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Structural information is extracted from the all-particle (non-Born–Oppenheimer) wave function by
calculating radial and angular densities derived from n-particle densities. As a result, one- and two-
dimensional motifs of classical molecular structure can be recognized in quantum mechanics. Nu-
merical examples are presented for three- (H−, Ps−, H+

2 ), four- (Ps2, H2), and five-particle (H2D+)
systems. © 2011 American Institute of Physics. [doi:10.1063/1.3662487]

I. INTRODUCTION

The conceptual basis of chemistry has been developed
as a complex interplay of experiments, models, and so-called
“paper tools” during the last two centuries.1, 2 As a result,
the core terminology of chemistry now includes the notions
atom, molecule, chemical composition, molecular structure,
isomer, conformer, chirality, enantiomer, bond, valence, and
connectivity. Although these notions were often not defined
with formal terms, they are central to classical chemical think-
ing and were used in designing new materials and inventing
new reaction pathways.

In the first part of the 20th century the success of quantum
mechanics in the quantitative description of various physical
and spectroscopic experiments suggested that it may serve as
a fundamental mathematical theory for low-energy physics,
including the molecular domain. Indeed, following the pio-
neering work of Heitler and London3 relying on the Born–
Oppenheimer (BO) separation4 of electrons and nuclei quan-
tum mechanics was adapted for chemical systems and the
field of electronic structure theory has been launched. Com-
puter programs were developed during the last five decades
for the numerical solution of the electronic Schrödinger equa-
tion with clamped nuclei and serve nowadays as practical
tools in explaining and predicting a large number of physical
and chemical properties of molecular systems.5

However, since classical chemistry and quantum me-
chanics developed independently there is a natural seman-
tic barrier constricting the translation of genuine chemi-
cal notions into the formalism of quantum mechanics. One
example—the one to which the present work is devoted—is
the concept of molecular structure in quantum mechanics.

At the elementary physical level molecules are assem-
blies of electrons and nuclei associated with some mass,
electric charge, and spin. Thus, by solving the all-particle
Schrödinger equation, non-relativistic energies and wave
functions can be obtained. At present it is not clear, how-
ever, how the molecular structure and the related concepts

a)Electronic mail: edit.matyus@phys.chem.ethz.ch.

of molecular symmetry, isomerism, and chirality can be re-
constructed from the solutions of the all-particle Schrödinger
equations.6–14

In the current practice of quantum chemistry and
electronic structure theory the BO or clamped nuclei
approximation4, 15, 16 is almost always introduced. In the first
step it allows one to simplify the all-particle problem to a
quantum mechanical problem of electrons moving in the ex-
ternal field of fixed, classical, distinguishable nuclei. Within
this framework the equilibrium structure is defined as the ar-
rangement of nuclei which minimizes the sum of the elec-
tronic and the classical nuclear-nuclear repulsion energies.
This definition of molecular structure or the even more so-
phisticated effective rovibrationally and thermally averaged
variants17, 18 are based on the introduction of the BO separa-
tion and thus assume the existence of a certain structure.19–21

Mathematically, Primas characterized the BO electronic
Schrödinger equation in the 1980s as an asymptotic singular
limit of the all-particle case.19, 22 In various fields of physics
singular limits result in the emergence of qualitatively new
properties for the theory.23 According to Primas the emerg-
ing property in the BO singular limit would be the molecular
structure.19, 22 It is desirable to clarify whether, at least ele-
ments of, the classical molecular structure can be recognized
in the quantum theory without invoking additional assump-
tions or limiting considerations.

In a critical account Woolley6 stated that “Quantum
chemistry, however, has not as yet achieved this result, and
instead the notion of molecular structure remains a stark mys-
tery which [. . . ] is simply said to be demanded by the known
facts.” The problem of the notion of molecular structure in
quantum mechanics was explicitly formulated6 and explained
which also underlined the differences between BO electronic
structure and all-particle calculations. Such an important dif-
ference is that the all-particle Hamiltonian describes not only
the electrons but also the identical nuclei as indistinguishable
quantum particles. Then, by calculating the expectation value
for the distance of a nucleus picked out from the set of type X
and another one from the set of type Y nuclei, a single mean
value is obtained even if in the classical molecular structure
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one would measure several different X–Y bond lengths.11, 13, 24

This problem was described in a numerical all-particle study
of the H+

3 molecular ion by Cafiero and Adamowicz.12 By
calculating the expectation values of the proton-proton dis-
tance and the angle for the three protons it was not possible
to decide whether the molecule has a linear or a triangular
shape.

At the computational level, several algorithms and com-
puter programs have been developed during the last two
decades for the variational solution of the all-particle electron-
nuclear Schrödinger equation following the pioneering work
of Kołos and Wolniewicz25 on the H2 molecule. Suzuki
and Varga developed the stochastic variational method in
combination with Gaussian geminals.26 Adamowicz and co-
workers developed a variational method using Gaussian gem-
inals in which the basis function coefficients were optimized
by means of gradient techniques using analytic gradients.27

Nakai,28 Hammes-Schiffer and co-workers,29, 30 and Na-
gashima and co-workers31 developed nuclear-electron orbital
methods as an extension of molecular orbital methods of elec-
tronic structure theory. We may refer the reader to Sherrill and
co-workers who presented a thorough and critical overview of
nuclear-electronic orbital procedures.32

Besides the intellectual challenge of developing a numer-
ical procedure for the solution of the all-particle Schrödinger
equation, these investigations either provided exceedingly ac-
curate non-relativistic energy levels and beyond33 or con-
tributed to a better understanding of hydrogen and proton tun-
neling in biochemical systems where it could be anticipated
that the BO approximation fails.34

In the present work, small molecular systems are con-
sidered within non-relativistic all-particle quantum mechan-
ics by means of a variational procedure joining the direction
pioneered by Suzuki and Varga26 and Adamowicz and co-
workers.12 After presenting the essential details of the numer-
ical protocol, the evaluation of probability densities of struc-
tural parameters, related to n-particle densities, is discussed.
The usefulness of these functions is presented through numer-
ical examples and one- and two-dimensional motifs of the
classical molecular structure are extracted from the ground-
state all-particle wave functions of the three-particle H−, Ps−,
and H+

2 , the four-particle Ps2 and H2, and the five-particle
H2D+ molecular ion.

II. VARIATIONAL SOLUTION OF THE SCHRÖDINGER
EQUATION OF MOLECULAR SYSTEMS WITHOUT
CLAMPING THE NUCLEI

In this section we review the essential theory required to
describe and analyze our calculations.

A. Coordinates and the Coulomb Hamiltonian

The Coulomb Hamiltonian for N + 1 particles associated
with masses mi and electric charges qi (i = 1, 2, . . . , N + 1) is

Ĥ ′ = −
N+1∑
i=1

1

2mi

�xi
+

N+1∑
i=1

N+1∑
j>i

qiqj

|xi − xj | (1)

in Hartree atomic units. Translational invariance is exploited
by introducing the linear transformation of the coordinates
xT = (x1, x2, . . . , xN+1) as

(r1, r2, . . . , rn, x0)T = (U ⊗ I3)x ∈ R(N+1)×3, (2)

where I3 is the 3 × 3 unit matrix and the translational in-
variance of the coordinates rT = (r1, r2, . . . , rN ) imposes
the following conditions on the elements of the constant U
∈ R(N+1)×(N+1) matrix:

N+1∑
j=1

Uij = 0, i = 1, 2, . . . , N, UN+1,j = mj

m1...N+1
,

j = 1, 2, . . . , N + 1 (3)

and m1...N+1 = ∑N+1
i=1 mi .35, 36 x0 denotes the coordinates of

the center of mass (CM). The coordinates used in a calculation
are defined by specifying the elements of U , which fulfill the
conditions of Eq. (3). In the present work Jacobi (Jac),

rJac
i =

i∑
j=1

mj

m1...i

xj − xi+1, (4)

heavy-particle centered (HPC),

rHPC
i = xi − xN+1, (5)

and center-of-mass centered (CMC)

rCMC
i = xi −

N+1∑
j=1

mj

m1...N+1
xj , (6)

translationally invariant coordinates were used with i

= 1, 2, . . . , N, m1...i = ∑i
j=1 mj , and the corresponding U

matrices can be easily constructed.
Then, by expressing the quantum Hamiltonian in terms

of the coordinates defined in Eq. (2) and after subtracting the
kinetic energy of the center of mass, the translationally invari-
ant Hamiltonian is obtained as

Ĥ = −
N∑

k=1

N∑
l=1

Mkl∇T
rk

∇r l
+

N+1∑
k=1

N+1∑
l>k

qkql

| f T
kl r|

, (7)

where

Mkl =
N+1∑
i=1

UkiUli

2mi

, k, l = 1, 2, . . . , N (8)

and

f T
kl r =

N∑
i=1

( f kl)i r i (9)

with

( f kl)i = (U−1)ki − (U−1)li . (10)

As the transformation from one set of translationally in-
variant coordinates to another is simple (linear) and the math-
ematical form of the basis functions (see Sec. II B) remains
unchanged under linear transformations of the coordinates,
always that set of coordinates was used which provided the
technically most straightforward evaluation of integrals for
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the kinetic and the potential energy matrix elements or par-
ticle densities.

B. Basis functions

Eigenfunctions of Ĥ are expressed as a linear combina-
tion of basis functions constructed as (anti)symmetrized prod-
ucts of spatial and spin functions:

�SMS
(r, σ ) = Â{φ(r; C)χSMS

(σ ; θ )}, (11)

where Â = (Nperm)−1/2 ∑Nperm

p=1 εpP̂p is the (anti)symmetriza-

tion operator. P̂p denotes possible permutations of identical
particles and εp = −1 if P̂p represents an odd number of pair-
interchange of fermionic coordinates, otherwise εp = +1.
Nperm is the number of possible permutations of identical par-
ticles.

The spin part of the basis functions is constructed as26, 37

χSMS
(σ ; θ ) =

ns∑
n=1

λn(θ )σMS,n, (12)

where the primitive spin functions σMS,n are eigenfunctions of
Ŝz with eigenvalue MS and χSMS

is an eigenfunction of both
Ŝ2 and Ŝz. θ contains real parameters to be optimized in the
variational procedure, if the space corresponding to the same
eigenvalues of Ŝ2 and Ŝz is larger than one-dimensional.

Eigenfunctions of the Hamiltonian are also angular mo-
mentum and parity eigenfunctions. Thus, it is convenient to
use spatial basis functions that are angular momentum and
parity eigenfunctions with the required eigenvalues. In the
present work eigenstates corresponding to L = 0 angular mo-
mentum and p = +1 parity are studied, and thus a simple
choice of the spatial functions can be Gaussian geminals38

φ(r; C) = exp[−rT(C ⊗ I3)r]

= exp

⎡
⎣−

N+1∑
i=1

N+1∑
j>i

aij (xi − xj )2

⎤
⎦ (13)

with

Aij = δij

⎛
⎝ N+1∑

k=1,k �=i

aik

⎞
⎠ + (1 − δij )(−aij ) + c

mimj

(m1...N+1)2
,

(14)
i, j = 1, 2, . . . , N + 1, c ∈ R, and(

C 0
0 c

)
= UT AU . (15)

Positive definiteness of C ∈ RN×N guarantees that φ can be
normalized on RN×3. Although this type of functions explic-
itly account for the particle-particle correlation, if rigorous
convergence of the energy levels and wave functions was re-
quired, a computationally more efficient choice would be the
inclusion of polynomial prefactors in Eq. (13) or the usage of
“symmetry-adapted” floating geminals.26, 27

Any linear transformation of the translationally invariant
coordinates reads

(r, x0)T = (T ⊗ I3)(r̃, x0)T, (16)

where

(r, x0)T = (U ⊗ I3)x, (r̃, x0)T = (Ũ ⊗ I3)x,

and T = UŨ
−1

. (17)

The basis functions can be written in terms of the “new” co-
ordinates r̃ as

φ(r; C) = exp[−rT(C ⊗ I3)r] = exp[−r̃T(C̃ ⊗ I3)r̃],

(18)

where (
C̃ 0
0 c

)
= T T

(
C 0
0 c

)
T . (19)

This simple transformation property is exploited during the
evaluation of matrix elements with (anti)symmetrized basis
functions.

C. Analytic matrix elements

The integral of a spin-independent and permutationally
invariant operator Ô, corresponding to the Ith and Jth basis
functions is now written as

OIJ =〈Â{φ(r; CI )χ (σ ; θ I )}|Ô|Â{φ(r; CJ )χ (σ ; θJ )}〉

=
Nperm∑
p=1

εp〈χ (σ ; θ I )|P̂pχ (σ ; θJ )〉〈φ(r; CI )|Ô|P̂pφ(r; CJ )〉

=
Nperm∑
p=1

κIJpOIJp, (20)

where the quasi-idempotency of the (anti)symmetrizer, ÂÂ
= (Nperm)1/2Â, was exploited and the definitions

κIJp = εp〈χ (σ ; θ I )|P̂pχ (σ ; θJ )〉, (21)

OIJp =〈φ(r; CI )|Ô|P̂pφ(r; CJ )〉=〈φ(r; CI )|Ô|φ(r; CJp)〉,
(22)

were introduced. Note that the subscript p refers to the effect
of the permutation operator P̂p. The action of P̂p on the spin
functions corresponds to the permutation of the elementary
spin functions, and thus the evaluation of κ IJp is straightfor-
ward. Ô is in this work either the unit operator or the trans-
lationally invariant Hamiltonian, and thus OIJp corresponds to
SIJp or HIJp, respectively.

As to the spatial part, the effect of the permutation op-
erator is equivalent to a linear transformation of the transla-
tionally invariant Cartesian coordinates, which is accounted
for through the transformation of the basis function coef-
ficients explained earlier. The evaluation procedure of the
overlap and the Hamiltonian matrix elements is outlined as
follows.
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For any two spatial basis functions denoted by φ(r; C ′)
and φ(r; C ′′) the overlap and two integrals, which when mul-
tiplied by some constant factors correspond to the kinetic and
the potential energy terms, are

s = 〈φ(r; C ′)|φ(r; C ′′)〉 =
(

πN

det C

)3/2

, (23)

〈φ(r; C ′)|�r1 |φ(r; C ′′)〉 = s 6Tr(C−1C ′C ′′), (24)

〈φ(r; C ′)| 1

|r1| |φ(r; C ′′)〉 = s
2√
πC11

, (25)

where the notation C = C ′ + C ′′ ∈ RN×N was introduced for
brevity. Thus, the evaluation of SIJp is straightforward, while
for HIJp we proceed as follows.

Upon a linear transformation of the original set of trans-
lationally invariant Cartesian coordinates r to a new set r̃ , an
integral transforms as

〈ô(r)〉 = 〈φ(r; C ′)|ô(r)|φ(r; C ′′)〉

=
∫
RN×3

ô(r) exp[−rT(C ⊗ I3)r]dr

= [det(T TT )]3/2
∫
RN×3

ô(r̃) exp[−r̃T(C̃ ⊗ I3)r̃]dr̃

= [det(T TT )]3/2〈ô(r̃)〉, (26)

where C̃ corresponds to the transformed C according to
Eq. (19).

As it is always possible to find an appropriate set of
translationally invariant coordinates, in which the various
terms of the Hamiltonian, Eq. (7), can be written in terms
of �r1 and 1/|r1| (e.g., Jacobi and HPC coordinates in Eqs.
(4) and (5)), the integrals HIJp can be constructed entirely by
using the primitive integrals, Eqs. (23) and (25), Eq. (26), and
the coefficient matrices, C̃I and C̃Jp, calculated according to
Eq. (19).

D. Eigensolver and optimization of the basis function
parameters

As the basis functions are non-orthogonal the generalized
eigenvalue problem

Hc = ESc (27)

is to be solved. Eigenvalues, E, and eigenvectors, c, are thus
calculated using a “generalized” eigensolver. In order to gen-
erate or refine the basis set, the basis function parameters,
here the exponents, are optimized in a stochastic variational
procedure.26, 39–42 Due to the non-orthogonality of the basis
functions possible near-linear dependency in the basis set is
handled in the finite precision arithmetic of the computations
by using Löwdin’s canonical orthogonalization.43 In practice,
it is relatively straightforward to generate the basis function
exponents so that they are well-distributed, and thus the near-

linear dependency does not cause any numerical difficulty us-
ing 8-byte (“double precision” in Fortran) arithmetics.

III. PARTICLE DENSITIES

In the present all-particle calculations particles, i.e., elec-
trons and nuclei, are handled on equal footing as quantum
particles. In contrast to the clamped nucleus framework, the
structural parameters do not have sharp, “dispersionless” val-
ues but they are characterized by some probability density.
For states with L = 0 angular momentum and p = +1 parity
the wave function, and thus the particle densities, are spher-
ically symmetric. Furthermore, due to the quantum mechan-
ical description, identical particles are indistinguishable. In
order to be able to extract structural information from the all-
particle wave function and to recognize classical molecular
structural motifs, i.e., bonds and angles, we start out from the
probabilistic interpretation of the wave function and calculate
marginal probability densities.44–47 Then, radial and angular
probability densities will be derived from the marginal den-
sities of selected particles, in order to obtain the probability
density for the distances and angles of interest. In what fol-
lows a short overview of the most relevant literature is given
and the density functions are introduced which are used in this
work.

In Refs. 48 and 49, pseudoparticle one-densities were cal-
culated in order to characterize the radial distribution of the
particles. In Refs. 50 and 51, Ps2 was analyzed by calculating
the electron-electron and electron-positron correlation func-
tions. In Ref. 25 the probability density distribution of the
internuclear distance was calculated for vibrational states of
H2 and D2, while in Ref. 52 the deuteron-proton correlation
function was evaluated to demonstrate the charge asymmetry
in vibrational states of HD.

In Ref. 20, {a, a, b}-type three-particle systems were
studied within the Hooke–Calogero model and an atomic-
to molecular-like topological transition was observed in the
mass-density distribution of the a particles in terms of the
variation of the mass of the constituent particles. In Ref. 21,
{a±, a±, b∓}-type three-particle Coulomb-interacting sys-
tems were described within non-relativistic quantum mechan-
ics and a similar atomic to molecular-type topological tran-
sition was observed in terms of the variation of the relative
mass of the particles. Müller-Herold has already used the
two-particle density to show the angular correlation between
particles in a modified Hooke–Calogero model and observed
a transition from helium-like angular correlation to directed
bonding in terms of the variation of the masses of the con-
stituent particles.53

In Refs. 54–56, the H− ion was studied and the adia-
batic two-density function indicated that the electrons take a
bent V-shaped “triatomic molecule-like” arrangement in cer-
tain resonance states.

Finally, we note that within the BO approximation the
structure of floppy systems with large amplitude motions can-
not be characterized by relying on a single local minimum
of the potential energy surface. Instead, it is more conve-
nient to calculate the probability density for some internal
coordinates.57
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A. Particle density functions used in this study

According to the probabilistic interpretation of the wave
function, one can analyze the simultaneous finding probabil-
ity of some particles by calculating the joint or marginal prob-
ability density functions. The probability density of some se-
lected particles measured with respect to some “center point”
P fixed to the body is

D
(n)
P,a1a2...an

(R1, R2, . . . , Rn)

= 〈�|δ(xa1 − xP − R1)δ(xa2 − xP − R2) . . .

× δ(xan
− xP − Rn)|�〉 (28)

with Ri ∈ R3 and the three-dimensional Dirac delta distribu-
tion, δ(z). In our calculations n = 1 or 2, the “ai”s label par-
ticles, and the center point P is chosen to be either the center
of mass (denoted by “0”) or another particle. First, the density
function

D
(1)
P,a(R1) = 〈�|δ(xa − xP − R1)|�〉 (29)

is considered. For P = 0, D
(1)
0,a characterizes the spatial dis-

tribution, localization or delocalization, of particle a with re-
spect to the center of mass (“0”), while for P = b, D

(1)
b,a mea-

sures the radial correlation between particles b and a.
Then, in order to identify the angular correlation of par-

ticles a and b with respect to P, the density function

D
(2)
P,ab(R1, R2) = 〈�|δ(xa − xP − R1)δ(xb − xP − R2)|�〉

(30)
will be calculated with the center point chosen to be the ori-
gin, D

(2)
0,ab, or another particle c, D

(2)
c,ab.

As the overall space rotation-inversion leaves the system
invariant (L = 0, p = +1), it is sufficient to consider D

(1)
P,a(R1)

along a ray. Thus, for convenience,

ρP,a(R) = D
(1)
P,a(R1) (31)

is introduced with R1 = (0, 0, R) and R ∈ R+
0 . Throughout

this work the normalization is chosen according to

4π

∫ ∞

0
dR R2 ρP,a(R) = 1. (32)

As D
(2)
P,ab(R1, R2) is also spherically symmetric (L = 0, p

= +1), its actual value depends only on the lengths R1 = |R1|
and R2 = |R2| and, for non-zero lengths, on the angle α of
intersection of the vectors R1 and R2. In order to calculate
the probability density for the angle α the radial dependence
is integrated out and the “effective” angular density is defined
as

�P,ab(α) =
∫ ∞

0
dR1R

2
1

∫ ∞

0
dR2R

2
2 D

(2)
P,ab(R1, R2).

(33)
Throughout this work the angular density is normalized ac-
cording to

8π2
∫ π

0
dα sin α �P,ab(α) = 1. (34)

B. Calculation of particle density functions

Using a normalized wave function expressed as a linear
combination of the basis functions

� =
Nb∑
I=1

cI Â{φ(r; CI )χ (σ ; θ I )}, (35)

the expectation value of a spin-independent density operator
D̂ is given by

D=〈�|D̂|�〉

=
Nb∑

IJ=1

cI cJ 〈Â{φ(r; CI )χ (σ ; θ I )}|D̂|Â{φ(r; CJ )χ (σ ; θJ )}〉

=
Nb∑

IJ=1

Nperm∑
pr=1

cI cJ

εpεr

Nperm

×〈P̂p{φ(r; CI )χ (σ ; θ I )}|D̂|P̂r{φ(r; CJ )χ (σ ; θJ )}〉

=
Nb∑

IJ=1

Nperm∑
pr=1

cI cJ

εpεrκIJpr

Nperm
DIJpr , (36)

where the shorthand notations

κIJpr = 〈P̂pχ (σ ; θ I )|P̂rχ (σ ; θJ )〉 (37)

and

DIJpr = 〈P̂pφ(r; CI )|D̂|P̂rφ(r; CJ )〉
= 〈φ(r; CIp)|D̂|φ(r; CJ r )〉 (38)

were introduced. Note that the D̂-type operators as introduced
in Eqs. (29) and (30) might not be permutationally invariant.
Nevertheless, the calculation according to Eq. (36), using the
(anti)symmetrized basis function expansion, guarantees that
the resulting density function is invariant under the permuta-
tion of identical particles. The density functions defined in
this work are normalized to one. In numerical calculations
(Sec. IV), the requirements of the permutation invariance and
unit normalization were tested and fulfilled, as required by the
theory.

Evaluation of the spin-permutation coefficient, κ IJpr, is
straightforward, see Sec. II C. In order to calculate the DIJpr

terms for the particle densities defined in Eqs. (29) and (30), it
is sufficient to consider the integrals for one- and two-density
operators written in the general form of

D̂(1) = δ(r̃1 − R1) (39)

or

D̂(2) = δ(r̃1 − R1)δ(r̃2 − R2), (40)

respectively. It is always possible to construct translation-
ally invariant coordinates so that r̃1 = xa1 − xP and r̃2

= xa2 − xP . If P is the center of mass, then r̃ is will be the
“center-of-mass centered” coordinates, Eq. (6), and if P is
fixed to a particle, then r̃ is will be the “heavy-particle cen-
tered” coordinates, Eq. (5).

Then, the density functions can be constructed accord-
ing to Sec. II C and using the “primitive integrals” of
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d̂ (1) = δ(r1 − R1) and d̂ (2) = δ(r1 − R1)δ(r2 − R2) for any
two spatial basis functions, φ(r; C ′) and φ(r; C ′′) (N > n):

d (n) =〈φ(r; C ′)|d̂ (n)|φ(r; C ′′)〉 = f0 exp

⎡
⎣−

n∑
i,j=1

β
(n)
ij RT

i Rj

⎤
⎦

(41)

with

f0 =
(

πN−n

det �(n)

) 3
2

(42)

and

β
(n)
ij = Cij − ω

(n)
i

T
�(n)−1

ω
(n)
j , i, j = 1, . . . , n, n = 1, 2,

(43)
where C = C ′ + C ′′ ∈RN × N , ω(n)

i ∈RN−n contains the last
N − n elements of the ith column of C, and �(n) is the right-
lower (N − n) × (N − n) block of C. Note that for the case
of N = n (the case of N + 1 = 3 and n = 2 in Sec. IV) d(n)

is obtained as the absolute square of the basis function, ex-
pressed in the appropriate coordinates, and no integration is
necessary. Then, d(2) has a similar form as in Eq. (41) with f0
= 1 and β

(2)
ij = Cij .

Finally, using the expression for d (2)(R1, R2) the evalu-
ation of the angular density, �P, ab, is straightforward by in-
tegrating over the radial coordinates, R1 and R2. The corre-
sponding “primitive” integral is given in the Appendix and is
used for the numerical evaluation of �P, ab (Sec. IV).

IV. NUMERICAL RESULTS

All-particle wave functions for the ground states with
L = 0 angular momentum and p = +1 parity of the three-
particle H− (Se = 0, singlet), Ps− (Se− = 0), and H+

2 (Sp = 0,
para), the four-particle Ps2 (Se± = 0) and H2 (Se = 0, singlet;
Sp = 0, para), as well as the five-particle H2D+ (Se = 0, sin-
glet; Sp = 0, para) were calculated and analyzed using radial
and angular densities derived from n-particle densities
(Sec. III). The mass ratios mp/me = 1836.15267247 and
md/me = 3670.4829654 (Ref. 58) were used throughout the
calculations, and e (or e−/e+), p, and d refer to the elec-
tron/positron, proton, and the deuteron, respectively. The cen-
ter of mass is denoted by “0”.

In Table I the energies and virial coefficients are given
for the ground-state wave functions calculated and used for
the generation of the density plots shown in Figures 1–7. At
the end of this section a short overview of the convergence
properties of the radial and angular densities is given. Interest-
ingly, the main elements of molecular structure can be recog-
nized relatively “early” during the course of the convergence
of the total energy. Note that the total energy does not need to
be converged very tightly in order to recognize the important
characteristics of the particle densities as we shall see.

A. Radial density

As all particles, electrons and nuclei, are handled on
equal footing as quantum particles the structural parameters

TABLE I. Energies and virial coefficients of the calculated ground-state
wave functions used for the evaluation of the probability densities shown in
Figures 1–7.

Species E / Eh δ a / Eh 1 + 〈V̂ 〉/2〈T̂ 〉

H− −0.5274 2 × 10−7 −2.6 × 10−7

Ps− −0.2620 9 × 10−8 −8.8 × 10−8

H+
2 −0.5971 6 × 10−5 −6.7 × 10−5

Ps2 −0.5160 2 × 10−7 −2.4 × 10−7

H2 −1.1640 6 × 10−5 −8.9 × 10−5

H2D+ −1.3173 5 × 10−3 −3.5 × 10−3

aδ = E(Ref.) − E. The reference energies, E(Ref.), are taken from Refs. 59–63 and 48
for H−, Ps−, H+

2 , Ps2, H2, and H2D+, respectively.

do not have sharp values but are characterized by some proba-
bility distributions. The one-particle densities calculated with
respect to the center of mass of the system provide some in-
sight in the distribution of the particles, and thus the structure
of the system. Due to the spherical symmetry, the one-particle
density depends only on the distance of the particle from the
center of mass, R, and is independent of the orientation. In
Figures 1 and 2 the radial densities, ρ0, a(R), are shown for
three-, four-, and five-particle systems (a denotes the particle
and “0” means that the origin is the center of mass). For ex-
ample, the proton density with respect to the center of mass
in H2D+, Figure 2, is defined as

ρ0,p(R) = 〈�|δ(xp − x0 − R1)|�〉 (44)

with R1 = (R, 0, 0). Note that indistinguishability of identi-
cal particles holds, and thus, for instance, ρ0,p = ρ0,p′ .

Figure 1 shows qualitatively different ρ0, a(R) density
profiles in {a±, a±, b∓}-type three-particle systems for var-
ious ma/mb values. In Ref. 21 we presented the transition of
ρ0, a from a center-of-mass centered, “atom-like” to a “shell-
like” density function by increasing the ma/mb ratio. This “al-
chemical transformation involving the mass”64 allowed us to
observe the emergence of molecular structure in these simple
systems (also note the mass-scale similarity and the charge
inversion symmetry described in Ref. 21). Interestingly, the
density of the third particle remains center-of-mass centered
and only its dispersion increases as ma/mb increases, Figure
1. The qualitative properties of the particle density of both the
equal particles and the third particle are similar to those of the
Hooke–Calogero model.20

As to larger systems, Figure 2 shows one-particle densi-
ties, ρ0, a for H2, Ps2, and H2D+. Similar to the three-particle
case, the heavy particles, here nuclei, form shells around the
center of mass (L = 0, p = +1), while the light particles, here
electrons, have a broader density function with a maximum at
the center of mass.

The effect of the Coulomb repulsion and attraction can
be directly observed in the particle-particle correlation func-
tions, ρb, a(R), shown in Figure 3. For example, the d-p or p-p′

correlation functions in H2D+ are defined as

ρd,p(R) = 〈�|δ(xp − xd − R1)|�〉, (45)

ρp,p′ (R) = 〈�|δ(xp − xp′ − R1)|�〉 (46)

Downloaded 25 Mar 2013 to 129.132.118.73. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



204302-7 Molecular structure from first principles J. Chem. Phys. 135, 204302 (2011)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

 0  1  2  3  4  5

ρ 0
,a

 [
bo

hr
 -3

]

R [bohr]

H-={e-,e-,p+}

ρ0,e

0.00

0.05

0.10

0.15

0.20

0.25

0.30

 0  1  2  3  4  5

ρ 0
,a

 [
bo

hr
 -3

]

R [bohr]

Ps-={e-,e-,e+}

x10

ρ0,e-

0.00

0.05

0.10

0.15

0.20

0.25

0.30

 0  1  2  3  4  5

ρ 0
,a

 [
bo

hr
 -3

]

R [bohr]

H2
+={p+,p+,e-}

ρ0,p

0.00

0.05

0.10

0.15

0.20

0.25

0.30

 0  1  2  3  4  5

ρ 0
,b

 [
bo

hr
 -3

]

R [bohr]

H-={e-,e-,p+}

ρ0,p

0.00

0.05

0.10

0.15

0.20

0.25

0.30

 0  1  2  3  4  5

ρ 0
,b

 [
bo

hr
 -3

]

R [bohr]

Ps-={e-,e-,e+}

x10

ρ0,e+

0.00

0.05

0.10

0.15

0.20

0.25

0.30

 0  1  2  3  4  5

ρ 0
,b

 [
bo

hr
 -3

]

R [bohr]

H2
+={p+,p+,e-}

ρ0,e

ma/mb ≈ 1/1840 ma/mb = 1/1 ma/mb ≈ 1840/1

FIG. 1. One-particle densities, ρ0, a(R), in {a±, a±, b∓}-type three-particle systems. The normalization is chosen according to 4π
∫ ∞

0 dR R2ρ0,a(R) = 1. Note
that ρ0, p in H− has a much larger maximum value at the origin than the largest value shown here. ρ0,e− and ρ0,e+ of Ps− are scaled up by a factor of 10 for the
sake of a better comparison with the other systems.

with R1 = (R, 0, 0). Furthermore, the particle-particle corre-
lation functions provide direct information on the probability
density for the distance of particles a and b.

Besides the Coulomb interaction, the decisive role of the
masses in the formation of structural motifs is indicated by
the qualitative change of the radial densities, Figures 1 and
2. Woolley,6 Fröman and Kinsey,65 as well as Lin et al.66, 67

suggested that the role of the mass of the particles could be
understood by considering the mass-polarization terms in the
translationally invariant Hamiltonian. The mass-polarization
terms are the cross derivative terms in Eq. (7), which are
non-vanishing due to the non-zero off-diagonal elements
Mkl for non-orthogonal translationally invariant coordinates,
r . If the translationally invariant coordinates are chosen in
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FIG. 2. One-particle densities, ρ0, a(R), for four- and five-particle systems. The normalization is chosen according to 4π
∫ ∞

0 dR R2ρ0,a(R) = 1. Note that ρ0, e
of Ps2 is scaled up by a factor of 10 for the sake of a better comparison with the other systems.
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FIG. 3. Particle-particle correlation functions, ρb, a(R), characterizing the probability density for particle-particle distances. The normalization is chosen ac-
cording to 4π

∫ ∞
0 dR R2ρb,a(R) = 1. Note that ρe−,e−′ and ρe+,e+′ of Ps− and Ps2 are scaled up by a factor of 10 for the sake of a better comparison with the

other systems.

{a±, a±, b∓}-type systems as the displacement vectors of par-
ticles b and a, and particles b and a′, then for the hydride ion
(or for the helium atom) the coefficients of the cross derivative
terms are small, while, for example, for the case of H+

2 (with a
= p and b = e) they are substantial. Thus, the qualitative dif-
ferences of the particle densities in systems with very differ-
ent mass ratios, Figures 1 and 2, can be understood as mass-
polarization “effects.”

B. Angular density

The value of the relative mass, and thus the mass polar-
ization, influences not only the radial distribution of the par-
ticles, but also their angular distribution. The angular density,
�c, ab(α), providing the probability density of the included an-
gle α for a-c-b, is obtained by integrating Dc,ab(R1, R1), over
the radial variables, i.e., for the c-a and c-b distances.

For example, the angular density of the two protons with
respect to the center of mass in H2 is defined as

�0,pp′ (α) =
∫ ∞

0
dR1R

2
1

∫ ∞

0
dR2R

2
2

×〈�|δ(xp − x0 − R1)δ(xp′ − x0 − R2)|�〉,
(47)

while the angular density of the two electrons with respect to
the positron in Ps− is

�e+,e−e−′ (α)=
∫ ∞

0
dR1R

2
1

∫ ∞

0
dR2R

2
2

×〈�|δ(xe− −xe+ − R1)δ(xe−′ −xe+ − R2)|�〉
(48)

with α ∈ [0, π ] and R1 = |R1| and R2 = |R2|. Note that the
indistinguishability of identical particles holds, and thus, for
instance, �e+,e−e−′(α) = �e+,e−′e− (α).

The “effective” angular density measured with respect
to the center of mass (“0”), �0,aa′ , is shown in Figure 4
for {a±, a±, b∓}-type three- and {a±, a±, b∓, b∓}-type
four-particle systems. The figures show that the angular den-
sity of the equal particles, as it is seen from the center of
mass, transforms from an “atomic-like” Coulomb-hole pro-
file to a molecular-like rotating dumbbell (L = 0, p = +1)
as ma/mb is increased. All densities calculated were normal-
ized to 1 and the dotted line represents constant angular den-
sity corresponding to the idealized case of no angular cor-
relation. The electrons in the H2 molecule have an angular
density profile (referenced to the center of mass), similar to
the atomic case, in line with earlier suggestions, for example,
by Woolley.6 Similar to the case of the radial density, Fröman
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FIG. 4. Probability density of the a-0-a′ included angle, �0,aa′ (α), in {a±, a±, b∓}- and {a±, a±, b∓, b∓}-type three- and four-particle systems, respectively.
The angular density is normalized according to 8π2

∫ π

0 dα sin α �0,aa′ (α) = 1. The hypothetical case of no angular correlation corresponds to �const = 1/16π2

≈ 0.0063, which is indicated by the dotted line in the plots.

and Kinsey argued65 that the mass-polarization contribution
would “overcome” the Coulomb contribution and this results
in a probability density with a very large maximum for the
p-0-p′ angle at 180o in the molecular systems, H+

2 and H2.
Besides the distribution of the particles in space, refer-

enced to the center of mass, inspection of the particle-particle
correlations provides insight in the “structure” of the system
and allows us to extract information on bond angles. Figure 5
shows the probability density of the included angle for a-b-a′.
The profile of �b,aa′ shows a qualitative change as the value
ma/mb increases. In line with the one-particle density, the an-
gular density profile also indicates that Ps− = {e−, e−, e+}
is more “molecular” than atomic. In fact, the small maximum
of the density for the e−-e+-e− angle near 60o indicates some
directed bonding character, while the system is very delocal-

ized or floppy indicated by the flat angular density curve with
the small maximum value compared to the “uncorrelated” hy-
pothetical case (�const). A similar transition from an atomic,
helium-like angular correlation to a directed bonding-type one
was identified by one of us for the Hooke–Calogero model of
three-particle systems.53

C. A simple numerical example for directed bonding

Motivated by the observation of the weak angular cor-
relation observed in Ps− with a “floppy” V-like structure,
Figure 5, we considered a simple case where the more pro-
nounced appearance of directed bonding could be anticipated.

Figure 6 shows the probability density for the p-d-p′

angle in H2D+. Although the wave function is not tightly
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FIG. 5. Probability density of the a-b-a′ included angle, �b,aa′ (α), in {a±, a±, b∓}-type three-particle systems. The angular density is normalized according
to 8π2

∫ π

0 dα sin α �b,aa′ (α) = 1. The hypothetical case of no angular correlation corresponds to �const = 1/16π2 ≈ 0.0063, which is indicated by the dotted
line in the plots.
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FIG. 6. Probability density of the p-d-p′ included angle, �d,pp′ (α), in the
ground state of H2D+. The angular density is normalized according to
8π2

∫ π

0 dα sin α �d,pp′ (α) = 1. The hypothetical case of no angular corre-
lation corresponds to �const = 1/16π2 ≈ 0.0063, which is indicated by the
dotted line in the plots.

converged (see Table I), the angular density clearly shows a
large maximum near 60o and it takes near zero values near 0o

and 180o, which is, of course, in agreement with the Born–
Oppenheimer description of this molecular ion. The maxi-
mum value in this case is much larger than that of Ps− in
Figure 5, which indicates a more “rigid” V-like structure.

It is also insightful to consider the angular density with
respect to the center of mass, Figure 7. As to the elec-
trons, �0,ee′ has a helium-like Coulomb-hole profile. At the
same time, the angular densities for the two protons and the
deuteron and a proton show localized peaks near 90o and
130o, respectively, which indicates a pronounced angular cor-
relation for the nuclei within the proton and deuteron shells
around the center of mass.

Although the all-particle wave function representing
the system is symmetric to space rotation and inversion
(L = 0, p = +1) and fulfills the Pauli principle for the identi-
cal particles, the radial, Figures 1 and 2, and the angular den-
sities, Figures 6 and 7, allow us to reconstruct or “extract,” at
least elements of, the traditional molecular structure.

D. Convergence of the radial and angular densities

Finally, a few remarks on the convergence properties of
the studied radial and angular densities are in order. Numeri-
cal examples are shown in Figure 8 for the radial proton densi-

ties, ρ0, p, in H2 and H2D+, as well as for the angular densities
of d-0-p, �0, dp, and p-d-p′, �d,pp′ , in H2D+. The total energies
corresponding to the wave functions used to calculate the den-
sities are given in the top corner of each plot. Figure 8 shows
that the main features of the radial and angular densities con-
sidered here—and which are related to the structural elements
of molecular structure, i.e., bonds and angles—appeared rel-
atively early during the course of the convergence of the en-
ergy.

V. SUMMARY AND CONCLUSION

The reconstruction of classical molecular structural
motifs from the ground-state solution of the all-particle
Schrödinger equation without the introduction of the Born–
Oppenheimer approximation was investigated. If the nuclei
are not fixed, the structural parameters are characterized with
some probability density instead of a dispersionless sharp
value. Thus, our analysis started out from the probabilistic in-
terpretation of the all-particle wave function, n-particle den-
sity functions were evaluated, and radial and angular probabil-
ity densities were derived from them. The classical structural
motifs were identified as some arrangement of the relevant
particles corresponding to large probabilities.

This program was first suggested at the conceptual level
at least as early as in 1980 by Claverie and Diner44 and was
reviewed, for instance, in Ref. 46. It was later pursued by
Müller-Herold for the Hooke–Calogero model,20, 53 and was
carried out in the present work at the numerical level for some
simple systems composed of particles with various masses.
As a result, one- and two-dimensional motifs of molecular
structure were identified in the ground-state all-particle wave
functions (L = 0, p = +1), and the decisive role of the relative
mass of the particles in the formation of structural motifs has
been demonstrated. The procedure may be easily extended to
three-dimensional structural elements and conceptual ques-
tions related to chirality6, 19, 68–70 might also be addressed.

In general, n-point densities, i.e., joint or marginal prob-
ability distribution functions of a few variables, and related
correlation functions are often used for the identification of
typical patterns in various systems with many variables. For
example, particle densities and correlation functions are used
to describe not only the atomistic details of bulk materials in
statistical mechanics71 but also the large-scale structure of the
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FIG. 7. Angular density, �0, ab(α), characterizing the distribution of particles in the ground state of H2D+ around the center of mass. Note that the angu-
lar density is normalized according to 8π2

∫ π

0 dα sin α �0,ab(α) = 1. Thus, the hypothetical case of no angular correlation corresponds to �const = 1/16π2

≈ 0.0063 and is indicated by the dotted line.
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FIG. 8. Convergence of radial and angular densities. The densities shown here were calculated with various wave functions, obtained with varying numerical
effort, and correspond to a total energy given in the top corner of each plot.

Universe in cosmology.72 Although the analogy at the techni-
cal level exists, one has to distinguish between the statistical
description of bulk materials and the probabilistic framework
of quantum mechanics. While in bulk materials the statisti-
cal distribution of the multitude of various distinct structures
is considered, the molecular wave function corresponds to the
“superposition” of arrangements of the particles attached with
some probabilities. It is interesting enough, that the main fea-
tures of this “quantum”44 structure of molecules can often be
grasped in terms of classical molecular structural motifs.

While motifs or elements of molecular structure could
be identified in the all-particle wave function of an isolated
system, the wave function was not reduced to the classical
ball-and-stick molecular model. For example, the V-shaped
arrangement of the two protons and the deuteron in H2D+

was identified as a large maximum in the angular density
of the nuclei, but the overall ground-state particle densities
were ball-shaped due to space-rotation invariance, and thus,
the classical triangular picture of the nuclear framework does
not automatically arise from the quantum mechanical calcu-
lations. The related quantum-classical reduction problem was
not addressed in the present work but it was analyzed care-
fully by Woolley24, 73 and Primas.19 Actually, the fine inter-
play of the micro-scale manifestation of classical as well as
the macro-scale survival of quantum effects is a peculiarity
of the molecular world74 and has probably a central role in a
molecular-level understanding of matter or even life.
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APPENDIX: CALCULATION OF THE ANGULAR
DENSITY

The angular density was defined, Eq. (33), as

�(α) =
∫ ∞

0
dR1R

2
1

∫ ∞

0
dR2R

2
2 D(2)(R1, R2) (A1)

with

D(2)(R1, R2) = 〈�|δ(r̃1 − R1)δ(r̃2 − R2)|�〉 . (A2)

The evaluation of �(α) proceeds similarly to that of
D(2)(R1, R2) described in Sec. III B, but the function in
Eq. (41),

d (2)(R1, R2)=f0 exp
[
−β

(2)
11 R2

1−β
(2)
22 R2

2−2β
(2)
12 R1R2 cos α

]
,

(A3)

has to replaced by

γ (α) =
∫ ∞

0
dR1R

2
1

∫ ∞

0
dR2R

2
2 d (2)(R1, R2)

= f0

∫ ∞

0
dR1R

2
1

∫ ∞

0
dR2R

2
2

× exp
[
−β

(2)
11 R2

1 − β
(2)
22 R2

2 − 2β
(2)
12 R1R2 cos α

]

= f0

{
1

8d3/2

(
1 + 3a2

d

) [
π

2
− arctan

(
a√
d

)]

− a

8bd

(
1 + 5a2

d

)
+ a

4b2

[
−1 +

(
a2

d

)2
] }

(A4)
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with

a = β
(2)
12 cos α, b = β

(2)
11 β

(2)
22 , d = b − a2 , (A5)

where φ(r; C ′) and φ(r; C ′′) are two arbitrary spatial basis
functions and f0 and β

(2)
ij have the same meaning as introduced

below Eq. (41).
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