A

L
Kint,T1pT0q , (3.1)

where the thermal-conductivity integral Kint,T1 was introduced and L denotes the arc length of γ. The
standard expression (3.1) can also be used to obtain the temperature distribution along γ.

3.4 Improved NMR probe with two-axis rotator

In the following, an NMR probe designed to work with a 4He flow cryostat (Oxford Instruments Spectro-
stat CF) is presented. The probe is based on an earlier design, whose distinguishing feature is a two-axis
rotator mechanism enabling in-situ control over the sample orientation [74, 364]. The previous probe
was built for a shorter cryostat, which is inserted into the magnet with the sample pointing up. This
configuration poses problems for operation below 4 K. In order to improve low-temperature operation,
a longer cryostat loaded from the top of the magnet has to be used. With the acquisition of a suitable
cryostat, the construction of a corresponding probe became necessary. Thus, one of the goals was to im-
prove the thermal design of the probe. Other changes were motivated by the experience collected while
working with the previous NMR probe.

The project was carried out in close collaboration with W. Bachmann, mechanical engineer at the physics
department of ETH Zürich, who was also involved in the construction of the original probe. He was
responsible for the detailed mechanical design and manufacturing, which included the pre-assembly
of the mechanical components. The authors contributions consisted in the provision and continuous
adjustment of detailed specifications for the required changes, the acquisition and installation of the
electrical components, as well as the commissioning of the final device. A part of the associated test runs
were carried out by T. Shiroka and L. Korosec.

1Q “ Q
pradq
iÑi`1 “

1
N`1

řN
i“0Q

pradq
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Figure 3.2: Overview drawing (a) and photographs (b-c) of NMR probe for 4He flow cryostat. The part of the
probe depicted in (b) is indicated by the dashed rectangle in (a). Image (c) shows shows a bottom view of the
probe, as indicated by the black double arrow. The shielding cup ‘B’ visible in (b) is not shown in (a) and (c).
Magenta leader lines are explained in the text.

Relevant aspects of the probe are shown in Fig. 3.2. It consists of a long structure [Fig. 3.2(a)], which is
delimited by a top flange with electrical and rotary feed-throughs [Fig. 3.2(a), left], and the probe head
[Fig. 3.2(a), right]. Since most aspects of the original probe were already described elsewhere [74, 364],
I restrict myself to briefly presenting a few selected2 differences of the revised version.

• Since the longer cryostat accommodates wider probes, it was possible to increase the range of
the pitch angle to ˘100˝ (the roll angle is unrestricted). Note that despite the resulting off-center
position of the rotator mechanism (‘R’) [Fig. 3.2(c)], the field homogeneity at the sample (‘S’) is
sufficient for our application. In addition, several parts of the mechanism, such as the transmis-
sion ‘T’ [Fig. 3.2(c)], were redesigned to eliminate friction-based joints and increase the torsional
rigidity of the driving mechanisms of the tuning capacitors and the two-axis rotator. These changes
are expected to minimize the hysteresis of the mechanism.

• A shielding can (‘B’) was added. Besides preventing temperature gradients across the sample, it
limits the extent of the RF magnetic field. By reciprocity [176, 180], this also avoids pickup of
unwanted signals and electromagnetic interference. In order to check for any adverse effects, the
model depicted in Fig. 3.3 has been solved for frequencies ranging from 10 Hz to 1 GHz, using a
finite-element software (COMSOL Multiphysics). The geometry approximates that of the actual
NMR probe, whereas temperature and RF magnetic field are chosen such that the calculations
yield an upper bound on the Joule heating. The simulations show that (i) Joule heating remains
below 60 mW, (ii) magnetic shielding becomes effective around approximately 1 MHz (balance
between skin depth and wall thickness), and (iii) the RF magnetic field inside the coil is affected
to less than 1%.

• To improve the electrical characteristics, two semi-rigid coaxial lines (‘X1’ and ‘X2’) are used,
which extend to their targets without impedance discontinuities. In combination with moving
the tuning capacitors [‘C’, only one annotated in Fig. 3.2(c)] closer to the coil and providing
conductive capacitor bases, this minimizes the additional wiring required to realize the tuning

2Several additional aspects have been improved, but are considered less interesting for the reader.
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Figure 3.3: Axisymmetric model used to estimate the effects of the shielding can. The geometry consists of a
6-turn coil made from 0.3 mm dia. Cu wire, the coil dimensions being 3 mm ˆ 2.7 mm (inner radius by length).
The excitation is chosen such that the coil generates a RF-field of 0.1 T at its center. The surrounding shield has
inner dimension w “ 40 mm and is made from 1 mm thick Cu. Room temperature is assumed. Closed curves
indicate the flux lines of the magnetic field, whereas the shading of the walls represents the induced current density.

circuits shown in Figs. 3.1(a) and 3.1(c) and thus reduces noise pickup.

• The coaxial lines are thermally anchored to the structure of the probe using conical clamps (‘K’).
Note that the PTFE dielectric of the cables shrinks significantly upon cooling (linear expansion of
2% in the relevant temperature range [99]), such that thermalization of the center conductor in fact
relies on convection. Moreover, following standard practice, the support structure of the probe was
optimized by using thin-walled stainless-steel tubes. As a result, the effective cross sectional area
has decreased by an order of magnitude, which reduces the conductive heat load.

The coaxial lines are mounted such that they can easily be replaced or removed. The two cables depicted
in Fig. 3.2 were supplied by Coax Co. ltd. , Japan, and fabricated from two different conductor-material
combinations: Oxygen-free high-conductivity copper (OFHC) for low electrical losses (‘X1’), as well as
a combination of a silver-plated beryllium-copper center conductor with a stainless-steel outer conductor
for reduced heat load (‘X2’). A temperature of 1.9 K was reached with both cables and the shielding can
(‘B’) installed.3 In subsequent tests without cable ‘X1’ and shielding can ‘B’, performed by L. Korosec,
temperatures below 1.5 K were achieved.

3.5 Towards an NMR probe for a “cryogen-free” dilution refrigerator

3.5.1 Motivation

A considerable part of this work was related to the development of an NMR apparatus intended to be
used with a “cryogen-free” dilution refrigerator (Leiden Cryogenics CF-650). The term “cryogen free” is
commonly used to advertise systems in which the cryogenic gases circulate through a completely closed
system. In principle, such systems can be operated indefinitely, as long as electrical power and cooling
water for the auxiliary components are provided. A section through this system is shown in Fig. 3.4(a).
The refrigerator has five stages: The topmost two stages are cooled by a closed-cycle refrigerator (CCR),
whereas the remaining three stages are refrigerated by a mixture of 3He and 4He. The details of the
refrigeration techniques are beyond the scope of this work, the interested reader is referred to the wide

3The temperature was measured using calibrated temperature sensors on cryostat and probe, and further confirmed through
measurements of the 27Al-NMR spin-lattice relaxation-rate in aluminum foil (cf. section A.4.1).
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body of literature existing on this topic (e. g. , [320]). The system is equipped with a superconducting
magnet capable of producing magnetic fields up to 10.5 T (Cryogenic ltd. , UK) and is designed to be
top loading, i. e. , to allow for extracting and re-installing the probe without having to warm up the entire
system. The thermal connection between probe and refrigerator is established via a clamping mechanism
(proprietary, Leiden Cryogenics) visible in Fig. 3.4(b).

Early tests using the probe supplied with the refrigerator and a custom sample holder, developed to-
gether with F. Casola, T. Shiroka and W. Bachmann, were unsatisfactory. Even individual short NMR
pulses induced temperature responses of the order of 50 mK at the sample holder (for sample-holder
base temperatures around 0.3 K). Two primary problems were identified. First, the metal parts on the
probe were susceptible to Joule heating due to currents induced by the radio-frequency (RF) magnetic
field created by the NMR coil. Secondly, the probe was designed for top tuning (cf. section 3.2), but
the electrical properties of the installed RF wiring were insufficient. In particular, already at moderate
frequencies around 150 MHz the signal attenuation of the cold probe exceeded 6 dB (one-way) and
spurious electrical resonances hindered efficient top tuning.

As discussed in section 3.2, all input RF-power is dissipated within the tuned circuit of the probe. The
Joule heating of surrounding metal parts, as well as the power dissipated within the coil, only depend on
the strength of the RF magnetic field (B1 field in section 1.5.4). However, the quality factor of the tuning
circuit affects the total power required to drive the coil and hence the associated heat release (e. g. , [113,
eq. 21]). In top tuning, standing waves form within the RF cables, such that a good top-tuning setup
requires: (i) Low overall attenuation to minimize total heat load, and (ii) current antinodes and dominant
electrical losses in locations with high cooling power (cf. [98, p. 258]). Neither requirement was satisfied
by the original probe and mechanical actuators required for bottom tuning were not provisioned.

It was therefore decided to rebuild the sample holder and parts of the probe. The new probe should
support frequencies ranging from a few MHz to 0.5 GHz and allow for top and bottom tuning, without
compromising the top-loading capability.

3.5.2 Design

A traditional approach to NMR in dilution refrigerators is to install the sample inside the mixing cham-
ber or in a separate experimental cell filled with liquid He. A representative design with top-loading
capability, which has influenced this work, is described in [223]. Typically, the sample is thermalized via
the liquid, while the NMR coil is primarily heat-sunk through its leads [3].

In general, Joule heating of the NMR coil is unavoidable. Unless immersed in liquid He, the coil is
therefore typically thermally decoupled from the sample [18, 72, 223]. The need to thermally separate
the sample from the coil was also pointed out by V. Mitrović (Brown University, Providence; private
communication). Rough estimates4 made by the author confirm that RF-induced heating is a concern.
The design choice to follow the literature (e. g. , [223]) and thermally anchor the coil to the still stage

4Field-generation and field-screening are equivalent. The coil is approximated as densely-wound and infinite, to admit use
of the results from [184, pp. 221,782]. The RF-field is B1 “ 1{p8gT q with g “ f{B0, f the frequency, B0 the external field,
and T the duration of a π

2
-pulse. Assuming Cu wire with residual-resistivity-ratio (RRR) 300, the classical skin depth δ « 1 µm

at f “ 20 MHz and low temperature. For T “ 5 µs and B0 “ 10 T, the energy dissipated by a π
2

-pulse is 0.25 J{m2. For an
NMR coil with linear dimensions of 5 mm (diameter and length), this yields 20 µJ. Assuming thermalization to 1 kg of Cu at
80 mK, a temperature rise of 20 mK would arise (see [320, Tab. 10.1] for material data). Note that the anomalous skin effect
[135, 313] is expected to further increase dissipation.
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of the probe is finally brought about by the long thermal link between the center-of-field and the mixing
chamber [cf. Fig. 3.4(a)]. Note that superconducting coils may be an option to consider in the future
[33, 58, 156, 427], as are superconducting coaxial cables [25, 224, 322, 338, 453] for connecting the
low-temperature stages of the probe. It is emphasized that neither of these options is excluded by the
aforementioned design choice.

A major part of the reverse-engineering, design, construction, and assembly work was performed by the
author. This included wiring of most thermometers and heaters, and the development of temperature-
monitoring software. Valuable technical assistance was provided by other members of the group, in
particular Prof. H.-R. Ott, T. Shiroka, N. Barbero, and F. Casola. Note that the following list is not ex-
haustive. Prof. Ott took care of the operation of the dilution refrigerator during the test runs. T. Shiroka
was responsible for maintaining and repairing the resistance bridges used for thermometry, as well as
for building various external cables. The heater units were characterized by T. Shiroka and N. Barbero,
and a part of them was installed by N. Barbero. Mechanical parts were machined by the mechanical
workshop of the ETH Zürich physics department. In a first step, the entire section of the probe above
the 2nd CCR stage [Fig. 3.4(a)] was rebuilt in order to accommodate the mechanical controls required
for bottom tuning. Associated modifications to the driving mechanism of the clamps used for establish-
ing the thermal link between probe and refrigerator [sub-assembly ‘M’ in Fig. 3.4(a)] were devised by
W. Bachmann, mechanical engineer at the physics department of ETH Zürich, and a new sliding-seal
assembly was developed by his colleague M. Baer. The entire project, including the work described in
the rest of this chapter, was supported by the expert advice of Dr. Marek Bartkowiak (PSI) in various
cryogenics questions. Although representing a considerable effort, the technical aspects of constructing
a vacuum-tight top end [Fig. 3.4(a)], as well as the thermal anchoring of wires carrying low-frequency
signals are well understood (see, e. g. , [320]) and therefore not described in detail.

The main challenges of the project can be summarized as follows: (i) Transporting high-frequency sig-
nals down to the still stage in a manner suitable for top-tuning (see section 3.5.1), and (ii) designing a
sample holder for NMR. The solutions proposed to these two problems are described in more detail in
the following.

3.5.3 Heat-sinking of coaxial lines

As mentioned in section 3.4, thermal expansion produces a gap between the dielectric and the outer
conductor of a semi-rigid coaxial line. Combined with the already low thermal conductivity of the PTFE
dielectric [354], this renders approaches resembling the one used for the flow cryostat (section 3.4)
ineffective at heat-sinking the center conductor of the coaxial line [1] (cf. [223]). The problem can be
solved by replacing a section of the coaxial line with another type of transmission line which allows for
better heat-sinking (e. g. , [27]). The microstrip transmission line [154, 244, 245, 339, 439] depicted in
Fig. 3.4(c) has a particularly well-suited geometry. Its high thermal conductivity [52, 170, 320, 357] and
good dielectric properties [109] make sapphire a predestined substrate for such applications. In addition,
sapphire has a high dielectric strength [109] and, unlike quartz, is not piezoelectric (e. g. , [44, 50]), which
is important given the high voltages occurring in NMR apparatus, especially in conjunction with top
tuning. This solution to heat-sinking was already applied in low-temperature apparatus, including low-
temperature NMR [162, 223], and has been suggested by V. Mitrović (Brown University, Providence;
private communication). However, most NMR signals fall outside the range of typical design frequencies
of microstrip lines. Since no literature discussing design details and electrical characteristics of finite-



36 3 NMR probes

size microstrip heat-sinks in the low-frequency regime is known to the author, selected considerations
made in this work are presented in the following.

3.5.3.1 Design

Many aspects need to be considered when designing an actual heat-sink, like the one depicted in Fig. 3.4(d).
The overall layout of the device is inspired by previous work by M. Bartkowiak and coworkers [1]. The
tolerances of the packaging, made from gold-plated Cu, must accommodate the low thermal expansion
of the sapphire [39, 109]. Therefore, the pins providing the electrical contact to the microstrip line are
not fixed. Mechanical stresses are avoided by thermalizing the sapphire chip through a layer of grease
(Apiezon N) [1]. Although indium could be used for that purpose [1], the large contact area reduces
the importance of the thermal connection between chip and packaging. The thickness of the grease
layer is minimized through flat machining of the contact surface and the addition of CuBe springs [4]5

[Fig. 3.4(d)]. Finite-element heat-transfer simulations confirm the effectiveness of the heat-sink design.6

As explained in section 3.5.1, top tuning requires very low loss and a well-defined characteristic impedance.
Hence, efforts were made to ensure good electrical properties of the heat sinks. As mentioned before,
dielectric losses and dielectric strength are no concern. Neither are spark gaps, given the high vacuum en-
vironment in which the system is operated [98, p. 257] (cf. [223]). Electromigration of the electroplated
Au conductors [41, 201] due to high circulating currents should not be relevant, unless the microstrip
line is heated to high temperatures under abusive power conditions.

Regarding the RF design of the transmission lines, it is noted that the conductor thickness generally af-
fects the characteristic impedance [129, 206, 330]. A rather large thickness of 10 µm is used in order to
improve power handling. The parameters of the transmission line were obtained using the TX-LINE soft-
ware (formerly AWR, now National Instruments), targeting an average characteristic impedance of 49 Ω,
which corresponds to the estimated impedance of a cold coaxial cable with PTFE dielectric (see [99, 421]
for material properties). The design frequency range is 10 MHz to 0.5 GHz and the low-temperature ma-
terial parameters [221, 254] were used. Although the anisotropic dielectric constant of sapphire can be
accounted for [23, 173, 205, 307, 413–415], an isotropic dielectric constant can be assumed by aligning
the microstrip with the anisotropy axis of the substrate and assuming quasi-TEM propagation. Non-TEM
effects [40, 100, 172, 202, 203, 362] are negligible in the considered case. As an alternative to analytical
results [118, 159], the effect of the conductive walls of the packaging is evaluated by two-dimensional
quasi-TEM finite-element calculations using COMSOL Multiphysics (following the procedure outlined
in [282, 283, 368]).

The transition from coaxial to microstrip transmission line deserves special attention [335, 337]. Special
RF connectors (Southwest Microwave, Inc. , USA) are used to progressively reduce the radius of the
coaxial line until it matches the thickness of the substrate [337]. In addition, the microstrip is tapered at
the ends [337]. The resulting design was checked by performing a three-dimensional full-wave finite-
elements calculation using COMSOL Multiphysics.

5CuBe is known to remain elastic down to very low temperatures [1].
6Calculations performed with Simulia Abaqus (Dassault Systèmes). The grease layer is modeled pessimistically by a

100 µm thick layer of PTFE [354]. Assuming the temperatures of the corresponding stages of the probe as 3 K and 1 K, with
respective center-conductor heat loads of 7 mW and 9 µW, the simulations show that the center conductors are thermalized to
within 0.5 K and 50 mK, respectively. Anisotropic thermal conductivity of the substrate is considered negligible [109, p. 110].
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3.5.3.2 Fabrication and Testing

The sapphire wafers (525 µm thick A-cut sapphire, Roditi International Corporation ltd. , UK) were
processed by S. Loosli at the FIRST clean-room facility of ETH Zürich. The resulting microstrip lines
had a width of 550 µm and 24 µm thickness (measured by S. Loosli). One of the four devices built
is depicted in Fig. 3.4(d) (with lid removed). The room-temperature RF characteristics of the devices
are shown in Fig. 3.4(e). The signal attenuation (insertion loss) and the impedance mismatch (return
loss) are both very good throughout the relevant frequency range.7 Although very difficult to measure,
by design, both parameters should improve further upon cooling. Furthermore, signal transmission was
checked to remain linear for traveling RF waves with up to 1 kW peak power. In air, the breakdown
voltage of the entire assembly is limited to slightly above 3 kV by the air gaps surrounding the launch
pin. No such limitations are expected in the envisaged low-temperature and high-vacuum operation [98,
p. 257] (cf. [223]).

3.5.3.3 Overall signal transmission

The heat sinks described in the preceding subsections are anchored to the 2nd CCR and the still stages
[heat sinks ‘H’ in Fig. 3.4(a)].8 The connection towards the top of the probe is established through
a combination of Cu (Huber + Suhner AG, Switzerland) and BeCu (Coax Co. ltd. , Japan) semi-rigid
coaxial lines.9 The BeCu wiring is also used to connect the heat-sinks at the 2nd CCR and still stages.
The RF characteristics of the signal transmission path from room temperature to the still stage are shown
in Fig. 3.4(f). As expected, the total signal attenuation (insertion loss) is significantly reduced compared
to the original probe. The return loss (RL) is below´20 dB throughout the relevant range of frequencies,
which is usually considered sufficient.

The return loss of the old probe may not seem too bad. However, it should be noted that top tuning is
based on the interference of the partial waves reflected at the matching capacitor C and the NMR coil L
[see section 3.2 and Fig. 3.1(c)]. For the old wiring, the round-trip signal attenuation (twice the insertion
loss) was comparable to the amplitude of spurious reflections arising at various locations of the probe
(return loss). This gave rise to additional tuning resonances which did not correspond to an efficient
(reactive) power transfer to the NMR coil.

3.5.4 Considerations regarding sample holder

As mentioned in sections 3.5.1 and 3.5.2, heating of metallic parts by RF-induced eddy currents is a
concern. With respect to the NMR coil, the problem can be avoided by thermally decoupling the coil
from the sample or using superconducting materials (see section 3.5.2). However, the same problem
arises in any metallic parts present on the sample holder. In many reports, the samples are immersed
in, or consist of, liquid He [18, 72, 177, 223]. In other cases, continuous-wave (CW) NMR has been
used successfully [30, 388]. Note that NMR is also used for thermometry in nuclear demagnetization
refrigerators, where the sample holders must be metallic in order to ensure thermalization (e. g. , [66]).

7The CuBe springs, as well as the grease between sapphire chip and packaging, have no measurable effects.
8For the still stage, the corresponding components are also visible in Fig. 3.4(b).
9The latter type of cable represents a good trade-off between thermal and electrical properties and is therefore a common

choice for low-temperature NMR apparatus.
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While eddy-current heating can be reduced by using low frequencies (e. g. , [66, 123, 177, 267, 322]),
this is clearly not an option in our application.

Based on the design choice of a thermally decoupled coil (section 3.5.1), a tentative sample holder has
been devised [Fig. 3.4(g)]. The coaxial lines (red) should be made of Cu to provide a strong thermal link
to the still stage of the probe and their outer conductors could be used to heat-sink the tuning capacitors
if bottom tuning is used (orange). Since bottom tuning is scheduled for a later development stage, the
orange parts can be ignored in a first version of the sample holder. The estimates made in section 3.5.2
imply that the sample cannot be directly attached to a metallic sample holder.10 Note that, according to
her description, V. Mitrović (Brown University, Providence) is using a similar sample-holder design and
has pointed out to the author that, unless liquid He (mixture) is to be used, GaAs (cf. [19, 20, 54, 115,
171, 183, 309, 399]) is a suitable non-metallic material with high phononic thermal conductivity (private
communication).

There is a trade-off regarding the design of the sample holder. The tentative design depicted in Fig. 3.4(f)
tries to reduce the length of the GaAs sample support in order to reduce the thermal relaxation time τth
of the sample. Note that besides limiting the rate at which NMR experiments can be repeated, τth can
also affect the apparent relaxation behavior of the nuclear magnetization if T1 À τth (e. g. , [402]). The
drawback of the proposed arrangement is the necessity for a split RF coil, like a suitably-adapted birdcage
resonator [18], saddle coil [113, 223], or solenoid pair. The radiative heat load from the coil is generally
not expected to be a problem.11 The sample could be mounted on the GaAs support, e. g. , using Stycast
1266 (see [303] for thermal properties).

Two remaining engineering challenges related to the sample holder remain. First, the split coil must be
positioned precisely w. r. t. the sample while avoiding heat leaks into the sample support. The use of
superconductors (see section 3.5.1) might be advantageous in this respect. In particular, such coils could
be thermally linked to the sample holder and coupled inductively to the remaining RF circuit (through
a transformer, e. g. , see [408]). Secondly, RF-induced heating of the cold metal parts of the sample
holder must be avoided.12 For the proposed split-coil geometry, this implies that field-leakage between
the two parts of the RF coil must be minimized. Then, heating due to the stray field emanating from the
outwards-pointing ends of the coil pair (“return field”) can be avoided using a simple metallic shield, as
done previously in [223].

3.6 Summary and Outlook

An NMR probe for use in a 4He flow cryostat was designed and implemented. Selected aspects were
improved with respect to previous versions, as described in section 3.4. The discussion also serves as an

10As remarked by V. Mitrović (Brown University, Providence), a metallic sample holder would also perturb the RF field
generated by the coil (private communication).

11Tests suggest that the base temperature of the mixing-chamber stage of the probe is around 50 mK. Extrapolating from
[183], the thermal conductivity of GaAs at this temperature is κ « 1.6 mW m´1 K´1. Taking the effective thermalization
path as 5 mm wide, 650 µm thick, and 10 mm long, the maximum heat load giving rise to a temperature change of no more
than 10 mK is 5 nW. Meanwhile, the radiation emitted by a black surface of 4 cm2 at 2 K is 0.4 nW. Yet, if the thermal
conductivity of the sample is small, additional precautions might become necessary.

12Note that, for metallic samples, the electrons of the bulk limit the increase of the average (electronic) temperature (e. g. ,
[123, 124]). Also, the magnitude of the nuclear magnetization is unaffected by Joule heating on time scales short compared to
T1 [322]. Similarly, measurements might be possible before the RF heating of the electrons in the sample holder has propagated
to the sample. However, relying on such effects exclusively is not an option if relaxation measurements are to be performed.
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Figure 3.4: (a): Partial-section view of “cryogen-free” dilution refrigerator with loaded NMR probe (Leiden Cryo-
genics CF-650, probe diameter 50 mm). Unshaded parts correspond to the proposed design of the sample holder
(‘S’). The temperatures of the individual stages are examples only. The walls of the vacuum chambers, as well as
the radiation shield extending from the shield-stage into the magnet are omitted for clarity. (b): Photograph of the
actual probe. (c): Schematic cross-section view of a microstrip line used for heat-sinking of the radio-frequency
signals. (d): Photograph of final heat-sinking device (top lid removed). (e),(f): Electrical characteristics of the four
heat sinks built (e) and the complete RF-signal path from the top end to the still stage of the probe (f). RL and IL
stand for return loss and insertion loss, respectively. (g): Tentative sample holder design. Blue parts are anchored
to the mixing chamber stage, whereas red and orange parts are anchored to the still stage of the probe. See text for
details and credits.
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introduction to section 3.5, which concerns the challenges associated with the design of an NMR appa-
ratus for modern (i. e. , “cryogen-free”) dilution refrigerators. In this case, sections of the probe had to
be rebuilt in order to accommodate the specific requirements formulated in section 3.5.1. Furthermore,
following established practice, a solution for the heat-sinking of the radio-frequency signal lines was
developed and implemented (section 3.5.3). Special care was taken to ensure good signal propagation in
order to allow for top tuning (cf. section 3.2). Finally, a partial design for a sample holder is presented.
The remaining engineering challenges associated with the sample holder are described, together with
possible solutions, in section 3.5.4. The author acknowledges private communication with V. Mitrović
(Brown University, Providence), who is operating a similar NMR setup (cryogen-free dilution refrigera-
tor, but without top-loading probe), and whose helpful suggestions have clearly inspired several design
choices made in this work (see sections 3.5.2, 3.5.3, and 3.5.4). Note also the many other contributors
and collaborators mentioned throughout this chapter and in the Acknowledgments. Future work should
aim at developing the described ideas further in order to obtain a complete sample-holder design which
can then be implemented.



Part II

BiCu2PO6: Field-induced magnetic order in a frustrated
spin ladder
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4 BiCu2PO6: General aspects

4.1 Introduction

The literature on BiCu2PO6 available at the time of writing has been summarized in Tab. 4.1, where
only directly relevant works were included. Rather than trying to mention each of the publications in
this introduction, I will refer to and discuss the previous works listed in Tab. 4.1, as well as additional
literature, along with the presentation of the results whenever applicable.

The structure of BiCu2PO6 (see section 4.2.1) was first reported in [11]. The exponential suppres-
sion of various response functions, such as magnetic susceptibility [258] and specific heat [217], at
low temperature suggested a gapped spin-liquid ground state [217, 258]. Together with the crystal
structure, this lead to the proposition of a spin-ladder model [217, 258]. The holes of the Cu2` ions
are assumed to be localized due to strong correlations, yielding an effective model (cf. section 1.1.1)
based on antiferromagnetically-coupled spin-1

2 moments (e. g. , [401]). A large Curie-Weiss temperature
(181p1q K) [401] and the observation of incommensurate correlations [257] suggested that frustration
plays an important role in BiCu2PO6, ultimately resulting in the frustrated spin-ladder model described in
section 4.3.1 [401].1 The exchange couplings were estimated based on first-principles calculations [217,
257, 401] and experimental data [257, 316, 318, 401] (see section 4.3.3). Moreover, Dzyaloshinskii-
Moriya interactions (section 1.1.2) and interladder couplings are believed to be important (see sections
4.2.4 and 4.3.3). These additional interactions are likely to be responsible for the highly orientation-
dependent magnetic-field induced phases observed in BiCu2PO6 [207, 208] (see section 4.5).

An interesting aspect of BiCu2PO6 is its chemical flexibility [74, p. 96]. The spin-1
2 Cu ions can be

replaced by non-magnetic Zn [217] (cf. section 5.2.4) or spin-1 Ni [218]. The Zn-doped compounds,
including pure BiZn2PO6, share the orthorhombic Pnma space group of BiCu2PO6 [218]. Also, Ca and
Pb can be substituted for Bi, giving rise to localized holes with non-vanishing spin [218]. Moreover, P
can be replaced by V which induces an incommensurate modulation of the crystal structure along the
b-direction [258].

1Nevertheless, some early works (Tab. 4.1) neglected frustration in order to make use of quantum Monte Carlo techniques
(section 1.4.2).
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Property/Method References
Crystal growth and thermal stability [423, 424]c

X-ray diffraction [11]a, [258]b,a [218]c,a, [423, 424]c,a

Neutron diffraction [424]c, [259]c

Inelastic neutron scattering [257]a, [259]c, [316], [318], [319]
Raman scattering [34],[87]
31P NMR [22, 63, 218]c,e,a, [74, 76]c,a, [74, 78]c,d

µSR [63]c,a

Magnetization/susceptibility [258]a,b, [217]a, [257]a, [218]c,a,e, [423], [401]c,d, [207, 208]d, [74]c,d

Magnetostriction [207]d

Calorimetric measurements [217]a, [218]c,a,e,f, [455]g, [424]c, [207, 208]d

Heat transport [284], [187, 189, 190]d, [325]
Electric polarization [188]d

First-principles calculations [217], [257], [401]
Exact diagonalization [257], [74, 76], [401]
DMRG [401], [74, 77, 78, 131]c,d

Quantum Monte-Carlo [217], [22, 63]c, [74, 76]c

Bond-operator mean-field theory [179, 318, 319]
Continuous unitary transformations [377]

aPolycrystalline sample.
bV substituted for P.
cZn (spin-0) substituted for Cu (spin- 1

2
).

dWork related to field-induced phases.
eNi (spin-1) substituted for Cu (spin- 1

2
).

fCa and Pb substituted for Bi.
gExperiments under pressure.

Table 4.1: Overview of published works directly relevant for BiCu2PO6.

4.2 Structural aspects

4.2.1 Crystal structure

The crystal structure of BiCu2PO6 is depicted in Fig. 4.1. The sites contained in each unit cell are listed
in Tab. 4.2. The conventions, especially regarding choice and naming of generating sites and lattice
directions, adhere to Ref. [11] and, unless otherwise noted, the pa, b, cq basis is used in this work.

Site Multiplicity
Cu(1) 4
Cu(2) 4
P 4
Bi 4

Site (contd.) Multiplicity
O(1) 8
O(2) 8
O(3) 4
O(4) 4

Table 4.2: Multiplicities of crystallographically inequivalent sites in BiCu2PO6 [11].

The framework of the crystal consists of CuO5 and PO4 polyhedra [11]. From a structural point of
view, the CuO4 plaquettes, which constitute the bases of the CuO5 pyramids and have been depicted
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Figure 4.1: Crystal structure of BiCu2PO6 [11], showing positions of Cup1q and Cup2q (dark and light blue), P
(gray) and Bi (purple) sites; the vertices of the polyhedra surrounding the Cu and P sites represent O positions.
The crystallographic unit cell is shown using black lines. Panels (a), (b), and (c) correspond to different viewing
angles.
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with a higher opacity in Fig. 4.1, form ribbons running along the b axis [401]. The structure is clearly
anisotropic, with the Cu sites arranged in layers parallel to the bc plane, which are separated by scaffolds
formed by the PO4 tetrahedra [74, p. 96]. Each unit cell cuts through two such layers. The CuO5 and
PO4 polyhedra are coupled through steric constraints due to the shared O sites. They exhibit a buckling
distortion, resulting in two inequivalent Cu sites [11].

4.2.2 Crystal symmetry

BiCu2PO6 crystallizes in the non-symmorphic orthorhombic Pnma space group [11]. The point group
is obtained by factoring out the subgroup of lattice translations. It consists of symmetry operations of the
form ĎWi “ pWi,∆Wiq, where Wi denotes an orthogonal matrix and ∆Wi a fractional translation vector,
i. e. ĎWi maps x ÞÑWi x`∆Wi . The point-group symmetry operations are [38] (see also [11, p. 318])

E “

¨

˝

1 0 0
0 1 0
0 0 1

˛

‚, ∆E “

¨

˝

0
0
0

˛

‚

σa “

¨

˝

´1 0 0
0 1 0
0 0 1

˛

‚, ∆σa “

¨

˝

1{2

1{2

1{2

˛

‚

σb “

¨

˝

1 0 0
0 ´1 0
0 0 1

˛

‚, ∆σb “

¨

˝

0
1{2

0

˛

‚

σc “

¨

˝

1 0 0
0 1 0
0 0 ´1

˛

‚, ∆σc “

¨

˝

1{2

0
1{2

˛

‚

Ca2 “

¨

˝

1 0 0
0 ´1 0
0 0 ´1

˛

‚, ∆Ca2
“

¨

˝

1{2

1{2

1{2

˛

‚

Cb2 “

¨

˝

´1 0 0
0 1 0
0 0 ´1

˛

‚, ∆Cb2
“

¨

˝

0
1{2

0

˛

‚

Cc2 “

¨

˝

´1 0 0
0 ´1 0
0 0 1

˛

‚, ∆Cc2
“

¨

˝

1{2

0
1{2

˛

‚

I “

¨

˝

´1 0 0
0 ´1 0
0 0 ´1

˛

‚, ∆I “

¨

˝

0
0
0

˛

‚ .

In addition to identity E and inversion I , the group contains three glide-planes σα and three two-fold
screw-axes Cα2 . The point group is isomorphic to Z2 ˆ Z2 ˆ Z2 via the mapping σα ÞÑ eα P t0, 1u

3.

The layers formed by the CuO4 ribbons (see sec. 4.2.1) are transformed onto themselves by E, I , σb, and
Cb2. The remaining symmetries, i. e. , σa, σc, Ca2 , and Cc2 interchange the two layers. The same decom-
position of the point group is obtained by classifying the symmetry operations depending on whether
they leave a general pseudo-vector (axial vector) pointing along b invariant or revert its orientation. This
means that the structure of the Cu layers is chiral when viewed along the b direction, as can be seen in
Fig. 4.1(b). This aspect will be reconsidered in chapter 8 (section 8.6.2.3).

4.2.3 Site symmetries

Among the non-trivial symmetries presented in the preceding section, only σb has fixed points which
correspond to crystallographic sites. As a result, the ac planes formed by the Cu and P sites have site-
symmetry groups tE, σbu » C1h [11, p. 319] (see also [75, p. 3]).
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4.2.4 Exchange mechanism

The Cu ions adopt a Cu2` configuration in BiCu2PO6 [258]. Their unpaired hole is localized due to
correlation effects, making BiCu2PO6 a magnetic insulator [401]. First-principles studies of the mag-
netic interactions using band-structure calculations yield the dominant exchange couplings depicted in
Fig. 4.2 [217, 257, 401].2 Given the quasi two-dimensional network of exchange interactions, the fact
that BiCu2PO6 remains a spin-liquid down to very low temperatures (see references in section 4.5) cor-
roborates a dominant Heisenberg symmetry of the exchange couplings.3

Figure 4.2: Two Cu ribbons [401]. The vertices of the Cu plaquettes and the PO4 tetrahedra correspond to O
positions. Intraladder (interladder) exchange couplings [401] are represented using orange solid (dashed) double-
arrows. Figure redrawn after [401, Fig. 1], using crystal structure from [11].

Somewhat counter-intuitively, the dominant coupling in the c-direction is J4, which connects different
ribbons and is attributed to the Cu-O-O-Cu superexchange paths [257, 401]. The intra-ribbon coupling Ji
is weaker because the antiferromagnetic (AFM) Cu-O-Cu superexchange is canceled by a ferromagnetic
(FM) contribution due to the almost 90˝ bond angle (92˝, cf. Kanamori-Goodenough rules [151]) [401].
By contrast, the angle of the Cu-O-Cu superexchange path along the b direction is 112.2˝, resulting in a
sizable nearest-neighbor (NN) coupling J1 [401]. Finally, two Cu-O-O-Cu paths give rise to exchange
couplings J 12 and J2 between next-nearest neighbor (NNN) Cup1q and Cup2q sites, respectively [401].
While the path along the outer edge of the ribbon has very similar geometries for the two Cu sites, the
other path, involving the PO4 tetrahedron, is very sensitive to the orientation of this ligand (cf. [144]),
resulting in J 12 ‰ J2 [401]. All couplings are AFM, except for Ji, which is too weak for its sign to be
determined unambiguously from the calculations [401].

The phase diagram of BiCu2PO6 as function of temperature and magnetic field is highly anisotropic
[207]. DM interactions are therefore an obvious candidate to consider and have been suggested through-
out the literature [74, 75, 78, 87, 179, 190, 207, 316, 318, 401]. As pointed out in [317], atomic Bi
is known for strong spin-orbit interaction (SOI) [447]. Early first-principles calculations reported an
admixture of its orbitals with those of Cu [217]. Meanwhile, more recent calculations indicate that Bi
does not contribute directly to the magnetic Cu states, but is rather responsible for the chemical bonds
between the Cu ribbons (cf. section 4.2.1) [401]. Unfortunately, none of the first-principles studies seem
to have considered SOI explicitly. Even though SOI and inversion symmetry give rise to degenerate
Kramers doublets [127] and thereby preserve the spin-degeneracy of the band structure, the SOI alters
the nature of the eigenstates by coupling spatial and spin degrees of freedom. For instance, a doublet of

2Ref. [217] finds Ji ą J4; this issue has been discussed in [401], which we follow in this work.
3In zero field, the partition functions of the two-dimensional quantum and classical Ising models coincide, and the latter is

well-known to exhibit magnetic order.
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single-electron wave functions can be represented as [127]

ψk,n,1 “ rak,nprq |Òy ` bk,nprq |Óys eik¨r

ψk,n,2 “
“

´b‹k,nprq |Òy ` a‹k,nprq |Óy
‰

eik¨r ,

with lattice momentum k and band index n. Clearly, no linear combination of these two wave functions
factorizes into a spatial and a spin component, such that the electronic states acquire a “mixed-spin”
character. The Bi-O bonds [401] are likely to influence other orbitals involving the same O sites, giving
them a mixed-spin character as well. In a tight-binding description for the Cu sites, this would give rise
to spin-dependent hopping, which is why strong DM interactions are expected in BiCu2PO6 (see sections
1.1.2 and 4.3.3).

4.2.5 Local environment of the Cu sites

The structural ribbons consist of two inequivalent CuO4 plaquettes, which involve the Op1q and Op2q
sites [401]. Together with an additional O site, CuO5 pyramids are obtained [11], as illustrated in Fig. 4.3.

Segment
or angle

Value on Cupiq plaquette
i “ 1 i “ 2

Cupiq-Op1q 1.937 Å 1.936 Å
Cupiq-Op2q 2.024 Å 2.003 Å
Op2q-Op2q 2.615 Å
Op1q-Op2q 2.917 Å 2.908 Å
Op1q-Op1q 2.545 Å 2.628 Å
Cupiq-Opap.q 2.189 Å 2.348 Å
Op1q-Opap.q 3.334 Å 2.857 Å
Op2q-Opap.q 3.066 Å 3.562 Å
θi 28.3 ˝ ´31.4 ˝

Figure 4.3: Two isolated Cu pyramids. The data are a subset of Fig. 4.1 and correspond to the generating Cu
positions reported in [11]. The table lists various distances between the sites. Opap.q denotes the oxygen at the
apex of the pyramid, i. e. , Op4q [Op3q] for Cup1q [Cup2q]. The distances and angles were obtained using [191]
and the crystal structure reported in [11]. Note that the angles θi (cf. [74, p. 105]) are oriented according to the
mathematically positive rotations about the b axis.

As reviewed in section 4.2.3, these pyramids have symmetry C1h. Moreover, the CuO4 plaquettes are
approximately C2v-symmetric [74, p. 105] to within 5%4. Taking into account the apical oxygen reduces
the accuracy of this approximation to À 10% for Cup1q and À 20% for Cup2q. Comparing the two
inequivalent CuO4 plaquettes, the Cu-O distances differ by less than 1%, and the O-O distances by less
than 3.5%. The distances to the apical oxygen differ by À 15%. Thus, the main difference between the
two Cu sites consists in the relative position of the apical oxygen.

The square-pyramid CuO5 coordination arises from an imbalance of the Cu dx2´y2 and dz2 orbitals [11].
An approximate C2v-symmetry of the Cu site is corroborated by first-principles calculations, which
indicate that the bands formed at the Fermi level5 by the 3d9 Cu2` ions have planar dx2´y2-character

4Fractions refer to real-space distances.
5In the local-density approximation, i. e. , neglecting strong correlations, the band structure of BiCu2PO6 is metallic [217].
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[217, 401], with pdσ-type bonds within the CuO4 plaquettes [217]. This confirms the statements made
in [74, p. 105] and hence justifies the neglect of the apical oxygen (see [74, p. 105]). Therefore, the
approximate C2v-symmetry of the Cupiq site assumed in [74] is also adopted in this work.

4.3 Theoretical model for BCPO

4.3.1 Heisenberg Hamiltonian and g-tensor

First-principles calculations reveal a quasi two-dimensional band structure [217, 401] and suggest the
dominant exchange interactions depicted in Fig. 4.2, as discussed in section 4.2.4. The strongest ex-
change interactions J1, J 12, J2, and J4 form frustrated spin ladders (cf. section 1.3.4) running along the b
direction (e. g. , [401]). Surprisingly, the two legs of a given ladder reside on different Cu ribbons [401].
Their arrangement within the crystal is shown in Fig. 4.4. Each ladder consists of two coupled zigzag
chains with alternating next-nearest neighbor (NNN) couplings [401]. The ladders are arranged in layers
parallel to be bc plane which are separated by PO4 layers [74, p. 96]. As mentioned in section 4.2.2 and
indicated by the black arrows in Fig. 4.4(a), two types of layers with different chirality w. r. t. the b axis
exist.

Figure 4.4: Crystal structure of BiCu2PO6 [11], showing positions of Cup1q and Cup2q (dark and light blue,
respectively), P (gray), and Bi (purple) sites; O sites have been omitted for clarity. Exchange interactions [401]
(J1, J 12, J2, J4, and Ji) are depicted by blue cylinders (intraladder couplings) and solid black lines (interladder
couplings). (a): View along b direction, illustrating the two different ladder orientations (subfigure reused from
[312]). An isolated magnetic layer is delimited by dotted brackets. (b): Two isolated ladder units. Crystal structure
visualized using VESTA [272].

Since the interladder couplings Ji are weaker than the remaining couplings [401], consider a single
ladder containing the generating Cu positions reported in [11]. Let Cupi, rq denote the Cupiq site on the
r’th rung of this ladder, and Si,r the corresponding spin operator. In addition to the Heisenberg exchange
terms, each spin couples to the external magnetic fieldH through the Zeeman energy´µ0H ¨µi,r, where
µi,r “ ´µB gi,r Si,r denotes the corresponding magnetic moment. The g-tensor gi,r is site-dependent
and asymmetric in general (see section 1.5.9). Since gi,r relates two pseudo-vectors, it transforms as a
regular matrix. The C1h symmetry of the Cu site (see section 4.2.5) then implies that b is a principal axis
of the g-tensor [74, p. 96]. Moreover, the Cupi, rq and Cupi, r`1q sites are related by Cb2, which implies
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that gi,r “ gi. The resulting frustrated-ladder Hamiltonian reads (cf. [74, eq. 5.1])

H “
ÿ

r

»

–

ÿ

iPt1,2u

µ0H ¨ µBgiSi,r ` J4 S1,r ¨ S2,r ` J1 pS1,r ¨ S2,r`1 ` S2,r ¨ S1,r`1q

`J 12 S1,r ¨ S1,r`2 ` J2 S2,r ¨ S2,r`2

‰

. (4.1)

The fact that the expression does not distinguish between odd and even rungs r, reflects that the ladder
graph can be transformed into a one-dimensional lattice with only two sites per unit cell [401]. This
smaller unit-cell is advantageous when performing calculations with periodic boundary conditions [401].

4.3.2 Symmetry-allowed Dzyaloshinskii-Moriya interactions

The transformation properties of the DM vectors are described in section A.5.2 [equation (A.8)] and
their application to analyze the symmetry-allowed DM vectors and their arrangement within a crystal is
standard practice. In particular, the following results and the chosen notation are fully consistent with
other works ([401], [259, p. 127], [74, p. 132], [319, Fig. 6.1b], and [75, 179, 377]). The symmetry σb
constrains the allowed DM vectors in BiCu2PO6. The most general DM vectors on the intraladder bonds
have the form (see [319, Fig. 6.1b])

D1 “ pD
a
1 , D

b
1, D

c
1q

D1
2 “ pD

1a
2 , 0, D

1c
2 q

D2 “ pD
a
2 , 0, D

c
2q

D4 “ p0, D
b
4, 0q .

The staggering patterns of these DM interactions are indicated in Fig. 4.5. Note that, while the model
without DM interactions has a hidden translation symmetry (see section 4.3.1 and references therein),
the DM interactions preclude such simplifications (cf. [401, p. 9]).

Figure 4.5: Staggering pattern of DM vectors within one frustrated-ladder unit of BiCu2PO6. The magnetic bonds
are oriented from top to bottom and from left to right. The out-of-plane a-components ofD1,D1

2, andD2 exhibit
the same staggering pattern as the c-components of the corresponding vectors. Crystal structure visualized using
VESTA [272]. Note that similar results and illustrations were reported in [259, Fig. 5.16], [75, Fig. 21], and [319,
Fig. 6.1b]. (Extended version of a figure previously used in [312].)

There are two types of ladder units per unit cell, which are arranged in layers parallel to the bc plane
[Fig. 4.4(a)] and related by a mirror symmetry. Up to a translation by half a unit cell along the b-
direction, the interaction graphs of the two types of ladder units have the same form, i. e. , same site types
and same bond orientations w. r. t. the crystal axes. In a corresponding notational convention, equivalent
bonds of the interaction graphs are related by the mirror symmetry σa. Since σa does not reverse any
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bonds, the DM vectors transform as pDa, Db, Dcq ÞÑ pDa,´Db,´Dcq upon moving from one ladder
layer to the next.6

DM terms can be eliminated by local unitary (i. e. , gauge) transformations of the spin operators (see [15,
157, 196, 359]) whenever the DM interactions are unfrustrated, i. e. , the sum of the DM vectors vanishes
along every cycle of (oriented) magnetic bonds in the interaction graph [157, 359]. Inspection of Fig. 4.5
reveals that all components of all DM vectors are frustrated in this sense. An explicit consideration of
the case H ‖ b confirms this general result. In this case, the only possible simplification appears to be
the elimination of one of the parameters D1a, D1c, D2a, D2c, D12a, D12c by a global spin-space rotation
about b.

In principle, the DM vectors D2 and D1
2 are unrelated by crystal symmetry. Still, in order to reduce

the number of free parameters when discussing the effects of the DM terms it is assumed, as done in
[377] and apparently also [319, Fig. 6.1b], that the J2 and J 12 bonds on opposite legs of the ladder are
approximately related by the reflection symmetry σc, which transforms pDa, 0, Dcq ÞÑ p´Da, 0, Dcq.
The resulting staggering pattern is consistent with [319, Fig. 6.1b] and agrees with [377, Tab. 1]. In
Fig. 4.5, the DM vectors D2 and D1

2 were drawn parallel on each leg, and antiparallel on opposite legs.
Under the approximate σc-symmetry, this corresponds to the staggering pattern of Da

2 . By contrast, the
component Dc

2 alternates along each leg, with the two legs in phase. This situation is different from Da
1

and Dc
1, which both exhibit the same staggering pattern.

4.3.3 Model parameters

The frustrated-ladder model described in section 4.3.1 is primarily motivated by first-principles calcula-
tions [217, 257, 401] and inelastic neutron-scattering (INS) data [257, 316]. A large negative Curie-Weiss
temperature [401], as well as an overall reduction of the magnetic response compared to a simple ladder
or a two-dimensional Heisenberg antiferromagnet [217], further corroborate the importance of frustration
[217, 401].

The ranges of exchange couplings deduced from early INS experiments [257] are consistent with the
estimates obtained from first-principles calculations (parameter set A) [401]. Subsequent INS studies
revealed a splitting of the triplet excitations in BiCu2PO6, which was attributed to DM interactions
[316]. By combining additional INS data with a bond-operator mean-field theory (BOMF) for the single-
triplon excitations [179], a parameter set capable of reproducing the measured dispersion was obtained
(parameter set B) [318]. The same data have also been analyzed using the method of continuous unitary
transformations (CUTs), yielding parameter set C [377].7 The three aforementioned parameter sets are
summarized below.

Set J1{kB J4{J1 J 12{J1 J2{J1 Dac
1 {J1 Db

1{J1 Ji{J1

A [401] 140 K 0.75 0.5 1 0 0 „ 0
B [179, 318] 116 K 1 1 1 0.3 0.3 0.2
C [377] 131 K 0.83 0.9 0.9 0.48 0.61 0.13

The main difference between parameter sets A and B-C is the inclusion of DM interactions (cf. section
4.2.4). However, despite J2 ‰ J 12 being strongly suggested by first-principles calculations [401], the

6This convention actually appears to correspond to the situation depicted in [259, Fig. 5.16].
7The authors of [377] also suggest Dc

2 “ ´0.018 J1, which is considered negligible.
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INS data have been analyzed under the assumption J2 “ J 12 [318, 377] and neglecting the possible g-
tensor staggering [179, 377]. Furthermore, the uniqueness of parameter set B has not been discussed in
detail (unlike in earlier work, see, e. g. , [259, Figs. 5.26-5.27]), such that other parameter sets consistent
with the INS data may exist. The analysis leading to parameter set B augments the BOMF by one-
loop corrections [179]. Without these corrections, the estimated DM couplings are large [318], as is the
case for parameter C which treats DM and interladder interactions at the mean-field level only [377].
Parameter set C is therefore not considered further. Note that, even at the one-loop level, features of the
measured dispersion remain unexplained by the theory [318].

4.4 Related compounds

BiCu2PO6 is closely related to BiZn2PO6 and BiMn2PO6. While all compounds share the same crystal
structure [289], the CuO5 pyramids in BiCu2PO6 exhibit a Jahn-Teller-type distortion (4+1 coordina-
tion) [289], which is less pronounced in BiZn2PO6 and BiMn2PO6 [289]. BiZn2PO6 is non-magnetic
[217]. By contrast, magnetic-entropy data on BiMn2PO6 are consistent with localized spin-5

2 moments
[289]. First-principle calculations show that the dominant couplings are Ji and J1, followed by J4 [289].
Thus, frustration is less important than in BiCu2PO6 [289]. Furthermore, smaller hybridization of Mn
with O results in overall reduced exchange interactions, which are also more three-dimensional than in
BiCu2PO6 [289]. All these factors yield a very small spin gap (below approximately 1 K) and long-range
collinear Néel-type order below TN « 30 K [289].

Pure BiCu2VO6, the endpoint of the solid-solution line BiCu2P1´xVxO6 [258], is monoclinic [328] and
has a tripled unit cell (along b) [258], resulting in the observation of three 51V-NMR lines [237]. The ex-
perimental evidence corroborates a spin-1

2 ladder model with three inequivalent rung couplings and thus
three different effective gaps [237, 248]. Neutron-scattering experiments [248] could not determine the
nature of the spin-correlations (commensurate or incommensurate), leaving the relevance of frustration
in BiCu2VO6 as an open question.

Finally, the unit cell of BiCu2PO6 also closely resembles that of BiMg2XO6 with X “ P,V,As [11]. The
space group of the latter is Bbmm, which is similar to the Pnma space group of BiCu2PO6 [11]. Both
have one inequivalent X-site, but Bbmm has only one inequivalent Mg site (unlike BiCu2PO6, which
has two Cu sites, cf. section 4.2.1) [11].

4.5 Field-induced phases

No evidence for magnetic order is observed in BiCu2PO6 down to T „ 0.1 K [78, 318] (cf. also [319,
p. 60]), indicating that the quantum spin-liquid (QSL) ground state (cf. section 1.2) is robust against
residual interactions. Therefore, field-induced magnetic order is expected (see section 1.2). The phase
diagram of BiCu2PO6 as function of temperature and magnetic field is depicted in Fig. 4.6(a) [207]. In-
deed, several field-induced phases are observed, and magnetization measurements suggest that additional
phase transitions occur at even higher magnetic fields [208] [Fig. 4.6(b)]. The orientation-dependence of
the phase diagram indicates the importance of anisotropies like DM interactions or non-trivial g-tensors
[207].

This work focuses on the caseH ‖ b. As indicated in the bottom panel of Fig. 4.6(a), the corresponding
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Figure 4.6: (a): Thermodynamic phase diagram of BiCu2PO6 as function of temperature T and magnetic field
µ0H . Open (closed) symbols correspond to first (second) order transitions. Top and bottom panels correspond to
different orientations of the applied magnetic field. (Reprinted figure with permission from Ref. [207]. Copyright
2012 by the American Physical Society.) (b): High-field magnetization measured in BiCu2PO6 at T „ 2 K (exact
temperature not specified). (Reprinted figure with permission from Ref. [208]. Copyright 2014 by the American
Physical Society.)

phase transitions are of second order [207]. Consistently with [74, 78, 208], the critical fields corre-
sponding to the phase transitions towards phases II and III will be designated as Hc1 and Hc2 from here
on. Furthermore, the terms intermediate-field phase and high-field phase (cf. [74, 208]) shall refer to
phases II and III, respectively.

4.6 Outline and relation to previous work

The primary aim of the present work is to improve the understanding of the high-field field-induced
phase observed in magnetic fieldsH ‖ b (cf. section 4.5).

The hyperfine couplings and g-tensors, later required to quantitatively describe the 31P-NMR spectra, are
estimated in chapters 5 (section 5.2.1) and 6. These analyses closely follow previous work by F. Casola
[74, 75] and, in fact, rely on the same data [74]. Still, the discussion presented herein is believed to
clarify certain aspects and extend the previous considerations, e. g. , by accounting for the presence of
crystallographically inequivalent magnetic sites and doping-induced effects (see section 6.8 for details).

In addition, various proposed choices of model parameters (cf. section 4.3.3) are compared with previous
magnetic-susceptibility and specific-heat data in section 5.4. This attempt to reproduce the experimental
data using the model Hamiltonian (4.1) also considers the effect of DM interactions. The corresponding
results are discussed in section 5.4.5.

The results of comprehensive numerical calculations performed for the frustrated-ladder model are pre-
sented in chapter 7, which also includes a review of previous theoretical and numerical work (section
7.1). Note that going beyond these previous results first requires their reproduction. Ultimately, the pre-
sented results are believed to clarify several aspects of the field-induced phases expected in this model.
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Finally, the results of the high-field 31P-NMR experiments performed in this work are presented and ana-
lyzed in chapter 8. This involves comparisons with previous 31P-NMR data obtained in the intermediate-
field phase, as well as other experimental reports.



5 BiCu2PO6: Low-field thermodynamic properties

5.1 Introduction

The considerations presented in this chapter target two goals: First, by comparing the simulated magnetic
response of the model described in section 4.3.1 with the measured magnetization, the g-tensors are
estimated (section 5.2.1). In combination with calculations for doped models (section 5.2.4), this serves
as a preparation for analyzing the 31P nuclear hyperfine couplings in the following chapter (chapter
6). Secondly, the behavior of the frustrated-ladder model, as well as systematic deviations between
calculations and published data, are illustrated.

Parameter set A is considered a representative choice and hence used throughout section 5.2, as well as
in chapter 6. This choice is motivated by three arguments: (i) Parameter set A is rigorously-motivated,
(ii) DM interactions are not expected to be important at high temperature (cf. [74, p. 109]), (iii) this
choice maintains consistency with previous work [74, 76, 78], and, lastly, (iv) the analyses leading to
parameter sets B and C did not consider quantitative consistency with bulk measurements like specific
heat and magnetic susceptibility (see section 4.3.3 and references therein).

After a brief discussion of interladder couplings (section 5.3), the influence of the individual model
parameters is examined (section 5.4), before discussing the results (section 5.5).

5.2 Results for representative parameters

5.2.1 Susceptibility and g-tensors

The temperature-dependent susceptibility calculated using parameter set A with g1 “ g2 “ 2.16 [401]
is shown in Fig. 5.1(a). This reproduction of previous work on BiCu2PO6 [401] also serves for checking
the technical soundness of the methods used in this work (see sections 1.4 and A.1 for details).

The measured susceptibility1 [Fig. 5.1(b)] exhibits a residual magnetic response at low temperature,2,3

limTÑ0 χ ‰ 0, whose intrinsic nature is corroborated by a residual 31P-NMR shift [22, 74, 218]. As

1In principle, each Cu site experiences the dipole fields created by all the remaining, approximately uniformly-polarized
Cu moments. For a spherical sample, the largest eigenvalue of the matrix describing this coupling (cf. section 6.3.1) is smaller
than 0.3 T{µB . For BiCu2PO6, |χαβpT q| ! χmax “ 5 ¨ 10´3 µB{T (per Cu site), such that the resulting relative change in
magnetic induction is less than 1.5 ¨ 10´3. The demagnetizing field (section 6.3.2) gives rise to a relative correction of at most
8µ0 χmax{p474.6 Å

3
q « 10´3 [11] (section 6.3). Both contributions are considered negligible.

2As previously in [74, p. 108], the small upturn at the lowest temperatures is attributed to impurity moments [424, p. 59
and Fig. 4.17a], the typical defect concentration being „ 0.15% [423, p. 118].

3Temperature-independent contributions like core diamagnetism and Van-Vleck paramagnetism (see [217, 289]) are ne-
glected based on the Curie-Weiss fit reported in [401].

55
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noted in [179], the limiting value is orientation dependent,4

lim
TÑ0

χcc ą lim
TÑ0

χbb ą lim
TÑ0

χaa ą 0 . (5.1)

A non-zero low-temperature susceptibility can arise due to interactions which break Sztot-conservation,
such as DM interactions (e. g. , [74, pp. 134-135] and [207]) (section 1.1.2), whose effects are considered
later (section 5.4). Another possibility raised in previous work is g-tensor anisotropy [207]. Since the
alternation of the two inequivalent Cu sites is compatible with the dominant antiferromagnetic (AFM)
exchange couplings in BiCu2PO6, the site-dependent g-tensors also give rise to a uniform magnetization
at low temperature (see section 1.4.5 and example in appendix A.5.3; cf. [15]).

The crystal structure of BiCu2PO6 involves two types of ladders which are related by the mirror sym-
metry σc (see section 4.3.1). Thus, the total susceptibility of the crystal is diagonal in the pa, b, cq
basis, reflecting the orthorhombic symmetry of the crystal. I specialize to Heisenberg symmetry, which
should represent a good approximation at high temperatures, since the energy scales associated with
any anisotropies are believed to be ! 100 K (cf. , e. g. , [74, p. 109]). Assuming that the set of func-
tions tCzz11 pT q, C

zz
12 pT q, C

zz
22 pT qu is linearly independent, eq. (A.15) [in section A.1.4] implies that a

measurement of the longitudinal susceptibilities χaapT q, χbbpT q, and χccpT q constrains the nine values
diag

`

g1 g
T
1

˘

, diag
`

g1 g
T
2 ` g2 g

T
1

˘

, and diag
`

g2 g
T
2

˘

. The C1h-symmetry of the Cu sites (section 4.2.3)
implies that gbbi can be estimated rather robustly using χbbpT q. However, the remaining six constraints
are insufficient to fully constrain the other eight g-tensor components.

A standard assumption is gTi “ gi which—even though not rigorously motivated (see section 1.5.9)—
resolves the underconstrained nature of the model. The resulting “maximal” g-tensor model A provides
the best possible fit for a given Hamiltonian. In principle, the exchange energy scale J1 can also be fitted.
However, the gap is generally overestimated due to residual interactions [401] (see also [74, p. 98]), so
that the fit range has to be restricted to temperatures at which the Heisenberg Hamiltonian represents a
good approximation (cf. [74, Fig. 5.9b]). Since the resulting fit does not constrain the parameters very
well, J1 “ 140 K is fixed instead [401]. Moreover, the relative uncertainties of the g-tensor components
are of the order of 100%, indicating strong covariance of the corresponding fit parameters. To resolve
this ambiguity, I follow [74, p. 105] and assume that the g-tensors reflect the approximate C2v-symmetry
of the CuO4 plaquettes (see section 4.2.5),

gi “

¨

˚

˝

g
pxq
i cos2 θi ` g

pzq
i sin2 θi 0 pg

pzq
i ´ g

pxq
i q cos θi sin θi

0 g
pbq
i 0

pg
pzq
i ´ g

pxq
i q cos θi sin θi 0 g

pzq
i cos2 θi ` g

pxq
i sin2 θi

˛

‹

‚

. (5.2)

Thus, gi “ diagpg
pxq
i , g

pbq
i , g

pzq
i q in the px, b, zq basis which is obtained by rotating the pa, b, cq basis by

θi about b (see Fig. 4.3). I further demand gpαqi ě 0 (without loss of generality) and call the resulting
fit model B. As discussed in section 4.2.5, the local environment of the two Cu sites is very similar,
suggesting that gpαq1 « g

pαq
2 . To determine which g-tensor parameters differ significantly between the

two sites, additional models Bbz , Bb, and B0, obtained by augmenting B by the constraints gpxq1 “ g
pxq
2 ,

g
pxq
1 “ g

pxq
2 ^ g

pzq
1 “ g

pzq
2 , and gpxq1 “ g

pxq
2 ^ g

pbq
1 “ g

pbq
2 ^ g

pzq
1 “ g

pzq
2 , respectively, are considered. For

each model, two least-squares fits, corresponding to two different data ranges, are reported in Tab. 5.1.

4In principle, this behavior could be accidental given that each curve has been measured on a different, specifically cut
sample. However, the same ordering sequence was observed in other measurements ([424, Fig. 7.2 (p. 119)] and [207]).
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Model Data range R̄2 g
pxq
1 g

pxq
2 g

pbq
1 g

pbq
2 g

pzq
1 g

pzq
2

A T ą 150 K 0.999 39 – – – – – –
B T ą 150 K 0.999 36 2.250p14q 2.11p2q 1.88p2q 2.09p2q 1.84p3q 2.34p3q
Bbz T ą 150 K 0.999 31 2.1955p7q 1.88p2q 2.09p2q 1.88p2q 2.28p2q
Bb T ą 150 K 0.998 58 2.2012p8q 1.88p3q 2.09p3q 2.0672p7q
B0 T ą 150 K 0.998 45 2.2012p8q 1.9767p8q 2.0672p7q
A T ą 100 K 0.999 69 – – – – – –
B T ą 100 K 0.999 65 2.213p6q 2.166p9q 1.783p11q 2.186p10q 1.807p12q 2.364p11q
Bbz T ą 100 K 0.999 64 2.1948p4q 1.783p11q 2.186p11q 1.827p9q 2.341p9q
Bb T ą 100 K 0.997 02 2.1996p11q 1.78p3q 2.19p3q 2.0608p11q
B0 T ą 100 K 0.995 80 2.1996p13q 1.9680p12q 2.0608p13q
C0 T ą 100 K 0.998 96 2.2150p7q 1.9810p6q 2.0679p7q

Table 5.1: Results of fits to measured susceptibility [see Fig. 5.1(b) for data source and details]. Uncertainties are
estimates reported by the regression routine [256]. The corresponding calculations were performed for a system
size L “ 8. The selected model is highlighted in blue color. See text for details.

The reducedR2 values (cf. section A.6.1) listed in Tab. 5.1 show that model Bbz results in only marginally
worse a fit than the “maximal” model A. The fact that g1 ‰ g2 is supported by the fits. However, the
degree of staggering, i. e. , e. g. , the difference

∣∣gbb1 ´ gbb2 ∣∣, seems to increase as the data range used for
the fits is extended towards lower temperatures. Clearly, the estimated g-tensors will in general depend
on the choice of the spin-Hamiltonian. Extending the fit range towards lower temperature represents
a trade-off between a more robust fit due to clearer linear independence of the fit components and an
increased systematic error resulting from interactions neglected in the model Hamiltonian H. I will
use model Bbz fitted to data in the range T ą 100 K in the following, since it provides a decent fit
[cf. Fig. 5.1(b)] without introducing too many additional parameters. The aforementioned systematic
uncertainties are discussed later (section 6.7).

The selected model yields gaa1 “ 2.11 and gaa2 “ 2.23, which agrees to within 10% with the value 2.27
estimated from electron-spin resonance (ESR) [258]. The results are also in reasonable agreement with
previous work using a simpler g-tensor model (cf. [74, Fig. 5.9]). In principle, model-free estimates
of the g-tensor can be obtained from measurements above the saturation field (e. g. , [409]). However,
the large saturation field of BiCu2PO6 [401] makes this experimentally impractical. The results are
compatible with a predominantly uniaxial anisotropy of the Cupiq sites, gpbqi » g

pzq
i . The similarity of

the out-of-plane components, gpxq1 » g
pxq
2 , indicates that the position of the apical oxygen does not have

a significant effect, thereby corroborating the assumption of approximate C2v-symmetry [cf. eq. (5.2),
[74, p. 105], and section 4.2.5]. While g-factors smaller than two can arise for t2g ions (e. g. , [198]),
principal-axis components gpαqi ě 2 are expected for Cu2` moments ([10] and [235, pp. 92 ff.]; see also
[377]). However, deviations from this prediction might be possible in BiCu2PO6 due to admixture of Bi
orbitals (see section 4.2.4, cf. [377]).5

Two exemplary fits of the b-axis susceptibility are shown in Fig. 5.2, along with the corresponding sublat-
tice susceptibilities (cf. section 1.4.5). For a site-independent g-factor, the inequivalent NNN exchange
couplings J 12 “

1
2J2 ă J2 [401] lead to χ1 ą χ2.6 By contrast, the fit with site-dependent g-factor

5Note that, as pointed out in [317], a spin-orbit coupling of 1.25 eV is predicted for atomic Bi [447]—to be compared with
0.1 eV for Cu2` [9, p. 399].

6This simple fact was also remarked in previous (zero-temperature) DMRG work [77, p. 8].
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Figure 5.1: (a): Susceptibility calculated using full-spectrum exact diagonalization, along with published results
sampled from [401]. (b): Best fit to measured susceptibility (see Tab. 5.1 and text). The inset shows an enlarged
subset of the main figure. The data were measured by T. Shiroka using a Quantum Design MPMS XL DC SQUID
magnetometer and coincide with those analyzed in previous work [75, Fig. 5] (but cf. [74, Fig. 5.9]). Measurements
were taken in µ0H “ 0.5 T after zero-field cooling.

overcompensates for this difference by choosing gpbq2 ą g
pbq
1 to yield χ1 ă χ2. Thus, the possibility

that gpαq1 « g
pαq
2 , as is suggested by similarities in the crystal structure (section 4.2.5), cannot be clearly

rejected using the susceptibility analysis. Therefore, a relative error of 10% is assumed in the analyses
of the high-field NMR data, in order to include the possibility that gpαq1 « g

pαq
2 .

Lastly, since the two g-tensors are not tightly constrained by the fits, a simplified model C0, based on
full-spectrum ED calculations with J 12 “ J2 “ 0.75J1 and assuming gpαq1 “ g

pαq
2 , has been considered.

The fit results (Tab. 5.1) show that the average g-tensor parameters are rather well determined, whereas
the dominant uncertainties pertain to the differences between the Cup1q and Cup2q sites.

5.2.2 Magnetic specific heat and entropy

The magnetic contribution CM to the specific heat is easy to calculate from full-spectrum ED results by
using the well-known relation,

CM “
B xHy

BT
“

1

kBT 2

´

@

H2
D

´ xHy2
¯

. (5.3)

Comparing this with experimental data is useful, since CM pH “ 0q only depends on the exchange
Hamiltonian and no auxiliary parameters like g-tensors. Measurements of the specific heat of BiCu2PO6

were published in [217, 218, 424].7 The calculated CM is contrasted with published data in Fig. 5.3. The
main observations are discussed in the following.

As in the case of the susceptibility (see [401]), the model (4.1) overestimates the energy gap. Accord-
ingly, this is attributed to residual interactions, such as interladder coupling and/or DM interactions (see,

7There were also attempts to perform AC-calorimetry measurements on BiCu2PO6 under pressure [455].
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Figure 5.2: Fits to measured susceptibility [see Fig. 5.1(b) for data source and details], corresponding to models
B0 and Bbz in Tab. 5.1 (fitted over the range T ą 100 K).

e. g. , [401]). A toy model can be obtained by assuming that these additional interactions uniformly re-
distribute the spectral weight of all states except the ground state over a characteristic energy scale D̃.
Such an approach (see section A.5.4 for details) yields the dashed curve shown in Fig. 5.3 and, indeed,
this empirical model reproduces the reduced gap.

Yet, the calculated peak value of CM is much larger than the measured one. Note that the order of
magnitude of the calculated CM is consistent with results obtained for other ladder systems [47]. To
further corroborate the correctness of the calculations, I consider the magnetic entropy SM which satisfies
SM pT q “

şT
0
CM
T 1 dT

1 [218].8 In the high-temperature limit, the magnetic entropy per Cu spin must
clearly satisfy limTÑ8 SM pT q “ kB log 2, which is indeed obeyed by the calculations, but not by the
published data [see Fig. 5.3(b)]. Besides [218], the reduced saturation entropy was also noted in [424],
for independent measurements, and attributed to magnetic frustration in both cases [218, 424]. However,
the fact that the ED calculations [Fig. 5.3(b)] reproduce the correct limit raises questions regarding this
explanation. In fact, upon closer inspection of the experimental data shown in Fig. 5.3(c), the curves
for BiCu2PO6 and its non-magnetic counterpart BiZn2PO6 appear to cross at around 50 K, suggesting
that CM ă 0 for T ě 50 K, which is unexpected. As long as the aforementioned discrepancies remain
unresolved, comparisons between calculated and measured CM are therefore restricted to T À 25 K.

5.2.3 Energy gap and finite-size effects

The energy gap calculated for systems with different sizes and boundary conditions is shown in Fig. 5.4(a).
The full-spectrum exact-diagonalization (ED) results are consistent earlier results [401], reporting a sin-
glet ground state (k “ 0, Sztot “ 0) and a triplet of lowest-energy excited states with incommensurate k
and Sztot P t´1, 0, 1u. As already described in [401], there is also a k “ π singlet related to a nearby
soft-mode dimerization transition [228, 412], which is slightly lower in energy for certain system sizes
and periodic boundary conditions. This singlet state is also the reason why the specific heat [Fig. 5.3(a)]
appears to converge slightly more slowly with system size than the susceptibility [Fig. 5.1(a)] (cf. [228,

8Ignoring any spin-lattice couplings, the entropy is simply the sum of SM and a lattice contribution. The ground state is a
singlet, such that SM pT “ 0q “ 0.
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Figure 5.3: (a): Calculated magnetic specific heat CM , along with measured data sampled from [217]. (b):
Corresponding magnetic entropy, obtained by numerical integration of the data shown in (a). (c): Measured data
[217]. (Reprinted figure (c) with permission from Ref. [217]. Copyright 2007 by the American Physical Society.)

p. 9]).

As pointed out in the original numerical (and experimental) work for parameter set A [401, pp. 10-11],
the calculations suggest a spin gap of order 70 K for BiCu2PO6 [see previous results [401, p. 10 and
Figs. 10-12] or Fig. 5.4(a)], whereas high-field magnetization [401], 31P NMR shift [22], 31P spin-lattice
relaxation rate [22] (see also [76] and [74, p. 116]),9 and specific heat [217], suggest an energy gap of
35p5q K. Inelastic neutron-scattering experiments found an approximately doubly-degenerate excitation
branch with spin gap 22 K and a non-degenerate branch with spin gap 46 K, whose weighted average of
30 K is consistent with the other experimental estimates [316]. Possible explanations for this discrepancy
[401] between model calculations and experiments are reviewed at the end of this chapter.

5.2.4 Inhomogeneous system

Following [74, 75], nuclear-magnetic resonance data collected previously on weakly Zn-doped samples
[74] will be used to estimate the hyperfine couplings in BiCu2PO6 (section 6.6). Substitution of a Cupiq
site generally alters the local susceptibilities of the Cu sites in the vicinity of the dopant [76] (see section
6.5.2). While previous work [22, 63, 76] mainly reported quantum Monte Carlo calculations for doped
ladders (an exception are preliminary DMRG results presented in [74, Fig. 5.13(c-d) and pp. 113-114],
cf. also [76]), such calculations cannot account for frustration [76] (cf. section 1.4.2). Hence, in order
to assess the importance of doping-induced effects and thus pave the way for the later estimation of the
hyperfine couplings, full-spectrum ED calculations were performed for finite frustrated spin ladders with
periodic boundary conditions, where one Cupiq spin (i P t1, 2u) is substituted by a non-magnetic Zn.

Equation (1.4) can be applied to calculate the local susceptibilities for arbitrary g-tensors.10 Selected

9Note that the energy scales describing the thermally activated behavior of the spin-lattice relaxation rate and the NMR
shift are related by a factor 3

2
due to spin diffusion [22, 76, 342].

10In the formalism of section 1.4.5, the indices i,j then denote individual spins. However, only sums
ř

jPJ CijpT q over
actual sublattices J are ultimately required, yielding a straightforward and efficient extension of equation (A.13) [in section
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Figure 5.4: (a): Energy difference to first excited state (gap) and energy difference to first magnetic excitation
(spin gap), for frustrated-ladder systems with L rungs and different boundary conditions (periodic/open). Note the
discontinuity of the abscissa at L “ 17. Results for L ď 16 were obtained using ED, whereas DMRG was used to
solve the larger systems (s ě 16, m ě 512, see sec. 7.5 for notation; error bars from energy variance are smaller
than symbol size) and checked to coincide with ED data for 14 ď L ď 16. (b): Spin gap ∆ between ground state
and first excited spin multiplet for inhomogeneous systems.

results of this procedure are shown in Fig. 5.5. Clearly, finite-size effects are negligible at temperatures
T Á 200 K for system sizes L ě 8. Since the doped system consists of an odd number of spins,
the ground-state is a spin-1

2 doublet and the first excited state a spin-3
2 multiplet,11 which results in a

1{T -divergence12 of the susceptibility in the limit T Œ 0, despite the presence of a spin gap. The ef-
fects on the magnetic response at temperatures well above the spin gap are less striking (see also section
6.5.2).13 As discussed previously, due to J 12 ă J2, the magnetization prefers to reside on the Cup1q sub-
lattice [77, p. 8] and the impurity-induced spin-1{2 moment extends further into the Cup1q sublattice [74,
p. 114], which explains the different magnitudes of the diverging low-temperature local susceptibilities
in Fig. 5.5. Note that the temperature dependence of the the local Cup2q susceptibility nicely illustrates
the trade-off between the 1{T -divergence due to ground-state polarization and the thermal suppression
of the magnetic response caused by the spin gap. Reassuringly, this is in qualitative agreement with the
macroscopic susceptibility measurements reported in [218, Fig. 5], [22, Fig. 4], and [423, Fig. 7]. Far
from the defect, the local susceptibility remains essentially unchanged, which is consistent with previous
conclusions drawn from the behavior of the 31P-NMR shift [22, sec. IV.A].

The system-size dependence of the spin gap (equal to the excitation gap) is shown in Fig. 5.4(b). Clearly,
no change in the spin gap is expected in the limit of dilute doping, since magnetization of the system
beyond Sztot “ ˘

1
2 still requires the formation of a triplon by breaking of a rung bond. Further, site de-

pletion (Zn-doping) intuitively impedes the triplon motion, which is why a larger spin gap is anticipated
for the doped system [259, p. 188] (see also [77, p. 3] and experimental confirmation in [259, p. 186]).
Both expectations are consistent with the calculations.

Interactions between impurity-induced moments are expected to give rise to in-gap [347] excitations
([266] and references therein; see also [74, p. 94]). Such behavior has been experimentally demonstrated

A.5.3].
11The half-integer total spin is a simple consequence of the addition rules for angular momenta, whereas the level structure

follows from ED and is consistent with previous anticipations (see, e. g. , [218, p. 7] and references therein).
12As discussed in section A.1.4, full-spectrum ED in finite magnetic field only yields meaningful susceptibilities as long as

the linear-response regime is preserved. If the ground-state has non-zero spin, this assumption breaks down at sufficiently low
temperature. To make sure that the results are correct, only points with R2

ě 0.99 were included in Fig. 5.5.
13This is in accordance with the discussion in [22, p. 8] and the data in [218, Fig. 5].
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Figure 5.5: Local longitudinal susceptibilities for magnetic fields applied along the b-direction, computed using
the g-tensor model obtained in section 5.2.1. Calculations were performed for the undoped system, as well as the
two possible configurations with one Cu site replaced by non-magnetic Zn. The system size is parametrized by the
number of rungs L. Red color indicates local susceptibilities of Cup1q sites, whereas blue color is used for Cup2q
sites. The local susceptibilities correspond to sites two rungs away from the dopant and on the same leg as the
dopant [i. e. , χCupiq “ χ̃ipi, 2q in the notation of section 6.5.2].

in a strong-leg Heisenberg-ladder system through inelastic neutron scattering [347]. The above works
also demonstrate how numerical calculations can be used to calculate the effective interactions between
the doping-induced “spin islands” [266, 347]. No such calculations were attempted for BiCu2PO6, since
the doping-induced phases are considered beyond the scope of the present work. Generally, doping
induces glassiness [218] and magnetic order [259, p. 189] in BiCu2PO6, which has been studied using
31P-NMR [22, 63, 76], quantum Monte Carlo [63]14 and neutron diffraction [259].

5.3 Interladder coupling

Residual interladder couplings are generally present, as can be seen from the fact that the system ex-
hibits field-induced magnetic order despite its quasi one-dimensional nature (cf. section 7.8.2). Recent
first-principles calculations suggest that the interladder coupling |Ji| À 0.15 J1 [401]. A similar esti-
mate has been given in [63]. However, the calculations rely on numerical cancellation of large ferro-
and antiferromagnetic contributions [401], so that the relative uncertainties are important. Indeed, previ-
ous DFT calculations obtained Ji{J1 „ 0.3 ´ 0.5 [257].15 Experimentally, Raman scattering suggests
Ji « 0.35 J1 [87]. Inelastic neutron-scattering (INS) experiments corroborate Ji ! J4 and clearly an-
tiferromagnetic [316] (see also [259, p. 133]), the best estimate being Ji « 0.2 J1 [318] (cf. section
4.3.3).

Clearly, the system sizes accessible with exact diagonalization (section 1.4.1) are insufficient to study
coupled ladders. DMRG calculations for coupled ladders were attempted, but deemed impracticable
within the context of this work, because the required bond dimensions (see section 1.4.3) grow expo-

14Although frustration is important in a single zigzag chain [297], the calculations reported in [63] explain the qualitative
behavior of the frustrated-ladder system, despite its neglect (see also [218]).

15Since the corresponding assignment of interladder and intraladder couplings is inconsistent with the remaining literature
(e. g. , [401]), the strong interladder coupling suggested in [217] is not considered in this work.
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nentially with the number of ladders (see, e. g. , [111]). An instructive discussion of this problem can be
found in [349, p. 16.29]. At the same time, simple mean-field descriptions appear insufficient to capture
the effect of the interladder coupling (see appendix A.5.5 for an attempt).16 Thus, no further quantitative
treatments of interladder couplings are attempted in this work.

As pointed out in [63] (see also [22, 218]), for unfrustrated coupled ladders with J1 “ JK, an interladder
coupling of 0.314 is sufficient to destroy the spin gap [253]. Thus, interladder couplings are generally
expected to reduce the spin gap (see also [257]), as shown explicitly in [401, p. 11]. Meanwhile, strong
frustration stabilizes the spin gap [228, 257, 401], also in the loosely-related case of an isotropic two-
dimensional NNN-frustrated Heisenberg model [73] (cf. [218, 257]). Therefore, as previously argued
in [218] and [257], the observation of a sizable spin gap despite allegedly non-negligible interladder
couplings underlines the importance of magnetic frustration in BiCu2PO6.

5.4 Influence of coupling parameters

As discussed in section 4.3.3, the parameters of the spin Hamiltonian (4.1) proposed in the literature are
not free from uncertainties (see also [401, p. 8]). While interladder couplings are difficult to account for
in finite-temperature calculations (section 5.3), DM interactions can in principle be included in exact-
diagonalization (ED) calculations. Since DM interactions were repeatedly proposed to be relevant in
BiCu2PO6 (see sections 4.2.4 and 4.3.3), the effects of altering parameter set A by either changing one
exchange-coupling parameter or adding one DM term deserve consideration. Variations of the exchange
couplings were mentioned previously in [401, p. 8] (see also fitting procedure in [257] for the case
J2 “ J 12), but without showing detailed results. The exchange couplings are parametrized by J1, J4{J1,
pJ2 ` J 12q{p2J1q, and pJ2 ´ J 12q{J1. When varying pJ2 ` J 12q{p2J1q, the ratio J 12{J2 is kept fixed,
whereas pJ2 ` J 12q{p2J1q is kept fixed while varying pJ2 ´ J 12q{J1. Note that these one-parameter
variations only represent a subset of all possible parameter sets. However, an exhaustive search would
require computational efforts which are beyond the scope of this work, due to the high dimension of the
parameter space. To restrict the number of degrees of freedom,D1

2 is linked toD2 using the approximate
symmetry described in section 4.3.2. The DM interactions on the next-nearest neighbor (NNN) bonds
are thus parametrized by Da

2 and Dc
2. Full-spectrum ED calculations were performed for finite ladders

with L “ 8 rungs and periodic boundary conditions. As expected [228], the magnitude of the gap is
mainly determined by the strength of the rung bond, as well as the average frustration. The effect of the
difference between J2 and J 12 is found to be weak.

5.4.1 Magnetic susceptibility

The calculated b-axis susceptibilities were fitted to the data by adjusting the site-dependent g-factors17

g1 and g2, as well as the energy scale J1. The results are shown in Figs. 5.6 and 5.7. Low-temperature
artifacts in the curves calculated for J4 ď 0.25 J1 are due to the combined effect of ground-state de-
generacy and numerical errors. Regarding the DM interactions, the effect of Db

1 and Db
4 is negligible

(Fig. 5.7). By contrast, Dac
1 and Da

2 mix singlet and triplet states, which reduces the spin gap and results

16Note that an expression for the first-order effect of the interladder coupling on the single-triplon dispersion was given in
[401].

17Remember that b is a principal axis of the g-tensor (see section 4.3.1).
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in a non-vanishing susceptibility in the limit of zero temperature (see, e. g. , [401]). Interestingly, the
effect of Dc

2 appears much weaker than that of Da
2 (Fig. 5.7).

Except for the models including the DM interactionsDac
1 andDa

2 , the overall agreement is unsatisfactory,
especially considering the estimated g-factors. While inclusion of Dac

1 or Da
2 results in significantly

improved fits, some of which even yield plausible g-factors, all models systematically overestimate the
low-temperature susceptibility. Most likely this is because the calculations neglect interladder couplings,
which are expected to reduce the spin gap (see [401] and section 5.3).

Restricting the data range to T ě 100 K, where interladder couplings should be less important, does
not improve the situation. Only after fixing J1{kB “ 140 K [401] in addition, the stability of the fits
improves and the g-factors appear more reasonable (Fig. 5.8). These results corroborate the energy scale
of the coupling J1 proposed in [401] (see also [74, pp. 98,109]). Again, setting Dac

1 or Da
2 to values

around 0.4 J1 significantly improves the fits. In particular, the results for Dac
1 “ 0.4 J1 approximate

the measured susceptibility quite well, except for a slightly overestimated gap which is attributed to
interladder couplings (see above), and yield plausible g-values [i. e. , g1 „ g2 „ 2, cf. Fig. 5.8(f)].

Repeating the preceding analysis with the additional constraint g1 “ g2 yields qualitatively similar
susceptibility curves (not shown). It is worth mentioning that g1 « g2 « 2 with 1

2pg1 ` g2q « 2 is only
realized for 0.75 À J4{J1 À 1 and pJ2 ` J 12q{2 Á 0.75 J1, which compares favorably with parameter
set A. By contrast, neither (low-to-moderate) DM interactions nor the difference J2 ´ J 12 have a strong
influence upon the (average) g-factor.

5.4.2 Specific heat

To complement the preceding subsection, the magnetic specific heat CM pT q was calculated. The results
are summarized in Figs. 5.9 and 5.10. As seen for the magnetic susceptibility, the difference J2 ´ J 12,
as well as the DM terms Db

1, Db
4, and Dc

2 have very little influence.18 Low-temperature features appear
for small frustration (average value of J2 and J 12) and/or strong rung coupling (J4). These features have
no counterpart in the calculated magnetic response, suggesting that they are due to singlet excitations
(cf. [228, p. 9]).

The fact that no low-temperature features are observed in the experimental data (cf. section 5.2.2) sug-
gests J4{J1 ě 0.5, pJ2 ´ J 12q{p2 J1q ě 0.25, and Dac

1 {J1 ď 0.35. However, these conclusions need to
be taken with a grain of salt, since at least the low-temperature features caused by Dac

1 might be masked
once the reduction of the spin gap due to the interladder coupling (see section 5.3) is taken into account.

5.4.3 Phase diagram

First, the effect of J4 deserves additional attention. Low-temperature features are observed in the mag-
netic specific heat CM pT q for 0.25 À J4{J1 À 0.5. The dimer-dimer correlations shown in Fig. 5.11(b)
clearly indicate that the system is dimerized for the considered cases with J4{J1 ă 0.5. This is con-
sistent with the appearance of the columnar-dimer (CD) phase reported earlier [228] (cf. Fig. 1.4). As
anticipated in the initial numerical study of parameter set A [401, p. 10], this transition between the

18Note that the different effects of Dac
1 and Db

1, as well as Da
2 and Dc

2, are related to the different staggering patterns of the
corresponding DM vectors (section 4.3.2).
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Figure 5.6: Fits of the magnetic susceptibility [see Fig. 5.1(b) for data source and details] using Hamiltonian (4.1)
and variations of parameter set A (see text for details). The energy scale J1, as well as the g-factors g1 and g2 are
adjusted to fit the data. The tabulated values for J1 correspond to J1{kB in K. The temperature range of the fits is
restricted to T ě 9 K in order to exclude impurity contributions at low temperature (see section 5.2.1).
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Figure 5.7: Fits of the magnetic susceptibility [see Fig. 5.1(b) for data source and details] using Hamiltonian (4.1)
and variations of parameter set A (see text for details). The energy scale J1, as well as the g-factors g1 and g2 are
adjusted to fit the data. The tabulated values for J1 correspond to J1{kB in K. The temperature range of the fits is
restricted to T ě 9 K in order to exclude impurity contributions at low temperature (see section 5.2.1).
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Figure 5.8: Fits of the magnetic susceptibility [see Fig. 5.1(b) for data source and details] using Hamiltonian (4.1)
and variations of parameter set A (see text for details). The g-factors g1 and g2 are adjusted to fit the data, whereas
J1{kB “ 140 K [401] is fixed. The temperature range of the fits is restricted to T ě 100 K in order to reduce the
influence of residual interactions. Panel (f) shows a subset of data from (e).
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Figure 5.9: Magnetic specific heat calculated using Hamiltonian (4.1) and variations of parameter set A (see text
for details). The exchange energy scale J1{kB “ 140 K [401]. The inset of panel (a) shows a magnified copy
of the plot. To avoid low-temperature artifacts, numerically-exact ground-state degeneracy was enforced during
post-processing of the exact-diagonalization results for J4 ď 0.25 J1.
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Figure 5.10: Magnetic specific heat calculated using Hamiltonian (4.1) and variations of parameter set A (see text
for details). The exchange energy scale J1{kB “ 140 K [401]. The inset of panel (a) shows a magnified copy of
the plot.



70 5 BiCu2PO6: Low-field thermodynamic properties

rung-singlet (RS) and CD phases is driven by a singlet soft mode like in the case J 12 “ J2 [228, 412],
which is confirmed by the results shown in Fig. 5.11(a). The phase boundary between the CD and RS
phases is consistent with literature [228] [cf. Fig. 1.4 and dashed line in Fig. 5.11(a)]. Having established
from the dimer correlations that the system adopts the CD phase for J4{J1 “ 0.25, the ground-state
must be doubly-degenerate for periodic boundary conditions [412]. This is used to deduce a numerical
uncertainty of 0.02 J1 for the energies shown in Fig. 5.11(a). Within this uncertainty, the ground-state is
doubly-degenerate for J4{J1 “ 0.25 and 4-fold degenerate for J4{J1 “ 0, as expected for two isolated,
dimerized frustrated spin chains [412] (cf. section 1.3.3). The degeneracy is fully lifted at larger values
of J4{J1. Note that the ground-state degeneracy affects the excitations as well: For J4{J1 “ 0, the first
excitation is a k „ π{2 triplet19. Since there are three branches of triplet excitations associated with each
of the degenerate ground states, this mode is is 12-fold degenerate. For J4{J1 “ 0.25, the first excitation
is a k “ π singlet [412], which is doubly degenerate, as expected from the degeneracy of the CD ground
state [412]. By contrast, the lowest-energy excitation for J4{J1 “ 0.5 is a non-degenerate k “ π singlet
[412], since there is no ground-state degeneracy in the RS phase [412].

The effect of the frustration JF “ pJ2`J
1
2q{2 is illustrated in Fig. 5.11(c). Clearly, the spin correlations

become incommensurate between JF “ 0.25 and JF “ 0.5. This is again consistent with the phase
diagram of the frustrated ladder [228] shown in Fig. 1.4.

Finally, it should be mentioned that the unit-cell doubling associated with the DM interactions generally
results in stronger finite-size effects, as can be seen by comparing Figs. 5.4(a) and 5.11(d)—especially
regarding the influence of the boundary conditions. Thus, while the gap value for L “ 8 accidentally
appears to be close to the result for large system sizes, the results presented above are likely to be affected
by finite-size effects to some extent.

5.4.4 Parameter set B and influence of symmetric anisotropies

In the preceding subsections, only the DM terms themselves have been considered for simplicity. How-
ever, as suggested by the publication proposing parameter set B [318] and discussed in section 1.1.2, a
symmetric anisotropy tensor Γ should be considered as well. I have therefore repeated a subset of the
calculations taking this additional term into account. The results are shown in Fig. 5.12. The effect of Γ
is generally small, and considered negligible for all DM interactions except Da

2 . Yet, even for Da
2 , the

changes are very subtle.20

As mentioned in section 5.1, no calculations of the temperature dependences of magnetic susceptibility21

19Lattice-momenta are given relative to the NN bond length. Since the doubled (crystallographic) unit cell is used in the
calculations, the results are determined modulo π (aliasing/zone folding). In the absence of explicit dimerization, no two-
spinon bound states occur in the zigzag chain for frustrating couplings J2{J1 ď 0.5 [375]. The minimum of the single-spinon
dispersion shifts continuously from ˘k “ π{2 to ˘k “ 1

4
π, 3

4
π for J2{J1 beyond the MG point [227]. The two minima of

the two-spinon continuum therefore shift from k “ 0, π towards k “ ´π{2, 0, π{2, π [227]. Recent exact diagonalization
calculations find the ˘k “ π{2 state to have lowest energy at large J2{J1 [227, Fig. 3], which is consistent with the present
results and hence indicates the formation of a two-spinon bound state (cf. [227]).

20Note that for the special case of parameter set B, equation (1.2) implies Γab1 “ 0.045 J1, Γaa1 “ Γbb1 “ 0, and Γcc1 “

´0.045 J1 [318], which are particularly small and have indeed been found to have negligible influence upon susceptibility and
specific heat (data not shown).

21Recently-reported calculations of the magnetization reproduce the sequence of zero-temperature susceptibilities (5.1)
[179]. Meanwhile, limTÑ0 χ

bb
« 0.18 ¨ 10´3 µB{T [179, Fig. 5] (bond-operator mean-field theory) is not in quantitative

agreement with the DMRG calculations [neglecting interladder couplings, cf. Fig. 7.31(a)], nor with the measured data [cf.
Fig. 5.13(b)].
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Figure 5.11: (a): Energy difference E1 ´ E0 between the two lowest-energy states, as well as excitation gap
∆ between ground-state energy and first excited state for parameter set A with varying rung couplings [exact
diagonalization (ED)]. The dashed line indicates the phase boundary between the columnar-dimer and rung-singlet
phases (J4{J1 « 0.36) reported in [228]. The error bars correspond to 0.02 J1 (see text for details). (b): Dimer-
dimer correlations on NN bonds located on one ladder leg, calculated using DMRG (bond dimension m “ 512,
averaged over a “ 8 reference rungs, system size L “ 64; see section 7.5 for further details) for a subset of the
models considered in (a). (c): Transverse spin structure factor S`´pq, qKq in the qK “ π sector, calculated using
DMRG (m “ 512, a “ 8, L “ 64) for parameter set A with varying frustration strength. (d): Energy difference
E1 ´ E0 between the two lowest-energy states as function of system size L (measured in rungs) for parameter set
A with Dac

1 “ 0.4 J1. Different boundary conditions (BC) were assumed in the calculations (see plot legend). The
dashed line indicates L “ 8. Details regarding the calculation of structure factors and correlation functions are
given in chapter 7.

or magnetic specific heat have been reported for parameter set B. The results of corresponding calcu-
lations are shown in Fig. 5.13. For comparison, selected results obtained with parameter set A are also
included in the figure. As expected [228], the stronger rung bonds and stronger frustration of parameter
set B result in an even larger spin gap. Clearly, parameter set B fails to provide a good fit to the consid-
ered quantities. It remains an open question whether the proposed [318] interladder coupling (see section
5.3) can explain the remaining differences between measured and calculated response functions.

5.4.5 Discussion

From a theoretical perspective, the consistency of the results presented in section 5.4.3 with published
works [228, 412] indicates that the phase diagram of the frustrated ladder (Fig. 1.4) is largely unaffected
by the presence of two inequivalent NNN couplings (J2 ‰ J 12). Meanwhile, the remainder of this dis-
cussion focuses on BiCu2PO6 and the possibility to constrain the model parameters using susceptibility
and specific-heat data.
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Figure 5.12: (a): Magnetic specific heat calculated using variations of parameter set A, with and without the
symmetric anisotropy term parametrized by the tensor Γ. The exchange energy scale J1{kB “ 140 K [401]. (b):
Fits of the magnetic susceptibility [see Fig. 5.1(b) for data source and details] using variations of parameter set A,
with and without the symmetric anisotropy term parametrized by the tensor Γ. The energy scale J1, as well as
the g-factors g1 and g2 are adjusted to fit the data. The tabulated values for J1 correspond to J1{kB in K. The
temperature range of the fits is restricted to T ě 9 K in order to exclude impurity contributions at low temperature
(see section 5.2.1). The inset shows a magnified view of the plot. The legend is the same as in (a).

For parameter set A, the energy scale J1 and the couplings J4 and JF “ pJ2 ` J 12q{2 are indirectly
corroborated by requiring agreement with the high-temperature susceptibility for (average) g-factors
gi « 2 (see section 5.4.1; see also [74, pp. 98,109]). The same is the case for parameter set B and
the energy scale J1. Similarly, the absence of low-temperature features in the magnetic specific heat,
imposes lower bounds on J4 and JF , which are satisfied by both parameter sets (see section 5.4.2). Note
that this is also consistent with Raman scattering experiments [87], which have not reported any singlet
modes below energies corresponding to 34.5 K.

By contrast, the interactions pJ2´J
1
2q,D

b
1,Db

4, andDc
2 produce weaker effects, which are generally hard

to resolve in the measured data. For parameter set A, agreement with the measured susceptibility can be
significantly improved by includingDac

1 „ 0.35 J1 orDa
2 „ 0.4 J1. Remarkably, the order of magnitude

is compatible with the conclusions drawn from inelastic neutron scattering (INS) (parameter setB) [318].
For the specific heat, the situation is less clear. The aforementioned DM interactions improve agreement
with the data by reducing the energy gap. They also give rise to a double-peak structure in CM pT q,
which is not necessarily inconsistent with experiment given the reservations regarding the literature data
for elevated temperatures (see discussion in section 5.2.2).22 The interactions Dac

1 and Da
2 also give rise

to low-temperature features inCM pT q, indicating the emergence of singlet excitations which become soft
at very large values of Dac

1 . These modes are reminiscent of the transition to the CD phase (cf. [228]). It
is therefore not surprising that they are not observed for parameter set B, which would place the system
deeper within the RS phase in the absence of DM couplings [228] (cf. Fig. 1.4). However, as mentioned
in section 5.4.2, such singlet modes may anyways be shadowed by magnetic excitations once interladder
couplings (see section 5.3) are taken into account.

In the end, no fully satisfactory fit to the specific-heat and susceptibility data could be obtained for the

22In fact, the data reported in [424, Fig. 7.9b] show similar features.
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Figure 5.13: Results of exact-diagonalization calculations performed for variations of parameter set A and pa-
rameter set B (with and without the symmetric anisotropy term parametrized by the tensor Γ, respectively). (a):
Magnetic specific heat (data sampled from [217]). The exchange energy scale J1 was fixed to the values given in
section 4.3.3. The inset shows a magnified view of the plot. (b): Fits of the magnetic susceptibility [see Fig. 5.1(b)
for data source and details]. Models including the energy J1 as a fit parameter are indicated by dashed lines, in the
other cases the value of J1 corresponds to (a). The fit constraints and fitted parameter values are stated in the plot
legend, the values for J1 corresponding to J1{kB in K. The temperature range of the fits is restricted to T ě 9 K
in order to exclude impurity contributions at low temperature (see section 5.2.1).

considered models, which strongly suggests that additional interactions like interladder couplings [401]
and/or magneto-elastic effects (see section 8.7.5) play an important role in BiCu2PO6. Nonetheless, this
conclusion is not rigorous, since the parameter space could not be sampled exhaustively for practical rea-
sons (see section 5.4, beginning). Note that the one-parameter variations considered for parameter set A
correspond to a first-order expansion. In principle, numerical results can be used to expand observables,
such as magnetic susceptibility or specific heat, in the coupling parameters. However, a first-order ex-
pansion is unlikely to be sufficiently accurate to refine the model parameters, which is why this approach
has not been pursued further. Higher order semi-analytical methods like high-temperature expansion
might be interesting to consider in the future (e. g. , [161]). Also, finite-temperature DMRG [133, 442]
could help avoiding finite-size effects. However, the weak effects of many model parameters imply that
not all parameters can be estimated from macroscopic measurements alone. Ultimately, it appears that
only a global analysis of magnetic susceptibility, magnetic specific heat, and INS data might resolve this
issue.

5.5 Conclusions

Besides allowing for the estimation of the g-tensors (note the related previous works mentioned in section
6.8), the comparison of calculations performed using the model Hamiltonian (4.1) to previous measure-
ments of magnetic susceptibility (section 5.2.1) and specific heat (section 5.2.2) confirms (see previous
works referenced in the aforementioned sections and in chapter 4) that the model is able to capture the
salient qualitative features of the data. Nonetheless, quantitative differences remain. The most obvious
discrepancy is the overestimated spin gap (see [401] and section 5.2.3). While in principle, the exchange
couplings could be adjusted to achieve better agreement, it has been shown in [257] that such a procedure
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systematically underestimates the intraladder interactions and results in a model which contradicts the
dispersion relations of the magnetic excitations probed with INS.

Multiple works have suggested that the deviations are due to DM interactions and interladder couplings
(e. g. , [228, 401]; see sections 4.2.4 and 5.3). Nonetheless, no reported calculations of the macroscopic
finite-temperature response functions appear to have considered the combined effects of frustration and
these additional interactions. As shown in section 5.4, neither parameter set B (neglecting interladder
couplings), nor any one-parameter variation of parameter set A, reproduces the measured data. While
it cannot be excluded that a multi-parameter variation providing a good fit exists, the preceding results
strongly suggest that additional interactions need to be considered. Interladder coupling is a promising
candidate for reconciling experimental data and model calculations [401] (section 5.3). Unfortunately,
its effects cannot be accounted for using naive mean-field theory, and corresponding DMRG calculations
would require considerable computational resources (see section 5.3).



6 BiCu2PO6: Interactions between electronic and nuclear
moments

6.1 Introduction

This chapter addresses the interaction between the 31P nuclei and the Cu2` magnetic moments in BiCu2PO6.
Based on previous work [74, 75] and the considerations presented in chapter 5, the hyperfine couplings
are estimated. While this analysis is clearly guided by earlier work [74, 75], certain aspects are treated
differently. A detailed account of the differences is given in the discussion concluding this chapter (sec-
tion 6.8). A secondary motivation consists in providing a self-consistent notation for later use (in chapter
8).

6.2 Notation

The local magnetic field created at each 31P nucleus by the Cu magnetic moments consists of two con-
tributions: The long-ranged dipole fields and the transferred hyperfine coupling [74, p. 106] (see section
1.5.9).

Figure 6.1: Crystal structure of BiCu2PO6 [11], showing positions of Cup1q and Cup2q (dark and light blue,
respectively), and P (gray) sites; Bi and O sites have been omitted for clarity. Exchange interactions [401] (J1, J 12,
J2, J4, and Ji) are depicted by blue cylinders (intraladder couplings) and solid black lines (interladder couplings)
(cf. also Fig. 4.4). Transparent gray polyhedra indicate the hyperfine couplings between 31P nuclei and Cu spins
([22] and [74, p. 105]). The unit cell is depicted in black and the P and Cu positions are labeled in black and
magenta, respectively. Crystal structure visualized using VESTA [272].

Precise knowledge of these interactions is clearly essential for a quantitative analysis of the NMR spectra.

75
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It is useful to define an indexing convention for the Cu and P sites (cf. [74, Figs. 5.1a, 5.4(c,e), 6.6]).
As illustrated in Fig. 6.1, there are four P sites and eight Cu sites in each unit cell. I denote the Cu
sites as Cupkqi,r px, y, zq, where the index i P t1, 2u distinguishes the two crystallographically inequivalent
Cu sites. The index k P t1, 2u » Z{p2Zq corresponds to the two different types of ladder layers [cf.
Fig. 4.4(a)], and r P t0, 1u is the rung parity (cf. [74, p. 140]), which is chosen such that sites with
r “ 0 have hyperfine couplings with P1 and P2. Finally, each unit cell is identified by a lattice index
px, y, zq P Z3.

6.3 Dipolar coupling

Although the concepts introduced in this section are well-known in principle, derivations of the relevant
results are provided in an attempt to give a concise but self-consistent discussion of dipole-lattice sums
and their application to NMR.

6.3.1 Formalism

The dipolar coupling was introduced in section 1.5.9. In a crystal, one has to sum the contributions
from all Cu sites. Due to the superposition principle (linearity of Maxwell’s equations, e. g. , [184]), it is
sufficient to consider magnetic structures of the form,

µ
pkq
j,r px, y, zq “

ÿ

q

”

cospq ¨ px, y, zqq c
pkq
q,j,r,` ` sinpq ¨ px, y, zqq c

pkq
q,j,r,´

ı

“ Re
ÿ

q

exppi q ¨ px, y, zqq
´

c
pkq
q,j,r,` ´ i c

pkq
q,j,r,´

¯

,

whereµpkqj,r px, y, zq is the magnetic moment at the Cupkqj,r px, y, zq site with real-space position ρpkqj,r px, y, zq.

The magnetic moments µpkqj,r px, y, zq are related with the corresponding spin-operators Spkqj,r px, y, zq via
the g-tensors gj,k (see section 1.5.9), which satisfy

gj,k`1 “ σa gj,k σa .

where gj,1 “ gj is parametrized according to (5.2) (section 5.2.1). The dipolar field at the position ρplq0

of the Pl site in unit cell p0, 0, 0q is then given by

B
plq
d “

ÿ

j,r,k

ÿ

x,y,z

µ0

4πρ3

`

3ρ̂ρ̂T ´ 1
˘

µ
pkq
j,r px, y, zq , (6.1)

with ρ “ ρpkqj,r px, y, zq ´ ρ
plq
0 . Define Cpkqq,j,r “ c

pkq
q,j,r,` ´ i c

pkq
q,j,r,´ and

M
plq
j,r,k,q “

ÿ

x,y,z

µ0

4πρ3

`

3ρ̂ρ̂T ´ 1
˘

exppi q ¨ px, y, zqq . (6.2)

Then,
B
plq
d “ Re

ÿ

j,r,k,q

M
plq
j,r,k,qC

pkq
q,j,r . (6.3)



6.3 Dipolar coupling 77

6.3.2 Convergence and uniqueness

The calculation of the matrices M plq
j,r,k,q involves a lattice summation over the entire crystal. In practice,

this is usually approximated by a summation over Z3. However, the three-dimensional lattice sum (6.2)
is only conditionally convergent [438]. In general, the limiting values of such sums depend on the
summation order [436]. While this may seem disturbing at first, the physical reason is that the dipolar
field inside a sample depends on the shape of that sample [438].

Consider two samples, represented by domains Ωi Ă R3 (i “ 1, 2) and corresponding reference sites xi
at which the dipole fields Bd,i created by Ωi are to be calculated. Without loss of generality (cf. section
6.3.1), a single Fourier component and a single magnetic sub-lattice are considered. Further, x1 “ x2 “

x without loss of generality. Let Ω1 and Ω2 be topologically equivalent to a sphere for simplicity. If x
is sufficiently far away from the surfaces of Ω1 and Ω2, a continuum magnetostatics description is valid
within the domain Ω2zΩ1. Hence, the results re-derived in section A.2.1 (note references therein) can be
invoked to obtain

Bd,2 “ ´µ0

`

MΩ2pxq ´MΩ1pxq
˘

M ,

with the average magnetization M “ C
pkq
q“0,j,r{V if q ” 0 pmod 2πq and zero otherwise, V the unit-

cell volume, and the demagnetization tensors MΩipxq as defined in section A.2.1. Comparison with
(6.2) finally yields (cf. , e. g. , [438])

M
plq
j,r,k,qpΩ2q “M

plq
j,r,k,qpΩ1q ´

#

µ0
V

`

MΩ2pxq ´MΩ1pxq
˘

if q ” 0 pmod 2πq

0 otherwise
, (6.4)

where M plq
j,r,k,qpΩiq denotes the result of evaluating the sum in (6.2) over the lattice domain Ωi X Z3.

Because the demagnetization tensors do not change upon symmetric rescaling of the domain (see section
A.2.1), the transformation rule (6.4) generalizes to geometrically-inspired lattice-summation schemes,
such as those relevant for this work. The advantage of (6.4) is that the lattice sums can be performed in
a computationally efficient order and adjusted afterwards in order to account for the actual shape of the
sample used in the experiment [438].

In a later chapter (chapter 8), the dipole couplings between individual magnetic layers (bc planes) in
BiCu2PO6 are considered. Direct computation of the corresponding lattice sums is particularly ineffi-
cient. Fortunately, ideas similar to Ewald summation [126] can be applied to recast the slowly-converging
sums into rapidly-converging ones by means of a discrete Fourier transform [292, 438]. Although this
approach is well known, the relevant publications [292, 438] employ a rather bulky formalism, which
is partially owed to the fact that they treat more generic cases. In order to ensure a coherent notation
and allow future readers to retrace the analyses described in this work, the required results are therefore
briefly re-derived in the appendix (section A.2.2).

6.3.3 Order of magnitude

In order to check the importance of dipolar couplings it is instructive to construct an upper bound on the
dipole field (6.3). For magnetic fields applied along the b-direction,∣∣∣eb ¨Bplqd ∣∣∣ ď ÿ

j,r,k,q

∥∥∥eb ¨M plq
j,r,k,q

∥∥∥
2

∥∥∥Cpkqq,j,r∥∥∥
2

,
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where ‖¨‖2 denotes the 2-norm on C3 and the induced matrix norm on C3ˆ3 (spectral norm) [433]. For a

spin-1{2 moment,
∥∥∥gj,kCpkqq,j,r∥∥∥

2
Æ µB . Numerical evaluation for the BiCu2PO6 lattice and q “ p0, qb, 0q

with qb P r0, 2πq, yields
∣∣∣eb ¨Bplqd ∣∣∣ ď 0.6 T. This indicates that, although occasionally done in previous

work [74, pp. 133,139] (see also [74, pp. 145]), dipolar coupling cannot be neglected in the magnetically-
ordered phases of BiCu2PO6.

6.3.4 Demagnetization lineshape

The transformation rule (6.4) can be applied to all nuclei which are sufficiently far away from the surface
of the sample. For a macroscopic sample Ω, this condition is satisfied for essentially all nuclei. Hence,
as is well known, the dipole fields created by distant magnetic moments give rise to a line broadening
which is proportional to the uniform magnetization and the corresponding lineshape reflects the spatial
distribution of the demagnetization tensors MΩprq for r P Ω.1 While the demagnetizing tensor Mprq is
uniform inside ellipsoidal samples [277], this does not hold for samples with arbitrary geometries (see,
e. g. , [51]). Box-shaped samples with faces cut approximately perpendicular to the crystal directions are
used throughout this work, and analytical expressions for the demagnetization tensors are known in this
case [194] (cf. section A.2.1).

6.3.5 Paramagnetic phase

In order to estimate the hyperfine couplings from the angular dependence of the NMR shift later on, a
model of the dipole-field contributions to the shift in the paramagnetic state is required. Using the index-
ing scheme introduced in sections 6.2 and 6.3.1, the Hamiltonian (4.1) and the resulting susceptibility
model (section 5.2.1) imply

µ
pkq
j,r px, y, zq “ ´µB gj,k

A

S
pkq
j,r px, y, zq

E

“ χ
pkq
j µ0H “ µ

pkq
j ,

where χpk`1q
j “ σa χ

pkq
j σa, since the two types of magnetic layers in BiCu2PO6 are related by the

symmetry σa (see section 4.3.2). Introducing Dplqj,k “
ř

rM
plq
j,r,k,q“0 (cf. [74, p. 105]), 2

B
plq
d “

ÿ

j,k

D
plq
j,k µ

pkq
j .

The four P sites are related by the crystal symmetries σb σc, σa σc, and σa σb (see also [74, p. 105] and [75,
p. 10]). Moreover, the site-symmetry of the P site (section 4.2.3) implies M plq

j,r,k,q“0 “ σbM
plq
j,r,k,q“0 σb,

1The effect of the demagnetizing field on the sample magnetization is negligible in this work (see footnote 1 in chapter 5).
2The sample used in the measurements [74] analyzed in this chapter was approximately cubic [74, p. 97], which is why

the matrices Dplqj,k were obtained by brute-force summation over spherical lattice regions, in accordance with the previous work
[74, p. 106]. Even so, they agree with the more sophisticated summation method of [292, 438] (see section A.2.2) to within
5 ¨ 10´9 relative deviation [after applying eq. (6.4)]. Moreover,

ÿ

j,k

D
plq
j,k «

¨

˚

˚

˚

˚

˝

0.0333 0 0.0213
0 0.0145 0

0.0213 0 ´0.0478

˛

‹

‹

‹

‹

‚

T

µB

compares favorably with [75, eq. 13] (deviations of the order of 1% arise due to a less strict convergence criterion used in the
previous work, see [75, p. 10] and [74, p. 106]).
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such that

D
p3q
j,k “ D

p1q
j,k

D
p4q
j,k “ D

p2q
j,k “ σaD

p1q
j,k`1 σa .

6.4 Hyperfine couplings

The hyperfine coupling was introduced in section 1.5.9 and its contribution to the effective magnetic field
at the site of the nucleus is written as Bh “ Aµ. As already pointed out in [74, p. 107], the matrices A
do not need to be symmetric (cf. section 1.5.9). Nonetheless, it is common to assumeA “ AT (e. g. , [74,
409]), as is done in the following, for two reasons: (i) To maintain consistency with previous work [74,
p. 107], and (ii) because not all elements of A are constrained by measurements of the NMR shift in the
paramagnetic phase. To illustrate the second point, which was also noted in [74, p. 107], let µ “ χµ0H .
If Bh is small compared to the external field µ0H , the NMR shift is proportional to H ¨ AχH , which
depends only on the symmetric part of K “ Aχ.3 If χ is known, the shift provides six constraints
for the nine unknown elements of A and the assumption A “ AT represents one possibility to obtain a
determined system of equations (cf. [74, p. 107]). Note that a symmetric A is also expected if magnetic
moments are localized and the effects of spin-orbit coupling are restricted to the g-tensor [see section
1.5.9, equation (1.9)].

The dominant transferred hyperfine coupling is mediated through the P ´ Op2q ´ Cupiq bonds [22],
resulting in the hyperfine couplings depicted in Fig. 6.1 ([22] and [74, p. 105]). The hyperfine fieldBplqh
at the Pl site in unit cell p0, 0, 0q (see section 6.2 for notation) is thus given by4 (cf. [74, eq. 5.13]).

B
p1q
h “ A1µ

p1q
1,0p0, 0,´1q ` σbA1 σbµ

p1q
1,0p0,´1,´1q `A2µ

p1q
2,0p0, 0, 0q ` σbA2 σbµ

p1q
2,0p0,´1, 0q

B
p2q
h “ σcA1 σcµ

p2q
1,0p0, 0, 0q ` σaA1 σaµ

p2q
1,0p0,´1, 0q ` σcA2 σcµ

p2q
2,0p0, 0, 0q ` σaA2 σaµ

p2q
2,0p0,´1, 0q

B
p3q
h “ A1µ

p1q
1,1p0, 0, 1q ` σbA1 σbµ

p1q
1,1p0, 1, 1q `A2µ

p1q
2,1p0, 0, 0q ` σbA2 σbµ

p1q
2,1p0, 1, 0q

B
p4q
h “ σcA1 σcµ

p2q
1,1p0, 0, 0q ` σaA1 σaµ

p2q
1,1p0, 1, 0q ` σcA2 σcµ

p2q
2,1p0, 0, 0q ` σaA2 σaµ

p2q
2,1p0, 1, 0q .

(6.5)

6.5 Model for NMR shift

6.5.1 Pristine compound

Using the results of sections 6.3.5 and 6.4, the internal fieldsBplqint “ B
plq
d `B

plq
h generated in addition to

the external field Bext “ µ0H in the translation-invariant paramagnetic state of pristine BiCu2PO6 are
given by

B
plq
int “M

plq
0 Bext ,

3H ¨KH =H ¨KT H ñ . . . .
4When comparing these expressions with Fig. 6.1, it is important to keep in mind that the P1 and P2 sites depicted there

belong to the next unit cell along b. By definition,Ai describes the hyperfine coupling between the P1 site and the closest Cupiq
site obtained by applying space-group translations along c to the generating positions reported in [11].
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where (cf. [74, eqs. 5.13 and 5.14])

M
p1q
0 “ Ā1 χ

p1q
1 ` Ā2 χ

p1q
2 `

ÿ

j

D
p1q
j,1 χ

p1q
j `

ÿ

j

D
p1q
j,2 σa χ

p1q
j σa and M

p2q
0 “ σaM

p1q
0 σa ,

and Āi “ pAi ` σbAi σbq (cf. [74, p. 105]). The sublattice susceptibilities χpkqj were defined in section

6.3.5 and crystal symmetry implies M pl`2q
0 “ σbM

plq
0 σb “M

plq
0 . Hence, two distinct NMR frequencies

are expected in general [75, p. 12] (see also [74, p. 163]) and, indeed, observed [74, Fig. 5.10]. For
Bext " Bint, the relative NMR shift ∆

plq
0 of the Pl site is given by5 ∆

plq
0 “ B̂ext ¨M

plq
0 B̂ext (cf. section

1.5.4).

6.5.2 Weakly-doped compound

Consider a system where one Cu site has been replaced by a non-magnetic Zn (cf. section 5.2.4). As in
previous work [74], I assume that the substitution has only local effects, i. e. , all hyperfine couplings,
g-tensors, and exchange interactions not involving the Zn site are unchanged. Following [74], I only
consider the effect upon P sites which have hyperfine couplings with the substituted site. Since the
four Pl sites are related by crystal symmetries (cf. section 6.3.5), I focus on the P1 site without loss of
generality. The corresponding situation is illustrated in Fig. 6.2. The substitution of Cu sites to the left of
the depicted P1 site can be treated by applying the site-symmetry σb (section 4.2.3) to the configurations
resulting from substitution of the Cu sites to the right [74, p. 106]. Thus, it is sufficient to discuss the
situation depicted in Fig. 6.2.

The main change of the internal field Bp1qint at the P1 site depicted in Fig. 6.2 is caused by the absence
of the substituted Cupiq moment ([22] and [74, p. 106]). If χi denotes the corresponding susceptibility
in the undoped system, this change is of the order of pAi `Diq χi, where Di is the corresponding
dipolar coupling. I neglect the interladder exchange coupling, such that substitution of the encircled
Cup1q [Cup2q] site only affects the local susceptibilities of the lower [upper] ladder in Fig. 6.2. The
next-to-leading-order correction to Bp1qint is then due to the remaining Cupiq site with hyperfine coupling
to P1. According to the numbers given in Fig. 6.2, this correction amounts to 5% [12%] of the leading-
order correction for substitution of Cup1q [Cup2q]. The smallest absolute value of the eigenvalues of the
matrices Ai ` Di being 0.11 T{µB , the corrections arising through dipolar couplings between P1 and
the two Cu sites below (see Fig. 6.2) are of comparable magnitude and correspond to at most 6% of the
leading-order effect. The next-smaller corrections are at most 20% ¨ 6% “ 1.2% of the leading order and
are therefore neglected.

Let the dipolar coupling between the Cupkqj,r px, y, zq and the P1 site (see Fig. 6.2) be given by D̂pkqj,r px, y, zq
(cf. [74, eq. B.4]). Let further χ̃ipj, rq denote the local susceptibility of the ladder with one substituted
Cupiq site, at the Cupjq site r rungs away from the defect. The four local susceptibilities required to apply
the aforementioned corrections are annotated in Fig. 6.2(b). Analogous to the preceding discussion of

5As in [74], shifts will be measured relative to the resonance frequency of 31P in non-magnetic BiZn2PO6, such that other
contributions to the shift can be neglected (cf. [74, pp. 99-100] and section 6.6.1).
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Figure 6.2: Crystal structure of BiCu2PO6 [11], showing positions of Cup1q and Cup2q (dark and light blue, re-
spectively), and P (gray) sites; Bi and O sites have been omitted for clarity. Intraladder exchange interactions [401]
are depicted by blue cylinders (cf. also Fig. 4.4). A gray pyramid indicates the hyperfine couplings ([22] and [74,
p. 105]) between the P1 site in the reference unit cell p0, 0, 0q and the surrounding Cu spins (cf. Fig. 6.1). (a) Illus-
trates the notation used for the Cu positions and hyperfine couplings (cf. Fig. 6.1; superscript layer index is equal
one and therefore omitted). Black numbers in (b) quantify the dipolar couplings between the corresponding Cu
site and P1. The values correspond to the spectral norm of the respective coupling matrices in 10´3 T{µB . Orange
and purple labels indicate the relative change in local susceptibility (at T “ 296 K) resulting from substitution of
the respective (encircled) Cu site by non-magnetic Zn, as obtained using full-spectrum exact diagonalization (see
section 5.2.4). If the susceptibility before and after doping is χ and χ̃, respectively, this relative change is given by
‖χ̃´ χ‖2{‖χ‖2. Crystal structure visualized using VESTA [272].

the undoped compound the relative NMR shift is given by ∆
plq
i,` “ B̂ext ¨M

p1q
i,` B̂ext, where

M
p1q
1,` “M0 ´

´

A1 ` D̂
p1q
1,0p0, 0,´1q

¯

χ
p1q
1

` σb

´

A1 ` D̂
p1q
1,0p0, 0,´1q

¯

σb

´

χ̃1p1, 2q ´ χ
p1q
1

¯

` D̂
p1q
2,1p0, 0,´1q

´

χ̃1p2, 1q ´ χ
p1q
2

¯

and

M
p1q
2,` “M0 ´

´

A2 ` D̂
p1q
2,0p0, 0, 0q

¯

χ
p1q
2

` σb

´

A2 ` D̂
p1q
2,0p0, 0, 0q

¯

σb

´

χ̃2p2, 2q ´ χ
p1q
2

¯

` D̂
p1q
1,1p0, 0, 0q

´

χ̃2p1, 1q ´ χ
p1q
1

¯

.

Let M plq
i,´ “ σbM

plq
i,` σb describe the NMR shift for configurations where the dopant is located in the

negative b direction from the Pl site (see Fig. 6.2). The crystal symmetries relating the various Pl sites
imply M pl`2q

i,˘ “ M
plq
i,¯ and M p2q

i,˘ “ σaM
p1q
i,¯ σa. Hence, the sixteen possible local configurations give

rise to eight different NMR shifts (cf. [74, p. 108]) described by the matrices M p1q
i,˘ and M p2q

i,˘ (with
i P t1, 2u).
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6.6 Estimation of hyperfine couplings from angular dependence of NMR
frequencies

6.6.1 Data

The angular dependence of the 31P-NMR shift in pristine and weakly-doped BiCu2PO6 was measured
and discussed by F. Casola in Ref. [74]. Relevant experimental details are summarized in appendix A.3.1.
The resulting NMR shifts are reproduced in Fig. 6.3.
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Figure 6.3: Angular dependences of relative 31P-NMR shifts measured at µ0H “ 3.9385 T [75, p. 4] and T «
296 K in pristine and weakly-doped BiCu2PO6 (data from [74, Fig. 5.10]; see section A.3.1 for details). In addition
to the “mainline” peaks of the undoped sample, dilute doping gives rise to satellite peaks (see section 6.5.2). Two
satellite peaks are clearly resolved. The data acquired in low-symmetry orientations (middle panel) show possible
additional satellite peaks [74, p. 108] (cf. section A.3.1), the tentative positions of which were added to the figure.
All shifts are reported w. r. t. the resonance frequency of 31P in polycrystalline [74, p. 99] BiZn2PO6 [74, Fig. 5.5]
(67.8749 MHz [75, p. 5]; cf. section A.3.1).

For low doping concentrations x ! 1 (fraction of Cu atoms substituted by Zn), configurations with two
adjacent or next-nearest neighbor (cf. [74, Fig. 5.6c]) Zn atoms are negligibly rare. As detailed in section
6.5.2, doping gives rise to satellite peaks with different NMR shifts [22, 76]. Since each Zn atom has
hyperfine couplings to two P sites (see Fig. 6.2), and the multiplicity of the P site is half that of the Cu
site [11], the fraction of affected P sites is 4x (cf. previous derivation in [74, pp. 100-101]). This has been
used to estimate the doping level in previous work, yielding x « 1% for the data reproduced in Fig. 6.3
[74, p. 101]. As already noted in [74, p. 100], this estimate is unaffected by a preferential substitution of
one of the two inequivalent Cu sites.

6.6.2 Method

As seen in section 6.5.1, and previously described in [74, p. 105], the NMR shift in pristine BiCu2PO6 is
fully determined by the coupling matrices Āi. Therefore, data measured on undoped BiCu2PO6 cannot
constrain the σb-odd components of Ai. Substitution of a Cupiq by non-magnetic Zn induces a satel-
lite peak, which explicitly depends on Ai (cf. [74, p. 106] and section 6.5.2). Therefore, the resonance
frequencies of satellite peaks associated with the substitution of both Cu sites are needed to fully con-
strain the hyperfine couplings A1 and A2. Note that this analysis follows previous work [74, 75], the
differences to the present work are discussed in section 6.8.
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The NMR shifts are given by ∆ “ B̂ext ¨M B̂ext. In general, there are two distinct mainline frequency
shifts ∆

plq
0 described by the matrices M “ M

plq
0 (section 6.5.1) and eight satellite-peak frequency shifts

∆
plq
i,˘ corresponding to M “ M

plq
i,˘ (section 6.5.2) with i, l P t1, 2u.6 For the orientations sampled in

the left panel of Fig. 6.3, σcBext “ Bext.7 Then, the symmetry properties of the matrices M imply
essential degeneracies ∆

p1q
0 “ ∆

p2q
0 and ∆

p1q
i,˘ “ ∆

p2q
i,˘. Similarly, orientations sampled in the right panel

of Fig. 6.3 satisfy σaBext “ Bext, resulting in essential degeneracies ∆
p1q
0 “ ∆

p2q
0 and ∆

p1q
i,˘ “ ∆

p2q
i,¯.8

Whereas the phenomenology of the mainline frequencies is consistent with the preceding paragraph, only
half as many satellite peaks as expected are observed in Fig. 6.3 [74, p. 101]. There are three possible
explanations (see [74, pp. 100-102, 106-108]):

1. There is an accidental degeneracy of the satellite peaks induced by substitution of Cup1q and Cup2q
[74, pp. 101,107].

2. The Zn substitution is fully site-selective [74, p. 101].

3. The quadruplet of satellite peaks induced by substitution of one of the two inequivalent Cu sites
has not been observed, because it overlaps with the main resonance (cf. [74, p. 108]) or has a very
different resonance frequency. This would imply that the actual doping concentration is twice as
large as estimated using the argument re-enacted in section 6.6.1.

As discussed above, the first scenario is the only one allowing for the extraction of all required hyperfine-
coupling parameters, which is why I follow [74] and adopt this assumption in the following.

Since first-principles calculations corroborate J 12 ‰ J2 in BiCu2PO6 [401], the local susceptibilities of
the two inequivalent Cu sites differ (cf. section 5.2.1 and Fig. 5.5). Accidental degeneracy of the satel-
lite peaks therefore requires a compensating imbalance of the hyperfine-coupling tensors Ai (cf. [74,
p. 101]), which is not inconceivable given the low-symmetry configuration of the PO4 tetrahedra (see,
e. g. , Fig. 4.2). Still, the ultimate answer to this question would require either a microscopic determina-
tion of the doping distribution, or first-principles calculations of g-tensors and/or hyperfine couplings.

The third and forth satellite peaks (middle panel of Fig. 6.3) are only vaguely resolved and therefore not
directly included in the fitting procedure. Instead, candidate models are accepted based on whether or not
they are approximately consistent with these additional satellite peaks. An additional constraint results
from the observation that the integrated satellite-peak intensity in the orientation p90˝, 30˝q is half of that
measured in the orientation p0˝, 30˝q [74, Fig. 5.7 and p. 107], implying that the third and forth satellite
peaks do not merge with the other two satellite peaks at the boundary of the middle panel of Fig. 6.3 [74,
p. 108].

In order to perform an actual fit, a mapping between observed shifts and a subset of the model shifts ∆
plq
0

and ∆
plq
i,˘ is required (cf. [74, pp. 106-107]). There are 144 possible peak assignments, resulting from the

following considerations:

• There are two possible assignments of the mainline shifts in the middle panel of Fig. 6.3.

• There are three possible choices for the accidental degeneracy of the satellite-frequency shifts,

6The terminology (“mainline” and “satellite” peaks) follows previous work [74, 75].
7Note that σc is not a symmetry of the combined system of sample and magnetic field, because the magnetic field transforms

as a pseudo-vector. However, the equation holds as a mathematical identity when treatingBext like a polar vector.
8See [74, p. 106, and Tabs. 5.1 and B.2] for corresponding results in previous work.
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∆
plq
2,˘ « ∆

plq
1,˘, ∆

plq
2,˘ « ∆

ppplqq
1,˘ , or ∆

plq
2,˘ « ∆

ppplqq
1,¯ , where pp2q “ 1 and pp1q “ 2. The accidental

degeneracy is assumed to persist for all sample orientations. In particular, it appears highly unlikely
that the accidental degeneracy in the left and middle panels of Fig. 6.3 would differ.

• For a given choice of accidental degeneracy, there are 4¨3 possible mappings between the frequency-
shifts of the first two satellites shown in the middle panel of Fig. 6.3 and the four doubly-degenerate
satellite-frequency pairs of the model.

• An additional factor of two arises because each satellite shift in the left panel of Fig. 6.3 can
correspond to either of the two satellite shifts in the middle panel.

• Finally, the right panel of Fig. 6.3 suggests that all eight satellite-peak shifts are degenerate within
the experimental resolution.

The model is a linear function of twelve independent elements of A1 and A2. The model predictors
are sample orientations pαi,1, α2,iq, whereas the peak assignment is taken to be an auxiliary parameter.
Thus, for each peak assignment, the hyperfine-coupling parameters and their uncertainties can be esti-
mated using a weighted least-squares linear regression (cf. section A.5.8), the weights being inversely
proportional to the squared experimental uncertainties of the data points. The weights of the mainline
data are empirically increased by a factor of four9. In addition, a global frequency offset (isotropic shift)
of the satellite peaks needs to be assumed for a good fit [74, p. 107].

The linear-regression procedure described above is used to fit the data for each of the 144 possible peak
assignments. Since statistical quantities like the weighted R2 are similar for all fits, visual inspection is
used to reject implausible fits (see discussion of third and forth satellite peak earlier in this subsection).

6.6.3 Results for full model

Using the g-tensors obtained in section 5.2.1 and the calculations presented in section 5.2.4,10 the
hyperfine-coupling parameters can be estimated using the procedure outlined in section 6.6.2. After
visual inspection of all possible peak assignments (see section 6.6.2), twelve plausible solutions remain.
These solutions are summarized in Tab. 6.1, which also contains references to figures showing the actual
fits (appendix, section A.3.2). The plausible fits separate into two clusters (groups 1 and 2 in Tab. 6.1).
Therefore, the hyperfine-coupling parameters are averaged for each group, yielding the results stated in
Tab. 6.2. The parameter uncertainties were enlarged to encompass all individual estimates belonging
to each group. The models corresponding to the averaged parameters listed in Tab. 6.2 are shown in
Fig. 6.4. Reassuringly, the predicted positions of the other two satellite peaks are reasonably consistent
with the data (cf. [74, p. 108]).

In the following chapter, the magnetic field is applied along the b-direction, so that the b-rows of the
matrices Λi “ Ai gi are of particular relevance. Fortunately, their values are rather well constrained by
the fits (Tab. 6.2). I define the anisotropy ai of the tensor Ai as ai “ pmaxλi ´minλiq {

`

1
3

ř

i λi
˘

,
with λi the eigenvalues of Ai. Using the parameters given in Tab. 6.2, I obtain pa1, a2q “ p0.61, 0.48q
for fit group 1 and pa1, a2q “ p1.07, 1.15q for fit group 2. Their generally smaller anisotropy makes
the parameter estimates of fit group 1 appear more “plausible”. Meanwhile, the principal axes of the
averaged solutions do not reveal a clear relation with the local structure of the crystal for neither of the

9Two for essential degeneracy ∆
pl`2q
0 “ ∆

plq
0 and two to account for one doped and one undoped sample (see [74, p. 106]).

10I use results obtained for L “ 8 rungs system size.
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Figure 6.4: Fit models corresponding to averaged hyperfine parameters stated in Tab. 6.2. See section 6.6.3 for
details. Panels (a) and (b) correspond to fit groups 1 and 2, respectively. Experimental data from [74] (see section
6.6.1).
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Figure 6.5: Fit models corresponding to averaged hyperfine parameters stated in Tab. 6.3. See section 6.6.4 for
details. Panels (a) and (b) correspond to fit groups 1 and 2, respectively. Experimental data from [74] (see section
6.6.1).
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Fit Mainline 1 Acc. degeneracy Sats. 1+2 for α2 “ 30˝ Sats. cross R2

A.3(a) ∆
p2q
0 ∆

pkq
1,˘ “ ∆

pkq
2,˘ ∆

p1q
1,´, ∆

p1q
2,´, ∆

p1q
1,`, ∆

p1q
2,` no 0.9953

,

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

-

Group 1

A.3(b) ∆
p1q
0 ∆

pkq
1,˘ “ ∆

pkq
2,˘ ∆

p2q
1,´, ∆

p2q
2,´, ∆

p2q
1,`, ∆

p2q
2,` no 0.9943

A.3(c) ∆
p2q
0 ∆

pkq
1,˘ “ ∆

pppkqq
2,˘ ∆

p1q
1,´, ∆

p1q
1,`, ∆

p2q
2,´, ∆

p2q
2,` no 0.9937

A.3(d) ∆
p2q
0 ∆

pkq
1,˘ “ ∆

pppkqq
2,˘ ∆

p1q
2,´, ∆

p1q
2,`, ∆

p2q
1,´, ∆

p2q
2,` no 0.9942

A.3(e) ∆
p1q
0 ∆

pkq
1,˘ “ ∆

pppkqq
2,˘ ∆

p1q
1,´, ∆

p1q
1,`, ∆

p2q
2,´, ∆

p2q
2,` no 0.9951

A.3(f) ∆
p1q
0 ∆

pkq
1,˘ “ ∆

pppkqq
2,˘ ∆

p1q
2,´, ∆

p1q
2,`, ∆

p2q
1,´, ∆

p2q
2,` no 0.9947

A.3(g) ∆
p2q
0 ∆

pkq
1,˘ “ ∆

pkq
2,˘ ∆

p1q
1,´, ∆

p1q
2,´, ∆

p1q
1,`, ∆

p1q
2,` yes 0.9953

,

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

-

Group 2

A.3(h) ∆
p1q
0 ∆

pkq
1,˘ “ ∆

pkq
2,˘ ∆

p2q
1,´, ∆

p2q
2,´, ∆

p2q
1,`, ∆

p2q
2,` yes 0.9943

A.3(i) ∆
p2q
0 ∆

pkq
1,˘ “ ∆

pppkqq
2,˘ ∆

p1q
1,´, ∆

p1q
1,`, ∆

p2q
2,´, ∆

p2q
2,` yes 0.9937

A.3(j) ∆
p2q
0 ∆

pkq
1,˘ “ ∆

pppkqq
2,˘ ∆

p1q
2,´, ∆

p1q
2,`, ∆

p2q
1,´, ∆

p2q
1,` yes 0.9942

A.3(k) ∆
p1q
0 ∆

pkq
1,˘ “ ∆

pppkqq
2,˘ ∆

p1q
1,´, ∆

p1q
1,`, ∆

p2q
2,´, ∆

p2q
2,` yes 0.9951

A.3(l) ∆
p1q
0 ∆

pkq
1,˘ “ ∆

pppkqq
2,˘ ∆

p1q
2,´, ∆

p1q
2,`, ∆

p2q
1,´, ∆

p2q
2,` yes 0.9947

Table 6.1: Overview of plausible fit variants. See text (section 6.6.3) for details. For each fit, a reference to the
actual fit, the peak assignment, as well as the weighted R2 value are listed. “Sats. cross” indicates whether or not
the frequency shifts of the first two satellite peaks cross when changing from α2 “ 0˝ to α2 “ 30˝ (for fixed α1).

two fit groups.

6.6.4 Results for uniform model

As discussed in section 5.2.1, the experimental data are not incompatible with a site-independent g-
tensor. Consistently, one would expect J 12 « J2. I therefore repeated the analysis11 presented in the
preceding section 6.6.3 using model C0 of section 5.2.1, which neglects the inequivalence of the two
Cu sites. Except for the R2-values, the plausible solutions coincide with those listed in Tab. 6.1. The
corresponding individual fits are shown in Fig. A.4 (appendix, section A.3.2). The fits are analyzed in
complete analogy to section 6.6.3, yielding the results summarized in Fig. 6.5 and Tab. 6.3.

The anisotropies are pa1, a2q “ p0.57, 0.43q and pa1, a2q “ p1.05, 1.14q for the two fit groups, re-
spectively. The fact that the principal axes of the averaged tensors do not coincide with any obvious
geometrical features of the crystal, favors the more isotropic solutions of the first group, consistently
with the results of section 6.6.3. On the other hand, the approximate local symmetry of the ladder (cf.
Fig. 6.2) suggests that A1 „ σcA2 σc. While this is reasonably consistent with all parameter estimates
obtained in this work, the relative deviations from this expectation are smallest for the solutions obtained
using fit group 2.

In the end, none of the two fit groups can be clearly rejected. Also, the fits obtained in this subsection
(Fig. 6.5) agree similarly well with the data as those presented in section 6.6.3 (Fig. 6.4). Assuming that
the inequivalence J 12 ‰ J2 considered in the latter case represents an upper bound for the real material, a
comparison of the parameter estimates listed in Tabs. 6.2 and 6.3 can be used to estimate the parameter
uncertainties. For the b-row entries of the matrices Λi, which are of particular interest for this work (see

11As before, calculations are performed for systems of size L “ 8.
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Group Ai{
T
µB

Λi{
T
~

1
A1 “

˜

0.16p2q ´0.047p2q 0.00p8q
´0.047p2q 0.213p6q 0.022p6q

0.00p8q 0.022p6q 0.18p5q

¸

Λ1 “

˜

0.34p5q ´0.084p9q ´0.02p15q
´0.103p11q 0.38p4q 0.049p13q
´0.03p17q 0.039p11q 0.34p10q

¸

A2 “

˜

0.176p11q ´0.022p2q 0.00p6q
´0.022p2q 0.145p4q ´0.026p4q

0.00p6q ´0.026p4q 0.15p3q

¸

Λ2 “

˜

0.39p4q ´0.048p6q ´0.01p14q
´0.047p8q 0.317p33q ´0.058p10q
´0.01p14q ´0.057p10q 0.35p7q

¸

2
A1 “

˜

0.16p2q 0.090p2q 0.00p8q
0.090p2q 0.213p6q 0.036p6q
0.00p8q 0.036p6q 0.18p5q

¸

Λ1 “

˜

0.34p5q 0.160p16q ´0.02p15q
0.185p14q 0.38p4q 0.055p18q
´0.03p17q 0.064p12q 0.34p10q

¸

A2 “

˜

0.176p11q 0.085p2q 0.00p6q
0.085p2q 0.145p4q ´0.024p4q
0.00p6q ´0.024p4q 0.15p3q

¸

Λ2 “

˜

0.39p4q 0.186p19q ´0.01p14q
0.191p14q 0.317p33q ´0.061p17q
´0.01p14q ´0.052p10q 0.35p7q

¸

Table 6.2: Hyperfine couplings Ai and Λi “ Ai gi estimated using the fits listed in Tab. 6.1. The satellite-peak
offset is ´91p2q ppm in both cases. Uncertainties for Ai are estimates reported by the regression procedure (see
section A.5.8). A 10% uncertainty was assumed for the parameters of the g-tensors when calculating Λi.

Group Ai{
T
µB

Λi{
T
~

1
A1 “

˜

0.169p14q ´0.039p2q 0.00p7q
´0.039p2q 0.178p5q 0.027p4q

0.00p7q 0.027p4q 0.16p4q

¸

Λ1 “

˜

0.37p4q ´0.077p9q ´0.01p15q
´0.087p10q 0.35p4q 0.059p10q
´0.01p15q 0.053p10q 0.34p9q

¸

A2 “

˜

0.169p12q ´0.029p2q 0.00p7q
´0.029p2q 0.170p5q ´0.022p4q

0.00p7q ´0.022p4q 0.17p3q

¸

Λ2 “

˜

0.37p4q ´0.057p7q 0.01p15q
´0.065p8q 0.34p4q ´0.048p9q
0.01p15q ´0.044p9q 0.36p7q

¸

2
A1 “

˜

0.169p14q 0.082p2q 0.00p7q
0.082p2q 0.178p5q 0.032p4q
0.00p7q 0.032p4q 0.16p4q

¸

Λ1 “

˜

0.37p4q 0.162p17q ´0.01p15q
0.177p14q 0.35p4q 0.062p16q
´0.01p15q 0.063p10q 0.34p9q

¸

A2 “

˜

0.169p12q 0.092p2q 0.00p7q
0.092p2q 0.170p5q ´0.028p4q
0.00p7q ´0.028p4q 0.17p3q

¸

Λ2 “

˜

0.37p4q 0.182p19q 0.01p15q
0.198p15q 0.34p4q ´0.053p17q
0.01p15q ´0.055p10q 0.36p7q

¸

Table 6.3: Hyperfine couplings Ai and Λi “ Ai gi estimated using the uniform model C0 of section 5.2.1, as
described in section 6.6.4. The satellite-peak offset is´90p2q ppm in both cases. Uncertainties forAi are estimates
reported by the regression procedure (see section A.5.8). A 10% uncertainty was assumed for the parameters of
the g-tensors when calculating Λi.

section 6.6.3), I estimate relative uncertainties of „ 25% for all entries but the ba-elements of fit group
2, which exhibit smaller variations „ 10%.

6.7 Uncertainties

In principle, the hyperfine couplings and g-tensors obtained in sections 6.6.3 and 5.2.1 can be used to
calculate the 31P-NMR spectrum expected for any hypothetical magnetic structure (see, e. g. , [78]). Ac-
cordingly, the intrinsic parameters of a given magnetic-structure model can be constrained by measured
NMR data. However, such analyses crucially depend on the accuracy of the g-tensors and hyperfine
couplings.

The relative uncertainty of the g-tensors is discussed in section 5.2.1. Meanwhile, the estimation of
the hyperfine couplings relies on a model for the local magnetic susceptibility. This model depends
on the g-tensors and the internal magnetic interactions, including interladder and DM interactions. In
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the following, I will therefore attempt to obtain an upper bound on the uncertainty using more general
considerations.

Assuming effective SUp2q-symmetry of the Hamiltonian at temperatures T „ 300 K, the local suscepti-
bility depends on the g-tensors and the three parameters Czzij pT q (see section 1.4.5). At high temperature,
a mean-field approximation12 can be used to eliminate Czz12 pT q “ Czz21 pT q « ´Czz11 pT qC

zz
22 pT q p2 `

2J4{J1q
J1
µB

.13 I expect Czz11 pT q and Czz22 pT q not to differ by more than 20%14 and use θ1 « ´θ2 in
the parametrization (5.2) of the g-tensor (section 5.2.1). I assume that the corresponding g-tensor pa-
rameters are positive and do not differ by more than 20% between the two sites. Since BiCu2PO6 is a
strongly frustrated magnet, I further assume that Czzii pT q is bounded by the susceptibility of a free spin,15

Czzii pT q ď µBSpS ` 1q{p3kBT q (e. g. , [401]). Enforcing this constraint and requiring the site-averaged
g-tensor parameters not to exceed 2.4 (cf. , e. g. , [377, p. 14]), the set of all local-susceptibility tensors
consistent with the magnetization data can be obtained. With J1{kB “ 140 K [401] and J4{J1 ď 2,
the diagonal elements of these tensors vary by up to 100%. The uncertainties of the off-diagonal entries
are even larger. Since these uncertainties propagate linearly into the NMR shifts, they would induce
comparable errors in the estimated hyperfine couplings. The situation is worsened even further by the
additional assumptions required by the analysis described in section 6.6.

Unfortunately, the upper bound estimated in the preceding paragraph is too coarse for being practical.
Taking a pragmatic approach, the hyperfine-coupling uncertainties obtained at the end of section 6.6.4
are adopted instead in the following.

6.8 Discussion

The data used in this chapter were acquired and published in [74]. The previous works [74, 75] also
include similar analyses of local magnetization, g-tensors, and hyperfine couplings. The results presented
in this chapter extend the previous treatment in several ways: (i) A formalism for dealing with site-
dependent g-tensors is developed (section 1.4.5) and applied (section 5.2.1), whereas orthorhombic and
site-independent g-tensors were assumed in [74, Fig. 5.9]. (ii) Calculations are performed with J 12 “ J2

for model C0 in section 5.2.1 for self-consistency and the g-tensor model respects the (approximate) local
symmetry of the crystal. (iii) The local-magnetization model used to estimate the hyperfine couplings
is derived from the fitted g-tensors and the calculated spin-susceptibility. This is an improvement over
the phenomenological magnetization model used in previous work [74, p. 105], which also neglected
the magnetic inequivalence of the two Cu sublattices suggested by first-principles calculations [401].
(iv) The effect of site depletion upon the local magnetization of nearby Cu sites is taken into account.
(v) The hyperfine-coupling fits are performed systematically using linear regression and all possible
peak assignments are considered.16 (vi) The uncertainties of the estimated parameters are discussed and
accounted for in the analysis of the high-field NMR data.

Besides peak assignment, as well as assumed accidental degeneracy and symmetry of the coupling ten-

12No self-consistency condition is imposed for simplicity.
13For the calculations presented in section 5.2.1, this is correct to within 6.5% at T “ 296 K.
14For the calculations presented in section 5.2.1, the difference is Æ 14%.
15The NNN couplings are antiferromagnetic couplings within each sublattice an thus reduce the sublattice susceptibility,

whereas the couplings J1 and J4 connect different sublattices and therefore tend to increase Czzii pT q (cf. mean-field).
16The results given in [74, Tab. 5.2] roughly correspond to fit group 1 (Tab. 6.3), except for the sign of the ac-elements

which is likely due to a different notational convention.
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sors (see section 6.6.2 and references therein), the dominant uncertainty in the hyperfine couplings is
related to the local magnetization model (see section 6.7). Whereas the sum of the diagonals of the lo-
cal magnetization tensors is constrained by macroscopic magnetization measurements (section 5.2.1), a
model for spin-susceptibility and g-tensors is required to estimate (extrapolate) the off-diagonal terms,
as well as the distribution of the magnetization between the two Cu sublattices. This model is also used
to predict the effect of site depletion in the doped compound.

Additional constraints are needed to reduce the rather significant uncertainties in the coupling param-
eters (g-tensors and hyperfine couplings). Density-functional calculations capable of predicting these
parameters are a possibility. Experimentally, electron-spin resonance (ESR) at high temperature might
be capable of determining the g-tensors of the Cu sites (see, e. g. , [185, 258]). Yet, despite first results
[258] and ongoing experimental efforts (see Acknowledgments), no comprehensive studies were reported
for BiCu2PO6. In principle, the g-tensors and hyperfine couplings can also be determined from the sat-
uration values of magnetization and 31P-NMR shift (cf. [409]). However, the large saturation field [401]
precludes such experiments for BiCu2PO6. Lastly, the g-tensors and hence the local magnetization could
also be determined through Cu-NMR (see [74, p. 156]), provided that the on-site hyperfine coupling is
not significantly perturbed by the crystal environment. A 63Cu resonance was reported in BiCu2PO6, but
not investigated in detail [74, p. 156]. Corresponding measurements on doped samples might also allow
checking for site-selective chemical substitution (cf. section 6.6.2 and references therein). Regarding this
particular question, already raised in [74, p. 101], it is worth noting that X-ray diffraction on 50%-doped
samples did not reveal any additional diffraction peaks [218], indicating that—at least at high doping
levels—the substitution is not site selective.





7 Field-induced magnetic order in the frustrated spin ladder

This chapter summarizes the results of a numerical study of the field-induced phases of the model Hamil-
tonian (4.1). Previous results for relevant model Hamiltonians are reviewed first (section 7.1). This in-
cludes previous calculations for (4.1) [77, 78, 131, 401], which clearly provided inspiration and initial
guidance for this work. The presentation of the results obtained in this work begins with section 7.2.

7.1 Previous knowledge

7.1.1 Spin ladder

The spin-1
2 ladder is described in section 1.3.2. Its elementary excitations are triplons with antiferro-

magnetic wavevector [360]. An external magnetic field H is known to lift the degeneracy between the
three triplon branches (corresponding to Sz “ ´1, 0, 1) (see, e. g. , [146]). At a critical field value Hc,
one of the branches softens, giving rise to a magnetic phase transition [437]. Due to the analogy be-
tween field-induced triplons and a lattice gas of bosonic particles with hard-core repulsion (see [251]),
the field-induced order in the spin ladder is often described as a Bose-Einstein condensation (BEC) of
triplons [146]. The transverse spin correlations in the field-induced state are quasi long-ranged, indi-
cating an instability towards antiferromagnetic ordering of the transverse spin component1 [145] (in the
presence of suitable interladder couplings, see [64, 145, 169, 340]). A famous example (see [146]) is the
field-induced magnetic order in TlCuCl3 [252, 293]. Thermal fluctuations can inhibit the development
of long-range order. If the temperature is not too high, the resulting disordered regime is gapless with
critical correlations and can be described as a (spin) Luttinger Liquid [85] (see [340] for an experimental
realization).

7.1.2 Zigzag chain

The (spin-1
2 ) zigzag chain is presented in section 1.3.3. For J2 ą 0.5 J1, correlations are incommensurate

and spiral-like (e. g. , [291])2. The “twist” associated with the spiral correlations can be quantified using
the chirality κij “ Si ˆ Sj (e. g. , [88]), whose properties will be considered in more detail in the
following sections (e. g. , sections 7.7.1 and 7.8.1).

Spiral (helical) magnetic structures are not a recent concept [116, 452]. Classical considerations sug-
gest the formation of spiral structures in the zigzag chain [88, 164, 419]. However, such ordering is

1The exact expressions are given in [145]. According to these, the longitudinal spin correlations asymptotically also decay
like power laws. However, the transverse spin correlations decay more slowly. In particular, they decay slower than the inverse
distance, whereas the longitudinal spin correlations do not (cf. section 7.7.3).

2This can be seen, e. g. , from equation (15) in [291], which states that xS`i S
´
i`dy „ p´1qd{|d|1{4 expp´i k dq. Since

S`i S
´
j ` S´i S

`
j „ Sxi S

x
j ` Syi S

y
j and S`i S

´
j ´ S´i S

`
j „ Sxi S

y
j ´ Syi S

x
j , this implies xSxj y „ cos k d and xSyj y „ sin k d

for a classical ordered state with xSyi y “ 0 (without loss of generality).
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forbidden in low-dimensional systems at finite temperature [45, 97, 260]. It has been therefore pro-
posed that effectively one-dimensional systems could develop a finite chirality without ordered magnetic
moments [419]. In real systems, such a phase would exist at temperatures which are high enough to
prevent spiral order, while low enough not to destroy the chiral order3 [419]. It has been proposed that
such a phase can indeed be stabilized by certain types of four-spin exchange or magneto-elastic effects
involving DM interactions [304]. Theoretical evidence of a chiral phase was also obtained for classi-
cal spins with easy-axis (XY) anisotropy [90]. A corresponding experimental realization was reported in
Gdphfacq3NITR, a compound hosting coupled zigzag chains with alternating spin-1

2 and spin-7
2 moments

with XY anisotropy [89].

The emergence of chiral order corresponds to a symmetry-breaking in spin space. It is therefore not
surprising that such ordering is favored by anisotropic interactions [291] which lower the symmetry
group of the magnetic moments from SUp2q to Up1q ˆ Z2 [164]. In such anisotropic systems, chiral
order breaks the discrete Z2 symmetry [291] (see also [419]). For spin-1

2 moments, magnetic field
[211] (cf. following subsection) and exchange anisotropies (see section 1.1.3 and below) are obvious
candidates. The effect of an XXZ-type anisotropy is illustrated in Fig. 7.1 [142] (see also [141, 300]).
Whereas a mild XXZ anisotropy is sufficient to induce chiral order for ferromagnetic nearest-neighbor
(NN) coupling J1, the situation for antiferromagnetic J1 is very different. Most importantly, these results
suggest that the zero-field ground-state of BiCu2PO6 is not chiral. The effects of an additional explicit
dimerization, i. e. , alternation of the NN exchange J1, were considered in [405, 406]. However, no
dimerization is expected in BiCu2PO6 (see section 1.3.4).

Figure 7.1: Ground-state phase diagram of the zigzag chain with XXZ anisotropy ∆ [142]. The exchange in-
teractions on the nearest-neighbor (NN) and next-nearest neighbor (NNN) bonds are assumed to be of the form
Sxi S

x
j ` Syi S

y
j ` ∆Szi S

z
j . Results for ferromagnetic (FM) and antiferromagnetic (AFM) NN coupling J1 are

shown. The shading corresponds to the magnitude of the chiral order parameter κzij on the NN bonds. The pa-
rameter range corresponding to BiCu2PO6 (see parameter sets A-C in section 4.3.3, the extent in ∆ is purely
speculative) has been marked in orange. (Figure adapted with permission from Ref. [142]. Copyright 2010 by the
American Physical Society.)

7.1.2.1 Phase diagram

The phase diagram of the zigzag chain in a magnetic field is shown in Fig. 7.2 [164, 383]. Without loss
of generality, the external field is assumed to be parallel to the spin-quantization axis z. The dimer phase
has been discussed in section 1.3.3, whereas the vector-chiral phase was introduced earlier in this section
and will be at the main focus of this work.

3Other names for this order include “p-type spin nematic” [240], “Op2q chiral spin nematic” [304], “Op2q spin cholesteric”
[304], “vector-chiral phase” [164], or “vector-chiral spin liquid” [90].
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Figure 7.2: Phase diagram of the zigzag chain in an external magnetic field h, reproduced from [383] (a) and
adapted from [164] (b), respectively. While the frustrating NNN coupling J2 is generally antiferromagnetic, fer-
romagnetic (a) and antiferromagnetic (b) NN couplings J1 need to be distinguished. The saturation magnetization
and the saturating field are denoted by msat and hsat, respectively. The phase diagram includes dimer (D), plateau
(P), chiral (VC), spin-density wave (SDWp), multipolar, n-component Tomonaga-Luttinger liquid (TLLn), and
fully polarized (F) phases. The cyan region marked with a question tag in (a) corresponds to an incommensurate
nematic phase [163, 383]. The white region in (a) represents a metamagnetic magnetization jump, whereas the
scribbled region has not been studied in the corresponding work [383]. The inset of (a) shows the same phase
diagram as function of magnetic field h, rather than magnetization m. Note that the multipolar and incommensu-
rate nematic phases are negligibly narrow in this representation [163, 383]. The parameter range corresponding to
BiCu2PO6 (see parameter sets A-C in section 4.3.3) has been indicated in orange. (Reprinted figure (a) with per-
mission from Ref. [383]. Copyright 2009 by the American Physical Society. Figure (b) adapted with permission
from Ref. [164]. Copyright 2010 by the American Physical Society.)

The case of ferromagnetic nearest-neighbor (NN) coupling [see Fig. 7.2(a)]4 exhibits various phases
which are characterized by algebraically-decaying multipolar spin correlations Mpprq of order p [240],

Mpprq “

C˜

p´1
ź

n“0

S`n

¸˜

p´1
ź

n“0

S´n`r

¸G

.

These phases correspond to multi-magnon bound states [88, 163]. In addition, the longitudinal spin
correlations

@

Szi S
z
i`r

D

are algebraically decaying as well (e. g. , [240]). If the former correlations decay
more slowly,5 the corresponding phase is termed multipolar [163] (p “ 2: quadrupolar [240] or (n-type)
nematic [163], p “ 3: octupolar [240] or triatic [163], p “ 4: hexadecupolar [240] or quartic [163]). In
the other case, the phase is of spin-density wave type (SDWp) [163, 164, 240]. Dashed lines indicate the
crossover between these two regimes in Fig. 7.2(a). The transverse spin correlations decay exponentially
[164, 383]. Only the SDWp phases are relevant for the phase diagram as function of magnetic field
(see Fig. 7.2, caption). These phases are gapless one-component Tomonaga-Luttinger liquids (TLLs)
[163] in which the magnetization Sztot changes in steps of p [163, 164]. The finite-temperature properties
of the corresponding phases emerging in two-dimensional arrays of coupled zigzag chains were studied
in [345].

4Other relevant previous works include [163, 240].
5Inside the corresponding phases, exactly one of these two correlation functions decays slower than the inverse distance

[240] (cf. section 7.7.3).
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The SDW2 phase also appears for antiferromagnetic (AFM) NN coupling [see Fig. 7.2(b)].6 The TLL1
phase is connected to the gapless phase of the Heisenberg chain, and therefore has algebraically decay-
ing transverse and longitudinal spin correlations [164]. The former dominate to the left of the dashed
line in Fig. 7.2(b), whereas the latter dominate to its right [164]. The TLL2 phase is a critical phase in
which all correlation functions of interest, including the chiral correlations, decay algebraically [164].
The spin correlations are incommensurate and the two TLL components result from two inequivalent
minima of the magnon7 dispersion [164]. If the densities of the two corresponding condensates become
imbalanced due to magnon-magnon interactions, chiral order emerges [164]. Finally, a gapped (incom-
pressible [136]) plateau phase appears at one-third of the saturation magnetization (e. g. , [164]). The
corresponding ground-state is triply-degenerate [301] with an “up-up-down” magnetic structure [302]
and its excitations can be understood as domain walls with fractional spin Sz “ 1

3 [301]8.

The (vector-)chiral phase appearing for AFM NN couplings is of particular relevance for the rest of this
chapter. This phase is a one-component TLL and hence gapless [164, 211, 255]. It is characterized by
long-range order of the chirality [255] and the Z2-symmetry-breaking ground state is doubly degenerate
[164]. As illustrated by its review earlier in this section, the chiral phase is a quantum correspondent
of the spiral phase expected based on classical considerations [164]. It is therefore not surprising that
its stability range grows rapidly with increasing spin [209]. The spin correlations decay algebraically at
large distances, the transverse spin correlations being dominant compared to the longitudinal ones [164].
In the chiral phase observed at low magnetization, the decay exponent of the transverse spin correlations
is close to one, whereas that of the longitudinal ones equals to two [164].

7.1.3 Frustrated ladder

The frustrated-ladder model was introduced in section 1.3.4, and is directly relevant for BiCu2PO6 (sec-
tion 4.3.1). Whereas the zero-field phase diagram of the frustrated ladder is rather well-characterized
(see section 1.3.4), much less is known about its field-induced phases.

In the strong-rung case, the VBS state consisting of a singlet on each rung bond is a good starting
point for a bond-operator mean-field theory (BOMF) [384]. In this approximation, the minimum of the
dispersion shifts from q “ π to an incommensurate wavevector at the Lifshitz9 point J2{J1 “ 1{4 [384]
[Fig. 7.3(a)]. The resulting double-well structure gives rise to additional singularities in the magnetic
density-of-states (DOS) [384] [Fig. 7.3(b)]. A strong rung coupling results in short-range triplon-triplon
interactions, which are negligible at low magnetization [384]. An analogous description is obtained
for the regime close to saturation by considering individual rung-singlets in a fully-polarized vacuum
[367, 384]. For non-interacting magnetic excitations, the magnetization curve is directly related with the
DOS of the magnetic excitations [384]. Most importantly, any singularities in the DOS are reflected by
BM{BH , as illustrated by the results reproduced in Fig. 7.3(c) [384]. The approximation of negligible
interactions naturally holds at the magnetization onset, where the triplon-density is low [384], which

6Other relevant previous works related to the magnetic phase diagram of the frustrated zigzag ladder with AFM NN
coupling include [211, 300, 302].

7The magnon picture arises close to saturation (e. g. , [211]). For the low-field TLL2 phase it corresponds to the lower
edge of the two-spinon continuum [164]. With explicit dimerization, the lowest-energy excitation is a triplet bound state of two
spinons [410].

8Note that [301] considers the Ising limit.
9For a suitably-chosen chemical potential (magnetic field), the number of Fermi points changes from two to four at the

Lifshitz point [384]. As explained in [384], this analogy with a Lifshitz transition (see [234]) justifies the name.
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is why most magnetization curves of gapped systems exhibit a square-root-like onset, resulting from
the parabolic minimum of the dispersion [401].10 By contrast, the appearance of the additional cusp
singularities [Fig. 7.3(c)] observed in the incommensurate case depends on negligible interactions of the
particles carrying the magnetization (triplons in case of the low-magnetization region) [384].

Figure 7.3: (a-b): Dispersion and density-of-states (DOS) of frustrated ladder, as obtained using BOMF [386].
(c): Magnetization curves, obtained using BOMF and DMRG [386]. The parameters λ and η correspond to J1{JK
and J2{J1, respectively. (Figures (a-c) reproduced with permission from [386]. Copyright 2015 Physical Society
of Japan.)

Depending on the values of the exchange couplings, the frustrated ladder model exhibits several magne-
tization plateaux [387]. As expected, the one-third magnetization plateau of the zigzag chain (see section
7.1.2) is recovered in the limit of weak rung coupling [387]. In the strong-rung limit, quasispin opera-
tors involving singlet and triplet combinations of spins can be defined on each rung of the ladder [387].
This establishes a mapping between the strong-rung frustrated spin ladder with magnetization 1

2M ` 1
2

and a zigzag chain with XXZ anisotropy and magnetization M , where the magnetizations are expressed
relative to the saturation magnetization of the corresponding model [387]. Thus, the dimerization gap
of the zigzag chain (at M “ 0) gives rise to a magnetization plateau at M “ 1{2 in the frustrated spin
ladder [387].11 Similarly, the one-third magnetization plateau (M “ ˘1{3) of the zigzag chain induces
plateaux at M “ 1{3 and M “ 2{3 in the frustrated ladder [387].

Besides the work reviewed in the following subsection (section 7.1.4), the only detailed study of the
(quantum) phase diagram of the frustrated spin ladder in a magnetic field known to the author focuses on
the magnetization region close to saturation and predicts the existence of a chiral phase for the parameter
regime relevant for BiCu2PO6 (cf. section 4.3.3) [367]. While these results corroborate the expected
similarity between the zigzag chain and the frustrated ladder, they also show that the phase diagrams of
the two systems are not identical [367].

7.1.4 Frustrated ladder with reduced symmetry

The Hamiltonian (4.1) proposed [401] for BiCu2PO6 is closely related to the frustrated-ladder model, but
exhibits a reduced symmetry (see section 4.3.1). The excited states and the magnetization curve of the
model were considered using exact diagonalization and DMRG within the context of a first-principles
study of BiCu2PO6 [401]. Subsequent calculations were performed by A. Feiguin [74, 75, 77, 78, 131]:
By calculating suitable correlation functions (analogous to those defined in section 7.7.1), the emergence
of chiral order was shown and it was proposed that spiral order should appear in BiCu2PO6 at high

10A similar discussion applies to the regime close to saturation [367, 384].
11A plateau at half-saturation magnetization is also observed in the diagonally-frustrated spin ladder [136].
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magnetic fields. The regime above one-half saturation magnetization was identified with two essentially
decoupled spin chains [131]. Moreover, the chiral order appeared to set in at a finite magnetization, in a
manner reminiscent of a phase transition [77]. It has therefore been suggested that this corresponds to a
phase transition from an, experimentally established [78], solitonic phase to a chiral phase [77].

7.2 Introduction

Previous numerical work related with the model Hamiltonian (4.1) was reviewed in section 7.1.4 (see
also section 7.1.3). In particular, the present work was strongly influenced by calculations performed by
A. Feiguin [78, 131].

The calculations presented in the remainder of this chapter are motivated by the following observations:
(i) The previous works used parameter set A almost exclusively, despite the uncertainties associated
with the model parameters (section 4.3.3). (ii) Although the effects of possible DM interactions (section
4.3.2) were considered [131] (see also [75, pp. 30,35]), no detailed reports of the results are known to the
author (see also [77, p. 8] and [74, p. 140]). (iii) The influence of site-dependent g-factors appears not
to have been investigated, nor was the effect of the symmetric anisotropy term proposed in conjunction
with parameter set B [318] (cf. section 5.4.4). (iv) Questions remained regarding the numerical evidence
for solitons [78] (see also [77, p. 7]), since similar delayed-onset behavior of the chiral correlations was
reported in calculations performed for the zigzag chain and attributed to finite-size effects or convergence
problems [383].

In the following, the BiCu2PO6 model Hamiltonian (4.1) is studied using DMRG on finite lattices with
open boundaries (see sec. 1.4.3). Following previous work [78], I restrict myself to the case H ‖ b and
the spin-quantization axis z is taken to coincide with the b direction of the crystal.

Section 7.3 discusses the ground-state degeneracy observed in the field-induced phases, which has impor-
tant implications for the uniqueness of the expectation values measured using the eigenstates obtained
by the calculations. Inter alia, these results are used in section 7.6 to reconsider the real-space spin
textures—previously suggested as evidence for the formation of solitons [78]. The relation between
ground-state degeneracy, chirality, and spiral order is at the focus of section 7.8.

After these rather general considerations, detailed results for parameter set A are presented in section
7.9 and interpreted in section 7.10. The small g-factor staggering (see section 5.2.1) is ignored at first,
enabling efficient use of Stot

z conservation.12 The results confirm the existence of long-range chiral order
(see [77]) and clarify the lower-field phase boundary of the chiral phase.

The effects of site-dependent g-factors, as well as those of varying the exchange couplings, are examined
in section 7.11. An intermediate summary of these results is given in section 7.12. Subsequently, exten-
sions of parameter set A by various DM terms are discussed in section 7.13, and the recently-proposed
parameter set B is considered in detail in section 7.14.

The chapter concludes with a discussion (section 7.15). Open questions related to differences between
the predictions of the model and experimental results reported for BiCu2PO6 are considered separately,
in section 7.16.

12Although S tot
z -conservation is preserved, the Zeeman term becomes non-trivial for site-dependent g-factors.
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7.3 Ground-state degeneracy

DMRG calculations performed in this work for parameter set A with uniform g-factor, targeting the
two lowest-energy states in each Sztot sector, indicate that the field-induced ground-states are two-fold
degenerate within numerical accuracy for magnetizations M up to one half the saturation magnetiza-
tion Msat. This is consistent with exact-diagonalization (ED) calculations performed for systems with
periodic boundary conditions.13

The discussion in the following subsections is a standard application of basic quantum-mechanics and
group-theory knowledge to the frustrated-ladder system with J 12 ‰ J2. While similar ideas appear
throughout the abundant literature for the zigzag chain (see, e. g. , [164, 291], and discussion in section
7.15), I am not aware of any detailed description of these straightforward-to-derive facts. Moreover, the
presence of inequivalent magnetic sites requires a dedicated discussion for the model [401] considered
in this work.

7.3.1 Symmetry associated with degeneracy

It will turn out instructive to identify the symmetry responsible for the ground-state degeneracy.

First, consider the spin-space symmetries of the Heisenberg Hamiltonian (4.1) for H ‖ b. Details
regarding the following discussion are summarized in appendix A.5.9.

• The system is invariant under Up1q rotations about z. These are trivial for eigenstates with well-
defined Sztot, since they correspond to a global phase factor.

• Time reversal T is another important symmetry. For a system of N spin-1
2 particles, a possible

representation reads T “ 2N
´

śN
i“1 S

y
i

¯

K [389], where K denotes complex conjugation of the
coefficients in the canonical Sz-basis. Unfortunately, rT , Sztots ‰ 0.

• Similarly, the reflection symmetries Rx and Ry about the x and y axes in spin space, respectively,
are incompatible with Sztot-conservation.

• The combination Ry T “ K is trivial for eigenstates with real coefficients in the Sz-basis. Also,
Rx T “ ´p´1qN{2´S

z
tot if the eigenstates have well-defined Sztot in addition, rendering this sym-

metry operator trivial as well.

To conclude, none of the spin-space symmetries could be identified as the origin of the ground-state
degeneracy.

For even system sizes L, the only non-trivial crystal symmetry preserved by the finite ladder graph
depicted in Fig. 4.4(b) is inversion, i. e. , the interchange of the two ladder legs, followed by the reflection
σb.14 For odd system sizes, the corresponding symmetry is σb.15 To get rid of this explicit system-size
dependence, the appropriate symmetry shall be called P in the following. Note that being a crystal
symmetry, P is unbroken by DM interactions or staggered g-tensors. Also, P involves a rotation by π

13System sizes up to L “ 10 were considered using full-spectrum ED. The ground-state is found to be doubly-degenerate,
except for special values of the magnetization M{Msat “ 0, 0.25, 0.5, 0.75.

14This is the same as the symmetry C2z defined in [401].
15This is the same as the symmetry Py defined in [401].
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about the z-axis in spin space for odd system sizes. For simplicity, the following discussion therefore
assumes an even system size, for which the symmetry P simply corresponds to a permutation of the
lattice-site indices, i ÞÑ P piq. Note that this implies compatibility with Sztot-conservation, rP, Sztots “ 0.16

By considering transpositions of two spins in the Sz basis, a spin-space representation of P can be
obtained,

P “
ź

iPI

´

S`P piqS
´
i ` S

´

P piqS
`
i ` S

`

P piqS
`
i S

´

P piqS
´
i ` S

´

P piqS
´
i S

`

P piqS
`
i

¯

“
ź

iPI

2

ˆ

SP piq ¨ Si `
1

4

˙

,

where the set of compound indices I is chosen such that |I| “ L and P pIq X I “ H.

Since P is a symmetry (rH, P s “ 0), any eigenstate |ϕy with energy E gives rise to an eigenstate
P |ϕy with the same energy. If the state |ϕy is non-degenerate, P 2 “ 1 requires P |ϕy “ ˘ |ϕy, and all
expectation values of local operators like Szi are invariant under P . For a degenerate state, P |ϕy ‰ ˘ |ϕy
and one can define P -even/odd states |g{uy “ 1?

2
p|ϕy ˘ P |ϕyq which satisfy P |g{uy “ ˘ |g{uy and

xg |uy “ 0. If two (orthogonal and normalized) eigenstates |ϕ1y and |ϕ2y form a degenerate doublet
which is due to the symmetry P , both give rise to the same states |g{uy and basis-independence of the
(partial) trace over span t|ϕ1y , |ϕ2yu “ span t|gy , |uyu implies that

xϕ1 |P |ϕ1y ` xϕ2 |P |ϕ2y “ xg |P | gy ` xu |P |uy “ 1´ 1 “ 0 . (7.1)

By extending the ALPS full-spectrum ED code [49] (see appendix A.1 for technical details) to implement
a bond-operator product measurement, expectation values of the P -operator could be computed. For
periodic boundary conditions, the symmetry P connects sectors with different lattice momenta, i. e. , it
does not commute with the group of translation and screw-axis symmetries. By performing full-spectrum
ED calculations without explicit translation invariance, it could be shown that equation (7.1) is indeed
satisfied by all the doublets. In accordance with the fact that no other non-trivial symmetry compatible
with the Sztot quantum number could be identified, the maximal observed eigenspace dimension is two.

Another way to look at the same question is to diagonalize the Hamiltonian in a basis which is compatible
with both Sztot-conservation and translation invariance.17 These data show that states form doublets if
and only if their lattice momentum is not invariant under P , i. e. , the lattice momenta of doublets satisfy
k1 “ ´k2 pmod 2πq, and the lattice-momenta of non-degenerate states are integer multiples of π. Note
that flipping the lattice momentum is precisely the effect of P .18 These observations prove that the
observed ground-state degeneracy is due to the spatial symmetry P of the ladder graph.

7.3.2 Uniqueness of measurements

Consider an eigenstate |ϕy obtained, e. g. , using the DMRG method. If this state belongs to a P -doublet,
it can be expanded using the states |gy and |uy introduced in the preceding subsection. One can define
states |˘y “ 1?

2

`

|gy ˘ ei φ |uy
˘

, which satisfy P |˘y “ |¯y. For a suitable choice of φ, they are a

16The same holds for odd system sizes L.
17Using the reduced unit cell (see section 4.3.1).
18Consider a doublet of degenerate states |ky and |´ky with inequivalent lattice-momenta k and ´k, respectively. Let

Ta denote a translation by a lattice units. By definition, Ta |ky “ expp´i k aq |ky. Since P Ta P “ T´a, we also have
Ta P |ky “ P T´a |ky “ exppi k aqP |ky. Thus, P |ky is an eigenstate (rP,Hs “ 0) which transforms according to a
representation with lattice momentum ´k. Since the states form a doublet, the only possibility is P |ky “ |´ky (up to a phase
factor).
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generalization of the translation-symmetry adapted states |˘ky found in full-spectrum ED calculations
with periodic boundary conditions (see section 7.8.1 for details). At sufficient distance from the bound-
aries, the open-boundary results are assumed to approximate the behavior of the infinite and/or periodic
systems. I therefore use the notation |˘ky rather than |˘y in the following. By expanding the eigenstate
|ϕy,

|ϕy “ cosα |ky ` ei θ sinα |´ky ,

assuming translation-invariance of |˘ky, and applying the translation operator Ta,

xϕ |TaAT´a |ϕy “ cos2 α xk |A | ky ` sin2 α x´k |A | ´ky

` sinα cosα rexpp´2i k a` i θq xk |A | ´ky ` expp2i k a´ i θq x´k |A | kys , (7.2)

for any measurement operator A. Following the intuition that the behavior deep inside the bulk should
not be altered by open boundary conditions, this result is expected to hold (approximately) for DMRG
simulations of sufficiently large systems and operators A which are “local”, i. e. , only involve sites
far away from the system boundaries. Hence, A adopts a position-independent expectation value with
superimposed oscillations at frequency 2k. If A is expected to be position-independent, these rapid and
(in this case, see [77, p. 6]) incommensurate oscillations can be averaged out. For instance, as pointed
out in [112] (see also [164, p. 3] and [209, 255]), this is useful when calculating correlation functions
xϕ |CiCi`d |ϕy, which should not depend on the reference position i.19 Clearly, the oscillations can also
be used to determine the ground-state lattice momentum k.20

However, even after averaging-out of the 2k-oscillations, the result (7.2) still depends on α, which is
unknown in general. A simplification arises if the operator A is P -invariant in addition, P AP “ A.
Then,

xϕ |TaAT´a |ϕy “ x˘k |A | ˘ky ` sinp2αqRe rexpp´2i k a` i θq xk |A | ´kys ,

which is well-defined, i. e. , independent of α, after averaging-out of the 2k-oscillations.

An alternative approach to get rid of the 2k-oscillations, which requires neither (approximate) translation-
invariance nor P -invariance of A, is to solve for an orthonormal basis t|ϕ1y , |ϕ2yu of the ground-state
eigenspace. Basis-invariance of the (partial) trace then implies

xϕ1 |A |ϕ1y ` xϕ2 |A |ϕ2y “ xk |A | ky ` x´k |A | ´ky “ x˘k | pA` P AP q |˘ky .

Note that tracing and averaging are not mutually exclusive.

The first approach requires explicit P -symmetrization ofA, whereas the second approach symmetrizesA
implicitly. Thus, only P -symmetrized measurements are well-defined in general. This limitation could
be circumvented by adding a potential term which selects a unique ground state |˘ky (e. g. , a (small)
uniform longitudinal DM interaction, which would be equivalent to the twist-field proposed in [300]), or
by measuring21 xϕ1 |A |ϕ2y. As will be confirmed later, the system has a tendency to form field-induced
chiral order [77, 78, 131], which spontaneously breaks the symmetry P (see section 7.8). For this reason,
the correlations in the maximally P -breaking states |˘ky (see section 7.8.1) are of particular interest, and
indeed accessible using the methods outlined above.

19In practice, the oscillatory contributions to the correlation functions are typically found to be weak.
20This is different from analyzing boundary-induced Friedel oscillations as done, e. g. , in [164].
21Even though the framework appears to provide the required methods, such measurements were not directly supported by

the employed DMRG code [111] at the time.
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7.3.3 Consequences for correlation functions

As detailed in the preceding subsection, only P -invariant operators yield well-defined measurements. It
is important to be aware of the implications for calculations of site and bond correlation functions.

Consider the correlations between two nearest-neighbor (NN) bonds located on the same ladder leg. As-
sume the bonds to be non-overlapping, such that the corresponding measurement operators commute.
The existence of two inequivalent Cu sites results in two types of NN bonds. Boundary effects are as-
sumed negligible, i. e. , the simulated system is taken to be sufficiently large in the case of open boundary
conditions. Then, lattice translations are an approximate symmetry. Hence, consider states |˘ky which
are approximately translation invariant (see section 7.3.2). In this case, Cb2 |˘ky ∝ |˘ky should hold
exactly for the infinite system and approximately in the large-but-finite case.22

• The situation arising if the two considered bonds are of different type is illustrated in Fig. 7.4(a).
The symmetry P maps the blue bonds onto the red bonds, which can be related to the blue ones
using the approximate symmetries described above.23 Thus, the measurement is (approximately)
P -invariant and therefore well-defined.

• The other possibility is depicted in Fig. 7.4(b). Again, the solid blue bonds are mapped onto the
solid red ones by the symmetry P . However, the aforementioned approximate symmetries only
allow to relate the solid red bonds with the dashed blue bonds, which do not coincide with the
initially considered ones.

The discussion for odd L is analogous and the results also apply to a single ladder leg, i. e. , an isolated
zigzag chain, when considering the (approximate) symmetry σb in place of P .

Figure 7.4: Examples of bond correlations and their transformation properties under the symmetry P for an even-
length ladder (L “ 8). See text for details.

A similar issue arises for NN-bond correlations involving bonds on opposite legs, except that the roles
of odd and even distances are interchanged. By contrast, next-nearest neighbor (NNN) bonds and rung
bonds do not exhibit such problems. In principle, spin-spin correlations could also be affected, even
though this was not observed in practice.

22The periodic system is symmetric under Cb2 and σb, rCb2,Hs “ rσb,Hs “ 0 and rσb, Cb2s “ 0. The argument made to
prove P |ky ∝ |´ky in footnote 18 can be reiterated using σb instead of P , yielding σb |ky ∝ |´ky. Since P “ Cb2 σb, this
implies Cb2 |ky “ Pσb |ky ∝ |ky, which completes the proof.

23After accounting for bond-reversal due to P , the spin-space rotation associated with Cb2 does not affect any of the mea-
surement operators considered in this chapter, except κzij which hence cannot be measured directly.
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Neglecting the inequivalence of the two Cu sites increases the translation and reflection symmetry of
the interaction graph. In the absence of incompatible DM interactions (Db

1, Db
4, and Dc

2), all correlation
functions are well-defined and the subtleties discussed above do not need to be considered. The effect of
a non-uniform g-factor is considered in a later section (section 7.11.3). It is generally small and tracing
over the ground-state eigenspace does not appear to affect the results.24 Meanwhile, e. g. , the DM
interactions Db

1 and Db
4 have manifest effects, which necessitate tracing over the ground-state doublet

and are discussed in detail in sections 7.13 and 7.14. Yet, there always exists a distance parity (odd or
even) for which the correlations obtained using the tracing and/or averaging scheme are well-defined,
even in the most general case. This allows firm conclusions regarding the range and asymptotic behavior
of the correlations.

7.4 Convergence

There are several parameters which control the accuracy of the DMRG calculations described in this
chapter (see section 1.4.3 and references therein).

• First, the effects of finite system size L and open boundaries need to be accounted for. Ideally,
L can be chosen large enough for both to be negligible. Although Fig. 5.4 suggests that this is
the case for L Á 64, the influence of L upon the conclusions drawn from the calculations will be
reconsidered carefully in the following.

• Secondly, the accuracy of the MPS ansatz depends on the bond dimensionm. The energy variance
xH2y ´ xHy2 vanishes for an exact eigenstate (e. g. , [111]). While generally preferable to, e. g. ,
the truncation error (e. g. , [350, p. 155]), this convergence indicator is not used in this work for
technical reasons (see section A.1.5). Instead, the convergence of various quantities of interest as
function of m is directly assessed (like in, e. g. , [112]).

• Finally, the number of optimization sweeps s needs to be large enough for the variational solution
to convergence to a minimum (e. g. , [111]). In the present work, it has been observed that cor-
relation functions are sufficiently converged after s “ 24 sweeps, whereas expectation values of
position-dependent operators like Szi can require many more iterations to converge, especially for
small bond dimensions m (see section A.1.7 for details).

7.5 Notation

For the sake of completeness, the parameters characterizing a certain DMRG calculation and the associ-
ated data analysis shall be reported along with the data. Besides the parameters determining the magnetic
interactions (cf. section 4.3.3), the following choices play a role.

• The system size, expressed by the number of ladder rungs L.

• The MPS bond dimension m (section 1.4.3).

• The number of optimization sweeps s (section 1.4.3). Each sweep comprises two half-sweeps in
opposite directions [111].

24Probably because the properties associated with the two Cu sites (exchange couplings and g-tensors) are invariant under
P which connects the two types of translationally-inequivalent nearest-neighbor leg bonds.
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• The averaging parameter a: Correlation functions are averaged (cf. section 7.3) over reference
sites/bonds contained within a subset of a ladder rungs located close to the center of the finite
ladder system (see [111, 112] and section A.1.8 for details).

• Whether observables are traced over the complete ground-state eigenspace (“traced”) or a single
lowest-energy state only (“ground-state only” or not mentioned).

To keep notation concise, the above symbols will be used consequently.

7.6 Spin textures

7.6.1 Triplon density

An expression for the triplon density within a finite-size ladder system was given in [136] and used in
previous work ([74, p. 140] and [78]). Below, I re-iterate the steps leading to this result. This is done
mainly for completeness, but also to illustrate an alternative interpretation in terms of localized triplons.

Bond-operator treatments of the simple spin ladder (section 1.3.2) identify the elementary magnetic ex-
citations as triplons [152]—bosons with a hard-core constraint [146]. By approximating the rung-singlet
(RS) ground state of the frustrated spin ladder (see section 1.3.4) by a valence-bond solid (VBS) with
singlet bonds on the ladder rungs, a similar picture is obtained [179]. The boson creation and annihilation
operators b:i and bi describing a magnetic excitation centered at ladder rung i are thus assumed to satisfy
(see, e. g. , [152])

rbi, bjs “ rb
:

i , b
:

js “ rbi, b
:

js “ 0 for i ‰ j

b2i “ pb
:

i q
2 “ 0, rbi, b

:

i s “ 1 .

Following [136], the hard-core bosons bp:qi can be mapped onto spinless fermions cp:qi by means of the
Jordan-Wigner transformation [193] (see [193, eqs. 31-32], [74, p. 9] and [111, eq. 11]),

cj “ eiφjbj , where φj “ π

j´1
ÿ

i“0

b:ibi .

If the index i corresponds to a one-dimensional lattice, it is easy to verify that the operators ci satisfy
fermionic commutation relations and c:jcj “ b:jbj .

The NN and NNN exchange interactions are expected to result in an effective triplon hopping amplitude
t, such that the relevant Hamiltonian for a ladder consisting of L rungs becomes (see [136, p. 3] and
[401, p. 9])

Htriplon,0 “ ´t
L´1
ÿ

r“0

c:r`1cr ` H. c. , (7.3)

i. e. , the triplons behave like non-interacting spinless fermions in one dimension [136].25 Hence, the
triplon density for a state with n0 triplons is that of n0 non-interacting fermions in a box [74, 136], i. e.

25By considering the matrix elements in the Fock basis, b:j`1bj “ c:j`1 exp
´

iπ b:jbj
¯

cj “ c:j`1cj (and accordingly for the

H. c. ). By contrast, b:j`2bj “ c:j`2 exp
´

iπ b:j`1bj`1

¯

cj , which only equals c:j`2cj upon restriction to the one-triplon sector.
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[74, p. 140] (see also [136, 373]),

fpxq “
n0
ÿ

k“1

2

L
sin

ˆ

π

L` 1
k x

˙2

“
1

2L
`
n0

L
´

1

2L

sin p2n0`1qπ
L`1 x

sin π
L`1x

.

The resulting oscillations can be regarded as Friedel oscillations [373].

Note that an onsite repulsion term has no effect for spinless fermions, such that the system described
by Htriplon,0 corresponds to one (arbitrary since degenerate) spin-sector of the usual spin-1

2 Hubbard
model in the limit U Ñ 8. In finite systems, the latter exhibits Wigner oscillations, yielding density
profiles consistent with fpxq [373]. In general never-vanishing spin correlations suggest that, in addition
to the hard-core constraint, triplons are generally subject to infinite-reach, although possibly weak, and
tentatively repulsive [136, 208, 384] interactions (see [136, 208]). This motivates an alternative and
intuitive picture of triplons being localized due to interactions.

7.6.2 Short-period oscillations and fits

As shown in Fig. 7.5, and noted in previous work (e. g. , [74, Fig. 6.12]), rapid oscillations are observed in
the calculated spin textures. This motivates the following fit model for the longitudinal spin polarization
[74, p. 143],

xSzr,jy “ A
puq
P prq,j

”

1`A
psq
P prq,j cos

`

q r ` φP prq,j
˘

ı

fprq , (7.4)

where the indexing scheme corresponds to section 4.3.1, P prq denotes the parity (odd/even) of r (see
section 4.3.1, cf. [74, p. 140]), and the envelope function fprq describes the triplon density (see section
7.6.1).

In principle, the NNN exchange couplings give rise to hopping terms of the type b:i`2bi [401, p. 9] which
should allow triplons to move past one another (cf. sec. 7.6.1). Nonetheless, the model (7.4) with the
simple triplon-density fprq provides a good fit to the data ([78] and Fig. 7.5), suggesting that triplon-
triplon interactions are extended and strong, effectively outweighing the effect of the NNN exchange
couplings.

Intriguingly, the staggered components proportional to ApsqP prq,j appear to disappear abruptly at Sztot „ 5.
This behavior has been noted in earlier works [74, 77, 78]. A technically more robust and direct method
to estimate Apu{sqP prq,j « A

pu{sq
j (up to normalization), is

A
pu{sq
j «

ÿ

r

1

2

`
∣∣@Szr,j ˘ Szr`1,j

D
∣∣` ∣∣@Szr,j ˘ Szr´1,j

D
∣∣˘ , (7.5)

where the sum over r is taken over rungs inside the bulk, i. e. away from the boundaries (L{4 ď r ď
3L{4). The results of a systematic analysis of these quantities as function of system size L and MPS
bond-dimension m are summarized in Fig. 7.6. The behavior of Apuqj [Fig. 7.6(b)] shows that the ratio of
the sublattice magnetizations remains fixed up to magnetizations M „ Msat{2. The sublattice magneti-
zations are different as a consequence of J2 ‰ J 12 [77, p. 8]. As mentioned above, and noted previously
[77], the staggered component Apsqj [Fig. 7.6(a)] disappears in a way reminiscent of an order parame-
ter. For fixed bond dimension m, this “transition” occurs at an approximately system-size independent
magnetization (triplon density) (cf. [78]), and sharpens up with increasing system size. However, the
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Figure 7.5: Calculated spin textures for a finite ladder with L “ 128 rungs (m “ 512, s “ 16). The sub-panels
correspond the lowest-energy state in the respective Sztot sector. The color code is visualized at the bottom right.
Solid lines are fits using the model (7.4). The calculations were performed using parameter set A with uniform
g-factor. Equivalent results and fits were reported previously in [78] and [74, Fig. 6.12a].

staggered component Apsqj is suppressed as the bond dimension m increases.26 This is illustrated in
Fig. 7.7(a). Consistently, the decay of the energy variance [Fig. 7.7(b)] appears to accelerate around
m “ 512, suggesting that the eigenstates in the sectors with low Sztot require correspondingly-large bond
dimensions m to be accurately captured by the MPS ansatz.

To conclude, the calculations indicate that Apsqj {A
puq
j Ñ 0 as L Ñ 8 and m Ñ 8, for magnetizations

M À 1
2Msat. Please note that the behavior at M Á Msat{2 is qualitatively different, and certainly de-

serves to be considered separately. However, this regime is unlikely to be relevant for the understanding
of the high-field experiments on BiCu2PO6 and is thus beyond the focus of this work.

26The apparent saturation of the suppression for the L “ 64 data was identified as a boundary effect, by restricting the
summation range in (7.5) even further.
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Figure 7.6: Staggered (a) and uniform (b) components of spin texture in Sztot-sector ground state, as obtained using
DMRG, as function ofM{Msat “ Sztot{L. Reddish colors correspond to Cup1q sites, while bluish colors correspond
to Cup2q sites. Note the different abscissa scales in (a). The calculations were performed using parameter set A
with uniform g-factor. The legend in (a) also applies to (b).
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Figure 7.7: (a): Calculated spin textures in lowest-energy state of Sztot “ 5 sector of a finite ladder with L “ 64
rungs (s “ 512), for different MPS bond dimensions m. (b): Energy variance of lowest-energy state of Sztot “ 2
and Sztot “ 3 sectors of the same system, as function of bond dimension m (s “ 512). The calculations were
performed using parameter set A with uniform g-factor.

7.6.3 Nature of short-period oscillations

This section attempts to clarify the origin of the rapid oscillations analyzed in section 7.6.2. Consistently
with the preceding section, parameter set A with uniform g-factor is used as a representative choice.

First, the oscillation period shall be considered. As seen from Fig. 7.10(a), the spin correlations along
the b direction correspond to a pitch angle q „ 0.6π (per ladder rung, i. e. , over a distance of b{2), in
agreement with previous results [78]. This is consistent with neutron scattering data [259, 316, 318].27

Moreover, exact-diagonalization (ED) calculations show that the lowest-energy state with Sztot “ 1 has

27The data are reported in reciprocal lattice units (r. l. u. ), which can correspond to π{b or 2π{b. All references appear
to use the same convention, and [259] suggests [259, pp. 127 and 132] that 1 r. l. u. “ 2π{ai [259, 318], with ai denoting
the respective lattice constants. For the b-direction, this choice happens to be consistent with many theoretical works (e. g. ,
[228]), despite the unit-cell doubling in BiCu2PO6. The period of the measured dispersion along b is 2 r. l. u. [318], which is
not obvious, since the doubled unit cell should result in back-folding at the boundary of the Brillouin zone of the crystal at
0.5 r. l. u. (see, e. g. , [401, p. 10]). However, the two branches resulting due to zone-folding can be separated experimentally, as
discussed in [318].
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k „ ˘0.6π.28 To compare the above spatial periodicity with Fig. 7.5, one has to keep in mind that the
decomposition of the ladder into four sub-units in these plots leads to aliasing of the spatial frequencies
(an analogue of zone folding). Hence, the observed oscillation period of „ 5 b is consistent with 2k „
1.2π“̂0.2π.29

Secondly, it is instructive to examine what happens upon tracing over the complete ground-state eigenspace
(section 7.3). As illustrated in Fig. 7.8, the rapid oscillations are generally suppressed upon tracing over
the ground-state doublet and only residual oscillations induced by the open boundaries remain.
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Figure 7.8: Calculated spin textures in lowest-energy state of a finite ladder with L “ 64 rungs (m “ 512,
s “ 512), for Sztot “ 1 (a) and Sztot “ 3 (b). The left panels show expectation values in the (ambiguous) ground-
state, whereas the partial trace over the doubly-degenerate ground-state eigenspace is taken in the right panels.

7.6.4 Discussion

The envelope of the spin textures (cf. Fig. 7.5) is confirmed as the density profile arising due to free
or, equivalently, localized triplons (see section 7.6.1 and references therein). Even though long-range
interactions might stabilize a Wigner crystal of triplons, as proposed for the one-dimensional electron

28The calculations performed in this work use the reduced unit cell [401] (cf. section 4.3.1) and yield a lattice momentum
˘0.39p5qπ (L-weighted average over 10 ď L ď 16), in agreement with the earlier calculations [401, Fig. 11]. However, trans-
formation to the lattice-momentum convention corresponding to the original ladder graph involves an additional modulation
with wave-vector π, resulting in k „ π ˘ 0.4π pmod 2πq.

29Upon replacing pJ2, J 12q ÞÑ α pJ2, J
1
2q, correlations are commensurate with wavevector k “ π for α À 1

3
(calculations

performed for α P t0, 1
3
, 2
3
, 1u, cf. section 7.11.2). Indeed, Apsqj “ 0 in these cases, consistent with 2k “ 0 pmod 2πq.
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gas [352], the most likely scenario is that fprq approaches a constant in the thermodynamic limit. Also,
field-induced order typically occurs in the transverse spin component (see section 7.1.1), as confirmed
by the quasi long-range transverse spin correlations [77, p. 7] (cf. section 7.9).

Calculation results similar to those shown in Fig. 7.5 have been obtained earlier and were interpreted as
evidence for the fractionalization of triplons into spin-1

2 solitons [74, 75, 77, 78, 131]. Fractionalization
of triplons into two solitons is clearly revealed in calculations performed for the soliton-bearing com-
pound CuGeO3, where the solitons are localized due to coupling to lattice degrees of freedom [132] (see
section 8.7.3). Similarly, bound states with Sz ą 1 formed by magnons in ferromagnetic systems result
in an envelope wavefunction with longer modulation period [367]. Meanwhile, the envelopes of the spin
texture for Sztot “ n obtained in this and previous [78] work are consistent with a state of n particles (see
sections 7.6.1-7.6.2), which is compatible with ordinary triplons.

In section 7.6.3, it has been established that the rapid oscillations shown in Fig. 7.5 (i) have a period
consistent with 2k and (ii) disappear at sufficient distance from the boundaries upon tracing over the
ground-state doublet. These properties identify the observed oscillations as the result of ground-state
degeneracy, as anticipated in equation (7.2).30,31 Thus, unless the ground-state degeneracy is explic-
itly lifted by modifying the Hamiltonian, well-defined correlation functions (section 7.3.3) are the most
promising method to study the field-induced phases of the model.

7.7 Pertinent observables

The following subsections introduce a few standard concepts required for the comprehensible and repro-
ducible discussion of the numerical calculations in later sections.

7.7.1 Definitions

All DMRG calculations are performed in the Sz-basis. The corresponding site-local observables are S˘i
and Szi , where i denotes a suitable site index in the following. Moreover, the following bond operators—
two-site operators acting on magnetic bonds—are relevant for this work.

30As shown in section 7.8.1, the states |˘ky cannot be chosen to have real-valued coefficients in the Sz-basis. Meanwhile,
the calculations reported in this section use real-valued arithmetic. Together with the disappearance of the oscillations with
increasing L and m (section 7.6.2), and equation (7.2), this implies

@

k
ˇ

ˇSzi,r
ˇ

ˇ´k
D

“ 0. Since the Sztot “ 1 states also form a
well-defined triplon branch [228, 401] (cf. section 8.7.3), site-dependent g-factors thus mainly admix states in the vicinity of
each individual dispersion minimum, which suggests that they should not have any dramatic effects (to first order in perturbation
theory).

31In section 7.6.3, the oscillation period was found to be consistent with 2k for Sztot “ 1. Figure 7.5 shows that the oscillation
period does not change with increasing Sztot. By contrast, the field-induced ground states obtained using exact diagonalization
are consistent with kpSztotq “ ˘Sztot kpS

z
tot “ 1q (calculated in this work, relation checked to hold for even system sizes

6 ď L ď 16 and 1 ď |Sztot| ď 4), which indicates that triplon-triplon interactions are indeed responsible for the field-induced
breaking of the reflection symmetry P and thus field-induced chirality, as described in Refs. [164, 404] (cf. [74, p. 125], see also
section 7.8). Clearly, a minimum of the triplon dispersion at an incommensurate wave-vector (due to frustration) is a prerequisite
(see [404]). While the “fan phase” discussed in [404] also exhibits xSzi y-textures with modulation wavenumber 2k [404], it
should not exhibit long-range correlations of the longitudinal chirality [404]. This, as well as the expected ground-state lattice
momentum ˘kpSztotq P t0, kpS

z
tot “ 1qu (bosons at both dispersion minima condense simultaneously [404]), is incompatible

with the results obtained in the present work. Therefore, the discrepancies w. r. t. Fig. 7.5 are attributed to convergence problems,
i. e. , the MPS bond dimension is insufficient to fully account for the triplon-triplon interactions at Sztot ą 1 [cf. Fig. 7.6(a)].
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• The dimer operator or dimerization strength Dij “ Si ¨ Sj , which is commonly used to detect
dimerized phases, e. g. , in the zigzag chain [443] (section 1.3.3) or the frustrated ladder [228]
(section 1.3.4).

• The (vector) chirality κij , used in many of the works reviewed in section 7.1 (e. g. , [77])32,

κij “ Si ˆ Sj “

¨

˝

1
2i

`

S`i S
z
j ´ S

´
i S

z
j ´ S

z
i S
`
j ` S

z
i S
´
j

˘

1
2

`

Szi S
`
j ` S

z
i S
´
j ´ S

`
i S

z
j ´ S

´
i S

z
j

˘

i
2

`

S`i S
´
j ´ S

´
i S

`
j

˘

˛

‚ .

The longitudinal spin correlations are measured by the operator Szi S
z
j , whereas the transverse spin

correlations are quantified using 1
4

´

S`i S
´
j ` S

´
i S

`
j

¯

“ 1
2

´

Sxi S
x
j ` S

y
i S

y
j

¯

.

Guided by the phase diagram of the zigzag chain (section 7.1.2.1) and previous work (see section 7.1.4),
dimerization and chirality are anticipated to characterize the field-induced phases of the considered
model. Since the chiral order parameter cannot be measured directly, as detailed in section 7.8.1, it
is imperative to consider correlations of the corresponding bond operators. Explicitly, the dimer correla-
tions on two bonds pi, jq and pk, lq correspond toDij,kl “ DijDkl, while the (vector-)chiral correlations
are given by κααij,kl “ καijκ

α
kl (see, e. g. , [77, p. 8]).

7.7.2 Structure factors

When searching for (quasi) long-range order, the asymptotic long-distance behavior of the correlation
functions is relevant. One possible approach, not followed in this work, consists in fitting the calculated
correlation functions using analytical models (e. g. , [164]).33

Structure factors are a standard alternative and have also been used in previous work [77, 131]. Consider
two site-dependent operatorsAi andBi, e. g. , spin operators, with a compound index i P t1, . . . , 2Lu for
the sake of cleaner notation. Structure factors make use of the (discrete) Fourier transform and thereby
allow model-free analyses of the correlation functions CABpdq “ xAiBi`dy. For the present example,
Fourier analogues of the site operators are defined via Aq “

ř

j exppi q ¨ rjqAj , and similarly for Bq.
For the ladder model, it is convenient to work with integer coordinates rj “ pρ, iq P Nˆ t1, 2u (cf. Si,ρ
in section 4.3.1), which is compatible with previous work [77, p. 6] and the lattice-momentum units used
in section 7.6.3. Following standard practice, the structure factor SABpqq associated with the correlation
function CABpdq is defined as (cf. , e. g. , [379, p. 62] and [74, p. 143])

SABpqq “
1

2L
xϕ |AqB´q |ϕy “

1

2L

ÿ

j,d

exppi q ¨ prj ´ rj`dqq xϕ |AjBj`d |ϕy .

There are cases where the index j is one-dimensional and corresponds to a ladder rung, e. g. , if only
correlations along a single ladder leg are considered. Adaptation of the definition of SABpqq then yields
the along-leg structure factor SAB1 pqq,

SAB1 pqq “
1

L
xϕ |AqB´q |ϕy “

1

L

ÿ

j,d

expp´i q dq xϕ |AjBj`d |ϕy .

32It appears that [418, eq. 7] can be considered a precursor to the definition of κij .
33Obviously, a suitable model needs to be developed. This may introduce bias by presuming, e. g. , a certain type of order.

Moreover, depending on the theoretical description, short-distance behavior, finite-size and/or boundary effects may not be
captured by the model, which can become a problem if the accessible system sizes are limited.
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Technical details regarding the computation of the structure factors are given in the appendix (section
A.1.8). As discussed there, the relevant correlation functions are real-valued and symmetric, such that
the corresponding structure factors are real. Finally, it is convenient to define the short-hand notations
Szz
p1q “ SS

zSz

p1q and S`´
p1q “

1
2pS

SxSx

p1q ` SS
ySy

p1q q.

7.7.3 Asymptotic behavior of correlation functions

As is well known, the asymptotic behavior of a correlation function is important to assess whether fea-
tures correspond to actual instabilities of the system. The asymptotic behavior can be short-ranged
(exponentially decaying), quasi long-ranged (algebraically decaying, i. e. , power law), or long-ranged
(non-zero constant). Correlation functions CABpdq decaying slower than d´1 with distance d clearly
give rise to divergences in the structure factor SAB

p1q . Due to the resemblance between the definition of the
structure factor in section 7.7.2 and the simple fluctuation-dissipation theorem (A.12) (section A.5.3),
such divergences typically indicate instabilities towards an ordered state (cf. [74, p. 125]).

Divergences in the structure factor can be detected conveniently by analyzing the scaling of the structure
factor with the system size and extrapolating towards the thermodynamic limit—a procedure known as
finite-size scaling (see, e. g. , [112]). In addition, visual inspection of linear and log-log plots (as in, e. g. ,
[164]) of the raw data is used to assess the asymptotic behavior of the correlation functions.

7.7.4 Number of required measurements

Through their definitions and manipulations involving angular-momentum algebra (see section A.1.9),
all required correlators can be reduced to polynomials of order n ď 4 in the spin operators which do
not involve repeated lattice sites. Clearly, the number of required measurements is dominated by the
fourth-order monomials and the measurements generally account for a significant fraction of the total
computing time.

Besides allowing the use of real-valued arithmetic and generally faster calculations, Sztot conservation
reduces the number of required fourth-order monomials from 34 to 32, which is a significant improve-
ment. For this reason, most calculations for larger system sizes L and higher bond dimensions m were
performed using the Sztot-conserving model corresponding to parameter set A with site-independent g-
factor.

7.8 Degeneracy, chirality and spiral structures

7.8.1 Chirality and degenerate ground states

The following section discusses the relationship between chirality and the symmetries introduced in sec-
tion 7.3. Again (see section 7.3, note also discussion in section 7.15), the following arguments are all very
basic, but nonetheless considered helpful for future readers. Assume a translation invariant Hamiltonian
with real-valued matrix elements in the canonical Sz-basis. As shown in section 7.3, the ground-state
eigenspace Ω is two-dimensional in the field-induced phase, and spanned by a pair of translation-invariant
states |˘ky with inequivalent lattice momenta ˘k. It can be shown (section A.5.10) that the longitudinal
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chirality κzij (i ‰ j) of a generic state |ψy P Ω is extremal when |ψy “ |˘ky (up to global phase). Hence,
the translation invariant states |˘ky have maximal (by magnitude) and opposite chirality.

As discussed in section 7.3, the ladder model involves two subsets of nearest-neighbor (NN) leg bonds,
related by the symmetry P . The aforementioned results imply34 that the longitudinal chirality is never-
theless uniform on all leg bonds of a certain type (i. e. , all J1, J2, or J 12 bonds, respectively).

Generalization for total chirality In the preceding argument, the existence of eigenstates with real-
valued coefficients in the Sz-basis permitted conclusions about the chirality on an individual bond. For
the more general case of a Hamiltonian respecting the P -symmetry, but including DM terms, this is no
longer the case. However, one can still choose the states |˘ky such that P |˘ky “ |¯ky.35 Consider
instead the total chirality κztot “

ř

pi,jq κ
z
ij , where the sum runs over a translation- and P -invariant subset

of bonds, e. g. , all nearest-neighbor leg bonds. Thus, Ta κztot T´a “ κztot and P κztot P “ ´κ
z
tot. Finally,

the total chirality of a general eigenstate |ψy in the two-dimensional ground-state eigenspace, |ψy “
cosα |ky ` ei θ sinα |´ky, is

xψ |κztot |ψy “ cosp2αq xk |κztot | ky ` Re ei θ sinp2αq xk |κztot | ´ky .

Since the off-diagonal matrix element vanishes due to translation symmetry, the above proves that the
states |˘ky have extremal total chirality.

7.8.2 Symmetry breaking

Mathematically, any quantum superposition of the two states |˘ky is a valid eigenstate. In general,
this includes density-wave like states which break translation invariance (cf. section 7.6). Since the
Hamiltonian is always linear and P -symmetric, other mechanisms must be responsible for selecting one
of the maximally-chiral states |˘ky (cf. section 7.8.1). For instance, the chiralities of neighboring ladders
may be coupled due to magneto-elastic contributions to the DM interactions [304], yielding a model
which is analogous to an Ising magnet (cf. [419]). Ordinary interladder couplings have a similar effect
and the resulting analogy to an effective Ising model was already described in [419]. Another point of
view, motivated by the ideas in [304, 356] and possible magnetoelastic effects in BiCu2PO6 (see section
8.7.5 and references therein), consists in considering the combined system of magnetic moments and
the crystal lattice: Assume a lattice distortion due to magneto-elastic couplings, parametrized by some
parameter δ. The two ground states in question are then |˘k,˘δy. Thus, the entanglement between the
spin system and the (classical) lattice degrees of freedom is expected to select one of the two states |˘ky.

Neglecting macroscopic quantum superpositions, the depth of the minima in the magnetic-excitation
spectrum constitutes a potential barrier separating the two corresponding chiral ground states (see foot-
note 31 and references therein), as was already noted in [418, p. 389]. This barrier provides for ergodicity
breaking (e. g. , [48]), which ultimately stabilizes the chiral order [419] corresponding to the state |˘ky.

If the interaction favoring the chiral order is compatible with crystal symmetry (or sufficiently weak), the
chirally-ordered ground states |˘ky should remain (approximately) translation-invariant. Spiral order
can develop on top of chiral order by breaking of the translation symmetry [419, p. 565]. Since the
chirally-ordered ground state is effectively non-degenerate after P -symmetry breaking, this type of order

34@k
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ˇκzij
ˇ

ˇ k
D

“ ´
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´k
ˇ

ˇκzij
ˇ

ˇ´k
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@

k
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ˇ p´P κzij P q
ˇ

ˇ k
D

.
35E. g. , given an eigenstate |ϕy, set |ky “ Pkp|ϕyq and |´ky “ P |ky (see section A.5.10).
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appears by alteration of the ground state—similarly to how classical Néel order is known to emerge
out of the highly-entangled singlet ground-state of a quantum antiferromagnet. The structure of the
resulting ordered state is generally assumed to be determined by the correlations of the original eigenstate
before the symmetry breaking. Thus, as usual (see, e. g. , [74, p. 125]), instabilities towards magnetic
order with wavevector q are equivalently characterized by either long-ranged (slowly decaying) spin-spin
correlations with q-periodic oscillations, or a divergent susceptibility at wavevector q (cf. section 7.7.3).

Considering a typical spiral structure, it is clear that translations correspond to rotations in spin-space.
Hence, in terms of spiral structures with incommensurate propagation vector, the translation symmetry of
the states |˘ky generates a dense subset of Up1q (cf. [404], and also [419, p. 565]). Thus, the manifold of
spiral states is endowed with an effective continuous Up1q symmetry, as discussed in [404] for the zigzag
chain. Of course, Sztot-conservation can independently provide for a continuous Up1q-symmetry [404]
(see also [419, p. 565]). A very similar situation arises for incommensurate charge-density waves and
it is generally assumed that the spontaneous-symmetry breaking is that of a continuous Up1q symmetry
group in such cases (e. g. , [457] or [299, p. 8]). Then, the Coleman theorem [97] (or extensions of the
Mermin-Wagner theorem [45, 260]) rule out long-range magnetic order in d ď 2 dimensions (cf. , e. g. ,
[68]). This aspect is revisited in section 7.16.

7.9 Results

The following results illustrate the behavior of the Heisenberg Hamiltonian (4.1) in the absence of DM
interactions. Parameter set A (section 4.3.3) is used as a representative example, and a site-independent
g-factor is assumed for computational efficiency. Since model and method coincide with previous works
[74, 77, 131, 401], a significant overlap with those works is inevitable. Nonetheless, the documentation
of results confirming the previous calculations is considered important in order to establish the validity
of the numerical treatment and allow for a comprehensive and hence self-consistent presentation of the
continuing work discussed in subsequent sections of this chapter.

7.9.1 Magnetization

The calculated magnetization MpHq is shown in Fig. 7.9. It is converged as function of m and s and
reproduces previous results [401]. The steps in the data are a finite-size effect. As discussed in [401],
the square-root singularities close to onset and saturation are consistent with the simple picture reviewed
in section 7.1.3. Meanwhile, this model also predicts additional cusps in MpHq for strongly-frustrated
systems like BiCu2PO6 [384], which are not observed in the calculations. By reconsidering the argu-
ments leading to the prediction [384] (cf. section 7.1.3), the absence of cusps implies that triplon-triplon
interactions are important already at low magnetizations—a conclusion which is consistent with recent
neutron-scattering experiments [318].

7.9.2 Spin correlations

The calculated spin structure factors and spin correlations are generally consistent with previous results
[77, Fig. 6] (see also [74, Fig. 6.13]) and their discussion in [77] (see also [74, pp. 143-144]).
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Figure 7.9: Calculated magnetization, reproducing the results [401, Fig. 12] of the original work for parameter set
A [401].

The spin structure factors are shown in Fig. 7.10. The longitudinal spin correlations [Fig. 7.10(b)] ex-
hibit rapidly-decaying incommensurate correlations (see [77, p. 6]), associated with the incommensurate
minimum of the triplon dispersion (cf. sections 1.2 and 7.1.3), as well as trivial long-range features at
wavevector q “ p0, 0q due to the uniform magnetization (see [77, p. 8]). In addition, as noted in previous
work [77, p. 8], the inequivalence J2 ‰ J 12 leads to the preferential magnetization of one sublattice,
giving rise to a long-range component at q “ pπ, πq, which becomes maximal close to M “ 1

2Msat.

The transverse spin correlations [Fig. 7.10(a)] are incommensurate and quasi long-ranged for 0 ă

M{Msat ă 0.5 (see [77, p. 6]). Another region with quasi long-ranged transverse spin correlations
is observed at higher magnetization. Finite-size scaling of the structure factors (Fig. 7.11) indicates that
the decay of the transverse spin correlations is slow enough to give rise to a diverging susceptibility
for magnetizations 0 ă M{Msat ă 0.5 (cf. section 7.7.3). This conclusion is consistent with direct
inspection of the corresponding correlation functions (see Fig. 7.12 and section 7.12).

7.9.3 Dimerization

The dimerization strength on the different bonds in the system is shown Fig. 7.13. As noted in previous
work [401] (see also [77, p. 6] and [74, p. 142]), the rung bonds (J4) are strongest at low-to-intermediate
magnetization, which is consistent with the rung-singlet phase suggested by the zero-field phase diagram
of the frustrated ladder [228] (Fig. 1.4). Also, one observes that the J 12 bonds are broken preferentially,
as expected for J 12 ă J2 (see [77, p. 8]).

The along-leg structure factors obtained from the dimer correlations of the rung and nearest-neighbor
leg bonds are shown in Fig. 7.14. The dominant long-range components at q “ 0 correspond to the
dimerization strength shown in Fig. 7.13. In addition, rapidly-decaying correlations with q “ π are ob-
served on the J1 bonds. These are remnants of the columnar-dimer phase of the frustrated ladder [131,
228] (cf. section 1.3.4 and 5.4.3). Except for the static correlations at q “ 0, the dimer correlations
are generally short-ranged36 for 0 ď M{Msat ă 0.5, in accordance with earlier calculations [77, 131].
This is confirmed by direct inspection of the correlation functions (see Fig. 7.15 for an example), which
are generally consistent with previous work [131]. The dimer correlations on the next-nearest neighbor
(NNN) bonds (structure factors not shown) closely resemble those on the J1 and J4 bonds in the re-

36The statement refers to the component with the dominant weight, since the correlation functions generally contain
algebraically-decaying components (see section 7.12).



7.9 Results 113

Figure 7.10: Structure factors S`´pq‖, qKq (a) and Szzpq‖, qKq (b) of transverse and longitudinal spin correlations,
respectively (m “ 512, s “ 512, a “ 8).

gion 0 ă q ă π. Trivial long-range correlations appear at q “ π as a result of the alternation of the
inequivalent J2 and J 12 bonds (see also Fig. 7.15).

7.9.4 Chirality

Consider the correlations of the longitudinal chirality κzij first (Fig. 7.16). Its correlation functions are
generally consistent with previous results [77, Fig. 7] (see also [74, Fig. 6.14]) and their discussion in
[74, 77]. The leg bonds exhibit uniform (q “ 0) long-range correlations, whereas the rung correlations
decay rapidly. Exemplary correlation functions are depicted in Fig. 7.18(a)37 [see also Fig. 7.26(b)].
Note that a sufficient MPS bond-dimension m is crucial for the observation of long-range correlations of
the longitudinal chirality. The appearance of long-range chiral correlations for 0 ă M{Msat ă 0.5 will
be considered in section 7.10.2 in more detail. The absence of q “ π components in the correlations on
the leg bonds is consistent with section 7.8.1. Trivial components with q “ π in the correlation functions
for the NNN bonds (J 12 and J2) [Fig. 7.16(c-d)] arise due to the alternation of the corresponding bonds

37Long-wavelength modulations result due to the wavefunction of the localized triplons (cf. section 7.6.1).
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Figure 7.11: Maximal value maxq S
`´pq, πq of structure factors S`´pq, πq (a) and Szzpq, πq (b) for 0.5π ď q ď

0.7π, as function of magnetization M{Msat (cf. Fig. 7.10). The inset of (a) shows a power-law fit to the scaling
behavior of maxq S

`´pq, πq with the system size L at M{Msat « 0.125 (dotted line). Red dots, calculated with
L “ 128, m “ 1024, and s “ 256, confirm convergence with the MPS bond dimension m. The legend of (b) also
applies to (a).
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Figure 7.14: Along-leg structure factors of dimer correlations on the nearest-neighbor leg (a) and rung (b) bonds,
corresponding to the exchange couplings J1 and J4, respectively (m “ 512, s “ 512, a “ 8).
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Figure 7.15: Dimer correlations for different types of bonds (L “ 256, m “ 2048, a “ 2). Correlations are
measured on one ladder leg for the J1 (NN) and J2/J 12 (NNN) bonds. The magnetization is M{Mtot “ Sztot{L,
with Sztot as indicated in the legend.

along each leg of the ladder.

The structure factors of the correlations of the transverse chirality κxij , or equivalently κyij , are shown in
Fig. 7.17. The uniform component (at q “ 0) remains short-ranged for 0 ď M{Msat ď 0.5. For 0 ă
M{Msat ă 0.5 additional quasi long-ranged components are observed at incommensurate wavevectors
[see also Fig. 7.18(b)]. In this magnetization range, the raw data are consistent with a power-law which
decays slower or equally fast as the inverse distance and hence corresponds to an instability of the system
(cf. section 7.7.3). Such oscillations have also been noted in previous works [255, 367] and an intuitive
explanation for this behavior is given in section 7.10.3.
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Figure 7.16: Along-leg structure factors of longitudinal chirality on rung bond J4 (a), nearest-neighbor bond J1
(b), and next-nearest neighbor bonds J 12 (c) and J2 (d) (m “ 512, s “ 512, a “ 8). In (c) [(d)], the correlation
functions are calculated using alternating pairs of equivalent and inequivalent bonds, with the reference bond fixed
to a J 12 [J2] bond.
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Figure 7.17: Along-leg structure factors of transverse chirality on rung bond J4 (a), nearest-neighbor bond J1
(b), and next-nearest neighbor bonds J 12 (c) and J2 (d) (m “ 512, s “ 512, a “ 8). In (c) [(d)], the correlation
functions are calculated using alternating pairs of equivalent and inequivalent bonds, with the reference bond fixed
to a J 12 [J2] bond.
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Figure 7.18: Correlations of longitudinal (a) and transverse (b) chirality on various bonds of the frustrated ladder
model, as function of distance d (measured in units of nearest-neighbor bonds). For (b), the magnetization is
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(a) is an extended version of a figure previously used in [312].)
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7.10 Interpretation

In this section, the calculation results presented in section 7.9 are used to obtain a self-consistent picture
of the field-induced phases of the considered model. Guided by the experimentally-accessible range of
magnetic fields, the primary focus is on the phase adopted for magnetizations 0 ăM{Msat ă 0.5. As in
the preceding section, parameter set A with site-independent g-factors is used.

7.10.1 Chiral order

The field range 0 ă M{Msat ă 0.5 is characterized by rapidly-decaying longitudinal spin correlations
and quasi long-range transverse spin correlations. Moreover, the longitudinal chirality acquires a uniform
expectation value on the leg bonds.38 No dimerization tendency is observed forM{Msat Æ 0.5. All these
features are consistent with previous work [77, 131], as well as with the chiral phase of the zigzag chain
reviewed in section 7.1.2.1. Therefore, consistently with the previous work [131], the corresponding
phase of the frustrated ladder is referred to as the “chiral phase” from here on.

The slow decay of the transverse spin correlations reflects the fact that the chiral phase is unstable towards
spiral order if the breaking of the remaining Up1q symmetry is permitted [164] (see section 7.8.2 and
previous discussion in [77, pp. 7-8]). Based on these results, a system consisting of suitably-coupled
frustrated spin ladders with the considered exchange couplings is expected to adopt a spiral (helical)
magnetic order in which the spiraling moments lie in a plane perpendicular to the magnetic field [77,
164]. The pitch angle along the leg direction is determined by the wavevector of the transverse spin
correlations [164, p. 11]. Since the dominant transverse spin correlations are confirmed to be in the
qK “ π sector (see previous results in [77, Fig. 6b]), the magnetic structure on the two ladder legs differs
by a phase of π, i. e. , the AFM correlations required by the rung bonds are satisfied completely [131].
Thus, everything is fully consistent with previous work [74, 75, 77, 78, 131] and the corresponding spiral
structure [77, 131] is visualized in Fig. 7.19(a).

7.10.2 Onset of chiral order

In previous work [74, 77, 131], a phase-transition-like onset of the chirality was observed (see [77,
Fig. 7], and also [74, Fig. 6.14]). This observation is confirmed in the calculations performed in the
context of this work. Moreover, comparison of results for different system sizes shows that the “crit-
ical magnetization” for the appearance of long-range chiral correlations is independent of system size
(cf. [78]). Since the magnetization corresponds to the triplon density, this hints towards the importance
of triplon-triplon interactions (cf. [78]). However, as implied in [78, pp. 141,144] and explicitly shown
in the inset of Fig. 7.20(a), the onset of chirality coincides with the disappearance of the spurious 2k-
oscillations in the spin texture (cf. Fig. 7.6 and section 7.6.3). Since the oscillations, measured by Apsqj
(section 7.6.2) were shown to disappear with increasing MPS bond dimensionm, it makes sense to check
the evolution of the chiral correlations with m. From the results depicted in Fig. 7.20(a) it becomes clear
that what looked reminiscent of a phase transition for small m, turns into a smooth onset in the limit

38This is confirmed by calculating the correlations of longitudinal chirality on nearest-neighbor leg bonds residing on oppo-
site ladder legs.
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Figure 7.19: (a): Illustration of expected spiral structure, as proposed in previous work [74, Fig. 3a] (see text for
details). The arrows represent the ordered moment xSi,ry on site pi, rq, where the indexing convention is consistent
with section 4.3.1. For visualization purposes, a section of the corresponding ladder graph is depicted at the
bottom (next-nearest neighbor bonds have been omitted for readability). Black/white [blue/blue] indices/vertices
correspond to Cup1q [Cup2q] sites. (b): Spin canting in the spiral phase for two magnetic moments corresponding
to a pair of sites which are nearest neighbors along the leg direction of the ladder. The two circles indicate
the geometrical loci visited by the magnetic moments (black) and the chirality (red) upon propagation of the
(incommensurate) magnetic structure along the ladder direction.

m Ñ 8.39 This strongly suggests that the chiral phase occupies the entire range of magnetizations
between 0 and approximately Msat{2. Note that similar delayed-onset behavior was already reported for
the ferromagnetic zigzag chain, and convergence problems were proposed as one possible explanation
[383].

Direct inspection of the correlation functions [Fig. 7.20(b)] confirms that long-range chiral correlations
appear immediately as soon as the system gets magnetized. By comparing the top and bottom panels of
Fig. 7.20(b), it further becomes evident that the chiral correlations are modulated by the wavefunction of
the localized triplons (cf. section 7.6.1). Surprisingly, a minimum of two triplons is required to clearly
establish long-range chiral correlations. While this observation does not affect the conclusions about the
thermodynamic limit, it corroborates that triplon-triplon interactions are indeed essential to the forma-
tion of chiral correlations, as was conjectured in previous work [77, 78, 131] (albeit for solitons), and
described earlier in, e. g. , [404] (see also [367]).

Finally, besides confirming the somewhat pathological nature of states containing a single triplon, Fig. 7.21
shows that slowly-decaying transverse spin correlations develop concomitantly with the chirality as soon
as the system gets magnetized. Therefore, as discussed in [419], the most promising scenario for ob-
serving two separate phase transitions corresponding to chiral order and spiral order is competition
between thermal fluctuations and residual interactions required for the Up1q-symmetry breaking (see
section 7.8.2).

39It has been checked that reducing the number of DMRG sweeps s from 512 to 24 does not affect the chiral correlations.
Similarly, the data in Fig. 7.20(a) show that reducing the averaging range from a “ 8 to a “ 2 has negligible effect. Note that
even after setting a “ 2 and s “ 24, the largest bond dimension reachable with reasonable effort was m “ 2048.
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Figure 7.20: (a): Magnitude of uniform (q “ 0) structure factor of longitudinal chirality on nearest-neighbor
leg bonds as function of magnetization. The inset shows a comparison with data from Fig. 7.6(a) (m “ 256,
L “ 256). (b): Correlations of longitudinal chirality on nearest-neighbor leg bonds as function of distance d
(measured in units of nearest-neighbor bonds). The calculations used a “ 2 and m “ 1024 (m “ 2048) for
L “ 128 (L “ 256), and convergence with bond dimension m was checked. The bottom panel shows the spatial
distribution of the calculated rung-magnetization, which equals the triplon density, for a system with L “ 256
rungs and Sztot “ 1, 2, 3. The position d “ 0 corresponds to the reference position used to evaluate the correlation
functions (approximately at the center of the ladder). A smoothing-spline interpolation was used to suppress short-
period oscillations in xSzrung,dy “ xS
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1,d ` S

z
2,dy. (Subfigure (b) reused from [312].)

7.10.3 Spin canting

It is instructive to reconsider the correlations of the transverse chirality shown in Fig. 7.17. Key to an
interpretation is the observation that their quasi long-ranged components resemble the transverse spin
correlations [Fig. 7.10(a)]. In addition to the spiraling moments, the magnetic structure exhibits a small
longitudinal component corresponding to the uniform magnetization, which results in a canted spiral
structure [77, 78, 131]. The situation corresponding to the nearest-neighbor bond J1 is illustrated in
Fig. 7.19(b). The canting of the ordered moments gives rise to a small transverse chirality component,
which delineates a spiral upon propagation of the magnetic structure along the ladder axis. This is in
fact consistent with previous analytical results for the zigzag chain [255, eqs. 8-9]. Similarly, a spiraling
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Figure 7.21: System-size dependence of transverse spin correlation functions close to the magnetization onset
(a “ 2).
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transverse chirality component appears on the rung bonds.40 Thus, once the Up1q-symmetry associated
with the transverse magnetic moments is broken, long-range correlations of the transverse chirality de-
velop at the wavevector corresponding to the spiral pitch angle, i. e. , the maximum in the transverse spin
structure factor. Conversely, a perturbation which enforces a transverse chirality with suitable (incom-
mensurate) periodicity, would create a pinning potential which locks the transverse moments.

Thus, the slow decays of the correlations of the transverse chirality and the transverse spin correlations
both correspond to the very same instability. This is corroborated by the similar asymptotic behavior of
the transverse chiral and transverse spin correlations [see, e. g. , Fig. 7.26(b)]. In particular, the features in
the correlations of the transverse chirality do not indicate any competing instabilities for 0 ďM{Msat ă

0.5. The conclusions reviewed in section 7.10.1 are therefore unaltered, except for the rather obvious
amendment that the uniform longitudinal magnetization needs to be considered in addition to the planar-
spiral component of the magnetic structure [Fig. 7.19(a)], as already pointed out in previous work [77,
78].

7.11 Influence of model parameters

In this section, the effect of varying various model parameters, especially the exchange couplings, is
considered. Since the preceding results are largely independent of system size L (e. g. , Fig. 7.12)—at
least within the chiral phase—, most of the following calculations use L “ 64. The smaller system size
also requires smaller bond dimensions m, where m “ 512 was found to be well sufficient. Consistently
with the preceding sections, parameter set A with site-independent g-factors is used as a starting point.

The purpose of this section is twofold. First, it serves as a sensitivity analysis, to make sure that the
conclusions described above (and in previous work [74, 77]) do not depend on the precise values of the
model parameters. Secondly, additional insights can be gained by considering certain limiting cases. The
parametrization used for varying the exchange couplings is the same as in section 5.4.

7.11.1 Effect of the rung exchange

For J4 “ 0, the frustrated ladder corresponds to two decoupled zigzag chains. It therefore makes sense
to compare the results with the phase diagram of the zigzag chain [164] [Fig. 7.2(b)] with an effective
frustrating coupling of pJ2 ` J 12q “ 0.75 J1. The behavior inferred from inspection of the correlation
functions41 and their structure factors, in a manner analogous to the preceding sections, is consistent with
the following succession of field-induced phases (cf. [164]): (i) dimerized ground-state, (ii) TLL2 phase,
(iii) VC phase, (iv) a narrow non-chiral phase with short-range transverse spin correlations (TLL1 with
dominant longitudinal spin correlations or SDW2

42), (v) 1{3-plateau (P), (vi) TLL1 phase with dominant

40Modulation due to the presence of two inequivalent sites gives rises to two peaks in the structure factors for the leg bonds
[Fig. 7.17(b-d)].

41I focus on the magnetization curves, the correlations of the transverse and longitudinal spin components, as well as the
correlations of the longitudinal chirality, since these quantities contain most information and are predominantly studied in the
literature (e. g. , [164]). Note, however, that the relatively small system size makes it difficult to reliably assess the range of the
correlation functions. Except for the chiral correlations, whose long-range nature is rather easy to check, the correlations are
therefore primarily classified depending on whether they decay faster than inverse distance or not.

42Since Sztot of each chain changes in units of one, the TLL1 phase appears more likely [164].
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longitudinal correlations, (vii) TLL2 phase. In addition, the TLL1 phase is interrupted43 by a magneti-
zation plateau at M{Msat “ 1{2, which is related to J2 ‰ J 12 (see section 7.11.3) and will be discussed
later (section 7.12). Except for this narrow additional phase, the observations are thus fully consistent
with the phase diagram of the zigzag chain.

For J4{J1 “ 0.25, the sequence of phase transitions is very similar, except for a few important differ-
ences: (i) The TLL2 phase at low magnetization is replaced by the VC phase. (ii) The TLL1 phase below
the 1{3-plateau is not clearly established by the correlation functions, suggesting that it is either extremely
narrow or absent. (iii) The 1{3-plateau is weakened by the rung coupling.

For even higher rung couplings (J4{J1 ě 0.5), the chiral phase occupies the entire magnetization range
0 ă M{Msat ă 0.5.44 Also, the dimer crystal present in the ground state of the zigzag chain melts, as
already reported in [228] for the symmetric frustrated ladder (J 12 “ J2) and discussed in section 5.4.3
[Fig. 5.11(b)]. A (small) 1{2-plateau is always present. The phase diagram at M{Msat ą 0.5 is less clear
(see section 7.12).

The evolution of magnetization and chiral correlations upon varying the rung coupling is summarized in
Fig. 7.22.45 The magnetization curves [Fig. 7.22(a)] show that the incompressible states [136] (plateau
phases) become more stable in the limit J4 Ñ 0. For the 1{3-plateau this result is intuitive: This phase
corresponds to an “up-up-down” magnetic structure [164, 301], which is clearly incompatible with the
antiferromagnetic rung coupling (see [387] for a more advanced treatment). The 1{2-plateau is consid-
ered in more detail later (see sections 7.11.3 and 7.12). Focusing on the chirality [Fig. 7.22(b)] in the
magnetization range 0 ă M{Msat ă 0.5, it becomes evident that the TLL phases surrounding the chi-
ral phase [cf. black arrows in Fig. 7.22(b)] are suppressed with increasing J4. While the extent of the
chiral phase is limited by the 1{3-plateau at first, it occupies all the region up to Msat{2 as the plateau
disappears.44 Since the rung coupling destabilizing the 1{3-plateau also binds spinons into triplons [228,
412], this suggests a description of the chiral phase in terms of triplons, which is consistent with the
observations made in section 7.10.2 and previous work for the zigzag chain [164, 404].

The J4-dependence of the spin gap is shown the inset of Fig. 7.22(a), and is consistent with results
reported for the symmetric frustrated spin ladder [228]. For J4{J1 À 0.5, the energy gain associated with
spinon confinement (binding energy) and/or the kinetic energy gain due to the rung bonds outweighs the
increased cost of breaking a rung bond (cf. [228]). This crossover is consistent with the transition from
columnar-dimer to rung-singlet phase [228] (cf. Fig.1.4).

Finally, the results presented in this subsection show that the chiral phase of the frustrated ladder is
connected with the chiral phase of the zigzag chain in the parameter space of the exchange couplings.
Thus, the chiral phase of the frustrated ladder emerges due to frustration within each ladder leg (see,
e. g. , [164]). The rung coupling was also checked to have negligible influence on the wavevector of the
incommensurate spin correlations, in accordance with [228] [cf. Fig. 1.4(c)]. Still, the role of the rung
coupling is not solely limited to defining the relative phase of the spiral structures emerging on the two

43Since dimer correlations and longitudinal spin correlations decay comparably fast on both sides of the plateau, it is not
completely clear to which extent the two corresponding phases resemble each other.

44While the data do not show any hints of additional, narrow phases, more detailed calculations are required to confirm the
phase boundaries with certainty. See section 7.12 for a discussion.

45Note that all results were obtained by targeting the two lowest-energy eigenstates of the full ladder model. Strictly
speaking, the ground state may (the degeneracy associated with dimerization is likely lifted by the boundaries) be four-fold
degenerate for J4 “ 0 [228]. However, it was argued earlier (section 7.3.3), and explicitly checked for parameter set A, that
tracing over the ground-state multiplet can be omitted in favor of averaging over reference sites for the simple class of models
considered here.



7.11 Influence of model parameters 125

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
g µ B H / J1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
 / 

M
sa

t

J4/J1 = 0
J4/J1 = 0.25
J4/J1 = 0.5
J4/J1 = 0.75
J4/J1 = 1
J4/J1 = 1.5

0 1
J4 / J1

0

0.5

1

1.5

∆
 / 

J 1

0 0.2 0.4 0.6 0.8 1
M / Msat

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
1κ,

z (q
=0

)

J4/J1 = 0
J4/J1 = 0.25
J4/J1 = 0.5
J4/J1 = 0.75
J4/J1 = 1
J4/J1 = 1.5

Figure 7.22: Magnetization (a) and uniform (q “ 0) correlations of longitudinal chirality on the nearest-neighbor
leg bonds (b) for parameter set A with varying rung coupling J4 (a “ 8, m “ 512, traced over doublets). Black
arrows indicate the limits of the low-field chiral phase for J4 “ 0, as estimated from inspection of the correlation
functions of the transverse spin components and the longitudinal chirality. Dashed lines mark one-third (adjusted
to M{Msat “ 11{32, which is closest to 1{3 for an isolated leg) and one-half saturation magnetization. The inset
of (a) shows the J4-dependence of the spin gap ∆.

legs of the ladder, as illustrated in Fig. 7.19(a). As shown above, the rung coupling also greatly extends
the magnetization region occupied by the chiral phase. According to Fig. 7.22(b), the chiral correlations
pass through a maximum at very small rung couplings J4{J1 „ 0.25 already. This indicates that the
chiral phase is stabilized predominantly by the weakening of the surrounding, competing phases.

7.11.2 Role of frustration

Sufficient frustration is a prerequisite for the appearance of field-induced chiral order in the zigzag chain
[164] (see Fig. 7.2). At the same time, the rung coupling of the frustrated ladder enhances the stability
range of the chiral phase (section 7.11.1). It is therefore interesting to examine the role of frustration
for the appearance of chiral order in the frustrated ladder. This is done by performing calculations for
parameter set A with modified next-nearest neighbor (NNN) couplings pJ 12{J1, J2{J1q “ α p0.5, 1q,
where α P t0, 1{3, 2{3, 1u. For the sake of a clearer discussion, the average frustration JF {J1 “ pJ

1
2 `

J2q{p2 J1q P t0, 0.25, 0.5, 0.75u is used to refer to these parameter sets in the following.

For JF {J1 ď 0.25, the behavior of the correlation functions is qualitatively consistent with the field-
induced phase of the simple spin ladder (cf. section 7.1.1). The transverse chiral correlations exhibit quasi
long-range contributions with wavevector π, which is compatible with spin-canting of the antiferromagnetically-
ordered transverse magnetic moments (cf. section 7.10.3). Unlike suggested by the dashed line in
Fig. 7.2, the transverse spin correlations dominate also for JF {J1 “ 0.25. An additional phase with
asymptotically dominant longitudinal-spin and dimer correlations appears atM{Msat Ç 0.87 for JF {J1 “

0.25.

Incommensurate correlations emerge between JF {J1 “ 0.25 and JF {J1 “ 0.5 [see Fig. 5.11(c)], and
the corresponding models have a non-degenerate zero-field ground state, in agreement with the results
reported in [228] (cf. Fig. 1.4). The phase diagram for JF {J1 “ 0.5 is rather complicated. Magnetization
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plateaux appear at M{Msat “ 1{2 and M{Msat “ 2{3 [Fig. 7.23(a)].46 A 2{3-plateau is theoretically
expected in the strong rung-coupling limit [387].47 Increasing JF moves the system away from this
limit, explaining the disappearance of the plateau at larger values of JF . The frustration-dependence
of the spin gap ∆ [Fig. 7.23(a), inset] is consistent with literature results for the (symmetric) frustrated
spin ladder [228]. In addition, the magnetization curve exhibits cusps at low and high magnetization
[black arrows in Fig. 7.23(a)]. These cusps reflect singularities in the magnetic density of states [384],
as reviewed in section 7.1.3.

In addition to a chiral phase adjacent to the zero-field ground state,44 chiral order is also observed be-
tween the 1{2-plateau and the 2{3-plateau [Fig. 7.23(b)]. The low-field chiral phase extends up to the cusp
singularity in MpHq. This makes sense, since the cusp corresponds to a Lifshitz transition [384] (cf.
section 7.1.3), such that the two-component Tomonaga-Luttinger-Liquid description used to describe the
chiral phase of the zigzag ladder [164] is expected to break down [164, sec. VII.B]. The real-space tex-
ture of the dimerization strength on the J1 bonds indicates that the following phase is dimerized. Note
that the chiral phase occupies a smaller fraction of the magnetization region 0 ă M{Msat ă 0.5 than
for parameter set A (JF {J1 “ 0.75). Since negligible triplon-triplon interactions are assumed to ex-
plain the magnetization cusps [384] (cf. section 7.1.3), this observation corroborates the importance of
triplon-triplon interactions for the chiral order (see section 7.10.2 and references therein).
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Figure 7.23: Magnetization (a) and uniform (q “ 0) correlations of longitudinal chirality on the nearest-neighbor
leg bonds (b) for parameter set A with varying frustration JF , J2{J 12 “ 2 fixed (a “ 8, m “ 512, traced
over doublets). Black arrows in (a) indicate cusp singularities, whereas the diamond-tip arrow illustrates the
approximate location of a tentative 1{3-plateau. Black arrows in (b) mark the upper boundary of the low-field chiral
phase for JF {J1 “ 0.5, as estimated from inspection of the correlation functions of the transverse spin components
and the longitudinal chirality. Dashed lines mark one-half and two-thirds of the saturation magnetization. The inset
of (a) shows the JF -dependence of the spin gap ∆.

To conclude, frustration is essential for the emergence of chiral order: In complete analogy with the
zigzag chain (see, e. g. , [164]), it induces incommensurate correlations which are a prerequisite for P -
symmetry breaking (section 7.3) and hence the appearance of degenerate, chiral ground states (section

46There are a few bigger magnetization steps at Sztot{L ě 22{64 « 1{3 [diamond-tip arrow in Fig. 7.23(a)]. However, no
evident changes are observed in the correlation functions.

47The reference assumes equivalent magnetic sites. Note that the magnetization plateaux shown in [387, Fig. 1(b)] could be
reproduced after adjusting the exchange couplings accordingly, which corroborates the validity of the calculations reported in
this work.
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7.8; note also the discussion in section 7.12). In addition, increasing frustration seems to further stabilize
the chiral phase observed at M{Msat ă 0.5.

7.11.3 Relevance of reduced symmetry associated with inequivalent Cu sites

The presence of two inequivalent Cu sites results in two inequivalent next-nearest neighbor (NNN) cou-
plings, J 12 and J2 (see section 4.3.1). In order to check to which extent the conclusions obtained before
depend on this staggering of the NNN exchange couplings, the difference ∆JF “ pJ2 ´ J 12q has been
varied while keeping pJ2 ` J

1
2q{p2 J1q “ 0.75 constant.

The calculated magnetization curves are shown in Fig. 7.24(a). As seen in Fig. 7.13, J 12 ă J2 results in
the preferential magnetization of the Cup1q sublattice, which is associated with the J 12 bonds (see also [77,
p. 8]). However, at latest for M ą 1

2Msat, the Cup2q sublattice needs to be magnetized as well. Thus,
∆JF simplifies the magnetization process below 1

2Msat and hampers it above 1
2Msat, which is clearly

reflected by the magnetization curves. The 1{2-plateau [Fig. 7.24(a)], already noted in [401], appears
to be stabilized by the reduced symmetry associated with the staggered NNN couplings (cf. [131]).
The corresponding states exhibit dimer order on the J1 bonds, the inspection of which suggests that a
small 1{2-plateau persists also for ∆JF “ 0. The occurrence of such a plateau in the frustrated ladder
with equivalent NNN couplings is not unexpected, and has been explained in the strong rung-coupling
limit [387] (cf. section 7.1.3). This is also consistent with the evolution of the 1{2-plateau at large rung
couplings J4 [Fig. 7.22(a)].
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Figure 7.24: Magnetization (a) and uniform (q “ 0) correlations of longitudinal chirality on the nearest-neighbor
leg bonds (b) for parameter set A with varying difference of frustrating couplings ∆JF “ pJ2 ´ J 12q, pJ2 `
J 12q{p2 J1q “ 0.75 fixed (a “ 8, m “ 512, traced over doublets). The dashed line marks one-half saturation
magnetization. The inset of (a) shows the evolution of the spin gap ∆.

The correlation functions indicate chiral order for 0 ă M{Msat ă 0.5 in all cases [cf. Fig. 7.24(b)].44

While chiral order is also observed at M{Msat ą 0.5 for ∆JF {J1 ď 0.25,44 a non-chiral region appears
for ∆JF {J1 “ 0.5. The suppression of chiral correlations around 2

3Msat observed for ∆JF {J1 “ 0.25
[arrow in Fig. 7.24(b)] could not be related to any qualitative changes in the correlation functions and is
therefore attributed to the proximity of the aforementioned non-chiral phase.

Besides J 12 ‰ J2, the g-factors (H ‖ b) can be site-dependent. To check the effect of non-uniform
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g-factors, additional calculations were performed for parameter set A,48 using the g-factors obtained
in section 5.2.1. Selected results are summarized in Fig. 7.25. As discussed in section 5.2.1, the site-
dependent g-factor results in a non-vanishing magnetic susceptibility of the spin-liquid ground state
[Fig. 7.25(a) inset], as anticipated in [207]. The low-field chiral phase and the 1{2-plateau are largely
unaffected44 [Fig. 7.25(b)]. Meanwhile, the site-dependent g-factor restores many features observed for
∆JF {J1 “ 0.25, such as an overall more linear field-dependence of the magnetization and a high-field
chiral phase, including the depression of chiral correlations at M{Msat «

2
3 . This is plausible, since

g1 ă g2 favors magnetization of the Cup2q sublattice and hence counteracts the effect of J 12 ă J2.
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Figure 7.25: Magnetization (a) and uniform (q “ 0) correlations of longitudinal chirality on the nearest-neighbor
leg bonds (b) for parameter set A with uniform and site-dependent g-factors, see text for details (L “ 256, a “ 2,
m “ 512). The dashed line marks one-half saturation magnetization. The inset of (a) shows a magnified view of
the same data.

Without inequivalent Cu sites, the wavevector of the transverse spin correlations is q “ pq‖, πq. Inequiv-
alence of the two Cupiq sites corresponds to a modulation with wavevector qstag “ pπ, πq, giving rise to
components with wavevectors q˘qstag “ pq‖˘π, 0q [cf. Fig. 7.10(a)]. Similar modulation products ap-
pear in other correlation functions (see section 7.9) and have been confirmed to be absent in calculations
with equivalent Cu sites (i. e. , g1 “ g2 and J2 “ J 12).

Chirality and ordered moments A naive estimate of the magnitude of the spiraling moments
mK,i on the two Cupiq sublattices can be obtained as follows. Consider parameter set A with uni-
form g-factors. Assuming classical moments, the maximal value of the chiral correlations on the NN
bonds (at M{Msat « 0.25), together with the pitch angle inferred from the transverse spin correlations
[Fig. 7.10(a)], yields an average transverse ordered moment of 0.42 ~. The proximity to a classical
spin-1{2 (

?
0.422 ` 0.1252 « 0.44) suggests that quantum effects are indeed small at this magnetiza-

tion. The longitudinal chiralities on the next-nearest neighbor (NNN) bonds then yield the estimate
p|κzJ2{κ

z
J 12
|q1{2 “ mK,2{mK,1 « 1.1. Alternatively, consider the classical potential energy ε of the spiral

structure per spin (cf. [419]),

ε “ J1mK,1mK,2 cosφ` 1
2

`

J 12m
2
K,1 cos 2φ` J2m

2
K,2 cos 2φ

˘

.

48Real-valued arithmetic without explicit Sztot-conservation is used to directly obtain the ground state as function of field.
Still, the (exact) eigenstates have well-defined Sztot, justifying the use of the simplifications discussed in section 7.7.4.
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For sufficiently strong frustration, all terms are negative. For a classical state, quantum fluctuations
(kinetic energy) should not be relevant, and J2 ż J 12 implies mK,2 ż mK,1, which is consistent with
the numerical estimate. Taking the uncertainties of the NNN couplings into account (section 4.3.3),
mK,1 „ mK,2 is generally expected for a field-induced spiral phase in BiCu2PO6, as assumed in previous
work [78].

7.12 Intermediate summary

The calculations presented above identify chiral order as a prevalent feature of the frustrated spin ladder.
All correlation functions indicate an instability towards the formation of a spiral magnetic structure
(sections 7.10.1 and 7.10.3), reproducing previous results for the particular case of parameter set A [77].
Specifically, given sufficient frustration, all calculations revealed a chiral phase between the zero-field
ground state and one-half saturation magnetization (sections 7.11.1-7.11.3), which will be referred to as
the C1 phase in the following. The C1 phase seems to be generally stabilized upon increasing frustration
and rung exchange (sections 7.11.1 and 7.11.2). Except for the possibility of different ordered moments
on the corresponding sublattices, the presence of two inequivalent Cu sites has negligible effects on the
C1 phase (section 7.11.3).

The similarity to the phase diagram of the zigzag ladder in the limit of vanishing rung coupling shows
that the C1 phase is connected to the chiral phase of the zigzag ladder (section 7.11.1). Consistently (see,
e. g. , [164]), it is characterized by (i) long-ranged chiral correlations, i. e. , static chiral order, (ii) trans-
verse spin correlations which decay slower or equally-fast as inverse distance, and (iii) longitudinal spin
correlations which decay faster or equally-fast as inverse distance. This behavior is consistent with pre-
vious work [77] and illustrated in Fig. 7.26(b)49. The dominant-weight components of many correlation
functions decay exponentially fast, while the algebraically-decaying contributions are too small to be
seen in a linear representation [see, e. g. , Fig. 7.12(b)]. The evolution of the C1 phase is summarized in
Fig. 7.26(a).

The long-range nature of the chiral correlations in the chiral phases can be identified rather reliably. For
JF {J1 Á 0.5 and J4{J1 Á 0.25, no indication of additional phases below the C1 phase is found. This
is confirmed by detailed calculations (section 7.10.2, see also 7.6.3) for the particular case of parameter
set A. This strongly suggests that the C1 phase is the only field-induced phase which is relevant for
the parameter regime corresponding to BiCu2PO6 (section 4.3.3).50 It is generally conjectured that a
C1 phase exists for all exchange couplings corresponding to the incommensurate region of the phase
diagram of the frustrated ladder [cf. Fig. 7.26(a)]. If frustration and rung coupling are strong enough, the
C1 phase is expected to occupy the entire magnetization range between the zero-field ground state and
the 1{2-plateau. Based on the insights obtained in this work, it appears worthwhile to perform additional
calculations for the frustrated ladder with J 12 “ J2, as function of rung coupling and frustration, in order
to check the aforementioned conjectures and thus clarify at least the corresponding part of the in-field
phase diagram of the frustrated ladder. Such calculations should include a detailed consideration of the
phase boundaries, analogous to section 7.10.2.

49The slow modulations seen in some of the rapidly-decaying correlation functions are due to the triplon wavefunction
discussed in section 7.6.1. Similar plots for the zigzag chain can be found in [164].

50The dispersion minimum at q‹ “ 0.574π [316] (in ladder units, see footnote 27) depends only weakly on J4 and yields
JF {J1 „ 1 [228], suggesting the lower bound JF {J1 Á 0.5 (cf. [401, Fig. 6]), in accordance with [257]. Since no two-spinon
continuum (cf. [385]) is reported [316, 318], the rung-singlet phase is assumed to be realized in BiCu2PO6 (note that a similar
argument was made in [179, p. 3]).
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Figure 7.26: (a): Magnetization region occupied by the C1 phase, as function of exchange couplings (J2{J 12 “ 2
fixed; see parameter set A, section 4.3.3). The data are based on the calculations presented in sections 7.9, 7.11.1,
and 7.11.2. Transparency is used to indicate uncertainties. The zero-field phase diagram [228] of the frustrated
ladder (with J 12 “ J2) is included for comparison purposes (Adapted with permission from Ref. [228]. Copyright
2011 by the American Physical Society.). (b): Typical behavior of correlation functions in the C1 phase, calculated
for parameter set A (L “ 256, m “ 512, a “ 8). The black line decays like d´1.

Various plateau phases are clearly visible in the magnetization curves. The 1{3-plateau appearing for weak
rung coupling is known from the zigzag chain (see sections 7.11.1 and 7.1.2.1). Additional plateaux ob-
served around 1

2Msat (sections 7.11.1 and 7.11.3) and 2
3Msat (section 7.11.2) are also consistent with

earlier results for the frustrated ladder [131, 384, 401]. For sufficient frustration (JF {J1 Á 0.5) and
rung coupling (J4{J1 Á 0.5), only a 1{2-plateau is observed. The rung-coupling dependence of this
plateau (section 7.11.1) can be understood as a crossover: While a plateau is expected at large J4 even
in the symmetric frustrated-spin ladder [384] (cf. section 7.1.3), the presence of inequivalent NNN cou-
plings becomes increasingly important for its stabilization at lower rung couplings (see [131] and section
7.11.3).

In addition to the C1 phase, a second chiral phase is generally observed above 1
2Msat. This phase is

destabilized by the presence of inequivalent Cu sites (section 7.11.3), and its relation with the chiral phase
appearing above the 1{3-plateau of the zigzag chain (see section 7.1.2.1) is unclear. Except for the TLL2
phase, the competing non-chiral phases of the frustrated ladder are generally accompanied by features
in the structure factors of the longitudinal spin correlations and the dimer-dimer correlations [see, e. g. ,
the fanning-out features at M ě 1

2Msat in Figs. 7.10(b) and 7.14]. For the longitudinal spin correlations,
this is illustrated in Fig. 7.27. Clearly, the sharp features disappear within the chiral phases. The TLL2
phase is only manifest for J4 “ 0 (see section 7.11.1) and its phase boundary towards the chiral phase is
not completely clear. Whilst not relevant for the present work, computations of the entanglement entropy
have been established as a convenient method for detecting the distinctive two-component nature of the
TLL2 phase [164] and may prove useful in future work.

Lastly, it is evident [Fig. 7.27(c)] that the regimes M ż 1
2Msat are fundamentally different. This is

corroborated by the fact that the C1 phase is generally found to be more robust than its counterpart above
the 1{2-plateau [see, e. g. , Fig. 7.24(b)]. The peak at pM{Msat, qq “ p

1
2 ,

π
2 q and its splitting above 1

2Msat
[Figs. 7.27(a) and 7.10(b)] has already been noted in earlier calculations performed for parameter set A
[75, 131]. It has been proposed that, for J 12 ă J2, the regime M ą 1

2Msat corresponds to two essentially



7.12 Intermediate summary 131

Figure 7.27: Structure factor Szzpq, πq of longitudinal spin correlations for parameter set A with individual cou-
plings altered as indicated in the figure (L “ 64, a “ 8, m “ 512). Rust-colored lines along the ordinate indicate
the regions occupied by chiral phases (based on section 7.11).

decoupled spin chains formed by the Cup2q sites [131]. The J2 exchange coupling thus takes the role
of a nearest-neighbor coupling, while the interjacent Cup1q sites are fully polarized [131]. A byproduct
of the present work supporting this scenario is shown in Fig. 7.28: (i) The intrasector gap ∆sec vanishes
for even system size L and odd Sztot. (ii) This even/odd-behavior51 is not observed in the chiral phases.
(iii) The even/odd behavior is suppressed with increasing rung coupling. Note that only for an even-
length system, the two ladder legs are equivalent [cf. Fig. 4.4(b)]. Whereas each leg carries the same
magnetization for even Sztot by symmetry, an ambiguity arises in the case of decoupled legs and odd Sztot.
Thus, the above observations are fully consistent with two effectively decoupled chains, as proposed
in [131]. Despite these insights, it remains unclear what type of field-induced long-range order could
develop out of these non-chiral phases. Simulations for larger system sizes could allow a more reliable
determination of the asymptotic behavior of the corresponding correlation functions. However, since not
corresponding to experimentally-accessible magnetizations for BiCu2PO6, these questions are left for
future work.
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Figure 7.28: Energy difference ∆sec between the two lowest-energy states in each Sztot-sector, as function of mag-
netization M{Msat “ Sztot{L, calculated for parameter set A with varying rung coupling J4 (circles: L “ 64,
diamonds: L “ 63; m “ 512).

51Note that similar alternating features are observed in the magnetization curves [Fig. 7.24(a)].
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7.13 Influence of individual DM interactions

In this section, the effect of extending the Hamiltonian (4.1) by symmetry-allowed DM terms (section
4.3.2) is examined. In analogy to section 5.4, the considerations are restricted to individual DM terms.
As mentioned in section 7.2, similar calculations were attempted in the past [131]. The only available
result is a brief comment in [131], which suggests that these early calculations were generally consistent
with the data and conclusions presented below.

Most simulations presented in this subsection were performed with L “ 64, m “ 128, and s “ 24 (cf.
section 7.5). Although the bond dimension is low compared to the calculations reported in the preceding
sections, additional calculations performed for parameter set B (section 7.14) show that it is sufficient
for most magnetizations. This suggests that DM interactions yield less entangled ground states which
are easier to capture by the MPS ansatz (see, e. g. , [349, p. 16.4]). Since the magnetic field needs to
be explicitly accounted for in the calculations, the g-factors cannot be fitted to the data in a manner
analogous to section 5.4. Instead, they are fixed to the values obtained in section 5.2.1.

The results of the calculations are summarized in Fig. 7.29. Consider the magnetization curves first.
The longitudinal DM terms Db

1 and Db
4 are found to have almost no effect on MpHq within the range

of experimentally-relevant magnetizations [Fig. 7.29(a,c)]. While not a-priori obvious, this is plausible
given that these DM terms are Sztot-conserving.52 Accordingly, simple classical energy considerations
(see end of this subsection) suggest that these DM interactions induce twist-distortions in a plane per-
pendicular to the magnetic field and thus should not affect the total magnetization. These observations
are consistent with previous calculations for a simple spin ladder with a weak rung-DM interaction anal-
ogous to Db

4 [270]. The overall similar effects of Db
1 and Db

4 are not completely unexpected, since local
spin-space rotations about the magnetic-field axis [15, 359] (cf. section 4.3.2) can be used to transform
these interactions into one another, at the expense of additional XXZ anisotropies.

By contrast, the transverse DM terms mix states with different Sztot and are thus expected to allow for
a field-induced deformation of the ground-state which results in a non-zero magnetization already well
below the magnetic field required for closing the spin gap (e. g. , [207, 270]; see also [74, pp. 125,134-
135]). This is clearly reflected in the calculations [Fig. 7.29(e,g,i)].53 In particular, transverse DM terms
„ 0.3 J1 can reproduce the slope of the measured magnetization at fields below the critical field, which
is consistent with the analysis of the finite-temperature susceptibility in section 5.4.

The right column of plots in Fig. 7.29 illustrates the evolution of the chiral order up to one-half saturation
magnetization. Chiral phases, as inferred from the inspection of the correlation functions, are marked
using gray shading.54 All corresponding magnetization curves exhibit a distinct change of slope around
55 T, which corresponds to the field-induced suppression of the spin gap. Since the magnetic field
is sampled uniformly, this change of slope is visible as a change in the density of data points in the
plots showing the chiral correlations. Thus, the data admit the following conclusions: (i) a chiral phase
appears in all considered cases, (ii) the chiral phase extends well beyond the magnetization range relevant

52This obvious fact has already been noted in previous work [77, p. 3]. However, this observation alone is not a proof, since
DM interactions can still deform the ground state within the Sztot “ 0 sector (cf. [74, p. 125], but cf. [74, p. 132]).

53Note that the apparently negligible effect of Dc
2 in section 5.4 [Fig. 5.7(c)] resulted because the DM-induced changes

were compensated by the fitting of the g-factors.
54The drops observed in Fig. 7.29(b,d), as well as the step-like features seen in MpHq [Fig. 7.29(a,c)], are attributed to

slow convergence. This is substantiated by comparing with calculations for uniform g-factors (section A.1.10). Also due to
convergence problems, the point at M{Msat « 0.16 in Fig. 7.29(j) (marked by a cross) was recalculated using s “ 128
iterations.
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for the high-field experiments performed in this work, (iii) the onset of the chiral phase is consistent
with the closing of the spin gap. While some DM terms clearly destabilize the chiral order at higher
magnetizations, more accurate calculations are required to analyze the competing phases. Such studies
are beyond the scope of the present work. The onset is considered in more detail in section 7.14 (for
parameter set B).

Lastly, it is important to realize that the DM interactions represent a linear potential for the chirality,
Dij ¨ κij . Thus, a DM term Dα

ij generally induces a small, static chirality καij . For eigenstates with

intrinsic chiral order
A

κβij

E

‰ 0, this implies that the axis of the corresponding classical spiral order is
tilted for α ‰ β, whereas DM-vector components with α “ β alter the pitch angle of the spiral. Although
the present, and rather obvious, discussion is driven by the numerical results, it should be noted that at
least certain tilt-distortions were already proposed in previous work based on similar considerations (see
section 7.15 for details). In terms of correlation functions, a DM interaction Dα

ij is thus expected to
yield a long-ranged contribution to the correlation function of the α-component of the chirality, with a
periodicity reflecting the staggering of the respective DM interaction. Indeed, the calculated correlation
functions (not shown) are consistent with this expectation. For the J1 bond, the implications for the
magnetic structure are discussed in detail in section 7.14.

7.14 Special case: DM interaction on nearest-neighbor leg bond

As explained in section 7.13, DM interactions act as a potential for the chirality. Although chiral order
is found to persist in the presence of small-to-moderate DM interactions, the ground state is altered in
general. In this section, the effect of the DM interactions Dac

1 and Db
1 (section 4.3.2) associated with

the nearest-neighbor (NN) bonds on the ladder legs is considered in more detail. These interactions are
of particular interest, since they are an important ingredient of parameter set B, which was proposed to
explain the measured dispersion of magnetic excitations in BiCu2PO6 [318] (cf. section 4.3.3).

In section 7.10.2, the onset of chiral order was shown to coincide with the closing of the spin gap if
no DM interactions are present. While the results presented in the preceding section (section 7.13) are
consistent with this scenario, additional calculations were made to check if this is indeed the case for
parameter setB (section 7.14.1). These results are also used to discuss the effects of the DM interactions
on the magnetic order (sections 7.14.2 and 7.14.3). For consistency with the literature [179, 318], as well
as the analysis of the magnetic susceptibility in section 5.4.4, a uniform g-factor g “ 2 is assumed.

Finally, as reviewed in section 1.1.2, additional symmetric anisotropy terms should be considered for
superexchange interactions [318] (cf. also section 5.4.4). No such terms were included in the calculations
reported in the preceding section (section 7.13), as is often the case in the literature (e. g. , [15, 79, 82,
108, 136, 157, 219, 306, 450, 458]). Generally, the effect of these terms on the magnetic and thermal
response functions was found to be negligible (section 5.4.4). The data in Fig. 7.30 corroborate that this
conclusion remains valid in the presence of large magnetic fields. For the specific case of parameter
set B, the DM vectors actually result in particularly small symmetric anisotropies [318] (cf. section
5.4.4, footnote 20), which are unlikely to be significant. Nonetheless, for the sake of consistency with
the literature [179, 318, 377], these symmetric anisotropy terms are included in the calculations for
parameter set B.
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Figure 7.29: Magnetization curves and uniform (q “ 0) correlations of longitudinal chirality on nearest-neighbor
leg bonds, calculated for parameter set A including the site-dependent g-factors obtained in section 5.2.1 and
augmented by various DM terms as indicated in the legends (L “ 64, m “ 128, a “ 8, s “ 24, traced; see text
for additional details). For the models involving non-zero DM terms, regions with chiral order are indicated in the
plots of the chiral correlations using gray shading (uncertainties in darker color). Experimental magnetization data
sampled from the curves reported in [207] and [208] are included for comparison.
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Figure 7.30: Calculated magnetization for parameter set A, including site-dependent g-factors obtained in section
5.2.1, augmented by a DM interaction Db

1 “ 0.4 J1 (L “ 64, m “ 128, s “ 24, traced). The two curves were
calculated with and without the symmetric anisotropy terms Γij , respectively.

7.14.1 Field-induced chirality

The results obtained for parameter set B are analyzed in a manner analogous to the preceding sections,
with a focus on the regime below half-saturation magnetization. The correlation functions are generally
similar, except that (i) features related to the inequivalence of the two Cu sites (see section 7.11.3) are
absent, as expected, and (ii) the wavevector of the transverse spin correlations is shifted towards π{2, as
expected for a one-dimensional classical spiral with dominant uniform DM vector.

The most important aspects are illustrated in Fig. 7.31. Again, long-range order of the longitudinal chi-
rality, resembling the C1 phase described in section 7.12, is observed almost throughout the entire mag-
netization region between gap closure and half saturation [Fig. 7.31(b)]. This chiral phase clearly extends
beyond the range of experimentally accessible magnetizations. Additional calculations (Fig. 7.32) con-
firm the twofold degeneracy of the ground state in the chiral phase. Note that the chiral phase appears to
be gapped, which could be a consequence of the DM interactions.55 The details of the excitations and
their softening in the vicinity of the phase boundaries are left for future research. In agreement with the
results of section 7.13, the data also suggest that the onset of chiral order coincides with the closing of
the spin gap.

Nonetheless, due to the relevance of parameter setB for BiCu2PO6, more careful checks for the existence
of possible additional phases at magnetizations below the chiral phase seemed appropriate. Correspond-
ing results are shown in Fig. 7.33.56 Clearly, the onset of chirality coincides with the closing of the spin
gap, which manifests itself as a kink in the magnetization curve. This confirms that the regime below
half saturation magnetization is dominated by the chiral phase and no other phases are expected at lower
magnetizations.

55As pointed out in [319, p. 63], DM interactions can—like site-dependent g-tensors—induce staggered effective magnetic
fields [15, 306], which can, e. g. , induce a gap in the otherwise gapless field-induced phase of the spin ladder [425]. Strictly
speaking, the corresponding phase transition is expected to be replaced by a crossover in such a case [370] (see also [136], [74,
pp. 125,136]).

56The small long-wavelength modulation seen in the yellow (xSztoty « 3.1) and orange (xSztoty « 5.4) traces is attributed
to triplon-triplon correlations, analogous to Fig. 7.20(b). The positions of the maxima are consistent with this hypothesis.
However, no accompanying static Sz-texture is observed in this case, since the simple picture reviewed in section 7.6.1 breaks
down due to absence of Sztot-conservation (cf. [74, p. 125]).
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Figure 7.31: Magnetization curves (a) and uniform (q “ 0) correlations of longitudinal chirality on nearest-
neighbor leg bonds (b), calculated for parameter sets A (m “ 512, s “ 512, traced) and B (L “ 64, m “ 128,
s “ 24, traced). Experimental magnetization data sampled from the curves reported in [207] and [208] are
included for comparison. For parameter set A, the site-dependent g-factors obtained in section 5.2.1 were used in
(a) (L “ 256), whereas a uniform g-factor g “ 2 was assumed in (b) (L “ 64)—as well as for parameter set B in
general. Gray shading in (b) indicates regions with chiral order for parameter set B (uncertainties in darker color).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
M / Msat

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

∆
k / 

J 1

k = 1
k = 2
k = 3
k = 4
k = 5

Figure 7.32: Excitation energy ∆k of the k’th excited state w. r. t. the ground-state energy (L “ 64, m “ 128,
s “ 24). The shaded regions correspond to Fig. 7.31(b).

7.14.2 Transverse component

Two principal effects of the transverse component of the DM vector on the nearest-neighbor leg bond,
Dac

1 , could be identified. The first is of a rather technical nature. As discussed in section 7.10.3, spin cant-
ing yields a transverse chirality component which rotates along with the spiral structure [Fig. 7.19(b)].
Mismatch between finite system size and incommensurate wavevector then results in a net transverse chi-
rality. This chirality is pinned57 by Dac

1 (cf. section 7.13), which effectively breaks the Up1q-symmetry
associated with the propagation phase of the spiral (see sections 7.8.2 and 7.10.3). Thus, transverse
spiraling magnetic moments appear in the simulations. Yet, these moments generally differ from those
expected in a real spiral phase,58 and are therefore not considered further. Since the pinning potential
depends solely on the oscillating component of the chirality parallel toDac

1 , κxij , reversal of the spiral ori-
entation does not change the resulting xκxijy-texture, which implies that the oscillations do not disappear
upon tracing over the ground-state doublet [Fig. 7.34(a)]. By contrast, the phase of the chirality compo-
nent perpendicular to Dac

1 and to the external magnetic field (H ‖ b), κyij , changes by π [Fig. 7.34(b)]. It

57Note that the brief remark in the previous work [131] (see discussion in section 7.15) might also be referring to this effect.
58The issues related to the ground-state degeneracy (sections 7.3 and 7.8.1) still apply. Moreover, quasi long-ranged compo-

nents persist in the transverse spin correlations, indicating that couplings between ladders will generally increase the transverse
ordered moments.
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Figure 7.33: Correlations of longitudinal chirality on nearest-neighbor leg bonds as function of distance d, calcu-
lated for parameter set B (L “ 128, s “ 24, a “ 8). The inset shows the magnetization curve from Fig. 7.31(a)
(with magnetization data sampled from the curves reported in [207, 208]), along with symbols indicating the mag-
netizations at which the correlation functions shown in the main panel have been evaluated. The marker symbols
encode the MPS bond dimension used in the respective calculations (crosses: m “ 512, diamonds: m “ 256,
pluses: m “ 128). The critical fields [207, 208] are marked by blue lines. (Updated version of a figure previously
used in [312].)

is important to be aware of the aforementioned effects when analyzing quantities like the transverse spin
correlations or the correlations of the transverse chirality, since both will contain long-ranged oscillating
components. Note that, despite being a finite-size effect, the static moments do not necessarily disappear
upon increasing the system size [Fig. 7.34(a)].
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Figure 7.34: Spatial distribution of transverse chirality parallel (a) and orthogonal (b) to Dac
1 , for M{Msat « 0.12.

Calculations for L “ 128 used m “ 256 and s “ 24, calculations for L “ 64 used m “ 128 and s “ 24; data
in (a) are traced over the ground-state doublet. The chirality is determined on the nearest-neighbor leg bonds. The
abscissa enumerates bonds on one leg of the ladder, the origin corresponding to the central bond.

A second important effect of the transverse DM interaction Dac
1 is also manifest in Fig. 7.34(a): The DM

term induces a uniform chirality-component antiparallel to Dac
1 , as expected when considering the DM

interactions as a classical potential for the chirality (see section 7.13). In terms of the spiral structure
discussed in section 7.10.1 [Fig. 7.19(a)], this corresponds to a tilt of the local spiral axis towards Dac

1 .59

59Upon increasing the magnetization within the chiral phase, oscillating long-range components appear in the longitudinal
chiral correlations, too. However, even at M{Msat « 0.34, the oscillation amplitude amounts to no more than 3% of the
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The tilt angle α can be estimated as follows. First, κxij [Fig. 7.34(a)] is averaged, yielding mean κx and
standard deviation δpκxq. The square of the longitudinal chirality pκzq2 and its uncertainty δrpκzq2s are
obtained from the asymptotic behavior of the corresponding correlation function (cf. , e. g. , Fig. 7.33).60

The same analysis is performed for the y-component of the chirality, yielding pκyq2. The estimates pκyq2

and pκzq2 incur a systematic error related to the decaying components of the correlation function. The
deviation from the expectation pκyq2 “ 0 is used to assess this systematic uncertainty. Finally, using
the notation |x|y “ maxtx, yu, the nominal value α, as well as lower/upper bounds αl{u, are estimated
according to

α “ arctan

d

|pκxq2|0
|pκzq2|0`

and αu{l “ arctan

d

|pκxq2 ˘ 2κx δpκxq|0
|pκzq2 ¯ δrpκzq2s ¯ pκyq2|0`

.

Calculations have been performed for parameter set B, as well as for models derived from it by varying
the rung coupling J4{J1 P t0, 0.5, 0.75, 1, 1.5u. The transverse DM terms mix different Sztot-sectors
and thus allow the system to be magnetized by “deformations” of the ground state before closing the
spin gap (see section 7.13 and references therein). Hence, the magnetization curves (Fig. 7.35) indicate
that the rigidity of the ground state decreases with decreasing rung coupling. For J4{J1 ě 0.5, the
correlation functions are consistent with a chiral phase analogous to the C1 phase (section 7.12) spanning
the magnetization region from gap closure61 up to M{Msat “ 0.41 at least [see Fig. 7.37(a)]. Note,
however, that the system is so deformable for J4{J1 “ 0.5 that the spin gap closes very late, atM{Msat «

0.24. A phase reminiscent of the C1-phase also seems to appear in an isolated ladder leg (J4{J1 “ 0)
for 0.25 ÆM{Msat Æ 1{3.62
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Figure 7.35: Calculated magnetization curves for parameter set B with varying rung coupling J4 (L “ 64, m “

128, s “ 24, traced). Experimental magnetization data sampled from the curves reported in [207] and [208] are
included for comparison.

The analysis of the DM-free models (see section 7.12) revealed a field-induced chiral phase (C1 phase),
with chirality pointing predominantly parallel to the applied magnetic field, in accordance with previous

uniform component of the correlation function. In terms of the longitudinal chirality itself, the relative weight is a factor of two
lower [pf ` g cospq rqq2 ∝ f ` 2 g cospq rq for |g| ! |f |]. It is therefore safe to neglect these oscillations, which corresponds
to assuming complete independence between the longitudinal and the spiraling magnetization components.

60To be precise, I calculate the mean and the standard deviation of the correlations of the longitudinal chirality on nearest-
neighbor leg bonds at distances d satisfying 14 ď d ď 20 (30 ď d ď 42) for L “ 64 (L “ 128).

61The delayed onset seen for J4{J1 “ 1.5 [Fig. 7.37(a)] is attributed to slow convergence with MPS bond dimension m
(see sections 7.10.2 and 7.14.1, and [383]).

62Its identification is difficult because the longitudinal chirality is very small. The main evidence consists in a ground-state
degeneracy at the tentative phase boundaries. Note that Db

1 breaks the symmetry of a leg with even length L (i. e. , an odd
number of NN bounds), which lifts the ground-state degeneracy within a possible C1 phase.
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work [77, 131]. In terms of the anticipated magnetic order, this corresponds to a (canted) spiral in the
plane perpendicular to the magnetic field [77, 78, 131] (cf. section 7.10). While it also appears in the
isolated zigzag chain (e. g. , [164]), this phase is stabilized by the rung couplings (section 7.12) and its
occurrence is generally found to be unaffected by DM interactions (see above, sections 7.13 and 7.14.1,
as well as brief remark in [131]). Neglecting the origin of the chirality for a moment and noting that Dac

1

is uniform on each ladder leg (Fig. 4.5), I thus arrive at the following picture: The rung coupling prefers
the chirality of both ladder legs to point parallel (and along the applied magnetic field). By contrast,
the DM interaction Dac

1 prefers an antiparallel alignment of chirality on the two ladder legs, which is
incompatible with the rung coupling (cf. Fig. 7.19). Therefore, as the rung coupling decreases, the tilt
angle of the spiral axis is expected to increase. Indeed, this is confirmed by calculations of the tilt angle
following the method outlined above (Fig. 7.36).63
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Figure 7.36: Tilt angles estimated from calculations for parameter set B with varying rung couplings J4. Shaded
areas and error bars represent the angular ranges bounded by αl and αu (see text for details). If present, points
indicate the nominal values of the tilt angle α. Calculation parameters: Generally L “ 64, m “ 128, s “ 24;
J4 “ 0 solved with m “ 512; nominal parameters (J4 “ 1) solved with m “ 512 for M{Msat Æ 0.14; data at
M{Msat « 0.38 recalculated with s “ 128 for J4{J1 “ 0.5 due to slow convergence; data at M{Msat « 0.13
recalculated with s “ 128 for J4{J1 “ 0.75 due to slow convergence; points calculated using nominal parameters
and L “ 128, m “ 256, a “ 8.

Note that the longitudinal chirality in the C1 phase is field-induced, as illustrated by Fig. 7.37(a), whereas
the transverse chirality, which is responsible for the spiral-axis tilt in the C1 phase, is already present in
the zero-field ground state [Fig. 7.37(b)]. Also, unlike its field-induced counterpart, this DM-induced chi-
rality does not affect the ground-state degeneracy. Note that this is different from the DM-induced scalar
chirality and ordered magnetic moments reported in [219] for a pyrochlore antiferromagnet. The oppo-
site J4-dependence of the two phenomena supports a scenario with competition between DM-induced
and field-induced chirality.

Finally, the dimer correlations in the zero-field ground states of all considered variants of parameter set
B, including the isolated ladder leg (J4{J1 “ 0), are not long-ranged, unlike suggested by the phase
diagram of the frustrated ladder [228] (cf. section 1.3.4).64 Similarly, the non-trivial long-range dimer

63The uncertainty grows with the magnetization, since the quasi long-ranged component of the correlations of the transverse
chirality and hence δpκxq increases. Calculations for larger system sizes should alleviate this issue.

64Note that the static transverse moments, together with a tilted spiral axis, trivially give rise to oscillations of the dimeriza-
tion which correspond to the projection of the transverse moments onto the longitudinal polarization and are ignored.
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Figure 7.37: Squared longitudinal chirality pκzq2 (a) and transverse chirality κx (b) on the nearest-neighbor leg
bond. The quantities and their uncertainties are estimated as described in the text. The calculation parameters
correspond to Fig. 7.36.

correlations observed in zero field for parameter set A with J4{J1 ď 0.25 [cf. Fig. 5.11(b), section 7.12,
and Fig. 7.26(a)] are consistently absent in the C1 phase. This phenomenology strongly suggests that
(non-trivial) dimerization and chirality are mutually exclusive,65 independent of whether the latter is
induced by a magnetic field or by DM interactions. Further analysis of the role of dimerization for the
field-induced phases of the frustrated ladder is left for future work.

7.14.3 Longitudinal component

Before discussing the effect of the longitudinal component Db
1 of the DM vector on the nearest-neighbor

(NN) leg bond, it helps to reconsider its symmetry (see Fig. 4.5): Db
1 alternates along each ladder leg with

a phase shift of π between the two legs. As discussed in section 7.10.1, and in agreement with previous
work [77, 131], the field-induced chirality (see last paragraph of section 7.13) in the frustrated ladder is
uniform and parallel to the magnetic field, which is assumed to be applied along the b-axis of the crystal
(b ‖ z). Thus, for a given choice of orientation of the field-induced chirality, the field-induced chirality
points either parallel or antiparallel to the longitudinal component of the DM interaction. Following the
intuition motivated in section 7.13, the field-induced chirality on a given NN bond is enhanced (reduced)
whenever it is parallel (antiparallel) to Db

1. The resulting situation is depicted in Fig. 7.38(b).

Since the corresponding NN bonds have shared endpoints, the only way to realize such a modulation of
the chirality for a classical spiral structure [cf. Fig. 7.19(a)] consists of a modulation of the spiral pitch
angle [∆ϕ˘ in Fig. 7.38(b)]. Consider, e. g. , the oriented NN bond depicted in green [Fig. 7.38(b)].
Clearly, flipping the total chirality interchanges “long” and “short” bonds. Therefore, the staggering
of the longitudinal chirality on the NN leg bonds—even though manifest in each individual eigenstate
[Fig. 7.38(a)]—disappears upon tracing over the ground-state eigenspace, confirming that the longitudi-
nal chirality on a single NN leg bond is not a well-defined observable (see section 7.3).

Remedy is possible by focusing on the rung bonds instead. As illustrated in Fig. 7.38(b), the alternating
pitch angles on the NN leg bonds are expected to induce a twist on the rung bonds. Consider the classical
longitudinal chirality κz of the oriented rung bond depicted in magenta [Fig. 7.38(b)]. In one of the

65This is somewhat complementary to the conclusions drawn in previous work (see [78] and [74, pp. 141-142]).
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Figure 7.38: (a): Longitudinal chirality on the NN leg (κzNN) and rung bonds (κzrung), as function of the position
along the ladder (L “ 128, m “ 128, s “ 24, a “ 1; and L “ 64, m “ 512, s “ 24, a “ 1). The
system magnetization is M{Msat « 0.12. The origin of the abscissa corresponds to the center of the ladder. (b):
Schematic representation of the effect of Db

1. The (total) field-induced chirality is indicated by the blue arrows (cf.
section 7.8.1). The lengths of the leg bonds correspond to the magnitude of the longitudinal chirality. See text for
details.

maximally-chiral states [top part of Fig. 7.38(b)],66
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“`
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ˆ
`
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˘‰
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.

In the other maximally-chiral state, the spiral orientation is different, but also the difference of the prop-
agation phases is inverted, such that
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“`
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˘

ˆ
`

cos ∆ϕ, ´ sinp´∆ϕq, 0
˘‰

z
.

Hence, the longitudinal chirality induced on the rung bonds is independent of the eigenstates and thus a
well-defined observable, as confirmed by the calculation results shown in Fig. 7.38(a).

7.14.4 Inferred magnetic structure

The expected effects of the transverse and longitudinal DM interactions on the NN leg bonds on the
ordered magnetic structure have been identified for parameter set B. The conclusions are generally
consistent with calculations performed for parameter set A with individual DM terms (section 7.13).
The results of the two preceding subsections indicate that the ordered magnetic structure in the presence
of Dac

1 and Db
1 can be described as a spiral resembling Fig. 7.19(a), except that the pitch angles and the

rotation axes alternate along each ladder leg. Due to the symmetry Cb2 relating the two ladder legs (see
section 4.2.1), the propagation of the spiraling moments is thus determined by two rotation matrices R˘
corresponding to the “long” and “short” bonds in Fig. 7.38(b).

7.15 Discussion and conclusions

Detailed numerical studies of the frustrated spin ladder were performed.67 The observed two-fold de-
generacy of many field-induced ground states is related with a reflection symmetry of the ladder system

66Complications arising due to spin canting (see sections 7.10.3 and 7.14.2) are neglected, such that the absolute propagation
phase does not matter.

67See section A.1.11 for computing resources used.
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(section 7.3). For a translationally invariant system, the two-dimensional ground-state eigenspaces are
spanned by states with lattice momenta |˘ky, which also happen to have maximal chirality (section
7.8.1). Note that the zigzag chain exhibits essentially the same symmetry [291]68 and chiral order is
known to break this spatial parity symmetry [88, 142, 164, 211, 291, 383]. Thus, the preceding re-
sults are not surprising after all. In particular, the chiral nature of the states |˘ky is fully consistent
with previous descriptions of the field-induced chiral phase of the zigzag ladder as an imbalanced con-
densation of magnetic excitations with incommensurate lattice momenta ˘q [164, 404]—an idea which
was also applied to the frustrated ladder, albeit in the regime close to saturation [367]. Clearly, suitable
interactions are needed to stabilize a broken-symmetry chiral phase (see section 7.8.2). Moreover, if
higher-dimensional couplings are present, field-induced chiral order is expected to give rise to a spiral
magnetic structure (see sections 7.8.2, 7.10.1, and references therein).

The numerical calculations confirm the previously-reported [77, 131] appearance of a chiral phase (C1
phase) in the frustrated spin ladder, and the computed correlations are consistent with an incipient canted-
spiral structure (cf. Fig. 7.19 and previous work [77, 131]). Furthermore, the dependence of the C1 phase
upon the individual exchange couplings is established. Please refer to section 7.12 for a summary of the
main results of this analysis.

A site-dependent g-tensor generally gives rise to a staggered component of the magnetic field (e. g. , [83,
306]). Certain types of staggered field were predicted to induce quantum criticality in the unfrustrated
spin-1{2 ladder [425].69 More commonly, the effect is limited to an induced antiferromagnetic magnetiza-
tion component (e. g. , in the spin-1 chain NENP [13, 83, 140]), which can, e. g. , open a field-dependent
excitation gap in an otherwise gapless spin-1{2 chain [15, 306]. Since the staggered field induced in
BiCu2PO6 is inconsistent with the next-nearest neighbor exchange couplings, it is nonetheless important
to check its effect upon the C1 phase. Corresponding calculations for the case H ‖ b indicate that the
moderately site-dependent g-factors estimated in section 5.2.1 do not destabilize the C1 phase in the
experimentally-relevant magnetization range (sections 7.11.3 and 7.13). This is consistent with the intu-
ition that the induced longitudinal staggered magnetization should not interfere with the predominantly
transverse spiraling moments. However, as noted previously [78] (see also [74, p. 145]), this is not nec-
essarily the case for the transverse field components appearing for H ∦ b, and hence may contribute to
the anisotropic phase diagram of BiCu2PO6 [207] (cf. section 4.5).

In the absence of DM interactions, the results suggest the appearance of a C1 phase for all choices of
exchange couplings which give rise to incommensurate correlations (section 7.12). Generally, chirality
and dimerization appear to compete (see end of section 7.14.2). The C1 phase is connected with the chiral
phase of the zigzag ladder (section 7.11.1). For sufficient rung coupling, it spans the magnetization range
between the field-induced closing of the spin gap and a plateau-phase at M{Msat « 1{2 (section 7.12).
Interestingly, the C1 phase is not destabilized by the inequivalence of the next-nearest neighbor (NNN)
bonds, J 12 ‰ J2 (section 7.11.3). Therefore, future work is proposed to verify the aforementioned
conjectures regarding the stability region of the C1 phase by additional calculations for the frustrated
ladder with equivalent NNN couplings (see section 7.12).

The occurrence of a C1 phase is found to be robust against weak-to-moderate DM interactions (see
sections 7.13 and 7.14.1). Even though some DM interactions like Dc

2 reduce its stability range, the C1

68The authors of [291] discuss a discrete interaction-graph symmetry, which turns out to be equivalent to P after substituting
the corresponding definitions.

69Note that [425] is motivated by copper benzoate [107] and therefore assumes a staggered field which competes with the
antiferromagnetic rung coupling. However, this is not the case for BiCu2PO6.
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phase extends beyond the range of experimentally accessible magnetizations for all considered choices of
exchange couplings and DM interactions (sections 7.12, 7.13, and 7.14). In all cases, chiral order appears
as soon as the spin gap has been closed by the applied magnetic field. Inclusion of a symmetric exchange
anisotropy associated with the DM interactions (cf. section 1.1.2) appears not to alter these conclusions
(section 7.14). The absence of additional phases between the spin-liquid ground state and the C1 phase
is confirmed by detailed calculations for parameter sets A and B (sections 7.10.2 and 7.14.1).

Correlation functions calculated in the chiral phase suggest that the DM interactions affect the chirality
in a manner consistent with the effects expected for a classical spiral magnetic structure (see section
7.13). For the DM interactions on the nearest-neighbor leg bond, which are believed to be dominant in
BiCu2PO6 [318] (cf. section 4.3.3), these effects are described in detail in section 7.14. Since the DM
interactions act like a potential for the chirality, they also induce static chirality in the spin-liquid ground
state. However, due to the symmetry of the system (section 4.3.2), no net chirality emerges below the
critical field required to close the spin gap.

Note that a qualitative remark regarding DM interactions in [131] suggests that the aforementioned ro-
bustness against DM interactions and the DM-induced perturbations of the spiral correlations were also
observed in previous work (cf. sections 7.2 and 7.13). Also, certain types of DM-induced distortions
were already considered in [74, pp. 138-140] (and [78])—motivated by classical energy considerations
reported for a triangular-lattice antiferromagnet with uniform DM vector [411].

Technically, it is possible to estimate various quantities like transverse ordered moments and spiral tilt
angles from the chirality and its correlations (see, e. g. , section 7.14.2). However, these results are
likely to change once a classical spiral structure is stabilized in the vicinity of higher-dimensional cou-
plings. While not suited to study dynamical properties like the value of the spin gap (section A.5.5), a
self-consistent combination of mean-field theory and DMRG, analogous to the treatment of the simple
ladder reported in [64], may prove useful for quantitative studies of the field-induced ordered phases in
future work. Future calculations focusing on the chiral order might also benefit from methods to select
a maximally chiral state in the DMRG procedure (see sections 7.3.2 and 7.8.1, and references therein).
Alternatively, the DMRG code could be extended to enable measurements of off-diagonal matrix ele-
ments of the chirality (see section 7.3.2). In both cases, the chirality could be measured directly rather
than having to resort to its correlation functions, which would generally reduce the computational ef-
fort. Since the effects of the DM interactions upon the C1 phase are generally consistent with classical
intuition, classical Monte-Carlo calculations might represent a complementary approach [90, 119].

7.16 Open questions regarding BiCu2PO6

The prediction of a spiral structure with distortions induced by the DM interactions, similar to the one
proposed in previous work [78], is contrasted with high-field NMR data in chapter 8. The rest of this
section is dedicated to the discussion of published magnetization and inelastic neutron scattering (INS)
data.

As described in section 4.3.3, parameter set B was obtained by fitting the measured dispersion relations
of the magnetic excitations in BiCu2PO6 to a bond-operator mean-field [317] (BOMF) theory with one-
loop corrections [179, 318].70 Experimentally, some excitation branches are found to bend towards lower
energies and terminate upon entering certain regions of energy-momentum space [318]. This breakdown

70Note that the model neglects the inequivalence of the Cup1q and Cup2q sites [179, 318].
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of the quasi-particle description of the magnetic excitations is attributed to a two-triplon continuum and
triplon-(two-triplon) processes which arise due to DM interactions [318]. While two-triplon scattering
has been observed earlier [298], the bending down of the triplon mode before merging with the continuum
is a remarkable feature, which is not captured by the BOMF theory [318]. Numerical calculations, e. g. ,
using dynamical DMRG [186] (cf. [385]), would allow to check whether all experimental observations
are reproduced by the Hamiltonian proposed in [318] or if additional interactions need to be considered
(cf. [179]).

The measured magnetization increases linearly with the magnetic field below the first critical field of
BiCu2PO6 [207], which is related to the non-vanishing low-temperature magnetic susceptibility dis-
cussed in section 5.2.1. While this behavior can be reproduced by including a site-dependent g-factor
and/or transverse DM interactions, as proposed in [207], the difference of the g-factors estimated in
section 5.2.1 is insufficient to provide quantitative agreement. The data shown in Fig. 7.29 suggest
transverse DM interactions of order 0.3 J1. This conclusion is consistent with fits to the temperature-
dependent magnetic susceptibility (chapter 5) and the aforementioned INS results [318].

Nonetheless, it has to be noted that none of the calculated magnetization curves reproduces the measured
magnetization (see Figs. 7.29 and 7.31). Most importantly, the critical field is overestimated, as already
noted in [401, pp. 10-11] (see also [131]). This observation agrees with the exact-diagonalization calcula-
tions of magnetic and thermal response functions described in [401] and chapter 5 and strongly suggests
that the frustrated-ladder model is incomplete. Note that the degeneracy of the triplet magnetic excita-
tions is fully lifted in BiCu2PO6 already in zero field [318], which is only possible if DM interactions
involving at least two different spatial directions are present [179]. Although desirable for the future, an
exhaustive search over all combinations of different DM interactions, exchange couplings, and g-factors
is not feasible within the scope of the present work (cf. section 6.8). Still, small perturbations of the
individual parameters of the Hamiltonian (4.1) are expected to be approximately independent and their
effects have been considered in the preceding subsections. The discrepancies between the calculated and
the measured magnetization curves are therefore attributed to the presence of additional interactions.71

At magnetic fields well above the critical field, the calculated and measured magnetization curves gen-
erally approach each other [see, e. g. , Fig. 7.31(a)], which corroborates the exchange-energy scales pro-
posed in the literature (cf. section 4.3.3; see also discussion in section 5.4.5 and references therein).
Thus, the main differences are restricted to the region around the critical fields. Consider the results for
parameter set B in more detail [Fig. 7.31(a)]. The critical field predicted by the calculation is of the
order of 45 T, which is larger than the two experimentally observed critical fields µ0Hc1 » 20 T and
µ0Hc2 » 34 T [207]. There is experimental evidence for the importance of interladder couplings in
BiCu2PO6 (see section 5.3), and in fact parameter set B involves such interactions (see section 4.3.3),
even though these had to be ignored for computational reasons (section 5.3). In this context, it is impor-
tant to note that the BOMF theory used to explain the INS data predicts critical fields remarkably close
to Hc1 [318], whereas the calculations performed in this work appear more compatible with Hc2. On the
other hand, the NMR data presented in chapter 8 indicate that the phase aboveHc2 corresponds to the C1
phase. Hence, similarly to the case of the two-triplon scattering reviewed above, calculations including
the interladder couplings are needed to clarify which of the observed transitions are reproduced by the
model (cf. [401, p. 11]). Answering this question is computationally expensive (see section 5.3) and
therefore left for future work. However, the proposed interladder couplings [318] are fully compatible

71As pointed out in [401], since the square-root-like onset of the magnetization reflects the density of states (cf. section
7.1.3 and references therein), its absence suggests higher-dimensional interactions such as interladder couplings.
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with the rung exchange, and therefore believed to have an effect similar to increasing the rung coupling
in the magnetically ordered phases. Thus, the stabilization of the C1 phase with increasing rung cou-
pling (section 7.12) suggests that interladder couplings alone are insufficient to explain the appearance
of a second magnetic phase transition in BiCu2PO6.72 Possible additional interactions are discussed in
chapter 8 (section 8.7.5).

Besides the questions outlined above, future theoretical work should consider the effects of combinations
of uniform and staggered magnetic fields with general orientations, as they are expected to appear for
magnetic-field orientations H ∦ b (see section 7.15 and references therein). Also, exhaustive scans of
the corresponding parameter space might be able to identify a single model which is consistent with all
experimental data.

Finally, the arguments given in section 7.8.2 suggest that interlayer, i. e. , three dimensional, couplings are
a prerequisite for long-range magnetic order. Experimentally, the field-induced magnetic order remains
stable up to temperatures T À 10 K [207], which coincides with the upper bound for the interlayer cou-
plings obtained in first-principles calculations [401]. By contrast, no appreciable dispersion is observed
along the a direction in INS experiments, suggesting that interlayer couplings are smaller ([316–318]
and [259, p. 113]). It therefore remains unclear to which extent the long-range magnetic order realized in
the field-induced phases of BiCu2PO6 depends on the three-dimensionality associated with the interlayer
couplings.

72Note that previous numerical evidence [77, 131] for the existence of a solitonic phase below the C1 phase could not be
substantiated in this work (see sections 7.6.3 and 7.10.2).
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8.1 Introduction and previous results

Exemplary results of previous 31P-NMR experiments [74, 78] probing the intermediate-field phase in
BiCu2PO6 are reproduced in Fig. 8.1. For the present work, the data obtained on pure BiCu2PO6 (x “ 0)
are of particular relevance. Peaks in the spin-lattice relaxation rate T´1

1 have been used to confirm [78]
the phase boundaries reported earlier [207]. At the critical field Hc1, the line shape manifestly changes
from a single peak to a complicated distribution with three peaks, which admits two main conclusions
[74, 78]: (i) A long-range ordered magnetic structure can only give rise to a continuous distribution
of internal magnetic fields if the propagation vector is incommensurate with the lattice [74, p. 133].
Note that some caution is required in the presence of disorder. However, incommensurate correlations
are experimentally established in BiCu2PO6 (see section 4.1). (ii) The spectra are incompatible with a
long-range ordered single-q structure (see [74, pp. 138-145] and discussion below).

Figure 8.1: (a): Previously-obtained 31P-NMR spectra of BipCu1´xZnxq2PO6 [78]. The x “ 0 (x “ 0.01)
compound was measured at T “ 0.25 K (T “ 1.4 K) and the corresponding data are shown in the foreground
(background). The magnetic fields (H ‖ b) are reported w. r. t. the corresponding critical fields of µ0Hc1 “

20.96p7q T [µ0Hc1 “ 24.21p9q T], and shifts relate to the Larmor frequency of the 31P nuclei in a reference
compound (see [308]). (b): First moment M1 and standard deviation W of the spectra for the x “ 0 compound
[78]. Lines are guides to the eye. (Reprinted figures (a) and (b) with permission from Ref. [78]. Copyright 2013
by the American Physical Society.)

It appears worthwhile to reconsider argument (ii) in more detail. As discussed in section 1.5.9, the
coupling between electronic and nuclear magnetic moments is typically linear. For a one-dimensional
ordered magnetic structure with (one-dimensional) propagation vector q, the NMR shift ν is proportional
to sinpq r ` ϕq, where r is a spatial coordinate (cf. [74, p. 139]). For incommensurate q, this corresponds
to νpαq “ a sinpαq with α quasi-continuous and uniformly distributed in r´π{2, π{2q. The intensity
Ipν0q of the NMR spectrum at frequency ν0 is hence given by the well-known double-horn line shape

147
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(e. g. , [70]; cf. [74, p. 140]) [Fig. 8.2(a) inset],

Ipν0q “

ż π{2

´π{2
dα δpνpαq ´ ν0q ∝

ż π{2

´π{2
dα

1

|cosα|
δpα´ arcsin

ν0

a
q “

rν0 P r´a, ass
b

1´
`

ν0
a

˘2
, (8.1)

where rx P As “ 1 (0) whenever x P A (x R A) [431]. By contrast, if q is commensurate and corresponds
to a lattice period1 p, the spectrum consists of p individual, discrete peaks (cf. [74, pp. 133,140]).

An extensive discussion of NMR line shapes expected in systems with incommensurate order can be
found in [61], and the fact that one-dimensional sinusoidal spiral models cannot reproduce the three-
peak line shape was shown in [74, pp. 138-140] (see also [78]). The following arguments enlarge the
class of magnetic structures which can be excluded based on the three-peak shape of the NMR spectrum
in the intermediate-field phase.

First, it is noted that (8.1) also holds for three-dimensional single-q structures. For a general three-
dimensional multi-q structure, ν “

ř

k ak sinpqk ¨ r ` ϕkq needs to be histogrammed over r P Z3.
The analysis of this general case is not straightforward. In fact, there exist multi-q scenarios which are
consistent with the observed lineshapes [61], as illustrated in Fig. 8.2(a). Clearly, the 2q component gives
rise to anharmonic2 features [Fig. 8.2(b)], resulting in a histogram remarkably similar to the experimental
data.3
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Figure 8.2: (a): Histograms of sinpq rq ` 0.45 sinp2q r ` ϕq ` δ with δ normal-distributed (standard deviation
0.1) and q “ 0.574π, for ϕ “ 0 (yellow) and ϕ “ 0.5 (blue). The inset shows a histogram of sinpq rq ` δ for
comparison. (b): Spatial dependence of sinpq rq ` 0.45 sinp2q rq (as function of r).

Consider instead a general three-dimensional multi-q structure with commensurate modulations and
distortions, i. e. , qk for k ‰ 0 is either commensurate or differs by a commensurate wave-vector from q0.
If incommensurate wavenumbers appear only along one lattice direction, the full spectrum reduces to a
superposition of a finite number of shifted spectra corresponding to the one-dimensional case. Consider
this one-dimensional case without loss of generality. The commensurate components alone give rise to a
discrete spectrum. The full spectrum is then obtained by convolution of this discrete spectrum with the

1p “ min
 

p P N` : q p “ 0 pmod 2πq
(

2The term “anharmonic” (cf. [74, p. 140]) is used to refer to functions which do not satisfy the equation of motion of a
harmonic oscillator.

3In fact, inspection of the model used to fit the spin textures shown in Fig. 7.5 shows that it corresponds to such a multi-q
structure. Although this model was already developed in previous work and was used to motivate a phenomenological model
for the NMR spectrum [74], the corresponding works resorted to the inclusion of a solitonic phase-variation to reach agreement
with the experimental data (see [75, Figs. 18,20 and eqs. 30,31], [74, p. 145 and Fig. 6.15], and [78]).
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spectrum due to the incommensurate components. Note that the convolution with the discrete spectrum
corresponds to a superposition of shifted spectra. Thus, let all qk be incommensurate without loss of
generality. By assumption qk “ q0 ` q

pcq
k with qpcqk commensurate. Since q0 is incommensurate, the

phases q0 r and qpcqk r are uncorrelated upon sampling over r. With p̄ the lowest common multiple of
the lattice periods associated with all the commensurate components qpcqk , the histogramming over the
commensurate and incommensurate phase terms can therefore be performed independently and the full
histogram is a superposition of p̄ double-horn spectra. This argument shows that, at least under the
aforementioned assumptions, the full spectrum corresponds to a superposition of shifted double-horn
spectra, which is inconsistent with the NMR data acquired in the intermediate-field phase of BiCu2PO6

for general parameter values.

Based on the experimental evidence reviewed above, the intermediate-field phase was interpreted as a
soliton-lattice phase and a phenomenological model based on solutions of the Sine-Gordon equation
was used to explain the NMR line shape [74, 78]. Furthermore, numerical calculations [77, 131] (cf.
section 7.2) indicated the appearance of a spiral phase at higher magnetic fields and it was conjectured
[78] that this corresponds to the high-field phase observed [207] in BiCu2PO6 (cf. section 4.5). These
conclusions motivated the experiments reported in the following, since spiral magnetic order should give
rise to double-horn spectra like the one depicted in the inset of Fig. 8.2(a) (cf. [78, Fig. 3b]) and thus be
easy to detect using NMR [74, pp. 139-140] (see also [78]).

The experiments were proposed (see [74, p. 156]) and initiated by F. Casola, and prepared and carried
out in collaboration with T. Shiroka and F. Casola, using single crystals grown by S. Wang. Profs. H.-R.
Ott and J. Mesot were responsible for the scientific lead and supervision of the project, and are further
involved in ongoing efforts (see [312]) to publish the results presented in part II of this work. Note also
that the data analysis presented in this chapter is generally inspired by previous work [74, 78]. Valuable
experimental contributions were also made by A. P. Reyes and P. L. Kuhns. See Acknowledgments for
more information.

8.2 Experimental details

Following the motivation outlined in section 8.1, 31P NMR experiments in high magnetic fields were
performed. For H ‖ b, the magnetic field required to reach the high-field field-induced magnetic phase
of BiCu2PO6 [cf. Fig. 4.6(a)] is µ0Hc2 ě 34 T [207]. The experiments therefore required the use of
the 45 T hybrid magnet at the National High Magnetic Field Laboratory (NHMFL) in Tallahassee (FL,
USA), which combines a 12 T superconducting “outsert” magnet with a 33 T resistive insert magnet
[269]. Two magnet times of 5 days each were dedicated to performing the experiments.4 Although the
phase diagram indicates that a 4He cryostat is in principle sufficient to study the field-induced phases of
BiCu2PO6, during the first magnet time it turned out to be prone to blockage by bubbles of diamagnetic
4He which can accumulate in the system due to the large magnetic-field gradients in the vicinity of the
magnet [2]. Later experiments therefore made use of a 3He cryostat.

The sample and the experimental setup are depicted in Fig. 8.3. The somewhat unorthodox winding
direction of the coil has been chosen because a low coil induction is preferred for bottom tuning (cf.

4Besides time constraints, the experiments are limited by the total energy budged allocated. In our case this amounted to
650 MWh for each magnet time, which allows for about 20 h of operation at maximum field.
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section 3.2).5 In addition to the strongly-anisotropic phase diagram of BiCu2PO6 [207] [Fig. 4.6(a)],
the NMR spectra recorded in the intermediate-field phase were found to be very sensitive to the sample
alignment in previous work [74]. Therefore, a two-axis rotator was used in this work to carefully align
the sample in-situ [Fig. 8.3(b)]. The details of this alignment procedure are summarized in section A.4.2.
Additional measurements of magnetization and 31P NMR performed at ETH Zürich further corroborate
the alignment and the integrity of the sample used in the high-field experiments (see section A.4.3 for
more information).

Figure 8.3: (a): Sample used in the high field experiments. (b): Two-axis rotator used at NHMFL, with sample
mount. The two rotation angles ϕ and ϑ are indicated in the figure. The bottom panel also shows the separate
coil containing the Al foil employed for the frequency calibration. (c): Sample mount consisting of G10 sample
carrier, sample, and single-turn coil made from two layers of thin Cu wires. The white substance is a PTFE coating
used to insulate the terminals of the coil. The sample has dimensions 2.9 ˆ 2.1 ˆ 1.35 mm3 and mass 46.6 mg
(measured by T. Shiroka). The approximate crystal directions indicated in (a) and (c) are consistent with earlier
documentation (by S. Wang [3]), as well as the angular dependences of the NMR shift (see sections A.4.2 and
A.4.3).

The applied magnetic field was determined from the resonance frequency of the 27Al nuclei in a piece of
aluminum foil located nearby the sample [Fig. 8.3(b) bottom].6 Besides varying the magnetic field, the
influence of temperature on the high-field phase was explored. Since the only temperature sensor avail-
able at the time of the experiment exhibited strong magnetoresistance effects, the spin-lattice relaxation
rate of 27Al [378] was used as a secondary means of determining the temperature in the vicinity of the
sample (see section A.4.1 for details).

8.3 Results

The best data obtained during the high-field experiments are summarized in Fig. 8.4. In accordance
with previous work [74, p. 138], the relaxation rates T´1

1 were determined by stretched-exponential fits
[363] to the recovery of the nuclear magnetization following a single saturating pulse.7 Unless stated

5The setup depicted in Fig. 8.3 corresponds to the one used during the second magnet time (in 2014). During the preceding
magnet time (in 2013), a multi-turn coil and top tuning were used, which has the advantage of not imposing any frequency
restrictions. However, at high magnetic fields, the output level of the available high-frequency power amplifier (250 W) was
insufficient to invert the 31P nuclei using reasonably short pulse widths.

6The effective gyromagnetic ratio is γ27Al “ 11.1122 MHz{T [74, p. 33]. A different approach was chosen for the spectra
measured at 14 K and 24 K (see end of section A.4.2). Generally, a systematic uncertainty results from the off-center position
of the reference (see section A.4.5 for details).

7The associated relative uncertainty is estimated as 10%, based on previous experience [2] and in accordance with the
results of repeated measurements of the 27Al spin-lattice relaxation rate.
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otherwise, T´1
1 was measured at a frequency close to the center of the NMR spectrum. All spectra, as

well as the relaxation rates shown in Fig. 8.4(a), were recorded using the sample alignment documented
in section A.4.2. The relaxation rates shown in Fig. 8.4(b) were obtained during an earlier magnet time
and the sample was slightly misaligned during the corresponding measurements (see section A.4.4 for
details).
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Figure 8.4: NMR spectra and spin-lattice relaxation rates T´1
1 of the 31P nuclei in BiCu2PO6, (a) as function

of temperature T and (b) as function of magnetic field µ0H ‖ b. The ordinates of the baselines of the NMR
spectra encode the corresponding temperatures and magnetic fields, respectively. The intensities are scaled to have
a common maximum value. Colors distinguish different phases and dotted lines indicate the approximate locations
of the peaks in the relaxation rates. Shifts are reported w. r. t. a standard 31P reference [308] and are subject to a
systematic field-calibration uncertainty which is expected to be common to all spectra shown in (a) and similar
(i. e. , correlated) for the spectra shown in (b) (see section A.4.5). (Updated version of a figure previously used in
[312].)

With increasing magnetic field at low temperature [Fig. 8.4(b)], as well as upon decreasing temperature
at high magnetic field [Fig. 8.4(a)], the 31P-NMR spectra evolve from a single narrow line, characteristic
of the (quantum) disordered regime [78] (cf. Fig. A.9), through the distinct three-peak structure of the
intermediate-field phase [78] (cf. section 8.1), to a previously unreported four-peak spectrum in the high-
field phase. Since the high-field phase is the primary focus of the present work, the shape of the NMR
spectra at H " Hc2 is discussed first, in section 8.6. Afterwards, I briefly describe a few ideas regarding
the intermediate-field phase (section 8.7), before concluding the chapter.

8.4 Phase boundaries

The NMR spectra depicted in Fig. 8.4 undergo distinct changes, which are accompanied by peaks in the
spin-lattice relaxation rate T´1

1 . Such peaks are expected to arise due to the softening of the excitations
in the vicinity of a phase transition (cf. section 1.5.8). They can therefore be used to map the phase
boundaries, as done in previous work on the intermediate-field phase of BiCu2PO6 [74].
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The transition temperatures Tc2 « 3.6 K and Tc1 « 8.3 K estimated from the temperature-dependence
of T´1

1 at µ0H “ 37.7 T [Fig. 8.4(a)], as well as the critical field µ0Hc2 « 35.5 T obtained from
the field-dependence at T “ 1.8p3q K [Fig. 8.4(b)], are compared with recently-reported [207, 208]
phase diagrams of BiCu2PO6 in Fig. 8.5. The agreement with the literature is very good. Although
T´1

1 decreases quickly upon reducing temperature, the data do not admit firm statements regarding the
presence or magnitude of an excitation gap.

Figure 8.5: Comparison of phase boundaries deduced from the 31P-NMR spin-lattice relaxation rates T´1
1 shown

in Fig. 8.4 (magenta asterisks) with the phase diagrams reported in Refs. [207] (a) and [208] (b). Dashed lines il-
lustrate the temperature and magnetic-field ranges covered by the T´1

1 data shown in Fig. 8.4. (Reprinted figure (a)
with permission from Ref. [207]. Copyright 2012 by the American Physical Society. Phase boundaries annotated
with permission. Reprinted figure (b) with permission from Ref. [208]. Copyright 2014 by the American Physical
Society. Phase boundaries annotated with permission.)

8.5 Analysis of NMR shift

If one assumes that the uniform component of the ordered magnetic structure does not break the rotation-
symmetry Cb2 about the b-axis of the crystal (see section 4.2.2), the first moment of the NMR spectrum
can be related with the sample magnetization [74, p. 133]. In this case, the NMR shift K, w. r. t. the 31P
resonance frequency in BiZn2PO6, is given by (cf. section 6.5.1)

K{γ31P “ 2
2
ÿ

i“1

Λbbi m‖,i `
2
ÿ

i,k“1

”

Dbb
i,k ` 2plD ´ lq

µ0µB
V

ı

gbbi m‖,i . (8.2)

Here, m‖,i denotes the uniform component of the longitudinal ordered moment on the Cupiq site (m‖,i “

´xS
pkq,z
i,r y), which is assumed to be the same for all ladder units in the crystal. The shift K is expressed

in frequency units and γ31P is the gyromagnetic ratio of the 31P nucleus [308]. The remaining notation
is consistent with chapter 6. The matrices Λi “ Ai gi describe the hyperfine couplings estimated in
section 6.6.3 (see Fig. 6.2 for the coupling geometry). Correspondingly, Di,k (section 6.3.5) represents
the dipolar coupling to all Cupiq sites in the magnetic layer selected by k P t1, 2u (see section 6.2 for
site-indexing conventions). Since there are two such sites per unit cell, the demagnetization correction
(see section 6.3.2) involves a factor two. The demagnetization factors l and lD correspond to the sample
geometry and the summation region used to evaluate the dipole-coupling matrices (cf. section 6.3.2),
respectively. The rather simple form of the expression for K is due to the fact that the b direction is
a principal axis of the g-tensors gi [74, p. 96] (cf. section 4.3.1). Finally, the four P sites present in
BiCu2PO6 (see Fig. 6.1) are related by the symmetries σa and Cb2, as will be discussed in more detail



8.5 Analysis of NMR shift 153

below (section 8.6.2). Unless the hyperfine couplings are field-dependent, arguments analogous to those
presented in section 8.6.2.5 show that the average NMR shifts of the four P sites are degenerate, which
is why the P-site index was omitted in equation (8.2).

Clearly, a relation betweenm‖,1 andm‖,2 is needed in order to solve equation (8.2) for the magnetization
M “ 1

2

ř

i g
bb
i m‖,i. For parameter set A (see section 4.3.3), the smaller frustration of the Cup1q sites

results in a preferential magnetization of the Cup1q sublattice [cf. Fig. 7.6(b), see also [77, p. 8]]. By
contrast, the g-factors estimated in section 5.2.1 counteract this preference and yield a predominantly
staggered longitudinal magnetic response in the spin-liquid phase (cf. Fig. 5.2). With increasing mag-
netization, these two effects compete, as illustrated in Fig. 8.6. Direct use of the curve obtained for pa-
rameter set A did not provide satisfactory results.8 However, this is not unexpected given the uncertainty
regarding the model parameters (see sections 4.3.3 and 5.4.5), as well as the observation that the model
generally appears to be incomplete (sections 5.5 and 7.16). In the absence of additional constraints, and
in accordance with parameter set B deduced from inelastic neutron scattering [318], m‖,1 « m‖,2 is
therefore assumed in the following.
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Figure 8.6: Ratio of sublattice magnetization calculated using DMRG for parameter setA with uniform (L “ 256,
m “ 128, s “ 24) and site-dependent g-factors estimated in section 5.2.1 (L “ 256, m “ 512, s “ 512). The
dotted line illustrates the behavior expected for parameter set B which assumes equivalent Cu sites.

The results of the analysis are summarized in Fig. 8.7. The new NMR data agree reasonably well with
previous results [74]. Differences are attributed to different sample temperatures during the correspond-
ing experiments. Indeed, a decrease ofK at low temperature was reported in the intermediate-field phase
[74, Fig. 6.8a]. Moreover, complete alignment of the sample was not possible during the measurements
yielding the open circles (see section A.4.4).

Differences with published magnetization data [207, 208] are not unexpected given the significant un-
certainties associated with the hyperfine couplings (sections 6.7 and A.4.4), as well as the arbitrariness
of the assumption m‖,1 “ m‖,2. Accepting that the presence of two inequivalent Cu sites precludes a
model-free estimation of the magnetization from the NMR data, the overall good qualitative agreement
with the published magnetization data is nonetheless reassuring and corroborates that the assumptions
made above are approximately correct.

All data shown in the inset of Fig. 8.7 were recorded following a careful sample alignment procedure
(see section A.4.2). In particular, the data points at temperatures T ď 13.5 K were measured without
any intermittent changes of magnetic field or sample alignment. Therefore, the uncertainty of the rel-

8This remains the case when using the magnetization data from [207] to obtain an interpolation H ÞÑM in order to work
around the overestimated critical field (see [401] and section 7.12).
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Figure 8.7: High-field magnetization estimated from analysis of 31P-NMR shifts using equation (8.2). Previous
NMR results (“old”) originate from Ref. [74, p. 134], whereas new results (“new”) correspond to the data shown
in Fig. 8.4 (filled symbols) and Fig. A.9 (open symbols), respectively. A demagnetization factor l “ 0.55p10q
is used for the high-field sample shown in Fig. 8.3(a) (“new”), while l « 0.33p30q is assumed for the previous
results. In addition to the demagnetization factors, the error bars also account for the field-calibration uncertainties
estimated in section A.4.5. Low-field 31P NMR [see Fig. A.7(a)] and magnetization [dashed line, extrapolated
from µ0H “ 0.5 T; see Fig. 5.1(b) for data source and details] were measured at ETH Zürich. Magnetization
values sampled from the curves reported in Refs. [207] (crosses) and [208] (triangles) are included for comparison.
The inset shows the temperature dependence of the magnetization in the high-field phase.

ative temperature-induced changes is much smaller than suggested by the error bars. Note that under
the assumptions made above, equation (8.2) predicts a linear relation between magnetization and NMR
shift. Considering the inset of Fig. 8.7, the NMR shifts clearly pass through a minimum at both phase
transitions—a behavior which remains to be explained. Furthermore, an increase of the NMR shift is
observed outside the magnetically-ordered phases, which suggests that a gap towards magnetic excita-
tions is either absent or comparable to the thermal energy scale. The preceding observations agree with
previous measurements of the temperature-dependence of the 31P-NMR shift at Hc1 ă H ă Hc2 [74,
Fig. 6.8a]. However, these features are not necessarily related to the net magnetization, since the pecu-
liar temperature-dependence of the NMR shift may equally well indicate the breakdown of any of the
assumptions made in the course of the above analysis.

8.6 Interpretation of NMR spectra in the high-field phase

In this section, I discuss the shape of the NMR spectra acquired in the high-field phase of BiCu2PO6 (or-
ange data in Fig. 8.4) in more detail. The relation between the following subsections should become clear
from the concluding discussion in section 8.6.6, which also summarizes the most important intermediate
results.
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8.6.1 Phenomenology

As seen in Fig. 8.4(b), the 31P-NMR spectra develop a forth peak in the high-field phase of BiCu2PO6.
The continuous appearance of the NMR spectra (see section 8.1 and references therein), numerical cal-
culations [401] (see also chapter 7), and neutron scattering experiments [259, 316, 318], all indicate that
correlations along the b-direction are incommensurate.

The line shape acquired at µ0H “ 42.2 T [Fig. 8.4(b)] is believed to be representative of the NMR
spectrum well within the high-field phase (H " Hc2) and is therefore considered in more detail in
the following. Qualitatively, the spectrum appears to consist of two superimposed double-horn spectra,
similar to the one shown in the inset of Fig. 8.2. Such a shape was predicted earlier for the high-field
phase [74, 78]. To illustrate the similarity, the measured spectrum is fitted using a superposition of two
double-horn spectra, resulting in the black line shown in Fig. 8.8(a). The estimated widths of the two
double-horn components are 0.2 MHz and 0.65 MHz, respectively.9 The average shift is the same for
both components and amounts to 0.75 MHz. A Gaussian broadening of 0.11 MHz full-width at half-
maximum (FWHM) is included. Hints of a fine structure in the narrow component of the spectrum are
attributed to the strong angular-dependence of the NMR spectrum in the high-field phase.10
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Figure 8.8: (a): Fit to, and resulting double-horn model for, the 31P-NMR spectrum measured at µ0H “ 42.2 T
[Fig. 8.4(b)]. See text for details. (b): Fourier transforms of 31P-NMR echoes acquired 30 ms (dark colors) and 60 s
(light colors) after a comb of 50 saturation pulses with 1 ms interpulse delay at µ0H “ 42.2 T and T “ 1.7p2qK.
The black line shows the corresponding complete spectrum [cf. (a)]. Intensities are normalized to the maxima of
the data acquired at 60 s delay. (c): Relaxation of nuclear magnetization corresponding to the data shown in (b).
The intensities are rescaled to agree at large delays. (Subfigures (a) and (b) reused from [312].)

Note that the areas of the two fitted double-horn components have a ratio of approximately 2 : 3. How-
ever, there is no apparent physical reason why such a ratio should arise in BiCu2PO6. For any single-q
magnetic structure, each of the four P sites in BiCu2PO6 is expected to give rise to a double-horn spec-
trum (see section 8.1). Hence, as long as the magnetic unit cell coincides with the crystallographic one,
intensity ratios of 0 : 1, 1 : 1, or 1 : 3 are expected. Visually, the deviation of the data from this predic-
tion is not dramatic, as illustrated by the gray curve in Fig. 8.8(a), in which the relative intensities of the
two components were adjusted to 1 : 1. Two possible origins for the relative reduction of the observed
intensity of the narrow double-horn component of the spectrum are proposed.

First, the spectra were acquired by summing Fourier-transformed spin echoes obtained at different fre-
quencies [91] and the bandwidth of each of the echoes was smaller than the width of the central double-
horn contribution. The recorded signals were generally very strong and therefore prone to distortion
by a possible non-linear response of the receiver electronics (signal compression), which can result in a

9These widths correspond to 2a in equation (8.1).
10Note that the fine-structure initially present in the blue trace disappeared after the alignment scan shown in Fig. A.6(b).
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reduced amplitude of the central peak (see section A.4.6 for details).

Secondly, the nuclear-spin dynamics appear to be different for the two double-horn components. The
colored data shown in Fig. 8.8(b) were acquired in the same experimental conditions and using the same
NMR pulse sequence, consisting of a train of evenly-spaced pulses. Clearly, the nuclear magnetization
is saturated in one case (blue data), but not in the other (red data).11 Furthermore, the corresponding
relaxation curves [Fig. 8.8(c)] cannot be fitted using stretched exponentials. This is not the case when
using a single saturating pulse instead of the pulse train. Note that the spin-spin relaxation rate is most
likely too short to explain this behavior (cf. Fig. A.9). A possible explanation might be spectral diffusion
(e. g. , [422, p. 30]), which could also explain the otherwise observed stretched-exponential recovery.
In a classical spiral structure, phason-like sliding modes of the spiral might give rise to such effects.12

However, additional experiments would be needed to study this behavior more systematically.13

8.6.2 General spiral structures

8.6.2.1 General symmetry considerations

Each unit cell of BiCu2PO6 contains four P sites (Fig. 6.1). Therefore, four double-horn contributions
are expected to arise for a general single-q magnetic structure, or a sample which is misaligned along
a general direction (see section 8.1; see also [75, Fig. 15]). The experimental procedure is assumed
to guarantee the orientation H ‖ b to a good approximation (see sections 8.2 and A.4.2). It is further
assumed that correlations along the b-direction are incommensurate (see section 8.6.1).

The symmetric appearance of the NMR spectrum reflects the fact that the average NMR shift is the same
for all P sites (section 8.6.1), which indicates that the uniform longitudinal magnetizations m‖,1 and
m‖,2 are equal for all ladder units. Since m‖,i merely defines the average NMR shift already analyzed in
section 8.5, the corresponding q “ 0 component of the magnetic structure is ignored in the following.

Guided by the dominant exchange couplings (see section 4.3.1), the magnetic order in BiCu2PO6 is
believed to be defined by the one-dimensional ladder units. Thus, each ladder unit is assumed to adopt
a general magnetic structure with incommensurate wavevector qb (cf. [74, pp. 138-139]). Without loss
of generality, this magnetic order is taken to have a net chirality along the b-direction, as suggested
by numerical calculations (see chapter 7 and references therein). The magnetic structure may involve
distortions like those expected to be induced by the DM terms (see sections 7.13 and 7.14.4). Although
motivated by the anticipated spiral order (cf. chapter 7), these assumptions neither exclude various non-
uniform components of the longitudinal magnetization (as long as their phase is locked to the spiraling
moments), nor elliptical spirals.

While an extension of the discussion to other cases is possible, the antiferromagnetic interladder coupling
Ji established by inelastic neutron scattering (INS) [316, 318]14 is anticipated to co-align the chiralities
and phases of all ladder units within each bc plane (cf. [419] and Fig. 4.4). By contrast, not much is
known about the couplings between the bc planes (see section 7.16). INS observed no dispersion along
the a direction, indicating that interplane couplings are very weak [316, 318]. Meanwhile, the stacking

11Note that the shortest delay is much smaller than T1 of the narrow double-horn contribution.
12Assuming, e. g. , that the two non-degenerate double-horn contributions are due to the Pl and Pl`2 sites (Fig. 6.1).
13No additional measurements were performed in this work, since relaxation measurements are very time consuming and

an influence of extrinsic factors like mechanical vibrations cannot be ruled out on millisecond time scales.
14Dispersion minima are observed at integer multiples of 2π{c [316, 318].
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of the magnetic structure along the a direction is important for the NMR spectrum, because dipolar
coupling between electronic moments and nuclear spins is not negligible in BiCu2PO6 (section 6.3.3).

The four P sites are connected by the crystal symmetries σa, σc, and Cb2 (see section 4.2.2, cf. [74,
p. 105]). Of these symmetries, onlyCb2 is preserved in a magnetic fieldH ‖ b.15 If the magnetic structure
is invariant underCb2 (up to translations), the spectral contributions of the Pl and Pl`2 sites are degenerate
(cf. Fig. 6.1). For the structures considered here, this corresponds to two independent conditions: (i) The
distortions of the (spiral) magnetic structure must be compatible with crystal symmetry, and (ii) the
stacking order of the bc-planes must be (approximately) symmetric w. r. t. each individual bc plane (or
most bc planes, see section 8.6.3.7).

8.6.2.2 Proposed magnetic structure for individual ladder

As discussed in chapter 7 and references therein, numerical calculations suggest the emergence of a
field-induced spiral phase in BiCu2PO6. The DM interactions are expected to induce distortions like
tilting of the spiral axis (see section 7.14.2), as well as twisting, i. e. , variations of the pitch angle (see
section 7.14.3). For the sake of manageability, I assume that these distortions of the incommensurate
spiral structure are compatible with the translation symmetry of the crystal lattice along the b-direction.
I introduce a rung-index ρ P Z which enumerates the rungs of the ladder unit under consideration. The
four translationally-inequivalent Cupiq sites of the considered ladder are then indexed by i P t1, 2u and
the rung-parity ppρq P t0, 1u.16 Assuming planar spirals on each of the four sublattices,17 the magnetic
structure is hence given by

mi,ρ “ R
`

αi,ppρq, γi,ppρq
˘

¨

˝

mK,i,ppρq cos
`

qb ρ` ϕi,ppρq
˘

0
mK,i,ppρq sin

`

qb ρ` ϕi,ppρq
˘

˛

‚ ,

where the angles α... and γ... parametrize the tilt of the spiral axis towards the a and c directions, respec-
tively,

Rpα, γq “ RapγqRcpαq “

¨

˝

cosα ´ sinα 0
cos γ sinα cosα cos γ ´ sin γ
sinα sin γ cosα sin γ cos γ

˛

‚ .

Here, Rvpϑq denotes the rotation with angle ϑ about the (oriented) axis v, and mi,ρ “ ´xSi,ρy is used
in order to avoid the negative sign associated with the electron charge (cf. section 1.5.9).

Note that tilted-spiral models were already proposed and considered in previous work [74, 78]. The
above equations represent a natural extension which incorporates the DM-induced distortions discussed
in chapter 7.

15Note that H is an axial vector. The other symmetries compatible with H ‖ b (σb and inversion) do not provide any
additional information.

16In the notation of section 6.2, ppρq corresponds to r, i to i, and k “ 1.
17The irrelevance of the q “ 0 component of the structure is justified in section 8.6.2.1. Certain types of longitudinal mod-

ulations (note that amplitude-modulated structures were reported for Zn-doped BiCu2PO6 [259, p. 174]) were also considered,
but are omitted for readability.
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8.6.2.3 Structural chirality

Strictly speaking, Cb2 is the only exact symmetry of BiCu2PO6 in a magnetic field, such that the two
crystallographically equivalent bc planes depicted in Fig. 4.4 become inequivalent. Indeed, inspection of
the crystal structure shows that the two types of bc planes have different structural chirality, as visualized
by the black arrows in Fig. 4.4(a) (cf. section 4.2.2).18

Due to its chiral nature, the magnetic field can therefore, in principle, have different effects upon the two
types of bc planes. In particular, the ordered moments and/or the orientation of the longitudinal chirality
might be different for each of the two bc-planes. Such a situation could be favored if, e. g. , magneto-
elastic effects involving DM interactions [304, 356] give rise to a coupling between the chirality of
the crystal structure and that of the magnetic moments. While this possibility appears interesting, it
also implies that the hyperfine and dipolar couplings will deviate from those estimated from the low-
field data (chapter 6), which precludes quantitative considerations. Nonetheless, if the Cb2-symmetry
discussed in section 8.6.2.1 is preserved, the aforementioned scenario would be qualitatively consistent
with the observed NMR spectra.

8.6.2.4 Specialization to symmetric spiral

If structural effects like those proposed in section 8.6.2.3 are negligible, the ordered magnetic moments
in the two types of bc planes are expected to be the same.

One possibility to obtain a partial lifting of spectral degeneracies, as observed in the experimental data
(section 8.6.1), then corresponds to magnetic structures which spontaneously choose to satisfy the DM-
induced spiral-axis tilt distortion on one ladder leg only. Such structures correspond to those considered
in previous work [74, p. 130] (see also [78]). They were also considered in detail in the context of this
work and found quantitatively consistent with the data. Meanwhile, heuristic potential-energy models
for the classical spiral structure19 suggest that additional interactions are required to stabilize such a
configuration. Since, in addition, the magnetic field does not lift the degeneracy of the two ladder legs,
this scenario appears less likely than the hypothesis postulated in section 8.6.2.3.

The second possibility, which will be considered throughout the rest of this analysis, is that the DM
interactions are fully satisfied, such that the distortions of the spiral-structure are compatible with the
crystal symmetry, as suggested by the calculations in chapter 7. Since interladder couplings are anti-
ferromagnetic [318] (cf. section 8.6.2.1), translation invariance along the c-direction is expected. Thus,
the magnetic structure in each bc plane of the crystal (see Fig. 4.4) is fully constrained, and the only
remaining degrees of freedom correspond to fixing the orientation of the chirality20 and the propagation
phase δϕpsq for each of the bc planes (indexed by s P Z). The reference for the phases δϕpsq is chosen
such that it is consistent with translations along the a direction, as well as the reflection symmetry σc
(Fig. 8.9), which is advantageous for the symmetry considerations in the following subsection.

18When looking along the b direction, the oriented Cup2q-Cup1q-Cup2q angles, measured from the leg towards the rung
bond (and after projection into the ac plane), are close to 90˝ and close to 270˝, respectively.

19The transverse DM components are assumed to provide a linear potential D ¨ κλ for the classical chirality κλ on ladder
leg λ (cf. section 7.13), whereas rung exchange and external fieldH are modeled by terms proportional to κ1 ¨κ2 and κi ¨H ,
respectively.

20The weak interlayer coupling [316, 318] (cf. section 8.6.2.1) may not be sufficient to co-align the net chiralities of the
different bc planes.
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Figure 8.9: Schematic representation of a cut through an ac-plane of BiCu2PO6 (cf. Fig. 6.1). Rung bonds are
indicated using thick black lines, interladder (Ji) and tentative interlayer bonds (Ja) using dashed black lines.
Dark and light blue arrows show the magnetic structures obtained for the corresponding choices of δϕpsq. The
(fractional) translation associated with the crystal symmetry σc (see section 4.2.2) can be chosen such that the
symmetry relates the two sites connected by the green dotted line.

8.6.2.5 Symmetry considerations for linear coupling

The spectra of the two types of bc planes can only be related if the Zeeman term is assumed to be the only
magnetic-field dependent term in the nuclear-spin Hamiltonian—besides the electronic spins, of course,
which are usually replaced by the ordered magnetic moments in the spirit of an adiabatic approximation
(see section 1.5.9). In particular, this means that the crystal structure, and hence the dipolar and hyperfine
couplings, are taken not to be affected by the magnetic field. Although often made implicitly, this
assumption is not unquestionable, especially when magnetoelastic effects might be present (cf. section
8.7.5). Nonetheless, it shall be adopted for the remainder of this discussion. The idea underlying the
following arguments is that transformations of the hyperfine field Bh ÞÑ σaBh, Bh ÞÑ σbBh, or
Bh ÞÑ σcBh do not affect the shape of the resulting 31P-NMR spectra (after histogramming). Note that
throughout this subsection, all symmetries are represented by their matrices and all vectors, including
magnetic field and ordered moments, are mathematically treated like polar vectors. To keep the following
arguments reasonably compact, I specialize to the spiral structure defined in section 8.6.2.2.

• As depicted in Fig. 4.1(c), the Cupiq and P sites are located in common, equally-spaced ac planes
[11], which can be labeled using a linear index ρ P Z. Consider thus a reference Pl site and a pair
of Cupiq sites related by the σb-type reflection (cf. section 4.2.2) about the ac-plane containing
the reference Pl site. No assumption about the relative displacement along the a and c directions
is made. Using the ac-plane indexing, the ordered moments of the two Cupiq sites are mi,ρ and
mi,´ρ (without loss of generality). The hyperfine field Bplqh created by these moments at the
reference nucleus is

B
plq
h “ Λ

plq
´ mi,´ρ ` Λ

plq
` mi,ρ ,

with the generic coupling matrices Λ
plq
˘ describing the corresponding dipolar and/or hyperfine

couplings (cf. section 1.5.9). Crystal symmetry mandates Λ
plq
˘ “ σb Λ

plq
¯ σb. Note that σbB

plq
h is
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expected to give rise to the same NMR spectrum asBplqh , and

σbB
plq
h “ Λ

plq
´ σbmi,ρ ` Λ

plq
` σbmi,´ρ .

The substitution ρ ÞÑ ´ρ corresponds to a change qb ÞÑ ´qb, which is equivalent to reversal of lon-
gitudinal chirality (cf. section 7.8.1). Meanwhile, pp´ρq “ ppρq and hence σbRpαi,pp´ρq, γi,pp´ρqq “
Rp´αi,ppρq,´γi,ppρqqσb. This inversion of the tilt angles is consistent with chirality reversal (cf.
section 7.13). Thus, σbmi,´ρ corresponds to the same magnetic structure as mi,ρ, but with re-
versed chirality, which proves that, under the aforementioned assumptions, the 31P-NMR spectra
are insensitive to the orientation of chirality.21

To prepare the discussion of the symmetries σa and σc, consider a crystal symmetry g (g2 “ 1) which
relates Pl and Pl1 and for whichBplqh and gBplqh give rise to the same contribution to the NMR spectrum.
Generally, Bplqh “

ř

j Λ
plq
j mj for some site-index j. The coupling matrices corresponding to different

P sites are related through g: Λ
pl1q
gpjq “ gΛ

plq
j g. Hence, gBplqh “

ř

j Λ
pl1q
j gmgpjq. Therefore, the spectral

contributions from the Pl and Pl1 sites are degenerate if gmgpjq and mj describe the same magnetic
structures (up to translation).

The following arguments are specific to the symmetric spiral structure introduced in section 8.6.2.4, such
that the magnetic structure of each bc plane, indexed by s P Z, is defined by selecting a propagation phase
δϕpsq and an orientation of the longitudinal chirality cpsq P t´1, 1u.

• The symmetry σc transforms the two types of bc planes into one another (see Fig. 8.9). For the
assumed structure, it inverts the chirality and the γ...-tilt angle, which is consistent with DM-
induced distortions. The stacking order of the bc-planes is unaffected. By invoking the preceding
result for σb, the spectral contributions of the Pl and Pl`1 sites are found to be degenerate if there
exist b P t0, 1u, d P Z, and22 ϕ0 P R such that

@s P Z :
”

cps` 2d` 1q “ p´1qb cpsq

^ δϕps` 2d` 1q “ p´1qb δϕpsq ` ϕ0 pmod 2πq
ı

. (8.3)

• Similarly, σa connects the two types of bc planes and inverts the chirality. The tilt angles again
transform consistently with crystal symmetry and hence with DM-induced distortions. In addition,
the stacking order along a is inverted, such that the spectral contributions of the Pl and Pl`3 sites
are found to be degenerate if there exist b P t0, 1u, d P Z, and22 ϕ0 P R such that

@s P Z :
”

cp´s` 2d` 1q “ p´1qb cpsq

^ δϕp´s` 2d` 1q “ p´1qb δϕpsq ` ϕ0 pmod 2πq
ı

. (8.4)

It is instructive to consider the simple choice cpsq “ p´1qs u, where u “ 0 (u “ 1) corresponds to
uniform (alternating) stacking of chirality. Clearly, both (8.3) and (8.4) require b “ u.

21Some care is needed regarding the phases ϕi,ppρq. While the argument clearly holds for a uniform spiral [ϕi,ppρq “
0 @ i, ppρq, without loss of generality for qb incommensurate], it remains valid for the twisting-distortions induced by Db

1 and
Db

4 (section 7.14.3), since “long” (“short”) bonds are mapped onto “long” (“short”) bonds in Fig. 7.38(b).
22A constant phase offset is irrelevant for incommensurate qb (cf. translation symmetry reviewed in section 7.8.2).
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• Consider (8.3) first. If u “ 0, δϕ has to be translation invariant. The simplest, but not the
only,23 solution is d “ 0 ñ δϕpsq “ 1

2qa s. For u “ 1, one finds alternating stacking δϕpsq “
p´1qsδϕ0 ` φ0 (with φ0 P R) instead.23

• Condition (8.4) is simpler. One finds δϕp´s ` 2d ` 1q “ p´1qu δϕpsq ` ϕ0, with ϕ0 P t0, πu
[ϕ0 P r0, 2πq] for u “ 0 [u “ 1], which merely demands that the stacking order be symmetric
about the a-direction while the values of δϕpsq for even (or odd) s can be chosen arbitrarily.

• Lastly, the combination of (8.4) with the mono-layer (d “ 0) solutions of (8.3) is considered.
For u “ 0, the resulting condition reads @s : 1

2qa “ qa s pmod πq implying qa P 2πZ. The
case u “ 1 yields ϕ0 “ 2φ0, which does not restrict any actual parameters of the structure. As
expected, these results are consistent with the requirement of a-symmetric stacking obtained by
considering Cb2 “ σa σc in section 8.6.2.1.

8.6.3 Explicit models

8.6.3.1 Possible spiral structure

As discussed earlier in this section (section 8.6), a variety of spiral structures which are compatible
with an NMR spectrum consisting of two non-degenerate double-horn contributions (Fig. 8.8) exists.
In particular, such spiral structures can involve twist (section 7.14.3) and tilt distortions (section 7.14.2).
The model presented in the following focuses on the NMR data shown in Fig. 8.8(a), which were obtained
at µ0H “ 42.2 T, corresponding to a magnetization M{Msat « 0.045 [207]. Moreover, the model is
motivated by inelastic neutron-scattering results which suggest that the DM interactions on the nearest-
neighbor leg bonds are dominant [318] (cf. section 7.14).

Coupling effects between the twist and tilt distortions caused by Db
1 and Dac

1 , respectively, are expected
to be of order OpDb

1D
ac
1 q and therefore neglected. In section 7.14.2, spiral-axis tilt angles α „ 40˝

were estimated from numerical calculations. An analogous treatment for the local deviation from purely
antiferromagnetic correlations on the rung bond yields ∆ϕ˘ “ 101p2q˝ ¯ |∆ϕr| with |∆ϕr| « 11˝ [cf.
Fig. 7.38(b)].24 While these estimates are rather crude (see section 7.15), they suggest that the spiral-
axis tilt is dominant. Furthermore, since the hyperfine couplings of the P nuclei only involve next-nearest
neighbor Cu sites ([22] and [74, p. 105]; cf. Fig. 6.1), the twisting distortion mainly contributes through
the altered rung correlations [∆ϕr in Fig. 7.38(b)]. Increasing the rung coupling tends to decrease the
tilt angles, as shown in Fig. 7.36, and is expected to have the same regularizing effect upon ∆ϕr. Hence,
interladder couplings are believed to affect both distortions similarly, such that the twist distortion can
be neglected, which has the additional advantage of reducing the already abundant number of degrees of
freedom of the model.

Focusing on tilt distortions of the spiral axes which are DM-induced and hence consistent with the crystal

23Values d ‰ ´1, 0 give rise to analogous 3-layer, 5-layer, . . . , stacking sequences.
24The average pitch angle 0.55π ď q ď 0.57π of the spiral is obtained from the spin correlations calculated for parameter

set B in chapter 7 (see section 7.6.3 or [78] for parameter set A, and [74, p. 114] for the doped case). Then, the asymptotic
longitudinal chiral correlations on the leg bonds correspond to m4

K sin2 q, which yields mK “ 0.0282p1q. Finally, the asymp-
totic longitudinal chiral correlations on the rung bonds correspond to m4

K sin2 ∆ϕr cos2 α, giving |∆ϕr| “ 11.4p1q˝. Note
that the estimated ∆ϕ` is consistent (within error) with the fact that the chirality is maximal for a pitch angle of 90˝.
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symmetry, the spiral structure introduced in section 8.6.2.4 is parametrized as

m
pkq
i,r px, y, zq “

¨

˝

0
m‖,i

0

˛

‚` p´1qi`r`1mKR
´

p´1qk`1αi,r, γi,r

¯

¨

˝

cospϕi,r,kpx, y, zqq
0

sinpϕi,r,kpx, y, zqq

˛

‚ , (8.5)

with αi,r “ p´1qi`r`1α0, γi,r “ p´1qi`r`1γ0, and the propagation phase

ϕi,r,kpx, y, zq “ 2πq‖ ¨

ˆ

cpsq py ´ r
2q

z ` pk ´ 1qp´1qipr ´ 1
2q

˙

` δϕpsq ,

where s “ 2x`pk´1qp2r´1q, such that the chirality orientation cpsq “ ˘1 and the relative propagation
phases δϕpsq of the individual bc planes follow the conventions described in section 8.6.2.4. The Cu-site
indexing corresponds to Fig. 6.1 (section 6.2; mpkq

i,r px, y, zq “ ´xS
pkq
i,r px, y, zqy) and q‖ describes the

propagation within each bc-plane (consistently with section A.2.2). The specialization to antiferromag-
netic interladder couplings implies q‖ “ pqb, 0q.25 The same tilt angles are assumed for the Cup1q and
Cup2q sites on each ladder leg, which is expected for the experimentally-suggested [318] DM interaction
Dac

1 (cf. Fig. 4.5) and further reduces the number of free parameters.

8.6.3.2 Long-range order along the a-direction

First consider the case of three-dimensional long-range order,26 and focus on the two possible choices of
parallel or antiparallel alignment of chirality in neighboring bc-planes, i. e. , u “ 0 or u “ 1, respectively,
in cpsq “ p´1qs u (cf. sections 8.6.2.5 and 8.6.3.1). The requirements for symmetry-induced spectral
degeneracies for both cases have been worked out in section 8.6.2.5.

In the case u “ 1, the constraints imposed by a spectral degeneracy due to σc are more restrictive than
those corresponding to σa. A possible stacking order giving rise to two non-degenerate double-horn
contributions is given by δϕpsq “ p´1qs 1

2qa s `
1
2p1 ´ p´1qsqφ0. However, it appears that opposite

linear propagation of the two types of bc planes would require a coupling between next-nearest neighbor
bc planes. Since this is inconsistent with the layered crystal structure of BiCu2PO6 (see section 4.3.1),
the corresponding magnetic structures are not considered further.

For u “ 0, the constraints imposed by σc are less restrictive than those imposed by σa, and possible
stacking orders giving rise to two non-degenerate double-horn contributions to the NMR spectrum are
given by δϕpsq “ 1

2qa s with a low-symmetry qa, i. e. , ´1
2qa ‰

1
2qa pmod 2πq ô qa R 2πZ. Such a

structure is plausible, since interlayer couplings between adjacent bc planes should be sufficient for its
stabilization.

8.6.3.3 Long-range order along the a-direction: Quantitative model

Consider the three-dimensional long-range ordered magnetic structure proposed in section 8.6.3.2 (for
u “ 0). The symmetry arguments made in the preceding sections imply that the spectral contributions

25By considering an individual classical rung dimer with Heisenberg exchange, an average relative propagation phase of π
between the two ladder legs is found energetically optimal, at least for total tilt angles below 45˝.

26Note that only antiferromagnetic interladder coupling Ji (cf. section 8.6.2.1) is compatible with long-range order along
the a direction (cf. Fig. 8.9).
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of the P sites associated with the two types of bc planes are degenerate. I therefore focus on the Pl sites
(l “ 1, 3) located in the k “ 1 bc-plane at x “ 0. An analytic expression for the full width wplq of the
double-horn contribution arising from these Pl sites can be obtained. As in the preceding sections, an
antiferromagnetic interladder coupling is used. Due to the various trigonometric functions in eqs. (8.1)
and (8.5), a formulation using complex phasors zplq is convenient, such that wplq “ 4γ31P µB |zplq| and

zplq “ z
plq
h ` z

plq
d

z
plq
d “

1

2

ÿ

j,r1,k

exp
´

i∆δ
plq
j,r1,k

¯ ”

A
plq
j,r1,k,1 ´ iA

plq
j,r1,k,3

ı

z
plq
h “

ÿ

jPt1,2u

p´1qj`1mK,j

”

cos γj,r0

´

Λbcj sin q0 ` Λbbj sinαj,r0 cos q0

¯

`i
´

Λbaj cosαj,r0 ` Λbcj sinαj,r0 sin γj,r0

¯

sin q0 ` iΛbbj sin γj,r0 cos q0

ı

A
plq
j,r,k “ p´1qj`r`1mK,jB̂ ¨M

plq
j,r,k,q gj,k R

´

p´1qk`1αj,r, γj,r

¯

∆δ
plq
i,r1,k “ ´r0π ` 2πqapk ´ 1qpr1 ´ 1

2q ` 2πqb
1´r0´r1

2

q0 “ p´1qr0 π qb

q “ 2π pqa, qb, 0q

αj,p “ p´1qj`p`1α0

γj,p “ p´1qj`p`1γ0 .

(8.6)

Here, r0 denotes the parity of the rungs to which the Pl site couples through hyperfine couplings (cf.
r-index in Fig. 6.1) and the dipole-coupling matrices M plq

j,r,k,q are defined according to equation (6.2)
(section 6.3.1). The hyperfine couplings Λi were estimated in section 6.6.3 and the g-tensors in section
5.2.1. The notation is generally consistent with chapters 5 and 6.

8.6.3.4 Long-range order along the a-direction: Candidate solutions

The results (8.6) allow for quantitative comparisons with the observed NMR spectrum described in sec-
tion 8.6.1. Within the considered subclass of possible magnetic structures, each structure is determined
by the choice of qa, qb, mK,1, mK,2, α0, and γ0.

To reduce the set of candidate solutions further, qb “ 0.574 is fixed based on inelastic neutron scattering
[316, 318], and consistently with numerical calculations (cf. chapter 7 and references therein). Note
that the primary goal is to show that solutions exist. Meanwhile, there is a large number of models
which yield NMR spectra consisting of two double-horn contributions. Ultimately, the experiment only
constrains the widths wp1q and wp3q of these two contributions, such that the model for the magnetic
structure is highly underconstrained. Therefore, the parameters obtained in the following are unlikely
to be related to those of the actual magnetic structure. Set mK,1 “ mK and mK,2 “ f mK. Since
the Cu moments in BiCu2PO6 have spin-1{2, physical solutions must satisfy mK,i ď 1

2 . Furthermore,
the arguments presented in section 7.11.3 suggest that f „ 1. Then, for each choice of qa P r0, 1q and
pα0, γ0q P r´90˝, 90˝s2, the two remaining parameters pmK, f ) are fully constrained by the experimental
data.

A candidate magnetic structure obtained following this approach is depicted in Fig. 8.10. To check (8.6),
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the NMR spectrum shown in Fig. 8.10(c) [and Fig. 8.8(a)] was calculated independently. A computer
program was written to evaluate equations (6.5) and (6.1) directly on a finite lattice.27 The program
estimates the uniform component of the magnetic structure and corrects for the demagnetization tensor
of the sample. The magnetic structure is specified by a callback function returning mpkq

i,r px, y, zq, which
coincides with equation (8.5) in the present case.28 Note that the same program has been used to test the
symmetry arguments discussed in the preceding sections for selected example cases.
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Figure 8.10: (a), (b): Magnetic spiral structure proposed for the high-field magnetic phase of BiCu2PO6 (H ‖
b). Intraladder bonds are indicated by gray cylinders and Cu moments mpkq

i,r px, y, zq “ ´xS
pkq
i,r px, y, zqy by

arrows. The black-orange symbols indicate the orientation of the DM-induced spiral-axis tilt (perpendicular to the
b-direction) of the spiral structure realized on each of the four ladder legs shown (cf. Fig. 4.5). Panel (b) shows two
adjacent ac planes, the more distant one being represented using fainter colors. (c): Simulated line shape [gray line
in Fig. 8.8(a)], illustrating the double-horn contributions from the individual P sites. The hyperfine couplings listed
in Tab. 6.2 (Group 1) and the g-tensors obtained in section 5.2.1 are used. A Gaussian broadening of 0.11 MHz
(FWHM) is applied. The parameters of this particular solution are qb “ 0.574 2π{b, qa “ 0.5 2π{a, α0 “ 4˝,
γ0 “ ´10˝, mK,1 “ 0.483 ~, mK,2 “ 0.95mK,1, and m‖ “ 0.034p1q ~. (Updated version of a figure previously
used in [312].)

8.6.3.5 Long-range order along the a-direction: Parameter uncertainties

The results of the preceding subsection (section 8.6.3.4) demonstrate that the NMR spectrum observed
in the high-field phase of BiCu2PO6 (see section 8.6.1) is quantitatively consistent with a spiral magnetic
structure. On the other hand, the large uncertainties of the coupling parameters describing the g-tensors
and hyperfine interactions (sections 5.2.1 and 6.7), raise questions about the significance of this result.

27Conceptually, such simulations of NMR spectra, including the use of periodic boundaries to efficiently account for the
dipolar couplings, are standard practice and have also been used in previous work (see, e. g. , [75, pp. 26,28], [74, Figs. 6.11(a-
c),6.15], and [78]).

28For efficiency reasons, the model is evaluated only once and periodic boundaries are used along a and c. The program is
implemented in MATLAB and performance-critical parts like dipole sums are either reduced to dense linear-algebra operations
on large matrices or accelerated using (automatically-generated) C code, in addition to parallel evaluation. Dipole sums are
typically performed over spheres with radius 50 Å, which corresponds to„ 5000 unit cells. See footnote 27 for related previous
work.
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The parameter uncertainties are accounted for by considering perturbations of the nominal solutions,

gαβi ÞÑ g1i
αβ
“ gαβi

´

1` δgαβi

¯

Λbβi ÞÑ Λ1i
bβ
“

ÿ

α

Λbαi

´

1` δΛbαi

¯

`

g´1
i g1i

˘αβ
.

(8.7)

Following the discussion in sections 5.2.1 and 6.6.4, the ranges of the sixteen allowed deviation parame-
ters are restricted according to |δgαβi | ď 0.1 and |δΛbαi | ď 0.25 (|δΛbai | ď 0.1 for fit group 2). Note that
this uncertainty model is quite generic, since it also includes parameter sets which violate some of the
assumptions made during the estimation of the nominal parameter values.

Generally, the parameters of the candidate magnetic structures are found to be very sensitive to the
coupling parameters. This can be understood by reconsidering the position of the 31P nuclei (Fig. 6.1).
For H ‖ b, the antiferromagnetic interladder coupling [318] and the approximate σc symmetry of the
crystal (see section 4.3.2) suggest that the b-projections of the hyperfine fields created by the oscillating a
and b components of the ordered moments on the Cup1q and Cup2q sites nearly cancel each other. Since
the corresponding hyperfine couplings are dominant (cf. Tabs. 6.2 and 6.3), this enhances the relative
uncertainty of the net hyperfine field at the P site.

In principle, the coupling parameters could be sampled randomly, according to a suitable distribution.
Together with the model for the magnetic structure (8.6), the set of candidate solutions could then be
analyzed using statistical methods. However, such an approach is computationally expensive and un-
likely to be of practical use given the strong sensitivity to the model parameters expected based on the
preceding discussion. Instead, one- and two-parameter variations parametrized according to equation
(8.7) with δΛbαi P t0,˘0.1,˘0.25u and δαβi P t0,˘0.1u are considered.29 This procedure corresponds
to a discretized second-order expansion in the coupling parameters. For each variation of the coupling
parameters, candidate solutions are obtained analogously to section 8.6.3.4.

Even the simplified treatment outlined above produces large sets of candidate magnetic structures. Since
the primary intention is to check consistency with experimental data, a representative, plausible solu-
tion is obtained for each variation of the coupling parameters by selecting the candidate which is most
compatible with f “ 1 (mK,2 “ f mK,1 « mK,1, see end of section 7.11.3). For the coupling param-
eters of fit group 1 (fit group 2) (cf. section 6.6.3), the representative solutions satisfy |1 ´ f | ă 0.11
(|1 ´ f | ă 0.44), ´7˝ ď α0 ď 12˝ (´6˝ ď α0 ď 10˝), ´24˝ ď γ0 ď 5˝ (1˝ ď γ0 ď 24˝), and
0.2 ~ ď mK,i ă 0.5 ~ (0.17 ~ ď mK,i ă 0.5 ~). The magnitude of the total tilt angle is below 25˝ in
both cases and qa assumes values between 0.2 and 0.85.30

The somewhat large deviation from f “ 1 observed for fit group 2 can be interpreted as indirect evidence
corroborating the correctness of the peak assignments yielding fit group 1 (cf. section 6.6.3). Either
way, the orders of magnitude of the remaining parameters seem plausible, especially for the hyperfine
couplings of fit group 1. In this sense, the considered class of spiral models is quantitatively consistent
with the NMR data presented in section 8.6.1. However, due to the vast number of possible solutions, the
significant uncertainties of the coupling parameters, and the fact that the considered class of models is
not even the most general one, no further analysis of the set of possible magnetic structures is attempted.

29This yields 945 possible parameter variations, which are sampled exhaustively. For the hyperfine couplings of fit group 2,
δΛbai P t0,˘0.1u is used in accordance with section 6.7.

30Note that changing qa ÞÑ ´qa merely interchanges the spectral contributions of the P1 and P3 sites. Without loss of
generality, wp3q ą wp1q is assumed.
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8.6.3.6 Short-range order along the a-direction: Random walk

Once qb, as well as the tilt angles α... and γ..., are fixed, the spiral structure proposed in section 8.6.3.1 is
fully constrained within each bc plane of the crystal (up to the ordered moments). The remaining degrees
of freedom merely correspond to the stacking of these bc planes, viz. the choice of chirality cpsq and
propagation phase δϕpsq of each bc plane (indexed by s P Z).

On the other hand, the summation formula (A.5) (re-derived following [292, 438] in section A.2.2)
suggests that the dipolar field created by the neighboring bc planes decays rapidly with distance, so that
short-range order along the a-direction might be sufficient to explain the observed NMR spectra. Let
the matrix M plq

i,r,k,q‖
pxq describe the dipolar coupling of the Cupkqi,r moments in the bc-plane intersecting

the unit cells with a-coordinate x P Z with the Pl-site in unit cell p0, 0, 0q (see section 6.2 for notation).
This convention allows the above matrices to be calculated using equation (A.5) (see section A.2.2 and
references therein). The expressions (8.6) can be generalized to obtain the width wplq “ 4γ31P µB |zplq|
of the double-horn contribution to the NMR spectrum created by the Pl (l “ 1, 3) sites in the bc-plane
with s “ 0. After some algebra, I obtain the following result

zplq “ ei δϕp0qz
plq
h ` z

plq
d

z
plq
d “

ÿ

s

ei δϕpsqz
plq
d psq

z
plq
d ps “ 2x` tq “

1

2

ÿ

j,r

p´1qj`r`1mK,j exp
´

i∆δ
plq
j,r,t`1

¯

B̂ ¨M
plq
j,r,t`1,cpsqq‖

pxq gj,t`1R
`

p´1qtcpsqαj,r, cpsq γj,r
˘

p1, 0,´iqT

∆δ
plq
i,r1,k “ ´r0π ` 2π cp2x` pk ´ 1qp2r ´ 1qq qb

1´r0´r1

2

z
plq
h “

ÿ

jPt1,2u

p´1qj`1mK,j

”

cospcp0q γj,r0q
´

Λbcj sin q0 ` Λbbj sinpcp0qαj,r0q cos q0

¯

`i
´

Λbaj cospcp0qαj,r0q ` Λbcj sinpcp0qαj,r0q sinpcp0q γj,r0q
¯

sin q0

`iΛbbj sinpcp0q γj,r0q cos q0

ı

q‖ “ 2π pqb, 0q

q0 “ p´1qr0 π cp0q qb .
(8.8)

The transformation properties of the individual objects imply that zplqd psq ÞÑ ´z
plq
d psq upon changing

cpsq ÞÑ ´cpsq. Similarly, zplqh ÞÑ ´z
plq
h upon changing cp0q ÞÑ ´cp0q. Therefore, the equations (8.8)

can be recast as
zplq “

ÿ

sPZ
cpsq ei δϕpsqzplqpsq , (8.9)

for suitably defined zplqpsq. Here, zplqpsq is independent of cpsq and δϕpsq. After choosing δϕpsq “
1
2qa s and cpsq “ 1, the result (8.6) is recovered. However, the formulation (8.9) is clearly more powerful.
Most notably, the distribution of the widths of double-horn contributions in a sample with disordered
stacking along the a direction is identified with the radial end-point distribution of a two-dimensional
random walk with step sizes |zplqpsq|.
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8.6.3.7 Short-range order along the a-direction: Range of dipolar couplings

Equation (8.8) can be used to estimate the step sizes |zplqpsq|. Results for the candidate solution from
Fig. 8.10 are shown in Fig. 8.11. Clearly, the contributions of the individual bc planes to the hyperfine
field at the P site decay rapidly with distance. This has two consequences: (i) It is sufficient if the
stacking order assumed in section 8.6.3.4 is realized only locally, on length scales corresponding to a
few unit cells, and for a majority of reference lattice planes; and (ii) the random-walk averaging of
equation (8.9) required to calculate the NMR spectrum for disordered stacking configurations converges
rapidly with the number of considered bc planes.
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Figure 8.11: Hyperfine-field contributions |zp1qpsq| from individual bc planes (indexed by s P Z, see section
8.6.3.6 for notation). The parameters of the magnetic structure correspond to Fig. 8.10.

8.6.3.8 Short-range order along the a-direction: Results

A systematic quantitative survey of disordered-stacking scenarios analogous to the analysis performed
for certain classes of three-dimensional long-range ordered magnetic structures (sections 8.6.3.4 and
8.6.3.5) is beyond the scope of this work. Instead, two particular examples of short-range stacking order
are considered in order to illustrate the qualitative features of the resulting NMR spectra.

The distributions assumed in the following for cpsq and δϕpsq (see section 8.6.3.6) are symmetric w. r. t.
the a direction and do not distinguish between the two types of bc-planes (corresponding to even and
odd s). Therefore, after ensemble-averaging over disorder realizations, the NMR spectra of all P-sites
are expected to be degenerate, which is why the P1 site is considered without loss of generality.

Perhaps the most obvious disordered-stacking scenario is that the interlayer couplings are too weak to
establish any relation between the magnetic structures of the individual bc planes. In such a case, other
mechanisms like pinning of the magnetic structure by defects may dominate and the phases δϕpsq are
expected to be uniformly distributed in r0, 2πq. Because of the special form of (8.9), the choice of cpsq
does not matter as long as it is uncorrelated with δϕpsq. The resulting spectrum is depicted in Fig. 8.12(a)
and is clearly inconsistent with the salient features of the measured data (section 8.6.1).

However, there exist disordered-stacking scenarios yielding NMR spectra which are consistent with the
experimental results. One such structure is obtained by assuming parallel chirality in all bc planes, i. e. ,
cpsq “ 1, and a discrete uniformly-distributed relative stacking phase δϕpsq ´ δϕps ´ 1q P t´δ, δu.
Such a stacking could arise due to geometrical frustration of the interlayer couplings, which is not in-
conceivable considering the crystal structure of BiCu2PO6. In fact, such couplings have been reported
in first-principles calculations focusing on the related compound BiMn2PO6 [289]. Setting δ “ π{2
for analogy with section 8.6.3.4, the spectrum shown in Fig. 8.12(b) is obtained. Clearly, this spectrum
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is qualitatively consistent with the data and quantitative agreement could be reached by tweaking the
parameters slightly. Note that, after summing up the contributions from all P sites, the final spectrum is
unaltered even if the two stacking phases occur with different probabilities. The striking similarity be-
tween Fig. 8.12(b) and Fig. 8.10(c) is not accidental. In fact, the data shown in Fig. 8.11 (section 8.6.3.7)
show that the sum over lattice planes appearing in the calculation of the width of the NMR spectrum in
the case of three-dimensional long-range order is dominated by the two bc planes directly adjacent to the
considered P site.
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Figure 8.12: Calculated NMR spectra for δϕpsq uniformly distributed in r0, 2πq (a) and δϕpsq ´ δϕps ´ 1q
uniformly-distributed in t´ 1

2π,
1
2πu (b). Terms with ´10 ď s ď 10 were considered in the random-walk av-

eraging of |zplq| [equation (8.9)], sampling 2 ¨ 104 disorder realizations. An intrinsic Gaussian broadening of
1.7% (FWHM of broadening w. r. t. full line-width of double-horn contribution) was assumed for each individual
disorder realization. The remaining parameters correspond to Fig. 8.10.

8.6.4 High-temperature line shape

To conclude the analysis of the experimental results, a short comment regarding the NMR spectra mea-
sured at high magnetic field and high temperature seems appropriate. As seen in Fig. 8.4(a), the NMR
lines measured outside the magnetically-ordered high-field phase exhibit a shoulder-like feature on the
low-frequency side.

The finite geometry of the sample is expected to affect the line shape through the position-dependence of
the demagnetizing field [Fig. 8.13(a)] (see also section 6.3.4). While the resulting line-width is consistent
with the data, the overall line shape is not [red dotted line in Fig. 8.13(b)],31 indicating that the low-
frequency shoulder must have a different origin. It has been checked by additional experiments that no
such features are observed in low magnetic fields (section A.4.3). Thus, the low-frequency shoulder is
either an extrinsic experimental effect of the high-field NMR setup, or due to a field-induced change of
the properties of the sample.

Experimentally, such distortions of the line shape can be caused by field inhomogeneity. While the
field-inhomogeneity of the high-field magnet system alone appears insufficient [125], the observed ef-
fect might be caused by field inhomogeneities created by the sample environment (cryostat and NMR
probe) (cf. [134, 294]). On the other hand, no such features were observed at H ă Hc1 during earlier

31Note that the discrepancy between calculated and observed line shape persists when tilts of the box-shaped sample of the
order of 15˝ are included in the model.
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Figure 8.13: (a): Distribution of demagnetization factors within a box-shaped sample with dimensions pa, b, cq ∝
p3.1, 2, 4.1q, for a field applied along the b direction (calculated according to [194]). (b): Comparison of NMR
data (solid lines) with the line shape calculated from the results shown in (a) (dotted line). See text for details.

high-field measurements (see section A.4.4).32 The data depicted in blue and black/gray in Fig. 8.13(b)
were measured before and after a scan of the sample rotation angle [cf. Fig. A.6(b)], respectively. By
contrast, intermittent changes of temperature and field ramps during the temperature scan summarized
in Fig. 8.4(a) did not seem to affect the high-temperature line shape. This suggests that the distortion of
the high-temperature line shape is due to the sample environment, which has changed slightly during the
aforementioned alignment scan.

Meanwhile, a field-induced structural distortion of the crystal cannot be completely excluded. In the
latter scenario, the line shape might reflect domain walls. This possibility is exciting, since it could
correspond to the elusive chiral phase without long-range magnetic order [21, 68, 419] (cf. sections 7.1.2
and 7.8.2). Ultimately, only additional high-field experiments can clarify the nature of the high-field
high-temperature phase.

8.6.5 Multiferroicity

Ferroelectric behavior is often observed in materials exhibiting spiral magnetic order [81]. Indeed, recent
high-field experiments on BiCu2PO6 observed the appearance of electric polarization at Hc2 [188]. For
H ‖ b, the polarization is orthogonal to H and predominantly directed along the a direction of the
crystal [188]. While the ac-component of the electric polarization shows an order-parameter-like onset
starting at Hc2, the b-component appears discontinuously at Hc1 and then passes through a peak at
Hc2 [188].33 These results [188] suggest that BiCu2PO6 is an improper magnetic ferroelectric [81].
It appears worthwhile to discuss the implications of the aforementioned experimental findings for the
possible magnetic structures considered in the preceding sections.

• In a Ginzburg-Landau treatment of electric polarization P and magnetization M , the lowest-
order coupling between the two order parameters is given by the so-called Lifshitz invariant
PiprqMjprq BkMlprq [278]. Re-iterating the derivations outlined in Ref. [278] for orthorhom-

32The magnetic field range was restricted due to technical reasons during the second magnet time (see section A.4.2).
33Note that a biasing electric field was applied in the experiment [188], such that the b-component most likely reflects the

behavior of the electric susceptibility.
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bic symmetry, the polarization arising due to improper ferroelectricity is

P “ χe
ÿ

i‰j

γij pMi BjMj ´Mj BjMiq ei , (8.10)

where χe denotes the (anisotropic) electric susceptibility in the absence of magnetism [278]. Under
the assumption of a magnetic structure

Mprq “M1e1 cosQ ¨ r `M2e2 sinQ ¨ r `M3e3 , (8.11)

the simple relation P ∝ χeM1M2pe3ˆQq commonly stated in the literature (e. g. , [81]) is recov-
ered [278], provided that e3 [278] andQ´ pQ ¨ e3qe3 point along principal axes of the crystal.34

The preceding considerations suggest that P ‖ c for the spiral structures considered in section
8.6.3.3 [Q “ pqa, qb, 0q], which is not fully consistent with the measured [188] polarization.

While the result (8.10) seems generic in nature, its derivation relies on a continuum description
of the electric and magnetic fields in the crystal [278]. In order to justify equation (8.11), the
microscopic magnetic field needs to be averaged over length scales corresponding to the lattice
constants. However, the spatial period corresponding to the wavevector Q is comparable to the
lattice constants, too. It is therefore not particularly alarming if this macroscopic model fails to
describe the multiferroic behavior of BiCu2PO6.

• Microscopic considerations for a superexchange configuration suggest that

P ∝ eij ˆ̂̂ pSi ˆ̂̂ Sjq , (8.12)

where eij connects the magnetic moments Si and Sj [199]. Applying this result to the leg bonds
of BiCu2PO6 and the magnetic structure considered in section 8.6.3.3, the net polarization is pre-
dicted to vanish as a result of the symmetry of the individual ladder units (see also [404]). A net
chirality could only result on the interlayer bonds in this case. However, these bonds are expected
to be very weak [318] and equation (8.12) suggests that P ‖ c. An alternative possibility is that
the magnetic structure breaks the symmetry of the individual ladder units (see section 8.6.2.4).

• Another microscopic model has been obtained through perturbation theory for the Hubbard model,
yielding

δni “ ni ´ 1 “
ÿ

jk

8
tijtjktki
U3

rSi ¨ pSj ` Skq ´ 2Sj ¨ Sks , (8.13)

where ni is the charge density on lattice site i and the sum extends over all triangles pi, j, kq [68].
Application of (8.13) to the frustrated ladder model for BiCu2PO6 (cf. section 4.3.1) and assuming
that the system is not dimerized, as suggested by numerical calculations (cf. section 7.15 and
references therein), merely predicts a charge redistribution among the Cup1q and Cup2q sites due
to J 12 ‰ J2. Again, no net polarization emerges due to the Cb2-symmetry of the individual ladder
units.

From a more abstract point of view, the magnetic field H ‖ b lifts all symmetries except σb and Cb2,
and the latter is broken by the magnetic structure proposed in section 8.6.3.3. Thus, from a symmetry
perspective, any orientation of P KH is permitted.

34Note that the preceding condition differs slightly from the one given in [278].
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Furthermore, it should be noted that neither of the two aforementioned microscopic theories [68, 199]
appears to have considered the effect of DM interactions, which might explain the unexpected orientation
of the electric polarization. Also, the reported magnitude of the electric polarization in BiCu2PO6 („
30 µCm´2 [188]) is one order of magnitude smaller than, e. g. , in TbMnO3 [81]. Thus, multiferroicity
may simply be a result of a small perturbation on top of an almost symmetric spiral structure like the
one described in section 8.6.3.3. Finally, calculations indicate that the field-induced spiraling moments
appear in the plane perpendicular to the magnetic field (see section 7.10 and references therein). Hence,
the magnetic structure on all ladder units is expected to follow the external magnetic field upon slight
misalignment of the sample. Via equation (8.12) this could then give rise to a measurable net electric
polarization.

8.6.6 Discussion

The NMR spectrum measured in the high-field phase can be described using two double-horn compo-
nents [Fig. 8.8(a)] (section 8.6.1). This is generally consistent with the conclusions from calculations
performed for the frustrated-ladder model, which indicate the emergence of field-induced spiral order
(see [78] and chapter 7).

Assuming a spiral structure and antiferromagnetic interladder couplings, as indicated by inelastic neutron
scattering [316], constrains the class of possible magnetic structures within each bc plane of the crystal
(section 8.6.2.2). The remaining degrees of freedom are associated with the details of the magnetic
structure, as well as the stacking along the a-direction, where magnetic interactions are weak [316].

In order to obtain two non-degenerate double-horn contributions for H ‖ b, as observed experimentally
(section 8.6.1), the magnetic structure must break one of the symmetries connecting the four types of P
sites in the BiCu2PO6 crystal (see section 8.6.2). Three possible scenarios have been considered:

1. Strictly speaking, the magnetic field itself already reduces the corresponding symmetry group
from Z2 ˆ Z2 to Z2 (section 8.6.2.1). Thus, the two types of bc planes in the crystal become
inequivalent in a magnetic field due to their chiral structure (section 8.6.2.3). If there is any
coupling between this structural chirality and the magnetic moments, the two types of layers may
adopt different magnetic orders. However, neither the magnetic Hamiltonian (4.1), nor the nuclear-
spin Hamiltonian, contain corresponding interaction terms, which is why this scenario has not been
explored further.

2. By assuming that the symmetry-allowed couplings between magnetic and structural chirality in-
voked in scenario 1 are indeed negligible, which is compatible with field-independent hyperfine
interactions, the entire zero-field space group of the crystal can be used to analyze the spectral
degeneracies in the high-field phase (section 8.6.2.5). Assuming a single-q magnetic structure
with magnetic unit cell equal to the crystallographic one, the symmetries relevant for spectral de-
generacies are σa, σc and Cb2 (see section 8.6.2.1). Since they generate a group isomorphic to
Z2ˆZ2, exactly two of these symmetries need to be broken in order to obtain two non-degenerate
double-horn contributions.

One possibility discussed in section 8.6.2.4 is that the spiral exhibits distortions, e. g. , tilts of the
spiral axes, which are incompatible with the crystal symmetry, like the structures proposed and
considered in previous work [78]. While such behavior may be relevant for H ∦ b, there is no
experimental or theoretical evidence for its appearance in the caseH ‖ b. Therefore, the following



172 8 BiCu2PO6: High-field nuclear magnetic resonance experiments

symmetry discussion (section 8.6.2.5) is specialized to the case that any distortions of the spiral
structure are compatible with crystal symmetry (section 8.6.2.4). Such distortions are expected to
be induced by DM interactions (see sections 7.13 and 7.14). In addition, under these assumptions,
the spectral contribution of each P site is found to be invariant under global chirality reversal
(section 8.6.2.5).

An explicit parametrization of the spiral structure anticipated for dominant DM interactions on the
nearest-neighbor bond (see [318]) is given in section 8.6.3.1. The subsequent discussion focuses
on this subclass of magnetic structures.

a) If long-range order along the a direction is assumed (section 8.6.3.2), quantitative features
of the NMR spectrum can be expressed in closed form (section 8.6.3.3). In particular, plau-
sible magnetic structures which are quantitatively consistent with the measured data are ob-
tained (Fig. 8.10). Based on systematic considerations of variations of the NMR coupling
parameters, it is argued that this observation is robust against parameter uncertainties (sec-
tion 8.6.3.5).

b) The explicit model from section 8.6.3.3 is extended to include arbitrary stacking configura-
tions along the a direction (section 8.6.3.6). In this case, the calculation of the NMR spectra
corresponds to a random-walk averaging. Two illustrative models are considered in section
8.6.3.8. Most importantly, a scenario with parallel chirality but fixed relative stacking angle
with randomly-chosen sign is also shown to be consistent with the experimentally observed
spectrum (Fig. 8.11). This is related to the fact that the dipole field at the 31P nucleus is
dominated by the contributions of the two adjacent magnetic layers, which is why the line
shape is mainly determined by the short-range stacking order (section 8.6.3.7). Meanwhile,
contributions from stacking defects might explain the broadening of the NMR spectra in the
high-field phase [cf. Fig. 8.8(a)].

To summarize the conclusions: (i) The 31P-NMR spectra in the high-field phase (H " Hc2) are quali-
tatively consistent with two non-degenerate double-horn contributions and therefore a single-q structure
which partially lifts the symmetry of the four P sites (see sections 8.1 and 8.6.1). (ii) Even within a
strongly restricted subset of all possible spiral structures,35 there exist many candidate solutions which
yield quantitative agreement with the measured NMR spectrum (section 8.6.3). This conclusion is robust
against parameter uncertainties (section 8.6.3.5) and has been validated by symmetry arguments (section
8.6.2) and explicit modeling of the NMR spectrum (sections 8.6.3.3 and 8.6.3.4). (iii) While quantitative
agreement might also be achievable for amplitude-modulated structures, numerical calculations strongly
suggest that the field-induced order in BiCu2PO6 is chiral (see [78] and section 7.15). (iv) Chirality
is generally believed to be a prerequisite for multiferroic behavior (e. g. , [81, 199]), which has been
observed in BiCu2PO6 [188] (cf. section 8.6.5). Thus, while the precise magnetic structure cannot be
inferred from the NMR data, the preceding arguments strongly suggest that the high-field field-induced
magnetic order in BiCu2PO6 is of the spiral type.

35For instance, the spiral-axis tilts were assumed to result from the DM interaction Dac
1 and to be equal for both Cu sites.

In general, many other DM-induced distortions are possible (cf. section 8.6.3.1). Also, other types of symmetry-breaking
structures exist, such as those enumerated above, and the ordering-wavenumber qb may deviate from the minimum of the
dispersion of the magnetic excitations [228].
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8.7 Intermediate-field phase

8.7.1 Phenomenology of NMR spectra for Hc1 ď H ď Hc2

The 31P-NMR spectra obtained in the intermediate-field phase (light blue data in Fig. 8.4), appear asym-
metric when compared to previous reports [78] (cf. Fig. 8.1). On the other hand, the experiments reported
herein were the first to allow for an in-situ alignment of the sample (see section 8.2). In previous work,
the sample was visually aligned ex-situ, and the NMR coil was mainly supported by the wires connect-
ing it to the NMR probe [3] (cf. [74, Fig. 2.7d]). A small residual misalignment, possibly enhanced
by magnetic torque (see section A.4.2), can therefore not be excluded. This hypothesis is supported by
the following observations: (i) Asymmetric spectra were also observed during previous high-field exper-
iments [74, Fig. 6.8b]. (ii) The spectrum acquired at µ0H “ 25 T with a slightly misaligned sample
(Fig. A.9) qualitatively resembles the previous spectra. Moreover, the narrow central peak develops a fine
structure as the magnetic field approaches Hc2 (Fig. A.9), and a similar fine structure is present in earlier
data collected at 31 T [74, Fig. 6.7]. (iii) By contrast, a line shape with at most three peaks is observed
throughout the entire intermediate-field phase in the measurements reported in Fig. 8.4, corroborating
the correct alignment of the sample during the corresponding experiments.

Furthermore, the above discussion suggests that the spectra acquired at lower magnetic fields (e. g. ,
µ0H « 25 T) might resemble previous data more closely. If this is true,32 the persisting asymmetry
of the spectra upon increasing temperature towards the phase boundary Tc1 in high field [Fig. 8.4(a)],
indicates that the corresponding transition may be different from the field-induced one at Hc1 and low
temperature.

8.7.2 Models for the NMR spectrum

As reviewed in section 8.1 (see also [74, pp. 138-140]), the three-peak NMR spectra observed in the
intermediate phase appear inconsistent with generic single-q magnetic structures. By contrast, multi-q
structures can yield similar spectra {[61] and Fig. 8.2(a)}. More generally, the three-peak structure of
the spectrum suggests an anharmonic (in the sense of section 8.1) propagation of the magnetic structure.
For instance, the spatial variation of the hyperfine field shown in Fig. 8.2(b) is almost sinusoidal. This
explains the appearance of the lower- and upper-frequency peaks, which resemble a double-horn spec-
trum [Fig. 8.2(a) inset], whereas the additional saddle points seen in Fig. 8.2(b) give rise to a third peak
(see [61], cf. [74, p. 145] and [78]).

Phenomenologically, almost sinusoidal structures resembling the multi-q scenario described above can
be constructed by replacing the linear propagation phase u “ q ¨ r of a single-q magnetic structure by
the Jacobi amplitude ampu, kq [61, 432]—an approach used successfully in previous work [78]. How-
ever, the corresponding models predict equal intensities for the low- and high-frequency peaks, which
is inconsistent with the data obtained at H À Hc2 (section 8.7.1). By contrast, the multi-q structure
mentioned above essentially corresponds to the inclusion of higher harmonics like cospq ¨ rq2, and such
hyperfine-field configurations are known to generate intensity distributions with lower symmetry [61,
e. g. Fig. 12].

Although phenomenological models providing a good fit to the NMR spectra measured in the intermediate-
field phase are likely to exist, the search for such models needs to be guided by physical intuition. How-
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ever, unlike the high-field chiral phase discussed in section 8.6, the intermediate-field phase appears not
to be captured by the current theoretical models for BiCu2PO6 (section 7.16), which is why no further
attempts to analyze the NMR spectra obtained in the intermediate-field phase have been made.

8.7.3 Solitons

In previous work, the phenomenological description of the NMR spectra using the Jacobi elliptic func-
tions (cf. section 8.7.2) was interpreted as evidence for the formation of a field-induced soliton lattice
[78]. A heuristic reason is that the Jacobi amplitude appears in solutions of the sine-Gordon equation
[274] which describe lattice arrangements of solitons [61].

Solitons are topologically non-trivial solutions of differential equations, usually the equations of motion
of a (quantum) field theory [105, 331]. The concept has also been applied to condensed-matter sys-
tems (e. g. , [56, 61, 65, 243, 265, 285, 332]). Asymptotically, solitons often correspond to different
homogeneous vacua [105] and thus can be considered as domain walls or defects [265]. Since the do-
mains separated by a single domain wall have infinite extent, the energy barrier to destroy an isolated
soliton is infinite, which stabilizes the soliton [265]. Excitations are soliton-antisoliton (bound) states,
viz. domains [265]. The potential energy is proportional to the surface of these domains, which is why
soliton-antisoliton pairs are typically confined in systems of dimension larger than one (e. g. , [225]).
The one-dimensional (Ising) magnet is a well-known example for such behavior (see [182, 225, 417]
and [265, pp. 320]). Here, a single spin-flip corresponding to a spin-1 excitation fractionalizes into two
domain walls called spinons (see, e. g. , [265, Fig. 64]; cf. section 1.3.1).

The reference to differential equations in the definition of the soliton presumes a continuum description
of the system. While this is trivial for slowly-varying magnetic structures like long-wavelength spirals,
the large wavevector of the spin correlations in BiCu2PO6 (see chapter 7 and references therein) repre-
sents a problem. Possible work-arounds might build on Haldane’s mapping of the quantum Heisenberg
antiferromagnet onto the non-linear σ model (see [103] for a review), or the bosonization treatment of
the vector-chiral phase of the zigzag chain [164]. Please note that, even though the sine-Gordon equation
often appears in effective low-energy theories obtained by bosonization [360, 425], the resulting solitons
still correspond to, e. g. , magnons in the spin system [56].

The zigzag-chain (cf. section 1.3.3) material CuGeO3 [174, 336] is a famous soliton-bearing compound
(see previous discussion in [74, pp. 128 ff]). Due to the presence of magnetoelastic couplings, this system
is theoretically described by the so-called spin-Peierls model, which has been studied both analytically
[71, 139, 286, 407, 456] and numerically [110, 132, 262, 407]. The field-induced magnetic solitons
carry spin-1{2 and are localized by associated lattice distortions (lattice solitons) [132]. Clearly, the three-
dimensional nature of the system, either due to the phonon field or magnetic interchain couplings, as well
as the slow dynamics of the quasi-classical lattice degrees of freedom36 are essential for understanding
the finite-temperature phase transition and the details of the ordered structure (see [110, 200, 375, 407,
456]). For this particular example, the longitudinal spin texture of the soliton lattice was characterized
theoretically [456] and confirmed by subsequent NMR experiments [174].

Clearly, an analogous theoretical treatment for BiCu2PO6 would be desirable. As described in section
7.16, the numerical calculations performed in this work did not provide any clear evidence of solitonic
behavior. In particular, the spectrum of states obtained using exact diagonalization (see Fig. 8.14 for a

36The lattice degrees of freedom are treated in an adiabatic approximation (e. g. , [132]).



8.7 Intermediate-field phase 175

reproduction of previous results [401]) confirms a well-defined triplon mode [401], whereas fractional
excitations like spinons typically give rise to a continuum [227]. This is consistent with inelastic neutron
scattering experiments on BiCu2PO6 which only report a two-triplon continuum [316, 318].
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Figure 8.14: Energies and lattice momenta of excited states with Sztot “ 0 (yellow), Sztot “ 1 (red), and Sztot “ 2
(blue) relative to the energy of the q “ 0 ground state, as obtained using full-spectrum exact diagonalization for
parameter set A (see section 4.3.3) and different system sizes L (cf. section 7.5). The expression for the solid line
is stated in the figure, and is based on the expressions derived in Refs. [228, 401]. Following [401], the results
were obtained using the reduced unit cell and back-folded to the Brillouin zone of the original frustrated-ladder
model (cf. section 4.3.1). Unsurprisingly, this reproduces the previous results published in Ref. [401].

In CuGeO3, solitons separate domains corresponding to different dimerized ground states of the zigzag
chain [285, 286]. By contrast, the zero-field ground-state of BiCu2PO6 is not dimerized (see section
7.15). The only degenerate ground state captured by the frustrated ladder model considered in chapter
7 is the chirally-ordered one, which corroborates that the solitons might nonetheless (see previous work
[74, 78]) be related with the spiral structure proposed for the high-field field-induced phase [78] (cf.
section 8.6). This idea is described in more detail in the following subsection (section 8.7.4).

8.7.4 The limit H Á Hc2

The evolution of the 31P-NMR spectrum upon approaching the phase transition at Hc2 from above is
illustrated in Fig. 8.15. The high-field spectra become increasingly asymmetric upon approaching Hc2

[see also Fig. 8.4(b)]. As the relative intensity of the two lower-frequency peaks is reduced, their splitting
decreases until they finally merge at Hc2.37 Meanwhile, the two higher-frequency peaks appear largely
unaffected, except for a slight narrowing, which remains to be explained.

In the model constructed for the high-field phase (section 8.6), each P site in the crystal gives rise to a
symmetric double-horn contribution to the NMR spectrum [cf. Fig. 8.2(a) inset]. Quite intuitively, the
relative intensity of the two peaks of each of these contributions can become imbalanced if the spiral
phase becomes non-linear [74, p. 140]. Such non-linearly propagating spirals may be related to solitons
(see section 8.7.3 and references therein). However, given the short wavelength of the spin correlations,
a picture based on discontinuous defects and their statistical distributions might be more appropriate.
Besides the shape of the 31P-NMR data, the relevance of defects is corroborated experimentally by an
increased magnetic entropy in the intermediate-field phase [208]. As discussed in [208], this is also
consistent with the long-range spiral magnetic order proposed [78] for the high-field phase (cf. section
8.6).

37Note that, despite the misalignment, the spectra shown in Fig. A.9 exhibit qualitatively similar behavior.
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Figure 8.15: Subset of the 31P-NMR spectra shown in Fig. 8.4(b), measured at the magnetic fields indicated in the
legend. The areas of the spectra are normalized and the data are offset horizontally and vertically for clarity.

In the following, possible defects of the spiral magnetic structure discussed in section 8.6.6 are con-
sidered. Note that this discussion is by no means exhaustive.38 Stacking defects along the a direction
(cf. section 8.6.3.6) are one possibility. Moreover, for H ‖ b, the spiral-axis tilts induced by transverse
DM interactions (Fig. 4.5) compete with the rung and interladder exchange couplings (section 7.14.2),
which might give rise to an instability in combination with additional interactions.39 However, it is
easy to see that every individual one-dimensional array of P sites running along the b-direction in the
BiCu2PO6 crystal gives rise to a symmetric double-horn contribution. Being extended along the ladder
units, i. e. , along the b direction, the defects proposed above therefore cannot explain the asymmetric
distortion of the NMR spectra. Moreover, the NMR spectra are sensitive to the dipole fields created by
the neighboring bc planes (section 8.6.3.7). Thus, the weak field-dependence of the two higher-frequency
peaks (Fig. 8.15) indicates that (short-range) spiral correlations and stacking order are preserved in the
corresponding spatial regions, which further suggests that defects are extended along the a direction.

The implications of the observed loss of electric polarization at Hc2 [188] depend on the assumed sce-
nario (cf. section 8.6.5). If the polarization arises due to the magnetic chirality on the interlayer bonds,
stacking defects would in principle be sufficient to destroy it. However, these defects should be “healed”
by a biasing electric field, which is inconsistent with the reported results [188]. The electric polarization
could also appear through a symmetry-breaking lattice distortion, caused, e. g. , by inverse DM inter-
action [81, 356] (cf. [304]). In this case, knowledge of the lattice distortion is required to draw firm
conclusions. Lastly, the electric polarization could be due to the longitudinal chirality of the magnetic
structure (section 8.6.5). In this case, the experimental observations [188] (cf. section 8.6.5) suggest
that the net longitudinal chirality is lost within each individual ladder unit. This implies that the defects
(i) intersect the ladder units, and (ii) change the longitudinal chirality. In combination with the above
discussion of the NMR spectra, this last scenario seems most likely. Two points of view appear pos-
sible: chiral defects whose chirality is opposite to that of the long-range ordered background [141], or
domain walls separating regions with opposite chirality. Note that both scenarios are compatible with
NMR, since the 31P spectra are expected to be insensitive to the choice of chirality in the spiral phase

38For instance, competition between different DM-induced distortions and/or various symmetric exchange couplings might
give rise to an instability and associated domain walls.

39Note that no instabilities were observed for the isolated ladder model considered in chapter 7.
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(section 8.6.2.5). Furthermore, the second-order nature of the phase transition at Hc2 [208] would then
suggest that the solitons of the intermediate-field phase are chiral as well (cf. [46]; “spiral” or “twisted”
solitons were previously proposed to explain magnetic order in doped BiCu2PO6 [424, pp. 133-134]),
which could explain the finite dielectric susceptibility observed [188] for H ą Hc1 (cf. section 8.6.5).40

The asymmetry of the NMR spectra implies that the distribution of defects is non-uniform along the
ladder units. In principle, the expressions given in section 8.6.3 can be used to identify the spatial
regions corresponding to the low- and high-frequency edges of the NMR spectrum. However, in the
present case, such analyses are hampered by the uncertainties regarding the coupling parameters and
the ordered magnetic structure (see section 8.6.3.5). Furthermore, the hyperfine couplings of each 31P
nucleus (see Fig. 6.1) involve Cu sites whose distance along the b direction is comparable to the period
of the spiral structure. Hence, there is little hope that the structure of the defects can be inferred using
31P NMR alone.

8.7.5 Magnetoelastic couplings

The experimental data obtained in the intermediate- [78] and high-field field-induced phases of BiCu2PO6

suggest the appearance of defects in the magnetic structure (see [78] and sections 8.7.3-8.7.4). Often such
defects are stabilized by magnetoelastic effects (see section 8.7.3 and references therein). Observations
corroborating the importance of such effects in BiCu2PO6 are reviewed below.

• Both field-induced transitions give rise to measurable features in the magnetostriction [207].

• The temperature dependences of the thermal conductivities measured along all crystal directions
exhibit a local minimum which roughly coincides with the maximum of the magnetic specific
heat [325, Fig. 5.7]. The thermal conductivity, including the one measured perpendicular to the
magnetic layers, is suppressed by a magnetic field H ‖ b [284]. A similar, strong suppression
of the lattice contribution to the thermal conductivity is observed in high magnetic fields H ‖ a,
and explained by the resonant scattering of phonons, involving transitions between thermally-
populated excited magnetic states with S “ 1 triplons and S “ 1 two-triplon bound states [190].
The suppression is maximal at Hc1, and even stronger than predicted by the resonant-scattering
model, which is attributed to the combination of non-resonant scattering with critical magnetic
fluctuations [190].

• First-principles calculations showed a strong dependence of the next-nearest neighbor exchange
coupling upon the orientation of the PO4 tetrahedra [401] (cf. Fig. 4.1). The influence of the
superexchange angle on the nearest-neighbor bonds is expected to give rise to magnetoelastic
effects as well [190]. DM interactions can also give rise to magnetoelastic couplings [304, 356]
(see also [190]), which appears particularly relevant given the suspected chiral nature of the field-
induced phases (cf. section 7.8.2).

• The lattice contributions to the specific heat of BiCu2PO6, BiZn2PO6, and BiMn2PO6 are all very
similar [217, 289]. Yet, the specific heat of BiZn2PO6 can be described using a model based on
acoustic phonons only at temperatures T Á 200 K [289]. Deviations at lower temperatures are
interpreted as evidence for an anomalous lattice softening [289].

40Note that the spectra observed upon misalignment in the intermediate-field phase [Figs. A.9 and A.6(a)] are indeed remi-
niscent of those observed in the high-field phase.
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• The two types of magnetic layers present in the BiCu2PO6 crystal become inequivalent upon appli-
cation of a magnetic field (section 8.6.2.3). Thus, field-induced changes of the lattice are generally
allowed. The possibility of magnetoelastic couplings, based on structural aspects, was also pointed
out in [377].

• Finally, the numerical calculations performed in this work predict only a single phase transition
and it is unlikely that the inclusion of interladder couplings alone will change this conclusion (see
section 7.16). Similarly, quantitative differences between the calculated and measured magnetic
susceptibilities might be related to magnetoelastic effects [377].
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Inspired by the intriguing variety of field-induced phases in BiCu2PO6 [207] (cf. section 4.5), the frus-
trated ladder model proposed [257, 401] to describe its properties was investigated numerically (see
chapter 7). A field-induced chiral phase, previously reported in [77, 78, 131], appears as a ubiquitous
feature of this model, provided that frustration and rung exchange are not too weak (see section 7.12).
The effect of DM interactions is studied in detail and found to be consistent with classical expectations
(sections 7.13 and 7.14). In particular, the chiral phase is robust against moderate DM interactions. A
short comment in [131] suggests that this is in agreement with previous work (cf. section 7.2). On the
other hand, detailed calculations reveal no additional phases between the spin-liquid ground state and the
field-induced chiral phase of the frustrated spin ladder (sections 7.10.2 and 7.14.1), which suggests that
additional interactions need to be considered in order to explain the diversity of field-induced phases in
BiCu2PO6, even for H ‖ b (see section 7.16). Please refer to sections 7.15 and 7.16 for more complete
discussions of the numerical calculations, as well as the differences between published experimental data
and the predictions of the frustrated-ladder model.

High-field 31P-NMR experiments (H ‖ b) were performed (see sections 8.1 and 8.2) in order to test
the prediction of a field-induced chiral phase ([78] and section 7.15). The phase boundaries determined
from the spin-lattice relaxation rates agree with previously-published [207, 208] results (see section
8.4). The NMR shifts generally reflect the behavior of the bulk magnetization and exhibit an interesting
temperature dependence in the high field phase (see section 8.5). However, the complicated couplings
between the 31P nuclei and the Cu spins prevent firm quantitative conclusions. Although outside the
focus of this work, 63,65Cu NMR might be better suited for studying the longitudinal magnetization [74,
p. 156]. Speculating that the on-site hyperfine coupling might be rather isotropic, this would also allow
to check for a modulation of the longitudinal ordered moments in both field-induced phases (cf. [74,
p. 156]). As pointed out in [74, p. 156], such a modulation was observed, e. g. , in conjunction with the
soliton lattice in CuGeO3 [174] (cf. section 8.7.3).

On the other hand, the hyperfine couplings of the 31P site are sensitive to the transverse ordered magnetic
moments and their correlations [74, p. 117] (cf. chapter 6). Since interladder couplings are known to
be relevant in BiCu2PO6 (see section 5.3 and references therein), field-induced chirality is expected
to give rise to a more conventional spiral magnetic order [78] (cf. section 7.8). Indeed, the 31P-NMR
spectra obtained in the high-field field-induced phase at H ą Hc2 (µ0Hc2 « 35.5 T) are qualitatively
consistent with the aforementioned prediction (see section 8.6.1). Note that the observed intensities
are somewhat different from the expected ones. While this is believed to be of experimental origin
(section 8.6.1), it should be mentioned that an accidental agreement with the theoretical expectations
cannot be excluded with certainty. However, the chiral nature of the high-field phase is corroborated
by independent reports of multiferroic behavior [188] (cf. section 8.6.5). Moreover, explicit models of
spiral magnetic structures reproduce the NMR spectra for plausible parameter values (section 8.6.3.4).
Although quantitative estimates are hampered by the uncertainties of the hyperfine couplings and g-
tensors (see section 6.8), the existence of plausible candidate magnetic structures appears robust against
variations of these parameters (section 8.6.3.5). A detailed discussion of these arguments can be found
in section 8.6.6. To summarize, based on the results and considerations presented in the preceding
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chapter, I conclude that BiCu2PO6 indeed (see [78]) adopts a spiral magnetic structure with DM-induced
distortions at H " Hc2 (H ‖ b) and low temperature.

Regarding the intermediate-field phase realized for Hc1 ă H ă Hc2, the new data resemble previous
results [78] and are consistent with a non-linear propagation of the magnetic structure, as proposed earlier
[74, 78] (cf. section 8.7). Accordingly, the asymmetric appearance of the NMR spectra observed upon
approachingHc2 from above is interpreted as evidence for the formation of defects in the spiral magnetic
structure (see section 8.7.4). This corroborates that the intermediate-field phase is a precursor of the high-
field spiral, as suggested in previous work [78]. Indeed, the features observed in the magnetization [207]
and the specific heat [207, 208] are more pronounced for the phase transition at Hc1 than for the one at
Hc2. Similarly, a non-zero electric susceptibility first appears at Hc1 [188] and the magnetic excitations
become soft at Hc1 ([190] and [74, p. 136]), as predicted in [179, 318].

According to the aforementioned results, the spin gap becomes very small1 at Hc1 and chiral order
emerges at Hc2. By contrast, numerical calculations predict that both events occur simultaneously (see
section 7.16). Thus, additional interactions are required to explain the stabilization of the defects in
BiCu2PO6. Future experimental and theoretical work should focus on identifying the defects and char-
acterizing the interactions responsible for their stabilization. As argued in section 8.7.5, magnetoelastic
couplings are a promising candidate, known to induce dimerization and associated solitons in certain
classes of ladder models—at least in zero magnetic field [210, 290]. Note that for the frustrated spin-
ladder models studied numerically in this work, dimerization and chirality appear to compete (see section
7.15), which might explain the appearance of an additional phase transition.

Besides neutron-scattering surveys of the phonons, magnetoelastic effects can be studied through high-
field measurements of elastic constants [5] (ultrasound; e. g. , [271, 365]). Indirect evidence might also
be obtained from experiments under pressure (cf. [455]). Any lattice distortions in the field-induced
phases of BiCu2PO6 could also be detected using diffraction techniques (X-rays or neutrons), or NMR,
by making use of the quadrupole moments of the 63,65Cu and 209Bi nuclei.2

From an NMR perspective, it could appear desirable to reduce the uncertainties of various model param-
eters. For the hyperfine couplings and g-tensors, this topic was discussed in a previous chapter (section
6.8). The magnetic interactions might be constrained further by extending the magnetization measure-
ments to even higher fields. As pointed out in [319, pp. 84,108], characterizing the hyperfine couplings of
209Bi with the electronic magnetic moments on the Cu sites could provide indirect information about the
DM interactions in BiCu2PO6. In the end, the usefulness of such campaigns is questionable, since many
coupling parameters are likely to be field dependent, especially if magnetoelastic effects are present.
It therefore appears more promising to focus on the phenomenology of the NMR spectra in the field-
induced phases observed in even higher (pulsed) fields, as well as for other orientations of the magnetic
field, i. e. ,H ∦ b [208] (the latter was already proposed in [74, p. 156]). Moreover, the dynamical prop-
erties of the field-induced phases, including the thermally disordered regime (see section 8.6.4) which
might exhibit chiral order [68, 419] (cf. section 7.1.2), are an interesting topic to address in future work,
e. g. , through systematic investigations of the 31P spin-lattice relaxation rates (see previous work [74,
78] for corresponding experiments and detailed discussions) at different positions within the spectrum
(cf. section 8.6.1).

To conclude, numerical calculations identify field-induced chirality as an essential feature of the phase

1Note that the spin gap might not close completely due to DM interactions ([190, 370] and [74, pp. 125,136]).
2Note that only the 63,65Cu resonance has been reported so far [74, p. 156].
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diagram of the frustrated spin ladder below half-saturation magnetization (see [367] for the regime close
to saturation). Combined with the experimental data, convincing evidence for a field-induced spiral
phase [78] in BiCu2PO6 is provided. Defects appear to play a role at intermediate magnetic fields
([78] and section 8.7), and their properties remain to be clarified through additional experiments. Field-
induced chiral phases were reported in other frustrated systems (e. g. , [143]). Similarly, spiral phases
with multiferroic properties have been observed in other zigzag-chain materials, like LiCuVO4 [120,
147, 279] and the example of a solitonic phase in CuGeO3 was reviewed in section 8.7.3. What sets
BiCu2PO6 apart from many other compounds is the challenging combination of the following aspects:
(i) A spin-liquid ground state [258] with (ii) a field-induced chiral phase (proposed in [78], confirmed in
this work), including multiferroicity [188], (iii) a ladder geometry [257] consisting of pairs of (iv) zigzag-
chain units with antiferromagnetic nearest-neighbor (NN) interactions [217], which are expected to give
rise to different field-induced phases (e. g. , [164, 383]) than the ferromagnetic NN interactions present
in, e. g. , LiCuVO4 [70, 249, 280], (v) a highly anisotropic phase diagram [207], (vi) important DM
interactions [316], and (vii) the appearance of defects or static solitons in the field-induced phases ([78,
208] and this work).
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A Appendix

A.1 Technical aspects of calculations

The methodology described in the following subsections is considered standard practice. Nonetheless, it
appears that a detailed documentation might be useful for possible future continuation work.

A.1.1 Units

I measure J1 in temperature units and write the exchange Hamiltonian as J1H̃. All numerical methods
are applied to H̃, including an additional Zeeman term where applicable. Thus, the applied magnetic field
is effectively measured in units of J1{µB . In this convention, the Boltzmann weight of an eigenstate of
H̃ with energy ε is expp´J1ε{T q.

A.1.2 Additional details

Most of the full-spectrum exact diagonalization calculations used ALPS release 2.2.b3-r7462 [49] and
the parallel version of Intel MKL [181]. Updated revisions of the code were used in later calculations
(DMRG and doped models). Lattice graphs and required operators were described using XML files. The
simulations were primarily controlled using the Python [326] interface to ALPS [49]. MPI-Bash [281]
was used to distribute parts of the DMRG calculations. Whenever possible, real-valued arithmetic was
used. The results were post-processed using custom MATLAB [250] routines.

A.1.3 Exact-diagonalization performance

The official versions of the diagonalization applications of ALPS [49] (fulldiag and sparsediag) are
single-threaded and do not support distributed memory. Fulldiag uses external BLAS/LAPACK [59,
226] libraries for the linear algebra routines and hence can make some use of multiple processing cores.
Distributed storage could be incorporated with moderate effort by using ScaLAPACK [346] instead.
Still, serial execution paths, related to matrix setup and measurement, limit the obtainable speed-up
using the current implementation (Amdahl’s law [29]). The largest system size solved with full-spectrum
diagonalization was L “ 10, taking 18 d and 6 GiB of (random-access) memory (on the Euler cluster).
For sparse diagonalization, the largest system size (L “ 16) needed 75 d and 182 GiB of memory (using
translation invariance and “fat nodes” of the Brutus cluster). Different sectors of the Hamiltonian have
been solved in parallel by independent jobs. The indicated run-time is the total CPU time consumed by
these jobs. The calculation time was minimized by making use of the Sztot Ø ´Sztot symmetry of the
Hamiltonian. Given an eigenbasis t|nyun of the Sztot “ s sector, an eigenbasis for the Sztot “ ´s sector is
given by tP |nyun, where P “

ś

i,u σ
x
i,u flips all spins in the Sz-basis and the product is a tensor product.

Here, σi... (with i “ x, y, z) denotes the Pauli matrices [434]. The matrix elements xPm |A |Pny “
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xm |P AP |ny need to be transformed accordingly [σxσkσx “ p2δxk ´ 1qσk]. The lack of translation
invariance made the calculations for the inhomogeneous systems (section 5.2.4) particularly demanding.
For these calculations, the code was modified to represent the sparse Hamiltonian matrix using a list
format during the setup phase, before switching to a compressed storage format for the diagonalization
step. Even so, the calculations for L “ 16 took 5 days per Sz-sector and required about 600 GiB
of memory (“fat nodes” of the Brutus cluster). No further attempts at performance optimization were
made. Although the exponential scaling of the Hilbert-space dimension ultimately clearly limits the
applicability of any diagonalization code, it appears that a generic matrix-free implementation of the
sparse-diagonalization application (e. g. , [130, p. 541]) might be a nice feature for the future.

A.1.4 Site-dependent g-tensors

As discussed in section A.5.3, there are two computational approaches to obtaining the matrices Cij .

The first method corresponds to equation (A.11) and requires the matrix-elements of the sublattice spin
operators. As discussed in the corresponding section, these operators are block-diagonal in a basis which
respects translation symmetry. I have extended ALPS [49] with a “matrix-block measurement” to ac-
commodate such measurements. The new option MEASURE_SUM_MATRIX_BLOCK[<label>]=A in-
structs ALPS to measure the complex-valued matrix elements xm |Ai,Σ |ny for all eigenstates |my and
|ny within a given symmetry sector. Here, A denotes a site-operator and Ai,Σ “

ř

pAi,p its sub-lattice
sum. For the subsequent numerical evaluation of equation (A.11), it is favorable to rewrite

e´βEm ´ e´βEn

´βpEm ´ Enq
“ e´βEavg

sinhβh

βh
,

where Eavg “ 1{2pEm ` Enq and h “ 1{2pEm ´ Enq. The expression sinhx{x is numerically stable for
xÑ 0, and only the continuous continuation at x “ 0 needs to be handled separately.

The second method is based on equation (A.13). For a Zeeman term of the form ´hSσj,Σ, I obtain (cf.
section A.1.1)

1

h
xSρi,Σy « J1 C

ρσ
ij pT q .

The field h has to be chosen small enough to remain in the linear-response regime, but large enough to
avoid numerical errors. The gap between the ground state and the first excited state is „ 1 in simulation
units (section A.1.1) and the first excited state has Sztot “ 1 (see section 5.2.3), such that the field h
required to close the gap is„ 1 (cf. section 7.9.1). For each choice of j and σ, I therefore run simulations
with h P t0.017, 0.034, 0.051u, calculate xSρi,Σyphq, and finally perform a linear regression to obtain
Cρσij pT q. In real units, h “ 0.05 corresponds to B “ 0.05kB 140 K

µB
« 10 T (for parameter set A). To

make sure that the linear response regime is maintained, the R2-value (section A.6.1) of the regression
fits is monitored. For the calculations reported in section 5.2.1, 1´R2 ď 1.1 ¨ 10´6.

The methods described above were validated through application to the simple-dimer example consid-
ered in section A.5.3. While the matrix-block measurement does not rely on a suitable choice of the field
h, the second approach is more efficient for larger systems. For the fits reported in section 5.2.1, the two
methods agree up to about 1‰.
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A.1.5 DMRG calculations

Recently, the ALPS libraries [49] have been extended by an implementation of DMRG using the MPS
formulation [111]. Calculations used SVN revisions 7584, 7666, and 7669 (see also section A.1.6). The
two-site optimization algorithm [111] was used. Larger bond dimensions m (up to 2048) benefited from
nested OpenMP [396] parallelization, allowing both the MPS code as well as the BLAS library [59]
(Intel MKL [181]) to make use of multiple processor cores [111]. The evaluation of the energy-variance
was found to be very time-consuming and was therefore omitted for most calculations reported herein.
The measurements (cf. section 7.7.4) are implemented using the MEASURE_LOCAL_AT functionality
of the ALPS MPS applications [111]. The measurement strings are generated by a Python [326] script,
which parses the output of the ALPS printgraph utility [49] to obtain the required vertex indices. A set
of custom MATLAB [250] scripts is used to post-process and analyze the simulation output.

A.1.6 Notes for ALPS users

A few minor issues were encountered while using ALPS and were fixed either by the author of this
work or members of the ALPS collaboration. As of SVN revision 7669 [28], the only change not propa-
gated back into the ALPS project concerns the MEASURE_LOCAL_AT feature of the MPS application,
which truncates the imaginary parts of all calculated expectation values. However, the code adjustments
required to change this behavior are very straightforward.

A.1.7 Convergence measures for spin texture

As a simple check, one can verify that the solution is consistent with the symmetries of the system [6].
The P -symmetry introduced in section 7.3 allows to construct a criterion to assess the convergence of the
spin textures xSizy. Since all expectation values calculated by tracing over the ground-state eigenspace,
which is either one- or two-dimensional, need to be P -invariant, I define the P -asymmetry

aP “
L

Sztot
min

ˆ

max
i

∣∣∣xϕ1 |S
z
i |ϕ1y ´

A

ϕ1

ˇ

ˇ

ˇ
SzP piq

ˇ

ˇ

ˇ
ϕ1

E∣∣∣ ,
1

2
max
i

∣∣∣xϕ1 |S
z
i |ϕ1y ` xϕ2 |S

z
i |ϕ2y ´

A

ϕ1

ˇ

ˇ

ˇ
SzP piq

ˇ

ˇ

ˇ
ϕ1

E

´

A

ϕ2

ˇ

ˇ

ˇ
SzP piq

ˇ

ˇ

ˇ
ϕ2

E∣∣∣˙ ,

where |ϕ1y and |ϕ2y are the two lowest-energy eigenstates found using the DMRG method (sorted by as-
cending energy). While correlation functions converge quickly with the number of optimization sweeps
s, aP decreases more slowly with s. For system size L “ 64 and parameter setA with uniform g-factors,
aP « 0 is satisfied for s “ 512, which has been used in most calculations.

For practical reasons, only one lowest-energy eigenstate was targeted in the calculations for larger sys-
tems. While not a necessary convergence criterion, the “naive” asymmetry measure

a
p1q
P “

L

Sztot
max
i

∣∣∣xϕ1 |S
z
i |ϕ1y ´

A

ϕ1

ˇ

ˇ

ˇ
SzP piq

ˇ

ˇ

ˇ
ϕ1

E∣∣∣
is considered instead, and is found to decrease with increasing bond dimensionm and increasing number
of optimization sweeps s.1 Generally, convergence is slower for smaller values of Sztot.

1This does not necessarily suggest that the DMRG algorithm converges towards the representations |gy and |uy of the
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A.1.8 Calculation of structure factors

There are a few not necessarily obvious technical aspects concerning the computation of the structure
factors, which should be mentioned in the following.

• First, instead of summing over all “source” sites j in the expressions for the structure factors
(section 7.7.2), the sum is restricted to a subset of indices defined by the parameter a (see section
7.5). Such an approach was used before, e. g. , in [111, 112] (see also [164, 209, 255]). The
normalization factor L´1 is adjusted accordingly.2 This lowers the computational effort, while
still reducing possible spurious oscillations (see section 7.3).

• Only half of the possible distances d need to be considered when calculatingCABpdq “ xAiBi`dy.
Consider the case of a one-dimensional linear index, without loss of generality. As demonstrated
in section 7.3.3 (footnote 22), the approximate symmetry σb has essentially the same effect as P ,
such that

xk |AiBi`d | ky “
@

k
ˇ

ˇσ2
b AiBi`d σ

2
b

ˇ

ˇ k
D

“ x´k |σbAi σb σbBi`d σb | ´ky .

The symmetry σb corresponds to a spatial reordering of the ladder graph, combined with a spin-
space rotation by π about the spin quantization axis z ‖ b. Besides the spatial component of the
symmetry, i ÞÑ Rpiq, the operators introduced in section 7.7.1 transform trivially, i. e. , up to signs
which cancel from all relevant correlation functions (section 7.7.1). Therefore,

xk |AiBi`d | ky “
@

´k
ˇ

ˇARpiqBRpiq´d
ˇ

ˇ´k
D

.

This proves that, after performing the partial trace over the ground-state eigenspace3 (cf. section
7.3), CABpdq “ CABp´dq, for the combinations of operators A and B considered in this work.

• The Fourier transformation requires knowledge of CABpdq for all distances d. At small distances,
sites/bonds can overlap or coincide. These cases need special consideration, the corresponding
expressions are summarized in section A.1.9. Note that the bond correlations for two bonds pi, jq
and pj, kqwith one overlapping site are not Hermitian, yielding complex-valued expectation values
in general. However, for two bonds of the same type (i. e. , NN or NNN leg bonds), reflection about
j, which corresponds to the approximate symmetry σb, transforms the measurement operator into
its Hermitian conjugate. Since σb is closely related to P (section 7.3.3, footnote 22), the partial
trace over the ground-state eigenspace is then expected to be a real number. The anti-Hermitian
part is also irrelevant for real-valued eigenstates (in the canonical Sz-basis). Since either of these
two conditions (tracing or real-valued eigenstates) is always satisfied for the calculations reported
in this work, the corresponding correlation functions (see section 7.7.1) are taken to be real-valued.

• To avoid spurious oscillations in the structure factors, which arise as a consequence of the system
boundaries, a windowing function (Blackman window) is applied before the Fourier transform,

symmetry group t1, P u » Z2 (cf. section 7.3) for large m and s, since, e. g. , convergence towards |˘ky would result in the
same observations if xk |Szi | ky “ x´k |S

z
i | ´ky was satisfied accidentally.

2As discussed in section 7.3, this procedure may result in averaging of two different types of bonds, e. g. , for the NN leg
bonds. Note that the number of such bonds is imbalanced for even a, which is why a weighted average is used to avoid artifacts
resulting from incomplete cancellation.

3For special cases, e. g. , parameter set A with site-independent g-factor, the trace was found not to affect the results for
L “ 64. Therefore, only one eigenstate was targeted in some of the corresponding calculations performed for larger system
sizes L.
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as appears to be common practice (e. g. , [444]). In addition, the correlation functions are zero-
padded over a distance of 1000 lattice units in each direction, in order to obtain an interpolation in
momentum space.

A.1.9 Useful identities for correlation functions

When calculating bond correlations between bonds pi, jq and pk, lq, it is possible that one or two sites
coincide. In the former case, the following expressions (checked using Mathematica [448] and DiracQ
[449]) are helpful

κxijκ
x
jk “ ´

1
4

`

Syi S
y
k ` S

z
i S

z
k

˘

` i
2

`

Szi S
x
j S

y
k ´ S

y
i S

x
j S

z
k

˘

κyijκ
y
jk “ ´

1
4 pS

x
i S

x
k ` S

z
i S

z
kq `

i
2

´

Szi S
y
j S

x
k ´ S

x
i S

y
j S

z
k

¯

κzijκ
z
jk “ ´

1
4

`

Sxi S
x
k ` S

y
i S

y
k

˘

` i
2

`

Syi S
z
jS

x
k ´ S

x
i S

z
jS

y
k

˘

Dz
ijD

z
jk “

1
4Dik ´

i
2

ÿ

α,β,γ

εα,β,γ S
α
i S

β
j S

γ
k .

In the latter,

καijκ
α
ij “

1
8 ´

1
2S

α
i S

α
k

DijDij “
3
16 ´

1
2Dij .

A.1.10 Convergence problems with longitudinal DM vectors

Note that the longitudinal DM terms obviously conserve Sztot (see also [77, p. 2]), even though this is not
explicitly accounted for in the calculations presented in section 7.13. In combination with the low bond
dimension and iteration count, this is likely to give rise to convergence problems. The drops observed in
Fig. 7.29(b,d), as well as the step-like features in MpHq [Fig. 7.29(a,c)], are attributed to such effects.
This is corroborated by the generally good agreement of the remaining data with the results obtained for
the DM-free case.

Neglecting the site-dependent g-factor allows for efficient calculations using Sztot-conservation.4 The
results of this approach are depicted in Fig. A.1. The correlation functions are consistent with chiral
order for 1 ď Sztot ă L{2, which is compatible with the phase boundaries obtained in sections 7.10.2
and 7.14 (see also Fig. 7.29). The magnitude of the chiral correlations also turns out to be comparable
[Fig. A.1(b,d)]. Hence, the effect of the site-dependent g-factors upon the chiral order appearing below
half-saturation magnetization is again found to be negligible. Thus, the fact that the calculations obtained
using Sztot-conservation and larger MPS bond-dimension m are well-behaved, shows that the glitches
seen earlier are due to convergence problems and should disappear upon increasing the bond dimension
m and/or the number of optimization sweeps s. Due to limited computational resources, more detailed
calculations were only performed for parameter set B (cf. section 7.14).

4Otherwise, several Sztot sectors would need to be solved for each applied field (see also footnote 12 in chapter 7).
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Figure A.1: Magnetization (a,c) and uniform (q “ 0) correlations of longitudinal chirality (b,d), calculated for
parameter set A augmented by longitudinal DM terms, Db

1 “ 0.2 J1 and Db
4 “ 0.2 J1, respectively (L “ 64,

s “ 24, traced; remaining calculation parameters listed in legend). Data represented in blue-green color are
identical with Fig. 7.29(a-d). The black data at M{Msat “ 0.125 [indicated by a cross in (b,d)] were calculated
with m “ 512 and s “ 64 due to slow convergence.

A.1.11 Computing resources

Calculations were performed on the Brutus and Euler clusters of ETH Zürich, as well as on Piz Dora
at the Swiss National Supercomputing Center (CSCS). Table A.1 summarizes the resources consumed
on each of these systems. The rightmost column indicates the minimum waiting time resulting from the
queue limits.5 The above numbers do not include queue waiting times or failed runs. For calculations
requiring nodes with large amounts of memory (RAM), such as sparse diagonalization calculations, the
number of parallel jobs was often limited by the available resources rather than by the queue limits.

System CPU hours Min. time (days)
Euler (ETH) 220007 191
Brutus (ETH) 106919 17
Piz Dora (CSCS) 752406 n/a

Table A.1: Overview of computing resources used in this work. See text for details.

5For non-shareholders, these amount to 48 and 256 CPU cores per user, for Euler and Brutus, respectively. No such limits
applied on Piz Dora, where a fixed compute budget within the context of the PSI allocation was agreed upon instead.
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A.2 Dipole sums

A.2.1 Magnetic field inside a uniformly-magnetized volume

In this section, a macroscopic continuum magnetostatics description is used to calculate the magnetic
field within a sample volume Ω with surface BΩ and uniform magnetization M . Note that there is
nothing novel about this section. For instance, similar treatments can be found in [194, 277] and are
likely to have guided the following arguments, most of which are based on general electrodynamics
knowledge, as it can be found, e. g. , in [184]. Using the magnetic “charge” density ρM “ ´∇ ¨M
[184],

B “ µ0 pH `Mq
∇¨B“0
ñ ∇ ¨H “ ´∇ ¨M

H“´∇ΦM
ñ ∇2ΦM “ ´ρM .

The introduction of the magnetostatic potential ΦM is justified since ∇ ˆH “ 0 [184]. Assume that
there exists an isomorphism u : R3 Ñ R3, which maps the surface of the unit sphere BBp1q onto the
surface of the sample BΩ. I parametrize BBp1q using spherical coordinates pθ, φq and require that the
surface normal of the induced parametrization of BΩ points outwards. As derived in section A.5.6, the
magnetostatic potential at x0 P Ω is then given by (cf. [277, eq. 8])

ΦM px0q “

ż π

0
dθ

ż 2π

0
dφ

M ¨

´

Bu
Bθ ˆ

Bu
Bφ

¯

4π |x0 ´ upθ, φq|
. (A.1)

The field H “ ´∇ΦM is called demagnetizing field or demagnetization, and is given by Hpx0q “

´MΩpx0qM [277], with the demagnetization tensor MΩpx0q (e. g. , [277]), which is defined as (cf. [277,
eq. 9])

´MΩ
ijpx0q “

ż π

0
dθ

ż 2π

0
dφ

´

Bu
Bθ ˆ

Bu
Bφ

¯

j

4π |x0 ´ upθ, φq|3
px0 ´ upθ, φqqi . (A.2)

The demagnetization tensor has several useful properties [277],7

TrMΩpx0q “ 1

MΩpx0q “MΩpx0q
T

ż

Ω
dx0 MΩ

kkpx0q ě 0 .

Consider x0 “ 0 (without loss of generality), and a scaling of the sample by a factor s, i. e. , u ÞÑ su.
Clearly,Hpx0q ÞÑHpx0q, which demonstrates that, as is well known, the demagnetizing field within a
finite-size sample depends on the shape of the sample, but not on its size (cf. [438]).

Examples The following two sample geometries are relevant for the present work.

• Sphere: For a sphere S of radiusR, centered aroundx0 “ 0,upθ, φq “ R psin θ cosφ, sin θ sinφ, cos θq
and equation (A.2) yields MS

ijpx0q “
1
3δij (see, e. g. , [184, p. 198]).

7For domains satisfying the assumptions made in its derivation, the first identity also easily follows from equation (6.4), as
well as the observation that each partial lattice sum is traceless and TrMS

ijp0q “ 1.
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• Box: Consider a cuboid sample Γ with principal axes coincident with the coordinate system and
edge lengths 2a, 2b, 2c. The demagnetization tensor at an arbitrary reference point r “ px, y, zq
within the sample is [194]

MΓ
zzprq “

1

4π

ÿ

sx,sy ,szPt´1,1u

arctan fpsx x, sy y, sz zq (A.3)

with fpx, y, zq “
pa´ xqpb´ yq

pc´ zq
a

pa´ xq2 ` pb´ yq2 ` pc´ zq2

MΓ
xzprq “ ´

1

4π

ÿ

sx,sy ,szPt´1,1u

sxsysz log |gpsx x, sy y, sz zq| (A.4)

with gpx, y, zq “ pb´ yq `
a

pa´ xq2 ` pb´ yq2 ` pc´ zq2 ,

where the expressions for the remaining elements can be obtained by cyclic permutation. Note
that in the special case of a cube and r “ 0, the result reduces to the demagnetization tensor of a
sphere.

When performing dipole-lattice sums directly, a straightforward decomposition scheme is Z3 “

YLPN
`

BB8pLq X Z3
˘

, where BB8pLq denotes the surface of the l8-ball with radius L, centered
around the origin. Using the lattice constants of BiCu2PO6 [11], this corresponds to a demagneti-
zation tensor MΓp0q “ diagp0.142453, 0.552269, 0.305278q (in the a, b, c basis).

A.2.2 Efficient evaluation

The following derivation closely follows the original publications [292, 438]. Its main purpose is to
illustrate the method and re-state the relevant results in a form consistent with the notation used in this
work. See section 6.3.2 for additional context.

Infinite plane Consider a tetragonal lattice with lattice constants a, b, c. Generalization to other
geometries should be straightforward (see [438]). The coupling matrix describing the dipole field created
by an individual bc-plane with two-dimensional magnetic propagation vector q‖ “ pqb, qcq is

Mq‖ “
ÿ

py,zqPZ2

µ0

4πρ3

`

3ρ̂ρ̂T ´ 1
˘

exp
`

2πi q‖ ¨ py, zq
˘

.

Here, ρ “ r ´ r0 with r “ pax, by, czq and r0 “ pax0, by0, cz0q. Assume x ‰ x0, as is the case when
calculating the magnetic field generated by the Cu moments at the P sites in BiCu2PO6. As re-derived in
section A.5.7, closely following [292, 438], the sum can be recast as

Mq‖ “
µ0π

abc

ÿ

µPZ2

e2πi pq‖´µq¨py0,z0q vq‖,µv
T
q‖,µ

exp
´

´2πapbcq´
1
2 ‖q‖ ´ µ‖bc|x´ x0|

¯

‖q‖ ´ µ‖bc
, (A.5)
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and

vq‖,µ “

˜

a
1
2

pbcq
1
4

‖q‖ ´ µ‖bc sgnpx´ x0q, i
a

1
2 c

1
4

b
3
4

pqb ´ µ1q, i
a

1
2 b

1
4

c
3
4

pqc ´ µ2q

¸

‖q‖ ´ µ‖bc “
c

c

b
pqb ´ µ1q

2 `
b

c
pqc ´ µ2q

2 .

The resulting sum over µ converges exponentially, as do all its derivatives with respect to x ‰ x0

(cf. [292, 438]). Note that the expression for Mq‖ has a removable singularity at q‖ P Z2 (see section
A.5.7 for details). Therefore, whenever q‖ “ µ, the corresponding summand vanishes.

Three-dimensional lattice The preceding results can be used to calculate the coupling matrix Mq

describing the field created by a three-dimensional dipole lattice with magnetic propagation vector q “
pqa, qb, qcq [cf. (6.2) in section 6.3.1],

Mq “
ÿ

x

e2πi qaxMq‖pxq .

Exponential convergence of the series involved justifies the interchange of the summation over µ and x
after substituting equation (A.5). Introducing rxs “ min tk P Z | k ě xu and txu “ max tk P Z | k ă xu
and splitting

ř

x “
ř

xăx0
`
ř

xąx0
(note that x ‰ x0), gives (cf. [438, eq. 24])

Mq “
µ0π

abc

ÿ

µPZ2

e2πi pq‖´µq¨py0,z0q

‖q‖ ´ µ‖bc
„

´

vq‖,µv
T
q‖,µ

¯

xăx0
exp

´

´2πapbcq´
1
2 ‖q‖ ´ µ‖bcpx0 ´ tx0uq

¯ expp2πiqatx0uq

1´ expp´2πq̃‹q

`

´

vq‖,µv
T
q‖,µ

¯

xąx0
exp

´

´2πapbcq´
1
2 ‖q‖ ´ µ‖bcprx0s´ x0q

¯expp2πiqarx0sq

1´ expp´2πq̃q



,

(A.6)

with q̃ “ apbcq´
1
2 ‖q‖ ´ µ‖bc ´ iqa and

´

vq‖,µ

¯

xżx0
“

˜

˘
a

1
2

pbcq
1
4

‖q‖ ´ µ‖bc, i
a

1
2 c

1
4

b
3
4

pqb ´ µ1q, i
a

1
2 b

1
4

c
3
4

pqc ´ µ2q

¸

.

Note that this result corresponds to an infinite-slab shaped sample with demagnetization tensor diagp1, 0, 0q8

[438]. No convergence error estimates are needed in practice, since the remaining sum over µ quickly
converges (cf. [292, 438]) to within machine precision in most cases.

A.3 Angular dependence of NMR shift

A.3.1 Experimental details

The convention for the rotation angles used in previous work [74] is illustrated in Fig. A.2(a). After
choosing an orthonormal reference frame which is fixed to the NMR probe (x ‖ a, y ‖ b, z ‖ c), the

8This can be seen by considering the slab as a degenerate box and using the corresponding limits of (A.3).
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Figure A.2: (a): Parametrization of the sample orientation (figure reproduced from [75, Fig. 2c]). The two angles
α1 and α2 parametrize the rotations indicated by the bent arrows. The order of the rotations is determined by
the depicted mechanism (described in [364]). The configuration shown corresponds to pα1, α2q “ p0, 0q. In this
configuration, the blue, red, and green arrows coincide with the b, a, and c directions of the crystal, respectively
[75]. (b): 31P-NMR spectra as function of α1 for α2 “ 30˝ (reproduced figure from [74, Fig. 5.7b] and annotated
I4). The curves are offset vertically and the labels correspond to pα1, α2q, where α1 was sampled uniformly [74,
Fig. 5.8].

combined effect of the two-axis rotator mechanism upon arbitrary positions r is r ÞÑ R r, R being a
rotation with coordinate representation

R “ Rr´α2, exsRr´α1, ezs ,

where Rrβ,vs is the mathematically positive rotation around v by an angle β. Rotating the sample
according to r ÞÑ R r is equivalent to transforming the applied magnetic field as Bext ÞÑ RT Bext with
(cf. [74, pp. 105 ff.])

RT “ Rr´α1, ezs
T Rr´α2, exs

T “ Rrα1, ezsRrα2, exs

“

¨

˝

cosα1 ´ sinα1 0
sinα1 cosα1 0

0 0 1

˛

‚

¨

˝

1 0 0
0 cosα2 ´ sinα2

0 sinα2 cosα2

˛

‚ .

In addition to the NMR resonance frequencies obtained in [74, Fig. 5.10], reported w. r. t. the reso-
nance frequency of a powder sample [74, p. 99] of BiZn2PO6 [74, Fig. 5.5] (see also [75, pp. 4-5], [74,
pp. 99-100], as well as section A.4.3), possible additional satellite peaks were observed for particular
orientations in the weakly-doped sample [74, p. 108] [cf. I3 and I4 in Fig. A.2(b)].

A.3.2 Hyperfine-coupling parameter fits

See Figs. A.3-A.4.

A.4 High-field NMR experiments

The following subsections provide supplemental information for the high-field NMR experiments de-
scribed in chapter 8. Please see section 8.1 for context and collaborators involved.
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Figure A.3: Plausible hyperfine-coupling parameter fits. See section 6.6.3 for details. The individual sub-figures
correspond to different peak assignments, as listed in Tab. 6.1. Experimental data from [74] (see section 6.6.1).
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Figure A.3: (continued) Plausible hyperfine-coupling parameter fits. See section 6.6.3 for details. The individual
sub-figures correspond to different peak assignments, as listed in Tab. 6.1. Experimental data from [74] (see section
6.6.1).
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Figure A.3: (continued) Plausible hyperfine-coupling parameter fits. See section 6.6.3 for details. The individual
sub-figures correspond to different peak assignments, as listed in Tab. 6.1. Experimental data from [74] (see section
6.6.1).
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Figure A.4: Plausible hyperfine-coupling parameter fits for “uniform” model (model C0 of section 5.2.1). See
section 6.6.4 for details. The individual sub-figures correspond to different peak assignments, as listed in Tab. 6.1.
Experimental data from [74] (see section 6.6.1).
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Figure A.4: (continued) Plausible hyperfine-coupling parameter fits for “uniform” model (model C0 of section
5.2.1). See section 6.6.4 for details. The individual sub-figures correspond to different peak assignments, as listed
in Tab. 6.1. Experimental data from [74] (see section 6.6.1).
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Figure A.4: (continued) Plausible hyperfine-coupling parameter fits for “uniform” model (model C0 of section
5.2.1). See section 6.6.4 for details. The individual sub-figures correspond to different peak assignments, as listed
in Tab. 6.1. Experimental data from [74] (see section 6.6.1).



A.4 High-field NMR experiments 201

A.4.1 Thermometry

For most measurements targeting temperature-dependences, the spin-lattice relaxation rate of 27Al in alu-
minum foil [378] was used to work around the high magnetoresistance of the Cernox temperature sensor
installed on the NMR probe.9 For the data shown in Fig. 8.4(a), this method was followed in most cases,
in particular in the vicinity of the phase boundaries. The uncertainty of the measured relaxation times
T1 is estimated as 10% (see footnote 7 in section 8.3). In some cases more than one T1-measurement
was performed and the resulting temperatures were averaged, enlarging the error bars to encompass all
individual estimates.

As a byproduct, the relaxation-rate measurements provide the systematic error δT pT q of the temperature
measured using the Cernox sensor down to 1.6 K. The steady-state temperature of the 3He-cryostat is ex-
pected to be field-independent, which was used to determine δT pT q at pT, µ0Hq “ p0.7p1q K, 42.9 Tq.
By assuming that δT pT “ 0.7 Kq at µ0H “ 37.7 T is comparable, linear interpolation was used to
determine the sample temperatures below 1.6 K.

For the data points measured at 14 K and 24 K, the magnetoresistance of the Cernox sensor was deemed
negligible and a constant uncertainty of 1 K was assumed instead.

A.4.2 Sample alignment

The approximate crystal orientation of the sample documented by the sample grower, S. Wang, was
used as a starting point for the sample alignment. An NMR probe with two-axis rotator [cf. Fig. 8.3(b)]
was used. In accordance with the angular dependence reported earlier [74, Fig. 5.10] (cf. Fig. 6.3),
the configuration H ‖ b corresponds to a saddle point. After optimizing the rotation angles ϕ and ϑ
in µ0H “ 15.2 T using a superconducting magnet with room temperature bore [Fig. A.5(a-b)],10 the
NMR probe was transferred to the high-field magnet. Note that the tank circuit used for tuning of the
NMR probe (see section 8.2) needed to be reconfigured for the high-field measurements, which limited
the magnetic-field range in the experiment to µ0H Ç 31 T.

At this point, it is important to note a peculiarity of the miniature two-axis rotator developed by A. P. Reyes
(NHMFL). The device involves a sophisticated cogwheel-based transmission, which results in significant
backlash of the mechanism, especially for the ϑ degree of freedom [2]. For this reason, the ϑ-mechanism
was initially detached from its drive shaft and locked into place using GE 7031 varnish. Indeed, a
highly-symmetric lineshape was observed in the high-field phase using this initial sample orientation
[black trace in Fig. A.5(d)]. Since the spectra acquired afterwards in the intermediate-field phase looked
different from previous results [78] (cf. Fig. 8.1), a scan of ϕ was performed in the intermediate-field
phase [Fig. A.5(c)]. The small sensitivity of the spectrum w. r. t. ϕ suggested that the differences were not
caused by misalignment. However, the symmetric line shape observed initially in the high-field phase
could not be reproduced during subsequent variation of ϕ [Fig. A.5(d)], indicating that the two-axis
rotator failed to return to its initial configuration. This is attributed to a loosening of the ϑ mechanism.

The aforementioned observations indicate that the decoupling of the two rotation angles is not perfect.
This issue, as well as the backlash of the mechanism, can be circumvented to some extent by strictly

9A ruthenium oxide thermometer installed on the same probe failed during the experiment.
10The larger relative variation of the NMR shift with ϑ [comparing with Fig. A.7(b)] is attributed to the coupling of the

angular degrees of freedom discussed below. The proximity of the applied field to Hc1 [207] might play a role as well.
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Figure A.5: (a),(b): 31P-NMR shifts measured during sample alignment in superconducting magnet (ambient
temperature). (c),(d): 31P-NMR spectra measured during angular scans in the intermediate-field (c) and the high-
field (d) field-induced phases. Arrows indicate the directions along which the angles were varied. Note that the
NMR shifts are uncalibrated.

following a certain protocol when adjusting the angles, in order to ensure that the teeth of the transmis-
sion gears always mesh in the same way [2]. However, in practice, the precision of the rotator is limited.
Furthermore, the anisotropy of the high-field magnetization [207] [cf. Fig. 4.6(b)] implies that the con-
figuration H ‖ b is unstable and slight misalignment results in a torque trying to coalign the magnetic
field with the a-direction. For these reasons, the backlash of the rotator mechanism posed a significant
challenge for the experiment.

In order to re-align the sample, the ϑ-mechanism was reconnected. To save magnet time, and because
the data shown in Fig. A.5 corroborated the correctness of the initial alignment, ϕ was returned to its
initial configuration and ϑ was optimized in the intermediate-field phase [Fig. A.6(a)]. Checking of ϕ
was deferred until the end of the magnet time. Fortunately, the angular dependence finally recorded in
the high-field phase [Fig. A.6(b)] corroborated the correct alignment of ϕ.

The NMR shifts in Fig. A.6 are reported w. r. t. the 31P-NMR frequency [308], as obtained from the
resonance frequency of the 27Al reference (see section 8.2). Note that the friction of the rotator device
results in significant heating of the NMR probe. To conserve energy, the magnet was temporarily ramped
down during the thermal relaxation of the system before acquiring the red data in Fig. A.6(b). The data
were offset by ´50 ppm to compensate for the resulting difference in magnetic field. The same offset
was applied to the line shapes measured afterwards at T “ 14 K and T “ 24 K [Figs. 8.4(a) and 8.13].

The data reported in Fig. A.6 confirm the correct alignment. Strictly speaking, this method of sample
alignment is an iterative procedure. However, the fact that the angular scans are highly symmetric about
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Figure A.6: 31P-NMR spectra measured during angular scans in the intermediate-field (a) and the high-field (b)
field-induced phases. Arrows indicate the directions along which the angles were varied.

the initial configurations of both angles indicates that the sample configuration during the experiment
was very close to the fixed-point H ‖ b. This is further corroborated by the additional measurements
described in section A.4.3.

A.4.3 Post-experiment checks

Although the results presented in section A.4.2 corroborate the correct alignment of the sample during
the high-field experiments, the different shape of the NMR lines measured in the intermediate-field phase
provided the motivation to perform additional measurements to double-check the orientation of the crys-
tal. The data shown in Fig. A.7(b) confirm the orientation of the b axis depicted in Fig. 8.3. The apparent
offset between the old (see caption of Fig. 8.3 for data source) and new data is discussed at the end of
this subsection.

In accordance with similar comparisons in previous work ([74, Fig. 5.9b inset] and [22, Fig. 1]), the NMR
shift mirrors the temperature dependence of the magnetization measured previously [see Fig. A.7(a)
for results and data source] (see section 6.4 for notation). Temperature and field dependence of the
magnetization measured after the high-field experiments also compare favorably with the previous data
(see Fig. A.8)11 and the magnetic response is found to be linear up to µ0H “ 7 T at least (Fig. A.8
inset), in agreement with previous work [74, p. 99].

The evolution of the NMR line from a Gaussian to a Lorentzian shape illustrated in the inset of Fig. A.7(a)

11The maximum difference is 2.5%. The noise in the new measurement is attributed to the different measurement technique
(RSO vs. DC SQUID).
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Figure A.7: (a): Comparison of 31P-NMR shift measured on high-field NMR sample (at µ0H “ 7.0667 T) with
magnetization data [see Fig. 5.1(b) for data source and details]. The inset shows representative NMR lines and
fits. See [74, Fig. 5.9] for equivalent analyses of previous NMR data. (b): Comparison of angular rotation patterns
obtained using the high-field NMR sample (colored data, µ0H « 7 T) with previous data from [74] (black) (cf.
Fig. 6.3). The light-colored data have been offset by ´70 ppm. Data on the high-field sample acquired before
(triangles) and after (crosses) the high-field experiments are shown. The error bars correspond to the line width
[74, Fig. 5.8] (taken as full-width at half-maximum for the new data) and are of comparable magnitude for previous
and new data (only drawn once for clarity). As in the previous work [74], shifts in (a) and (b) were determined
by fitting a Voigtian line shape (cf. [74, p. 102]) and are expressed relative to the resonance frequency of 31P in
BiZn2PO6 [75, pp. 4-5] (cf. section 6.6.1).

has already been documented in previous work [74, Fig. 5.9]. The apparent narrowing of the line at low
temperature is compatible with a reduction of the dipolar broadening due to the reduced magnetization—
although partially compensated by the Lorentzian broadening which is attributed to dynamical effects
[74, p. 110]. Moreover, the slight asymmetry of the NMR line measured at high temperature [Fig. A.7(a)
inset] is consistent with a shoulder at high frequency, as expected from the dipole lineshape depicted
in Fig. 8.13. The linewidth observed at high temperature (full-width at half-maximum of 70 ppm) is
roughly consistent with that expected for the dipole lineshape (approx. 80 ppm, cf. section 6.3.4). In
agreement with the evolution of the sample shape from oblate to prolate upon rotation from H ‖ b to
H ‖ a [cf. Fig. 8.3(a)], the asymmetry of the lines corresponding to the red data in Fig. A.7(b) changes
sign. Meanwhile, the distinct features of the dipole line shape appear to be smeared-out, hinting at the
presence of dynamical phenomena (cf. [74, p. 110]). Thus, besides the offset of the shifts, everything is
consistent with previous results [74] and theoretical expectations.

As noted above, offsetting the data by 70 ppm yields very good agreement between old [74] and new
data [light-colored points in Fig. A.7(b)]. This is most probably related to the NMR shift of 31P in
BiZn2PO6: The numbers reported in [75, pp. 4-5] (cf. Fig. 6.3), which are used in this work, correspond
to a relative shift of ´57 ppm w. r. t. the nominal 31P Larmor frequency [308] and thus differ from the
10 ppm reported in [22]. Also, [74, Fig. 5.5] and [75, Fig. 1] suggest a very small shift. Assuming an
error in [75] hence results in an offset of 10 ppm ´ p´57 ppmq « 70 ppm, which could explain the
differences observed in Fig. A.7(b).12,13 However, partial inspection of the available old data indicates

12Since the data used in section 6.6 were assumed to be reported as relative shifts [74, Fig. 5.10] w. r. t. non-magnetic
BiZn2PO6 (see sections 6.6.1 and A.3.1), this offset is irrelevant for the hyperfine-coupling parameters estimated in this work.

13While such an offset affects the results shown in Fig. 8.7, the changes are too small to change the qualitative appearance
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Figure A.8: Comparison of the magnetic susceptibility measured on the high-field sample with previous data [see
Fig. 5.1(b) for data source and details]. The inset shows the field-dependence of the magnetization at T “ 295 K
along with a linear fit (without intercept). The (red) data were measured by T. Shiroka using a Quantum Design
MPMS XL magnetometer with RSO option. The temperature-dependence was measured in µ0H “ 0.5 T after
zero-field cooling.

that not all previous measurements are consistent with this hypothesis, which might be related to the
following issue.

The old data were supposedly measured using approximately cubic samples [74, Fig. 5.4d and p. 99]
and, consistently, a spherical summation scheme has been used for the dipolar couplings in [74, p. 106],
as well as in this work (see sections 6.3.5 and 6.6). However, the oblate shape of the high-field sample
[Fig. 8.3(a)] (aspect ratio 4.3 : 3.1 : 2) should result in a demagnetization factor l « 0.55 for magnetic
fields applied along the short edge (cf. section A.2.1), which corresponds to a demagnetization-induced
shift of about ´60 ppm (cf. section 6.3.2).14 Note that the correct calibration of the new data is corrob-
orated by the good agreement of the data acquired before and after the high-field experiments [triangles
and crosses in Fig. A.7(b)]. Even more worrying than the apparent absence of this additional shift, which
could be related to field-calibration issues,15 is the excellent agreement after offsetting the data, which
is unexpected, since the anisotropic demagnetization tensor of a non-cubic sample should give rise to a
different curvature of the angular dependences shown in Fig. A.7(b).16 This suggests that some of the

of the figure. Correspondingly, the estimate for m‖ in Fig. 8.10 would change only insignificantly to 0.33p1q ~.
14By considering a large-but-finite cubic sample and extending it along the in-plane directions in order to approximate

an oblate sample geometry, it becomes clear that the far-field created by the added dipole moments points opposite to the
magnetization, in agreement with the expressions in section 6.3.2. Therefore, the dipole field inside a flat sample is reduced
w. r. t. a cubic sample, which results in smaller NMR shifts.

15In this work, the Al foil used for the field calibration was measured separately from the sample (section 8.2), whereas
in the previous measurements it was placed inside the same coil as the sample [74, Fig. 5.4d]. Simple estimates, made by
approximating the sample as a point-like dipole and/or using the analytical result from Ref. [121], suggest that the stray field
created by the sample can give rise to NMR shifts of the order of 100 ppm in the worst case (aluminum foil located on top
or bottom face of the sample). Another possibility is that the field of the magnet was drifting during the measurements. This
typically happens soon after a magnetic-field change.

16The demagnetization factor changes to l « 0.29 for fields applied along the intermediate-length edge of the high-field
sample. The total excursion of the angular dependence of the high-field sample in the ab-plane should therefore be about
70 ppm larger than for a cubic sample, whereas the observed difference is of order 15 ppm. Note that the demagnetization
corrections are not sufficient to invert the oscillation in the ab plane, hence not jeopardizing the assignment of the crystal
axes. Correct assignment of the axes is further corroborated by the magnetization (Fig. A.8) and the agreement of the phase



206 A Appendix

samples used in previous work [74, 75] may not have been cubic. In principle, different sample shapes
could be accounted for in the analysis of section 6.6. However, this is not attempted at this moment,
since the exact experimental conditions during the previous measurements are not known to me.

To conclude, the new data confirm the integrity and the alignment of the sample used in the high-field
experiments. While a sample-dependence cannot be fully excluded, differences with previous data [74,
75] suggest a problem with the magnetic-field calibration in previous measurements. However, as seen
in section 6.7, the uncertainties estimated for the hyperfine couplings are generally large, so that these
issues merely underline the importance of the qualitative arguments discussed in section 8.6.

A.4.4 Additional data

As mentioned in section 8.3, the sample was slightly misaligned during the first magnet time, as result of
a technical problem with the ϕ-mechanism of the two-axis rotator. Whereas the relaxation-rate data in
Fig. 8.4(b) corroborate the approximate alignment of the sample, the line shapes shown in Fig. A.9 are
clearly different from those depicted in Fig. 8.4(b).

The spin-lattice relaxation rates reported in Fig. 8.4(b) were determined close the central (i. e. , highest-
amplitude) peaks of the spectra. Only one measurement of the spin-spin relaxation rate T´1

2g was per-
formed, at µ0H “ 39 T and again close to the central peak of the spectrum. The decay of the spin-echo
amplitude with interpulse delay was fitted to a relaxation of the form exp

`

´pT {T2gq
2
˘

, yielding the
value indicated in Fig. A.9.

A.4.5 Field calibration

During the experiments yielding the relaxation rates shown in Fig. 8.4(b) and the line shapes depicted in
Fig. A.9, the 27Al field-calibration reference was placed inside the same coil as the sample. To assess
the effect of the stray field created by the sample, the shifts obtained from 27Al-NMR were compared
with 63Cu-NMR performed on the NMR coil itself [426]. Moreover, since the coil is orthogonal to the
external magnetic field and surrounds the sample, the stray field can also be estimated from the linewidth
of the 63Cu resonance. For data obtained at µ0H « 39 T, such considerations indicate an uncertainty of
˘30 ppm—yet, an actually even larger systematic error caused by the stray field of the sample cannot
be fully excluded. In addition, problems with the cryostat required frequent and unscheduled ramping
of the magnetic field (see remark about bubbles in section 8.2). Therefore, a primary field calibration
was not possible for all measurements. Instead, the data were interpolated to obtain an effective relation
between the field indicated by the high-field magnet system and the calibrated field at the sample.17 The
final relative uncertainty of the reported shifts is estimated as ˘100 ppm.

To avoid the aforementioned problems, the reference sample was placed inside a separate coil during
subsequent experiments, as shown in Fig. 8.3(b). Like this, the 27Al line is unperturbed by the stray
field of the sample and the field can be determined to less than ˘25 ppm. The drawback is a radial
displacement of the reference by approximately 5p2q mm w. r. t. the center of field, where the sample
was located. This results in a systematic error between 25 ppm and 125 ppm, the off-center magnetic
field being larger [125]. The total error interval for the shifts thus ranges from 0 ppm to 150 ppm.

boundaries observed in the high-field experiments with the phase diagram of BiCu2PO6 [207] (see Fig. 8.5 in section 8.4).
17A simple experimental test indicates a field-setting accuracy of around 60 ppm, in accordance with [2].
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Figure A.9: 31P-NMR spectra of BiCu2PO6, as function of magnetic field µ0H (H ‖ b). The ordinates of the
baselines of the NMR spectra encode the corresponding magnetic fields. The intensities are normalized to their
area. Colors distinguish different phases [analogous to Fig. 8.4(b)]. Shifts are reported w. r. t. a standard 31P
reference [308]. Dashed lines are guides to the eye. The estimated total field-calibration uncertainty (see section
A.4.5) is indicated by gray bars. See text for details.

As outlined above, none of the two approaches is fully satisfactory. A possible solution consists in
mounting the calibration reference in a vertically-offset location (cf. [74, Fig. 2.7d]) and then displacing
the entire cryostat to center the desired NMR coil within the high-field magnet. Such a technique was
used at LNCMI Grenoble [3] (see also [74, p. 133]), where the experiments reported in Ref. [74] were
performed, and the uncertainty of the reported shifts is empirically assumed as ˘40 ppm. For data
acquired at ETH Zürich, the calibration uncertainties are typically of the order of 10 ppm or better (cf. ,
e. g. , Fig. A.7).

A.4.6 Effect of signal compression on NMR spectrum

Strictly speaking, signal compression affects the time-domain signal sptq in a non-uniform fashion. The
(rephased) frequency-domain spectra ŝpωq “

ş

sptqeiωtdt obtained from full spin-echoes are typically
real and non-negative. This is exact for Gaussian and Lorentzian lines, and approximately correct for the
sinpωq{ω-like spectra expected while scanning a broad line (cf. [91]). Therefore, the area in frequency
domain can be approximated as

ş

ŝpωqdω ∝ sp0q, where t “ 0 is assumed to coincide with the center
of the rephased (see, e. g. , [229, pp. 102 ff.], section 1.5.6, or [74, appendix D.2]) spin echo, which
normally has maximal signal amplitude. Thus, the area under the NMR spectrum is generally expected
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to be reduced due to signal compression.

Considering ŝpωq itself, the overall amplitude reduction competes with the broadening of the time-
domain signal, which sharpens-up the spectrum. Which of the two effects wins, generally depends
on the details of the electronics. A simple result can be obtained if one assumes the compression to occur
after the signal has been down-converted to zero intermediate-frequency (IF). The compressed signal is
modeled as scptq “ sptq ´ α|sptq|sptq (α ě 0). For zero IF, the aforementioned standard NMR spectra
correspond to Gaussian, exponential, and box-shaped time-domain signals sptq, respectively. At zero
IF, sptq ě 0 for a properly-phased signal and thus the intensity obtained from the compressed signal is
ŝcpωq “ ŝpωq ´ α

ş

sptq2eiωtdt. Now, if spωq is real-valued and non-negative, Bochner’s theorem [429]
shows that sptq is a symmetric positive-definite (s. p. d.) function, which implies that sptq2 is s. p. d.
as well. This finally shows that the Fourier-transform of sptq2 must be real-valued and non-negative,
proving that ŝcpωq ď ŝpωq. Even though the box-shaped signal is not s. p. d. , the argument clearly sur-
vives, at least in the ideal case for which Dc : @t : sptq2 “ c sptq. Finally, the zero-IF argument made
above also applies if compression occurs in a high-frequency component in a way which affects only the
low-frequency envelope of the signal and not the carrier-wave itself.18

A.5 Derivations

A.5.1 Formal derivation of superexchange interaction

In order to obtain an effective spin model (see section 1.1.1), the high-energy sectors Ωe with e ą 0
need to be removed from the description, yielding an effective Hamiltonian Heff “ P0H0P0 ` Veff,
where Pe shall denote the projector onto Ωe. A formal framework for the construction of such effective
Hamiltonians is described in [374] and is applied in the following. The notation is adopted from this
reference. While the final result and its physical origin in virtual hopping processes contributing at
second order in perturbation theory are clearly well-known [31], it appears instructive to re-derive the
result using the formalism presented in [374].

Ref. [374] characterizes an effective Hamiltonian HS “ H0 `WS through a set of properties which it
should satisfy [374, section II]. Following [374], repeated substitution of [374, eq. 31] into [374, eq. 32],
keeping terms up to second order in V , yields19

WS “ xVy ` xV h0 pxVy ´ Vqy “ xVy ´ xV h0 pVqy .

Using the definitions from [374] then results in the familiar expression

Veff “ P0 WS P0|Ω0
“

˜

P0VP0 ´
ÿ

e‰0

P0 V Pe V P0

e

¸
∣∣∣∣∣
Ω0

(A.7)

describing the effective interactions within the ground-state sector Ω0 of H0.

For the considered Hubbard model at half filling, V connects the ground-state sector Ω0 with the sector
ΩU of excited states having exactly one doubly-occupied site, such that Veff “ ´U´1P0 V2

∣∣
Ω0

. Also,

18This is not a very strict assumption, since non-linear response on timescales corresponding to the carrier frequency would
mainly generate higher harmonics of the signal, which are typically filtered out by the receiving electronics of the NMR
spectrometer.

19In order to have HS “ H0 (and hence Veff “ 0) in the limit V Ñ 0 [374, eq. 9], one needs xSy “ 1 [374, eq. 27].
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P0 “
ś

k pk with pk “ p2 ´ nkq is a straightforward choice in this case. With the notation xi, jy1 for
summation over directed bonds, and using ppk ` aq c

p:q

jσ “ c
p:q

jσ ppk ` p´qδjk ` aq, I obtain

P0V2 |tσiuiy “
ÿ

xi,jy1,σ
xi1,j1y1,σ1

˜

ź

k

pk

¸

tijti1j1 c
:

iσ cjσ c
:

i1σ1 cj1σ1 |tσiuiy

“
ÿ

xi,jy1,σ
xi1,j1y1,σ1

tijti1j1 c
:

iσ cjσ c
:

i1σ1 cj1σ1

¨

˝

ź

kPti,j,i1,j1u

`

1´ δki ` δkj ´ δki1 ` δkj1
˘

˛

‚|tσiuiy .

Non-zero contributions only arise for pi, jq “ pj1, i1q, and a bit of algebra gives

P0V2 |tσiuiy “ 2
ÿ

xi,jy,σ,σ1

|tij |
2 c:iσ cjσ c

:

jσ1 ciσ1 |tσiuiy ,

which actually coincides with [31, eq. 18]. Hence it is not surprising that, by comparing the matrix
elements in the t|tσiuiyu basis, one finds c:iσ cjσ c

:

jσ1 ciσ1
∣∣∣
Ω0

“
`

´2Si ¨ Sj `
1
2

˘∣∣
Ω0

, and the final result

follows, in full agreement with [31].

A.5.2 Transformation properties of DM vectors

I encountered somewhat confusing statements regarding the transformation properties of the DM vec-
tor D in the literature (see, e. g. , [108, 179], [74, p. 49], and [259, p. 127]). To clarify this issue, I
will briefly re-derive the transformation rules for D. Consider a crystal symmetry R which transforms
vectors x ÞÑ Rx. In the presence of spin-orbit coupling, the spin operators need to be transformed
accordingly, Si ÞÑ detpRq

`

R´1
˘T

Si.20 Crystal symmetries preserve distances and angles, so that R
is orthogonal.21 Consider now the graph G formed by oriented (cf. [377, sec. IV.A]) magnetic bonds
b “ pb1, b2q connecting the vertices bi. The symmetry R induces an automorphism of G by mapping
b ÞÑ Rpbq “ pRpb1q, Rpb2qq. Hence,

HDM “
ÿ

bPG

Db ¨
`

Sbp1q ˆ Sbp2q
˘

ÞÑ
ÿ

bPG

detpRq
`

RTDb

˘

¨
`

SRpbp1qq ˆ SRpbp2qq
˘

.

While there exists a unique b̃ P G for which tb̃1, b̃2u “ tRpb1q, Rpb2qu, the orientations of Rpbq and b̃
may differ. Let σRpbq “ 1 whenever Rpbq and b̃ have the same orientation and ´1 otherwise. Then,

HDM ÞÑ
ÿ

b̃PG

σRpbqdetpRq
`

RTDb

˘

¨ pSb̃p1q ˆ Sb̃p2qq .

Requiring invariance of HDM under R thus corresponds to

Db ÞÑ σRpbqdetpRqRTDb
!
“Db̃ . (A.8)

20As is well known, pRuq ˆ pRvq “ detpRq
`

R´1
˘T
puˆ vq.

21In accordance with Wigner’s theorem (see section 1.4.4 and references therein).
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The effective transformation rule (A.8) is, in fact, essentially equivalent to those given in the literature
(see, e. g. , [259, p. 127]) and allows to relate the elements of DM vectors on equivalent bonds to one-
another, as well as to derive symmetry constraints on Db whenever b̃ “ b for some R, up to orientation
(see, e. g. , [275]). Note also that the preceding discussion merely reflects a personal preference for closed
mathematical formulations, whereas the corresponding concepts are clearly well known and generally
considered, more or less explicitly, by other authors (see, e. g. , [377]).

A.5.3 Method to account for site-dependent g-tensors

In the following, I derive a suitable, extended form of the fluctuation-dissipation theorem (e. g. , [353,
p. 300]) in order to address the problem outlined in section 1.4.5. Furthermore, I illustrate how this can
be combined with the calculation techniques discussed in section 1.4. Although clearly a straightforward
application of elementary (quantum) statistical mechanics, the corresponding results are needed for the
analyses described in chapter 5. Note also that site-dependent g-tensors and their effects are a standard
topic and have been discussed in various previous works (see, e. g. , [15] and [74]).

Example: Dimer To illustrate the problem, it is sufficient to consider a simple dimer formed
by two spins S1 and S2 with anti-ferromagnetic (AFM) exchange coupling H0 “ J S1 ¨ S2, sub-
jected to small uniform and staggered external magnetic fields Huez and Hsez , respectively. The
Hamiltonian of this toy model reads

H “ J S1 ¨ S2 ´HupS
z
1 ` S

z
2q ´HspS

z
1 ´ S

z
2q .

Focus on the limit T Œ 0. The ground state |0y is non-degenerate, and converges towards the
usual singlet for Hs Ñ 0. The expectation values of staggered and uniform magnetization are
straightforward to obtain,

x0|Sz1 ` S
z
2 |0y “ 0 x0|Sz1 ´ S

z
2 |0y “

2Hs
a

J2 ` 4H2
s

“
2Hs

J
`OpH3

s q .

Thus, both the uniform and the staggered susceptibilities converge to constant values, 0 and 2
J ,

respectively, as T Œ 0. If one had assumed a site-dependent g-factor, a uniform external field would
give rise to non-zero uniform and staggered field components, each of which would give rise to a
uniform and a staggered magnetization response (cf. [15, sec. VIII.B] and [74, p. 51]). From the
above expressions, it is clear that in the limit T Œ 0 the uniform susceptibility tends to zero for
g1 “ g2 “ g and towards 2µ2Bg

2

J if g1 “ ´g2 “ g.

For reasons which will become clear later, I assume that the magnetic field applied to each sub-lattice can
be controlled independently, H “ ´

ř

i,pBi ¨µi,p`H0. I begin to calculate the (average) susceptibility
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of sub-lattice i w. r. t. the fieldBj ,

χρσij “
1

N

B

BBσ
j

C

ÿ

p

µρi,p

G∣∣∣∣∣
Bσj “0

“
1

βN

B

BBσ
j

B

BBρ
i

logZ

∣∣∣∣∣
Bρi “B

σ
j “0

, Z “ Tr expp´βHq

“
1

βN

˜

BBρi
BBσj Z

Z
´
BBρi

Z

Z

BBσj Z

Z

¸∣∣∣∣∣
Bρi “B

σ
j “0

,

(A.9)

with β´1 “ kBT and for a system consisting of N unit cells. Clearly, χρσij “ χσρji . The main difficulty
arises during the evaluation of the 2nd derivative, as discussed in the following.

For a matrix-valued function t ÞÑ Aptq,

Bt expA “ Bt

8
ÿ

n“0

1

n!
An “

8
ÿ

n“1

1

n!

n´1
ÿ

k“0

˜

k´1
ź

l“0

A

¸

pBtAq

˜

n´1
ź

l“k`1

A

¸

,

which is different from BtA expA in the general case rBtA,As ‰ 0. Still, the cyclic property of the trace,
TrAB “ TrBA, implies

Bt Tr expA “ Tr Bt expA “ Tr pBtAq expA .

However, such a complete reordering is not possible anymore for expressions of the form

Bt TrB expAptq|t“t0 “ Tr BtB expA

“ Tr

«

B Bt

8
ÿ

k“0

1

k!
Ak

ff

“

8
ÿ

k“1

1

k!

k´1
ÿ

l“0

Tr

»

–B

˜

l´1
ź

j“0

A

¸

`

BtA|t“t0
˘

¨

˝

k´1
ź

j“l`1

A

˛

‚

fi

fl

“
ÿ

n

8
ÿ

k“1

1

k!

k´1
ÿ

l“0

A

n
ˇ

ˇ

ˇ
BAl pBtAqA

k´l´1
ˇ

ˇ

ˇ
n
E

“
ÿ

m,n

8
ÿ

k“1

1

k!

n´1
ÿ

l“0

A

n
ˇ

ˇ

ˇ
BAl

ˇ

ˇ

ˇ
m
EA

m
ˇ

ˇ

ˇ
pBtAqA

k´l´1
ˇ

ˇ

ˇ
n
E

“
ÿ

m,n

xn |B |my xm | pBtAq |ny
8
ÿ

k“1

1

k!

k´1
ÿ

l“0

ElmE
k´l´1
n

[448]
“

ÿ

m,n

xn |B |my
@

m
ˇ

ˇ

`

BtA|t“t0
˘ ˇ

ˇn
D eEm ´ eEn

Em ´ En
,

(A.10)
for an orthonormal eigenbasis t|nyun of Apt0q with eigenvalues En. In order not to overload the no-
tation, the evaluated-at symbol .|t“t0 was not repeated constantly throughout the derivation. The naive
result Bt TrB expAptq|t“t0 “ TrBpBtAq expA|t“t0 “ TrpBtAqB expA|t“t0 is recovered whenever
rB,As|t“t0 “ 0 or rBtA,As|t“t0 “ 0.
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Returning to the original problem,

B

BBρ
i

B

BBσ
j

Z

∣∣∣∣∣
Bρi “B

σ
j “0

“ ´βµBg
στ
j

ÿ

p

B

BBρ
i

TrSτj,p expp´βHq

∣∣∣∣∣
Bρi “B

σ
j “0

“ ´βµ2
Bg

στ
j gρηi

ÿ

p,q

ÿ

m,n

@

n
ˇ

ˇSτj,p
ˇ

ˇm
D

A

m
ˇ

ˇ

ˇ
Sηi,q

ˇ

ˇ

ˇ
n
E e´βEm ´ e´βEn

Em ´ En
,

for an eigenbasis t|nyun of the zero-field Hamiltonian Hzf “ H|Bi“0 @ i with eigenvalues En. I further
define the sub-lattice spin Si,Σ “

ř

p Si,p and obtain

χρσij “
1

N
µ2
Bg

ρη
i β

˜

1

Z

ÿ

m,n

A

n
ˇ

ˇ

ˇ
Sηi,Σ

ˇ

ˇ

ˇ
m
E

@

m
ˇ

ˇSτj,Σ
ˇ

ˇn
D e´βEm ´ e´βEn

´β pEm ´ Enq
´

A

Sηi,Σ

E

@

Sτj,Σ
D

¸

loooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooon

Cητij

`

gTj
˘τσ

“
µ2
B

N

`

giCij g
T
j

˘ρσ
,

(A.11)
where the averages are evaluated using the density matrix expp´βHzfq{Tr expp´βHzfq.

Sanity check Consider the special case gi “ gj “ g @ i, j “ 1 . . . s, and calculate the total longitu-
dinal susceptibility χ,22

χαα “
1

s

ÿ

i,j

χααij

“
βµ2

B

sN

˜

1

Z

ÿ

m,n

xn | gαηSηtot |my xm | g
ατSτtot |ny

e´βEm ´ e´βEn

´β pEm ´ Enq
´ xgαηSηtoty

2

¸

.

If Hzf conserves gαηSηtot, one can chose a compatible eigenbasis for which xm | gαηSηtot |ny ∝ δm,n.
Then,

χαα “
βµ2

B

sN

˜

ÿ

m,n

xn | gαηSηtot |my xm |S
z
tot |ny

e´βEn

Z
´ xgαηSηtoty

2

¸

“
βµ2

B

sN

´A

pgαηSηtotq
2
E

´ xgαηSηtoty
2
¯

,

where I used the limit

lim
EmÑEn

e´βEm ´ e´βEn

´β pEm ´ Enq
“
´βe´βEn

´β
.

If α also happens to be a principal axis of g,

χαα “
βµ2

B pg
ααq

2

sN

´A

pSαtotq
2
E

´ xSαtoty
2
¯

(A.12)

and one recovers the usual fluctuation-dissipation theorem (cf. , e. g. , [353, p. 300]).
22A similar expression was stated in [13, eq. 2.20].
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Example: Dimer (continued) Reconsider now the simple dimer system. Using eq. (A.11), one
finds

lim
TŒ0

χzzij “ µ2
Bgigj

˜

ÿ

m‰0

2 Re x0 |Szi |my
@

m
ˇ

ˇSzj
ˇ

ˇ 0
D 1

Em ´ E0
` β x0 |Szi | 0y

2
looooomooooon

“0

¸

.

I specialize to the problematic case g1 “ ´g2 “ g and calculate the uniform susceptibility

lim
TŒ0

χ “ χzz11 ` χ
zz
22 ` χ

zz
12 ` χ

zz
22

“ 2µ2
Bg

2
ÿ

m‰0

|x0 | pSz1 ´ Sz2q |my|
2

Em ´ E0
.

The ground state |0y “ 1?
2
p|Öy ´ |Œyq (energy E0 “ ´3J

4 ) has non-zero matrix elements with

|1y “ 1?
2
p|Öy ` |Œyq (energy E1 “

J
4 ) only, yielding the correct zero-temperature limit

lim
TŒ0

χ “
2µ2

Bg
2

J
.

By contrast, the simple fluctuation-dissipation theorem (A.12) would have suggested χ ∝ β in the
low-temperature limit.

A high-temperature expansion of (A.11) gives

χρσij “
1

N
µ2
Bg

ρη
i β

˜

1

Z

ÿ

m,n

A

n
ˇ

ˇ

ˇ
Sηi,Σ

ˇ

ˇ

ˇ
m
E

@

m
ˇ

ˇSτj,Σ
ˇ

ˇn
D

´

A

Sηi,Σ

E

@

Sτj,Σ
D

¸

`

gTj
˘τσ

`Opβ2q

“
1

N
µ2
Bg

ρη
i β

´A

Sηi,ΣS
τ
j,Σ

E

´

A

Sηi,Σ

E

@

Sτj,Σ
D

¯

`

gTj
˘τσ

`Opβ2q .

The first summand corresponds to the result obtained by neglecting the non-commutativity of the opera-
tors in (A.10). Indeed, this easier-to-evaluate expression is found to represent a reasonable approximation
to the susceptibility at moderate to high temperatures.

Method The expression (A.11) can be evaluated in two different ways.

1. Once the eigenstates have been obtained, the 3ˆ 3 matrices CijpT q can be evaluated in Op23sN q

time using the definition (A.11) and the sparsity of the sub-lattice spin operator matrices. This is
comparably expensive to diagonalizing a general symmetric matrix (see, e. g. , [168, p. 42-22]).

2. Alternatively, one can set gi “ 1 @ i and apply a fieldBj ‖ eσ selectively to one of the sub-lattices.
If the field is small enough to yield a linear response, equation (A.11) gives

A

Sρi,Σ

E

“ µBC
ρσ
ij B

σ
j . (A.13)

For each of the 3s independent choices of j and σ, at least one full diagonalization needs to be
performed to calculate the left hand side and thus CijpT q.
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Note that in both cases, the thermal averaging is performed after the diagonalization step. However,
the form of (A.11) implies that the work that needs to be repeated at each temperature is Op22sN q for
the first approach, whereas it is only Op2sN q in the second case. Once the CijpT q are known, the total
susceptibility per unit cell for any choice of g-tensors is obtained according to

χpT q “
µ2
B

N

ÿ

i,j

giCijpT q g
T
j . (A.14)

A few simplifications arise if the system exhibits additional symmetries:

• Since the sub-lattice spin operator Si,Σ is translation invariant, it is block diagonal in a basis
which respects translation invariance (see [215] and section 1.4.4). While this does not improve
the scaling, it can be used to speed up method 1.

• For SUp2q-symmetric exchange interactions Cαβij “ δαβ C
zz
ij , which reduces the amount of calcu-

lations required. Although rSzj,Σ, Hs ‰ 0 in general, such that the extended fluctuation-dissipation
theorem (A.11) must be used, each simulation run remains computationally efficient, since Sztot is
conserved. The expression for the susceptibility becomes

χαβ “ µ2
B

ÿ

ij

Czzij pT q
“

gig
T
j

‰αβ
. (A.15)

A.5.4 Empirical model for specific heat

See section 5.2.2 for context. By writing (see, e. g. , [353, p. 89])

CM “
1

kBT 2

˜

Z2

Z0
´

ˆ

Z1

Z0

˙2
¸

, (A.16)

with
Zm “

ÿ

n

Emn e
´βEn “

ż

dE ρ0pEqE
me´βE ,

where tEnunPN describes the spectrum of H, one sees that, as is generally known, CM is determined by
the density of states ρ0pEq “

ř

n δpE ´ Enq. The proposed “toy-model” density of states is

ρ1pEq “ δpE ´ E0q `
ÿ

n‰0

1

2D̃
Θ
´

D̃ ´ |E ´ En|
¯

.

The magnetic specific heat of this model can be obtained from

Z 1m “ Em0 e
´βE0 `

ÿ

n‰0

ż

dE
1

2D̃
Θ
´

D̃ ´ |E ´ En|
¯

Eme´βE

“ Em0 e
´βE0 `

ÿ

n‰0

1

2βm`1D̃

ż βpε`D̃q

βpε´D̃q
dt tme´t

“ Em0 e
´βE0 `

ÿ

n‰0

1

2βm`1D̃

”

´Γpm` 1, βpEn ` D̃qq ` Γpm` 1, βpEn ´ D̃qq
ı

,

where Γpa, zq “
ş8

z dt t
a´1e´t is the incomplete gamma function [430]. The resulting expression for

CM is then evaluated numerically.
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A.5.5 Mean-field description of interladder couplings

The in-plane interladder coupling Ji can be treated using standard mean-field theory, and a similar model
was applied to BiCu2PO6 [218]. The following argument is inspired by [64, 192]. Clearly, the meaning-
fulness of the results will be limited, since the system remains low-dimensional. The Hamiltonian H is
augmented by the interladder coupling, yielding

H “ H0 ` Ji
ÿ

i,r

Si,r ¨ Si,r,NN ,

where Si,r and Si,r,NN correspond to the Cupiq site on the reference ladder and a neighboring ladder,
respectively. I use the notation i to indicate the index complementary to i, i. e. , 1 “ 2 and 2 “ 1, and
assume antiferromagnetic Ji ą 0, as suggested by inelastic neutron scattering [316]. I further assume
H ‖ b for simplicity of notation (see section 4.3.1), and call the corresponding g-factors g1 and g2. Let
χi denote the mean-field susceptibility of the Cupiq site, and χp0qij be the bare susceptibility of the Cupiq
sites for magnetic fields applied to the Cupjq sites. Then,

χiH “ χ
p0q
ii H ` χ

p0q

ii
H ` χ

p0q
ii hi ` χ

p0q

ii
hi ,

with the mean fields
hi “ ´

Ji
µ2
Bg1g2

χiH .

These equations imply

ˆ

χ1

χ2

˙

“

«

1`
Ji

µ2
Bg1g2

˜

χ
p0q
12 χ

p0q
11

χ
p0q
22 χ

p0q
21

¸ff´1 ˜

χ
p0q
1

χ
p0q
2

¸

,

where χp0qi “ χ
p0q
i1 ` χ

p0q
i2 . Finally,

χ1 “
µ2
Bg1g2

Ji

´

µ2Bg1g2
Ji

` χ
p0q
21

¯

χ
p0q
1 ´ χ

p0q
11 χ

p0q
2

´

µ2Bg1g2
Ji

` χ
p0q
12

¯ ´

µ2Bg1g2
Ji

` χ
p0q
21

¯

´ χ
p0q
11 χ

p0q
22

,

which reduces to the usual mean-field expression in the case of two equivalent Cu sites (cf. , e. g. , [192,
eq. 20a]),

χ1 “
χ
p0q
1

1` Ji
µ2Bg

2χ
p0q
1

.

According to this result, if χ1pT q is exponentially suppressed at low temperature, this behavior is un-
changed by Ji. Thus, within the mean-field treatment, Ji cannot affect the spin gap. At the same time,
it is known that the two-dimensional Heisenberg model has no spin gap [253]. This contradiction con-
firms that the mean-field approach is not particularly sound for this system, as anticipated initially. This
is partly because the mean-field approach only considers the longitudinal mean-field, whereas the ne-
glected S`S´-terms provide a mechanism for triplon hopping, which reduces the energy of the triplons
(see, e. g. , [401]).

The case of two inequivalent Cupiq sites is slightly less obvious. Results obtained using the g-tensors
estimated in section 5.2.1 are therefore shown in Fig. A.10. Besides generally reducing the magnetic
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response, as expected for an AFM coupling, Ji also affects the zero-temperature limit. However, the
thermal energy scale governing the suppression of the magnetic response at low temperature is clearly
unaffected by Ji. This example concludes the argument why a standard mean-field treatment of interlad-
der couplings is not sufficient.

0 100 200 300 400 500 600 700
T (K)

0

0.5

1

1.5

2

2.5

χ
 (1

0-3
µ

B
 / 

T)
Ji / J1 = 0
Ji / J1 = 0.1
Ji / J1 = 0.2
Ji / J1 = 0.5

Figure A.10: Magnetic susceptibilities obtained by applying the mean-field corrections arising due to the interlad-
der coupling Ji to the results obtained in section 5.2.1 (forH ‖ b).

A.5.6 Derivation of (A.1)

Please refer to section A.2.1 for an explanation of the purpose of this section and its relation with previous
work. In complete analogy to electrostatics, the magnetostatic potential can be represented as (see, e. g. ,
[184, p. 196])

ΦM pr0q “

ż

d3r
ρM prq

4π|r0 ´ r|
. (A.17)

Obviously, ρM is only nonzero at the surface of the sample, where it exhibits a δ-like singularity. The
main task consists in determining the correct form of this singularity.

Without loss of generality, r0 “ 0. Using u and assuming spherical coordinates upθ, φq, yields a
parametrization of R3, rpr, θ, φq “ rupθ, φq, such that

ż

R3

d3x fpxq “

ż 8

0
dr r2

ż π

0
dθ

ż 2π

0
dφ

∣∣∣∣upθ, φq ¨ ˆBuBθ ˆ BuBφ
˙
∣∣∣∣ fprupθ, φqq .

The δ-distribution which “selects” the surface BΩ is therefore

δBΩpr, θ, φq “

∥∥∥BuBθ ˆ Bu
Bφ

∥∥∥∣∣∣upθ, φq ¨ ´BuBθ ˆ Bu
Bφ

¯∣∣∣δpr ´ 1q .

Applying the divergence theorem forM to a thin box containing the sample surface, and making use of
the assumption about the orientation of the surface described by upθ, φq, gives

ρM prq “M ¨ n̂prq δBΩpr, θ, φq ,

where n̂prq ∝ pBθu ˆ Bφuq denotes the unit surface normal. Substituting this result into (A.17) finally
yields (A.1).
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A.5.7 Derivation of (A.5)

Please refer to section A.2.2 for an explanation of the purpose of this section and its relation with previous
work. Define differential operators ∇p0q “ pBaxp0q , Bbyp0q , Bczp0qq and ∇1

p0q “ pBxp0q , Byp0q , Bzp0qq “

T ∇p0q, where T “ diagpa, b, cq. For an arbitrary magnetic momentm (see, e. g. , [184, pp. 196-197]),

1

ρ3
p3pρ̂ ¨mqρ̂´mq “ ´∇m ¨ ρ

ρ3
“∇

ˆ

m ¨∇1

ρ

˙

“ T´1∇1
0

ˆ

m ¨ T´1∇1
0

1

ρ

˙

.

Thus (cf. section A.2.2),

Mq‖m “
µ0

4π
T´1∇1

0

ˆ

m ¨ T´1∇1
0 FT2

„

1

ρ



pqb, qcq

˙

, (A.18)

with

FT2

„

1

ρ



px, qb, qcq “
ÿ

py,zqPZ2

exp
`

2πiq‖ ¨ py, zq
˘

b

a2 px´ x0q
2
` b2 py ´ y0q

2
` c2 pz ´ z0q

2

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

gppy,zqq

.

The following manipulations in this section essentially re-enact the treatment described in Refs. [292,
438] (cf. section A.2.2). First, one writes (cf. [438, eq. 18])

FT2

„

1

ρ



px, qb, qcq “
ÿ

λPZ2

gpλq “

ż

d2σ fpσq gpσq ,

where fpσq “
ř

λPZ2 δpσ ´ λq. The idea [292, 438] is to make use of the Plancherel theorem [315] for
the Fourier transform on L2pRdq which states that (cf. [438, eq. 19])

ż

fpxq‹ gpxq ddx “

ż

F pkq‹Gpkq ddk ,

where F “ Fd rf s and G “ Fd rgs denote the continuous Fourier transforms of f and g, respectively,
Fd rf s pkq “

ş

fpxq e2πik¨x ddx.

Following [292], the function F2 rf s is calculated using the Poisson summation formula [435], which
states that

8
ÿ

x“´8

fpxq “
8
ÿ

k“´8

f̂pkq ,

for a suitable function f and its continuous Fourier transform f̂ “ F1 rf s. In the following, this result
is assumed to generalize to sums over Z2 and Dirac combs (see [292, appendix 2]). The same applies to
the various interchanges of limits which are used throughout the following argument. Hence (cf. [292,
appendix 2]),

fpσq “
ÿ

λPZ2

δpσ ´ λq “
ÿ

µPZ2

ż

d2λ e2πiµ¨λδpσ ´ λq “
ÿ

µPZ2

e2πiµ¨σ ,

and therefore (cf. [292, eq. A.11]),

F2 rf s phq “

ż

d2σ expp2πih ¨ σq
ÿ

λPZ2

δpσ ´ λq “
ÿ

µPZ2

ż

d2σ expp2πi ph` µq ¨ σq “
ÿ

µPZ2

δph` µq .
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Note that the preceding result corresponds to the usual definition of the reciprocal lattice as the Fourier
transform of the direct-space lattice (e. g. , [397]; see also [292, end of appendix 1]).

The other expression to consider is (cf. [438, eq. 22])

F2 rgs phq “

ż

d2σ
exp

`

2πi ph` q‖q ¨ σ
˘

b

a2 px´ x0q
2
` b2 pσ1 ´ y0q

2
` c2 pσ2 ´ z0q

2
“

1

bc

ż

d2σ̃
exp

`

2πi ph` q‖q ¨ σ
˘

b

a2 px´ x0q
2
` σ̃2

“
e2πi ph`q‖q¨py0,z0q

bc

ż

d2σ̃
exp p2πi h̃ ¨ σ̃q

b

a2 px´ x0q
2
` σ̃2

,

where σ̃ “ pb pσ1 ´ y0q , c pσ2 ´ z0qq and h̃ “
`

1{bph1 ` q‖,1q, 1{cph2 ` q‖,2q
˘

. The integral can be
evaluated using polar coordinates pr, ϕq [448],

ż

d2σ̃
exp

´

2πi h̃ ¨ σ̃
¯

b

a2 px´ x0q
2
` σ̃2

“

ż 8

0
dr r

ż 2π

0
dϕ

exp
´

2πi |h̃|r cosϕ
¯

b

a2 px´ x0q
2
` r2

“ 2π

ż 8

0
dr

r J0p2π|h̃|rq
b

a2 px´ x0q
2
` r2

“

exp
´

´2πa|h̃||x´ x0|
¯

|h̃|
, provided x ‰ x0 .

Lastly (cf. [438, eq. 23]),

FT2

„

1

ρ



px, qb, qcq “

ż

d2h
ÿ

µPZ2

δph` µq
e2πi ph`q‖q¨py0,z0q

bc

exp
´

´2πa|h̃||x´ x0|
¯

|h̃|

“
ÿ

µPZ2

e2πi pq‖´µq¨py0,z0q

?
bc

exp
´

´2πapbcq´
1
2 ‖q‖ ´ µ‖bc|x´ x0|

¯

‖q‖ ´ µ‖bc
,

where I introduced the “bc-norm”,

‖py, zq‖2
bc “ bc

ˆ

y2

b2
`
z2

c2

˙

.

Substituting into (A.18) then yields the result (A.5).

Note that ferromagnetic configurations (q‖ P Z2) need special consideration, since F2 rgs p´q‖q reduces
to the Coulomb potential of the infinite lattice in this case and diverges. However, since only the deriva-
tive ∇1

0 FT2

”

1
ρ

ı

px, qb, qcq is ultimately needed, one could have worked with ∇1
0 g instead of g, the

Fourier transform of which has no singularity at q‖ P Z2. This is in fact the approach taken in [438] and,
while not a rigorous proof, justifies why the result (A.5) is assumed to be valid for all q‖.

A.5.8 Weighted linear regression

The weighted least-squares regression [17] is a very well known and established regression method, and
the following formulae are solely re-stated for the purpose of completeness. Consider a model ỹpx̃q,
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which is proposed to describe a set of n measurements pyi, xiq. Let the model parameters be described
by a vector p P Rm, and the measurements be arranged in vectors x,y P Rn. For a linear model, the
predictions of the model can be represented as

ỹ “ Bpxqp` bpxq ,

with Bpxq P Rnˆm and bpxq P Rn. Let W be a diagonal matrix whose entries correspond to the
weighting factors of the observations yi. The weighted least-squares parameter estimate is then, formally,

min
p PRm

∣∣∣?W pB p` b´ yq
∣∣∣2 ñ p “ C py ´ bq ,

where C “ pBT W Bq´1BT W (cf. , e. g. , [17, section 3]). If the covariance matrix of the observations
is V (i. e. , the expectation Erpyi ´ biqpyj ´ bjqs “ Vij), standard linear error propagation yields the
covariance matrix of the parameters (e. g. , [17, p. 46]),

V ppq “ C V CT “ pBT V ´1Bq´1 ,

where the usual assumption W “ V ´1 was used. Thus, the parameters pi, as well as their uncertainties
V
ppq
ii and covariances V ppqij , can be estimated directly and without the need for an initial guess.

A.5.9 Discrete spin-space symmetries

See section 7.3.1 for context.

The anti-unitary operator T satisfies T Si T ´1 “ ´Si by construction (cf. section 7.3.1). Since the
magnetic field B transforms as T B T ´1 “ ´B, the Hamiltonian (4.1) is time-reversal invariant,
T HT ´1 “ H (even if DM interactions are present).

Since spin is invariant under inversion, the (unitary23) operator corresponding to Ry should satisfy

RySiR
:
y “ diag p´1, 1,´1qSi ,

which, as is easy to check, admits the choice Ry “ 2N
śN
i“1 S

y
i (N even). Analogously, Rx “

2N
śN
i“1 S

x
i .

K is a symmetry of the DM-free Hamiltonian if the y-component of the magnetic field is zero. For a
K-invariant state |vy with well-defined Sztot and N even, one can write

RxT |vy “ 4N

˜

N
ź

i“1

Sxi S
y
i

¸

K |vy “ p2iqN
˜

N
ź

i“1

Szi

¸

K |vy “ ´p´1qN{2´S
z
tot |vy .

A.5.10 Longitudinal chirality and degenerate ground states

Please refer to section 7.8.1 for context. Use the assumptions made in section 7.8.1, and choose a state
|ϕy P Ω with real-valued coefficients in the Sz-basis. It has also been shown that an alternative basis

23Wigner’s theorem (see section 1.4.4 and refs. therein).
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of Ω is given by a pair of translation-invariant states |˘ky with inequivalent lattice-momenta ˘k (cf.
section 7.3.1). Translation-invariant states |˘ky can be obtained by projection onto the corresponding
irreducible representations of the translation group (e. g. , [214, p. 24])

|˘ky “ P˘kp|ϕyq “
1

L

ÿ

a

expp˘i k aqTa |ϕy .

Here, L denotes the number of rungs constituting the system.

Let K denote complex conjugation of the coefficients in the Sz-basis (cf. section 7.3). By construction,
K |˘ky “ |¯ky. Being different quantum states, |ky and |´ky hence cannot be equivalent to any state
with real-valued coefficients. In particular, the states |˘ky defined above are both non-trivial.

The symmetry P defined in section 7.3 implies that P |˘ky is a degenerate eigenstate with lattice-
momentum ¯k (footnote 18 in section 7.3.1), such that P |˘ky “ p |¯ky with p “ ˘1 (note that
P 2 “ 1). Hence, after restriction to Ω, one has K “ pP .

Expanding |˘ky using the P -even and P -odd states |gy and |uy introduced in section 7.3, both of which
have real-valued coefficients, and invoking K |˘ky “ |¯ky yields

|˘ky “ p
1
2
p1˘1q pα |gy ˘ β |uyq ,

where one of the coefficients is real and the other purely imaginary. Combined with xk | ´ky “ xg |uy “
0, this implies

|˘ky “ 1?
2

`

|gy ˘ i p1 |uy
˘

,

with p1 “ ˘1 and up to global phase factors.

Finally, the longitudinal chirality κzij “
i
2pS

`
i S

´
j ´S

´
i S

`
j q (i ‰ j) of a generic state |ψy “ pcosα |gy`

ei θ sinα |uyq P Ω is given by
@

ψ
ˇ

ˇκzij
ˇ

ˇψ
D

“ 0` sinp2αqRe ei θ
@

g
ˇ

ˇκzij
ˇ

ˇu
D

.

Since
A

g
ˇ

ˇ

ˇ
κzij

ˇ

ˇ

ˇ
u
E

P iR, the chirality is extremal for α “ ˘π
4 pmod πq and θ “ ˘π

2 pmod πq. This
condition is equivalent to |ψy “ |˘ky (up to global phase).

A.6 Miscellaneous

A.6.1 Goodness-of-fit measures

In statistics, for a set of measurements pxi, yiq, and a model fpxiq with predictor variables xi, the good-
ness of fit can be quantified using the so-called R2 value (e. g. , [268]),

R2 “ 1´

ř

ipyi ´ fpxiqq
2

ř

ipyi ´ yiq
2

.

The advantage of R2 over χ2 is that it is invariant upon rescaling of the y-axis (i. e. , a change of units;
cf. , e. g. , [305]). In order to compare different models, it makes sense to include the number of degrees
of freedom, which motivates the definition of the so-called adjusted R2 value, R̄2 (e. g. , [268]),

R̄2 “ 1´

ř

ipyi ´ fpxiqq
2

ř

ipyi ´ yiq
2

n´ 1

n´ p´ 1
,
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where n denotes the number of data points and p the number of degrees of freedom in the model.
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