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Abstract Knowledge representations that result from practicing problem solving can be
expected to differ from knowledge representations that emerge from explicit verbalizing of
principles and rules. We examined the degree to which the two types of learning improve
problem-solving knowledge and verbal explanation knowledge in classroom instruction. We
presented algebraic addition and multiplication problems to 153 sixth graders randomly
assigned to two conditions. Students in the explicit learning condition had to verbally compare
contrasted algebra problems. Students in the implicit learning condition had to generate and
solve new problems. On three follow-up tests over 10 weeks, students in the explicit learning
condition exhibited better problem-solving knowledge than students in the implicit learning
condition, as well as some advantages in verbal concept knowledge. Implicit learning showed
some advantages on not directly taught but incidentally learned aspects. Overall, this outcome
favors the explicit learning of concepts. Explicit comparison fostered student performance on
non-verbal and verbal measures, indicating that verbalization facilitates effective comparison.

Keywords Explicit comparison . Problem solving . Explicit and implicit learning . Verbal
explanation .Mathematics learning

The proverb Bpractice makes perfect^ has long been a mantra in mathematics education, and it
is understood that knowledge develops by continuously working on mathematical problems.
However, less agreement exists concerning the instructions that students should receive when
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working on problems. Should students be explicitly directed to verbalize the underlying rules
and principles during problem solving, or should they have the opportunity to implicitly
acquire the rules as a consequence of extensive problem solving (Aleven & Koedinger,
2002; Matthews & Rittle-Johnson, 2009)?

Knowledge representations that result from practicing problem solving can be expected to
differ from knowledge representations that emerge from the instruction to verbalize the
underlying principles and rules. In the present study on early algebra learning, we examine
the effects of the two types of learning opportunities, one type promoting implicit and the other
promoting explicit learning. A broad set of outcome measures is included, allowing a detailed
assessment of the scenarios in which both learning opportunities have better pay off. For both
learning opportunities, we arrange a contrasted presentation of addition and multiplication
algebra problems because doing so has proven successful in prior studies, as described below.
Subsequently, we discuss in detail the potential benefits and shortcomings of implicit and
explicit learning.

The Potential of Contrasted Algebra Concept Learning

Mathematical concepts can encompass multiple features, rules, principles, and procedures. In
mathematical settings, different concepts are traditionally introduced in succession with
sequenced or blocked processing of concepts in the form Ba1a2a3b1b2b3c1c2c3.^ This
blocked learning, however, can lead to considerable confusion around the concepts introduced
(Rohrer, 2012; Ziegler & Stern, 2014, 2016). This problem is especially pronounced if
concepts are similar or highly related, as is often the case in mathematics. For example, the
continuity of addends in algebraic addition Bab + a + ab + a = a + a + ab + ab = 2a + 2ab^
needs to be clearly distinguished from the splitting up of multiplicands in multiplication Bab · a
· ab · a = a · b · a · a · b · a = a4b2^.

Two reasons for confusion caused by blocked concept learning might be considered. The
first reason is the emphasis on superficial automation. When students repeatedly work on
problems related to a single concept, they might successfully induce the presented computing
procedures without necessarily grasping the underlying principles. In that situation, successful
induction allows efficient automated execution, albeit without having developed a deep
understanding of the concepts. This lack of understanding can hinder the successful transfer
of the newly gained knowledge to novel problems (Kamii & Dominick, 1997; Sweller, 1994).
The second reason for confusion is the problem of interferences. When students learn similar
concepts in succession, they might confuse those concepts because they have established
associations to common elements (Anderson, 1996; McCloskey & Cohen, 1989). This
problem indicates that blocked learning might be adequate mostly for simple, unconnected
concepts. When attempting to establish broadly connected mathematical concept knowledge,
blocked learning might be less adequate.

One approach to overcoming superficial automation and interferences is mixing, in which
problems based on different concepts are presented at the same time. Mixing can be imple-
mented in different ways. In interleaved processing (Ba1b1a2b2a3b3^), problem type a is
alternated with problem type b. In simultaneous or contrasted processing (Ba1b1, a2b2,
a3b3^), problem types a and b are juxtaposed. Interleaved processing has been found to be
beneficial for learning mathematical formulas and rules (Rohrer & Taylor, 2007; Taylor &
Rohrer, 2010). Following these findings indicating advantages of alternating problem types,
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Kang and Pashler (2012) tested a condition with simultaneous processing, implementing the
juxtaposed presentation of different painting styles. They supposed that offering the opportu-
nity for spatial comparison would generate additional learning gains. However, this condition
revealed no advantage in comparison with interleaved processing. Presenting concepts simul-
taneously and interleaved thus appears to lead to similar results, both offering the opportunity
for implicit comparison of the concepts, which is considered to facilitate discrimination
between the concepts (Birnbaum et al., 2013; Carvalho & Goldstone, 2014). These results
indicate that in simultaneous presentation, the principles may also be processed in an inter-
leaved way, without actively connecting the juxtaposed concepts. Thus, mere juxtaposition
does not necessarily and automatically involve explicit thinking about the concepts’ structure,
but it can be viewed as an implicit process of learning different concepts (DeKeyser, 2003;
Koedinger & Aleven, 2007). Simultaneous processing might primarily promote fluent and
accurate problem solving, with an incidental registration of features and rules.

In the juxtaposition of two concepts, the opportunity to compare is offered, and compar-
isons may occur implicitly (Mitchell et al., 2008). However, solely offering the opportunity for
comparisons may not be sufficient for eliciting full comparison benefits. Rather, comparison of
juxtaposed problems should be triggered, for example, by prompting students to describe the
similarities between concepts or to answer comparison questions (Kurtz et al., 2001; Schwartz
& Bransford, 1998). In explicit comparison, juxtaposed concepts are then actively linked by
verbally expressing their similarities and differences. Thus, explicit comparison can be viewed
as a conscious, verbal process of learning different concepts that is stimulated when students
are instructed to direct their attention to underlying principles (Renkl, 2015). Consequently,
verbal representations of the concepts that primarily promote the knowledge needed to
describe and explain how relevant problems are solved may be constructed, and there can
be positive influence on transferring the acquired knowledge to novel problems (Aleven &
Koedinger, 2002; Rittle-Johnson, 2006).

Learning with contrasted material has frequently proven to be beneficial (Alfieri et al.,
2013; Gentner, 2010; Rittle-Johnson & Star, 2011). Whether the learning of contrasted
concepts occurs more effectively through explicit verbalization or the degree to which it can
be stimulated through extensive problem-solving practice remains uncertain.

Implicit and Explicit Approaches to Learning

The implicit and explicit approaches to learning differ in terms of whether or not students’
attention is directed to the underlying structure of the learning materials. Implicit learning is
non-intentional learning, in which learners’ attention is not directed to rules and principles. In
mathematics instruction, this type of learning occurs when receiving an instruction to complete
a task or to solve a problem that does not emphasize the relevant structure or explicitly direct
one’s attention to principles. Thus, knowledge develops through repeated application, with
little deliberate awareness of principles and rules, and requiring little mental effort (Aleven &
Koedinger, 2002; Koedinger et al., 2012). Such problem-solving skills gradually improve with
practice and are honed through success/failure feedback each time that they are employed
(Anderson, 1995; DeKeyser, 2003). In their knowledge-learning-instruction (KLI) framework,
Koedinger et al. (2012) describe this type of learning as a non-verbal induction and refinement
process that modifies the conditions that control the retrieval and application of knowledge.
Several learning mechanisms are involved, such as perception, generalization, discrimination,
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classification, schema induction, and causal induction. These processes refine knowledge, for
example, by adding relevant and removing irrelevant features of representations; as such, they
render knowledge more accurate, general, and discriminating. The resulting knowledge is that
of cues and conditions for choosing steps or the actions needed to solve a problem or to
complete a task (DeKeyser, 2003). Thus, it is important to provide instances that include all of
the relevant and less relevant features to gain a complete representation of the concepts.
Implicit learning leads to the automation and fluency of skills, thus supporting successful
short-term performance (Koedinger et al., 2012). During implicit learning, however, students
might also become aware of rules and explicitly learn things without being prompted to focus
their attention on these aspects. The initially implicitly acquired knowledge can continuously
develop toward more explicitly available knowledge (Karmiloff-Smith, 1994; Siegler & Stern,
1998; Sun et al., 2005). The question arises to which degree students become aware of rules
and principles if they are not explicated and to which degree they are able to explicate such
knowledge.

Explicit learning is intentional, deliberate learning that aims at making learners aware of
rules and regularities and therefore requires more mental effort than implicit learning. Explicit
learning can be triggered by directing student attention toward the structure of concepts. This
type of learning can be achieved by asking students to verbally explain the learning materials.
For example, in mathematics learning through explanation, students are prompted to search for
verbal rules or analog examples and to interpret these elements (Aleven & Koedinger, 2002;
Gentner et al., 2009). Such verbalizations, with the attempt to explicitly map rules onto given
instances, can help learners focus on critical and relevant features. Positive effects on learning
through verbal explanations have been demonstrated regarding different types of materials and
among students of different ages (Atkinson et al., 2003; Chi, 2000; Renkl, 1997; Rittle-
Johnson, 2006; Wong et al., 2002). Koedinger et al. (2012) describe this type of learning as
an understanding and sense-making process, verbally mediated learning and thinking with the
aim of comprehending or reasoning. Several learning mechanisms are likely involved such as
comprehension strategies, verbal explanation learning, discovery learning, and verbal rule-
mediated deduction. Explicit learning has shown broad benefits for concept learning (Aleven
& Koedinger, 2002). In general, explicit learning occurs relatively slowly due to the explica-
tion process but leads to lasting results (Baroody et al., 2007; Koedinger et al., 2012). Through
its application, explicitly acquired knowledge can continuously develop toward more auto-
mated and implicitly available knowledge.

Different word pairs are used to label implicitly and explicitly acquired knowledge: implicit
and explicit knowledge refer to the level of consciousness during knowledge acquisition
(DeKeyser, 2003; Sun et al., 2005); procedural and conceptual (or declarative) refer to the
representation of knowledge as skills and strategies or as facts and principles (Aleven &
Koedinger, 2002; Anderson, 1996; Rittle-Johnson et al., 2015); and non-verbal and verbal
refer to the degree of explication required while working on problems (Koedinger et al., 2012).
Sometimes these three approaches to labeling knowledge are used almost synonymously; they
do however denote different characteristics of knowledge.

The acquisition of one type of knowledge is not limited to the corresponding learning
opportunity, a fact that may be overlooked when using dichotomies to describe learning and
knowledge. For example, learning opportunities that are supposed to improve procedural
knowledge can also benefit conceptual knowledge, and vice versa (Aleven & Koedinger,
2002; Rittle-Johnson et al., 2015; Schneider & Stern, 2010). Also, asymmetries are reported,
such that explicit learning opportunities benefit both types of knowledge, but implicit learning
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solely benefits procedural knowledge (Aleven & Koedinger, 2002; Koedinger et al., 2012;
Rittle-Johnson, 2006). Non-verbal problem-solving practice is indeed effective for improving
problem-solving knowledge. Students typically perform less well on verbal knowledge mea-
sures following implicit problem solving learning than they do following explicit verbal
explanation learning (Aleven & Koedinger, 2002). Intense verbal explanation training can,
however, bring gains on verbal explanation measures, and also on problem-solving measures
(Rittle-Johnson et al., 2015; Schneider & Stern, 2010).

To further disentangle how both types of learning influence both types of knowledge, an
experimental design in which the processing time is kept constant between instructional
conditions that emphasize either problem-solving practice or verbal explanation training would
be necessary (Aleven & Koedinger, 2002; Matthews & Rittle-Johnson, 2009). Whether
implicit or explicit learning occurs and which kind and amount of knowledge is gained are
not directly observable (Koedinger et al., 2012). This effect can be indirectly assessed by
providing non-verbal tasks (e.g., problem solving) or verbal tasks (e.g., explaining concepts
and procedures). In the present study, we used several measures of problem-solving knowl-
edge and verbal explanation knowledge to assess student learning.

Implicit and explicit learning might also differ in their impact on learning outcomes in
ways that are not always taken into account. Classroom instruction mainly focuses on
guiding learner attention toward the principles and rules that are mandatory for learning a
concept. In addition to these directly taught features of the concept, students might
incidentally learn side aspects of the material (e.g., alphabetical ordering in algebra to keep
an overview of the solution processes). Such aspects are not mandatory for solving
problems, but they can be helpful for making neat arrangements. Implicit and explicit
learning might differ with regard to how well they support the learning of features that
were not the direct focus of the learner’s attention, and consequently, implicit learning
might be favored (Ziegler & Stern, 2014; Williams & Lombrozo, 2010). Thus, it remains
unclear how directly instructed principles and incidentally learned aspects of material are
influenced by whether students learn implicitly via problem solving or explicitly via verbal
explanations.

The Present Study

In the present study, we examine whether the introduction of contrasted algebra material
reveals its potential when it is combined with explicit learning via verbalizing the differences
between problems or when it is combined with implicit learning in the form of extensive
problem solving. We examine the differential effects of these two conditions on a broad set of
verbal explanation and non-verbal problem-solving measures.

For the explicit learning condition, we considered a former dataset with students who were
trained via explicit verbal explanations from Ziegler and Stern (2014). In this condition, the
students were prompted to find and explicitly extract principles and rules by studying
examples and generating verbal explanations. In the implicit learning condition, we used the
original contrasted material regarding algebraic addition and multiplication and designed a
new problem-solving activity. In this condition, instead of studying examples and generating
verbal explanations, the students had to generate and solve their own new problems. Thus, the
students were expected to automate the underlying rules by applying them without being
explicitly directed to the concepts’ structures.
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Our study contributes to the literature in various ways. First, only few controlled classroom
studies have been conducted (e.g., Aleven & Koedinger, 2002), and these were with students
using a cognitive tutor in addition to other classroom activities. In the present study, we
implemented an intense, well-controlled classroom instruction that extended over 4 days in
which students processed the full instruction material either explicitly or implicitly. Second,
among classroom studies many examine the influence of one of the two types of learning on
different types of knowledge (e.g., Rittle-Johnson & Star, 2007; Star & Rittle-Johnson, 2009).
However, only a few studies have combined both explicit and implicit learning approaches
with both verbal and non-verbal knowledge measures (e.g., Aleven & Koedinger, 2002). The
present study includes well-balanced explicit and implicit learning materials with a broad
assessment of verbal explanation and problem-solving knowledge. Third, differences in
learning gains when learning is juxtaposed with concept material have been found for delays
including immediately after learning, 1 h after, 1 week after, and up to 4 weeks after (e.g., Rau
et al., 2013; Rittle-Johnson et al., 2012). The present study extends these testing periods by
including three measurement points up to 10 weeks after instruction, with the aim of increasing
the meaningfulness for school learning.

For non-verbal problem-solving knowledge measures, we expected an outperformance of
the explicit learning condition for problem-solving knowledge in which the students had to
solve contrasted addition and multiplication problems. Algebraic term transformation requires
distinguishing between addition and multiplication principles. Thus, although our implicit
learners received extensive practice in problem solving of juxtaposed materials, we expected
the deliberate verbalization of solution procedures to be more beneficial (Aleven & Koedinger,
2002; Atkinson et al., 2003; Rittle-Johnson, 2006). However, we expected advantages for the
implicit learning condition for the application of conventional aspects that were not directly
taught but could be incidentally learned. Indirectly taught conventions encompassed those of
sorting letters in alphabetical order, e.g., 3ab, not 3ba, and writing an unnecessary number 1,
e.g., b, not 1b. Implicit learning is relatively inaccurate but performs well in the short term
(Koedinger et al., 2012; Sun et al., 2007). Therefore, we expected an advantage of the implicit
learning condition in the short term and a greater decline in the long term.

For all of the verbal explanation knowledge measures, we expected an outperformance of
the explicit learning condition in which the students repeatedly verbally explained the
contrasted problems. Explicit learning leads to an improved verbal concept representation that
occurs in a delayed manner (Koedinger et al., 2012). Therefore, we expected the explicit
learning condition to show long-term advantages for verbal concept knowledge. We also
expected an advantage of the explicit learning condition for the conventions not directly
taught, even though these conventions are implicitly acquired. We assumed that it was more
likely that students in the explicit condition would learn these features because they verbalized
the concepts, making their awareness and processing of these features more likely.

Methods

Participants

Sixth graders with no prior formal instruction in algebra were chosen as study participants. In
the Swiss mathematics curriculum, algebra is not introduced until secondary school, which
corresponds to grade 6 or 7 in the USA. The participants were recruited from six urban and
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suburban public schools in middle class neighborhoods in the canton of Zurich/Switzerland.
To acknowledge the focus on self-learning and because of time restrictions in this controlled
experimental study, the teachers were asked not to choose students (a) with insufficient
German language comprehension, (b) with special needs, or (c) who were unable to fulfill
the minimum standards of school performance. All of the students were volunteers, and their
parents provided written consent. Every class was rewarded with 200 Swiss francs (approx-
imately US$200), and each student received a small gift.

A total of 155 students from eight classes participated. The students were randomly
assigned to one of two conditions within their class cohorts. Thus, the students were instructed
in mixed groups, although the different materials appeared highly similar to them. The explicit
learning condition was composed of 79 students (M = 12.4 years, SD = 0.5; 44 females), and
the implicit learning condition was composed of 74 students (M = 12.3 years, SD = 0.5; 41
females). Two students who did not finish the intervention were excluded. In addition, one
student was absent at the second and another was absent at the third follow-up assessment.

Design and Procedure

In a 2 (condition: explicit learning, implicit learning) × 3 (time: 1 day, 1 week, 10 weeks after
instruction) mixed-factorial design with repeated measures, we investigated the effects of
explicit (verbal explanation) and implicit (problem solving) learning of contrasted algebra
material on sixth graders’ learning using problem-solving and verbal knowledge measures.

Each student participated in four intervention sessions and three follow-up sessions,
as listed in Table 1. In both conditions, the students participated in 90-min interven-
tion sessions on four consecutive days, during which they worked through a self-study
program with nine worksheets.

Table 1 Overview of the activities of each session

Session Duration Activities

Intervention sessions 1st day (Mon) 2 lessons Pretest—prior algebra knowledge (5 min)
Introduction—short slide presentation (5 min)
Session 1: work sheets and immediate

learning tests 1–3
2nd day (Tue) 2 lessons Repetition test (5 min)

Session 2: work sheets and immediate
learning tests 4 + 5

3rd day (Wed) 2 lessons Repetition test (5 min)
Session 3: work sheets and immediate

learning tests 6 + 7
4th day (Thu) 2 lessons Repetition test (5 min)

Session 4: Work sheets and immediate
learning tests 8 + 9

Follow-up sessions 1 day later 2 lessons Follow-up session 1: Bproblem solving test^
and Bverbal concept test^ (45 min)

Survey part: personal data, reasoning test,
and arithmetic test (45 min)

1 week later 1 lesson Follow-up session 2: Bproblem solving test^
and Bverbal concept test^ (45 min)

10 weeks later 1 lesson Follow-up session 3: Bproblem solving test^
and Bverbal concept test^ (45 min)
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The intervention occurred in groups of 10–15 students in rooms at the school. The students
worked individually on their learning programs and sat far enough from their classmates that
they could not look at one another’s worksheets. They were instructed to work independently
and directly ask the instructors if they had questions about or problems with the material. All of
the groups were trained by the first author, who was educated as a primary school teacher and
was continuously present, along with a research assistant, to guide the intervention and testing.
To control for a fair intervention for both conditions, we included an implementation check
(see page 16).

Learning Materials

The instructional material consisted of nine worksheets with worked examples composed of
algebraic expressions that required simplification using algebraic transformation strategies (for
an excerpt, see Fig. 1). The students worked on these worksheets within four learning sessions.
In the initial session, because the material required self-learning, a short presentation consisting
of three slides was shown to demonstrate how to read and write terms with letters and how to
use the mathematical expression Braise to the power of.^ No other whole-group instruction
was provided. Rather, the students in both conditions were asked to independently derive the
principles from the worked examples and extend their knowledge using the self-study
activities. Worked examples are acknowledged as effective learning material (Renkl, 2005;

A3 xy + xy + xy =  3 · xy   
=  3xy

2b + 2b + 2b + 2b + 2b =  5 · 2b 
=  10b 

3cx + 3cx =  2 · 3cx   
=  6cx

M3 xy · xy · xy =  x · y · x · y · x · y 
=  x · x · x · y · y · y
=  x3 · y3 =  x3y3

2b · 2b · 2b · 2b · 2b = 2 · b · 2 · b · 2 · b · 2 · b · 2 · b
= 2 · 2 · 2 · 2 · 2 · b · b · b · b · b
= 32 · b5 =  32b5

3cx · 3cx =  3 · c · x · 3 · c · x 
=  3 · 3 · c · c · x · x 
=  9 · c2 · x2 =  9c2x2

A4 c2 + c2 + c2 + c2 =  4 · c2 =  4c2

a4 + a4 =  2 · a4 =  2a4

x3 + x3 + x3 =  3 · x3 =  3x3

M4 c2 · c2 · c2 · c2 =  c · c · c · c · c · c · c · c   = c8

a4 · a4 =   a · a · a · a · a · a · a · a   =  a8

x3 · x3 · x3 =   x · x · x · x · x · x · x · x · x   =  x9

A5 2x + 5x + 2x   = 9x

3bc + bc + 6bc =   3bc + 1bc + 6bc  
=   10bc

y3 + 4y3 =  1y3 + 4y3

=  5y3

M5 2x · 5x · 2x =  2 · x · 5 · x · 2 · x
=  2 · 2 · 5 · x · x · x
=  20 · x3 =  20x3

3bc · bc · 6bc =  3 · b · c  · b · c · 6 · b · c 
=  3 · 6 · b · b · b · c · c · c 
=  18 · b3 · c3 =  18b3c3

y3 ·  4y3 =  y · y · y · 4 · y · y · y 
=  4 · y · y · y · y · y · y 
=  4 · y6 =  4y6

A6 m + m + a + m + a + m =  a +  a + m + m + m + m
=  2 · a   +   4 · m    
=  2a +  4m

4 + x + z + x + 4 + x =  x +  x +  x +  z +  4 +  4 
=  3 · x   +   1 · z   +   8
= 3x  +  z  + 8

M6 m · m · a · m · a · m =  a · a · m · m · m · m  
=  a2 · m4

= a2m4

4 · x · z · x · 4 · x =  4 · 4 · x · x · x · z  
=  16  ·   x3 ·   z1 

= 16x3z

Fig. 1 Worked examples: addition learning steps (A3–A6) and multiplication learning steps (M3–M6). Gray
cursive the intermediate steps to the solution that were marked red in the original version; black bold the
problems and the results
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Sweller, 2006). They provide problems with their solution steps, and in doing so, they offer a
good basis for students to derive new principles on their own. Worked examples serve equally
well as a basis both for implicit learning by imitating the examples and practicing similar
problems and for explicit learning by verbally explaining the examples and their solutions.

Worksheets

The worksheets consisted of worked examples, a self-study section, and a practice section. The
worked examples and the practice section were equal; only the self-study section differed
between the two conditions.

Worked Examples The students in both conditions received worksheets with the same
worked examples (for the development of the material, see Ziegler & Stern, 2014). At the
top of each worksheet, the students were presented with two blocks of two to three
worked algebra examples in a contrasted format. The block on the left contained worked
addition problems, and the block on the right contained the same problems presented as
multiplication problems (Fig. 2). The worked examples provided students with examples
of intermediate steps for arriving at a solution and therefore they included the problem,
the solution steps, and the final solution. The addition problems were identical to the
multiplication problems and differed only in their operation signs, which naturally
impacted the solution steps and results. The students’ task was then to learn the
underlying principles and rules that the worked examples contained by processing the
self-study section. An example of an addition core principle is the continuity of sum-
mands such as Bx^ or Bxy^ (xy + x + xy + x = x + x + xy + xy = 2x + 2xy); an example of
a multiplication core principle is the splitting of factors (xy · x · xy · x = x · y · x · x · y ·
x = x4y2; also see the Additional file 1).

Self-Study Section This section on each worksheet differed between the two conditions.
For the explicit learning condition, we used the contrasted learning materials from a
previous investigation (Ziegler & Stern, 2014). Students in the explicit learning condition
received instructions to explicitly direct their attention to the concepts’ structures. They

Addi�on                                  A3 Mul�plica�on           M3

xy + xy + xy =  3 · xy
=  3xy

2b + 2b + 2b + 2b + 2b =  5 · 2b
=  10b 

3cx + 3cx =  2 · 3cx
=  6cx

xy · xy · xy =  x · y · x · y · x · y 
=  x · x · x · y · y · y  
=  x3 · y3 =  x3y3

2b · 2b · 2b · 2b · 2b = 2 · b · 2 · b · 2 · b · 2 · b · 2 · b
= 2 · 2 · 2 · 2 · 2 · b · b · b · b · b
= 32 · b5 =  32b5

3cx · 3cx =  3 · c · x · 3 · c · x 
=  3 · 3 · c · c · x · x 
=  9 · c2 · x2 =  9c2x2

Fig. 2 Worked examples in a contrasted format. Gray italic the intermediate steps to the solution that were
marked red in the original version; black bold the problems and the results
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were prompted to compare and explain the contrasted addition and multiplication prob-
lems and record how to solve these problems. To elicit explicit comparisons and obtain
verbal representations of the principles, the students were prompted to verbalize differ-
ences and explicitly describe the underlying rules. The students’ self-explanations were
checked by the research leader. Because the students worked on similar materials for
several days, we provided minimal feedback to prevent them from both exerting only
minimal effort and incorrectly learning the concepts. We attempted to keep the feedback as
similar as possible between the two conditions by limiting it as follows: We provided a
standardized correct/incorrect and sufficient/insufficient feedback. If the explanations
were incorrect, then the students were required to correct them. If the explanations were
too short, then the students were asked to complete them in greater detail before proceed-
ing. No other feedback was given. Because the material consisted of worked examples, all
of the students were able to find correct and more detailed explanations in a second
attempt. Further, the contents were resumed at the beginning of the next unit so that the
students received repeated opportunities to learn the material over the entire intervention.
Students in the implicit learning condition processed the same contrasted worked exam-
ples as in the other condition (Figs. 1 and 2), but they were not prompted to explicitly
compare the examples or to verbalize the differences between the addition and multipli-
cation examples (i.e., their attention was not directed to the concepts’ structures). We still
wanted to have the generating component in the tasks of both conditions. Therefore, while
the students in the explicit condition studied examples and generated verbal explanations,
the students in the implicit conditions generated and solved their own problems. Thus, the
focus in the implicit condition shifted from careful analysis and explanation of principles
to their application. The goal was to induce a non-verbal representation of the principles.
To keep the time between both conditions constant, we examined how many examples
students were able to solve and generate (on average) in the time that the verbal explana-
tion students used to write down their explanations via pilot testing. Thus, the students
were provided two to three sentences introducing the new worked examples and were then
prompted to generate five to six of their own examples and solve them. The newly
generated examples should be based on the model of the presented examples so that the
students would experience and re-apply the underlying rules. The students were also asked
to record the intermediate steps to the solution and to invent varied and notable examples
using other numbers and letters. Similar to the explicit learning condition, the implicit
condition involved standardized feedback. The generated examples were checked by the
research leader; if they were incorrect, then the students were required to correct them
before continuing to the subsequent section. If the examples provided by the students were
too short or were poorly generated, then the students were asked to supplement the
examples. However, as with the explicit condition, no other feedback was given.

Practice Problems On the back of the worksheets, the students were provided practice
problems to deepen their understanding of the learned principles. Students in both conditions
were provided the same four to six problems per sheet with solution instructions to record the
intermediate steps of the solution. Before the research leader corrected the practice problems,
the students independently reviewed the problems using the examples on the front page. Then,
the students received feedback on whether they were correct/incorrect and had to correct the
incorrect problems. The internal consistency of the practice problems in our sample was
moderate, Cronbach’s α = .76.
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Immediate Learning Tests

After each worksheet, the students completed a learning test sheet with three to eight problems
without the use of the instruction materials in order to examine their learning progress. In total,
there were 58 items. These problems were similar to those presented on the worksheet that the
students had completed. The students did not receive any feedback on these problems, which
were corrected only later for analysis. The internal consistency of the immediate learning test
problems in our sample was high, Cronbach’s α = .86.

Implementation Check

To ensure fair instructions for both conditions, the students’ accuracy in solving the practice
problems and the immediate learning tests served as an implementation check. The percent-
ages of correctly solved practice and immediate learning test problems were assessed and used
as an indicator that students could learn the algebra principles under both self-study conditions.
The analysis showed no difference between the conditions with regard to the accuracy of
solving the practice problems (explicit learning condition: M = 84.6%, SD = 10.3; implicit
learning condition: M = 83.2%, SD = 10.8), t(1, 151) = 0.86, p = .389, and the accuracy of
completing the immediate learning tests (explicit learning condition: M = 81.8%, SD = 13.0;
implicit learning condition: M = 79.1%, SD = 12.1), t(1, 151) = 1.37, p = .173. The similar
achievement indicates that there were equal challenges and comparable student engagement in
the intervention activities for the two conditions.

Assessment of Students’ Preconditions

Prior Algebra Knowledge

Although Swiss sixth graders have not yet received any formal algebra instruction, it is
possible that some could spontaneously solve algebraic transformation problems by referring
to their arithmetic knowledge. Therefore, the students were required to take a test assessing
prior algebra knowledge at the beginning of the intervention. The test was composed of eight
algebra problems requiring transformations: Ba + a + a + a =,^ B5 + a + a + 5 + a =,^ Bc · c ·
c =,^ B2 · 2 · z · 2 · z =,^ B7b + 7b =,^ B7b · 7b =,^ Bab · 4ab =,^ and Bxy + xy + xy + xy =.^

Control Variables

To ensure random assignment to the two conditions, the students’ individual characteristics,
which are considered to affect algebra learning and testing, were assessed with four measures.
The students’ mathematical school achievement was measured in the form of their grades in
mathematics and German. Mathematics was chosen because of the mathematical material and
German because the verbal concept test required verbally explaining the algebraic principles.
The grades were reported by the students’ teachers. Arithmetic knowledge was included to
assess the automation of basic mathematical knowledge. It was assessed with two speed tests
consisting of two sheets, each with 28 arithmetic items. The students were required to solve
each sheet within 90 s and were allowed to write only the results. The first sheet contained
two-digit additions, the second sheet two-digit multiplications. The arithmetic knowledge
score was determined by the number of correct answers. Reasoning ability is a teacher-
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independent measure of information processing capacity. Because the programs were self-
learning material and the algebra rules had to be derived from worked examples in both
conditions, reasoning was considered to be an important factor. It was assessed with a figural
and numerical subtest of the German intelligence test (subtests 3 and 4 of the LPS by Horn,
1983), which is based on Thurstone’s primary mental abilities test.

Problem-Solving Test

The problem-solving test was a measure of problem-solving knowledge that encompassed 58
items to assess students’ abilities to correctly apply the transformations practiced in interven-
tion sessions 1–4 (e.g., Ba2 · a · ay · 4a =,^ B5ab + b + 3b + 2ab + 2b =,^ By · y3 · y2 · y =,^
B2 + 5x + 4 + 2x + 3 =^). In the test, the example problems from the worksheets were
represented, but with other variables and numbers. Each item was an algebraic term that
needed to be transformed into the shortest version by applying the correct rules. The items
were ordered by increasing difficulty. Because we did not expect the students to remember the
items, the identical problem-solving test was used for all three of the follow-up assessments.
Based on students’ test answers, we assessed two kinds of knowledge. First, covering
knowledge that was directly taught in the self-learning sessions, we assessed students’
problem-solving knowledge. Second, we assessed how often the students stuck to two types
of conventions (i.e., sorting letters in alphabetical order (e.g., 3ab, not 3ba) and writing an
unnecessary number one (e.g., b, not 1b)). These conventions were not directly taught in the
self-learning materials, but they were obvious from the worked examples and could thus be
learned incidentally.

Problem-Solving Knowledge

This knowledge was determined by the number of correct answers on the 58 algebra
items, with a maximum of 58 points. For an incorrectly solved item, one point was
deducted from the total score. The internal consistency of the problem-solving test in
our sample was high for all measurement points, Cronbach’s α = .93 at T1, .93 at T2,
and .94 at T3. In addition, the problem-solving test was analyzed for careless errors.
These errors should be independent of the intervention and are therefore seen as a
measure to examine for equality of conditions. Careless errors were mistakes such as
miscounting the number of letters, for example, Bn · n · n · n · n = n4,^ or arithmetic
errors, for example, Bb · a · 4 · a · 4 · a = 18a3b.^

Convention Knowledge

This knowledge was assessed by how often the students stuck to the alphabetical-order and
number-one conventions in the problem-solving test. All of the problems were analyzed for the
use of these conventions. These conventions were not directly taught, and students never
received feedback concerning their use of conventions; thus, they were not counted as errors of
problem-solving knowledge but as two separate convention knowledge measures. These
conventions are also not mandatory to learning and distinguishing between algebraic addition
and multiplication. Nevertheless, they help provide an overview when processing complex
algebraic expressions and therefore, they are practical for learning. While processing the
worksheets, the students could incidentally learn the conventions not directly taught. Thus,

542 Educ Psychol Rev (2018) 30:531–558



students’ usage of the conventions indicates whether they also processed superficial charac-
teristics while focusing on structures.

The alphabetical-order convention is an agreement to alphabetically sort letters,
which provides a better overview when there are many variables—for example, Bu2 ·
ax · u2 · u · ax = a2u5x2^ or Bn + b + n + x + b + n = 2b + 3n + x.^ Student use of
the conventions not directly taught was determined by the number of answers with
correct alphabetical ordering. Twenty-one (of 58) problems requested alphabetical
ordering so that a maximum of 21 points was possible. The internal consistency in
our sample was adequate for all measurement points, Cronbach’s α = .78 at T1, .80 at
T2, and .85 at T3.

The number-one convention is an agreement that it is not necessary to write the number B1^
if there is a single letter (e.g., Bz + n + n = 2n + z^ rather than B2n + 1z,^ Bb · a · 4 · a · 4 ·
a = 64a3b^ rather than B64a3b1^). Student use of the convention not taught directly was
determined by the number of omissions of a superfluous number B1^. However, if a single
letter such as x was not counted as B1x^ in the problem Bx + 2x ≠ 2x,^ then it was assessed as
an error in problem-solving knowledge. Thirteen (of 58) problems requested attention to a
number B1^, that is, a maximum of 13 points was possible. The internal consistency in our
sample was adequate for all measurement points, Cronbach’s α = .83 at T1, .83 at T2, and
.78 at T3.

Verbal Concept Test

The verbal concept testwas applied to assess verbal concept knowledge and verbal convention
knowledge. This test assessed the students’ ability to explain how to apply algebraic addition
and multiplication. The students were asked to record two separate descriptions that explained
how to solve each type of problem. For each explanation, the students were prompted with
four hints, which were designed to activate their knowledge: BDescribe in detailed steps how
problems with letters are solved,^ BMention what one has to pay attention to,^ BYou can
explain it by means of examples,^ and BImagine you would like to explain the principles to
classmates.^ The students’ verbal concept explanations of algebraic addition and multiplica-
tion were scored based on a coding scheme (Table 2). Two trained raters independently scored
and coded the students’ answers for accuracy and completeness. The raters resolved disagree-
ments in their scores by discussion. Inter-rater reliability was .89 at the first measurement point
and .88 at the second measurement point (Cohen’s kappa). Because of this high reliability, the
test taken at the third point of measurement was scored by only one of the two raters. Based on
the verbal concept test, similar to the problem-solving test, we assessed students’ learning
gains on directly taught verbal concepts and on not directly taught but incidentally learnable
verbal conventions.

Verbal Concept Knowledge

This knowledge was judged by the amount of correctly reported algebraic concept features.
These features were the principles that were considered central and essential for distinguishing
algebraic addition from algebraic multiplication (Table 2). There were different scores for
addition and multiplication that were summed up to an overall score, with a maximum of 11
points possible. As an additional measure, students’ misconceptions were assessed. They were
determined by the number of errors written down in the verbal concept explanations. Such
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errors could be incorrect verbal statements or incorrect solution steps in examples used in the
explanations. The errors in both the addition and multiplication explanations were added for a
total score of misconceptions.

Verbal Convention Knowledge

This knowledge was determined by the number of statements mentioning the need to
pay attention to the alphabetical-order or number-one conventions in separate scores
for the addition and multiplication explanations. The students received points if they
provided a textual description, e.g., Bletters in the problem solution are sorted in
alphabetical order,^ or if they demonstrated the correct application of a convention in
an example, e.g., Bn + b + n + x + b + n = b + b + n + n + n + x = 2b + 3n + x.^
Points from text or example descriptions in the addition and multiplication explanations
were added to the total scores. For students’ verbal alphabetical-order knowledge and
verbal number-one knowledge, a maximum of 4 points each was possible. Two trained
raters independently scored and coded the students’ answers for convention knowledge.
Inter-rater reliability was .99 at the first measurement point (Cohen’s kappa). This
almost perfect agreement can be ascribed to the high objectivity for the scoring of
conventions. Thus, the data for the second and third points of measurement were scored
by only one of the two raters.

Table 2 Coding scheme for verbal concept knowledge

For every 1 of the following concept features mentioned in the verbal concept test, 1 point was scored for verbal
concept knowledge (coding scheme adapted from former studies, e.g., author & coauthor, blinded 1). The
listed features were the principles that were considered central and essential for distinguishing algebraic
addition from algebraic multiplication, that is, in multiplications, the different kinds of splitting up of letters
with exponents x2, double letters ab, and letters with coefficients 2z, and in addition, the distinction of different
summands that cannot be merged as x + x2, or a + ab, or x + 4.a

Points were equally given if (a) a key element was explicitly mentioned or (b) a key element became visible in the
solution and the intermediate steps of the example. For Bexample statements,^ we only gave the point if
students showed the rule in an explicit way, similarly to a verbal statement. If a point was described incorrectly,
it was counted as a mistake.

Sub-analysis of addition: Concept features (total 6 points):
1 Sorting by summands (summands are the letter endings (sometimes with exponents: a, ab, a2, …)
→ only ½ point: if only single letters were mentioned or used (a, b, c, …)
→ 2 points: if sufficiently detailed in a way that examples became redundant or dispensable

2 Summands are not split
3 Summands do not change in the result, exponents remain (a3 + a3 = 2a3), no point if only with single letters
4 Letters with different exponents are not summarized, merged, or unified (x + x2)
5 Single letters are not summarized, merged, or unified with double letters (a + ab)
6 Letters and numbers are not summarized, merged, or unified (x + 4)
Sub-analysis of multiplication: Concept features (total 5 points):
1 All factors are split
→ only ½ point: if only single letters are mentioned or used (2x · 3y · 3x)
→ 2 points: if sufficiently detailed, full description (separate units in the single components or mention
important rules twice)

2 Letters with exponents are separated into single letters (x2 = x · x)
3 Double letters are separated (ab = a · b)
4 Coefficients and letters are separated (2z = 2 · z)
5 Exponents are added (c2 · c2 · c2 = c6)

a For an additional measure of secondary verbal concept knowledge, see Additional file 1
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Results

The results are presented in three sections. First, we analyzed whether the students’
preconditions were similar in both conditions. Second, we report the effects of condition
on the problem-solving and verbal explanation outcome measures. Neither gender differ-
ences nor gender-by-condition interactions were observed for any of the study measures.
For each of the follow-up measures, we conducted separate, mixed-factorial ANOVAs with
condition as a between-subject factor (explicit verbal explanation versus implicit problem
solving) and time as a within-subject factor (1 day (T1), 1 week (T2), 10 weeks (T3)).
Third, we report three-way ANOVA probing interaction effects between condition and type
of measure. In these analyses, in order to examine whether the two conditions differentially
impacted the two types of measures, we z-transformed the scores on the non-verbal and
verbal knowledge measures. The three factors in these ANOVAs then were condition and
measure (non-verbal vs. verbal measure) as between-subject factors and time as within-
subject factor. The two-way interaction of condition × measure and the three-way interac-
tion condition × measure × time were in focus in these ANOVAs. In the first three-way
ANOVA, the interaction of implicit and explicit learning with problem-solving knowledge
and verbal concept knowledge was assessed, the two main measures of algebra knowledge.
For problem solving knowledge, we used the overall z-score on this measure, and for
verbal concept knowledge, we aggregated the z-scores of concept knowledge and miscon-
ceptions. The focal interaction tests thus were condition × measure (problem solving
knowledge vs. verbal concept knowledge) and condition × measure × time. In the second
three-way ANOVA, we z-transformed the non-verbal alphabetical-order convention score of
the problem solving test and the verbal alphabetical-order convention score of the verbal
concept test. The focal tests in this ANOVA were the two-way interaction of condi-
tion × measure (non-verbal vs. verbal alphabetical-order knowledge), and the three-way
interaction condition × measure × time. Finally, for a three-way ANOVA probing interac-
tions on number-one knowledge, we z-transformed the non-verbal number-one convention
score of the problem solving test and the verbal number-one convention score of the verbal
concept test. The focal tests in this ANOVA were the two-way interaction condition × mea-
sure (non-verbal number-one knowledge vs. verbal number-one knowledge), and the three-
way interaction condition × measure × time.

For analyses with violated sphericity assumption, we applied Greenhouse-Geisser
correction with adjusted F ratios (according to Field, 2009) though doing so did not lead
to different significance levels in any measure. When there was a main effect of the
condition, post hoc t tests were performed for the three measurement points. After
accounting for the main effect of time, Bonferroni-corrected comparisons with the first
measurement point were conducted to determine how stable the effects were over time.
Table 3 provides an overview of descriptive statistics and the effects of condition on the
follow up measures at each time point.

Students’ Preconditions

Prior Algebra Knowledge

No differences were observed between the conditions on students’ prior algebra knowledge, t
(1, 151) = 0.26, p = .799, d = .05. A floor effect was found, indicating that the students lacked
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prior algebra knowledge and that they had no intuition for how to solve algebra problems
(M = 0.90 of 8 problems, SD = 1.10).

Control Variables

A multivariate analysis of variance (MANOVA) did not indicate differences among the
conditions with regard to the control variables, grades in mathematics (explicit: M = 4.82,
SD = 0.67; implicit: M = 4.82, SD = 0.66), grades in German (explicit: M = 4.83, SD = 0.51;
implicit: M = 4.81, SD = 0.59), arithmetic knowledge (explicit: M = 8.90, SD = 3.75; implicit:
M = 9.99, SD = 4.07), and students’ reasoning ability (explicit: M = 27.96, SD = 3.60;
implicit: M = 27.50, SD = 3.66), F (4, 148) = 1.27, p = .283, η2p = .03. This result indicates a
random assignment to the two conditions.

Effect of Condition on the Problem-Solving Test

For the problem-solving test, there were three measures: problem-solving knowledge and two
not directly taught convention measures. In the explicit learning condition, students were
expected to perform better on problem-solving knowledge with better development over the
long term, whereas in the implicit condition, students were expected to perform better on the
two convention measures compared with the explicit condition, especially in the short-term.
Figure 3 depicts the course of the problem-solving measures.

Problem-Solving Knowledge

As expected, a main effect of condition was observed in favor of the explicit learning
condition, F (1149) = 7.42, p = .004, η2p = .05 (Table 3). Post hoc t tests revealed
differences at all measurement points with weak to moderate effects, at T1, p = .021,
d = .33, T2, p = .032, d = .30, T3, p = .007, d = .53. There was also a main effect of
time, F (1.48, 219.81) = 84.10, p < .001, η2p = .36. Bonferroni-corrected comparisons
showed a change from T1 to T3, p < .001, but not from T1 to T2, p = 1.000. And there
was a condition × time interaction, F (1.48, 219.81) = 4.41, p = .023, η2p = .03, with
simple contrasts showing a difference from T1 to T3, p < .001 but not from T1 to T2,
p = .803. The graph revealed a more pronounced performance decrease in the implicit
learning condition (Fig. 3). Thus, these results demonstrate a long-term advantage of
using verbal explanations when learning algebra concepts. As expected, for careless
errors, there was neither a condition effect, F (1, 149) = 0.36, p = .552, η2p = .00,
nor an interaction, F (2, 298) = 0.44, p = .957, η2p = .00, indicating that careless errors
were independent of condition or intervention. Notably, there was a time effect for
careless errors, F (2, 298) = 4.09, p = .018, η2 = .03, with a decrease in errors at T3,
which suggested a more relaxed processing of the test 10 weeks later in both conditions.

Alphabetical-Order Knowledge

As expected, students in the implicit learning condition outperformed those in the explicit
learning condition regarding the alphabetical-order conventions not directly taught, F (1,
149) = 3.92, p = .025, η2p = .03 (Table 3). As expected, there was also a time effect, F
(1.72, 255.73) = 23.54, p < .001, η2p = .14, but no interaction, F (1.72, 255.73) = 2.13,
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p = .129, η2p = .01. Bonferroni-corrected comparisons showed an increase in the score for both
conditions from T1 to T3, p < .001, but not from T1 to T2, p = .142.

Number-One Knowledge

The implicit learning condition showed higher means across all measurement points on
measures of the number-one conventions not directly taught; however, no evidence of a
difference was found, F (1, 149) = 1.88, p = .086, η2p = .01 (Table 3). There was no effect
of time, F (1.85, 275.04) = 2.68, p = .075, η2p = .02, and no interaction, F (1.85,
275.04) = 2.04, p = .136, η2p = .01.

Effect of Condition on the Verbal Concept Test

For the verbal concept test, there were four measures: two verbal concept measures, and
two not directly taught convention measures. In the explicit learning condition, students
were expected to perform (1) better on all verbal explanation measures and (2) with better
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development over the long term. Figure 4 depicts the course of the verbal explanation
measures.

Verbal Concept Knowledge

Unexpectedly, no evidence of a condition difference was found on the main score of
verbal concept knowledge, F (1, 149) = 0.24, p = .319, η2p = .00 (Table 3). However,
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there was a time effect, F (2, 298) = 6.83, p = .001, η2p = .04, with Bonferroni-corrected
comparisons showing a decrease from T1 to T3, p = .003, but not from T1 to T2,
p = .989. There was no condition × time interaction, F (2, 298) = 2.62, p = .074,
η2p = .02. The graphs revealed a cross-over at T3 caused by stable scores in the explicit
learning condition and a drop of the implicit learning condition; however, this result did
not achieve significance (Fig. 4). Thus, we did not find a difference between the two
conditions regarding verbal concept knowledge.

We conducted additional analyses to examine where the unexpected lack of difference
between the implicit learning and the explicit learning conditions on concept features
stems from. In the verbal concept test, the students could describe rules by applying them
in examples. The implicit learners engaged in this strategy much more often (M = 3.30,
SD = 2.15) than the explicit learners (M = 1.13, SD = 1.16), t (1, 151) = −7.84,
p < .001. Crucially, the amount of applied examples was highly correlated to students’
verbal concept knowledge score in the explicit learning condition, at T1, r (79) = .50,
p < .001, at T2, r (79) = .46, p < .001, and at T3, r (78) = .56, p < .001, and in the
implicit learning condition, at T1, r (74) = .50, p < .001, at T2, r (73) = .45, p < .001,
and at T3, r (74) = .65, p < .001. Thus, the students in the implicit learning condition
might have performed well on this measure due to their frequent practice of creating
examples during the intervention.

Misconceptions

As expected, there was a main effect of condition on misconceptions of the verbal concept test
in favor of the explicit learning condition, F (1, 149) = 25.47, p < .001, η2p = .15 (Table 3).
There was an effect of time, F (1, 149) = 7.21, p = .001, η2p = .05, with Bonferroni-corrected
comparisons and the graph showing a decrease from T1 to T3, p = .003, but not yet from T1 to
T2, p = 1.000, but no interaction, F (1, 149) = 1.29, p = .276, η2p = .01 (Fig. 4). This result
shows that explicit explanation learning led to fewer misconceptions and this change remained
stable up to 1 week.

Verbal Alphabetical-Order Knowledge

In both conditions, only a few students verbally reported alphabetical-order knowledge, with
average scores only between 0.00 to 0.06 out of 4 points. There were no effects of condition, F
(1, 149) = 0.66, p = .209, η2p = .00, time, F (1.85, 276.23) = 1.29, p = .276, η2p = .01, or their
interaction, F (1.85, 276.23) = 2.02, p = .138, η2p = .01. Hence, in the verbal assessment,
implicit (verbal) learning had no effect on the alphabetical-order convention not directly
taught.

Verbal Number-One Knowledge

There was no effect of condition, F (1, 149) = 0.69, p = .344, η2p = .00, but there was a
time effect, F (2, 298) = 7.18, p = .001, η2p = .05, with Bonferroni-corrected comparisons
showing a decrease from T1 to T3, p = .001, but not from T1 to T2, p = .118, but no
interaction, F (2, 298) = 0.312, p = .732, η2p = .00. This result showed no advantage for
the explicit (verbal) learning of the number-one convention not taught directly when the
knowledge is verbally assessed.
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Interaction between Conditions and Knowledge Measures

Interactions between condition and knowledge measures were examined on the main measures
of algebra knowledge, on alphabetical-ordering knowledge, and on number-one knowledge.

On alphabetical-order knowledge, there was an interaction between condition and measure,
F (1, 296) = 4.41, p = .036, η2p = .02, but no three-way interaction condition × measure × time,
F (2, 592) = 2.16, p = .116, η2p = .01. There was also no main effect of condition, F (1,
296) = 1.52, p = .219, η2p = .01. The interaction between condition and measure qualifies the
advantage of implicit learning over explicit learning on the non-verbal alphabetical-order
measure portrayed in Fig. 3b to be significantly stronger than the non-significant condition
effect on the verbal alphabetical-order measure visible in Fig. 4c. Thus, the effect of the two
conditions differed between the two alphabetical-order measures; it was stronger on the non-
verbal measure than on the verbal measure. On number-one knowledge, there was no
interaction between condition and measure, F (1, 296) = 0.62, p = .433, η2p = .00, no three-
way interactions condition × measure × time, F (2, 592) = 0.34, p = .706, η2p = .00, and also no
main effect of condition, F (1, 296) = 1.83, p = .177, η2p = .01. Thus, no difference in the
effects of the two conditions was found between the two types of number-one knowledge
measures.

On the main measure algebra knowledge, there was no interaction between condition and
measure, F (1, 298) = 1.54, p = .215, η2p = .01, and no three-way interaction condition × mea-
sure × time, F (2, 596) = 0.07, p = .924, η2p = .00. However, there was a main effect of
condition, F (1, 296) = 7.05, p = .008, η2p = .02, highlighting the advantage of explicit learning
across both the verbal and non-verbal algebra knowledge measures compared with implicit
learning.

Discussion

We investigated whether the introduction of contrasted algebra material across 4 days is more
effective when students engage in explicit verbal explanation of concepts or when they engage
in implicit problem solving. We assessed the degree to which the two types of learning
influenced different measures of these kinds of knowledge. We were particularly interested
in disentangling the effect of prompting explicit comparison from the effect of prompting
extensive problem solving of contrasted material for both the intentional and incidental
processing of material.

Overall, as expected, explicit comparison outperformed implicit problem solving on the
main measures assessing algebraic term transformation. The explicit learning condition
showed higher problem-solving knowledge and fewer misconceptions than the implicit
learning condition, but unexpectedly, no difference in verbal concept knowledge was ob-
served. For the implicit learning condition, an advantage was found for measures that assessed
students’ use of not-directly-taught conventions on the problem-solving test. These results
confirm that verbal explanations are a powerful method of learning not only the same type of
verbal explanation knowledge but also, in particular, the other type of non-verbal problem-
solving knowledge. Moreover, an influence of implicit learning on verbal explanation mea-
sures was not found.

An interaction analysis showed that the advantage of explicit learning was stable across the
main algebra knowledge measures, with a main effect of condition but no interaction effect
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with the type of measure. Thus, on our main algebra knowledge measures, our results confirm
an asymmetry of knowledge acquisition (Aleven & Koedinger, 2002). Both on verbal and non-
verbal measures, explicit learning showed advantages in comparison with implicit learning.

A further interaction analysis showed a different pattern of effects on incidentally learned
aspects. On one incidentally learned aspect, that is, alphabetical order knowledge, implicit
learning showed an advantage on the non-verbal measure that was not present on the verbal
measure.

The Strengths of Explicit Comparison

As expected, explicitly learning juxtaposed addition and multiplication algebra problems by
verbal comparison better supported students’ problem-solving performance than by extensive
problem solving. As an explanation, we assume that the challenging distinction of the two
similar concepts (algebraic addition and multiplication) requires an explication of the differ-
ences (Gentner et al., 2003; Koedinger et al., 2012). Algebraic addition and multiplication are
not complex mathematical concepts per se compared with most other mathematical concepts
because both consist of many principles and rules that, in themselves, are easy to understand.
However, what makes basic algebra challenging is that the many principles that belong to
either addition or multiplication must be properly distinguished. Materials with low processing
demands benefit from instructional conditions that increase the information and processing
load (Wulf & Shea, 2002). We did not measure student effort experienced during instruction.
However, the advantage of the implicit learning condition in the learning of not directly taught
algebraic conventions might indicate that the students had free capacity available (see also
Ziegler & Stern, 2014). Explicit comparison might have channeled this free capacity, creating a
more adequately demanding environment than problem solving. That is, the comparisons may
have triggered understanding and sense-making processes that improved capturing the differ-
ences and improved the distinction between addition and multiplication (Koedinger et al.,
2012). We also found that problem-solving knowledge in the explicit learning condition
remained consistent over time, compared with a pronounced performance decrease in the
implicit learning condition. This result emphasizes the longer term effect of explicit compar-
ison. In interleaved and comparison learning research, immediate learning or delays of a few
hours or days, and sometimes delays of a week or a month, are often examined (Rau et al.,
2013; Rittle-Johnson et al., 2012; Rittle-Johnson & Star, 2009; Rohrer & Taylor, 2007). In
accordance with our assumption, extending the measurement period to 10 weeks revealed
increasing outcome differences between the two conditions over time. This result confirms that
implicit learning leads to more automated but short-term knowledge (Koedinger et al., 2012).
Thus, we suppose that the similarity between the two concepts might have led to interference
caused by induction learning with little deliberate awareness, which made retrieval after
10 weeks more difficult (Anderson, 1996).

On the verbal concept knowledge measure, the explicit learning condition showed fewer
misconceptions than the implicit learning condition. We consider misconceptions as an
important indicator of students’ algebra knowledge. Misconceptions can originate from
insufficient knowledge, and the more knowledge learners have, the fewer misconceptions they
have (Körner, 2005). In our intervention, the explication of principles and relevant features that
were requested in the explicit learning condition appear to have led to a better representation of
the correct algebraic procedures, preventing students from reporting and applying misconcep-
tions. In particular, we believe that explicated features and rules help distinguish addition from
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multiplication, for example, the continuity of summands such has Bx^ or Bxy^ in addition
(xy + x + xy + x = x + x + xy + xy = 2× + 2xy) that must be clearly distinguished from the
splitting of factors in multiplication (xy · x · xy · x = x · y · x · x · y · x = x4y2). Verbalizing this
difference explicitly contrasts the splitting in multiplication from the summands in addition
(i.e., a repeated verbal assignment regarding the central features distinguishing addition from
multiplication). This presumably better representation gained through the explicit learning of
contrasted material might be explained by the potential of explanations to detect and fill gaps
as well as the differences in material to be learned (VanLehn et al., 1992) or the need to
connect and integrate visual perceptual and verbal components (Aleven & Koedinger, 2002).

The Strengths of Extensive Problem Solving

As expected, the implicit learning condition scored higher on the problem-solving test than the
explicit learning condition in terms of the application of the alphabetical-ordering convention
that were not directly taught. We assume that the implicit learners had greater capacities to
notice features not directly taught because the problem generation and solving was less
challenging than the explicit comparisons under the explicit learning condition. Thus, making
instructions more demanding by directing learners’ attention to central features of concepts
might support the learning of verbal concept knowledge (e.g., Sweller, 1994); simultaneously,
however, at the same time it might reduce attention to incidental aspects (Ziegler & Stern,
2014). Although alphabetical ordering of variables is a minor component of learning algebraic
term transformation, it is not unimportant. Thus, to support the development of verbal concept
knowledge and the learning of conventions alike, future settings could investigate the
sequencing or combining of explicit verbalization and implicit problem solving.

We did not find differences between the two learning conditions with respect to the
concept knowledge assessed with a verbal measure. It was unexpected that the students who
learned by explaining differences in the presented worked examples did not acquire better
skills in expressing their knowledge, especially given that they have acquired better problem
solving knowledge. In additional analyses, we found a potential explanation for these results.
The students in the implicit condition generated and solved problems throughout the
instruction, making it more likely for these students to include many examples in their
written concept explanations. On average, students from the implicit learning condition
implemented approximately three times as many examples in their explanations as students
from the explicit learning condition. The number of applied examples was also highly
correlated with the verbal concept knowledge scores. Thus, the verbal concept test used in
our study apparently reflects differences in students’ answer behavior that do not necessarily
reflect differences in algebra knowledge. More likely, the groups may have differently
responded to the verbal concept measure, a phenomenon that is well known from research
investigating the disadvantages of specific groups related to algebra measures (Holland &
Wainer, 2012; O’Neill et al., 1993). Support for this assumption comes from the clear
outperformance of explicit learners on the verbal misconceptions score, a good indicator of
learning benefits. We assume that explaining a concept by using an example might be easier
for students than expressing concept knowledge with words (e.g., von Aufschnaiter &
Rogge, 2010). Thus, it is unclear to which degree the lack of difference between the groups
can be attributed to differences in verbal concept knowledge, and to differences in answer
behavior. In future studies, such interactions between intervention and the functioning of
measures should be considered when planning studies. Specific intervention conditions
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should not have advantages caused by characteristics of measures or scoring procedures,
which cannot be ruled out for our verbal concept measure.

Interactions between Conditions and Knowledge Measures

Analyses of the interaction between the two conditions and the two types of knowledge
measures indicated that the conditions differed in the amount to which they supported
students’ alphabetical-order knowledge, while no significant interactions were found for
number-one knowledge and the main measures of algebra knowledge. The significant inter-
action indicates that the advantage of implicit learning on non-verbal alphabetical order
knowledge was stronger than the difference between the two conditions on verbal
alphabetical-order knowledge. The lack of interaction on the main measures of algebra
knowledge together with the clear main effect of condition supports the asymmetry hypothesis,
as explicit learning outperformed implicit learning on both problem solving and verbal concept
knowledge measures. As a limitation of this analysis, it should however be noted that the
measures to assess the two types of knowledge differed in the type of items. Such differing
characteristics between measures cannot be eradicated by standardizing scores obtained with
different measures, because effects of assessment methods can substantially influence unstan-
dardized and standardized effect estimates (Fiedler, 2011; Podsakoff et al., 2003). The present
study therefore provided a first but limited opportunity to compare the effects of both types of
learning across a broad set of knowledge measures. For similar comparisons in future studies,
we suggest to use more than one type of measure for each of the two types of knowledge.
Applying latent variable models on data obtained with different types of measures, for
example, would then allow more reliable comparisons of effects across measures, by
disentangling effects of assessment methods from real effects of intervention (Eid et al., 2003).

Verbal and Non-verbal Knowledge Measures

The problem-solving and verbal concept knowledge measures used in our study are related to
the frequently used pairs of implicit and explicit, procedural and conceptual (declarative), or
non-verbal and verbal knowledge (Aleven & Koedinger, 2002; Anderson & Lebiere, 1998;
Koedinger et al., 2012; Rittle-Johnson et al., 2015; Sun et al., 2005). These pairs signify
different characteristics of knowledge acquisition, such as the level of consciousness during
knowledge acquisition, the representation of knowledge, or the degree of explication while
working on problems. The different characteristics are however seldom thoroughly considered
and distinguished as knowledge dimensions. For example, for Aleven and Koedinger (2002),
procedural and declarative knowledge correspond to implicit and explicit knowledge. Because
it is difficult to decide which type of knowledge is involved in a measurement and to validly
differentiate the types of knowledge from each other, we decided to circumvent this problem
and designated the type of knowledge according to how it was assessed.

It is difficult to distinguish implicit from procedural knowledge, and explicit from
conceptual knowledge empirically. Theoretically, it is well possible to describe and define
procedural knowledge and implicit knowledge separately (the same for conceptual knowl-
edge and explicit knowledge). It is however difficult to separately assess the knowledge in
mathematics learning, a field where all the materials and concepts are consciously accessible.
In other fields, such as in complex systems learning, which involves material with complex
hierarchical relations that are not consciously accessible, implicit knowledge is measurable
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by how fast or accurate a task is solved or an aim is reached. However, in mathematics
learning, material and concepts are generally accessible and therefore it is difficult to know
for a solved task which knowledge was applied. Thus, this taxonomy is not uncontested,
because it is difficult to determine what implicit or procedural and explicit or conceptual
knowledge include. For example, in procedural tasks such as problem solving, it is difficult
to distinguish whether applied knowledge is implicit or still explicit, and to which proportion
procedural and conceptual knowledge are involved. For verbal concept explanations, it can
be expected that conceptual knowledge has to applied; however, people may also have
procedures in mind that they use as a reference for their explanations, or when solving
multiple choice items (Rittle-Johnson et al., 2015).

In mathematics learning, both implicit and procedural knowledge are often treated in the
same way and are typically assessed with a non-verbal measure such as problem-solving tasks
(i.e., the application of knowledge). Explicit and conceptual knowledge are typically assessed
with a verbal measure such as verbal explanations of principles (i.e., the explication of
knowledge). This promotes using the measures synonymously and further renders it difficult
to distinguish them properly. In addition, procedural and conceptual knowledge, and implicit
and explicit knowledge are highly correlated and also highly intertwined within a person’s total
knowledge, making it difficult to distinguish between the two or measure each independently
from the other (Schneider & Stern, 2010). Thus, it is also difficult to measure the types of
knowledge directly and unambiguously.

In our problem-solving test, the students had to solve mixed addition and multiplication
problems, a task that necessarily involves some use of conceptual differentiation. Thus,
conceptual knowledge can include both implicit and explicit understandings of principles;
for example, explicit knowledge can include both conceptual and procedural skills. In other
words, although someone might understand and solve a problem adequately, that person might
not be able to verbalize his or her knowledge (Bou-Llusar & Segarra-Ciprés, 2006; von
Aufschnaiter & Rogge, 2010).

Thus, we think that the terms Bprocedural and conceptual^ and Bimplicit and explicit^
knowledge should be used with great caution in educational settings. Therefore, in the present
study we decided to refer to the type of knowledge according to how it is assessed (i.e.,
problem-solving knowledge was measured via the percentage of correctly solved routine
problems and verbal concept knowledge by asking for verbal explanations of the concepts).

Nevertheless, the distinction of the two kinds of knowledge remains meaningful precisely
because one type of knowledge can exist and be observed to some degree without the other.
Successful problem solving probably needs a larger proportion of procedural knowledge, and
verbal explanation likely requires a larger proportion of conceptual understanding.

Our results confirm that the challenging distinction between two algebra concepts in
problem solving cannot be acquired through pure problem-solving practice; rather, it benefits
from verbal explanations that promote the understanding and sense-making process without
neglecting problem-solving skills. This focus on verbal explanation and sense-making appears
to be especially important for rule-based concepts in challenging fields in which the compre-
hension of material is crucial (Koedinger et al., 2012).

Outlook and Implications

In the present study, we examined the relative merits of explicit and implicit learning on a
broad set of knowledge measures. Advantages for explicit learning were found on the verbal
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and non-verbal measures of the taught concepts, higher problem solving knowledge and less
misconceptions. Advantages for implicit learning were found for the incidental learnable
aspects. Thus, the merit of implicit learning is to compensate the disadvantage on the taught
concepts with an improved learning of incidental aspects of the material.

Overall, our results suggest that the contrasted presentation of learning material clearly
gains from an explicit learning approach. Verbalization helped students learn juxtaposed
addition and multiplication transformations, with explicit comparison adding value to the
simultaneous processing of contrasted material. We demonstrated an advantage of explicit
verbal learning for similar and juxtaposed algebra principles. We assume that the explication of
contrasted material is generalizable to other types of algebraic and mathematical material that
comprise different principle, such as different solution methods for solving equations (e.g.,
Rittle-Johnson & Star, 2007) or different operations with fractions. Verbalizations extend the
processing of contrasted learning material by enabling students to focus on the central features
of the concepts, although this advantage might not yet be visible during the learning phase.
Thus, we support verbal explanation as a teaching method that demands extra effort from
learners but supports their lasting understanding of newly introduced concepts. At the same
time, we showed the impact of implicit learning on incidental aspects of to-be-learned
materials, for example on the alphabetical ordering convention, even though no effect was
found on number-one convention. Therefore, future research has to show whether these or
other incidental learning benefits can be confirmed when explicitly studying materials.
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