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Abstract

Optomechanics explores the coupling between light and the mechanical motion
of nanoscopic matter. Optical levitation offers a promising avenue in the
investigation of macroscopic quantum behavior by using glass nanoparticles
that are physically detached from the environment.

Our goal in this thesis is to bring a levitated nanoparticle to the quantum
ground state of its center-of-mass motion using phase-sensitive feedback that is
conditioned on high precision interferometric measurements of the particle’s
position. We cool the harmonic motion of the nanoparticle from ambient to
microkelvin temperatures and measure its reheating rate under the influence
of the radiation field. The limit reached corresponds to that of photon recoil
heating, which will set bounds to the coherence times of future quantum states
and protocols in our system. We quantitatively characterize the role of laser
intensity noise for demanding applications in ultrasensitive force detection and
find that the system is in the regime of strong measurement backaction. Finally,
protocols to interrogate the classical to quantum transition are proposed.
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Zusammenfassung

Die Optomechanik befasst sich mit der Kopplung zwischen Licht und der mech-
anischen Bewegung von nanoskopischer Materie. Im Speziellen sind durch
ein Laserfeld am Schweben gehaltene Nanopartikel, welche sehr gut von ihrer
Umgebung isoliert sind, vielversprechend um in die Welt der makroskopischen
Quantenmechanik einzutreten und diese zu erforschen.

Ziel dieser Arbeit ist es ein schwebendes Nanopartikel in den quanten-
mechanischen Grundzustand seiner Schwerpunktsbewegung zu kühlen. Dazu
nutzen wir eine phasensensitive Regelschleife, welche auf der hoch präzisen
interferometrischen Messung der Partikelposition basiert. Wir kühlen die
harmonische Oszillation des Nanopartikels von Raumtemperatur bis auf wenige
mikro-Kelvin. Zusätzlich messen wir die Heizrate des optische Strahlungsfelds,
das das Partikel am Schweben hält. Die kleinste gemessene Temperatur wird
durch Rückstossheizen von Photonen bestimmt, welches die Kohärenzzeit
zukünftiger Quantenzuständes unseres Systems limitieren wird. Zusätzlich
charakterisieren wir die Rolle von Intensitätsrauschen des Laserlichts im Zusam-
menhang mit ultra-sensitiven Kräftemessungen und zeigen, dass sich unser Sys-
tem im Regime der starken Rückwirkung durch Messung befindet. Schliesslich
schlagen wir Protokolle zum Testen des Übergangs von klassischen Mechanik
zur Quantenbereich vor.
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1
Introduction

1.1 Quantum Technologies: The State of the Art

W e are on the brink of a technological revolution – an era in which
quantum technologies will finally come to the fore [2]. Developments

in quantum computing, sensing, communications, and information processing
herald the advent of technologies that harness the curious effects predicted
by quantum physics [3]. The revolutionary theory discovered in the 20th
century, quantum mechanics, will change the way we access and process our
environment. Why then, are quantum technologies arriving now, a century
later? A recent article in The Economist highlights that "it has taken so long
mainly because the components that make them up had to be developed first:
ever-better-lasers, semiconductors, control electronics and techniques to achieve
the low temperatures at which many quantum systems perform best." [4]

The unusual characteristics of quantum mechanics provide tantalizing
prospects for the development of a whole host of devices, among them extremely
precise sensors. In contrast to nano-scale material sensors used in measurements
of minute masses, trace analytes, and gases [5], quantum sensors will exploit
everything from electronics and optics to acoustics and atomics [3]. Light
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1 Introduction

will be used to measure, control, and manipulate mechanical objects in the
quantum regime, bringing about a paradigm shift in the way we perceive our
surroundings [6].

1.1.1 Quantum Measurements

The first frontier that brought quantum technologies to the fore was the invention
of the laser in the 1960s [7, 8]. Monochromatic sources of light, lasers are
the backbone to telecommunications, coherent information processing, and
metrology. They offer a vehicle for supreme sensitivity, precision, and accuracy
in the measurement of weak signals, feeble forces, and fields.

The laser was an enabling technology in the search for gravitational waves,
or the faint ripples of space-time that result from the motion of black holes
and permeate the universe [9]. The laser made the gravitational wave search
a reality through the technique known as interferometry, in which laser light,
split by a beamsplitter, travels back and forth down two separate paths with
mirrors precisely positioned at their ends. Kilometer-sized facilities, like the
Laser Interferometer Gravitational Wave Observatory (LIGO), were built just
for this search. Gravitational waves passing through the interferometer would
result in faint contractions or expansions in the trajectory of light and change
the intensity of light detected when the laser beams recombine.

Gravitational waves are very weak and detecting them required better lasers,
control electronics, and measurement techniques [10]. Better, however, is a
relative term whose limits Braginsky sought to elucidate using the fundamental
laws of quantum mechanics [11]. At the core of this theory is Heisenberg’s
Uncertainty Principle, which puts bounds on the precision with which one can
simultaneously determine an object’s position and momentum, or �x�p �
~/2 [12].

Braginsky determined that tiny vibrations in the environment would limit the
sensitivity with which one could measure fractional changes in the propagation
of light in an interferometer. The limit to the detectable force exerted is given
by [11]

F �
p

2mkBT0�/⌧

F

(1.1)

which corresponds to the thermal noise background in a force sensor. Here, ⌧

F
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1.1 Quantum Technologies: The State of the Art

is the time over which a force acts and imparts momentum to the interferometer,
m is the mirror’s effective mass, � is its intrinsic friction, kB is Boltzmann’s
constant, and T0 the environmental temperature. Building experiments that
could reach this level of sensitivity would have a profound impact on our
understanding of fundamental physics [13], leading LIGO to achieve a level of
sensitivity one-billionth the size of an atom [14].

One of the unintuitive concepts of quantum theory is that of measurement
backaction, by which measuring the state of a system disturbs the system
itself. By increasing the amount of light in an interferometer, one can reduce
uncertainty in the mirror’s position, or �x. Caves, however, showed that it
comes at a cost; more light allows you to better resolve a mirror’s position,
but the added momentum from the light causes the mirror to shake around
more, increasing the uncertainty in its momentum, or �p [15]. With a proper
measurement record of the mirror’s motion, one could always counter the
influence of measurement backaction using feedback cooling. The effect,
however, is so weak that it was not until recent years where measurement
backaction was observed in an interferometer [16].

1.1.2 Cavity Opto-Mechanics

The second frontier that emerged in the journey to quantum technologies was
the advent of high precision manufacturing of nano-scale structures. Combining
electrical control with mechanical vibrations, NEMS devices availed a whole
new domain of sensing for trace analytes, including everything from mass,
pressure, and gases to magnetic fields [5]. When these advanced manufacturing
techniques were applied to silicon and glass, microfabrication brought forth a
new class of components – opto-mechanical devices, including low loss silica
toroids [17], silicon photonic crystals [18], silicon nitride membranes [19],
diamond cantilevers [20], that, by design, are high quality Fabry-Pérot cavities.
Coupling light into these hybrid optical cavities and mechanical resonators
formed a cavity opto-mechanical system, in which light could be used to
achieve quantum control over a massive mechanical object [21].

Cavity-optomechanical systems hold promise as a means to both observe
and control the quantum states of macroscopic objects and to measure feeble
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1 Introduction

forces and fields with a sensitivity, precision, and accuracy approaching the
quantum limit [6]. With geometries mere microns in size, cavity opto-mechanics
seeks to bring the sensitivity of the kilometer-sized LIGO to integrated, chip-
scale architectures.

Narrowband mechanical vibrations are coupled with the electromagnetic
field, an interaction that is enhanced in the presence of a cavity. The radiation
pressure of light is used to control their vibrations and suppress them to the
limit imposed by quantum mechanics, which tells us that the vibrations never
really stop. The minimum vibration limit occurs in the quantum ground state.
Suppressing vibrations is a great technical challenge, which requires pure
materials and pristine experimental geometries. However, once a mechanical
object is in the quantum ground state, it can be exploited for a whole host of
previously inconceivable metrology applications.

Remarkable progress has been made in recent years toward engineering
the strong interactions of light and matter at the single-photon level needed to
control and communicate with mechanical devices. Among these include the
demonstration of strong coupling between an atom and a monolithic silica mi-
crotoroid [22]. At the outset of this doctoral work, superconducting microwave
circuits [23], silicon nanobeams [24] and silica microtoroids [25] were cooled
to the ground state of their mechanical motion using resolved sideband cooling,
a familiar technique of the trapped ion community [26]. The sophistication of
these mechanical devices enabled the first observations of measurement backac-
tion with silicon nitride membranes [16] and its suppression with measurement
feedback at cryogenic temperatures [27]. More recently, quantum correlated
light sources were generated from the conversion of mechanical phonons into
photons [28], opening up the possibility of mechanical resonators as information
transducers in advanced quantum communication protocols [29, 30].

1.1.3 The Dissipation Challenge

The challenge in realizing quantum technologies is the same reason so much
effort has been invested in nano-scale fabrication and optical metrology: dis-
sipation. When a mechanical resonator is coupled to a bath, like the thermal
fluctuations of the environment, the bath has both fluctuations and dissipation,
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1.2 Optical Levitation

which act in conjunction to bring a mechanical resonator to a state of thermal
equlibrium [31]. In the current state of engineering, quantum systems are still
connected to the thermal bath in a non-negligible way. This means that they are
forgetful and may lose information that they sense or process. Noise from the
environment tickles these quantum sensors the same way that it causes nano-
structures to vibrate or makes lasers noisy – via dissipation, which causes a
device to lose energy and forget any information it may have stored in it. Reduce
dissipation and you can build a quantum computer, sense faint gravitational
waves from the universe, detect weak forces, and much more.

Decoherence resulting from dissipation is a challenge because it limits
the time over which you can measure a signal in the quantum realm [32].
Micro-structures have come a long way toward reducing dissipation-induced
decoherence, but material losses that result from clamping to the environment
still limit their performance [33]. One can never truly get rid of dissipation, but
we can design ways to reduce its influence.

1.2 Optical Levitation

Instead of designing mechanical resonators from the top-down, we levitate
small nanoparticles with laser beams. The laser beam and the particle interact
via the optical dipole force, which acts to always restore a particle to the center
of a focused laser field [34]. Due to the absence of mechanical contact in this
system, the dissipation at room temperature can be negligible and the oscillation
frequency fully tunable [35], making quantum technologies at room temperature
a viable reality.

Optical levitation is a technique first invented by Arthur Ashkin in the 1970s
that can be used for precision manipulation and control, spanning from the
micron-scale all the way down to the atomic scale [36, 37]. It has formed the
basis for cooling experiments involving atoms and ions, enabling the cooling of
ions to their motional ground state [38, 39]. Because of optical manipulation,
trapped ions are being used to build the very first quantum computing platforms
using quantum coherent control of mechanical motion.

Levitating nanoparticles has distinct value in the grand challenges of quan-
tum technologies, namely in precision measurement and control. Foremost,
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1 Introduction

their mass is very small, which allows for minute force sensitivity (c.f. Eq. 1.1).
In ultra-high vacuum, the dissipation they experience is expected to be so
little that their achievable Q-factor would be in excess of 1010 [40]; a system
with such little dissipation would experience very little thermal decoherence,
allowing for several oscillations in its ground state of motion. Though their
mass is small, it is much greater than that of individual atoms, suggesting that
the recoil momentum ~k2

/2m would be negligible; if true, this would allow
the scattering of many photons to track the particle’s position without affecting
its motional state [41]. With very little decoherence and the possibility of
many photons interacting with the particle, the prospects for cooling a levitated
nanoparticle into its quantum ground state and designing levitated quantum
technologies are high.

1.3 Motivation

The motivation for this thesis is to cool a levitated nanoparticle into the quantum
ground state. Moving toward that goal, we test the assumptions of negligible
dissipation in UHV. We are concerned with four key areas that rely on low
dissipation promised by levitated optomechanics, including

• Precision Measurements How can one use advanced interferometric
techniques to probe the particle’s motion and conduct high-precision
measurements of its position?

• Nanoscale Manipulation Can one utilize the momentum of light to
achieve a new level of nanoscale control, for the manipulation of
nanoscale objects, and the potential of ultra-precise manufacturing?

• Force Sensing Would the minute mass and negligible dissipation that a
levitated nanoparticle experiences open up a new realm of force sensing
that was previously inaccessible?

• Quantum Opto-mechanics Will we be able to build quantum states of
matter on the nano-scale and use levitated objects as transducers of
quantum information?

6



1.4 Outline

1.4 Outline

This doctoral thesis works toward answering a little bit of each of these
questions. It is structured into the following chapters

Optical Tweezers and Particle Tracking Designing stable levitation setups
requires pristine vacuum environments and advanced, low noise elec-
tronics. This chapter presents the experimental methods and conceptual
framework needed for optical levitation in UHV.

Phase Feedback Control Here, we describe a new feedback cooling protocol
and present a toy model for characterizing its operation. We then present
experimental results to corroborate our toy model and its enhanced
performance over prior techniques. Included is a discussion on the limits
of this technique.

Photon Recoil Heating This chapter tests the assumption of negligible dissipa-
tion in UHV by studying the effects of measurement-induced backaction
via photon recoil heating on the levitated nanoparticle.

Noise in the Trap To corroborate the limits to dissipation in UHV, we focus in
this section on the role of laser noise in reheating and frequency stability.
Included is a discussion on the limits to force sensitivity in a levitated
nanoparticle trap.

Resolving the Classical to Quantum Transition Evidence of a levitated
nanoparticle in the micro-Kelvin regime is presented along with a
protocol for resolving the transition from the classical to quantum regime
using asymmetric sideband thermometry.
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2
Optical Tweezers and Particle Tracking

The goal of this chapter is to report on the theory of optical tweezers and obtain
the relevant opto-mechanical parameters. Then, we describe the experimental
construction of a vacuum-compatible optical tweezer and the electro-optics
needed to bring a trapped nanoparticle into ultra-high vacuum (UHV). Optical
tweezers measurement and calibration methods are presented.

2.1 Introduction

At the heart of this work is the optical tweezer, the indispensable and ubiquitous
tool of many physicists and biologists. First invented in the 1970s by Arthur
Ashkin [36, 42], optical tweezers use the momentum of light to manipulate
nano- and micro-scale objects. Ashkin initially investigated optical tweezers
using microparticles in air [43] and in water [44], which are glass spheres a
few tens of microns in diameter. When introduced into a focused optical beam,
these microspheres experience a restoring force owing to the refraction of light
at the glass-air or glass-water interface [42]; the momentum transfer resulting
from the radiation pressure of light restores their position to the trap center.
Ashkin demonstrated that sub-wavelength particles could be trapped by the
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2 Optical Tweezers and Particle Tracking

optical gradient force, which results from a particle always trying to maximize
its induced dipole moment by seeking out regions of highest intensity.

Ashkin’s work laid the foundation for the field of optical manipulation.
Optical tweezers were introduced into the atomic community during pioneering
experiments on single atom spectroscopy [45], trapped ion control [26], and the
formation of exotic states of matter, including Bose-Einstein condensation [46].
Tweezers formed the core of many biophysical mechanistic breakthroughs,
including precision force measurements of DNA kinetics [47]. Additional
avenues of research demonstrated their use in chemical spectroscopy, lithogra-
phy, colloid formation, and force microscopy, among the many transformative
studies conducted with tweezers underlying them [48]. The ubiquity of optical
tweezers is a testament to their versatility.

The experiments in this thesis harness the utility of optical tweezers for the
manipulation of nano-scale matter – glass nanoparticles consisting of several
ten million of atoms – and the desire to bring these routinely classical objects
into a domain where their behavior would be described using quantum theory.
In the following sections, we derive the optical trapping forces and express them
in a form that is accessible to opto-mechanical experimentalists. Thereafter,
we elaborate on the intricate experimental methodology required for accurately
tracking and controlling the center of mass motion.

2.2 Optical Tweezers

The experiments in this thesis all use nanospheres whose radii are much
smaller than the wavelength of light, or R ⌧ �/2⇡, which is called the
Rayleigh scattering limit. In this limit the nanosphere can be described as
point dipole [49].

The electric field E(r, t) illuminating the particle polarizes its internal
charges and induces a radiating dipole p [50]. The interplay of the dipole
moment p and the electric field generates a force on the particle and is given
by [51]

F = (p ·r)E + p⇥ (r⇥E) +
d
dt

(p⇥B) (2.1)

where the monochromatic electric field is E(r, t) = Re
�
E(r)e�i!t

 
, the
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2.2 Optical Tweezers

Figure 2.1: Focal fields with a trapped nanoparticle An illustration
of the focal fields and coordinate geometry for a nanoparticle displaced
from the focus. The incident electric field E

in

is focused with a lens.
In the focus is a nanoparticle trapped by the focused laser field but
displaced by r

0

. Its scattered field E
sc

propagates toward the collection
lens in forward scattering to a reference point r on the reference sphere
of the lens. The difference between the particle position and the imaging
point on the lens is R = r� r

0

. The transmitted field E
tr

experiences
a tilt when the particle has a transverse displacement.

magnetic field is B(r, t) = Re
�
B(r)e�i!t

 
, and the dipolar field is p(t) =

Re
�
pe

�i!t
 

. Here, bold indicates that these are vector fields and the under-
line signifies the field’s stationary amplitude. The dipolar field amplitude is
determined by the polarizability ↵(!) according to p = ↵ E(r). As the fields
oscillate on a time-scale much faster than the particle’s dynamics, we carry out
a time-average over one electric field oscillation cycle, 2⇡/!, and find that the
average force is given by

hFi =
1

2
Re
�
(p⇤ ·r)E� i!(p⇤ ⇥B)

 
(2.2)

where ⇤ indicates the complex conjugate. The two terms are combined to obtain

hFi =
↵

0

2

X

i

Re {E⇤
i�Ei} +

↵

00

2

X

i

Im {E⇤
i�Ei} (2.3)

when the complex polarizability is split into its real and imaginary components
as ↵ = ↵

0 + i↵

00. The two terms on the right hand side of Eq. 2.3 are
called the gradient and scattering forces, respectively. The electric field can be
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2 Optical Tweezers and Particle Tracking

approximated in terms of its amplitude and phase as E(r) = E

0

(r)ei�(r)n̂E ,
such that the time-averaged force is then given by

hFi =
↵

0

4
rE

2

0

+
↵

00

2
E

2

0

r� (2.4)

The gradient force is a conservative force that results from inhomogeneities of
the field’s intensity and is proportional to the real (or dispersive) part of the
complex polarizability, ↵

0. The scattering force is a non-conservative force that
results from inhomogeneities in the field’s phase and is the result of momentum
transfer from the laser field to the particle; it is the source of the radiation
pressure of light and is proportional to the imaginary (or dissipative) part
of the polarizability, ↵

00. It is through gradients in phase that the particle’s
motion is driven out of thermal equilibrium. Polarization may also influence
the dynamics, but at second order [1]. To stably trap a particle, the gradient
force must overcome the scattering force or else the particle is ejected out of
the focus.

The polarizability of a dielectric sphere is ↵

0

= 3V "

0

("p�"m)/("p+2"m),
where V = (4/3)⇡R

3 is the volume, "p is the dielectric constant of the particle,
and "m is the dielectric constant of the medium. The Optical Theorem of light
scattering requires energy conservation whenever light is scattered from the
particle [49, 50]. To satisfy it, we redefine the sphere’s polarizability with an
effective form given by [52]

↵ = ↵

0

✓
1 � i

k

3

6⇡"

0

↵

0

◆�1

(2.5)

Accordingly, even when ↵

00 = 0, the particle’s effective polarizability is still
complex. This is due to radiation reaction, which results from the particle
scattering the incident field as it is accelerated about the focus; when the
scattered field carries momentum away, the particle is pushed back in order to
conserve total momentum by the radiation reaction force.

The particle is trapped using a zero order Gaussian optical mode focused
with a microscope objective with a given numerical aperture, or NA. We restrict
the following discussion to the paraxial approximation, which is a small-angle
limit in which NA = n sin ✓ ' n✓; we comment later in the text on the
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2.2 Optical Tweezers

differences arising from this approximation and the full angular description.
In this limit, a Gaussian mode can be described in terms of its amplitude and
phase forms as

E

0

(r) = E

0

w

0

w(z)
exp


�x

2 + y

2

w

2(z)

�
(2.6a)

�(r) = kz � ⌘(z) + k(x2 + y

2)/2R(z) (2.6b)

where the waist w(z), radius of curvature R(z), and Gouy phase shift ⌘(z) are
defined as [51]

w(z) = w

0

(1 + z

2

/z

2

0

)1/2 (2.7a)

R(z) = z(1 + z

2

0

/z

2) (2.7b)

⌘(z) = arctan (z/z

0

) (2.7c)

The beam waist corresponds to the point of minimum divergence; the radius of
curvature describes the shape of the focused wavefronts which, by inspection,
are planar in the focus; and the Gouy phase shift describes an acquired ⇡ phase
shift of the focused field from z = �1 to z = 1. In this paraxial limit, we
can approximate the beam waist as w

0

= �/⇡NA and the Rayleigh range as
zR = �/⇡NA2, which is the region around the focus where the electric field
wavefronts are mostly planar.

2.2.1 Gradient Force

Evaluating the forces using Gaussian fields and expanding the force form to the
first three orders in x, y, and z, we calculate the gradient force is equal to

F
grad

= ↵

0
E

2

0

2

664

� 1

w2

0

(1 � 2

z2
0

z

2 � 2

w2

0

y

2 � 2

w2

0

x

2 + ...)x

� 1

w2

0

(1 � 2

z2
0

z

2 � 2

w2

0

y

2 � 2

w2

0

x

2 + ...)y

� 2

z2
0

(1 � 2

w2

0

y

2 � 2

w2

0

x

2 � 2

z2
0

z

2 + ...)z

3

775 (2.8)

We see here that the forces are linear in first order of position and form, in
effect, a restoring force as its form is F

i
grad

= �k

(i)
xi. The higher order

non-linear terms act to weaken the trap by reducing the trap stiffness, k

(i),
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2 Optical Tweezers and Particle Tracking

proportional to the amplitude of oscillation. The electric field amplitude is not an
experimentally accessible measured variable; rather, we can measure intensity,
I

0

, or just optical power, P

0

. The field intensity is I

0

= "

0

cE

2

0

/2 = 2P

0

/⇡w

2

0

,
which results in the spring constants equaling

k

(x,y) =
4↵

0

⇡"

0

c

P

0

w

4

0

=
4↵

0

⇡"

0

c

✓
⇡NA

�

◆
4

P

0

(2.9a)

k

(z) =
8↵

0

⇡"

0

c

P

0

z

2

0

w

2

0

=
8↵

0

⇡"

0

c

✓
⇡NA

�

◆
4

NA2

P

0

(2.9b)

Here, we see that the spring constant is proportional to optical power, which is in
contrast to conventional mechanical oscillators with fixed spring constants given
solely by material parameters. For the same optical power, however, reducing
the wavelength steeply increases the trap stiffness, proportional to �

�4. Shorter
wavelengths can be focused to tighter spots when using the same NA lens,
which means the intensity gradient will be sharper. The trap stiffness is also
linearly proportional to volume as ↵

0 / V . Considering that NA  1.0 in air,
the trap stiffness in the transverse axes (x, y) is higher than in the longitudinal
direction (z).

The gradient force is a conservative force because it is written as the gradient
of a potential ↵

0
E

2

0

/4 (c.f. Eq. 2.4). Integrating the force in just one dimension
in the first order, we calculate the potential is U(xi) = 1

2

kx

2

i , which is the
potential energy of an harmonic oscillator. It has a characteristic frequency
⌦2

i = k

(i)
/m. Despite the sphere’s complex polarizability, when its radius is

much smaller than the wavelength the oscillation frequencies are equal to

⌦2

x,y =
12

⇡c⇢

✓
" � 1

" + 2

◆✓
⇡NA

�

◆
4

P

0

(2.10a)

⌦2

z =
24

⇡c⇢

✓
" � 1

" + 2

◆✓
⇡NA

�

◆
4

NA2

P

0

(2.10b)

These are the center-of-mass frequencies at which the particle oscillates about
the focus. The frequency is independent of the particle’s mass; however, changes
in the particle’s density ⇢ will shift its frequency. The frequency changes with
the square root of optical power, or ⌦

0

/
p

P

0

.
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2.2 Optical Tweezers

For a fused silica nanoparticle with density ⇢ = 2200 kg/m3, dielectric
constant " = (1.45)2, and trapped with P

0

= 70 mW of power using an
NA = 0.80 objective, one would expect oscillation frequencies of ⌦x,y =

2⇡ 293.0 kHz and ⌦z = 2⇡ 331.5 kHz. However, at such high numerical
apertures, the paraxial approximation is no longer valid and diffractive effects
distort the focal intensity. Using the numerical solutions of strongly-focused
fields, it was shown that the beam waist is a factor 1.5 times larger in the
transverse directions and the Rayleigh range is a factor 2.6 times larger [53].
Accounting for this difference gives trapping frequencies ⌦

0
x,y = 2⇡ 114.5 kHz

and ⌦
0
z = 2⇡ 49.0 kHz, which agree with experiment.

2.2.2 Scattering Force

The scattering force is given by

F
scat

=
1

2
↵

00
E

2

0

k

2

664

1

z2
0

zx + ...

1

z2
0

zy + ...



0

+ yy
2 + xx

2 + zz
2 + ...

3

775 (2.11)

where the z-component prefactors are given by
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) (2.12b)

z = (
2

z

3
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� 1
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2

0

) (2.12c)

The combination of the gradient and scattering force in z leads to a shift in the
trap center that is no longer the center of the focus but is equal to

zc =
1

4

↵

00

↵

0 kz

2

0



0

(2.13)

The shift depends on the particle size and the NA but has no dependence on
optical power. It is a result of the momentum transfer from light to the particle
in the specific focal geometry.
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2 Optical Tweezers and Particle Tracking

2.2.3 Optical Potential and Escape Rates

The potential is approximated as harmonic; however, the next order components
do affect the particle’s dynamics. When we reintroduce the cubic nonlinearity
of the force in the transverse axes, an integral of the force is equal to

U(x) = � 2↵

0
I

0

✏

0

cw

2

0

✓
1

2
x

2 � 1

2w

2

0

x

4

◆
(2.14)

This potential experiences a turning point at x

tp

= w

0

/

p
2, which determines

the barrier height �E = U(x
tp

) � U(x = 0) = ↵

0
I

0

/(4✏

0

c), as illustrated
in Fig. 2.2. The trapped particle is driven by thermal fluctuations of the
environment with average energy kBT0 and occasionally samples the quadratic
regions of the potential. A well-thermalized quadratic system will have a
position probability distribution function given by [54]

⇢(x) =

s
k

⇡kBT0
exp


�1

4
kx

2

/kBT0

�
(2.15)

which gives the probability of achieving the barrier energy and likely escaping
from the trap. For a R = 68 nm particle made of fused silica (n = 1.45) trapped
with a NA = 0.80 objective at � = 1064 nm using P

0

= 70 mW, the barrier
height is �E ⇠ 53 kBT0, which means the particle is unlikely to be driven out
of the trap.

However, there may be interest in using either smaller nanoparticles or
reducing the optical power in the trap to scatter fewer photons. When the power
is reduced to 16 mW, or by a factor of 4, the oscillation frequency would drop
by half and the trap depth drops to 12 kBT0. This means particles have a much
higher likelihood of escape. Ashkin established trap depths need to be in excess
of 10 kBT0 for stable trapping. If the focal power were kept constant at 70 mW
but the particle size were reduced to R = 50 nm, the trap depth would drop
to �E ⇠ 21 kBT0. Reducing focal power or trapping smaller sized particles
reduces the trap depth and makes it difficult to stably trap.

Intuitively, this makes sense. For a trapped particle to escape, it has to be
driven out by the air molecules that bombard it from all different directions. The
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2.2 Optical Tweezers

Figure 2.2: The Optical Potential. An illustration of the optical
potential that the particle moves through, including the non-linearities.
The particle (in red) is kicked around by air molecules (in blue) with
an average energy of kBT0 and thus is driven around the potential. The
energy barrier �E is indicated at the position xtp = w

0

/

p
2.

momentum transfer needed to kick out a small particle is much less than that
for a large particle. Similarly, lower optical power reduces the trap depth and
thus requires fewer kicks from the surrounding gas to overcome the potential
barrier.

From reaction rates theory [54], we identify Kramer’s rate of escape as
being the rate at which a particle localized about x = 0 escapes from a potential
with barrier turnover at xtp = w

0

/

p
2, which is given by

r =
D

2⇡kBT0
[|U 00(x = 0)||U 00(x = xtp)|]1/2 exp [��E/kBT0] (2.16)

where D = kBT0/m� is the diffusion coefficient. For U

00(x) = �(↵E

2

0

/w

2

0

)(1�
6x

2

/w

2

0

), the escape rate equals

r =

p
2

⇡�m

↵

0
I

0

✏

0

cw

2

0

exp [��E/kBT0] (2.17)

This formula for the escape rate r is very informative. First, when the focal
power is decreased, the barrier height �E is reduced and thus the rate of escape

17



2 Optical Tweezers and Particle Tracking

increases. Then, when a smaller particle is trapped, the mass m is lower and
the rate of escape increases. The pre-factor

p
2/⇡�m is called the attempt rate;

by reducing pressure the attempt rate increases, which means the particle is
more often attempt to cross the barrier. We return to escape from the potential
in Ch. 5.

Loss of trapped particles continues to be an experimental challenge that
has thus far only been overcome by shifting the trap to longer wavelengths or
by using feedback cooling. I began my work using a laser with wavelength
� = 532 nm. When the focal power remains constant, the barrier height is
increased and the potential is steeper. Unintuitive as it may seem, this increases
the rate of escape. In comparison, using a longer wavelength of � = 1550 nm
makes the potential shallower but also broader, which reduces the rate of escape
from the trap, a function of the gradient of the potential.

2.3 Particle Displacement Measurement

With the formation of a stable trap, one must also be able to track the particle’s
position. In the following, we calculate the field scattered by the particle and
explain optical techniques for tracking.

2.3.1 Scattered field from a nanoparticle

The mode illuminating the trapped particle, E, and its scattered field, Esc, are
related through the system’s Green’s function,

$
G (r, r

0

), according to [51]

Esc(~r) = !

2

µµ

0

$
G (r, r

0

)p (2.18)

where the dipole moment is p = ↵E and the far-field Green’s function is

$
GFF=

exp [ikR]

4⇡R

(
$
I �RR/R

2) (2.19)

for R = r� r
0

, r the distance from the focus to the collection lens, and r
0

the
position of the scattering nanoparticle. The particle is illuminated by a Gaussian
mode of the form in Eq. 2.6, which is a field linearly polarized in x. The field
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scattered by the particle is given by

Esc = !

2

µµ

0

exp [ikR]

4⇡R

3

h
R

2 � RxRx, �RxRy, �RxRz

iT
(2.20)

Figure 2.3: An illustration of the particle’s position r
0

with respect to
the focus and the coordinates of the reference sphere of the lens, or
(r, ✓ �).

The y and z components of the scattered field are weakly contributing at
the collimation lens. The particle’s scattered field at the collimation lens is

E(x)
sc = !

2

µµ

0

exp [ikf ]

4⇡f

↵E(r
0

)exp [�ik(r
0

· r)/f ] (2.21)

Its location is r
0

= (x
0

, y

0

, z

0

) and the lens is placed far enough that
f � zR. The position on the reference sphere of the lens is r =

f(sin ✓ cos �, sin ✓ sin �, cos ✓). Here, we approximate |R| = |r � r
0

| =p
r

2 � 2r · r
0

at r = f . The field wavefronts can be spatially mapped at r

with the inclination angle ✓ and rotation angle � of collection, as illustrated
in Fig. 2.3. The total intensity after the two fields interfere is I = |E + Esc|2,
given by

I(t) = |E|2 + |Esc|2 + 2↵E
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The resulting interference signal for small displacements (kr

0

⌧ 1) is

�I[r
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0

cos ✓)

We see from Eq. 2.21 that a shift in position results in a change in the scattered
field’s phase. The scattered field interferes with the trapping field to project
a phase change into an intensity change. Importantly, the trapping field and
scattered field are offset in phase by ⇡/2 at the collection lens because of the
Gouy phase shift. Accordingly, this automatically projects the phase quadrature
of the optical field rather than its amplitude.

The scattered power is obtained by integrating the time-averaged radiated
energy hSi = hE

sc

⇥B⇤
sc

i on the surface of a sphere a, or

P

sc

=

I

a
hSi · da = 2

✓
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3|↵|
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(2.24)

= 2[↵00
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where ⌘

fs

= 6/(k2

w

2

0

) is the single particle cooperativity in free space [55] and
Im {↵} = ↵

00 ' k

3

↵

2

0

/(6⇡"

0

) is the imaginary component of the polarizability
in Eq. 2.5 satisfying the Optical Theorem. The free-space cooperativity is
independent of the polarizability and is a geometric quantity equal to the ratio
of emission into the zero order Gaussian mode that illuminates the particle
(both forward and back) and the total free space emission into a solid angle of
4⇡. In the paraxial approximation, we find that ⌘

fs

= 3

2

NA2, which tells us that
increasing the numerical aperture of the illumination (and collection) optics
would increase the fraction of the scattered field that is collected from the trap.

2.4 Overview of the Optical Setup

The experimental methods presented here were mostly developed or imple-
mented over the course of this thesis work. The optical setup was designed for
stable trapping of a dielectric nanoparticle with a single microscope objective
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2.4 Overview of the Optical Setup

oriented in the horizontal configuration [42]. In this section, we discuss different
interferometric measurement techniques for tracking the particle’s motion [56].

2.4.1 Differential detection

The transmitted laser field is split three ways and then focused onto a pho-
todetector. The scattered field is collected at angles ✓ 2 (0, ✓

max

] (for ✓

max

=

arcsin(NA)) and � 2 (0, 2⇡]. Assuming the particle’s displacement is small,
k · r

0

⌧ 1, the output photocurrent is given by
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Z
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/z
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⇤
. A separate,

unmodulated field is sent to the other port of the balanced detector to subtract
away the DC photocurrent and remove the common-mode fluctuations in laser
intensity [57].

Next, the left and right halves of the field are split using a knife-edge mirror;
each half is redirected to separate ports in a balanced photodetector. The field
in the left half subtends �L 2 (�⇡/2, ⇡/2] and in the right half subtends
�R 2 (⇡/2, 3⇡/2]. The output photocurrent is given by

ix(t) =

Z ✓
max

0

d✓ sin ✓

 Z ⇡/2

�⇡/2
d� �I[r

0

; ✓, �] �
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(2.26)

= 2�k⇡x

0

(�NA
p

1 � NA2 + arcsin(NA)) lim
NA!1

�⇡kx
0

Finally, the top and bottom halves of the field are split such that the top half
subtends �T 2 (0, ⇡] and the bottom half subtends �B 2 (�⇡, 0]. The output
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2 Optical Tweezers and Particle Tracking

Figure 2.4: A schematic of the experimental setup. Laser light is
coupled through an EOM and a single-mode polarization maintaing
fiber (PMF) and then directed into the vacuum chamber. At the input to
the vacuum chamber is a Faraday rotator (FR) to separate illuminating
and back-scattering light. In the forward propagating direction is a
Faraday isolator (FI) to suppress back-reflections into the trap and
thereafter a set of three balanced photodetectors. The output of the
photodetectors are connected to digital PLLs, frequency doubled, and
then connected to the EOM with a fixed gain, G. Around the vacuum
chamber are a UV lamp for use during pumpdown; a combination Pirani
and Ion gauge for tracking vacuum pressure; a line to the turbopump;
and an ion-getters pump. The laser beam enters and exits through
anti-reflection coated, vacuum-compatible windows.
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photocurrent is then given by

iy(t) =

Z ✓
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When the particle moves in the transverse directions, its scattered field
shifts with respect to the focus, which causes either a vertical (for y motion)
or horizontal (for x motion) deflection of the transmitted fields. Motion in z

amounts to a slight focusing or defocusing of the scattered field with respect to
the stationary trap.

The intensity change at the plane of the photodetector is seen in Fig. 2.5.
Shown are calculated contour plots of the intensity change when the particle is
displaced in just one direction, either in z, y, or x, respectively, by a distance
±�/20. The yellow coloring indicates an increase in intensity and the blue
coloring indicates a decrease in intensity. When the particle moves in z, the
interference of its scattered field with the transmitted laser field results in a
symmetric interferogram whose total intensity changes. A displacement in
the y axis results in the intensity of the top half increasing and the bottom
half decreasing when the particle moves up and the reverse when it moves
down. Thus the intensity change is asymmetric about the top and bottom halves.
Similarly, a displacement in the x axis results in an intensity change in the left
and right halves of the detected interference. Using split mirrors selects either
the top and bottom or left and right halves for tracking just the corresponding
axis of motion.

2.4.1.1 Homebuilt Photodetectors

The measurements presented in this thesis were taken using a variety of photode-
tectors. In Chs. 3 and 4, free-space balanced detectors from Newport (Model
2117-FS-M) were used for feedback cooling and reheating measurements. Later,
in Chs. 5 and 6, homebuilt detectors based on Excelitas C30642GH and JDSU
ETX500/1000 photodiodes were used. Designs for the photodetectors are
presented in the Appendix. They were built in three configurations
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2 Optical Tweezers and Particle Tracking

Figure 2.5: Detector interferograms. Density plots of the intensity at
the detector plane from the interference of the scattered and transmitted
fields. Shown are the interferograms in z, y, and x (from left to right)
when the particle is displaced along just the corresponding axis by
either +�/20 (top) or ��/20 (bottom). Yellow indicates an increase in
intensity and blue indicates a decrease. A particle moving in the focus
will generate a time-varying intensity at the photodetector.

1. C30642GH : Using an OPA656 operational amplifier to achieve a
10 MHz bandwidth with up to 100 mW of optical power.

2. ETX1000 : Using an OPA656 operational amplifier to achieve a 10 MHz
bandwidth for a maximum of 20 mW in detection.

3. ETX500 : Using an OPA846 operational amplifier to achieve a 40 MHz
bandwidth with up to 20 mW of optical power in balanced detection.

Extreme care was taken in developing a very low noise design such that shot
noise is the dominant noise process for more than 1 mW of optical power.

24



2.4 Overview of the Optical Setup

2.4.2 Balanced homodyne detection

The split, or differential, detection method is the conventional detection tech-
nique for motion in an optical tweezer trap. It is an interferometric technique
that relies on the common path of propagation for both the trapping and
scattered fields and their matching wavefronts and phase profiles. In addition to
forward scattering, the particle equally scatters the laser field into the backwards
direction. Collecting this back-scattered light can enable one to independently
modulate the reference field from the scatter. Guiding the back-scatter onto a
beamsplitter, we separately introduce a reference field E

lo

.
The inputs to the beam splitter are the scatter from the particle Esig and an

independent reference Elo, where

Esig = E

1

exp [i�
1

] (2.28)

Elo = E

2

exp [i�
0

]

and the outputs are given by

E

+

= re

i�rf
Esig + te

i�t
Elo

E� = te

i�t
Esig + re

i�rb
Elo

Figure 2.6: Balanced Homodyne Detection. Two fields are input
to a beam splitter, Esig and Elo. The outputs are E

+

and E� whose
difference is taken by the balanced photodetector.
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where (+) and (-) are sketched in Fig. 2.6. The resulting intensities are

|E
+

|2 = |r|2|Esig|2 + |t|2|Elo|2 + 2rtE

1
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2
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|E�|2 = |t|2|Esig|2 + |r|2|Elo|2 � 2rtE
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� �
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)

where �t = 0, �rf = 0, and �rb = ⇡. Here, we adopt the convention that the
beamsplitter is asymmetric as is experimentally the case [58]. When r = t =

1/

p
2, the detector output signal is

I = 2E

1

E

2

cos(kx(t) � k �x) (2.30)

when �

1

= k x(t) and �

0

= k �x, where �x corresponds to the local oscillator’s
tunable path length and x is an arbitrary coordinate. The detector output will
change as a function of �x, which means the signal will drift in and out of
interference. If k �x is adjusted to the phase quadratures, then the detected
signal varies between the cosine and sine of the phase, or

k �x = n⇡ : I = 2E

1

E

2

cos(kx(t)) (2.31)

k �x = (2n + 1)⇡/2 : I = 2E

1

E

2

sin(kx(t))

To calibrate our spectra, we can introduce a path length modulation such
that the local oscillator field is

Elo = E

2

exp [i�
0

] = E

2

exp [ik �x + ikx

1

sin(⌦
1

t)] (2.32)

When �x = ⇡/(2k), the detector output signal is

I ' 2E

1

E

2

sin{k(x(t) � x

1

sin(⌦
1

t))} (2.33)

The two-time auto-correlation function of this detected signal is

RI = E[I(t)I(t + ⌧)] (2.34)

= (2E

1

E

2

k)2{E[x(t)x(t + ⌧)] +
1

2
x

2

1

cos(⌦
1

⌧)}

Thus, the variance, which is the on-time autocorrelation of the detector signal,
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is given by

RI(0) = (2E

1

E

2

k)2{
⌦
x

2

↵
+

1

2
x

2

1

} (2.35)

We calibrate the particle displacement spectrum using such a calibration tone
at ⌦

1

. First, we set a known modulation depth by determining the voltage
needed for one wavelength of path length change at ⌦

1

. Then, locking the
DC path length, we apply a weak single-tone modulation at ⌦

1

and compare
its noise power to that of the particle oscillation. Experimentally, this was
tested in z at P

gas

= 15 mbar. The measured mean squared displacement
from particle oscillation was

⌦
x

2

↵
meas

= (120.7 nm)2, which corresponds
to that for a particle with radius R = 68 nm in a bath at T0 = 300 K (or⌦
x

2

↵
th

= (120.3 nm)2).

2.4.2.1 Piezo-based fiber stretcher

A phase-modulating fiber stretcher was constructed to lock the local oscillator’s
path length and apply phase modulations [59]. This was constructed using a
single mode, polarization maintaining fiber (ThorLabs) wound around a split
plastic disk (self-designed and 3D printed) with a piezo plate (Noliac NAC2123)
at the center. The piezo was modulated using a high-voltage amplifier (Falco),
which resulted in a modulation of the path length traversed by the guided field,
as sketched in Fig. 2.7.

The output voltage detected in the balanced homodyne interferometer was
used as an error signal to stabilize the path-length to a given setpoint, which
corresponds to a given phase angle, as illustrated in Fig. 2.7.

2.4.3 Balanced Heterodyne Detection

Converting the local oscillator to a frequency-shifted reference with an acousto-
optic modulator (AOM), the reference field becomes E

2

exp [i(! + �!)t]. The
detected signal in a balanced configuration is given by

I(t) = 2EscEref cos(kx(t) + �!t) (2.36)

' 2EscEref(cos(�!t) � kx

0

cos((⌦
0

� �!)t) + kx

0

cos((⌦
0

+ �!)t))
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2 Optical Tweezers and Particle Tracking

Figure 2.7: Homodyne locking with stretched fiber. A schematic of
a homodyne interferometry locking scheme. The scattered field, here
denoted E

sig

is interfered at the beamsplitter with a reference field E
out

.
The reference field E

out

is the output of a fiber that is stretched using a
piezo plate. The output signal from the balanced detector is modulated
based on the path length difference and can be used as an error signal
for controlling the piezo stretch.

which was simplified by assuming kx

0

⌧ 1. The single-sided Fourier transform
of this signal is

Î(!) = 2EscEref(�(!��!)+kx

0

�(⌦
0

+�!�!)+kx

0

�(⌦
0

+�!�!)) (2.37)

which shows us that there is a carrier at ! = �! and sidebands at ! = ⌦
0

+ �!

and ! = �!�⌦
0

. The amplitudes of the spectral peaks are related to the carrier
by kx

0

.

2.5 Feedback Control

The essential element in the experiments covered in this thesis is the feedback
controller. In contrast to previous work on parametric modulation [60, 61] the
feedback control signal was generated by a phase-locked loop (PLL). A PLL
is an oscillator that synchronizes its phase to that of a reference [62]. PLLs
have been used for several decades now for low-noise, phase-locked frequency
division and multiplication [63] because they are the optimal phase tracking
topology [64].
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2.5 Feedback Control

2.5.1 Phase-locked loops

Using the split detection scheme of Section 2.4.1, each detector output was fed
into the signal port of a Zurich Instruments (ZI) Lock-In Amplifier (Model:
HF2LI). With each detector signal, a PLL was tuned to track the particle’s
oscillation frequency and phase. The tuning parameters included: center
frequency (f

0

), locking range (fR), phase offset (�pll), phase detector time
constant (⌧pd), proportional gain, integrator time constant, gain (⌘), phase delay
(�d), and harmonic (n).

Table 2.1: Tuning parameters of the PLLs for tracking in all three axes.

Axis f
0

⌧pd P Gain ⌧i

Z 45 kHz 10 µsec 292 10 m
X 120 kHz 10 µsec 2910 12 m
Y 150 kHz 10 µsec 723 29 m

The tuned parameters are listed in Table 2.1. These parameters ensured that
phase fluctuations in the particle’s oscillation in a bandwidth of 1 kHz about the
center frequency were tracked in each axis. Additionally, the locking range was
held to fR = 7 kHz, the phase offset from the detected signal was �pll = 90�,
and the second harmonic (n = 2) of the PLL signal was used. All three signals
were summed together and connected to the input of the EOM’s high-voltage
amplifier. Typical modulation depths used were ⇠ 1%.

2.5.1.1 Theory of Phase-Locked Loops

The phase-locked loop (or PLL) has been used as a coherent detector of
communications signals for several decades [62, 65]. It continuously corrects
its local oscillator frequency according to a measurement of the phase error.

The signal at the detector corresponds to the particle’s position corrupted
by some shot noise from the measurement, or vi(t) = x(t) + ⇠(t). The
particle’s motion generates a signal at the detector that is approximately x(t) =

A sin[⌦
0

t + ✓

1

(t)]. The shot noise is taken to be white noise around the oscilla-
tion frequency. We can approximate its contribution as ⇠(t) = ⇠

1

(t)sin(⌦
0

t) +

⇠

2

(t) cos(⌦
0

t), where ⇠

1

, ⇠

2

represent two independent, uncorrelated, and
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2 Optical Tweezers and Particle Tracking

randomly varying quadratures of the noise.
It is first mixed with the output of a voltage-controlled oscillator whose

signal is vo(t) = B cos[⌦
0

t + ✓

2

(t)] and then passes through a filter with
the transfer function F (s). The output voltage is fed to a voltage-controlled
oscillator (VCO), which acts as an integrator and adjusts its output phase
proportional to the input error voltage.

The loop error signal is then [65]

e(t) = F (s)(vi(t) · v0(t)) (2.38)

= A sin[✓
1

(t) � ✓

2

(t)] + n

1

(t) cos[✓
2

(t)] + n

2

(t) sin[✓
2

(t)] (2.39)

The VCO is an integrator whose output is governed by

d✓

2

dt

= Kve(t) (2.40)

Redefining the instantaneous phase error as �(t) = ✓

1

(t) � ✓

2

(t), the phase
evolution is given by

�̇(t) = ✓̇

1

� 1

2
KvB(A sin ' � ⇠

1

sin ✓

2

+ ⇠

2
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= �K[A sin �(t) + n

0]

when ✓̇

1

= ! � !

0

= 0 and K = 4BL/A, for loop bandwidth BL and
n

0 = �⇠

1

sin ✓

2

+ ⇠

2

cos ✓

2

. This is the equation of motion for the steady
state phase error when the oscillator measurement is corrupted by noise. The
equation is exactly that for the motion of a pendulum driven by additive random
noise [66].

The behavior of a PLL is best understood in the steady state, in which the
VCO is synchronized with the oscillation phase and the steady-state phase error
�(t) is small. Thereby, we approximate sin(�(t)) ⇠ �(t) and assume that the
measurement noise is weak enough that the PLL does not lose its lock; we will
return to the role of measurement noise in Sec. 3.4. The phase dynamics are
then most easily solved using Laplace transforms, whereby Eq. 2.41 becomes

�[s] =
KN

0

s + KA

(2.42)
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2.6 Laser noise eater

Figure 2.8: A phase locked-loop consists of a phase-detector (the
mixer), a loop filter (F(s)), and a voltage-controlled oscillator (Kv/s).The
output of the VCO is updated according its phase difference with the
detected particle oscillation.

where �[s] is the transform of �(t) and N

0

is the power spectral density of
the noise. Steady-state phase error, or �e = lim

s!0

s �[s] = 0. Using a second
order filter and recognizing that a change in phase is a change in frequency, or
d�
dt = ⌦, shifts in the center frequency can also be compensated.

In the steady-state of phase tracking with an appreciably large input signal
to noise ratio, the PLL’s phase is synchronized with the particle’s oscillation
phase. The measurement noise is an additive noise process and is equally
amplified as the particle’s oscillation signal is by the mixer.

2.5.2 Controlled feedback switching

For experiments on the reheating of the particle’s motion, Proportional, Integral,
and Derivative (PID) Controllers also on the ZI were used to toggle the feedback
control on and off. When a TTL pulse with amplitude VTTL = 0.5 V enters the
PID, the controller (with P gain = 1 V/V and ⌧I = 10 msec) reacts immediately
and saturates the output to zero; when the TTL pulse settles again, the output
returns to the original feedback gain ⇣

0

. The rise time is much shorter than the
particle oscillation, which allows us to controllably switch the feedback in our
reheating experiments. Feedback control can be synchronously triggered on
and off in each axis along with the data acquisition.

2.6 Laser noise eater

Tests of noise contributions in the trap necessitated the development of a laser
noise eater. The device is capable of measuring up to 100 mW of optical power
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2 Optical Tweezers and Particle Tracking

and actuates the EOM for reduced laser amplitude noise.
As seen in Fig. 2.9, a single photodiode is used for detecting the laser

intensity fluctuations. In the photodetector circuit, a very low noise DC current
source exists to subtract the DC photocurrent; the output can then be used as
an error signal for intensity noise reduction and as a DC-level stabilization
reference. This was used in studies of laser noise heating in Ch. 5.

The device contains an on-board PID controller, which reduces noise in a
500 kHz bandwidth. The designs and components are included in the Appendix.

Shown in Fig. 2.10 is a sample time trace of the laser’s intensity fluctuations
with (in red) and without (in blue) the noise suppression. The trace is taken for
P

0

= 6.7 mW of detected optical power. Noise is suppressed by a factor of 15.

2.7 Particle Loading for UHV

Perhaps the most essential component to the experiment is the nanoparticle
itself. Fused silica nanoparticles used in these experiments were obtained from
Microparticles GmbH, MSP NanoSilica, and Bangs’ Laboratories. The bulk of
the measurements were with diameter d = 136 and 177 nm from Microparticles
GmbH and with d = 100 nm from MSP NanoSilica.

Figure 2.9: Laser noise suppression. The output of the laser passes
through an EOM and then through a polarization maintaining single
mode fiber. A small fraction of the fiber output is deflected onto a
photodetector with a built in PID controller; the device is positioned
just before the input to the chamber. The error signal from the PID
controller is then fed into the EOM to the suppress intensity noise. The
laser beam output from the beam splitter is then fed directly into the
trapping objective in the vacuum chamber.
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2.7 Particle Loading for UHV

Figure 2.10: Intensity stabilized response. A sample time trace of
the laser intensity fluctuations on the detector in blue and under control
with the noise eater in red.

Two milliliters of a nano-Molar solution of the nanoparticles was used in
an Omron nebulizer (Model MicroAIR U22) to inject the particles in the focus.
Each particle was encapsulated in a drop of isopropanol and as it traversed the
focus was captured by the optical gradient force. The isopropanol evaporates
away quickly when the particle is trapped and the nanoparticle remains.

2.7.1 Ultra-high vacuum techniques

An important component of the experimental apparatus is the vacuum pump in
order to bring the nanoparticle into ultra-high vacuum. A scroll pump (Agilent
Model S110) was used to back a turbopump (Agilent Model TwisTorr 304 FS)
for evacuating the system. The challenge in achieving UHV is the outgassing
of water vapor from the chamber walls. Two strategies enabled pressures
lower than 10�8 mbar, including dry-nitrogen backfilling and ultra-violet light
illumination. A combination Pirani and ion gauge (InstruTech Hornet and
IGM402 Module) was used to track vacuum pressure.

The conventional strategy for reaching UHV is to bakeout the entire vacuum
system for an extended period of time. Outgassing rates from adsorbates to the
chamber walls increase when the walls are heated, as the long-time outdiffusion

33



2 Optical Tweezers and Particle Tracking

rate q of vapor from a solid is given by [67]

q =
2DC

0

d

exp

�⇡

2

Dt

4d

2

�
(2.43)

which indicates that the outgassing rate by diffusion decreases as exp [�aDt]

at long times t. For practical purposes in the experiment, we seek to reduce
the outgassing time in order to more rapidly bring a nanoparticle into UHV.
Increasing the chamber’s temperature during pumpdown for an extended period
of time increases the gas’ diffusion constant D = D

0

exp [�ED/kBT0]. Several
attempts at controlled bakeout with a trapped particle in the focus under
feedback were unsuccessful. During bakeout, the optical components expanded
and the signal to the detectors drifted. Without aligned detectors to track the
particle’s motion and then feedback cool it, it is not possible to maintain the
particle trapped into UHV.

An alternate approach was developed using dry nitrogen. After an overnight
bakeout of the vacuum chamber at 100-120�C, the chamber reached a pressure
of 10�8 mbar. Then, the chamber was backfilled to atmosphere with dry
nitrogen (< 3 ppm H

2

O); a particle was trapped in the open chamber in under
5 min; and then the entire system was closed off and pumped down. After one
day of pumping, pressures of 3 ⇥ 10�8 mbar were typically achieved.

The ability to return to UHV pressures despite limited exposure to ambient
conditions is the result of backfilling with dry nitrogen, which after a bakeout
becomes the primary surface adsorbate. The outgassing rate of dry nitrogen
is two orders of magnitude lower than that of air, which means for the same
pumping speed, one can reach two orders of magnitude lower in pressure [68].

Additionally, an ultra-violet lamp was used to accelerate desorption of water
molecules. A vacuum-compatible ultra-violet lamp from RBD Instruments
(Model MiniZ UVC) was installed and illuminated during pumpdown after
the dry nitrogen purge. With prolonged UV illumination, pressures below
10�8 mbar were achieved.

Exposure of the chamber walls to UV results in absorption of UV light by
the water molecules. This increases the molecular vibration energy and results
in their ejection from the chamber walls [69].
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Additional reduction in the vacuum pressure was possible with an ion-
getters pump (SAES Model NEXTorr). The conduction path of the gas
molecules to the ion pump was reduced by connecting the ion pump directly
to one of the chamber flanges, such that when it was enabled, pressures of
3 ⇥ 10�9 mbar were achieved.

2.8 Future Experimental Designs

There are several experimental areas that can see improvement in the future.
First, the experimenter would benefit from controlled delivery of nanoparticles
into the trap. Controlled delivery would include not just automated, vacuum-
enclosed particle injection, but also delivery into a trap maintained in UHV.
One approach to doing so is by a load-lock arrangement, where a particle is first
trapped in a vacuum chamber with pressures ranging from medium-vacuum
to atmosphere; then the particle is transferred into a secondary chamber that
is always maintained in UHV [70]. An example of this was achieved recently
with hollow-core photonic crystal fibers, where a particle is trapped at one end,
translated along the fiber, and controllably delivered into an optical cavity on
the other end [71].

Second, the experimenter would benefit from improved collection optics.
Increasing the collection efficiency of the light scattered from the particle
with a higher numerical aperture would increase displacement sensitivity;
increasing the Strehl ratio of the optic [72] would reduce the diffraction of the
scattered field, thereby enhancing the interferometric contrast; and increasing
the measurement precision.

Using a Kalman filter for optimal state estimation would make available
custom feedback protocols based on position and velocity [73]. A Kalman
filter estimates the state of a system X = (x, ẋ)T based on measurements of its
motion. By determining the amplitude of the state vector, or E = x

2 + ẋ

2, one
could apply a modulation of the form ⌘(t) = xẋ/E, such that the modulation
depth scales inversely with oscillation amplitude. This may help overcome
the challenges of weak feedback gain in previous methods using non-linear
parametric feedback.
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2.9 Conclusion

We have demonstrated that optical levitation of nanoparticles in ultra-high vac-
uum has necessitated the development of new cooling and tracking technologies
along with advanced protocols for pristine vacuum operation.
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3
Phase Feedback Control

The goal of this chapter is to demonstrate the use of phase-based parametric
feedback to overcome broadband detection noise. Phase-sensitive control is
used to compress the particle’s center of mass temperature from 300 K to sub
milli-Kelvins.

3.1 Introduction

The work in this thesis is motivated by the push to bring the motion of micro-
and nano-scale resonators toward the regime in which their vibrational motion
should be quantized. Methods for cooling a mechanical resonator into its
quantum ground state have been achieved by cryogenic refrigeration [74]
or introducing a damping force into the resonator’s dynamics either by cold
damping techniques [75–77] or through passive backaction effects [24, 25, 78,
79]. Passive backaction effects occur when the mechanical oscillator forms one
end of an optical cavity resonator, as with silica toroids, or is in its circulating
mode, as with silicon nitride membranes; tuning the cavity off-resonance by
exactly the oscillation frequency (� = ⌦

0

) results in a retarding back-action on
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the mechanical system that automatically modifies its dynamics. Cold damping
occurs when a measurement of the oscillator’s position is used for real-time
correction of the dynamics [77].

Genes, et al., demonstrated that passive back-action effects are optimal when
the mechanical resonator is coupled to a very narrow linewidth cavity ( < �);
however, cold damping is more appropriate in the opposite limit, when using a
broadband cavity or free-space optical system [77]. Indeed, feedback cooling
has been used in both cavity- and cavity-free opto-mechanical systems [27, 80–
84]. First implemented in reducing Brownian fluctuations in vacuum-based
electrometers [85], feedback cooling has been used to bring cryogenic micro-
mechanical resonators down to the single-phonon regime [86] and has been
proposed to enhance sensitivity in nonstationary position measurements [87].

Optical levitation, the subject of this thesis, is a promising platform for
quantizing a room-temperature mechanical system. Overcoming dissipation
in materials-based devices by physically detaching the resonator from the
environment, great strides in optical levitation have been achieved using both
cold damping techniques [61, 88] and passive back-action effects in optical
cavities [79, 89]. Cavity techniques are limited to cooling the nanoparticle
along just one of its motional degrees of freedom; cooling the other axes would
require introducing an additional mechanism by which the electro-magnetic
field and the mechanical resonator could interact [90].

In the case of optical tweezers, several feedback control methods exist
for stabilizing a particle’s random, Brownian motion. After Arthur Ashkin
first levitated micro-particles in the 1970s [36], he built a vacuum-compatible
tweezer [43]. By tracking the levitated particle’s motion, Ashkin modulated the
intensity with a signal v(t) = gẋ, proportional to the particle’s velocity, which
resulted in a time-varying radiation pressure on the particle. A force that is
proportional to the velocity is a damping force which slows down the particle.
With this system, he brought a levitated microparticle into medium vacuum.

Li, et al, trapped fused silica microparticles in an optical tweezer composed
of two counter-propagating laser beams [88]. By overlaying two counter-
propagating beams in all three directions - a total of six laser beams - they
applied a viscous drag force also of the form gẋ to cool down the particle into
the milli-Kelvin regime.
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Reducing experimental complexity by using a high numerical aperture
microscope objective with a single laser beam, Gieseler, et al, used paramet-
ric feedback to cool a trapped nanoparticle into the sub-Kelvin regime [61].
Parametric feedback uses a time-varying parameter of the system to modify the
resonator’s dynamics. Villanueva, et al, first developed the parametric feedback
topology for micro-scale devices by weakly modulating the spring constant at
twice the resonance frequency to amplify the resonator’s motion [60]. Gieseler,
et al, instead applied a non-linear modulation of the form xẋ to the laser
intensity, resulting in a time-varying spring constant, or k(t) = k

0

(1 + ⌘xẋ),
and creating a non-linear force ⌘kx

2

ẋ that damps the particle’s motion with
a gain that scales with the square of its oscillation amplitude [91]. At large
displacements, the particle is strongly damped but at small displacements it is
weakly damped.

With the goal of bringing the trapped nanoparticle to the quantum ground
state, the displacement-proportional gain isn’t sufficient because feedback gain
shouldn’t weaken as the particle is cooled. Instead, we propose a constant
parametric modulation for further cooling of the particle’s motion. To achieve
constant modulation and reduce the contribution of measurement noise, we use
a phase-locked loop (PLL) to synchronize the feedback phase with the particle’s
oscillation [65].

In the next sections, we analyze the particle’s stochastic motion under a
phase-locked parametric modulation by following Stratonovich [92]. Thereafter,
we outline the experimental implementation and present experimental results
to characterize the device’s performance. We compare these results with
simulation and use the simulation to understand how noise corrupts the feedback
loop.

3.2 Theory of Phase-based Control

A PLL consisting of a phase detector, filter, and voltage controlled oscillator is
used to track the particle’s oscillation phase, as illustrated in the experimental
setup in Fig. 3.1. The VCO output is frequency doubled and amplified before it
is used to modulate the laser’s intensity. In contrast to previous modulation tech-
niques [60, 61], the parametric modulation has a constant amplitude. Adjusting
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the phase delay between the modulation and the particle oscillation allows us to
switch between driving and anti-driving (or damping) of the particle’s motion.
In this section we analyze parametric modulation in the Langevin formalism
and compute the steady-state energy distribution, phase error, and measurement
imprecision. We direct the reader to Appendix B for the extended derivation
and here just present the main results. We follow a direct protocol for analyzing
stochastic processes by Stratonovich [92].

The equation of motion for an underdamped, harmonic oscillator under
parametric feedback and the influence of a random thermal force is given by

ẍ + ⌦2

0

x = ��ẋ � ⌦2

0

⇣(t)x + F
th

(t)/m (3.1)

where ⇣(t) = ⇣

0

cos (⌦mt). Here, ⇣

0

is the fixed amplitude of the drive, ⌦
0

is
the center of mass oscillation frequency, m is the particle’s mass, and F

th

is the
thermal Langevin force with autocorrelation hF

th

(t)F
th

(t0)i = 2m�kBT0�(t�
t

0). The drive is assumed to be a very weak modulation such that ⇣

0

⌧ 1 and its
phase has a fixed relationship to the particle oscillation, which is achieved using
a phase-locked loop. The modulation phase is ⌦mt = 2⌦

0

t + 2✓m(t) + ✓

0

,
where ✓m(t) is the phase of the PLL and ✓

0

is a constant phase offset.
With a weak modulation, the oscillation dynamics are assumed to have

minimal change over one oscillation cycle. The particle’s motion can be
approximated as

x(t) = A(t) cos (⌦
0

t + '(t)) (3.2)

where the amplitude A and phase ' contain components that are large but
slowly varying. Given that the amplitude and the phase vary on timescales that
are very slow compared to the oscillation time (T

0

= 2⇡/⌦
0

), we approximate
the position and velocity using �(t) = ⌦

0

t + '(t) as

x = A cos � (3.3a)

ẋ = �A⌦
0

sin � (3.3b)

The phase � varies nearly at a constant rate on timescales comparable to the
oscillation such that �̇ ⇠ ⌦

0

. Using these values for x and ẋ, we find that the
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amplitude and phase are given by

A =
p

x

2 + (ẋ/⌦
0

)2 (3.4a)

' = � arctan (ẋ/⌦
0

x) � ⌦
0

t (3.4b)

We define the phase error ⌫ = ' � ✓m. From Viterbi [65] we have that the
phase error varies as

⌫̇(t) = '̇(t) � 4Bl sin (⌫(t)) � 4Bl

A

n

0(t) (3.5)

where n

0(t) is the noise due to measurement imprecision. Accordingly, the
amplitude A and phase error ⌫ vary as

Ȧ = �sin �

⌦
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�
�A⌦
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sin � � A⌦2

0

⇣

0

cos (⌦mt) cos �

�
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Fth

h
2

(3.6a)

⌫̇ = � cos � (� sin � � ⌦
0

⇣
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cos (⌦mt) cos �) � 4Bl sin ⌫

h
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(3.6b)

� cos �

m⌦
0

A

Fth

h
4

�4Bl

A

n

0

h
5

These equations contain deterministic oscillatory terms (h
1

, h

3

) and stochastic
terms (h

2

, h

4

, h

5

). The noise sources Fth and n

0 are multiplied by A, �, or ⌫,
which makes them fundamentally different because the amplitude and phase
are also randomly varying in time. Using the techniques of stochastic averaging
from Stratonovich, we calculate the cycle-averaged amplitude Ā and phase
error ⌫̄ under feedback cooling. In doing so, we smoothen out rapid oscillations
and can study the long-term, slowly-varying dynamics.
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3.2.1 A Coupled-Oscillator Model

The cycle-averages evolve according to
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where Bl is the PLL’s bandwidth and ⇠ are random fluctuations that are zero-
mean Gaussian noise processes resulting from the thermal force (⇠0F , ⇠

00
F ) and

measurement imprecision (⇠
imp

). It is important to specify that these are
independent and uncorrelated noise processes with autocorrelations
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What we have done here is reduce the equation of motion in x(t) that is
driven by a zero-mean random force Fth into two coupled equations for Ā and
⌫̄ for the cycle-averaged, or smoothed out, form of amplitude and phase error.
In doing so, we have written their dynamics in the form of Langevin equations
that are driven by white noise.

With the stochastic equation in the Langevin form, we can try to find a
stationary distribution of the system through which we could calculate a steady-
state of the amplitude and phase. Before we proceed to calculate probability
distributions, we will first analyze these coupled equations.

We refer to this model as a coupled oscillator system because we have
connected the particle’s harmonic oscillation (x(t)) to the PLL’s time-varying
phase (✓m(t)), which is described by the swing of a massless pendulum.

The amplitude equation consists of three sets of terms: proportional to Ā, to
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1/Ā, and random ⇠

0
F . If we take an average of this equation over noise histories,

then we find when the phase error is small
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The simplification of
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This expression is none other than the fluctuation-dissipation theorem. It tells
us that dissipation from gas damping and feedback cause the amplitude to decay
and fluctuations from the bath of air molecules cause it to rise. The balance of
the two results in an effective temperature under feedback given by

Tfb = T0
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(3.12)

Next, we analyze the phase error variation. When the phase error is small
and the oscillation amplitude is very large, the phase error decays as
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This tells us that the phase error from the PLL tracking the particle’s oscillation
phase will decay exponentially and, in the limit of t ! 1, decays to zero. There
is, however, also an insight on the bandwidth needed to track the oscillation
phase, namely

⇣

0

< 8Bl/⌦
0

(3.15)

This limit tells us that the bandwidth needed to maintain lock should be
increased with feedback gain. There is an intuitive explanation for this, namely
that under feedback the linewidth is broadened; if it is broadened beyond the
tracking bandwidth, the PLL will no longer accurately follow the particle’s
motion and lose lock.

The form of the phase error in Eq. 3.7b matches that of the motion of a
massless string pendulum. Thermal fluctuations and measurement imprecision
drive the pendulum into motion. When the oscillation amplitude is very small
(limit of A ! 0) these random fores would push the pendulum around by more
than half a revolution, which is when the PLL loses lock. The average time for
this to occur is related to the signal to noise ratio of the detected oscillation [65].

3.2.2 Fokker-Planck Equation

Recognizing that Eqs. 3.7 are in the form of Langevin equations, we can derive
the Fokker-Planck equation for the joint probability distribution of Ā and ⌫̄, or
P (Ā, ⌫̄, t). Following the prescription in Appendix C, we find the FP equation
is given by [93]
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The coefficients are derived from the coupled Langevin equations and the
characteristics of the noise. Those coefficients ↵i are the drift terms and Bij

are the diffusion terms with corresponding diffusion coefficients Dij . Together
they describe how the probability of a system attaining a specific configuration
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evolves over time, and are given by
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Eq. 3.16 describes how the probability density evolves in time and is typically
solved numerically with a given set of initial conditions (A

0

, ⌫

0

). As we are
only interested in steady-state dynamics, we will study this equation analytically
in limiting cases and later numerically for the configuration of our system.

3.2.3 Amplitude and Energy Distribution

Assume that the probability distribution reaches a steady-state. Then, it will
have no time variation, or lim

t!1
@P
@t = 0. Next, we will approach solving this

equation in two different limits. First, we take the phase error to be negligible
such that sin(⌫̄) ⇠ ⌫̄ ⇠ 0. When the feedback gain and the measurement
imprecision are small, the amplitude is large. Then, Eq. 3.16 simplifies to
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Accounting for the fact that the probability density is vanishing when the
amplitude tends to infinity, we can write that the stationary probability density
P (Ā) is a solution of
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An analytical solution to this equation exists and is given by
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In the limit of � ! 0, the argument of the exponential in Eq. 3.20 diverges to
negative infinity, which means the probability distribution decays to 0. This tells
us that the feedback perfectly damps the amplitude when there is no dissipation,
which is what one expects for the damped classical harmonic oscillator. The
constant Z

¯A is a normalization constant given by
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It ensures that the probability distribution integrates to 1, or
R1
0

dĀ P (Ā) = 1.
Given that the energy E ⇠ Ā

2, we determine the energy probability distribution
using P (Ā)dĀ = P (E)dE/2Ā, which is
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Here, � = 1/kBT0 and the normalization constant ZE is given by
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The energy distribution given in Eq. 3.22 is in the form of a Maxwell-Boltzmann
distribution, which is is the characteristic signature of a system at thermal
equilibrium. Thus, phase-sensitive feedback increases the effective friction that
the particle experiences and reduces the center of mass fluctuations by coupling
it to a bath with effective temperature ZE . The modulation creates a driven
system that resembles a thermal system.

3.2.4 Phase Error and Measurement Imprecision

Next we study what happens in the phase domain. First, we select an arbitrary
amplitude Ā = A

0

that is large and solve the phase Fokker-Planck equation
for the conditional probability distribution PA

0

(⌫, t) = P (A
0

, ⌫, t). When the
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feedback gain is very weak, the amplitude varies on a longer timescale than the
phase tracker because � ⌧ 4BL, which allows us to assume a nearly constant
amplitude. PA

0

is given by
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(⌫̄, t) describes the conditional distribution for ⌫̄. It must be periodic in
⌫̄ with boundary conditions PA
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We assume that the phase error is small such that sin 2⌫̄ ⇠ 2 sin ⌫̄. Integrating
with respect to ⌫, we obtain a first-order linear differential equation which is
solved as
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where ↵s is related to the signal to noise ratio on the detector, and, using
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When the feedback is off and � ⌧ Bl, ↵s reduces to the detected signal to
noise ratio, or
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. In(z) is the modified Bessel function of the first kind.
We expand the probability distribution in a Fourier series as
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Next, we calculate the mean and the mean square of the steady-state phase error,
which is given by [65]
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From Eqs. 3.30, we see that the phase error is a zero-mean process whose
variance �

2

⌫̄ approaches ⇡

2

/3 in the limit of ↵s goes to zero, which is the
variance of a random variable that is uniformly distributed from �⇡ to +⇡.

3.3 Experimental Results

In this section, we present experimental results for PLL-based feedback cool-
ing: linear dependence of the temperature on pressure, equilibrium energy
distribution, and cooling to milli-Kelvin temperatures.

Sketched in Fig. 3.1a is the experimental setup. A focused laser beam is
used to trap a particle inside of a vacuum chamber. The particle’s scattered
light is collimated using an asphere and then redirected to three balanced
photodetectors in a split configuration, illustrated as a quadrant photodetector.
The output of each photodetector is connected to a PLL. The PLL is used to
track the oscillation frequency and phase and its output is frequency doubled.
Internally, one can set the amplitude gain of the feedback signal and sum
together the feedback for all three axes. This signal is then connected to a
high-voltage amplifier that modulates the EOM’s output intensity and generates
a parametric modulation of the trap.

To calibrate the conversion of detector voltage to displacement, first a
series of oscillation traces of minimum length t

meas

= 2⇡/� are captured with
no feedback cooling applied at P

gas

= 13.6 mbar. Seen in Fig. 3.1b is the
characteristic harmonic oscillation. A histogram of the trace is computed, as
in Fig. 3.1c, to verify that the system has reached a state of equilibrium in
the duration of the measurement. Finally, a composite power spectral density
is calculated. As shown in Fig. 3.1d, the calculated single-sided spectrum is
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Figure 3.1: Parametric feedback loop (a) An illustration of the
parametric feedback loop involving a phase-locked loop (PLL). The
output of a laser is guided through an electro-optic modulator (EOM)
and into a vacuum chamber. Inside this chamber a particle is trapped
using a focused laser beam. The forward scattered light is captured
on a split photodetector and connected to a PLL. The PLL tracks the
oscillation phase, doubles the frequency, and outputs the oscillation with
a fixed amplitude G. The oscillation is connected to the EOM to generate
a small modulation of the trapping intensity. (b) A short time trace of
the oscillation in y without feedback at P

gas

= 13.6 mbar showing the
characteristic harmonic oscillation resulting from thermal fluctuations.
(c) A histogram of the fluctuations in position over 100 msec at the
same pressure. The Gaussian bell-shape indicates that the statistics of
the trace represent a thermal distribution. (d) A power spectral density
(in pm2/Hz) of the motion in y at the same pressure and overlaid a fit to
a Lorentzian, as in Eq. 3.31.

plotted in black and overlaid is a fit to a Lorentzian of the form
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3 Phase Feedback Control

Extracted from the fit are the center frequency ⌦y, the peak displacement
Sy[⌦y], and the linewidth �. At a later time, the particle is ejected from the
trap and the remaining detector noise floor is used to obtain the measurement
imprecision S

imp

.

3.3.1 Pressure dependence

The particle experiences a restoring force from the optical potential with
stiffness k in the each axis of motion. As it is kicked around by air molecules,
the particle displaces part of the residual gas, which creates a frictive force in
the form of drag to a sphere, or F

drag

= �m�ẋ, where � is

� =
6⇡⌘R

m

0.619

0.619 + Kn
(1 + cK) (3.32)

Here, cK = 0.31Kn/(0.785 + 1.152Kn + Kn2), ⌘ is the viscosity of air,
and Kn = l̄/a is the Knudsen number [88, 94]. We approximate this as
� = 15.8 R

2

P

gas

/mv

gas

where v

gas

=
p

3kBT0/m

gas

is the rms velocity of
the gas molecules. The correction to the drag coefficient obtained by the Stokes’
law is the result of the high surface area to volume aspect ratio for a nanosphere.

A particle measuring R = 50 nm is trapped and then brought into medium
vacuum using constant feedback gain. At two different vacuum pressures with
fixed gain, we plot the power spectral densities for motion in y in Fig. 3.2a. Over-
laid on the spectra are fits of a Lorentzian with negligible residual error from
the Lorentzian model. The measurement imprecision is S

imp

= 0.3 pm2/Hz.
Next, for fixed values of gain we track the center-of-mass temperature under

feedback as a function of pressure in y. Plotted in Fig. 3.2b is the response
at two specific gain settings. The temperature is obtained by integrating the
spectra, which gives

⌦
y

2

↵
= kBT0/m⌦2

0

. The vacuum pressure is manually
locked to a specific setting, several time traces are collected, and the center of
mass temperature is computed. The temperature versus pressure graph is fit
with a power law of the form T [P

gas

] = a(P
gas

)b in the range of 5 ⇥ 10�6 to
5 ⇥ 10�4 mbar and returns an exponent of b = 0.94 ± 0.02. The exponent
with a near unity value confirms that this feedback scheme is more efficient in
cooling as a function of damping than previous schemes in which temperature

50



3.3 Experimental Results

Figure 3.2: Feedback cooling performance in y. (a) Power spectral
densities of the motion in y at P

(1)

gas

= 6.6 ⇥ 10�4 mbar and P

(2)

gas

=
1.0⇥10�5 mbar for the same feedback gain. The spectra are plotted with
Lorentzian fits overlaid. (b) The center of mass temperature in y as a
function of pressure at two gain settings of 1 mV and 10 mV. Lines of fit
to illustrate the trend are overlaid. (c) Plots of temperature and linewidth
versus gain at P

gas

= 2 ⇥ 10�6 mbar (left) and P

gas

= 2 ⇥ 10�7 mbar
(right).

varied with the square root of pressure (T / p
�) [61, 91].

Next, the gain is swept while holding vacuum pressure constant. In Fig. 3.2c,
the temperature at P

(1)

gas

= 2.0 ⇥ 10�6 mbar decreases as the feedback gain is
increased while the linewidth of the response increases. At a lower pressure
of P

(2)

gas

= 2.0 ⇥ 10�7 mbar, the temperature first decreases with increasing
gain and later, above G = 6 mV, increases while the linewidth monotonically
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increases.
Decreasing vacuum pressure reduces the heating from the residual gas and,

as a result, cooler temperatures are achieved for a fixed feedback gain. At lower
pressures, the feedback cools the detected motion closer to the noise, such that
as pressure is reduced, the temperature-minimizing gain ⇣

min

is also lower. The
oscillator’s linewidth, however, is increased to �

min

/2⇡ = 282.3 ± 78.0 Hz
when the temperature is minimized.

Figure 3.3: Temperature as a function of gain and pressure. A
density plot of the center of mass temperature in y as a function of
both the gain and pressure. The density plot is the result of over
400 combination of gains and pressures. In each configuration, the
temperature is determined from twenty time traces measuring 100 msec
in length. The temperature is scaled logarithmically and shown on the
map are ten isotherms.

Combining the three variables of gain, pressure, and temperature, we plot
a density map of the measured temperature in y in Fig. 3.3. In this map, we
see isotherms, or lines of constant temperature, as dashed lines. A darker
color corresponds to a colder temperature and a brighter color to a warmer
temperature. Following one of the isotherms, the temperature at a pressure of
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3 ⇥ 10�6 mbar under weak feedback gain corresponds to the same temperature
at a pressure of 2 ⇥ 10�5 mbar under strong feedback gain. The measurement
imprecision is constant at all points in the map. At pressures below 10�6 mbar,
increasing the feedback gain does not monotonically reduce the temperature,
notably visible in the black region of the map. At lower pressures, the tuning
range for cooling the motion is reduced.

3.3.2 Energy Distribution under Feedback

Although we compute the center-of-mass temperature from the mean-squared
displacement, we also want to see how, if at all, the energy distribution is
modified by feedback control.

The energy distribution is calculated from time traces of the particle’s
motion. The variance of a few oscillation cycles is computed on a timescale
smaller than the relaxation time, or tE < 2⇡/�. A histogram is computed from
a set of energies based on several time traces, such that the variance of the
total data set is minimized. The histogram is normalized to generate the energy
probability distribution function, ⇢(E), which is defined as

R1
0

dE ⇢(E) = 1.
Here, the energy distribution is calculated for a fixed feedback gain at three
different vacuum pressures. The energy distribution under feedback is shown in
Fig. 3.4.

The energy is normalized to the energy at room temperature. Overlaid on
the probability distribution is a fit to the Maxwell-Boltzmann distribution for
a system at thermal equilibrium. Reducing the pressure confines the energy
distribution to a narrower range of energies. Divergence from the trend at either
energies greater than 1.5 ⇥ 10�4 kBT0 is the result of rare events that are not
sampled enough in the data acquisition. At energies below 0.2 ⇥ 10�4 kBT0,
detection noise masks the particle motion, which makes it very unlikely that we
would measure zero energy. From the distribution in Eq. 3.22, however, zero
energy is the most likely.
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Figure 3.4: Energy distribution under feedback. The measured
energy probability distribution function under feedback is plotted for
three different pressures, at 2 ⇥ 10�7 (blue), 2 ⇥ 10�6 (green), and
2 ⇥ 10�4 (red) mbar. The energy is normalized by the mean energy
obtained at P

gas

= 13.6 mbar with no feedback, corresponding to
E = kBT0. Overlaid to the energy distributions are fits to the Maxwell-
Boltzmann distribution to illustrate the trend.

3.4 Measurement Imprecision in a Parametric
Feedback Loop

The rise in temperature for strong gains in Fig. 3.2c that is emphasized by the
black region of Fig. 3.3 indicates that the feedback loop can still be optimized.
The particle’s center of mass temperature, which is in the sub-milli-Kelvin
regime in the black area of Fig. 3.3, is still far from the ground state.

Since an analytical solution to the derived FP Equation is unknown, a
numerical simulation of the coupled system in Eqs. 3.7 was carried out in
Matlab Simulink. All noise sources were set as bandwidth-limited and were
seeded with different random numbers. The initial position and velocity were
randomly chosen from a distribution with mean temperature T = 1 K. The
stochastic equations (Eqs. 3.7) were solved for a R = 50 nm particle with
center frequency ⌦y = 2⇡ 150 kHz; thermal Langevin force was derived from
a room temperature bath at kBT0. The feedback gain ⇣

0

, gas damping �, and
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Figure 3.5: Measurement imprecision in a PLL. Numerical
solutions to the coupled oscillator system of Eqs. 3.7 for three different
experimental configurations. The solution was computed in Matlab
Simulink using a fourth-order Runge-Kutta solver with a step size of
10�4 sec and a simulation time of 10 sec. These are density plots of
the amplitude and phase distribution; the black dot indicates the peak
position.

measurement imprecision S

imp

were separately changed. The results of each
numerical integration are plotted in Fig. 3.5.

Both increasing the feedback gain and reducing the gas damping by an order
of magnitude attenuated the amplitude fluctuations by an order of magnitude, as
seen in the transition from Fig. 3.5a to 3.5b. The plots illustrate the logarithmic
phase space density for amplitude and phase, with bright yellow corresponding
to very likely and dark red as less likely. They are calculated from histograms
of the numerical solutions obtained with Simulink. In Fig. 3.5b we see that the
phase error distribution is broad and exceeds the bounds of ±⇡/2 one would
require to cool the motion. Reducing the measurement imprecision in Fig. 3.5c,
the phase distribution is narrower and largely confined to within ±⇡/2.

As the imprecision is lowered, the center of mass temperature also reduces.
In these simulations, the temperature dropped from 800 µK (in b) to 690 µK (in
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3 Phase Feedback Control

c). Better sensitivity to the particle’s oscillation reduces the phase tracking error
in the PLL and results in more efficient feedback cooling. As the imprecision
is reduced, the maximum feedback gain increases, allowing further cooling of
the motion. When the feedback gain is too high, the phase uncertainty – the
pendular phase rotation – kicks back on the amplitude and heats it up.

Comparing the parameters in Fig. 3.2c, at pressures of P

gas

= 10�7 mbar,
where �/2⇡ = 0.3 mHz, and S

imp

= 0.3 pm2/Hz, we find the mean of
P (A, ⌫) occurs at A = 0.1 nm, which corresponds to Tfb = 0.7 mK. This is
in quantitative agreement with experimentally measured values. According
to the simulation, if we reduce the damping to �/2⇡ = 0.01 mHz and the
imprecision noise to S

imp

= 0.1 pm2

/Hz, we can raise the feedback gain and
reach temperatures in the range of 100 µK.

Using this technique to cool the particle’s motion further toward the ground
state will require improvements in the imprecision noise n̄

imp

and a PLL with a
slightly larger bandwidth BL. Reducing the dissipation � will bring the motion
to colder temperatures under the same level of gain.

3.5 Conclusion

We have demonstrated a new parametric feedback control method that is based
on the mechanical oscillator’s time-varying phase. Using a phase-locked loop,
we track the particle’s oscillation phase and feed that information back onto the
particle in order to cool it down. The PLL’s phase estimates are based on the
particle’s time-varying position.

With this new method, we cool the particle’s motion more efficiently and
reduce its center of mass temperature by more than two orders of magnitude to
the sub-milli-Kelvin regime, as compared with previous methods. Despite the
center of mass temperature being dramatically different from the environment’s,
the oscillator appears to be in a state of thermal equilibrium.

Having developed a coupled-oscillator model of the particle’s slowly vary-
ing amplitude and its phase, we conclude that the two variables to target are
the intrinsic damping � and the measurement imprecision S

imp

. Reducing �

will reduce the reheating that the particle experiences, allowing the feedback to
further suppress its motion. Improving the measurement precision will enable a
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3.5 Conclusion

more precise phase estimate by the PLL with which stronger feedback gains
can be applied. This will bring the center of mass motion further toward the
ground state.

57





4
Photon Recoil Heating

The goal of this chapter is to quantify the role of photon recoil heating and how
it limits steady-state feedback cooling in ultra-high vacuum. The findings in this
chapter were part of a paper published in Physical Review Letters (2016) [95].

4.1 Introduction

Our capacity for reducing the center of mass motion to the ground state is a
compromise between the cooling rate from the feedback and the heating rate
from various dissipation mechanisms. In the previous chapter, we showed that
phase-based feedback cooling is more efficient than existing techniques because
it cools at a rate linear in damping. Reducing vacuum pressure attenuates the
reheating rate from collisions with the residual gas molecules.

In this chapter, we explore the ultra-high vacuum domain of pressure and
the influence of optical effects on the levitated particle. We challenge the
assumption that dissipation decreases with vacuum pressure as noise from the
laser field may also drive the particle’s motion.

In an optical position sensor, one irradiates an object with light and detects
the scattered photons. As each photon carries momentum p = ~k, where k
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4 Photon Recoil Heating

is the photon wave vector, we can increase the optical power to reduce the
object’s position uncertainty to �x � 1/(2k

p
N), where N is the number

of scattered photons. Increasing the optical power, however, increases the
rate of momentum kicks from individual photons and results in a force due
to radiation pressure shot noise (RPSN), which perturbs the inspected object.
While increasing power reduces our measurement imprecision, RPSN places
limits on the information gained from a system [15, 96].

Remarkable advances in micro-fabrication have resulted in high-Q cavity
opto-mechanical resonators that are sensitive to RPSN in optical measurements.
In addition to ground state cooling [24, 25], recent experiments in cryogenic
chambers with silicon nitride membranes, cold-atomic clouds, and microwave
devices have verified the influence of RPSN in continuous position and force
measurements [16, 97, 98]. Increasing the circulating optical power in the
cavity increases the back-action on the resonator, which is manifested as an
increase in the oscillator’s mean-square displacement. The motion of a cavity-
coupled silicon nitride membrane was shown to thermalize with the shot-noise
fluctuations of the laser field; cavity-optical cooling brought its motion to the
limit imposed by quantum back-action from the field [99].

Parallel efforts with feedback-based control exist to achieve the quantum
ground-state of motion in both cryogenic and room-temperature systems. Feed-
back cooling at or above the thermal decoherence rate was shown to bring
the motion of a cryogenically-cooled silicon nitride string close to the ground-
state [86]. In these experiments photo-thermal heating from absorption in the
material limited cooling the mechanical object further. Here, we demonstrate
that an optically levitated nanoparticle in ultra-high vacuum at room temperature
is not affected by thermal effects but by measurement back action from the laser
field. We use feedback cooling to counter it.

Optically levitated nanoparticles in vacuum have proven to be versatile
platforms for studies of light-matter interactions [35, 36, 61, 79, 89, 100].
Free from mechanical vibrations of the environment, they have been used to
investigate nonequilibrium fluctuation theorems [91] and ultrasmall forces [100,
101]. In the context of cavity optomechanics, levitated nanoparticles have
also been proposed for quantum ground state cooling [40, 79, 89, 102] and for
gravitational wave detection [103, 104]. Central to all of these experiments is
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4.2 Photon Recoil Heating

the optical gradient force, which is needed to trap and control the scrutinized
nanoparticle. However, due to the discrete nature of optical radiation, the
trapping force is itself intrinsically noisy and RPSN may influence the motion
of the trapped particle via photon recoil heating.

At first blush, one would expect that photon recoil heating is negligibly
small for macroscopic objects, as the recoil energy ER = ~2k2

/(2m) scales
inversely with the object’s mass. For a levitated nanoparticle, the recoil energy
is 6.7 ⇥ 10�38 J, or nearly nine orders of magnitude smaller than atomic
recoil energies [105, 106]. To observe this weak effect, the system has to be
sufficiently well isolated. In particular, the photon recoil rate has to be larger
than the thermal dissipation rate.

Using active feedback to bring a nanoparticle into ultra high vacuum (UHV)
(P

gas

⇠ 10�8 mbar), however, we significantly reduce the heating due to
residual gas molecules and thereby ascertain for the first time a direct readout
of the recoiling rate of photons from a macroscopic object at room temperature,
thereby entering the regime of strong measurement backaction [98].

In the following sections, we will derive the force on a levitated particle due
to photon scattering by a semi-classical approach. Then, we derive a Fokker-
Planck equation for the steady-state energy distribution under recoil heating and
the corresponding reheating rates. Thereafter, we provide experimental data
both with and without feedback cooling and compare to theoretical estimates.
Finally, we derive the standard quantum limit for a continuous measurement in
an optical tweezer trap to identify where reheating can be further reduced.

4.2 Photon Recoil Heating

Here, we derive the force on a polarizable particle due to photon scattering
based on a fluctuating classical force picture from Itano & Wineland [107]. This
semi-classical approach agrees with a derivation by Rodenburg, et al., using the
quantum master equation formalism [108].

We begin with a particle in a harmonic potential U(x) = 1

2

m⌦2

0

x

2 driven
by a fluctuating force, F (t), arising from the fluctuating photon numbers in the
trapping field. The interaction is illustrated in Fig. 4.1. The equation of motion
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4 Photon Recoil Heating

is
mẍi + m⌦2

ixi = F (t) (4.1)

where F (t) =
P

j �(t � tj)~[k � k

j
sc,i]. Each photon j arrives at time tj

with momentum ~k and is scattered with momentum ~kj
sc,i in an infinitesimal

window of time. Photons impinging on the particle result in a net momentum
transfer k�ksc. For the fluctuating force F (t), we first find the time average of
the force, hF i, and then the fluctuations about the mean, F

0(t). The momentum
vectors for the incident k and scattered photons ksc (into angular direction ✓,�)
are

k = (0, 0, k)T (4.2)

ksc = ksc(sin ✓ cos �, sin ✓ sin �, cos ✓)T (4.3)

The time-averaged force is just the difference in momentum before and after

y

z

x

m

Ω0

hω0

E0

Figure 4.1: Illustration of photon recoil heating. A particle with
mass m is trapped at the focus of a laser beam by means of the optical
gradient force. The particle’s center-of-mass temperature is cooled by
parametric feedback and heated by individual photon momentum kicks.
⌦
0

/ 2⇡ is the mechanical oscillation frequency and ~!
0

is the photon
energy. The incident light is polarized along the x direction.
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4.2 Photon Recoil Heating

scattering, or hF i = ~ hrs(k� k
sc

)i, where rs = (I
0

/~!)�(!) = P

sc

/~!
0

is the average photon scattering rate, I

0

is the focal intensity, !

0

the field’s
frequency, and �(!) = k

4

↵

2

/(6⇡✏

2

0

), with k = !/c and polarizability ↵ =

4⇡✏

0

R

3(" � 1)/(" + 2).
Scattering from the oscillating particle results in a Doppler shift to the

frequency of the scattered light as ! = �

�1

D !

0

+�! cos ✓ for �D = (1��

2)�1/2

and � = v/c. By expanding to lowest order in �, we recognize that �

�1

D =

1 + 1

2

�

2 + ... ⇠ 1 since the particle’s velocity is much lower than the speed
of light. Recognize that �! cos ✓ = v

!
c cos ✓ = k

sc

· v, such that the scattered
photon’s frequency is

! ' !

0

+ k
sc

· v (4.4)

The scattering cross-section is

�(!) =
↵

2

!

4

0

6⇡"

2

0

c

4

(1 + k
sc

· v/!

0

)4 ' �

0

(1 + 4k
sc

· v/!

0

) (4.5)

Consequently, the scattering rate has a velocity dependence, or rsc ' r

0

s(1 +

4k
sc

· v/!

0

). The average force on the particle, which is calculated over the
dipolar scattering distribution Ps = 3

8⇡ (1 � sin2

✓ cos2 �), is given by

hF i = r

0

s~
Z

2⇡

0

Z ⇡

0

Ps[✓](1 + 4ksc · v/!

0

)(k� ksc) sin ✓ d✓d� (4.6)

= r

0

s~k� 4(k2

sc/!

0

)

✓
1

5
vx +

2

5
vy +

2

5
vz

◆

The time-averaged force is thus the sum of a constant and a velocity-
dependent term.

hFii = r

0

s~k � m�

i
sc

ẋi (4.7)

with damping �

i
sc

= 4⇠ir
0

sER/

1

2

~!
0

, ⇠i = {1

5

,

2

5

,

2

5

}, and recoil energy ER =

(~k)2/2m. The equation of motion is then

mẍi + m�

i
sc

ẋi + m⌦2

ixi = F

0(t) + r

0

s~~k (4.8)

If we shift our coordinate basis to X = x � r

0

s~k/m⌦2

x, we have a damped
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4 Photon Recoil Heating

harmonic oscillator driven by the fluctuations of the photon scattering force.

mẌ + m�

sc

Ẋ + m⌦2

xX = F

0
x(t) (4.9)

Such an oscillator has susceptibility �(⌦) = [m(⌦2

x � ⌦2 + i�

sc

⌦)]�1.
Fluctuations of intensity engender a fluctuating force F

0(t), which imparts
momentum to the particle. We calculate the energy change and the rate
of momentum transfer by first computing a force autocorrelation, R(⌧) =

hF 0(t)F 0(t + ⌧)i.

4.2.1 Force Autocorrelation

Assume we have an ensemble of K photons arriving in a time interval T . A
photon j arrives at time tj in the interval 0 < tj < T . We calculate the
autocorrelation for a number of intervals M in the limit that M ! 1. The
photon trail is depicted in Fig. 4.2.

Figure 4.2: Photon trail. A depiction of the parameters in the
autocorrelation calculation. On the left is an ensemble of K photons
occurring at times tj within a fixed time interval T . On the right are M

ensembles of intervals of length T containing K photons.

The force from one ensemble of K photons is

FK(t) =

KX

j=1

~(k � k

j
sca)�(t � tj) (4.10)

Multiplying by the force delayed by a time ⌧ and averaging over all values of
the individual arrival times t

1

, t

2

, ..., tj , tj+1

, ..., tK in the limit M ! 1, the
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force autocorrelation is

hFK(t)FK(t + ⌧)i =
KX

j=1

KX

m=1

Z T

0

dt

1

T

...

Z T

0

dtK

T

(4.11)

⇥ ~2(k � k

j
sca)(k � k

m
sca)�(t � tj)�(t + ⌧ � tm) (4.12)

Two distinct situations arise as either (i) j = m or (ii) j 6= m. With K

2 terms
altogether, there are K instances of j = m and K

2 � K instances of j 6= m.
When j = m, the mean square fluctuation is

Z T

0

dtj

T

~2(k � k

j
sca)

2

�(t � tj)�(t + ⌧ � tj) (4.13)

and when j 6= m

Z T

0

dtj

T

~(k � k

j
sca)�(t � tj)

Z T

0

dtm

T

~(k � k

m
sca)�(t + ⌧ � tm) (4.14)

The autocorrelation is then the sum of two terms

hFK(t)FK(t + ⌧)i =
K

T

~2
⌦
(k � ksca)

2

↵
�(⌧) +

K(K � 1)

T

2

~2 hk � kscai2

(4.15)
Now we average over all of the M intervals instead of only over those
having K arrivals by applying a Poisson probability distribution p(K) =

(rsT )Ke

�rsT
/K!. The autocorrelation is then the sum of two terms, or

hF (t)F (t + ⌧)i = rs~2
⌦
(k � ksca)

2

↵
�(⌧) + hFxi2 (4.16)

To compute the autocorrelation of the position-shifted oscillator, we subtract
the square of the mean force, which gives us

R(⌧) = rs~2
⌦
(k � ksca)

2

↵
�(⌧) (4.17)

Applying the Wiener-Khinchin Theorem, we compute the force power spectral
density S

F
sc

(⌦) by taking a Fourier transform of the force autocorrelation
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function.

S

F
sc

(⌦) =
1

2⇡

Z 1

�1
d⌧ R(⌧)ei⌦⌧ (4.18)

=
1

2⇡

~2r0s
Z

2⇡

0

Z ⇡

0

PS(✓, �) k

2

sc

0

B@
sin2

✓ cos2 �

sin2

✓ sin2

�

cos2 ✓

1

CA sin ✓ d✓d�

= �i
~!

0

2⇡c

2

P

sc

where the constant �i = {1

5

,

2

5

,

2

5

} in x, y, and z. There is an additional
contribution to the fluctuating force from the Doppler-shifted frequencies. Here,
we have retained just the first-order contribution, which does not include the
Doppler shift, solely in order to estimate the influence of the photon number
fluctuations.

4.2.2 Optical Temperature

The optical field interacting with the particle gives rise to dissipation and a
fluctuating force. If we invoke the Fluctuation Dissipation Theorem [31], the
particle would reach an equilibrium temperature T

y
ph along the y-axis equal to

2m�phkBT

y
ph = ~2k2

r

0

s (4.19)

kBT

y
ph =

1

8
~!

0

The center-of-mass temperature to which the particle equilibrates is inde-
pendent of the scattered power and only depends on the photon’s energy ~!

0

.
Raising the scattered power P

sc

only increases the equilibration rate.

4.2.3 Mean Energy Rate of Change

The oscillator’s composite damping rate can be written as � = �

th

+ �

sc

+ �

fb

,
where �

th

accounts for interactions with the background gas, �

sc

with the
radiation field, and �

fb

is the damping introduced by feedback cooling. The
different contributions will be discussed in detail.
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The trapped particle’s energy changes constantly due to interactions with
its environment and the time evolution of its average energy Ē is predicted by
the Fokker-Planck equation to be [91]

d

dt

Ē(t) = ��

⇥
Ē(t) � E1

⇤
(4.20)

where E1 is the average energy in the steady state (t ! 1) and � is the rate at
which the steady state is reached. Writing the average energy of the particle in
terms of discrete quanta, Ē = n ~⌦

0

, we obtain

ṅ = �� n + � (4.21)

where n is the mean occupation number and

� =
E1
~⌦

0

� (4.22)

is the heating rate. It defines the rate at which phonons are reintroduced into
the mechanical system. The solution of Eq. (4.21) is

n(t) = n1 + [n
0

� n1] e��t
, (4.23)

where n
0

is the mean occupation number at an initial time and

n1 =
�

�

=
�
th

+ �
recoil

�

th

+ �

rad

+ �

fb

(4.24)

is the occupation number in the steady state. In (4.24) we have written � as the
sum of a heating rate due to collisions with gas molecules (�

th

) and a heating
rate due to photon recoil kicks (�

recoil

).

The surrounding gas at temperature T gives rise to damping �

th

and thermal
decoherence �

th

= �

th

kBT /~⌦
0

. For � > ⌦
0

, the particle’s motion is
overdamped and the dynamics are governed by a diffusion equation, as in the
case of optical tweezers operated in liquids.

Left alone, the trapped particle will have n

th

= kBT /~⌦
0

thermal quanta
on average. However, by means of phase-sensitive parametric feedback we
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reduce the oscillator’s susceptibility by raising damping to �

fb

, which leaves
the particle in a state with n1 ⇡ �

th

/�

fb

. The feedback consists of a split
detection scheme in combination with a phase-locked loop (PLL) for phase
sensitive detection of the particle’s motion and feedback control.

4.2.4 Recoil Heating Rate

The power spectral density of the displacement along the y direction is

Syy(⌦) = |�(⌦)|2 S

F
sc

, (4.25)

The mean-square displacement is calculated as

hy2i =

Z 1

�1
Syy(⌦) d⌦ =

1

5

~!
0

m⌦2

0

P

sc

mc

2

1

�

. (4.26)

Assuming that the particle attains a thermal steady state, we invoke the equipar-
tition theorem ~⌦

0

n1 = Kshy2i, with trap stiffness Ks = m⌦2

0

. Inserting this
expression into (4.22) we finally find the recoil heating rate to be

�
recoil

=
1

5

P

sc

mc

2

!

0

⌦
0

, (4.27)

in agreement with theory [40, 107, 108]. The recoil rate scales with the number
of scattered photons and with the mass (as P

sc

/m / m) but inversely with the
trap frequency.

4.2.4.1 Experimental Estimates

Let us estimate the magnitude of �
rec

. For a Gaussian beam, the intensity at
the laser focus is I

0

= P

0

k

2NA2

/2⇡, where k = !

0

/c. The scattered power is
then calculated as P

sc

= �

sc

I

0

. For the parameters used in our experiments
(n = 1.45, � = 1064 nm, P

0

= 70 mW, R = 50 nm, NA = 0.9) we find
P

sc

= 3.6 µW. The laser wavelength is 2⇡c/!

0

= 1064 nm and the mass of
the particle amounts to m = 1.14 ⇥ 10�18 kg. Using ⌦

0

= 2⇡ ⇥ 150 kHz,
Eq. (4.27) predicts a reheating rate of �

rec

= 13.1 kHz.
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Figure 4.3: Power spectral densities under feedback cooling. The
Lorentzian curves correspond to the motion along y for three different
vacuum pressures: 6.6 ⇥ 10�4, 1.1 ⇥ 10�5 and 2 ⇥ 10�8 mbar (in
order from the highest to the lowest curve). n indicates the mean
occupation number. The center-of-mass temperature of the n = 63 peak
is T

cm

= 450µK. Note that S̃yy is the single-sided PSD.

In addition to heating, the radiation field also leads to radiation damping at
a rate �

sc

, which arises from the Doppler effect [109, 110] and can be evaluated
by calculating the back-action of the scattered field on the motion of the particle
along the y axis. We find a value of �

sc

⇠ P

sc

/mc

2. Note that in the photon
dominated regime and in the absence of feedback cooling, the equilibrium
temperature kBT1 = ~⌦

0

n1 ⇠ ~!
0

is of the order of the photon energy. This
energy is comparable to the depth of the trapping potential and therefore the
particle is likely to escape as it heats up without feedback control.
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4.3 Experimental Results

We first measure temperature at a few distinct pressures, as shown in Fig. 4.3.
At the lowest pressure, the bottom-most PSD is the maximum compression
achieved. Here, we have reduced the temperature to Ty = 450 ± 33.1 µK,
which corresponds to an occupation of ny = 62.5 ± 5.

To experimentally test the transition between the gas and the photon dom-
inated regimes, we record the particle’s average energy Ē as a function of
gas pressure P

gas

under constant feedback cooling. The result is shown in
Fig. 4.4 where we expressed the average energy in terms of the mean occupation
number n1 = Ē/~⌦

0

. The figure demonstrates that as pressure is reduced to
10�7 mbar, the gas damping attenuates linearly with pressure, in agreement
with Eq. (3.32). At pressures lower than ⇠ 10�7 mbar, however, the particle’s
motion is weakly influenced by interactions with the gas. In this regime the
dynamics are primarily determined by particle-photon interactions.

The center-of-mass temperature corresponds to the integral of the power
spectral density (c.f. Fig. 4.3), while the width of the peak yields the damping
� ' �

fb

. For example, the Lorentzian peak labeled with n = 63 in Fig. 4.3
yields damping �

fb

= 269.9±7.8 Hz. Using the oscillator’s phonon occupation
and feedback-cooled linewidth, we find � = n1�

fb

= 63 ⇥ 270 Hz = 17 ±
1.3 kHz, in close agreement with theoretical predictions of � = 21.7 kHz.

To corroborate this result we perform a direct measurement of the recoil
rate in a ring up style experiment, whereby the feedback is switched off at
t = 0 and the particle is allowed to heat up. However, as described in Ref. [91],
individual reheating trajectories represent a stochastic process and, thus, the
heating rate and temperature have to be extracted from averages over many
individual reheating trajectories.

After switching-off the feedback we follow individual reheating trajectories
over time periods that are considerably shorter than 1/�, which allows us to
linearize the exponential term in Eq. (4.23). We then obtain

n(t) = n
0

� � [n
0

� n1] t + .. ⇡ n
0

+ �
recoil

t . (4.28)

In the last step, we used the fact that n
0

⌧ n1, a condition that is fulfilled in
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Figure 4.4: Steady-state under feedback cooling. Mean occupation
number along the three principal axes (x, y, z) as a function of gas
pressure measured under constant feedback cooling for a R = 49.8 nm
particle with focal power P

0

= 70 mW. The solid curves are fitting
functions of the form a + bP

gas

. The diagonal and horizontal lines
indicate, for the y axis, the asymptotic limits of gas and photon recoil
heating, respectively.

our experiments owing to feedback cooling. Thus, we find that the reheating is
linear in time shortly after switching off the feedback and that the reheating
rate corresponds to the photon recoil rate �

recoil

. We extract �
recoil

from our
measurements and study it as a function of system parameters, such as laser
power, particle size, and gas pressure.

Figure 4.5a shows experimentally measured reheating time-traces for two
different particles with radii R

1

= 50.7 nm and R

2

= 72.6 nm. The initial
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occupation number n

0

for the two particles is slightly different and the oscil-
lation frequencies are ⌦

(1)

0

= 2⇡ ⇥ 148.8 kHz and ⌦
(2)

0

= 2⇡ ⇥ 151.2 kHz.
The slope of the time-traces directly renders the reheating rate. We obtain
�
1

= (20.9 ± 0.2) kHz and �
2

= (29.4 ± 0.3) kHz. Theoretical estimates are
�
1

= 15.5 kHz and �
2

= 38.2 kHz.
We also measured the reheating rate as a function of focal power P

0

.
Fig. 4.5b shows the reheating time-traces of a R = 68 nm particle measured
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Figure 4.5: Reheating time-traces. Particle reheating along the y axis
for different particle sizes and laser powers. Plotted is one standard
deviation above and below the mean phonon value. The slope of a
weighted least-squares fit to the curves renders the reheating rate �. The
experimental data are obtained by averaging 500 individual reheating
trajectories. (a) Reheating for R

1

= 52.7 nm (dark blue) and R

2

=
71.6 nm (light blue). The pressure is 3⇥10�8mbar and the focal power
is 70 mW. (b) Reheating for a particle with radius R = 68nm measured
for two different focal powers, P

(1)

0

= 30.5mW and P

(2)

0

= 80mW, at
a pressure 7 ⇥ 10�9 mbar.
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4.4 Additional Laser Heating Mechanisms

with laser powers P

(1)

0

= 30.5 mW and P

(2)

0

= 80mW. The oscillation
frequencies for the two laser powers are ⌦

(1)

0

= 2⇡ ⇥ 100.5 kHz and ⌦
(2)

0

=

2⇡ ⇥ 158.8 kHz with corresponding reheating rates �
1

= (19.4 ± 0.1) kHz

and �
2

= (38.0 ± 0.3) kHz. By comparison, we predict �
1

= 21.5 kHz and
�
2

= 35.8 kHz for the given parameters.
Discrepancies between measured rates and the predictions exist. The focal

intensity is calculated in the paraxial approximation, which overestimates its
value and the resulting photon scattering rate. Future studies would benefit
from numerical simulations of focal fields in the strong-focusing domain. When
accounting for the diffractive effects of the light field, we would have more
accurate estimates of the recoil rate.

The particle size is determined from fits to its spectral linewidth at 10 mbar.
Artificial broadening of the lineshape by nonlinear components of the trapping
potential and reductions in the particle density in high vacuum would estimate
smaller particle sizes and lower scattering rates.

As shown in Fig. 4.5a, increasing the particle’s size heats it up faster despite
starting off with lower n. Raising the focal intensity from 30.5 mW to 80 mW
doubles the rate. Under recoil heating, the rate scales as �

rec

/ P

0

/⌦
0

/
p

P

0

,
which means we expect the rate in Fig. 4.5b to increase by a factor of 1.6.
Recoil heating is proportional to the inverse of ⌦

0

, which is consistent with the
measurements in Fig. 4.4, where the weakest reheating is observed for the y

axis (⌦
0

= 2⇡ 150 kHz), followed by the x axis (⌦
0

= 2⇡ 129 kHz) and then
the z axis (⌦

0

= 2⇡ 49 kHz).
We estimate that the residual thermal dissipation amounts to 4% of the

measured reheating rates in these experiments, given the very low vacuum
pressure.

4.4 Additional Laser Heating Mechanisms

Next, we compare these results to other decoherence mechanisms the particle
may be susceptible to. In addition to recoil heating from the random scattering
of photons, classical laser intensity fluctuations and pointing fluctuations will
affect the trap’s stability.
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4 Photon Recoil Heating

4.4.1 Classical intensity noise

An oscillating nanoparticle subject to intensity fluctuations will have a noisy
spring constant such that the equation of motion is

mÿ + m�ẏ + k(t)y = F(t) (4.29)

where k(t) = k

0

(1 + "(t)). This gives rise to a heating rate of [111, 112]

�" = ⇡⌦2

0

S

"[2⌦y] n = �"n / P

0

(4.30)

Here, S

" is the power spectral density of the noise (in units of Hz�1), "(t),
and is evaluated at twice the oscillation frequency 2⌦y. This modifies the rate
equation in (4.21) into

ṅ = ��

rad

n + �
recoil

+ �"n (4.31)

The linearized solution becomes

n(t) = n

0

+ (�
recoil

+ �"n0

)t (4.32)

Thus, the more the particle is cooled and the lower n

0

is, the less it suffers
from parametric heating due to laser intensity noise. Though the heating
rate due to laser noise scales linearly with power, it has no dependence on
mass. At the occupation numbers achieved with phase-based feedback, where
n

0

' 100, together with the relative intensity noise (RIN) of the trapping laser
of S

" = �138 dB/Hz, we obtain �"n0

= 56 Hz, which is negligible compared
to the recoil heating rate �

recoil

⇠ 10 kHz.

4.4.2 Trap Center Fluctuations

Pointing fluctuations of the laser beam translate to displacements of the trap
center. This results in an equation of motion that is [112]

mÿ + m�ẏ + k(y � "

0(t)) = F(t) (4.33)
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4.5 Standard Quantum Limit

where "

0(t) is the displacement. This gives rise to a mean energy rate of
change [111, 112]

dĒ

dt

=
⇡

2
m⌦4

0

S

"0 [⌦
0

] / P

2

0

m (4.34)

where S

"0 [⌦
0

] is the spectral density of the position fluctuations at the trap
center. When rewritten in terms of phonons, ˙̄

E = ~⌦
0

˙̄
n, and the rate is then

�"0 =
⇡

2
m⌦3

0

Sx(⌦0

)/~ (4.35)

This rate in Eq. (4.34) scales linearly with the mass, which we observe in the
measurements of Fig. 4.5a. It scales with ⌦3

0

, which is proportional to P

3/2
0

.
When in Fig. 4.5b we raise power from 30.5 to 80 mW, we would expect a factor
of 4.2 rise in the reheating rate from pointing fluctuations, which is double what
we observed.

4.4.3 Discussion

The measurements presented indicate that heating due to the shot noise of
photons is the dominant dissipation mechanism in the system. Dissipation due
to photon shot noise overwhelms thermal dissipation by at least a factor of 25 in
these experiments, which is a ratio that could be raised by further reducing the
vacuum pressure. For nanoscale particles �

rec

is approximately 10 kHz, which
sets limits to ground-state cooling protocols, upper bounds to quality factors,
and limits the maximum achievable force sensitivity.

4.5 Standard Quantum Limit

Given that the reheating rates scale linearly with mass and with optical power,
we conclude that recoil heating is the dominant reheating mechanism. Reaching
the ground state requires reducing recoil heating in the same way that gas
damping was attenuated by reducing pressure. Feedback cooling, however,
requires a high precision measurement of the particle’s motion while reduced
recoil heating requires less focal power. In this section we focus on the standard
quantum limit of continuous measurement for reducing position fluctuations
amid measurement imprecision and back-action.
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4 Photon Recoil Heating

4.5.1 Measurement Imprecision

The number of photons scattered by a particle is (P
sc

/~!
0

)�t and equals

N

sc

= �

I

0

~!
0

�t = P

0

4

3

✓
✏ � 1

✏ + 2

◆
2

k

5

R

6NA2

~c �t (4.36)

We detect just a fraction of the scattered photons, namely N

det

= ⌘cNsc

, where
the collection efficiency ⌘c is given by

⌘c =
1

32
[16 � 15

q
1 � NA2

c

� cos(3 arcsin(NA
c

))] (4.37)

The laser power incident on the detector is

P

det

(r) = ⌘cPsc

+ P

ref

+ 2
p

⌘cPsc

p
P

ref

sin (�(r)) (4.38)

resulting from the interference of the laser and scattered fields. The laser field
P

ref

is much stronger than the scattered field P

sc

. Thus, the dominant detector
noise is due to the shot noise of the laser field, or

⌦
P

2

N

↵
= 1

⇡~!0

P

ref

�!, where
�! is the detector signal bandwidth.

A displacement of the particle generates a slight shift in the phase of the
scattered field, or

⌦
P

2

S

↵
= 4⌘cPsc

P

ref

cos2 �

⌦
d�

2

↵
. Due to the Gouy phase

shift, cos2 � ' 1 and
⌦
d�

2

↵
= k

2

P
i �i

⌦
x

2

i

↵
, where �i accounts for the

geometric distribution of the dipole radiation field. The imprecision of xi due
to shot noise is determined when the ratio of the signal power to noise power
equals 1, or

⌦
x

2

i

↵
imp

=
~!

0

2k

2

⌘c�i

1

P

sc

�f (4.39)

This result agrees with a calculation based on Heisenberg’s Uncertainty Princi-
ple in Ref. [113].

4.5.2 Measurement Backaction

The displacement due to photon scattering in Eq. 4.26 can be rewritten as

⌦
x

2

i

↵
ba

= �i
~!

0

m⌦2

0

P

sc

2mc

2

1

�

2

�f (4.40)
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Combining the two expressions, the total displacement is

⌦
x

2

i

↵
tot

=
1

2

⌦
x

2

i

↵
zpf

✓
!

0

m⌦
0

�i⌘ck
2

1

P

sc

+ �i
2!

0

⌦
0

mc

2

�

2

P

sc

◆
�f (4.41)

where here
⌦
x

2

i

↵
zpf

= ~/2m⌦
0

. Counter to most opto-mechanical systems,
in an optical-tweezer system the frequency ⌦

0

/
p

P

sc

. Plugging in ⌦
0

=

(fsNA23⇡✏

0

P
sc

/↵cmk2)1/2, the total displacement is

⌦
x

2

i

↵
tot

=
1

2

⌦
x

2

i

↵
zpf

"
!

0

�i⌘ck
2

✓
fs

NA23⇡✏

0

m

↵ck

2

1

P

sc

◆
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(4.42)

+
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�

2
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2

✓
↵ck

2

fsNA23⇡✏
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m
P

sc

◆
1/2
#

�f

We find the expression in Eq. 4.42 is minimized when

P

min

sc

=
3fsmcNA2

⇡�

2

✏

0

k

4

↵⌘c�
2

i

(4.43)

At this power, when �f = �, the total displacement is

⌦
x

2

i

↵
tot

=
⌦
x

2

i

↵
zpf

/

p
⌘c (4.44)

which indicates that the zero-point fluctuations can only be resolved under unit
collection efficiency. In this limit of ⌘c ! 1, the ground state can be detected
and not destroyed despite back-action from the optical field.

For the configuration of our experiment, we plot in Fig. 4.6 the peak
displacement as a function of the feedback damping �. For the focal power and
feedback gain applied, the particle lies in the domain of strong measurement
backaction. Increasing feedback gain and reducing measurement imprecision
by an order of magnitude shifts the balance closer toward the ground state.
This is because feedback counters the influence of measurement back-action.
Reducing the measurement imprecision requires improvements in the detection
scheme, which we return to in Ch. 6
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4 Photon Recoil Heating
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Figure 4.6: Standard quantum limit Total displacement imprecision
expressed in terms of mean phonon occupations ni =

⌦
x

2

i

↵
/

⌦
x

2

i

↵
zpf

as a function of the feedback damping � for ⌘c = 0.0005 and P

sc

=
3.53 µW. The blue dot corresponds to our experimental conditions
(�/2⇡ = 269.9 Hz). The two diagonal lines indicate the contributions
of measurement noise and backaction noise, respectively. The dash-
dotted curve shows the response for detection efficiency increased by a
factor of ten.

4.6 Conclusion

There are a few things one should take away from this discussion. First, and
foremost, ground-state cooling is achievable with an ideal measurement in an
optical tweezer trap. Second, optical tweezer traps don’t respond linearly to
changes in optical power as most opto-mechanical systems do. Rather, they
vary with the square root. Third, the contribution to total displacement arising
from backaction scales with 1/�

2, or essentially the damping. This is most
intriguing as the backaction arises from the quantum nature of light whereas
the damping results entirely from a classical feedback process. The photon
fluctuations would otherwise drive the particle out of the trap if it were not for
feedback cooling.

For the system presented in these measurements, imprecision noise accounts
for 8.0

⌦
x

2

↵
zp

and backaction noise for 33.4
⌦
x

2

↵
zp

. This means the trapped
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4.6 Conclusion

nanoparticle is in a regime dominated by measurement backaction. In fact, the
motion due to backaction overwhelms that due to thermal motion by nearly 25
times. It is, in fact, in this regime that opto-mechanical systems need to operate
in order to use mechanical resonators to measure the properties of quantum
fields of light. Given that the recoil heating rate is on the order of 10 kHz, one
would expect roughly ⌦

0

/�
rec

= 15 coherent oscillations in the ground state
before the system is reheated by one phonon due to backaction.
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5
Noise in the Trap

The goal of this chapter is to quantify the contribution of classical intensity
fluctuations to our measurements of recoil heating. Here, we study classical
noise sources, including laser intensity noise and electric field fluctuations.

5.1 Introduction

Noise in harmonic traps has an extensive history that is grounded in the
most basic of noise processes – Brownian motion [114]. Broadly speaking,
the primary goal in the field of opto-mechanics is to counteract noise from
the environment – thermal and optical fluctuations – that drive mechanical
resonators into motion and limit their sensitivity in force detection [104].
Optical levitation seeks to overcome thermal and acoustic noise by operating in
UHV [40].

The development of optical tweezers brought many advances in the use
of lasers for stabilizing and manipulating matter [34]. Laser cooling of atoms
using the radiation pressure exerted by light enabled increased accuracy of
atomic clocks, improved spectroscopy of atomic and ionic species, and the
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5 Noise in the Trap

formation of new states of matter at ultracold temperatures [39, 107, 115–117].
Recognizing that neutral atoms far off of resonance in optical traps act as
optical dipoles, Savard, et al., calculated the contribution of classical laser noise
to a harmonic trap’s stability [112]. It was found that intensity fluctuations
with a correlation time much shorter than the harmonic oscillation generate a
parametric heating process whereby the dipole is driven by the noise power of
fluctuations at twice the harmonic frequency, or 2⌦

0

. The strength of the drive,
however, is proportional to the oscillator’s motional energy. They demonstrated
that beam-pointing fluctuations, which shift the center of the trap, resonantly
drive the particle and act as another heat bath. Gehm, et al., demonstrated that
fluctuations in trap parameters can cause atoms to heat up and determined the
trap stability needed to achieve long storage times [111].

Noise in harmonic systems can be grouped into two general categories:
additive and multiplicative [66, 118]. Additive noise processes, including
thermal fluctuations and recoil heating, result from external forces that drive
the harmonic oscillator into motion. They are the source of Brownian motion
and result in a particle diffusing in free space and also include the vacuum
fluctuations of the electromagnetic field that trigger spontaneous emission
of atoms. Multiplicative noise processes depend on the state of the system,
including the position x or velocity ẋ, and result from time-varying parameters,
notably the frequency, damping, or mass. The presence of multiplicative
noise has implications in nearly all realms of science, including stochastic
resonance [119], noise induced phase transitions [120], Josephson tunneling
junctions [66], nonlinear optics, and population dynamics [118].

We focus here on laser noise and how it affects the trapped nanoparticle
different from recoil heating. Laser noise couples to the particle’s motion
additively in the form of radiation pressure and multiplicatively by modulating
the spring constant. When noisy radiation pressure acts on the particle, it drives
its motion in z, or along the optical axis, but has no influence on the transverse
axes. Though the particle scatters the noisy laser field, the symmetric nature
of dipole radiation means that the up and down (in y) or left and right (in x)
trajectories resulting from classical noise destructively interfere.

A jittering spring constant k from laser noise induces changes to the
oscillation frequency ⌦2

0

= k/m. Multiplicative noise is important to control
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5.2 Theory of Parametric Noise

because it may limit trap stability altogether [111, 121]. Jitter in frequency
limits the length of time over which one may integrate the particle’s motion in
the context of force detection applications [122, 123]. Furthermore, classical
noise fluctuations may erode quantum noise signatures, including those of the
vacuum field fluctuations, that may be exploited for metrology in absolute
thermometry and quantum information processing [16, 27, 99, 124, 125].

In this chapter we present models for classical laser intensity noise and its
influence on the center of mass motion, measurements of noise injection and
reduction in the trap, and quantitative characterization of intensity noise. We
characterize the frequency stability for our system and calculate how it may
deteriorate force sensitivity.

5.2 Theory of Parametric Noise

The optical dipole trap is formed by a focused laser beam with power P

0

.
The resulting gradient force F

grad

= �kq has a trap stiffness k / P (t) =

P

0

+ �P (t), where P

0

is the average power and �P (t) the fluctuations in power.
Its frequency fluctuates as ⌦(t)2 = ⌦2

0

(1 + ⌘(t)), where ⌘(t) = �P (t)/P

0

.
Under parametric feedback control, the corresponding equation of motion is

q̈ + ⌦2

0

q = ��q̇ � ⌦2

0

⇣

0

cos(⌦mt)q � ⌦2

0

⌘(t)q + Fth(t)/m (5.1)

where ⇣

0

is the feedback gain; the fluctuating power is taken to be very small
(⌘ ⌧ 1). The right-hand side of Eq. 5.1 has from left to right the damping force,
parametric feedback, fluctuating frequency, and fluctuating thermal force. The
fluctuating and damping forces can also be replaced by their optical analogues
��

rad

q̇ and Fph(t)/m of Ch. 4, respectively.
⌘(t) is assumed to be a Gaussian white noise process with zero mean and

an autocorrelation h⌘(t)⌘(t0)i = 2⌘

2

0

�(t� t

0). It is related to the laser’s relative
intensity noise by

S

RR

=
1

2⇡

Z 1

�1
dt

0 ⌦
⌘(t)⌘(t0)

↵
e

i⌦t0 = ⌘

2

0

/⇡ (5.2)

Next, we will set the equations of motion in the standard Langevin form
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5 Noise in the Trap

and average over the fast oscillation cycle time ⌧ = 2⇡/⌦
0

to get the slowly-
varying dynamics of the system [92, 93, 126]. We follow an approach outlined
in Ref. [127]. Expressing momentum as the rate of change of position, or
q̇ = p/m, the infinitesimal change in position dq and momentum dp are

dq = (p/m)dt (5.3a)

dp = (�m⌦2

0

q � �p � ⇣m⌦2

0

cos(⌦mt)q) dt (5.3b)

+
p

2m�kBT dW

1

+ m⌦2

0

⌘q dW

2

Here, we have expressed the random fluctuating forces as Wiener processes
where Fth(t) =

p
2m�kBT0 w

1

(t) and ⌘(t) = ⌘

0

w

2

(t); w

1

(t) = dW

1

/dt

and w

2

(t) = dW

2

/dt for the thermal force and the laser intensity fluctuations,
respectively. These are zero-mean noise processes, are independent and un-
correlated with each other, and have correlation times much faster than the
particle’s dynamics. These conditions are best summarized as

hW
1

(t)i = 0 = hW
2

(t)i (5.4a)
⌦
W

1

(t)W
1

(t0)
↵

= min(t, t0) =
⌦
W

2

(t)W
2

(t0)
↵

(5.4b)
⌦
W

1

(t)W
2

(t0)
↵

= 0 (5.4c)

The amplitude of the particle’s motion is given in terms of the position q and
momentum p as

✏ =

r
1

2
m⌦2

0

q

2 +
1

2m

p

2 (5.5)

The energy is E = ✏

2. The laser intensity fluctuations are presumed to be a
weak perturbation to the oscillator’s dynamics. A small change in energy will
result from small changes to position dq and momentum dp. The infinitesimal
change in amplitude is given by

d✏ =
@✏

@q

(dq) +
@✏

@p

(dp) +
1

2

@

2

✏

@q

2

(dq)2 +
1

2

@

2

✏

@p

2

(dp)2 (5.6)

We saw from the conditions on Wi that hWi(t)Wi(t
0)i = min(t, t0), which

means that (dWi)
2 ⇠ dt. In the following expansion, we retain terms of order
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up to and including dt and neglect the orders (dt)3/2 and higher. Then the
infinitesimal amplitude change is

d✏ =
p

2m✏

((��p � ⇣

0

m⌦2

0

cos(⌦mt)q)dt (5.7)

+
p

2m�kBT0 dW

1

+ m⌦2

0

⌘

0

q dW

2

)

+
q

2⌦2

0

8✏

3

(2m�kBT0(dW

1

)2 + (m⌦2

0

⌘

0

q)2(dW

2

)2)

To obtain the slowly-varying dynamics, we deterministically average the os-
cillating terms and stochastically average the random variations by integrating
over one oscillation period (⌧ = 2⇡/⌦

0

) to obtain the weak change in energy
in that time, or �✏ =

R ⌧
0

dt, given by
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On the short timescale of integration, we hold that the particle maintains its
harmonic motion with amplitude A =

p
2✏

2

/m⌦2

0

, such that the position and
momentum are given by

q(t) = ✏

q
2/m⌦2

0

cos(⌦
0

t + ') (5.9)

p(t) = ✏

p
2m sin(⌦

0

t + ') (5.10)

Although the feedback mechanism is still the phase-locked parametric mod-
ulation, we assume for the simplicity of the discussion that there is no phase
error arising from limited measurement precision. The phase ' is meant to be a
constant phase offset from the particle’s motion.
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Each of the integrals in Eq. 5.8 are given by
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2m✏

dt = ��✏⌧/2 (5.11a)
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Here, Wi(⌧) are Wiener processes at ⌧ indicating a Gaussian random variable
with variance ⌧ . The integrated Wiener process terms Wi(⌧) result from the
fact that the correlation of p with dW

1

and with dW

2

causes the fluctuational
terms to have non-zero averages.

Combining the distinct contributions, the infinitesimal change in amplitude
is given by
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The timescale ⌧ is defined to be shorter than the relaxation time ⌧� = 2⇡/� yet
faster than the oscillation cycle time ⌧

⌦

0

= 2⇡/⌦
0

. As the energy change over
⌧ is small, the stochastic differential equation for the amplitude is
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5.2 Theory of Parametric Noise

5.2.1 Fokker-Planck Equation for Intensity Noise

The form of Eq. 5.13 is a generalized Langevin equation. To understand
the influence of laser noise on the particle’s steady-state dynamics, we first
compute the Fokker-Planck equation for the probability density, or P (✏, t),
which equals [93]

@P (✏, t)
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The form of Eq. 5.14 comprises of drift terms
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and diffusion terms

D

2

(✏) =
1

4
kBT0� +

1

16
⌘

2

0

⌦2

0

✏

2 (5.16)

The drift terms include the ambient gas damping � and the feedback cooling ⇣

0

.
The additional two terms arise from the stochastic average. The damping term
��✏/2 and the thermal term kBT0�/4✏ are a manifestation of the fluctuation
and dissipation theorem [31], which tells us that the amplitude will decay with �

but the fluctuations will drive it up again; over time, they will reach equilibrium.
The laser noise drift term (⌘2

0

⌦2

0

✏) is linear in amplitude, which means that like
the gas damping and feedback, its influence is stronger at larger amplitudes. Its
sign, however, is opposite the gas damping and feedback (when ' = �⇡/4),
which means that it causes the amplitude to grow rather than decay.

The thermal diffusion term (kBT0�/4) is a constant source of energy and
will always drive the particle’s motion. The laser diffusion term (⌘2

0

⌦2

0

✏

2

/16) is
quadratic in ✏, which is characteristic of multiplicative noise processes [118]. If
the laser noise is too large, the oscillation amplitude may become too large and
result in an instability in the trap.
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5 Noise in the Trap

5.2.2 Stationary Amplitude Distribution

To solve the Fokker-Planck equation, we have to identify boundary conditions.
For stable trapping, we assume a stead-state exists such that lim

t!1
@P (✏, t)/@t =

0. This means that a time-independent probability distribution, Ps(✏), exists
that is the solution to

d
d✏


D

1

(✏)Ps(✏) �
d
d✏

(D
2

(✏)Ps(✏))

�
= 0 (5.17)

which is written as djs
d✏ = 0 for probability current js(✏) = [D

1

(✏) �
d
d✏D2

(✏)]Ps(✏). The solution to this is js(✏) = const. ⌘ j⇤ for all ✏. If the
energy lies within the interval [a, b], then js(a) = js(b) = j

⇤. We restrict
the energy amplitude to being positive, or ✏ � 0, which means there is zero
probability flux through the boundary ✏ = 0.

As a result, js(0) = 0, from which we deduce js(✏) = 0. This simplifies
the differential equation to first order, or
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Setting ⌘

0

= 0 in Eq. 5.18 and then solving for Ps(✏) recovers the Maxwell-
Boltzmann distribution.

An analytical solution to this equation exists when ⌘ 6= 0 in the form of a q-
exponential [128], which gives the following stationary probability distribution
for the amplitude
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1
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2)↵✏ (5.19a)
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where Z✏ is a normalization constant.
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5.2 Theory of Parametric Noise

Recall that E = ✏

2. We obtain an energy distribution by substituting
Ps(✏) d✏ = P (E) dE/2✏, which equals

P (E) =
1

Z✏
(2kBT0� +

1

2
⌘

2

0

⌦2

0

E)↵✏ (5.20)

This energy distribution is different from the traditional Maxwell-Boltzmann
form because of the multiplicative noise. When E or ⌘

0

are large, a steady-state
may not exist and this distribution would diverge.

5.2.3 Trapping Stability Condition

In order for the probability distribution to not diverge, the exponent should
always be negative, or

⌘

2

0

< (8� + 4⇣

0

⌦
0

sin(2'))/⌦2

0

(5.21)

The spectral density of the power fluctuations ⌘

2

0

must remain below 8�/⌦2

0

for
the trap to remain stable, which is incredibly prohibitive at very low vacuum
pressures. When the feedback phase is tuned to ' = ⇡/4, we find the added
feedback gain alleviates the restriction on trap stability. The condition in
Eq. 5.21 is akin to the Routh-Hurwicz criterion for the assumption of linear time
invariance in a control system. It conveys when the assumption of frequency
noise as a first-order perturbation breaks down.

Different from thermal fluctuations or recoil heating, we find that the
contribution from classical laser fluctuations scales with E. At large energies (or
large phonon occupations), classical fluctuations affect the particle’s dynamics.
Feedback, however, counters the influence of laser fluctuations and lowers the
center of mass amplitude.

In Eq. 5.13, we substitute 2✏ d✏ = dE.
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(5.22)

When we take a time average of Eq. 5.22, we note hdWii = 0 and that the
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5 Noise in the Trap

average energy hEi = n̄ ~⌦
0

. As a result, we arrive at an equation for the time
rate of change of the average phonon number, or
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(5.23)

Solving this differential equation, we find the steady-state solution for the
average occupation number. With feedback cooling turned off, this is given by

n̄1 =
kBT0

~⌦
0

�

� � 3⌘

2

0

⌦2

0

/8
(5.24)

The minus sign in the denominator of Eq. 5.24 is most telling. Intensity
fluctuations heat up the trap such that as one goes lower in pressure, the steady-
state center of mass temperature may automatically increase and equilibrate
to a level higher than room temperature. For this reason, feedback control is
needed if not to cool the particle, to stabilize its motion.

From Eq. 5.23, we find that the reheating rate due to laser intensity fluctua-
tions is proportional to the oscillator’s energy, or

�
RIN

=
3

8
⌦2

0

⌘

2

0

n̄ (5.25)

The reheating rate is not dependent on the particle’s mass, unlike the recoil
heating rate, and can be suppressed with parametric feedback cooling. In the
following sections, we present experimental tests of classical noise injection and
suppression when the particle is brought to the recoil limit in order to quantify
the classical noise contribution for our system.

5.3 Experimental Results

In this section, we present our experimental results for the characterization of,
injection, and attenuation of laser intensity noise. For the purpose of accurately
diagnosing laser intensity fluctuations, a homebuilt photodetector capable of
handling up to 100 mW of optical power with a bandwidth exceeding 1 MHz
was built (as described in Appendix D).
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5.3 Experimental Results

5.3.1 Characterizing Intensity Noise

The output of the laser is guided through several optics, a Pockels’ cell, and
then into a single-mode polarization maintaining optical fiber (PMF) that is
fixed to the vacuum chamber. As shown in Fig. 2.9, the collimated fiber
output is deflected to a single-port photodetector with an in-built, low noise
current source. The detected photocurrent is thus �i(t), which contains the
fluctuations on the laser beam with the DC level subtracted away. Because the
detected power is from a PMF, the signal is a combination of classical intensity
fluctuations, shot noise, pointing instability, polarization drift, and spatial mode
distortion all converted into an intensity fluctuation.

The detected fluctuations are composed of classical noise and shot noise, or
�i(t) = �i

cl

(t) + �i

sn

(t). The autocorrelation of this signal is
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where h�i
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0). The power spectral density for current
fluctuations is given by
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We normalize S

II

= S

cc

+ S

ss

by the squared average DC photocurrent i

2

ph

=

(RP

0

)2, where P

0

is the incident power and R is the detector responsivity in
[A/W]. Then, the measured relative intensity fluctuations are given by

S

↵

(⌦) = S

RR
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for S

cc

(⌦) = (RP

0

)2S
RR

. This expression gives us the relative intensity
fluctuations at any optical power. At very low optical powers, the relative
fluctuations are dominated by the laser’s shot noise. At higher optical powers,
however, the relative contribution of shot noise decreases and the noise power
is dominated by classical fluctuations. Their contributions are equal at P

0

=

e/⇡RS

RR

= e/R⌘

2

0

.
Shown in Fig. 5.1 are the relative intensity fluctuations at P

0

= 6.7 mW
of optical power over a broad range of frequencies while a trapped particle is
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5 Noise in the Trap

under feedback. It is the averaged PSD of 103 time traces of 1 sec in length
sampled at 625 kSa/sec. The intensity fluctuations have been converted to a
logarithmic scale such that the units are in dB/Hz. The domain of frequencies
relevant to this experiment are between 10 and 300 kHz, where the relative
intensity noise is S

R

(2fy) = 10�13.8/Hz.
There are a handful of distinguishing peaks in the spectrum shown in

Fig. 5.1. At frequencies lower than 1 kHz, the spectrum has the signature 1/f
noise floor. At 1.1 kHz is the vacuum turbopump rotation frequency. Between
10 kHz and 300 kHz, the spectrum is mostly flat, save for two peaks at 100 kHz
and 240 kHz which represent part of the feedback signal in z and x.

Classical intensity fluctuations act as an additional source of reheating in
the system. Their contribution, however, is proportional to the oscillator’s
occupation number. At occupations of n = 100 or lower, the reheating due to
classical intensity fluctuations would be given by

�
RIN

= ⇡

3

8
⌦2

0

S

RR

n = 0.13 Hz (5.29)

when ⌦ = 2⇡150 kHz.
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Figure 5.1: A plot of the laser’s relative intensity noise at P
0

= 6.7 mW
as a function of frequency as a single-sided power spectral density, or
S
R

(2f); divide by 4⇡ to obtain S

RR

(⌦). The spectrum contains several
features, which are explained in the main text.
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5.3 Experimental Results

Figure 5.2: Schematic of intensity stabilization and feedback
switching. Intensity noise is measured on a high power photodetector
with a built-in PID controller to actuate the EOM. Separately, a PLL
tracks the particle’s oscillation and is used to generate a feedback control
signal that is also applied to the EOM. The feedback control is switched
on and off during reheating experiments.

5.3.2 Injecting and Removing Intensity Noise from the Trap

Despite quantitative estimates suggesting little contribution of the classical
intensity noise to reheating in the trap, we test their contribution to the motional
dynamics under four different laser noise configurations.

A particle with measured size R = 68 nm was trapped with P

0

= 60 mW
of focal power and brought to P

gas

= 3 ⇥ 10�8 mbar of pressure using phase-
based feedback. With an initial occupation in y below ny = 100, the particle
was released from feedback in just the y-axis and its reheating was measured
over 100 msec. The experiment was repeated over 1000 times, where each time
the same initial occupation n̄

0

was established by the phase-based feedback as
illustrated in Fig. 5.2. After switching off the feedback, the particle was tracked
as it evolved from n̄

0

to n̄t within time t. Along each 100 msec trajectory the
particle’s position was sampled at a rate of 625 kHz and, from integrating over
1 msec of motion, the energy was computed. The average energy increases
monotonically. Owing to the particle’s small dimensionality and the stochastic
nature of the reheating process, however, a single trajectory may deviate from
the ensemble average considerably [91].

Plotted in Fig. 5.3 is the ensemble averaged reheating curve under the
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5 Noise in the Trap

Figure 5.3: Reheating under laser intensity control. Reheating in
the y-axis under four different configurations of the laser intensity
fluctuations. Plotted is the mean phonon occupation with one standard
deviation above and below the mean as computed over 1000 realizations
of this experiment. t

o↵

indicates the time at which the feedback is turned
off. On the left are the native laser intensity fluctuations in blue and the
reheating �

control

. On the right are under reduced laser noise in crimson
(�

low

); with weak noise injected in green (�
med

); and with stronger
noise injected in purple (�

high

).
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5.3 Experimental Results

native laser fluctuations. The plot shows the average phonon number along
with one standard deviation about the mean. The standard deviation grows
with n̄ because the position fluctuations grow with energy. The initial phonon
occupation is n̄

0

= 14.2 ± 0.2 and the measured reheating rate as obtained
from the slope is �

control

= 10.9 ± 1.7 kHz.
Next, the laser intensity noise is reduced over a bandwidth of DC to 300 kHz

using the laser noise eater from Scontrol

R

= 1.87 ⇥ 10�14 /Hz to S low

R

=

0.12 ⇥ 10�14 /Hz. The laser noise eater is designed to stabilize the DC power
and counteract laser intensity fluctuations; as it actuates the same Pockels’ cell
that is used for feedback control, the initial temperature is slightly larger. The
initial phonon occupation is n̄

low

= 53.3± 1.2 and the measured reheating rate
is �

low

= 9.8 ± 1.4 kHz. Comparing to the control, the rate decreased by at
most 10% despite 15.7 times reduction in the noise and a higher initial phonon
occupation under laser stabilization.

Using white noise sourced from a function generator, the laser noise was
increased to Smed

R

= 3.2 ⇥ 10�14/Hz, resulting in a reheating rate �
med

=

10.6± 0.7 kHz. Further increasing the noise to Shigh

R

= 6.5⇥ 10�14/Hz raised
the reheating rate to �

high

= 12.3 ± 0.9 kHz. The initial phonon occupations
were n

med

= 14.7 ± 0.2 and n

high

= 15.7 ± 0.2. In both cases, the feedback
gain was kept constant.

Since the composite reheating is �t = �
rec

+ �✏, we determine the zero-
noise limit of reheating under photon recoil through linear interpolation. The
estimated recoil heating rate is �

rec

= 9.6 kHz and indicates that classical noise
fluctuations contribute no more than (�

control

� �
rec

)/�
control

= 11.9 ± 6.4%

to the residual mechanical motion under the base fluctuations of the laser.
Plotted in Fig. 5.4 are the different laser intensity noise profiles as measured

during each of the reheating measurements above. The particle is susceptible
to classical noise fluctuations at the parametric frequency 2⌦y, which is why
it causes the energy amplitude to diffuse with ✏

2. A quantum mechanical
interpretation of this behavior suggests that two mechanical phonons are injected
at a time into the oscillator by classical intensity fluctuations [111].
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Figure 5.4: The relative intensity noise levels under the four
experimental configurations are shown as a single-sided power spectral
density, or S

R

(f); divide by 4⇡ to obtain S

RR

(⌦). In blue, the laser
noise floor is replotted from Fig. 5.1. The colors correspond to the four
reheating experiments of Figs. 5.3.

5.3.2.1 Strong-Focusing Corrections

The noise-free recoil heating rate is �
rec

= 9.6 kHz. Recall that the recoil
heating rate is �

rec

= P

sc

!

0

/(5mc

2⌦
0

), which for the parameters of this
system is � = 27.2 kHz, roughly a factor 2.5 times larger. The recoil heating
formula was derived under a paraxial approximation, which is for small focusing
angles. The trap, however, is formed from a high numerical aperture lens with
which the beam waist is actually larger, owing to diffractive effects. For an
objective with NA = 0.90, the waist is 1.7 times larger than the paraxial estimate
at � = 1064 nm. Using this difference to compute the focal intensity, we find
the theoretical recoil rate is �

rec

= 9.4 kHz, which has quantitative agreement
with the measured rates.

5.3.3 Discussion

The measurements demonstrate two important findings. First, classical intensity
noise can be suppressed using laser stabilization techniques to a level of
0.12⇥ 10�14/Hz or -150 dB/Hz, which is comparable to advanced stabilization
protocols developed for gravitational wave detectors [129, 130]. The stabiliza-
tion was carried out using just P

0

= 6.7 mW of power; the detector is designed
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5.4 Frequency Stability

to hangle up to 100 mW, which means we may reduce laser fluctuations further
to a shot-noise limited value of S

s

= �176.8 dB/Hz. In contrast to established
stabilization methods, noise suppression was achieved over 500 kHz, which is
more than two orders of magnitude larger than previously reported.

Second, feedback cooling the particle to low phonon occupations countered
the laser fluctuations. If the reheating time were extended so that the particle
reaches larger amplitude, the difference between �

control

and �
low

would be
more apparent.

5.4 Frequency Stability

Intensity fluctuations and drifts are critical experimental challenges in a variety
of opto- and electro-mechanical systems [122, 131]. On one hand, laser intensity
noise may heat up the mechanical oscillator if it is too strong and not properly
stabilized. On the other hand, laser intensity fluctuations may artificially
broaden the oscillation linewidth if occurring on a timescale shorter than the
relaxation time. They have been shown to corrupt force measurements in
atomic-force microscopy by thermal expansion and radiation pressure-induced
frequency jitter [132]. Drifts in the center frequency arising from power
fluctuations may occur faster than the bandwidth of the PLL but slower than
the particle oscillation, which would increase the phase error in the feedback
loop and unintentionally heat up the particle.

Levitated opto-mechanics are premised on the fact that the lack of a
clamping mechanism overcomes the usual material limits to Q-factors when
the particle is brought into UHV. Though we showed that the intrinsic damping
is limited by recoil heating, the estimated Q-factor is still approximately 108,
which is considerably higher than other opto-mechanical devices. The Q-
factor corresponds to the free-running oscillator without feedback. At the
particle’s thermal amplitude, laser noise is sure to kick in and affect the motional
frequency. For applications in force sensing this may be detrimental to proposed
zN/Hz1/2 sensitivity estimates ⇤.

⇤zN = 10�21 N
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5 Noise in the Trap

5.4.1 Characterizing frequency fluctuations

Next, we track frequency fluctuations under weak feedback and quantify their
correlation to laser intensity fluctuations. Activating the laser noise eater, we
compare frequency stability at similar center of mass temperatures. Finally, we
estimate the opto-mechanical limits to frequency stability and force sensitivity.

The motional frequency ⌦
0

is determined from traces of the particle’s
motion measuring 1.0 sec in length. Each trace is broken up into moving
segments of 40 msec length, which is comparable to the feedback-cooled
relaxation time, or �

�1

fb

; the power spectral density is computed; and the
frequency is obtained from a Lorentzian fit. The measurement is repeated
50 times in each. Plotted in Fig. 5.5 are histograms of the frequency with
the mean subtracted away. A more standard means of assessing frequency
fluctuations uses the technique of Allan variance. Due to the limited sampling
time, we were not able to resolve the Allan variance for low frequencies.

-��� -��� -��� � ��� ��� ���
�

���
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����

δΩ

�
��
��
�

Figure 5.5: Frequency fluctuations over 1 minute. Plotted are the
center of mass frequency fluctuations under feedback control. In blue
are the fluctuations under the native laser noise and in red are those with
laser stabilization activated. A histogram of frequency is calculated
with the mean across each measurement set subtracted away. The
total acquisition time is 50 sec of the particle’s oscillation sampled at
625 kSa/sec; the center frequency is determined based on Lorentzian fits
to the power spectral density of moving average segments measuring
40 msec in length and spaced 1.6 msec apart.
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5.4 Frequency Stability

5.4.2 Correlation to Intensity Noise

The laser intensity fluctuations are tracked simultaneously with the particle’s
motion. The variance of total laser noise is computed in the same time interval
used to determine the center frequency. Plotted in Fig. 5.6 are density plots
of the variance in intensity versus the center frequency drift. The bright
regions indicate frequent occurrence and dark regions are seldom. The variance
in total intensity has been reduced by 14.3 dB and with it the variance in
frequency by 6.0 dB. The distribution without laser stabilization leans left
of zero because the feedback modulation depth is slightly less than in the
stabilization case; non-linearities in the potential pull at the center frequency
and shift it downward [101]. This makes the distribution slightly asymmetric.

Slow drifts in the center frequency would artificially broaden the oscillator’s
linewidth and limit integration times over which forces could be measured with

Figure 5.6: Correlating frequency and intensity fluctuations.
Density plots of the variance in intensity versus frequency fluctuations
under the native laser fluctuations (a) and with laser stabilization (b).
The total acquisition time is 50 sec. Here, the mean values across the
entire measurement have been subtracted away to emphasize the drifts
in intensity and frequency. Intensity fluctuations are measured with
2.5 mW of power coupled to the photodetector. Frequency fluctuations
are measured exactly as in Fig. 5.5.
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5 Noise in the Trap

a levitated nanoparticle. In the next section, we calculate the limit to force
sensitivity induced by laser intensity fluctuations. While the laser may introduce
a frequency jitter, additional sources arise from back-reflections coupling into
the optical trap, heating of the microscope objective, and slow drifts in the
coupling of light into the optical trap via the polarization-maintain fiber.

5.4.3 Opto-mechanical Limit

Fluctuations in intensity that couple to the spring constant raise the particle’s
effective temperature from T0 ! T0/(1�3⌘

2

0

⌦2

0

/8�), where ⌘

2

0

= ⇡S

RR

. Here,
we show that multiplicative noise from laser intensity fluctuations corrodes the
particle’s force sensitivity. Following Bourret [133], we rewrite the original
equation of motion as

mẍ + m�ẋ + kx = G(t) (5.30)

with an effective thermal force equal to

G(t) = Fth(t) � m⌦2

0

⌘(t)x(t) (5.31)

Computing the autocorrelation of this force, we maintain that the two noise
sources are uncorrelated and independent from x(t). Assuming that ⌘

2

0

is small
enough that we haven’t exceeded the domain of stability (c.f. Eq. 5.21), the
autocorrelation is given by

⌦
G(t)G(t0)

↵
=
⌦
Fth(t)Fth(t

0)
↵

+ m

2⌦4

0

⌦
⌘(t)⌘(t0)

↵ ⌦
x

2

↵
(5.32)

= (2m�kBT0 + 2m

2⌦4

0

⌘

2

0

⌦
x

2

↵
)�(t � t

0)

The power spectral density of this force is given by

SGG[⌦] = (m�kBT0 + m

2⌦4

0

⌘

2

0

⌦
x

2

↵
)/⇡ (5.33)

Thermal fluctuations and frequency jitter correspond to a noise background
above which a force is measured. Integrating the force noise in measurement
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time ⌧F , the minimum detectable force is

F �
p

SGG/⌧F = [(m�kBT0 + m

2⌦4

0

⌘

2

0

⌦
x

2

↵
)/⇡⌧F ]1/2 (5.34)

Laser intensity fluctuations attenuate force sensitivity by raising the thermal
noise background. While using a levitated nanoparticle as a force sensor profits
from a very small mass m and incredibly weak damping � in its free-running
state, applications in force sensing will require added levels of control to the
laser intensity noise even though it is not a limitation for ground-state cooling.

Laser intensity fluctuations have not only a classical but also a quantum
origin [134]. The random arrival time of photons in effect generates a noisy
intensity, which also introduces frequency noise. The power spectral density
of photon fluctuations is S

PP

= ~!
0

P

0

/2⇡. When it is normalized by optical
power, the relative noise from photon shot noise is S

P
RR

= ~!
0

/(2⇡P

0

). Thus,
the noise strength is ⌘

2

ph = ~!
0

/(2P

0

). The force spectrum due to photon
recoil is S

F
rec

= ~!
0

Psc/(5⇡c

2), with which we find that the opto-mechanical
limit to force sensitivity with a levitated nanoparticle is given by
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where � = fsNA2k/2 and ⌘

fs

= 3NA2

/2 is the free-space single particle
cooperativity [55]. Eq. 5.35 tells us that photon recoils limit force sensitivity
and strong focusing of the laser field, which increases the cooperativity, may
further affect this. These quantum fluctuations will cause the oscillator’s phase
to diffuse [33]; the phase fluctuations will be tracked by the PLL and fed back in
order to counteract the frequency noise. Any force sensing protocol will require
feedback control to hold the particle in the regime of linear stability and suppress
frequency jitter [101]. For a particle with R = 68 nm and Psc = 17.5 µW, we
estimate the recoil-limited force sensitivity to be S

FF
rec

= 1.5 ⇥ 10�21 N/Hz1/2.
Compared to existing force sensors [135], we achieve similar force sensi-

tivites while operating at room temperature. This would alleviate the need for
complex cryogenics typically used in advanced force sensing platforms.
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5 Noise in the Trap

5.5 Conclusion

The studies conducted in this chapter further support the claim that a levitated
nanoparticle in UHV is in a regime of strong measurement backaction. We
revisit the claim that levitated opto-mechanics will profit from boundless Q-
factors by quantifying the contribution of laser intensity noise to reheating.

Limits to force sensitivity do indeed exist and are aggravated by the presence
of laser noise. This is a unique challenge to the levitated opto-mechanics
community that isn’t present in other cavity opto-mechanical systems.

Advanced state estimation protocols, including Kalman filtering, can profit
from the live, simultaneous readout of the laser noise to generate improved
feedback cooling protocols. Laser filter cavities may also benefit the next
generation of levitation in order to suppress intensity noise over a broader
bandwidth.
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6
Resolving the Classical to Quantum Transition

The goal of this chapter is to quantify the current experimental limit of feedback
cooling and develop sideband thermometry techniques to probe the transition
from classical to quantum mechanical descriptions of the particle’s motion.

6.1 Introduction

Having studied mechanisms of dissipation in the trap, we recognize that cooling
the particle into the ground state is limited by the balance of feedback cooling,
measurement imprecision, and recoil heating. Feedback cooling is used to
suppress backaction from the trapping laser and thus contains a record of
the field’s quantum fluctuations. As such, the feedback is deemed ‘quantum
feedback’ as it is being used to suppress motion resulting from measurement-
induced backaction [15, 27, 136–138].

Feedback cooling, however, is limited by the measurement imprecision.
Reducing measurement imprecision would enhance the feedback efficiency and
cool the particle further. In this chapter, we first present experimental results
from feedback cooling under improved measurement precision. Next, we
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6 Resolving the Classical to Quantum Transition

describe an alternate technique for determining the average phonon occupation
under feedback cooling using heterodyne interferometry. Thereafter, we discuss
sources of noise in phonon calibration and the implications of these experiments
in probing the quantum behavior of motion. Finally, we conclude with an
outlook.

6.2 The micro-Kelvin regime

The efficiency of feedback cooling depends on the information content of the
measurement record. A trapped particle scatters part of the optical field as it
moves around the focus. The scattered field’s phase is directly correlated to the
particle’s position. Collecting more of the scattered field improves our detection
efficiency ⌘c and consequently reduces measurement imprecision S

imp

.

6.2.1 Reducing Measurement Imprecision

To improve measurement imprecision, the experimental setup was modified
by replacing the collection lens with a higher NA asphere from Lightpath
(with an effective NA = 0.77 at � = 1064 nm) and modifying the splitting
ratio of the transmitted light. Instead of splitting light equally three ways,
90% of the transmitted light was sent to the y-axis detector and the remaining
10% was split between x and z. The focal power was slightly reduced to
P

0

= 60 mW. With the higher NA and the increased transmission for detection
in y, the total detected optical power was P

det

= 40 mW, which exceeds the
damage threshold for commercially available photodetectors. As a result, we
designed and built our own balanced photodetectors using C30642GH InGaAs
photodiodes from Excelitas, which have a damage threshold exceeding 100 mW,
and a transimpedance amplifier based on the OPA656 operational amplifier.
The detector bandwidth is 1 MHz.

The compromise of weak cooling in x and z yet enhanced precision in y was
chosen because y has the highest oscillation frequency and thereby the highest
ground state energy amongst the three axes. Because of its large oscillation
frequency, it also experiences the weakest reheating due to measurement
backaction (c.f. Eq. 4.27).
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6.2 The micro-Kelvin regime

First the trapped particle was brought to P

gas

= 3 ⇥ 10�8 mbar. At this
point the feedback gain was systematically increased to identify the temperature
minimizing gain and the phase delay of the feedback signal was adjusted to
compensate for electronic delay in cable lines and in the detection.

Figure 6.1: Microkelvin Cooling. Power spectral densities of the
motion in y at two pressures, P

gas

= 14.7 mbar (in red) and P

gas

=
3⇥ 10�8 mbar (in blue). The spectra were computed based on 200 time
traces measuring 100 msec in length and sampled at 625 kSa/sec.

Plotted in Fig. 6.1 are power spectral densities of the particle’s motion at two
different pressures. The blue spectrum is taken under feedback. At this point,
the peak displacement is (Sy(fy))

1/2 = 812.4 fm/
p

Hz against an imprecision
background of (S

imp

)1/2 = 295.0 fm/
p

Hz and linewidth of �

fb

/2⇡ = 710 Hz.
The signal to noise ratio is 2.75. We calculate the contribution due to mea-
surement backaction to be (S

ba

(fy))
1/2 = 714.1 fm/

p
Hz, or 87.9% of the

residual motion. The spectrum corresponds to a minimum phonon occupation
of n̄y = 15.2 ± 1.0, which equates to a center of mass motional temperature of
Ty = 101.4 ± 6.6 µK. We estimate the detection efficiency to be ⌘c = 0.006,
which is still less than the optimal estimate of ⌘c = 1.

For the parameters of this reconfigured system, we plot the phonon occupa-
tion versus scattered power in Fig. 6.2 to estimate our proximity to the standard
quantum limit. It shows the cooled particle’s phonon occupation against the
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Figure 6.2: Micro-Kelvin Standard Quantum Limit. A plot of the
model for phonon occupation versus feedback damping. Plotted in
blue is for the configuration of the system at T

fb

= 101 µK. When the
detection efficiency is increased from ⌘c = 0.006 to ⌘c = 0.012, the
dot-dashed line in black indicates that the phonon occupation would be
in the single-phonon regime.

contributions of measurement imprecision and backaction to the particle’s
motion in blue. Slightly improving the detection efficiency to ⌘

0
c = 0.012 and

raising the feedback damping to �

fb

/2⇡ = 1 kHz would bring the phonon
occupation down to the single-phonon regime.

Nonetheless, the levitated nanoparticle is not only in the regime of
strong measurement back-action, but also in the micro-Kelvin domain. A
levitated nanoparticle at micro-Kelvin temperatures constitutes a highly out-of-
equilibrium system because under feedback it is in competition with a bath of
optical fluctuations at T

ph

= ~!
0

/8 = 1692 K (c.f. Eq. 4.19), suggesting an
opto-mechanical compression of more than seven orders of magnitude.

6.3 Sideband Thermometry

There are several assumptions that enter into measurements of temperature and
calibration of the phonon occupation. First, the particle’s motion is assumed
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6.3 Sideband Thermometry

to be thermalized to a room temperature gas at T = 300 K when calibrating at
pressure P

gas

= 10 mbar. Recent work in photothermal heating suggests that
the absorption of light by the silica may raise its internal temperature and affect
the actual equilibrium temperature [139]. The optical gradient force is taken in
the lowest order to be a restoring force forming an harmonic trapping potential;
conditioned on this potential form, we invoke the equipartition theorem to
convert detector voltage into an oscillation amplitude. Nonlinearities, however,
were shown to influence the particle’s natural thermal motion, distort spectra
of its motion [101, 140], and would falsify the assumption of equipartition of
energy [141]. Calibrations of detector voltage to displacement are taken at high
pressures and assumed to stay constant over the duration of evacuation and
measurement, which can often proceed for days. In this time, small changes to
the particle’s density or drifts in intensity can affect the center of mass frequency
⌦
0

and add error to the calibration [100].
Though the measurements of micro-Kelvin temperatures have been repeated

in our laboratory, alternate and precise methods of thermometry are needed.
A standard within the opto-mechanical community is the calibration tone, as
described in section 2.4.2, which uses a well-defined modulation to the refer-
ence arm of a homodyne interferometer to calibrate the oscillator’s amplitude.
Though robust, this technique requires the calibration tone and interferometric
alignment to remain stable over the course of the measurement and assumes the
particle’s mass in order to determine temperature and consequently the phonon
occupation.

In the following, we describe the technique of sideband thermometry and
how it may be used for absolute measurements of the phonon occupation and
temperature. It exploits the fundamentals of quantum mechanics – the quantum –
which generates an asymmetry in the detected spectrum of the particle’s motion
because the zero-point fluctuations start to make a dominant contribution to the
motion [142]. We present our experimental implementation and progress in
resolving this asymmetry. We discuss classical sources of noise leading to an
asymmetry and conclude with proposals for improving upon the status quo.
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6 Resolving the Classical to Quantum Transition

6.3.1 Heterodyne Interferometry

When the particle moves around the focus, it shifts the phase of the electric
field that it scatters. It scatters light equally in the forward and backward
directions because it is a Rayleigh scatterer. Particle tracking and the feedback
cooling signal are derived from forward scattered light. In order to access the
backscattered light, we exchange the microscope objective for an Olympus
LCPLN100NIR with NA = 0.85 in air because it is optimized for transmission
at � = 1064 nm.

The backscattered light from the particle propagates to the lens, as illustrated
in Fig. 6.3. The backscattered field is given by

E

sc

(t) = Ē

sc

exp [i(!
0

t + kx(t))] (6.1)

Here, we use x(t) to indicate the particle’s position along one dimension for
simplicity. The scattered field is interfered at the beamsplitter with a frequency-
shifted local oscillator

E

ref

(t) = Ē

ref

exp [i(!
0

+ �!)t] (6.2)

The frequency shift is obtained using an acousto-optic modulator (AOM).
Interference of the two fields gives a photocurrent equal to

I(t) = 2Ē

sc

Ē

ref

(cos(�! t) � kx(t) sin(�! t)) (6.3)

when kx(t) ⌧ 1. An autocorrelation of the detected signal is given by [142]

hI(t)I(t + ⌧)i = 2

✓
4⇡Ē

sc

Ē

ref

�!

◆
2 �

1 + k

2 hx(t)x(t + ⌧)i
�
cos(�! ⌧)

(6.4)
For an harmonic oscillator x(t) the homogeneous solution to the classical
equation of motion is

x(t) = x

0

cos(⌦
0

t) + (p
0

/m⌦
0

) sin(⌦
0

t) (6.5)
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6.3 Sideband Thermometry

Figure 6.3: Heterodyne Interferometry in Backscattering The
scattered field from a trapped nanoparticle is collected in backscattering
by inserting a Faraday rotator (FR) in the beam path. When the
illuminating field enters the trap with linear horizontal polarization,
it is scattered back and converted into linear vertical polarization. A
reference field is generated by frequency shifting the optical field with
an acousto-optic modulator (AOM) set to frequency �!. The two
fields interfere at the beam-splitter (BS) and are coupled to a balanced
photodetector. The photodetector’s output is mixed down with a local
oscillator that differs by 1 kHz.

where x(0) = x

0

and p(0) = p

0

. The classical autocorrelation function is

hx(t)x(t + ⌧)i =
1

2
cos(⌦

0

⌧)

 
⌦
x

2

0

↵
+

⌦
p

2

0

↵

(m⌦
0

)2

!
(6.6)

Here, we separated the motional and temporal degrees of freedom in computing
an expectation value. The oscillatory terms were averaged over one cycle, or
(⌦

0

/2⇡)
R
2⇡/⌦

0

0

dt cos(⌦
0

t) cos(⌦
0

(t + ⌧)) = cos(⌦
0

⌧)/2.
Next we turn to the quantum correlation function. Using the definitions of

the position and momentum operator for a quantum harmonic oscillator, which
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are given by x̂

0

=
p
~/2m⌦

0

(â + â

†) and p̂

0

= i

p
~m⌦

0

/2(â† � â), and the
commutation relationship [â, â

†] = 1, we compute the position autocorrelation
for the quantum harmonic oscillator

Gx(⌧) = hx̂(t)x̂(t + ⌧)i (6.7)

=
1

2
cos(⌦

0

⌧)

✓
hx̂

0

x̂

0

i +
hp̂

0

p̂

0

i
(m⌦

0

)2

◆
+

1

2m⌦
0

sin(⌦
0

⌧) h[x̂
0

, p̂

0

]i

=
⌦
x

2

zp

↵
((2n̄ + 1) cos(⌦

0

⌧) + i sin(⌦
0

⌧))

The autocorrelation is written in terms of the zero-point fluctuations,
⌦
x

2

zp

↵
=

~/2m⌦
0

, and the Bose-Einstein occupation, n̄ = 1/(exp [~⌦
0

/kBT0] � 1).
The normalized intensity autocorrelation function is

GI(⌧) =
1

2
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Although position is a Hermitian observable with real eigenvalues, its auto-
correlation function (c.f. Eq. 6.8) is complex [142]. Though unintuitive for a
measurable signal to have a complex autocorrelation, this result directly boils
out of the commutator relation [x̂, p̂] = i~. It tells us that the two conjugate
variables x̂ and p̂ are linked. Applying the Wiener-Khinchin theorem, we
compute the power spectral density of the photocurrent by taking a Fourier
transform of the autocorrelation function, which gives

SII(⌦)/⇡ = �[⌦ � �!] + �[⌦ + �!] (6.9)
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)] + (n̄ + 1) �[⌦ � (�! � ⌦
0

)])

From the expression in Eq. 6.9 for SII(⌦) we find that the power spectral
density of the detected signal is asymmetric about the heterodyne carrier
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frequency by the equivalent of one mechanical phonon.

6.3.2 Scattering Asymmetry

The asymmetry has two origins, the first of which is linked to the quantum nature
of the harmonic oscillator. When an electric field interrogates the particle’s
position, it scatters away from it and has a fixed phase relationship with the
particle’s position. As we saw in Ch. 4, when a photon scatters away from
the particle, it kicks it and causes a momentum shift in the particle’s motion.
The momentum exchange between the particle and the photon may either add
or remove energy from the particle’s motion. When energy is removed, the
photon is scattered away at a higher frequency !

0 = !

0

+ ⌦
0

, and when energy
is added, the photon scatters away at a lower frequency !

00 = !

0

� ⌦
0

. This
process is illustrated in Fig. 6.4.

If the particle is in the ground state of its potential, quantum mechanics tells
us that its energy can’t be further reduced; the annihilation operator â acting
on the ground state |n = 0i would return 0, which means that the operation
cannot be done; however, the creation operator â

† acting on the ground state
would raise the state to |n = 1i. Thus, a photon interrogating the particle’s
position cannot remove energy from the motion when the particle is in the
ground state, but it can add energy, which results in an asymmetric number of

Figure 6.4: Scattering Asymmetry Illustration. Reheating from the
photon scattering process may shift the harmonic oscillator’s energy
level from n to n � 1, which increases the photon’s energy from ! to
!

0; or may shift the level from n to n + 1, decreasing ! to !

00.
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6 Resolving the Classical to Quantum Transition

photons scattered at !

0 and !

00.
Although the imbalance of scattered photons occurs from a restriction due

to quantum mechanics, it is important to recognize that it originates from the
measurement process itself. Momentum kicks to the particle originate from
fluctuations in the amplitude quadrature of the optical field. Scattering of
that field by the particle changes fluctuations in the scattered field’s phase
proportional to the particle’s position fluctuations, which themselves originate
from the field’s amplitude fluctuations. Recoil scattering therefore introduces a
correlation between the amplitude and phase fluctuations of the optical field,
which are by definition uncorrelated. We illustrate this interplay in Fig. 6.5.

6.3.3 Experimental Implementation

An experimental implementation of the heterodyne detection was carried out
with a trapped nanoparticle (R = 68 nm) in UHV. The backscattered light
was guided onto a beamsplitter using two mirrors. Power scattered by the
particle is Psc = 20.4 µW; half of that is scattered backward through an
objective with NA = 0.85 and transmission efficiency ⌘t = 0.84, which results
in P

0
sc = 4.9 µW available for measurement; experimentally we measure

P

meas

sc = 2.1 µW (using a ThorLabs powermeter), which agrees with the
strong-focusing corrected intensity P

c0
sc = 1.9 µW. The laser field enters the

objective at a very small angle and the backscatter is walked 50 cm away to

Figure 6.5: Amplitude-Phase Correlations. The illumination field
E

0

(t) is used to trap and measure the particle’s position. It scatters
from the particle into Escexp [ikx(t)], where the phase fluctuations
contain a record of the particle’s position. Fluctuations in the particle’s
position result from amplitude fluctuations of the light field that drive the
particle into motion. The scattering process introduces amplitude-phase
correlations of the optical field.
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isolate it from stray backreflections.
A reference beam is generated with an AOM with frequency shift �! =

26.001 MHz. We couple it through a polarization-maintaing fiber (PMF) and
guide it to the same beamsplitter. A telescope exists along the backscatter
beam path to increase the spot size and a unit gain beam expander exists on the
reference path to better match the beam waist to the backscatter’s. There are
20 mW of power in the reference arm. The two fields were coupled into a PMF
for alignment and polarization matching; this was later removed and the beams
were sent to a balanced photodetector, as illustrated in Fig. 6.3.

The heterodyne signal is measured with a homebuilt balanced photodetector.
To track the two sidebands with our data acquisition system, we mix down
the electronic signal using a mixer local oscillator frequency of �! � !m

for !m = 1 kHz and derived from the same source. Correspondingly, the
n̄ ! (n̄+1) sideband, referred to as the Stokes’ sideband, appears at (⌦

0

�!m)

and the n̄ ! (n̄� 1) sideband, referred to as the anti-Stokes’ sideband, appears
at (⌦

0

+ !m).
Plotted in Fig. 6.6a,b are the homodyne (forward scattering) and heterodyne

(backscattering) spectra simultaneously obtained under weak feedback gain.
The forward scattering spectra are calibrated in pm2/Hz. The heterodyne
spectrum is normalized by the peak height of the Stokes’ sideband, which is
why it is at 1.0. The calibrated occupation number in forward scattering is
n̄f = 178.6, whereas the ratio of the two peaks in backscattering is R = 0.925.
Doubling the feedback gain, we plot the response in Fig. 6.6c,d. Here, the
calibrated occupation in forward scattering is n̄f = 108.5 and in backscattering
the ratio is R = 0.823. The ratio would suggest an occupation of n̄ = 4.7.
Clearly, there is a significant discrepancy between the two methods.

6.3.4 Asymmetry-Generating Noise

At the time of the writing of this thesis, we do not make any conclusions on the
measured sideband ratios but instead review systematically the contributions to
the discrepancy and then propose how a researcher may continue.

113



6 Resolving the Classical to Quantum Transition

Figure 6.6: Heterodyne Spectra in y. Plots of the forward (a, c) and
backward (b, d) scattered signal spectra in the y axis at two different
feedback gain settings. The spectra in (b) and (d) are measured through
a heterodyne interference in backscattering after the detector signal is
mixed down at �! � !m = 26.008 MHz (in b) and 26.009 MHz (in d).
These spectra are for a particle with nominal radius R = 68 nm at a
vacuum pressure of P

gas

= 1.60 ⇥ 10�8 mbar. Overlaid on each graph
are fits to Lorentzians. The values reported in the text are obtained from
these fits.

6.3.4.1 Detector Response

First and foremost, we interrogate the detector used to measure the heterodyne
spectrum because the measured signal to noise ratio in back-scattering is much
lower than that in forward scattering, despite simultaneous measurements.
When 20 mW of power hits the detector, we measure a noise floor of Sv(f) =

4 ⇥ 10�14 V2

/Hz.
The detector has responsivity R = 0.77 A/W, transimpedance gain Rti =

2.5 k⌦, and a factor of G

bpf

= 5 gain on the output. The signal output of the
detector is mixed down with a Mini-Circuits ZAY-3+ frequency mixer using a
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6.3 Sideband Thermometry

local oscillator at �! � 1 kHz. The mixer output has a Lc = 6 dB conversion
loss. Putting these numbers together gives

SvN (f) = (2eRP

0

)R2

tiG
2

bpfLc = 4.3 ⇥ 10�14 V2

/Hz (6.10)

The quantitative agreement between the calculated and measured noise floors
indicates that the measurement is shot noise limited.

The detector may also filter the optical response if its transfer function isn’t
flat, which could artificially give rise to an asymmetry. With an input diode
capacitance of 100 pF and op-amp gain-bandwidth product of fgbp = 3.9 GHz
(Model OPA847), the diodes and TIA form a cutoff frequency of fRC =

1/(RtiCin). Then the effective bandwidth is the geometric mean of the two
parameters, or fbp =

p
fRCfgbp = 59.6 MHz, which is maintained by a 2 pF

feedback capacitor. The signal is bandpass filtered and amplified on the output
by a factor of 5 and includes a first-order low-pass filter with f

3dB = 72 MHz.
The optical response is well within the detector’s bandwidth. A simulation in
LTSpice indicates that the difference in response at (�!�⌦

0

) and (�! +⌦
0

) of
the detector to be 67 mdB, compared to the measured peak height difference of
383 mdB. Accounting for this discrepancy raises the estimate to an occupation
of n = 13.2.

6.3.4.2 Optical Response

The interference of the reference and scattered signals may be corrupted by
classical noise sources including laser intensity and phase noise. An ongoing
subject of study in the opto-mechanical community [27, 124, 125, 143, 144],
laser noise contributions in interferometry were first elucidated from a quantum-
optical perspective by Shapiro [145]. When the local oscillator in a balanced
interferometer is much stronger than the signal field, the signal to noise ratio is
given by [57]

SNR =

⌦
(�P (t))2

↵

hP (t)2i =
2
p

⌘P

sig

P

ref

P

ref

+ P

sig

' 2
q

⌘P

sig

/P

ref

(6.11)
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Here, ⌘ is the detection efficiency and P

ref

� P

sig

. When the local oscillator
has amplitude fluctuations, the reference field is E

ref

= E

(0)

ref

(1 + ✏(t)), where
✏(t) is a small fluctuation. Fluctuations in the power would amount to P

ref

=

P

(0)

ref

(1 + 2✏(t)).
Balanced detection in interferometry is used because classical noise that

is common-mode to both output ports of a beamsplitter are subtracted away
in the detector. Shot noise, however, is not because a photon can either exit
one port of the beamsplitter or the other. According to Shapiro [145], classical
fluctuations in the local oscillator multiply with the signal field and lead to gain
randomness on the signal. This would reduce the SNR to

SNR0 =

⌦
(�P (t))2

↵

hP (t)2i =
2
p

⌘P

sig

/P

ref

1 + ⌘

0

p
⌘P

sig

/P

ref

(6.12)

Here, ⌘

0

is the fractional rms local oscillator amplitude fluctuations, or its
relative intensity noise. This means that the limit to fluctuations is governed
by the detection efficiency, or ⌘

2

0

⌧ P

ref

/⌘P

sig

, in order to resolve the motion
above the local oscillator’s noise. In our current experimental setup, though the
local oscillator is derived from the same laser source, the AOM drive electronics
raise the intensity fluctuations of the local oscillator. Reducing that noise source
is one avenue to pursue in improving the heterodyne spectrum.

Parametric modulation, which occurs at 2⌦
0

, may also be converted to the
sidebands in the interference process. This would raise the effective phonon
number as the feedback gain is increased. Eq. 6.4 would become

I

0(t) = 2Ē

sc

Ē

ref

(1 + 2✏

1

cos(2⌦
0

t))[cos(�!t) � kx(t) sin(�!t)] (6.13)

which would change the value of the sideband peak heights from (n + 1, n) to
(n+1+✏

1

, n+✏

1

). We imagine this may be a limitation to accurately determin-
ing phonon occupation through heterodyne ratios in the current experimental
configuration, in which one single laser beam is used for trapping, feedback,
and measurement.
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6.3 Sideband Thermometry

6.3.4.3 Forward Scattering Interferometry

Interferometry in forward scattering is also possible; however, the added shot
noise at the detector can mask our ability to detect the particle’s motion. In this
instance, there are three interfering fields, including the forward-scattered field,
transmitted laser field, and a local oscillator, or

E

sc

= E

1

exp [i!
0

t + ikx

0

+ ikx(t) + i⌘(z)] (6.14a)

E

l

= E

2

exp [i!
0

t + ikx

0

+ i⌘(z)] (6.14b)

E

lo

= E

3

exp [i!
1

t] (6.14c)

The scattered field E

sc

would interfere with both the laser field El and the
heterodyne local oscillator E

lo

. The total intensity on the detector would be

I(t) = E

2

1

+ E

2

2

+ E

2

3

+ 2E

2

E

3

sin(!
1

t) (6.15)

+ 2E

1

E

3

cos(!
1

t � kx(t)) � 2E

2

E

1

sin(kx(t))

The component of interest is 2E

1

E

3

cos(!
1

t � kx(t)), with autocorrelation

h�I
2

(t)�I
2

(t + ⌧)i = 2E

2

1

E

2

3

cos(!
1

⌧)
�
1 + k

2 hx(t)x(t + ⌧)i
�

(6.16)

The single-sided power spectral density of this signal is

S

2

(⌦) / P

sc

P

lo

⇡

�
�(⌦ � !

1

) + k

2

Sxx(⌦ � !

1

)
�

(6.17)

The first three terms in Eq. 6.15 contribute a shot noise background such that
the signal to noise ratio is

SNR / (⌘
c

P
sc

)P
lo

k2

2eR(⌘
c

P
l

+ P
lo

)
S
xx

(⌦ � !

1

) (6.18)

Here, we have included the detection efficiency ⌘c.
When P

lo

is much stronger than ⌘cP
l

, the heterodyne interference is visible
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6 Resolving the Classical to Quantum Transition

above the added shot noise. The SNR scales with the detection efficiency ⌘c, or

lim
P
lo

�⌘cP
l

SNR / (⌘
c

P
sc

)k2

2eR S
x

(⌦ � !

1

) (6.19)

However, when P

lo

is much weaker than ⌘cP
l

, the heterodyne interference is
increasingly masked by the shot noise of the laser field, or

lim
P
lo

⌧⌘cP
l

SNR / (⌘
c

P
sc

)k2

2eR
P
lo

⌘

c

P
l

S
x

(⌦ � !

1

) (6.20)

The interference visibility is attenuated by a factor ⌘cP
l

/P

lo

.
To maximize interference visibility would require Pl + P

ref

� 100 mW
power on the detector while maintaining the bandwidth to track the 26 MHz
shift. At the moment, such requirements are inaccessible owing to the large
capacitances even of the high power photodiodes used in aspects of this thesis.
An alternate scheme would use pseudo-heterodyne interferometry at a lower
frequency, but would have a lower theoretical signal to noise ratio [146].

Recent opto-mechanical studies have shown that classical laser noise can
enhance the asymmetry used in measuring phonon occupation [124]. Laser
noise coupling to the mechanical resonator could drive it into motion; light
used to measure the motion resulting from intensity noise driven motion would
constructively interfere with the Stokes’ sideband and destructively interfere
with the anti-Stokes sideband to generate an enhanced asymmetry given by [27]

R =
n̄

tot

� n̄

cl

n̄

tot

+ n̄

cl

+ 1
(6.21)

Classical intensity fluctuations, the focus of the studies in Ch. 5, would result in
a measured occupation number n̄m = R/(1 � R) to be less than it actually is.
The contribution of RIN is given by

n̄

cl

=
1

2

✓
1

2

Psc

~!
0

S

RIN

[⌦
0

] � 1

◆
= 0.043 (6.22)

Here, we estimate the contribution based on our measured RIN under laser
stabilization, or �148 dB/Hz. If the value measured in forward scattering is
n̄

tot

= 108, we would measure n̄m = 99.35 from the ratio of the heterodyne
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6.3 Sideband Thermometry

peaks. Though there is a discrepancy from the classical fluctuations, it still
doesn’t account for the large difference.

6.3.5 Proposed Design Changes

Several challenges have confronted the experimentalist in the process of mea-
suring and controlling the particle’s motion. Here, we offer three suggestions
for improving measured signals, cooling further toward the ground state, and
precision force sensing.

6.3.5.1 Local Oscillator Mode Shaping

A major challenge in the interferometric technique in Ch. 6.3.1 is the limited
signal to noise ratio in measuring the transverse axis motion in y. When the
particle moves around the focus, it scatters a field whose phase is directly
correlated with that of its position. As we saw in Ch. 2, phase changes occur in
three dimensions when the particle moves. Using split detection, we map out
how the phase in the scattered field changes with respect to the trapping field,
which is a Gaussian mode.

Recent work harnessing the resources of different electromagnetic field
modes in interferometry indicates that particle tracking in the transverse axes
can be improved by an order of magnitude by tailoring the local oscillator’s
spatial mode [147]. We illustrate the proposed detection scheme in Fig. 6.7.

When the particle moves in the transverse axes, it scatters the input Gaussian
TEM

00

mode into either the TEM
01

or TEM
10

mode. These are linearly
independent basis modes that construct the electromagnetic field. TEM

00

is
centro-symmetric, like the z-axis interference pattern of Fig. 2.5a. TEM

10

has
left-right symmetry and TEM

01

has up-down symmetry.
In the current detection scheme for y-axis motion, we split the top and bot-

tom halves of the beam. If instead we interfere the particle scatter with a TEM
01

beam, the beamsplitter introduces a ⇡ phase shift between the transmitted and
reflected fields, which constructively interferes with the top half in transmission
and with the bottom half in reflection (illustrated in yellow in Fig. 6.7).

Theoretical estimates indicate that the conventional split detection scheme
is only 80% efficient for displacement measurements whereas the shaped local
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6 Resolving the Classical to Quantum Transition

Figure 6.7: Local Oscillator Mode Shaping A balanced interferom-
etry scheme that uses a tailored local oscillator mode. The signal
beam E

sig

is the scattered field from the particle. The reference
field E

lo

derives from the same laser but is introduced separately.
Their interference occurs at the beam splitter and the corresponding
photocurrents are subtracted to generate the balanced signal.

oscillator would bring displacement sensitivity to the Cramer-Rao bound, or
100% efficient [148]. The increase results from the sharp discontinuity at
the center of the local oscillator mode, which increases the sensitivity to
displacement from S

split

to S
mode

, which are given by

S
split

=

r
2

⇡

2
p

Nsc

w

0

(6.23a)

S
mode

=
2
p

Nsc

w

0

(6.23b)

Here, Nsc is the number of scattered photons and w

0

is the beam waist.

6.3.5.2 Hybrid Tweezer Cavity

As we have seen, cooling a particle toward the ground state requires low dissi-
pation � and low measurement imprecision S

imp

when using active feedback.
With parametric feedback, we can compress the peak displacement to within a
factor of 8 above the noise floor.

To overcome the issues of imprecision noise in measurement based feedback
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6.4 Outlook

Figure 6.8: Hybrid Optical Tweezer and Cavity An illustration of
a hybrid optical tweezer and optical cavity trap. The tweezer is used
to hold the particle in place and, using feedback, pre-cool it into the
micro-Kelvin regime. An optical cavity is an interface for both resolved
sideband cooling and projecting non-classical states of light onto the
mechanical object.

and, more importantly, for future tests in the macroscopic scaling of quantum
phenomena, an optical cavity is necessary. Initial work in levitated nanoparticle
cavity-optomechanics [79, 89] suggests that a levitated nanoparticle in an optical
cavity alone is not sufficient. When a Gaussian optical mode is coupled into
a cavity, it is designed to address just a single mechanical degree of freedom –
along the cavity axis. As we have seen in Ch. 5, unstabilized intensity noise
can drive a particle out of the trap. First we would use feedback cooling to pre-
cool the particle and then implement existing protocols in resolved side-band
cooling [21] to further reduce the center of mass motion.

Initial tests of a hybrid approach demonstrated 12.5% reduction in the center
of mass motional temperature at medium vacuum pressures.

6.4 Outlook

The findings in this thesis represent a new frontier for levitated optomechanics,
one in which backaction from the laser field overwhelms the thermal motion
from the environment. We have brought optical levitation of nanoscopic matter
to a new regime, one in which a nanoparticle’s center-of-mass temperature is
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6 Resolving the Classical to Quantum Transition

100 µK despite its surroundings lying at 300 K. We have confined its motion to
a length scale that is smaller than the Bohr radius and quantitatively measured
the recoil momentum of photons scattering off of the nanoparticle.

At phonon occupations of n̄ = 15, we are slowly inching toward the holy
grail that is the quantum ground state of motion. It is the author’s opinion
that optical levitation will result in a paradigm shift for quantum technologies
by redefining the dissipation challenge. New materials and complex states
of the optical field will enable this technique to access a host of previously
inaccessible domains of physics. It will allow new tests of the fundamental
laws of physics and herald a new avenue of quantum metrology.
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A
Mathematical Conventions

In this appendix, we review the mathematical conventions used in this thesis.
Then we provide an illustrative example of their use in the context of the shot
noise arising from a DC current.

A.1 Fourier Transforms

The convention of Fourier transformÂ used in this thesis is

x̂(!) =
1

2⇡

Z 1

�1
dt x(t)ei!t (A.1a)

x(t) =

Z 1

�1
d! x̂(!)e�i!t (A.1b)

For a signal x(t) it’s autocorrelation function is defined as

⌦
x(t)x(t + t

0)
↵

= lim
T!1

1

T

Z T/2

�T/2
dt x(t)x(t + t

0) (A.2)
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Accordingly, the Wiener-Khinchin-Kolmogorov Theorem, which relates power
spectral density with the autocorrelation function, is

Sxx(⌦) =
1

2⇡

Z 1

�1
dt

0 ⌦
x(t)x(t + t

0)
↵
e

i⌦t0 (A.3a)

⌦
x(t)x(t + t

0)
↵

=

Z 1

�1
d⌦ Sxx(⌦)e�i⌦t0 (A.3b)

Sxx(⌦) is the power spectral density of the signal x(t). Here, spectra are defined
in terms of angular frequency. Spectra obtained from electronic instrumentation
and apparatuses are often given in ordinary frequency (f = ⌦/2⇡) and are
single-sided. To convert between them, multiply by 4⇡, or

Sx(f) = 4⇡Sxx(⌦) (A.4)

The script S indicates ordinary frequency and the single x in the denominator
indicates single-sided. By this convention, the spectra can be directly integrated
over a fixed bandwidth (B = 2⇡b) to get the variance of the signal, or

�

2

x =

Z b/2

�b/2
df Sx(f) (A.5)

A.2 Shot Noise

An illustrative example is the shot noise of a current. Schottky derived the
autocorrelation function arising from the discrete nature of electrons as [149]

⌦
I(t)I(t + t

0)
↵

= qĪ�(t � t

0) (A.6)

where Ī is the average value of the current. Accordingly,

SII(⌦) = qĪ/2⇡ (A.7a)

SI(f) = 2qĪ (A.7b)
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The variance is computed within a bandwidth B = 2⇡b, or

�

2

I = 2

Z B/2

B/2
d⌦ SII(⌦) = qĪB/⇡ = 2qĪb (A.8a)

�

2

I =

Z b/2

�b/2
df SI(f) = 2qĪb (A.8b)

which agree with Schottky’s predictions. Accordingly, the single-sided spectral
density is defined as

Sx(f) = 2

Z 1

�1
dt

0 ⌦
F (t)F (t + t

0)
↵
e

i2⇡ft0 (A.9)
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B
Stochastic Averaging under Parametric
Modulation

The goal of this document is to explain an analytical model for the PLL-based
feedback and the influence of measurement imprecision in the feedback loop.

The equation of motion under feedback is

ẍ + �ẋ + ⌦2

0

(1 + ⇣(t))x = Fth(t)/m (B.1)

where ⇣(t) = ⇣

0

cos (⌦mt) and hFth(t)Fth(t
0)i = 2m�kBT0�(t � t

0). In this
derivation, we will hold the feedback to be a weak modulation such that the
particle motion can be approximated as

x(t) = A(t) cos (⌦
0

t + '(t)) (B.2)

where the amplitude A and phase ' contain components that are large but
slowly varying. The PLL modulation will have a phase given by

⌦mt = 2⌦
0

t + 2✓m(t) + ✓

0

(B.3)
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where ✓m is the PLL’s time-varying tracking phase and ✓

0

is a constant phase
offset. The phase error is defined as ⌫ = ' � ✓m.

We will show that the amplitude and phase error under feedback cooling
(when ✓

0

= ⇡/2) vary according to

Ȧ = �
✓

1

2
� +

1

4
⇣

0

⌦
0

cos (2⌫)

◆
A +

kBT0�

2m⌦2

0

1

A

+ ⇠

0
F

(B.4)

⌫̇ = �
✓
�1

4
⇣

0

⌦
0

sin(2⌫) + 4Bl sin(⌫)

◆
+

1

A

(⇠
imp

+ ⇠

00
F

) (B.5)

where Bl is the PLL’s bandwidth and ⇠ are random fluctuating excitation terms
resulting from the thermal force (⇠0

F

, ⇠

00
F

) and the measurement imprecision
(⇠

imp

).
The solution is structured as follows:

1. Standard Form : Defining A, '

2. PLL Motion : Defining ⌫

3. Simplified Form : Dynamics of A, ⌫

4. Truncated Equations : Deterministic Averaging

5. Langevin Equations : Stochastic Averaging

6. Coupled Equations : Ā and ⌫̄

We first define the amplitude A and particle oscillation phase ' to get the
system equations in standard form. Second, we define the equation of motion
for the phase error ⌫ in a phase-locked loop. Then, we recast the dynamics
in terms of the phase error ⌫ = ✓m � ' and derive the simplified equations
which do not contain rapid oscillations. Next, we eliminate oscillations from
the nonfluctuational (or deterministic) terms to derive the truncated equation.
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B Stochastic Averaging under Parametric Modulation

Finally, using the techniques of stochastic averaging, we recover the Langevin
equations of Eqs. (B.4),(B.5).

B.0.1 Standard Form

We rewrite the equation of motion in Eq. (B.1) as

ẍ + ⌦2

0

x = ��ẋ � ⌦2

0

⇣

0

cos (⌦mt)x + Fth(t)/m (B.6)

Here, we establish a few assumptions:

• Assumption 1 : ⇣

0

⌧ 1

• Assumption 2 : cos (⌦mt) is in phase with the particle’s oscillation

• Assumption 3 : ⌦2

0

⇣

0

cos (⌦mt)x doesn’t change the particle’s motion in
one oscillation cycle

Based on these assumptions, we form the ansatz for the particle’s oscillation
given in Eq. (B.2). We take a derivative of x(t) with respect to time t to get the
velocity ẋ(t)

ẋ(t) = Ȧ(t) cos (⌦
0

t + '(t)) � A(t) sin(⌦
0

t + '(t))(⌦
0

+ ˙
'(t)) (B.7)

Next, we make another assumption

• Assumption 4 : A(t) and '(t) vary on timescales much longer than
2⇡/⌦

0

. Thus, Ȧ ⇠ 0 in comparison to A and '̇ ⇠ 0 as compared to ⌦
0

.

Accordingly, the velocity is given by

ẋ(t) = �A⌦
0

sin (⌦
0

t + '(t)) (B.8)

In terms of x and ẋ, the amplitude and phase are given by

A

2 = x

2 + (ẋ/⌦
0

)2 (B.9)

' = � arctan (ẋ/⌦
0

x) � ⌦
0

t (B.10)
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B.0.2 PLL Equation of Motion

Here, we recreate a derivation by Viterbi of the PLL’s equation of motion.
The particle’s oscillation signal is

xd(t) =
p

2A(t) sin (⌦
0

t + '(t)) + n(t) (B.11)

where n(t) is the measurement imprecision noise. It can be split into two
separate quadratures, or

n(t) =
p

2n

1

(t) sin(⌦
0

t) +
p

2n

2

(t) cos(⌦
0

t) (B.12)

where n

1

(t) and n

2

(t) are effectively independent and uncorrelated. The PLL’s
voltage controlled oscillator (VCO) has output signal

x

vco

(t) =
p

2K

3

cos(⌦
0

t + ✓m(t)) (B.13)

The PLL control loop operates based on the phase difference between x

det

and
x

vco

; a simplistic model is illustrated in Fig. B.1.

K1

e(t)
✓̇m(t) = K2e(t)

VCO

xd(t)

xvco(t)

Figure B.1: PLL Schematic A phase-locked loop is drawn with an
input signal and the loop tracking signal. n(t) is the measurement
imprecision and A is the oscillation amplitude.

The mixer generates the product of the particle motion and the VCO (here
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B Stochastic Averaging under Parametric Modulation

the reference), which is

xd · xvco

= 2{A sin(⌦
0

t + '(t)) + n

1

(t) sin(⌦
0

t) + n

2

(t) cos (⌦
0

t)}
⇥ {K

3

cos (⌦
0

t + ✓m(t))}
= K

3

{A sin ('(t) � ✓m(t)) � n

1

(t) sin (✓m(t)) + n

2

(t) cos (✓m(t))

+ A sin (2⌦
0

t + '(t) + ✓m(t))

+ n

1

(t) sin (2⌦
0

t + ✓m(t)) + n

2

(t) cos (2⌦
0

t + ✓m(t))} (B.14)

The mixer output consists of terms near DC and terms at 2⌦
0

. The high
frequency terms are filtered away, which results in an error signal given by

e(t) = K

1

K

3

{A sin ('(t) � ✓m(t)) � n

1

(t) sin (✓m(t)) + n

2

(t) cos (✓m(t))}
(B.15)

Let ⌫(t) = '(t) � ✓m(t) and K = K

1

K

2

K

3

. The VCO integrates the error
signal with a certain gain K

2

and adjusts the phase of its output by

✓̇m(t) = K

2

e(t) (B.16)

The phase error is then given by

⌫̇(t) = '̇(t) � K

2

e(t) (B.17)

= '̇(t) � K(A sin (⌫(t)) � n

1

(t) sin (✓m(t)) + n

2

(t) cos (✓m(t))

= ˙
'(t) � K(A sin (⌫(t)) + n

0(t))

where n

0(t) = �n

1

sin ✓m + n

2

cos ✓m. When K = 4Bl/A the phase error
varies as

⌫̇(t) = ˙
'(t) � 4Bl sin (⌫(t)) � 4Bl

A

n

0(t)

Here there is an additional assumption, which is

• Assumption 5 : The phase error equation ⌫̇ describes the PLL in a locked
state.
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B.0.3 Simplified Form

Next, we want to compute how A and ' vary as a function of t. Defining
�(t) = ⌦

0

t + '(t) the derivatives are

Ȧ =
ẋ(ẍ + ⌦2

0

x)

⌦2

0

(x2 + (ẋ/⌦
0

)2)1/2
(B.18)

=

h
1

�sin �

⌦
0

(�A⌦
0

sin � � A⌦2

0

⇣

0

cos(⌦mt) cos �)

h
2

� sin �

m⌦
0

Fth(t)

'̇ = � x

⌦
0

A

2

(ẍ + ⌦2

0

x) (B.19)

=

h
3

� cos �(� sin � � ⌦
0

⇣

0

cos(⌦mt) cos �)

h
4

� cos �

m⌦
0

A

Fth(t)

Here, we have defined the deterministic (h
1

, h

3

) and the stochastic (h
2

, h

4

)
components of the equations.

The phase error varies as

⌫̇ = '̇ � 4Bl sin(⌫) � 4Bl

A

n

0(t) (B.20)

=

h
(⌫)
3

� cos �(� sin � � ⌦
0

⇣

0

cos(⌦mt) cos �) � 4Bl sin(⌫)

h
(⌫)
4

� cos �

m⌦
0

A

Fth(t)

h
5

�4Bl

A

n

0(t)

where n

0(t) is the noise due to measurement imprecision and Bl is the PLL
tracking bandwidth. We defined new components as h

(⌫)
3

and h

5

.

B.0.4 Truncated Equations

To analyze how A and ⌫ vary in time, we have to average over the rapid
oscillations in h

1

and h

(⌫)
3

. Averaging is applied to only keep contributions that
are relevant at the timescales associated with the dynamics of A, ', and ⌫ in
that specific case.
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B.0.4.1 Deterministic averaging of h

1

We expand h

1

as

h

1

= �1

2
�A(1 � cos (2⌦

0

t + 2'(t))) +
1

4
A⌦

0

⇣

0

(� sin(2✓m + ✓

0

� 2')

+ sin(4⌦
0

t + 2✓m + ✓

0

+ 2')) (B.21)

Average over one oscillation cycle as

hh
1

i =
⌦
0

2⇡

Z
2⇡/⌦

0

0

h

1

(t) dt =
1

4
A⌦

0

✓
� 2�

⌦
0

� ⇣

0

sin (✓
0

� 2⌫)

◆
(B.22)

In the last step of Eq. (B.22) we substituted the phase error ⌫ = ' � ✓m.

B.0.4.2 Deterministic averaging of h

(⌫)
3

We expand h

(⌫)
3

as

h
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3
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2
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Now, we average over one oscillation cycle, or
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E
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� 2⌫) � 4Bl sin(⌫) (B.24)

B.0.4.3 Truncated Equations

We define the truncated equations as having the oscillatory terms removed.
Taking ✓

0

= ⇡/2, they are
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We can glean some insight from the truncated equations. First, the amplitude
decays at a rate that is �(1

2

� + 1

4

⇣

0

⌦
0

cos(2⌫)), which means that the feedback
increases the rate at which the particle’s motion is damped. Second, when the
phase error ⌫ is small, then it decays with �(�1

2

⇣

0

⌦
0

+ 4Bl), which means
that without any noise, the phase error will go to zero only when the feedback
gain is negligibly small. Large modulation depths ⇣

0

will cause the feedback
to inadvertently have an increase in phase error. The intuitive explanation for
this is that under strong feedback, the linewidth increases. When the linewidth
exceeds the PLL’s detection bandwidth, the PLL will miss information from
the particle’s oscillation.

B.0.5 Langevin Equations

The fluctuational terms h

2

, h

4

, and h

5

contain oscillatory terms. We are
interested in the smooth changes of amplitude and phase and not in the high-
frequency oscillations. Next, we get rid of the oscillatory terms by performing
a stochastic average as defined by Stratonovich.

B.0.5.1 Expectation Values of the Thermal Force

Consider the thermal force variables

h

2

= � 1

m⌦
0

Fth(t) sin (⌦
0

t + '(t)) (B.27)

h

4

= � 1

m⌦
0

A

Fth(t) cos (⌦
0

t + '(t)) (B.28)

We try to get their respective statistical properties. First, we will compute their
expected values. Then, we will estimate their correlation functions. Here the
phase '(t) is correlated with the values of the random function Fth(t). However,
we will assume that the correlation time of the process Fth(t) is so small that a
time shift ↵ can be found which simultaneously satisfies

↵ � ⌧F (B.29)

|A(t) � A(t � ↵)| ⌘ |A � A�↵| ⌧ A

0

|'(t) � '(t � ↵)| ⌘ |' � '↵| ⌧ 1
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B Stochastic Averaging under Parametric Modulation

This means that although ↵ greatly exceeds the thermal force correlation time,
the amplitude and phase don’t manage to change appreciably during the time ↵.
Since the values A(t � ↵) ⌘ A�↵ and '(t � ↵) ⌘ '�↵ are close to A(t) and
'(t), it is a good approximation to write h

2

as follows using �' = ' � '�↵,
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and h
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as
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A

sin (⌦
0

t + '�↵)�'

However, A�↵ and '�↵, unlike A(t) and '(t), are effectively statistically
independent of Fth(t) and hence we can average over Fth(t) and '�↵ separately.
This gives for the mean value of h

2

hh
2

i = � 1

m⌦
0

(hFthi sin (⌦
0

t + '�↵) + hFth�'i cos (⌦
0

t + '�↵))

= � 1

m⌦
0

hFth�'i cos (⌦
0

t + '�↵)

where in the second step we recall that the thermal force is a zero mean process.
Next, we integrate the equation for the phase. The phase variables ', ✓m, and ⌫

are all effectively statistically independent of Fth(t); in this short time interval ↵,
the infinitesimal phase change �' ⇠ �⌫. Integrating the phase error equation
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yields

�⌫ =

Z t

t�↵
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Z
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Considering that Fth is stationary, that it is uncorrelated with and independent
of the measurement noise, and that ↵ ⌧ (⌧A, ⌧', ⌧⌫), one gets
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We extend the lower limit of integration to �1 since the correlation function
in the integrand is essentially zero for |⌧ | > ↵ � ⌧Fth . The autocorrelation of
the thermal force is even in frequency space, which is why we extend to 1 and
multiply by 1

2

. Substituting in, we find

hh
2

(t)i =
�kBT0

m⌦2

0

A

cos (⌦
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t + ') cos (⌦
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t + ') (B.34)
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B Stochastic Averaging under Parametric Modulation

To get a stationary representation of hh
2

i, we average this over one oscillation
cycle, which gives
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2

i =
⌦
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Z
2⇡/⌦

0

0

hh
2

(t)i dt (B.35)
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The fact that hh
2

i 6= 0 is due to the correlation between Fth and '.
Similarly, we calculate the average of h
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, which is
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= 0

B.0.5.2 Correlation Functions of the Thermal Force

Next we proceed with estimating the correlation function of the zero mean
processes h

0
2

= h

2

� hh
2

i and h

0
4

= h

4

. In Eqs. (B.30),(B.31) where we
approximated h

2

and h

4

, the mean values are given by the second terms on the
right-hand side and the fluctuating components result from the first terms, or
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Since the force correlation time is much smaller than the relaxation time, the
random excitations act as if they were uncorrelated, and the actual correlation
function can be replaced by one shaped like a delta function, or

⌦
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Here, we choose the intensity coefficient of the delta-correlated noise source to
be
R1
�1 hh0

2

h

0
2⌧ i d⌧ . Considering first h
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, one can write
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B.0.5.3 Expectation Values of the Measurement Noise

Next we study the contribution of measurement imprecision noise. The impre-
cision noise term is

h
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=
4Bl
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n

0(t) (B.43)

First, we calculate the expectation value and then the correlation. We define
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We approximate these as
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The time interval ↵ is longer than the correlation time of the noise source but
shorter than that of the amplitude and of the phase (⌧n ⌧ ↵ ⌧ (⌧A, ⌧⌫)).
Here, ✓m↵ = ✓m(t � ↵) and �✓m = ✓m � ✓m↵. Considering that ✓m↵ is not
correlated with n

0 since ⌧n ⌧ ↵ and ↵ ⌧ ⌧✓m , one can write
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The averaging, as before, is straightforward. Here, we expand out all the terms
and then compute the total average. First for h
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Next for h
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The sum is then D
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This means that h

5

is a zero-mean process.
The average value of the noise going to zero means that there is no constant

phase error from measurement imprecision. This is by definition a PLL that
tracks a fixed oscillation frequency that does not drift. We already noted that
the PLL is in a locked state (or ⌫ = 0). This is also consistent with Viterbi.

B.0.5.4 Correlation Function of the Measurement Noise

The correlation function of the zero-mean process is just the inverse Fourier
transform of the spectral density, or
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B.0.5.5 The Coupled Langevin Equations

Let’s collect all the terms that we derived, namely
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The coupled amplitude and phase error equations are then
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where we use a bar to indicate that the variable is cycle-averaged. Here, ⇠

0
F and

⇠
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F are the thermal noise terms with correlation functions hh0
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respectively, and ⇠
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is the measurement imprecision noise with correlation
function hh0

5

h

0
5⌧ i.

140



C
Calculation of the Kramers-Moyal Coefficients

We derive the terms in the Fokker-Planck equation, known as the Kramers-
Moyal coefficients, for the probability density function of the amplitude and
phase as it evolves over time, or P (A, ⌫, t).

The Langevin equation is in its most general form written as

dyi

dt

= Ai(y, t) +
X

k

Bik(y, t)⇠k(t) (C.1)

where ⇠k(t) are the NL noise terms and their moments are given by h⇠k(t)i = 0

and h⇠k(t1)⇠l(t2)i = 2Dkl�kl�(t1 � t
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). The drift vector is given by
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and the diffusion tensor is given by
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C Calculation of the Kramers-Moyal Coefficients

The probability distribution function obeys
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D
Laser Intensity Stabilization Detector

Laser intensity fluctuations in Ch. 5 were tracked with a homebuilt detector
using a C30642 photodiode from Excelitas, a transimpedance amplifier based
on an OPA847 operational amplifier, and a current source based on a bipolar
junction transistor and a high power resistor, as shown in Fig. D.1. The designs
are based off of a high power photodetector developed in conjunction with
F. Tebbenjohanns ⇤.

The output of the transimpedance amplifier was measured from a DC-
coupled output port (top section of Fig. D.2). The TIA output was also fed into
a PI controller (bottom section of Fig. D.2) and used to drive a high-voltage
amplifier for a ConOptics Electro-Optic Modulator.

⇤F. Tebbenjohanns, Semester Project: Shot noise limited high power photodetector (2016)
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D Laser Intensity Stabilization Detector

Figure D.1: Laser Intensity Detector

Figure D.2: Laser Fluctuations Measurement; PI Control
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