
Diss. ETH No. 24471

A Constraint-Based Approach

to Data Quality

in Information Systems

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH

(Dr. sc. ETH Zurich)

presented by

David Weber

Dipl. Inform., University of Zurich

born April 29, 1976
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Abstract

Data volume, diversity of data, data sources and access to data have all fundamentally
changed over the past years. Nowadays, the volume of data produced and used by organ-
isations has grown in a way beyond what previously could have been imagined. Today’s
information systems store and manage structured, unstructured and semi-structured
data, but also multimedia data such as videos, maps and images. Moreover, the num-
ber of people and devices that access data has increased greatly and it is now common
for employees to access data globally in a distributed manner from different devices
including laptops, tablets and mobile phones.

Due to these changes, information management has become even more challenging
and complex than it has ever been. Solutions to the management of data in general,
and specifically to data quality control, are challenged all the more as the importance
and complexity of data quality also increases. Now then, how can good quality of data
in an information system be ensured?

The reliability and usefulness of an information system is largely determined by the
quality of the data that serves as input and is processed by the system. But to ensure
a high level of data quality, it is necessary to precisely define data quality requirements
expressed as constraints which are based on an information system’s business rules.
However, there is a lack of widely accepted standards, approaches, technologies and
tools for measuring, managing and enhancing data quality based on constraint checking.

In our work, we acknowledge that data quality has a central role in information
systems development by meeting the need for incorporating considerations on data
quality into the complete data cycle encompassing not only managerial but also tech-
nical aspects, such as semantic integrity constraints. We aim to provide approaches to
express various aspects of data quality as an information system output by the means
of constraint checking on certain data input.

Constraint definitions tend to be distributed across the components of an informa-
tion system using a variety of technology-specific representations. This causes not only
more effort to define and check constraints but also additional work for maintaining
constraints if business rules change which bears the risk of inconsistency within the
constraint definitions in the various components.

Having indicators for data quality at hand for the different levels of data granularity
such as single attributes, single instances, sets of instances, sets of entities and the
overall quality of a dataset is desirable for the analysis and improvement of the data
quality in an information system. The use of constraint checking methods for simplifying
the evaluation of such data quality indicators appears to be applicable since (integrity)
constraints and quality can both be described by assertions. Nonetheless, it is not clear
how a set of constraints can be used to measure and indicate the quality of data.

Moreover, linking constraints to data quality is difficult since constraints usually

i



ii

are defined upfront and, therefore, can never be exhaustive. This means that a dataset
that satisfies every constraint might still be of low quality.

The goal of our work was to facilitate constraint management for software developers
and take advantage of the opportunity to make use of constraint checking for indications
of data quality by embedding data integrity in a continuous data quality improvement
process. We therefore see data quality as an extended constraint compliance problem.

To tackle the issue of distributed constraints, we investigated alternative approaches
for unified constraint management regarding the definition and checking of constraints.
All of the approaches had the goal of obtaining a single, extended constraint model that
avoids any inconsistencies and redundancy within the constraint specification and data
validation processes. One of our approaches also follows the Model-Driven Architecture
approach of using a technology-independent model that serves as a base for technology-
specific code generation.

For indicating data quality based on constraint compliance, we introduced a fine-
grained severity scale for constraint violations which enables less and more important
constraints to be distinguished instead of traditional constraints which usually validate
to either true or false. In most of our approaches, an individual constraint can be
weighted with violation severity values associated, if needed, also with data quality
dimensions. Based on these violation scores, we introduced metrics and measurements
to provide indications of data quality for the various levels of data granularity. With an
‘error threshold’ we distinguish between traditional constraints which prohibit saving
data if they are violated and a form of more relaxed constraints which allow data to be
saved even if they are violated. This allows us to take different actions based on the
type of violations encountered.

We further introduced data quality assessment profiles, which configure user-specific
or application-specific constraints, associated with individual constraint violation sever-
ities, to enable user-specific and application-specific constraint checking with appropri-
ate specific data quality feedback. These data quality assessment profiles can easily
be adapted to different needs and are applicable for different users or applications, re-
spectively. The need to distinguish constraint checking for different user groups was
also affirmed in a large research project for food science data (TDS-Exposure) involving
many different stakeholders for various countries across Europe. Moreover, we also in-
vestigated possibilities for defining constraints during the runtime of an application
which was possible in some of our proposed approaches.

One large part of our work was to investigate ways of giving feedback on data qual-
ity. We studied and developed different variations for data input and data analysis
feedback including adaptive data input and data quality feedback responsiveness in the
case of varying constraint sets or feedback in different applications, respectively. We
investigated integrated data quality management frameworks within specific applica-
tions but also independent data quality management frameworks for input and analysis
feedback and monitoring of data quality including the evolution of data quality over
time.

As mentioned above, low quality of a dataset cannot completely be assured by mon-
itoring the constraint compliance of an information system since constraint compliance
only serves as an objective data quality assessment. There is a need for a subjective
data quality assessment where the subjective data quality indicates the perception on
the quality of data of different stakeholders, such as the individuals that enter, provide
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and use the data. The perceptions may vary between the individuals but can provide
comparisons to the objective data quality provided by constraint compliance. Thus, we
also investigated methods of how to include explicit and implicit data quality feedback
from users of an information system and how to use this information in combination
with other metrics, such as the constraint compliance.

Our food science data management application ‘FoodCASE’, which consists of a
server logic, two clients, a web interface and a mobile application, served as a scenario
testbed for our investigations.

Overall, our work provides different approaches for data quality management frame-
works and multiple tools which facilitate constraint management for software developers
and embed data integrity in a dynamic, continuous data quality improvement process
in software engineering, based on but not limited to constraint compliance.





Zusammenfassung

Datenvolumen, -vielfalt, -quellen und -zugriff haben sich in den vergangenen Jahren
grundlegend verändert. Heutzutage ist die Menge des Datenvolumens, das von Orga-
nisationen produziert und genutzt wird, weit über das hinaus gestiegen, was man sich
vorstellen konnte. Die heutigen Informationssysteme speichern und verwalten struk-
turierte, unstrukturierte und halbstrukturierte Daten, aber auch Multimediadaten wie
Videos, Karten und Bilder. Darüber hinaus ist die Anzahl der Personen und Geräte,
die auf Daten zugreifen, stark gestiegen und es ist üblich, dass Mitarbeiter weltweit von
verschiedenen Geräten wie Laptops, Tablets und Mobiltelefonen auf Daten zugreifen.

Aufgrund dieser Entwicklung ist Informationsmanagement noch schwieriger und
komplexer geworden als je zuvor. Da die Bedeutung und Komplexität der Daten-
qualität ebenfalls zunimmt, sind Lösungen für Datenmanagement im Allgemeinen und
Datenqualitätskontrolle im Speziellen umso mehr gefordert. Nun, wie kann gute Daten-
qualität in einem Informationssystem gewährleistet werden?

Die Zuverlässigkeit und Nützlichkeit eines Informationssystems werden weitgehend
durch die Qualität der Daten bestimmt, die als Eingabe dienen und vom System ver-
arbeitet werden. Um ein hohes Mass an Datenqualität zu gewährleisten, ist es not-
wendig, die Anforderungen an die Datenqualität genau zu definieren, die als Constraints
(Bedingungen/Einschränkungen) ausgedrückt werden und auf den Regeln eines Infor-
mationssystems basieren. Allerdings fehlt es an weit verbreiteten Standards, Ansätzen,
Technologien und Werkzeugen zur Messung, Verwaltung und Verbesserung der Daten-
qualität auf Grundlage der Überprüfung von Constraints.

Datenqualität spielt eine zentrale Rolle in der Entwicklung von Informationssyste-
men, da es notwendig ist, Datenqualitätsüberlegungen in den gesamten Datenzyklus
einzubeziehen. Dies umfasst nicht nur betriebswirtschaftliche, sondern auch techni-
sche Aspekte, wie z.B. semantische Integritätsbeschränkungen (Semantic Integrity Con-
straints). Mit der Validierung von Daten, mittels der Überprüfung von Constraints,
zielen wir darauf ab, verschiedene Aspekte der Datenqualität als Ausgabe eines Infor-
mationssystems auszudrücken.

Constraint-Definitionen neigen dazu, über die Komponenten eines Informationssys-
tems mit einer Vielzahl von technologiespezifischen Repräsentationen verteilt zu sein.
Dies führt nicht nur zu mehr Aufwand, um Constraints zu definieren und zu überprüfen,
sondern auch zu zusätzlicher Arbeit für die Wartung von Constraints, wenn Geschäfts-
regeln ändern. Dies birgt ein Risiko für Inkonsistenz innerhalb der Constraint-
Definitionen in den verschiedenen Komponenten.

Für die Analyse und Verbesserung der Datenqualität in einem Informationssystem
sind Indikatoren für die Datenqualität auf den verschiedenen Ebenen der Datengranu-
larität wünschenswert. Diese Ebenen beinhalten einzelne Attribute, einzelne Instanzen,
Sätze von Instanzen, Sätze von Entitäten und die Gesamtqualität eines Datensatzes.
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Die Verwendung der Überprüfung von Constraints zur Vereinfachung der Auswertung
solcher Datenqualitätsindikatoren scheint naheliegend zu sein, da (Integritäts-) Con-
straints und Qualität beide durch Aussagen (Assertions) beschrieben werden können.
Dennoch ist es nicht offensichtlich, wie Constraints verwendet werden können, um die
Qualität der Daten zu messen und anzugeben.

Darüber hinaus ist die Verknüpfung von Constraints mit der Datenqualität schwie-
rig, da Constraints in der Regel im Voraus definiert sind und daher niemals erschöpfend
sein können. Dies bedeutet, dass ein Datensatz, der alle Constraints erfüllt, immer noch
von geringer Qualität sein könnte.

Das Ziel unserer Arbeit war es, die Verwaltung von Constraints für Softwareentwick-
ler zu erleichtern. Des Weiteren waren wir bestrebt, die Überprüfung von Constraints
für Hinweise zur Datenqualität durch Einbettung der Datenintegrität in einen kontinu-
ierlichen Prozess zur Verbesserung der Datenqualität zu nutzen. Wir fassen daher
Datenqualität als erweiterte Problematik der Constraint-Compliance (Constraint-
Erfüllung) auf.

Um das Problem verteilter Constraints in Angriff zu nehmen, haben wir alternative
Ansätze für eine einheitliche Verwaltung von Constraints hinsichtlich der Definition und
Überprüfung von Constraints untersucht. Alle Ansätze hatten das Ziel, ein einziges,
erweitertes Constraint-Modell zu erhalten, das jegliche Inkonsistenzen und Redundanz
innerhalb der Constraint-Definitionen und des Datenvalidierungsprozesses vermeidet.
Einer unserer Ansätze folgt auch dem modellgetriebenen Architektur-Ansatz, ein tech-
nologieunabhängiges Modell zu nutzen, das als Grundlage für die technologiespezifische
Codegenerierung dient.

Um Hinweise zur Datenqualität auf der Grundlage der Constraint-Compliance zu
gewährleisten, haben wir eine feinkörnige Schweregrad-Skala (Severity Scale) für
Constraint-Verletzungen eingeführt, die es ermöglicht, dass weniger und wichtigere Con-
straints statt traditioneller Constraints unterschieden werden können. Traditionelle
Constraints werden in der Regel entweder als wahr (true) oder falsch (false) validiert.
In den meisten unserer Ansätze kann ein individueller Constraint mit Verletzungs-
schwerewerten gewichtet werden, die bei Bedarf auch mit Datenqualitäts-Dimensionen
assoziiert werden können. Basierend auf diesen Verletzungswerten haben wir Metriken
und Messungen eingeführt, um Hinweise auf die Datenqualität für die verschiedenen
Ebenen der Datengranularität zu erhalten. Mit einer Fehlerschwelle (Threshold) un-
terscheiden wir zwischen traditionellen Constraints, die das Speichern von Daten ver-
hindern, wenn sie verletzt werden, und einer Form von gelockerten Constraints, die es
ermöglichen, dass Daten gespeichert werden, auch wenn die Constraints verletzt wer-
den. Dies ermöglicht es uns, verschiedene Prozesse (Actions) zu definieren, die auf der
Art der Constraint-Verletzungen basieren.

Wir haben auch Datenqualitätsbewertungsprofile eingeführt, welche benutzer- oder
anwendungsspezifische Constraints konfigurieren, die mit individuellen Constraints-
Verletzungen assoziiert sind, um eine benutzer-, respektive anwendungsspezifische Über-
prüfung von Constraints mit entsprechendem spezifischen Feedback (Rückmeldung)
zur Datenqualität zu ermöglichen. Diese Datenqualitätsbewertungsprofile lassen sich
problemlos an unterschiedliche Bedürfnisse anpassen und gelten für unterschiedliche
Benutzer bzw. Applikationen. Die Notwendigkeit, die Überprüfung von Constraints
für verschiedene Benutzergruppen zu unterscheiden, wurde auch in einem grossen For-
schungsprojekt für lebensmittelwissenschaftliche Daten (TDS-Exposure) mit vielen ver-
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schiedenen Stakeholdern (Geschäftsinteressenten) für verschiedene Länder in ganz Eu-
ropa bestätigt. Darüber hinaus haben wir auch die Möglichkeiten zur Festlegung von
Constraints während der Laufzeit einer Anwendung untersucht, was in einigen unserer
vorgeschlagenen Ansätze realisierbar war.

Wir befassten uns in unserer Arbeit zu einem grossen Teil damit, Möglichkeiten für
Feedback zur Datenqualität zu prüfen. Folglich haben wir verschiedene Variationen für
Feedback bezüglich Dateneingabe und -analyse untersucht und entwickelt. Dies um-
fasste auch adaptive Dateneingabe und Datenqualitäts-Feedback-Responsiveness für
unterschiedliche Constraints-Sätze oder Feedback in verschiedenen Anwendungen. Wir
untersuchten integrierte Datenqualitäts-Verwaltungs-Frameworks in spezifischen An-
wendungen, aber auch solche, die von Anwendungen unabhängig sind. Dabei stand
sowohl das Datenqualitäts-Feedback während der Dateneingabe und -analyse als auch
das Datenqualitäts-Feedback für die Überwachung (Monitoring) der Datenqualität im
Vordergrund, einschliesslich der Entwicklung der Datenqualität im Laufe der Zeit.

Wie oben erwähnt, kann eine geringe Qualität eines Datensatzes nicht vollständig
durch die Überwachung der Constraint-Compliance eines Informationssystems sicher-
gestellt werden, da die Constraint-Compliance nur als objektive Datenqualitätsbewer-
tung dient. Es besteht die Notwendigkeit einer subjektiven Datenqualitätsbewertung,
bei der die subjektive Datenqualität die Wahrnehmung der Datenqualität der ver-
schiedenen Stakeholder anzeigt. Die Stakeholder sind in diesem Falle z.B. Personen,
die Daten eingeben, zur Verfügung stellen und/oder benutzen. Die Wahrnehmungen
können zwischen den Individuen variieren, ermöglichen jedoch Vergleiche mit der ob-
jektiven Datenqualität, die durch die Einhaltung der Constraints repräsentiert wird.
Somit haben wir auch Methoden untersucht, wie man explizites und implizites Feedback
zur Datenqualität von Nutzern eines Informationssystems sammeln und wie man diese
Informationen in Kombination mit anderen Metriken wie der Constraint-Compliance
einsetzen kann.

Unsere Applikation zur Verwaltung von wissenschaftlichen Lebensmitteldaten
‘FoodCASE’, die aus einer Server-Logik, zwei Clients, einem Web-Interface und einer
Mobile Applikation besteht, diente als Szenario für unsere Untersuchungen.

Insgesamt bietet unsere Arbeit verschiedene Ansätze für Datenqualitäts-Verwaltungs-
Frameworks und mehrere Tools, die die Verwaltung von Constraints für Softwareentwick-
ler erleichtern und die Datenintegrität in einen dynamischen, kontinuierlichen Prozess
zur Verbesserung der Datenqualität in der Software-Entwicklung integrieren, basierend,
aber nicht beschränkt auf Constraint Compliance.
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1
Introduction

Due to the development of the Internet, we are living in an era of massive information
explosion where cloud technology and ‘Big Data’ are omnipresent. Especially for en-
terprises, data has become the most valuable asset and may even become the biggest
trading commodity in the future. Despite the absence of a clear definition, it is widely
agreed that Data Quality (DQ) is of major importance to information systems. DQ
can help organisations reduce costs, operate more efficiently, and decrease risk [198]. It
is especially important in the management and processing of scientific data since the
methods used to capture data are constantly being revised and improved which means
that the quality of data may vary over time.

DQ can indicate to what extent a concrete instance of data complies with quality
rules inherent to an information system. However, DQ is a multifaceted concept and
may involve many different dimensions [12, 123, 187]. DQ dimensions capture a specific
facet or aspect of DQ such as accuracy, completeness or currency and contribute to a
measure of the overall DQ. It is not obvious how DQ can be measured and quantified for
individual information systems, but it is clear that data considered to be of poor quality
in some sense can cause several problems in an information system [113, 182, 185].

It is a fundamental task to discover the quality of a dataset in most DQ improvement
projects [11] where DQ is usually evaluated against certain stated requirements [86, 52,
109]. Users want to access high-quality information where quality requirements are
generally user-specific. To determine the usefulness of data and user satisfaction, DQ
serves as a key factor [199]. Most DQ assessment approaches are user-centred and
organised in a ‘top-down’ manner where (1) requirements are identified, (2) metrics
are defined to measure the DQ, and (3) the actual datasets are explored based on the
defined metrics [203].

Constraint models are used in databases to specify various basic data integrity rules
and ensure that only valid data is entered into a database. Other forms of constraint
checking occur in other components of an information system ranging from checks
encoded in software that implements the business logic to client-side form validation.
While such checks guarantee certain minimal DQ requirements, they do not cater for all

1



2 Chapter 1. Introduction

dimensions of DQ such as ensuring that data is current and accurate. Further, many
of these dimensions are not absolute. For example, a scientific measurement is not
simply accurate or inaccurate, but rather needs to be associated with some measure
of accuracy and may become outdated over time as new scientific methods evolve. It
is therefore necessary to have models and methods for analysing the quality of stored
data as well as preventing the input of invalid data.

For over four decades, DQ has been the target of research and development where
many interesting investigations related to its dimensions, models, frameworks, meas-
urement techniques, methodologies, and applications have been carried out, e.g. [144,
107, 189]. In the beginning, the main interest lay with how to manage datasets to find
and solve DQ problems. Over time, due to its cross-disciplinary nature, involving stat-
istics, knowledge representation, data mining, management information systems, and
data integration [12], it has been approached by various communities. Consequently,
the different communities, such as business analysts, solution architects, database ex-
perts and statisticians both in academia and companies discuss the applications of DQ
management from different perspectives [198, 165].

Meanwhile data volume, diversity of data, data sources and access to data have
all fundamentally changed [165]. In the beginning of digital information management
rather small datasets of similar types were gathered from a few sources and stored on
single machines. This data would be managed by a few people inside an organisation
and accessed in a uniform manner. Nowadays, the volume of data produced and used
by organisations has grown in a way beyond what previously could have been imagined.
Also, due to the proliferation of shared/public data on the World Wide Web and the
growth of the web community, today’s information systems store and manage struc-
tured, unstructured and semi-structured data, but also multimedia data such as videos,
maps and images. Data from various technologies such as sensor devices used for home
automation, medical instrumentation, RFID readers, smart watches and cars further
increases the diversity and amount of collected data. Moreover, the number of people
and devices that access data has increased greatly and it is now common for employees
to access data globally in a distributed manner from different devices including laptops,
tablets and mobile phones. Due to these changes, information management has become
even more challenging and complex than it has ever been. Solutions to the management
of data in general, and specifically to DQ control, are challenged all the more as the
importance and complexity of DQ also increases [165].

Now then, how can good quality of data in an information system be ensured? Most
obviously, we think first of restricting the input process so that data of poor quality
cannot be entered into the system. This can be done by using constraint checking
at the User Interface (UI) level, within application programs or at the database level.
Alongside data input validation, there exists the possibility of analysing the quality of
the data already stored in the database. Users (or power users) can then be informed
about any problems and take actions to deal with them. Such an analysis is related to
DQ assurance or data cleaning which is concerned with the correction and improvement
of data in databases as described in [66].

Thus, the reliability and usefulness of an information system is largely determined
by the quality of the data that serves as input and is processed by the system. But to
ensure a high level of DQ, it is necessary to precisely define DQ requirements expressed
as constraints which are based on an information system’s business rules. In the realm
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of information systems, such constraint checking is seen as the main mechanism for
controlling the validity of data at the various application levels. However, there is a
lack of widely accepted standards, approaches, technologies and tools for measuring,
managing and enhancing DQ based on constraint checking.

In our work, we acknowledge that DQ has a central role in information systems
development by meeting the need for incorporating considerations on DQ into the
complete data cycle encompassing not only managerial but also technical aspects such
as semantic integrity constraints [164]. We aim to provide approaches to express various
aspects of DQ as an information system output by the means of constraint checking on
certain data input.

We thereby motivate to exploit the synergies across different research communities
dealing in our research with those aspects of DQ which indicate the subjective adherence
of a dataset to a particular set of constraints. We predominantly focus on intrinsic DQ
and therefore are concerned only with the data itself and not contextual factors such
as the purpose for which data is used or characteristics of the data users. Moreover,
we consider information systems in their entirety rather than the database components
alone.

In this work, we focus on constraint checking which is the act of checking data for
the fulfilment of requirements expressed as conditions. Not fulfilling these conditions
or constraints, respectively, results in constraint violations which can trigger various
actions. We also refer to constraint checking as data validation or just validation with
the same meaning. In addition there also exists constraint maintenance which includes
repairs to data if a constraint check caused a violation. Constraint checking and con-
straint maintenance together can be generalised as constraint enforcement. Constraint
validation in turn is seen either as the verification of a single constraint or a set of con-
straints against requirements such as that constraints in the set should not contradict
each other.

1.1 Case study/scenario

One of the drivers of our work was the further development of the food science data
management system FoodCASE1 which already existed as a system for managing food
composition data in Switzerland where the Federal Food Safety and Veterinary Office
(FSVO)2 is responsible for its content. Throughout our work, FoodCASE always served
as a case study and testbed for the various concepts that we propose and their imple-
mentations. We will use it in the following sections to motivate our work in general
and our explicit approaches. Further, we provide examples based on FoodCASE as a
scenario application with scientific data specific for the food science area. Therefore,
we present here a general introduction to food science studies and a summary of the
FoodCASE functionality, focussing on Total Diet Study (TDS) data.

Generally, FoodCASE is used to document data for studies in the food sciences, such
as foods with their associated analysed values for nutrients and contaminants as well
as consumption data. The stored data is used for further assessment concerning, for
example, nutrition and health risks for a certain population in a specific country. The

1https://www.foodcase.ch/
2http://www.blv.admin.ch/

https://www.foodcase.ch/
http://www.blv.admin.ch/


4 Chapter 1. Introduction

FoodCASE application consists of a database, server logic, two clients, a web interface
and a mobile application.

In food composition studies, single foods such as apples, bread, chicken, and cher-
ries are bought and analysed regarding various beneficial substances such as calcium,
protein, and vitamin A to document the containing nutrients. A resulting single value,
for example, would be that a hundred grams of the edible part of an apple contain
five milligrams of calcium on average. Further, aggregated foods such as fruits can be
composed in a calculative manner based on single foods such as apples, bananas, cher-
ries, and pears with their appropriate single values. Moreover, based on single and/or
aggregated foods, recipes can be calculated which represent dishes in a daily diet such
as a fruit salad.

While food composition studies focus on nutrients, the aim of TDSs is to analyse the
content of nutrients and contaminants in a population’s diet, and calculate exposure
assessments where the focus lies more on harmful rather than beneficial substances.
A TDS consists of several process steps, including the definition of population groups
and foods of interest, planning, sampling, pooling, laboratory analyses and exposure
assessments. In the first step of a TDS, a previously conducted national consumption
survey is used to derive a TDS food list that represents the large part of a population’s
diet in a specific country, for example foods such as apples, bread, and chicken. Con-
sequently, the two datasets of food consumption and a TDS are closely related. The
next planning step is to define what foods from the food list should be pooled together
to reduce analysis effort (e.g. red cherries and black cherries to cherries) and what
explicit products should be bought when and where (shopping list). The results of the
planning are food pools (so-called samples) and a list of concrete food items (so-called
subsamples). The subsamples (e.g. red cherries and black cherries) then have to be
bought in shops which is called sampling. In a TDS kitchen, the subsamples are then
combined to samples (pooling) which finally are analysed in a laboratory. The result
of the laboratory analyses are analytical values for various substances (e.g. copper,
manganese, mercury, selenium, etc.) for the different food pools. Resulting analytical
values would, for example, be that one kilogram of the edible part of cherries contains
0.5056 milligram of copper (Cu) and no detectable quantity of mercury (Hg) on aver-
age. These values are then combined with the associated consumption data to assess
the exposure risk.

TDS data is similar to food composition data in terms of value documentation of
analysed values. However, it is different in that foods collected for a TDS are pooled
before they are analysed, and more sampling information needs to be stored. The main
difference in terms of data management is that, for food composition, the focus lies
on the storage of analytical values and generation of new derived values whereas, in a
TDS, the focus lies on value documentation for exposure assessment.

Nowadays, food and nutrition scientists need to manage an increasing amount of
data regarding food composition, food consumption and TDSs. The corresponding
datasets can contain information about several thousand different foods, in different
versions from different studies. FoodCASE has been developed to manage these different
datasets and support flexible means of linking between them as well as to generally
provide support for the different processes involved in the acquisition, management and
processing of food science data.

In 2014/15, Switzerland conducted the first national Swiss food consumption survey,
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where FoodCASE was chosen as the storage system for the interview data. The main
goal was to keep the consumption and food composition data in the same system and
to enable automated linkage between the two datasets. The European project Total
Diet Study Exposure (TDS-Exposure)3, conducted between 2012 and 2016, within the
7th Framework Programme for Research of the European Commission, aimed to har-
monise the analysis of dietary contaminants throughout Europe, and create an EU-wide
network of TDS centres. As part of the TDS-Exposure project, we first gathered appro-
priate requirements from the food science community and then extended FoodCASE,
based on these requirements, in continuous collaboration with TDS experts from across
Europe to additionally support the management of TDS data. The extended Food-
CASE supports the single process steps of a TDS and provides the functionality to
document all intermediate and final data.

Consequently, all data concerning food composition, food consumption and TDSs as
well as additional administrative data such as user management data (e.g. user names,
rights, preferences, etc.) and general food science thesauri (e.g. units, substances,
analysis methods, etc.) can be managed and accessed in FoodCASE through the clients
and the web interface, respectively. Additionally, a mobile application was developed to
support the TDS sampling step so that shopping lists can be downloaded onto mobile
devices and used in supermarkets to buy concrete food products.

In the remainder of this subsection, we present a feasibility study which was conduc-
ted as part of the TDS-Exposure project and the general architecture of FoodCASE.
Further information about the FoodCASE application is provided in [148, 146].

In the TDS-Exposure project, the five countries Germany (DE), Czech Republic
(CZ), Finland (FI), Iceland (IS) and Portugal (PT) conducted TDS pilot studies. Since
the TDS module in FoodCASE was developed in parallel to the pilot studies, the study
participants collected and managed their data first in different systems and tools such as
laboratory information systems, Excel and Access. After the FoodCASE TDS extension
was finalised, the datasets from these studies, as well as previously existing TDS data
from UK and France (FR), was imported into the final FoodCASE application.

FoodCASE was developed using a client-server architecture to provide accessibility
to the various stakeholders. The FoodCASE server is not only a database, but also con-
tains an application server over which data is submitted and retrieved. The application
server builds a single point of access to the data, so that DQ checks can be performed,
business logic (such as recipe calculations) can be done in a single place and the data
is protected. The application server also offers the advantage of using interfaces in
different applications, including desktop, web and mobile applications, which can be
served over the same business logic implementation.

1.2 Motivation

Data validation ensures that the quality of data in an information system meets a
required threshold. It can detect not only errors but also anomalies or deficiencies in
data. In relational databases, validation is mainly concerned with database integrity
and consistency, and handled by constraint checking mechanisms. Object databases,
on the other hand, provide very limited support for constraints, leaving the task of data

3http://www.tds-exposure.eu/

http://www.tds-exposure.eu/
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validation to the application programmer. However, even if mechanisms for checking
integrity and consistency are an integral part of a database, they are not sufficient to
ensure that data is clean, correct and useful.

1.2.1 Unified constraint management

Independent of the database technology, the data validation process is usually distrib-
uted across several layers of an information system and performed in different ways. For
example, client-side validation might be performed using JavaScript or HTML5 form
support, while Java application logic and database constraints perform other checks.
Consequently, the same validation constraints are often checked in multiple layers lead-
ing to redundancy, code duplication and possible inconsistencies.

Constraints represent validation rules derived from software requirements which can
change over time, especially with the adoption of agile methods. Further, changes in
the set of constraints can result from minor issues such as bug fixes to major changes in
the system architecture which might even involve replacing components or technologies.
Keeping track of all the constraints and maintaining consistency throughout an entire
information system in the face of change can be a significant challenge for software
developers. The distribution of constraints makes it hard for a developer to have an
overview of all constraints and that, in turn, results in increased maintenance effort.
For example, while refactoring code, it is helpful if constraints are also moved, or even
refactored, automatically together with attributes and methods.

To make things worse, information systems are usually not just linear architec-
tures where only one application accesses a database. It is more likely that several
applications access a shared database and that the information system exchanges data
with other applications via machine-to-machine interfaces. Consequently, identical con-
straints might not only be checked multiple times in different layers of the information
system but even by different client applications.

Consider, for example, a system such as FoodCASE for managing food science data
which consists of a relational database, Java server business-logic, a Java client which
connects via Remote Method Invocation (RMI) to the server Enterprise JavaBeans
(EJBs) and a mobile application which connects via a RESTful API to a web service
on the server. Assume the client is used to manage all data including thesauri and
user data, while the mobile application is used to manage a subset of data related to
buying food samples in grocery stores. Data is usually entered through the client and
the mobile application but can also be imported directly to the database. Thus, it is
necessary to validate input data at least in the client, mobile application and database
but potentially also in the server business logic. For example, if it is only required to
store food names in English, then there could be a constraint that the name should
consist of at least three characters since there exist no foods with shorter names. This
constraint could be defined in the database using Structured Query Language (SQL)
as
CONSTRAINT CHECK (length(name::text) >= 3)

in the relevant table. The same constraint could be expressed in the business-logic with
Bean Validation (BV) as an annotation on the foods name attribute:
@Length(min = 3)

Further, the client could make use of the BV, while the mobile application constraint
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checking could be based on a rule engine where the rule ‘when’ statement would be
defined as
when Food (name.length < 3)

Thus, initially three technology-specific constraints would have to be created from the
same requirement and integrated in the appropriate components of the information
system.

If, at a later point in time, the software should also be used in Germany, the require-
ment is changed to support German food names as well. Consequently, the constraint
would have to be adapted to allow names with two characters since in German there
exist food names with only two characters such as ‘Ei’ for the English ‘egg’. Each of
the three technology-specific constraints (SQL, BV and Business Rules) would have to
be adapted accordingly.

The above example illustrates that an approach where constraints could be expressed
in a single format and mapped automatically to different representations in different
components could be highly beneficial for maintaining consistency under change. Fur-
ther, since the set of constraints can differ from one component to another, as in the
example mobile application, it is necessary to keep track of the set of relevant constraints
for each component.

The chosen food name length constraint in the example is a very simple constraint.
Of course constraints can be much more complex and involve the validation of multiple
different instances which potentially even increases the issue of distributed constraint
checking. Assume, for example, a constraint which has to assert that for a pooled food
(e.g. cherries) always at least twelve specific food items (e.g. red and black cherries from
different stores) have to be bought. Consequently, two entities (sample and subsample)
are involved where the cardinality constraint on the association between the two entities
has to be checked only after all food items have been bought.

Since Model-Driven Software Development (MDSD) and with it Model-Driven In-
tegrity Engineering [98] are gaining in importance, it would be convenient to be able
to create the various technology-specific constraints directly from the software model.

1.2.2 Data quality expressed by constraints

Having indicators for DQ at hand for the different levels of data granularity, such as
single attributes, single instances, sets of instances, sets of entities and the overall quality
of a dataset, is desirable for the analysis and improvement of the DQ in an information
system. The use of constraint checking methods for simplifying the evaluation of such
indicators for DQ appears to be applicable since (integrity) constraints and quality can
both be described by assertions. Nonetheless, it is not clear how a set of constraints
can be used to measure and indicate the quality of data.

Most information systems do not allow specific measurements for DQ requirements
to be defined, but rather rely only on a set of constraints which validate to either true
or false. Therefore, either a user enters valid data and is able to store it in the database
or the data is rejected. In many cases, this is not sufficient, as it might be appropriate
to distinguish several levels of DQ or even use a continuous range from very poor DQ to
very good DQ. This requires another concept for validation which supports appropriate
metrics for DQ.

Consider, for example, the creation of a password for a new user in an information
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system where a set of rules differ in their importance to be fulfilled. There could be two
strict rules which define that passwords (1) must be at least eight characters long and (2)
contain letters and numbers. These constraints have to be fulfilled to register a new user
with a password although the password security might be low. If additional constraints
are fulfilled, such as the password (3) should contain upper case and lower case letters,
(4) should contain special characters, and (5) should be longer than twelve characters,
the password security and therefore the DQ would increase. By rating the additional
three constraints with a lower impact on password security or DQ, respectively, than
the first two constraints, the different importance of each constraint can be represented.

Even if the opportunity for expressing DQ as constraint compliance seems to be
self-evident, it is not clear how a set of constraints can be used to calculate the quality
of a dataset. Measures have to be explored which serve as indicators for DQ for the
different levels of data granularity.

Linking constraints to DQ is difficult since constraints usually are defined upfront
and, therefore, can never be exhaustive. This means that a dataset that satisfies every
constraint might still be of bad quality. Since constraint compliance only serves as an
objective DQ assessment, good quality of a dataset cannot completely be assured by
monitoring the constraint compliance of an information system.

Assume, for example, the constraints that a food must have a name and an English
name which both should consist of at least a certain number of characters. The name
is used for the national name (e.g. German: ‘Milchreis, Griessbrei/-pudding’) while the
English name (e.g. ‘Pastas and rice (or other cereal) based dishes milk rice/semolina
pudding’) is used internationally for better comparison reasons in different countries.
In data validation both names might fulfil the assertion of consisting of a minimum of
characters but it is very hard or even impossible to verify that the translation to the
English name is correct since there does not exist an exhaustive list of food names.
Only a user of the system might recognise the semantic error in the English name and
propose the correction to a better translation (e.g. ‘Rice/semolina pudding’).

Hence, there emerges the need for a subjective DQ assessment where the subjective
DQ indicates the perception on the quality of data of different stakeholders such as the
individuals that enter, provide and use the data. The perceptions may vary between
the individuals but can provide comparisons to the objective DQ provided by constraint
compliance.

1.2.3 Extended constraint checking

Usually, immutable sets of constraints are checked in information systems imposing
the same rules to all users. This equal treatment does not necessarily represent the
‘real-world’ data requirements which should be enforced by the system. It is absolutely
reasonable to apply different constraints to different groups of users where it is even
possible that major differences can exist between the constraint definitions. This in-
cludes cases where different constraints are applied for different users but also the same
constraints with different importance and contribution concerning DQ as mentioned
above. In the TDS-Exposure project, we have experienced this with the various parti-
cipants where the different institutions had diverse data validation requirements. For
example, when analysing food samples in TDS laboratories, different analysis methods
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such as ICP-OES4, ICP-MS5, and AAS6 are used to obtain the analytical values. In
FoodCASE the analysis method is stored on an entity name ‘LabAnalysis’ in the attrib-
ute name ‘methodname’. For a ‘Not null’ constraint on the attribute ‘methodname’,
the different institutions required five different importances ranging from the highest
importance which should indicate a severe error and inhibit the data from being stored
to a very low importance which should only cause an informative notice.

Thus, quality might entail different aspects of the system for different users or
applications. Even for a single user, different constraints most likely vary in importance.
As the end-users of a system are usually not its developers, it is crucial to enable
authorised users to tune these quality aspects at any time via an intuitive and easy-to-
use interface.

Further, even though applications may have similar data validation requirements,
it is often difficult to reuse validation code. Slight differences between the constraint
definitions result in separated constraints and potential code duplication. Most infor-
mation systems do not support inheritance of constraints where similar constraints can
extend each other in order to reduce redundancy.

1.2.4 Feedback on data quality

If appropriate measures and indicators for DQ have been explored it has to be examined
how and when users should be given feedback about DQ based on such metrics. The
issue of how to give feedback on DQ to users of an application has to be addressed
by taking different types of feedback into account such as direct feedback on individual
entities given during data input and feedback resulting from an analysis of the database.
Both the analysis of DQ at a certain point in time and over a period of time for
monitoring DQ should be supported. Therefore, feedback on DQ should be explored
and viewed in a variety of textual and visual forms.

1.3 Challenges

Based on the motivations of the previous section, challenges arise due to the need for (1)
unified constraint management, (2) a fine-grained severity scale for constraint violations
to distinguish between less and more important constraints, (3) measures to indicate
DQ for various levels of data granularity, (4) subjective DQ assessment through explicit
user feedback as an extension to constraint compliance, (5) user group and application
dependent constraint checking, and (6) DQ input feedback and DQ analysis feedback
at a certain point in time and over a period of time.

1.3.1 Unified constraint management

One of the main challenges of this work is to explore approaches for unified constraint
management which especially also handle intentionally distributed constraints since
centralised constraint definition and checking is often not feasible nor desired. Thus,

4Inductively coupled plasma-optical emission spectrometry
5Inductively coupled plasma-mass spectrometry
6Atomic absorption spectroscopy
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existing approaches such as BV, rule engines and Aspect-Oriented Programming (AOP)
have to be analysed and a concept created which enables constraint definition and con-
straint checking mechanisms to be applied to different application layers, to different
components of a distributed information system and, most probably, to various repres-
entations.

Mechanisms have to be taken into account which use the same representation for
all components but also which support bi-directional translations between a platform-
independent constraint model and multiple technology-specific representations. Allow-
ing multi-translations between technology-specific representations would be especially
beneficial if legacy systems want to move from one constraint representation to another
or if a software developer prefers not to use a specific representation.

Adopting a constraint-based approach to DQ also requires a powerful constraint
definition language such as the Object Constraint Language (OCL)7 to express the
possibly complex rules. Existing approaches do not cover all needs of this work where a
constraint definition language should also enable constraints to be defined in a detached
state from a UML class diagram and provide means of defining common platform-
dependent constraint definitions in a convenient platform-independent manner.

1.3.2 Data quality expressed by constraints

The assessment and quantification of DQ is a major challenge for organisations and for
various stakeholders of an information system such as the end-users of a system, the
business engineers who define the requirements and the software engineers who develop
the applications. Although several conceptual frameworks for DQ have been proposed,
there is still a lack of general tools and metrics to measure and control the quality
of data in practice. A Data Quality Management Framework (DQMF) which has the
goal of facilitating constraint management for software developers and embedding data
integrity in a dynamic, continuous DQ improvement process in software engineering,
faces the challenge of defining measures for indicating DQ and presenting an appropriate
scoring of the DQ for data input as well as for data analysis.

First, it has to be defined what kind of score should represent the DQ on the vari-
ous levels of data granularity. Second, it has to be defined how and to what extent
the violation of a constraint contributes to a measure of DQ. This includes not only a
general indication but also an indication on specific DQ dimensions. Therefore, a more
flexible concept of constraints is needed to support a notion of less strict constraints
where data can be associated with a particular indication on DQ as well as the conven-
tional constraints used to prohibit updates that would violate a constraint. Third, a
calculation concept has to be provided which aggregates the DQ scoring for the various
levels.

Further, additional concepts such as validation dependent on the data source repu-
tation and the specific data item have to be taken into account in order to represent
the multiple aspects and facets of DQ. Consider, for example, the laboratory analysis
of a food sample (e.g. cherries) which is analysed concerning different substances (e.g.
copper and mercury). The analyses for the different substances are done in different
laboratories (e.g. an independent lab and an affiliated lab) with diverging reputations

7http://www.omg.org/spec/OCL/

http://www.omg.org/spec/OCL/
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concerning the accuracy of their analysis. On the one hand, the analytical values from
the laboratory with the better reputation could be rated with a better DQ. On the other
hand, constraints for a minimum and maximum value, which define in what range an
analytical value is expected, can vary dependent on the substance.

Validity and correctness are mostly evaluated by comparing data to real world val-
ues. Therefore, assessing the quality of a data item based on constraints, as proposed in
this work, results in a measurement of constraint compliance which is simply seen as an
indicator for DQ rather than an absolute measure. An emerging challenge is therefore
to provide further concepts to extend the indicators for DQ beyond constraint compli-
ance as an objective DQ assessment. Thus, there is the need to investigate subjective
DQ assessment and how to combine the resulting information with other metrics such
as the constraint compliance.

These indicators represent the objective assessment and subjective perception of
DQ in numbers which are used to give feedback on the quality of data to the various
stakeholders. Overall, it is challenging to combine the various needs for defining such
indicators for DQ based on constraint compliance.

1.3.3 Extended constraint checking

To provide concepts and technical approaches/solutions to enable customised and easily
adaptable constraint checking for different users/applications is all the more challenging
with the goal of unified constraint management. Further, adding, removing and up-
dating constraint definitions dynamically during the runtime of an application, which
is desirable for maximum flexibility in defining and checking constraints, and reusing
validation code for multiple constraints or constraint hierarchies, respectively, proved
to be complex dependent on the technologies in use.

1.3.4 Feedback on data quality

In addition to performing constraint checking during transaction execution as supported
in traditional databases, it is also necessary for an information system to provide data
input validation and ways of triggering the analysis of data already stored. If, for
example, a constraint changes during its lifetime, it should not only be immediately
applied to new input data, but potentially also to data already stored.

For existing data that was analysed concerning DQ, the change of a constraint can
render the former analysis obsolete and causes several challenges. First, such changes
have to be tracked (e.g. with constraint set versions). Second, it has to be defined how
a new analysis is executed, such as just notifying consumers of the out-dated analysis,
automatically revalidating stored data partially or revalidating all at once. Further,
serious errors have to be identified and it has to be defined what happens with data
which decreased in DQ, such as displaying data with low DQ, automatically correcting
data by applying certain rules, rendering data invisible or even deleting data.

Toolkits and DQMFs which extend constraint models to support DQ management
are advantageously designed general enough to be used to analyse and provide feedback
on DQ for any information system. Given that DQ requirements are highly dependent
on the context in which the data is used in terms of the domain, the application and the
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user, it is important that the measurements and computation of DQ is highly flexible
and easily configurable in order to provide customised DQ feedback.

Feedback on DQ in an information system will eventually be the basis for a decision
on what can be done with the data. This also depends on the recipient of the feedback
who might, for example, be an information system administrator monitoring the DQ,
a domain expert creating new data, or a user who reads data for further processing.
Indicators on DQ as described in Sect. 1.3.2 should provide the measures and a notion
of scoring DQ which then builds the basis to provide appropriate feedback on DQ in
an information system. The challenge is then to provide guidance, approaches and
tools for providing feedback based on the DQ information including input validation,
snapshot analysis and long-term monitoring for the different end-users.

1.3.5 Summary and research questions

The aggravating challenge is to integrate all concepts for the single challenges into
toolkits and a complete DQMF in order to facilitate one-stop constraint management
for software developers and embed data integrity into a dynamic, continuous DQ im-
provement process.

Most existing work has focused on either theoretical studies alone or more practical
ones covering only one requirement, such as constraint representation or constraint
applications/usage.

To the best of our knowledge, there does not exist a DQMF that addresses all of
the above challenges. Namely the main challenges of (1) providing a unified way of
defining and checking DQ requirements by means of constraint compliance, at the same
time (2) not being restricted to a specific data model combined with (3) DQ input and
analysis feedback which is highly configurable with DQ assessment profiles.

In summary, DQMFs and toolkits have to be developed to tackle the challenge
of embedding data integrity into a dynamic, continuous DQ improvement process for
information systems and to facilitate constraint management for software developers.
At the core of this thesis are the following three research questions:

• How should DQ be managed in information systems?

• To what extent can DQ be considered as a constraint problem?

• How can we integrate different types of quality controls in a single constraint
model and handle them uniformly?

1.4 Contribution

The contributions of our work are mainly providing concepts and approaches concern-
ing (1) unified constraint management for software developers, (2) expressing DQ by
constraints and beyond constraint compliance, (3) extended constraint checking also for
different users/applications, and (4) giving feedback on DQ during data input and data
analysis for different end-users of an information system. These high-level contributions
include further lower-level contributions which we will present in detail in this section.

For investigating our concepts and approaches we always developed scenario applic-
ations where we mainly focussed on object-oriented (OO) paradigms concerning the
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programming languages and technologies. Alongside the fact that OO paradigms are
widely used, several other factors led to this decision, such as that (1) OO paradigms
are concerned with objects and data in the first place rather than with actions and lo-
gical procedures that process input data to output data, (2) OO software development
offers a unifying OO modeling paradigm, and (3) OO models can be used throughout
requirements analysis, design and implementation. Besides Domain-Specific Languages
(DSLs), we were mainly using Java8 and JavaScript9 which are currently the most
popular programming languages according to various indicators, such as the ‘TIOBE
Programming Community Index’10, the ‘PYPL PopularitY of Programming Language
Indicator’11, and the ‘RedMonk Programming Language Rankings’12. We also con-
sidered that information systems nowadays are heterogeneous constructs with a poten-
tial variety of technology representations.

Concerning data management, we did not focus on a specific database paradigm
and therefore were using Relational Databases (RDBs), Object Databases (ODBs) and
NoSQL databases in our approaches.

1.4.1 Unified constraint management

To address the issue of distributed constraint management, we investigated different
alternatives for unified constraint management regarding the definition and checking
of constraints. In the beginning, our vision was that constraints are defined only at
one integrative location in an information system which is why we first explored such
approaches. If an environment allows for such an approach, it is simpler and convenient
to use but we then recognised that centralised constraint definition and checking in a
single place is often not feasible nor desired, for example due to technology limitations,
security or legacy reasons. Therefore, we also investigated approaches which handle
intentionally distributed constraints. Nonetheless, all of the approaches had the goal
of obtaining a single, extended constraint model that avoids any inconsistencies and
redundancy within the constraint specification and checking processes.

Our investigations encompass both integrated approaches within specific applica-
tions and application independent approaches which can be used for any kind of ap-
plication.

In this work, we propose different extended constraint models along with DQMFs
to specify and manage constraints in a unified manner and identify the advantages and
disadvantages of each approach. All approaches follow the goal that the constraint
models are not coupled to a specific layer or technology and that constraints need to
be specified only once, but can be used in different parts of an application for data
validation. At the end, we achieved DQMFs which combine and extend the experience
and advantages of the former investigated approaches.

While constraints are regarded as a standard approach for ensuring basic DQ in
terms of data integrity and consistency, current object databases still provide very
limited support for constraint definition. Thus, we explicitly also provide an approach

8http://www.oracle.com/technetwork/java/index.html
9https://www.ecma-international.org/publications/standards/Ecma-262.htm

10http://www.tiobe.com/tiobe-index/
11http://pypl.github.io/PYPL.html
12http://redmonk.com/sogrady/2016/07/20/language-rankings-6-16/

http://www.oracle.com/technetwork/java/index.html
https://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.tiobe.com/tiobe-index/
http://pypl.github.io/PYPL.html
http://redmonk.com/sogrady/2016/07/20/language-rankings-6-16/
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that extends and complements object databases with support for constraint-based DQ
management but generally any of the approaches can be used for this purpose.

In particular, we included approaches based on an Event Condition Action (ECA)
mechanism in an object database, pure BV, BV extended with OCL, a new unified
constraint representation based on OCL in combination with translations to and from
technology-specific representations, a constraint synchronisation between two applica-
tions, and AOP.

Since one goal of our work is to bridge the gap between formal methods in software
engineering and the practice of software development, one of our approaches was also to
create a system that follows the Model-Driven Architecture (MDA) [100, 118] approach
of using a technology-independent model that serves as a base for technology-specific
code generation. We propose a powerful DSL, called UnifiedOCL, that is capable of
denoting a data structure together with constraints of a great variety of types while
also providing human readability for non-programmers. It combines structural domain
information from the Unified Modeling Language (UML), constraint definitions from
OCL and a set of so-called labels that are grouped into dictionaries and plugged into our
UnifiedOCL grammar. Therefore, it is possible to use OCL syntax within UnifiedOCL.
But we extended our DSL with these labels to overcome the limitations of OCL with
regard to technology-specific representations and also to provide a convenient way of
labelling attributes with appropriate constraints without the necessity of defining the
potentially complex (OCL) validation each time. Consequently, labels either represent
constraints not available in OCL (such as primary key in SQL) or simply provide a
more convenient representation (such as email and credit card constraints). With this
approach, it is possible to model an information system using a UML editor, enhancing
the model with constraints defined in the standard OCL notation or with our label
notation. This UML model can then be converted to a UnifiedOCL representation.
Nonetheless, it is also possible to create and modify the UnifiedOCL representation in
a text editor independent of a UML model.

Furthermore, we studied various approaches and technologies of bi-directional trans-
lations between various models and representations. This resulted in an extensible
toolkit capable of efficiently translating constraints to and from UnifiedOCL. As a con-
sequence, the system allows for translation from any source representation to any target
representation, which we call multi-translations. Our proof-of-concept implementation
supports three technology-specific representations: object-oriented language (Java), re-
lational database (SQL) and business rules (Drools), which let us explore and cover
a broad range of diverse constraints. Moreover, it can easily be extended to cater for
other representations. By adhering to Model-Driven Development (MDD) principles,
this approach separates the conceptual requirements from their actual representations.
Consequently, the number of supported environments in terms of platforms, program-
ming languages, frameworks and libraries is virtually infinite.

1.4.2 Data quality expressed by constraints

We provide a concept of indicating DQ based on constraint compliance where we have
also incorporated the different constraint violation severity perceptions as mentioned in
Sect. 1.2.2. Therefore, we have introduced a fine-grained severity scale for constraint
violations which enables less and more important constraints to be distinguished instead



1.4. Contribution 15

of traditional constraints which usually validate to either true or false. Based on these
violation weights, we introduced metrics and measurements, so-called Data Quality
Indicators (DQIs), to provide indications on DQ, as mentioned in Sect. 1.3.2, for the
various levels of data granularity.

By introducing the concept of DQIs, where the focus is on indicating DQ rather
than purely preserving integrity, we realise our vision for expressing DQ as constraint
compliance and being able to deal with a wider range of DQ issues than with traditional
database constraints alone. DQIs take both the importance of constraints and the
severity of constraint violations into account in order to calculate an appropriate DQ
score which is interpreted as a measure for constraint compliance.

A DQI provides a rating for one or multiple constraints applied to one or more in-
stances of one or more entities where constraints are weighted with a certain importance
measure. If multiple constraints and/or multiple instances are considered, we refer to
these as aggregated DQIs.

In most of our approaches, an individual constraint can be weighted with violation
severity values associated, if needed, also with DQ dimensions. The example below
depicts a notation for the food name length constraint presented in Sect. 1.2.1.

Food.name.Length [Consistency 0.9, Completeness 0.6]

In this example the constraint is uniquely identified by the entity name ‘Food’, the
attribute name ‘name’ and the constraint name ‘Length’. Then severity decimal values
in the range between 0.0 and 1.0 (1.0 being the highest severity) are associated to
certain DQ dimensions (such as ‘Consistency’ or ‘Completeness’).

Our calculations for aggregated DQIs then result in DQ scores which allow users
to inspect DQ, also related to different DQ dimensions, for single and multiple object
instances, single and multiple object classes and the overall DQ.

With an ‘error threshold’ (e.g. 0.8) we distinguish between classical constraints
which prohibit saving data if they are violated (equal to or above threshold) and a
form of more relaxed constraints which allow data to be saved even if they are violated
(below threshold). This allows us to take different actions based on the type of violations
encountered. Examples of these actions are consequently whether the user should be
able to save their input when a violation occurs but also include the type of feedback
that the user receives during data input, which will be described later. This distinction
is related to the concept of hardgoals (or simply goals) and softgoals in the Requirements
Engineering literature. In Requirements Engineering, operational goals can be related
to hardgoals that set the basis for functional software requirements, while strategic
goals can be related to softgoals, which set the basis for non-functional requirements.
The satisfaction of hardgoals can be verified clearly, while softgoals are goals that do
not have clear-cut criteria for their satisfaction [127, 128].

To extend the DQIs for DQ beyond constraint compliance, we investigated methods
for gathering and including both explicit and implicit DQ feedback from users of an
information system where explicit DQ feedback, as a subjective DQ assessment, rep-
resents the users perceived quality of the data. We further investigated how to use this
information in combination with other metrics such as the constraint compliance, as
an objective DQ assessment, and an individual relative weighting of the importance of
entities in an information system. Consequently, we provide a concept of a DQ vector
space model, measures for ‘DQ improvement tendencies’ and a ‘DQ improvement ur-
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gency score’ with a set of tools to analyse and monitor information systems concerning
DQ based on these new metrics.

The DQ vector space model allows the rating of an instance to be represented
as a combination of objective and subjective DQ assessment on the three dimensions
‘constraint compliance’, ‘explicit feedback’ and ‘importance’. The interpretation of the
rating in the DQ vector space model is then used to derive information about how to
improve the instances in order to increase the DQ. Therefore, the measures for DQ
improvement tendencies provide hints if the data, the constraints or both should be
improved or if there exist requirements which cannot be defined by constraints. The DQ
improvement urgency score, also based on the DQ vector space model, is additionally
used to evaluate how urgent the improvement of an instance is.

1.4.3 Extended constraint checking

A further vision of our work was to enable customised and easily adaptable constraint
checking for different users/applications. Therefore, we have introduced a concept of
DQ assessment profiles, so-called ‘contracts’ or ‘constraint repositories’, which allow
authorised users to decide on the importance of each constraint for each application
as well as deactivate constraints that are not deemed relevant. As part of the TDS-
Exposure project, we gathered requirements and constraints from our expert project
partners for the implementation of FoodCASE. In addition, for each constraint we
obtained a rating for severity if it is violated. The outcome was that the various
partners from different countries, who are the users of our system, had very diverse and
sometimes contradictory views on the constraint definitions, which confirms the need for
our concept of contracts. For example, while some constraints were necessary for some
partners, they were not for others. Moreover, even if partners agreed on the necessity
of a constraint, they frequently disagreed on the severity of its violation. The example
from Sect. 1.2.3 showed that some partners rated a ‘Not null’ constraint violation on
the attribute ‘methodname’ on the entity ‘LabAnalysis’ as a severe error, while others
rated the same constraint violation as of very low severity.

A contract is a collection of single DQIs, i.e. a collection of mappings between
constraints, violation severities and dimensions as presented in the food name length
constraint example in Sect. 1.4.2. Several contracts can be specified that are used to
define customised analysis and validation profiles for different users and applications of
an information system. For input validation and data analysis, different contracts can
be applied but always only one contract is configured to be used for the calculation
of the DQ scores at a single point in time for each of them. Contracts can also be
easily shared between users. Thus, it is possible for a user to have multiple contracts,
while multiple users can share the same contract. Moreover, a default contract can be
specified that serves as a fallback in cases where there is no customised contract defined.
If a contract does not include all constraints that are defined in the system, a default
importance (e.g. 0.8) is applied.

For example, the varying importance requirements from different institutions for
the LabAnalysis.methodname.NotNull constraint on laboratory analysis methods can
be reflected with different severity decimal values (0.0 to 1.0) in different contracts.
Thus, in one contract a constraint can be configured as very important (e.g. 1.0) while
in another as less important (e.g. 0.5). Most probably, there exist constraints in an
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information system which in any case must be configured with the highest importance,
such as ‘Not null’ constraints for absolutely relevant attributes for the system to work
properly (e.g. IDs). Therefore, it is also possible in our concept to prevent the overriding
of default importance configurations for individual constraints.

Besides the concept of contracts, some of our frameworks mentioned in Sect. 1.4.1
also make other extended constraint checking possible, such as (1) reusing data valida-
tion in other applications, (2) providing a mechanism for constraint inheritance which
enables validation code to be reused for multiple constraints or constraint hierarchies,
and/or (3) defining constraints during the runtime of an application.

1.4.4 Feedback on data quality

One large part of our work was to address the issue of how to give feedback on DQ to
users of an application. We therefore introduced two types of feedback to distinguish
between direct feedback on individual entities given during data input, so-called Data
Quality Input Feedback (DQIF), and feedback resulting from an analysis of the data-
base, so-called Data Quality Analysis Feedback (DQAF). Our vision was to provide
guidance, approaches and tools for DQIF and DQAF, where the latter includes feed-
back at a certain point in time (snapshot analysis) and over a period of time (long-term
monitoring). The feedback should be applicable for different applications and differ-
ent stakeholders such as the individuals that enter, provide and use the data but also
individuals which explicitly analyse and monitor DQ.

We therefore studied, developed and evaluated different approaches for DQIF and
DQ analysis toolkits for measuring and visualising DQ where one approach was also
integrated into our FoodCASE system. Our approaches and toolkits serve as guidance
on how to give feedback on DQ and offer a variety of charts and tables that can be
used to provide users with feedback and help them identify areas where action might
be required. They also provide tools to drill down on the DQ issues and identify
individual problems to support the enhancement of data in order to increase the DQ of
an information system.

Our approaches also include adaptive data input and DQ feedback responsiveness
in the case of varying constraint sets or feedback in different applications, respectively.
We investigated integrated DQMFs within specific applications but also independent
DQMFs for DQIF and DQAF and monitoring of DQ including the evolution of DQ
over time. Moreover, our approaches for DQIF and DQAF integrate the contributions
presented above, such as unified constraint management, new indicators for DQ based
on constraint compliance and beyond constraint compliance, easily adaptable feedback
for different users/applications (contracts), changing constraints during the runtime
and reusing validation code (constraint inheritance).

1.4.5 Food science

With the concept and implementation of our FoodCASE application for the TDS-
Exposure project we also contributed to the food science community which is now able
to use FoodCASE for the management of their data.

In FoodCASE, we integrated enhanced functionality for defining, validating, measur-
ing and visualising DQ. Therefore, based on constraint definitions, FoodCASE provides
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the measurements, calculations and visualisation components for giving feedback on DQ
and helps users monitor constraints and DQ. The concept and implementation includes
the validation and feedback for both DQIF and DQAF.

1.4.6 Summary

Our work focuses on the creation of constraint-based DQ modelling, calculation and
visualisation concepts that can be applied to any type of information system and enable
all of the opportunities and challenges mentioned above to be addressed. We have
incorporated these concepts as the basis for creating highly flexible DQMFs for software
engineers that allow the users of an information system to configure and analyse the
details of every quality-related aspect according to their needs.

To evaluate our approaches, we implemented our toolkits and DQMFs either in
independent scenario applications or in our existing FoodCASE food science data man-
agement system. These implementations were assessed by many participants both from
academia and software industry and further evaluated by carrying out various surveys.

Overall, our work provides different approaches and multiple tools which help im-
prove DQ as a dynamic, continuous process based on constraint compliance. We provide
approaches which contribute to facilitating constraint management for software de-
velopers but also which contribute to DQ management and feedback for the end-users
of an information system.

1.5 Thesis overview

The thesis is structured as follows. The background for this research is provided in
Chap. 2 with a review of related work. We give an overview of the various concepts
included in this work and discuss existing issues in detail.

Chap. 3 presents five initial approaches, with which we have explored alternative
solutions to investigate the different requirements and goals presented in this chapter.

The initial approaches build the knowledge and decision basis for our final ap-
proaches, which consolidate and extend concepts from the initial approaches to fulfil
all of our proposed requirements of a DQMF for various initial software development
scenarios.

With the final approaches, presented in Chap. 4, 5, 6, and 7, we propose four
alternative solutions with novel concepts for highly flexible and configurable DQMFs
that can easily be adapted to the needs of different users and applications.

Finally, in Chap. 8, we outline the main contributions of the thesis, present an
overview and brief assessment of our alternative final approaches, and conclude with
a discussion on the criteria for deciding on an approach, before giving an outlook for
future work.



2
Background

Our work is a continuation of the work presented by Presser [146]. As a contribution to
the interdisciplinary field of DQ, Presser proposes a definition of DQ, a Requirement-
Oriented Data Quality (RODQ) model and a conceptual RODQ framework for IT
professionals and users. The RODQ model supports information system architects
and users in specifying DQ requirements as well as measuring and aggregating them
to a total value of DQ. The resulting total quality values allow for conclusions on
the quality of considered data and for gaining an overview of the DQ. With the RODQ
framework, it is possible to propose implementation concepts to derive a comprehensive
DQ framework in an information system. The showcase application of Presser’s work
is the implementation of the first version of FoodCASE for the management of food
composition data.

In this work we investigate the extent to which DQ can be considered as a constraint
problem by extending and generalising existing constraint models. Our goal was to
provide approaches for a DQMF that provides a unified way of defining and validating
DQ requirements by means of constraint compliance combined with ways of giving
feedback on DQ both during input of the data and during later analysis for already
existing data stored in the database. Moreover, we investigated in a DQMF which
is highly configurable with DQ profiles and is not restricted to a specific data
model.

Therefore, we present in this chapter an overview to DQ and different types of
DQMFs. We continue by providing a summary of constraints and general concepts
before we delve into the issues of unified constraint management and of bringing DQ in
relation to constraints. Further, we give an overview of feedback on DQ and focus on
DQ and constraints in mobile applications before we conclude this chapter.

2.1 Data quality

DQ is a research area still gaining in importance. The term DQ, or Information Quality
(IQ) which is often used as a synonym, is seen as one of the keys for business perform-
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ance [163]. Good quality of data is the prerequisite for all actions taken based on the
data. For example, data mining, which is the process of exploring structures and pat-
terns in large datasets, intrinsically depends on data of good quality, since bad data
with too many outliers might transform patterns to be irrecognisable [12].

According to ISO 9000:2005, quality refers to the ‘degree to which a set of inherent
characteristics fulfils a set of requirements’ [87]. In terms of DQ, we thus can state that
DQ can indicate to what extent or degree a concrete instance of data complies with
quality rules inherent to an information system as a set of requirements. DQ is often
characterised as the data’s ‘fitness for use’ which was first coined by Juran [93]. However,
DQ is a multifaceted concept for which no precise nor unique definition exists, and may
involve many different dimensions [12, 123, 156, 187]. The different DQ dimensions
capture a specific facet or aspect of DQ such as accuracy, completeness or currency and
contribute to a measure of the overall DQ.

There exist many different definitions and prioritisations for various dimensions
such as those given in [12, 2, 117, 53, 94, 39, 152, 156, 187, 182, 64] where conceptual
DQ frameworks are identified that differ mostly in the types of dimensions and their
categorisation. Many of them are similar in their approach in that their definitions of the
dimensions tend to be descriptive and subjective [132], often using adjectives for which
the semantics are overlapping or fuzzy. Probably the most acknowledged conceptual DQ
framework proposed by the research community is the one from Wang and Strong [187].
They conducted a series of surveys and studies which identified, sorted and ranked DQ
aspects (179 dimensions) according to their importance to consumers. The product of
their work is a hierarchical framework that organises DQ dimensions into four categories
– intrinsic, contextual, representational and accessibility – and fifteen DQ dimensions,
as depicted in Fig. 2.1. For example, under intrinsic DQ, they group properties into
the dimensions believability, accuracy, objectivity and reputation. Eppler [53] states
that the majority of frameworks are built for a particular domain and only a few
are general enough to be applied to any domain. For example, research efforts have
already been made for defining software process model constraints with rules which
allow the modelling of software processes using Object Management Group (OMG)
standards [159]. Batini and Scannapieco [12] provide a detailed study and literature
review of the field.

Figure 2.1: A data quality framework with 15 dimensions identified by Wang and Strong
in 1996

DQ dimensions can correspond to the extension of data, which means that they
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refer to data values, or to the intension of data, i.e. to the schema [12]. In this work,
we are only focussing on DQ dimensions that refer to the extension of data which [12]
states is most relevant to real-life applications.

A short selection of most widely used DQ dimensions with its definitions is given in
Tab. 2.1.

DQ Dimension Definition

correctness/accuracy the data correctly represents the true value
completeness the entity has values for all expected attributes
consistency the data is free from contradiction
currency the data is up-to-date
availability the data is readable and interpretable by users

in the right point in time

Table 2.1: Selection of most widely used data quality dimensions

Dimensions can be rated as more or less important, depending on the data require-
ments and the domain. For example, one application could require the underlying data
mainly to be correct while it would not require all data to be complete. Another ap-
plication might strive for completeness while accepting a reduction in consistency [123].
Moreover, it is possible that the individual DQ dimensions contradict each other, for
example, the completeness dimension and the consistency dimension. According to [7],
it is not trivial to rate the completeness and consistency dimensions for decision making.
An increase in completeness, that is, having more data, usually results in a decrease in
consistency. Comparable to that, an increase in the currency dimension, that is, having
more current data, can result in a decrease in correctness.

Wand and Wang [182] state that there is no consistent view of the different DQ
dimensions and the quality of data is subjective because it could depend on the ap-
plication and also the design of the information system which generates data. They
identified 118 DQ attributes and recognised that, in the end, it is always the data con-
sumer who has to decide whether the data is fit for a particular use. Further, Pipino
et al. [144] and Vassiliadis et al. [179] state that DQ must be treated both subjectively
and objectively. They agree that DQ is subjective since it depends on both the user
and information system implementation, but that there needs to be an objective way
of measuring DQ so that a user can compare the outcome with their expectations.
We consider this also for appropriate measurements and metrics on DQ in Sect. 2.6.2.
In [169], the definition of DQ is connected with the environment of the decision-makers
since they believe ‘that the perceived quality of the data is influenced by the decision-
task and that the same data may be viewed through two or more different quality lenses
depending on the decision-maker and the decision-task it is used for’. In recent work
related to the management of food science data [147], we presented a study of DQ re-
quirements to measure and control the quality of empirical data in practice and found
that DQ requirements can be understood differently by various groups of information
system users or stakeholders.

Two classifications of the types of errors in data can be distinguished, namely syn-
tactic and semantic errors [59]. Syntactic errors are values in the database that violate
the domain constraints. For example, a last name containing numbers (e.g. Smi7h) or
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the value 300 for an age attribute of a person object, instead of a value in the range
of [0,130]. In contrast, semantic errors exist, if the real-world objects are in conflict
with their representations in the database. For example, if a ZIP code of an entity,
representing customer addresses, is inconsistent with the corresponding city. According
to [59], it is usually much easier to resolve syntactic errors than semantic errors.

Syntactic and semantic errors should be avoided or corrected to increase the DQ of
an information system. Moreover, the data should satisfy the requirements of the most
relevant DQ dimensions.

An overview of DQ dimension definitions is given for example in [90, 102, 107], while
overviews of the past decades of research on DQ for traditional information systems are
given in [198, 164, 16, 113]. Overviews and evaluations of the most elaborated and cited
taxonomies of DQ dimensions are provided in [61, 112, 149, 144].

2.2 Data quality frameworks

There exist various types of DQ frameworks. First, there exist conceptual frameworks,
such as the one from Wang and Strong [187], which define and categorise various as-
pects of DQ, so-called dimensions as explained above. Second, there exist non-abstract
industry-adopted frameworks, such as the ‘GS1 Data Quality Framework’1, the ‘Inter-
national Monetary Fund Data Quality Assessment Framework’2 and the ‘Australian
Bureau of Statistics Data Quality Framework’3, which are intended mainly to educate
businesses about the meaning and importance of DQ, and offer a best practice guide
to controlling and improving DQ.

A third type is the implementation of DQ requirements definition, validation and
violations feedback consolidated in a concrete DQMF that can be used by software
developers. Approaches have been proposed to overcome the distribution of constraints
and consequent redundancies as well as facilitating constraint management, which are
summarised in [191] and the subsequent Sect. 2.5.1 but do not relate the constraint viol-
ations to DQ. Liu and Kochut [108] proposed a process constraint modelling framework
for web services and workflow applications. It allows constraints to be defined using
the Process Constraint Language (PCL) and Process Constraint Ontology (ProContO),
which can be validated during the design phase as well as at runtime. Sneed et al. [171]
discuss the need for tool support for assessing the DQ in relational databases for both
schema and instance level integrity constraints. They also provide a case study of how
such a tool should work.

2.3 Constraints

In the realm of information systems, business rules express DQ requirements, while
constraints are seen as the main mechanism for controlling DQ at the database level.
A concise overview of the history of constraints and business rules is presented in [196].
Nonetheless, we provide here a summary of the most relevant constraints.

1http://www.gs1.org/
2http://www.imf.org/external/
3https://www.nss.gov.au/dataquality/aboutqualityframework.jsp

http://www.gs1.org/
http://www.imf.org/external/
https://www.nss.gov.au/dataquality/aboutqualityframework.jsp
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If we want to describe in a data model, for example, that the salary of a manager
always has to be higher than the salary of his or her subordinates, we have to express
it in additional restrictions on the values of the data and/or in the structure. Such
logical restrictions on data are called constraints. In the literature, a constraint is often
described as a property for a set or a relation which is either true or false. In a data
model, constraints are required for semantic and integrity reasons. On the one hand,
they permit schemas to more accurately reflect the real-world situation and, on the
other hand, they permit the Database Management System (DBMS) to restrict the
possible database states that can be generated from a given schema to those that meet
the constraints [175].

2.3.1 Basic constraints

We can identify two basic types of constraints. The inherent constraints which are an
integral part of the structures of a data model such as the tree structured relationships in
a hierarchical database and the explicit constraints which provide a flexible mechanism
for augmenting the structure specification of databases. A third type, the implicit
constraints are restrictions derived from either inherent or explicit constraints. For
example, in a hierarchical database each segment has at most one parent segment. It
follows from this that each segment has only one ancestor segment of any type. The
first constraint is inherent. The second can be considered implicit. A data model
that is more restrictive in terms of structure incorporates more inherent constraints
and therefore fewer explicit constraints have to be defined in order to represent all
restrictions. Explicit constraints are defined separately from the database structure
with a constraint specification facility. The facility consists of a constraint definition
language, a verification mechanism and enforcement algorithms. It ensures that the set
of constraints is consistent [175].

There exist two ways to specify explicit constraints. The static specification defines
which database states are valid whereas the dynamic specification defines which state
transitions are allowed. Usually, both specification types are necessary to specify all
constraints of a data model.

The most ordinary constraints are the value constraints which restrict data to a
certain range or domain. Much more difficult to enforce are the aggregate constraints
which reflect constraints on aggregated values such as the total of all salaries can-
not exceed a certain amount. Constraints that specify restrictions on the mappings
between attributes and/or between entity types are known as cardinality constraints.
We can specify a minimum cardinality and a maximum cardinality for each mapping of
a binary relation. Further, there exist special cardinality constraints such as existency
constraints or dependency constraints and functional dependencies with its different
mappings depending on the minimum and maximum cardinalities [175].

In entity relationship models, several classification constraints (e.g. disjoint, cover)
and constraints between collections and sub collections (e.g. equal, total) have also
been proposed [134].
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2.3.2 Integrity constraints

The most commonly used constraint classification is the one of integrity constraints fre-
quently also called consistency constraints. They define rules which should guarantee
the integrity of a database. Integrity constraints are supported by most database sys-
tems. In Relational Database Management Systems (RDBMSs) and Object Oriented
Database Management Systems (OODBMSs), some integrity constraints can be repres-
ented with the Data Definition Language (DDL) at schema definition time (considered
as inherent constraints) whereas other integrity constraints (considered as explicit con-
straints) are expressed and enforced by verification mechanisms such as check conditions
and assertions in RDBMSs or specific methods in OODBMSs [13].

In RDBMSs the definition of integrity constraints is often supported while OOD-
BMSs still provide more limited functionality for constraint definition. Both database
management system types lack functionality for defining and checking more complex
constraints, which do not have a clear-cut criteria for their satisfaction.

The terms integrity constraints, system rules and data rules can be synonymously
used and define constraints on a (persistent) data store or data which is included in a
transaction. A specification of conditions on database records which must be fulfilled
to represent the real world in a correct way, are referred to as semantic integrity con-
straints [176]. According to [161], integrity constraints are solely concerned with the
integrity of data, whereas business rules consider the decisions of people. The concept
of (semantic) integrity constraints is not restricted to database records, even if they are
often mentioned in the context of databases.

2.4 General concepts

In this section, we describe a selection of general concepts which are the basis for defining
and/or checking constraints. These concepts are presented without special regard to
unified constraint management which is the main topic in the subsequent section.

There exist multiple ways of converting data requirements to data constraints, and
how these constraints can be checked in a specific software implementation. Here, we
present different approaches, and discuss their advantages and disadvantages. Consider
a Person entity with two string attributes name and email, where the organisation
owning the data defined two requirements on the data, namely:

1. Person.name: Must not be null and must have a minimum length of 2 characters.

2. Person.email: Must not be null and must be a valid e-mail address.

We will use this example in the following subsections where it is used to exemplify how
these requirements are represented as constraints in specific approaches.

2.4.1 Hard-coded constraint checking

Possibly the most obvious approach to defining and checking constraints is to add if-else
conditional blocks in software code whenever objects of a certain entity are manipu-
lated. The manipulation is interrupted and an exception is raised as soon as the data
requirements are not fulfilled. This solution is simple to implement, but it suffers from
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diverse drawbacks: (1) The code base is expanded with code that is not essential to
the business logic; (2) The constraint checking code is often redundant and distrib-
uted over the whole code base which is error-prone and time consuming in terms of
constraint maintenance; (3) The constraint checking code has to be implemented in
multiple programming languages in the case of multi-platform applications, such as a
web-application. Nonetheless, an advantage is that constraints can be defined natively
in the programming language of the application without any additional tools and this
approach is simple to understand.

2.4.2 Structured Query Language

The declarative language SQL is a standard manner to define and manipulate RDBs.
According to the DB-Engines ranking4, RDBs are still the most popular databases.
Thus, it is of high importance to address the issues with constraints in these systems.

Integrity constraints in RDBMSs may be expressed through SQL as:

• Special keywords: For example the NOT NULL keyword or the PRIMARY KEY keyword
for a column.

• Default values: A certain column default value in a table.

• Column check constraints: An arbitrary constraint defined for a column.

• Table check constraints: An arbitrary constraint involving multiple columns defined
for a table.

The person constraints example from above could be represented in SQL as shown
in List. 2.1.

create table person (

name character varying NOT NULL,

email character varying NOT NULL,

CONSTRAINT chk_name CHECK (length(name::text) >= 2),

CONSTRAINT chk_email CHECK (email::text ~

’^\w+(\.\w+)*+@\w+(\.\w+)+$’::text)

}

Listing 2.1: SQL example

Constraint checking based on SQL is convenient if many database entries have to be
accessed and in the case of simple constraint definitions. For example, if an aggregation
over multiple entries has to be calculated or a UNIQUE constraint has to be checked
which ensures the uniqueness of a value over all data entries. However, the constraint
checking cannot be used in the business logic or in a client since it is restricted to the
database.

The various approaches provide different possibilities for defining certain constraints.
In SQL, for example, there exists no specific representation for an email constraint which
is why such a constraint has to be expressed with an appropriate pattern match.

4http://db-engines.com/en/ranking

http://db-engines.com/en/ranking
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2.4.3 Annotation-based constraint checking

Constraint checking methods based on annotations are common for many programming
languages which have integrated constraint checking capabilities, or they are at least
extensible to provide these features. BV5, the Apache Struts Framework6, OVal7 and
the Java Modeling Language (JML)8 are examples for such annotation-based constraint
checking approaches for the Java programming language.

In these approaches, developers specify constraints by annotating Beans with Java
annotations. List. 2.2 shows the BV annotations for the Person-Entity from the ex-
ample above. In BV, there exists a specific notation @Email for an email constraint.

public class Person {

@NotNull @Size(min=2)

private String name;

@NotNull @Email

private String email;

}

Listing 2.2: BV example

In the subsequent Sect. 2.5.2, we will explicitly focus on BV as an approach for
unified constraint management. It follows the Design by Contract (DbC) paradigm
supporting pre- and postconditions, and invariants.

The validation mechanism introduced in HTML5 is another example of constraint
checking based on annotations where the validation is available in the form-context for
input-elements.

The appropriate markup for an input form which ensures the requirements from the
example above is shown in List. 2.3.

<form method="POST">

<input type="text" required pattern=".{2,}" name="name">

<input type="email" required name="email">

<input type="submit" value="submit">

</form>

Listing 2.3: HTML5 form validation

As presented in the listing, the pattern validator expresses the minlength constraint
and email addresses can be validated by defining the input type to email in combination
with the required attribute. The supported validators for HTML5 forms can be found
in the appropriate HTML5 documentation9.

Specifying constraints with annotations has the advantage of being a well-known
programming language construct already in widespread use [158]. Moreover, annota-
tions are close to the source code, which can be beneficial compared to approaches that
define constraints in documentation, a separate configuration file or in the database. In

5http://beanvalidation.org/
6https://struts.apache.org/docs/validation.html
7http://oval.sourceforge.net/
8http://www.eecs.ucf.edu/~leavens/JML//index.shtml
9https://www.w3.org/TR/html5/forms.html#forms

http://beanvalidation.org/
https://struts.apache.org/docs/validation.html
http://oval.sourceforge.net/
http://www.eecs.ucf.edu/~leavens/JML//index.shtml
https://www.w3.org/TR/html5/forms.html##forms
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the case of BV, it is very convenient to define annotations in the already existing object
model and to easily write custom constraints in the same language as the programming
language (Java). Further, the constraint violation messages in BV are very detailed
which usually is not the case in SQL.

A disadvantage of constraint checking based on annotations is that the business
logic code is expanded with annotations which can reduce the readability. Further-
more, and more important, a flexible constraint checking is usually not supported with
these methods which means that a constraint violation results in an exception and
consequently the data is rejected. Note that the same issue exists in SQL. A further
drawback of the annotation-based approaches is that constraint parameters are static
which often causes the implementation of custom constraints. Moreover, constraints
cannot be changed during runtime, as the application has to be recompiled.

2.4.4 Event Condition Action paradigm

Active databases have been proposed as a means of realising mechanisms to enforce
constraints. The work of Eswaran and Chamberlain on System R [56] is one of the
earliest notions of an active database. In active database systems and other event
driven architectures, the paradigm of ECA is used. Events occur in a system, such as
the commit request of a database transaction. A mechanism in the system monitors the
events that occur and triggers a registered action if a particular condition is fulfilled.
In the ECA paradigm, it is usually possible to configure the coupling mode between
the triggering event and the condition evaluation as well as between the condition
evaluation and the execution of the action. Mechanisms such as assertions and triggers
can be generalised by ECA rules [31].

In the subsequent Sect. 2.5.1, we will explicitly focus on enhancing object databases
with constraint functionality where it is appropriate to base this on the ECA paradigm.

2.4.5 Model-Driven Architecture

MDA [100, 118] is an approach proposed by the OMG10 for dealing with the problem
of constantly changing technologies and business requirements during the software de-
velopment life cycle. In order for the logic of the system to be completely independent
of the underlying platform, a system is first modelled using a Platform-Independent
Model (PIM), e.g. UML or Meta-Object Facility (MOF), and then translated into a
Platform-Specific Model (PSM). In other words, the logic of the system should be com-
pletely independent of the underlying platform. The heart of this approach consists of
widely used models that reflect details of either a platform independent system spe-
cification or technology-specific representations. MDA is generalised by the concept of
Model-Driven Engineering (MDE) [98] which includes also the phases of process and
analysis that result in a software development methodology.

These model-centric methodologies for software development became significant in
academia and industry and within them UML and OCL [140, 190] play an important
role. OCL is part of UML which is the standard for object-oriented modelling [72].
OCL, also standardised by the OMG, is a formal constraint modelling language that

10http://www.omg.org/mda/

http://www.omg.org/mda/
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complements UML in the field of constraint specifications. It provides a convenient
platform independent way of defining constraints which consequently leads to its lim-
itation that it cannot be directly used to perform assertions during the runtime of an
application since assertions should be defined differently depending on the selected lan-
guage/platform of the execution environment. Further, with OCL, it is not possible to
explicitly express all types of constraints which can be defined by technology-specific
representations. For example, there does not exist a dedicated keyword to express the
primary key constraint, one of the most common constraints in the relational model.
Moreover, validating patterns such as an email address require specifying regular ex-
pressions or a pattern matching for the type string which is not supported by the latest
specification of the OCL standard library11. In OCL, there exists also no way to enforce
a particular precision of numbers (type real), e.g. by defining the number of decimal
places nor does OCL have a dedicated type to store time or date related values. For
instance, in Java, we can enforce an email pattern by using the @Email annotation, the
precision of numbers using the @Digits annotation and time related constraints with
the annotations @Past or @Future. Additionally, OCL is not powerful enough to allow
for the validation of numbers that require complex algorithms computing checksums
such as the Luhn algorithm for a credit card number. One could use a less unambigu-
ous representation of the primary key constraint by combining the not null and unique
constraints but, in any case, the representation will be less convenient for developers
and potentially also more error-prone.

The person constraints example from above could be represented in OCL as shown
in List. 2.4.

context Person

invariant Name:

self.name <> null

and self.name.size() > 1

invariant Email:

self.email <> null

self.email.matches(’^[a-z0-9_\+-\.]@[a-z0-9-\.]+\.([a-z]{2,4})$’)

}

Listing 2.4: OCL example

There exist other constraint languages such as ARL which is an extension of
ALICE [178]. With ARL it is possible to specify active database rules with an object-
oriented view of data. Rules can be part of different rule sets which makes it possible
that different users can have different sets of rules for different situations. An overview
of different rule languages and the features that they support can be found in [178].
In spite of these limitations, OCL is the most widely accepted constraint language also
due to its standardisation and multiple extensions.

2.4.6 Aspect-Oriented Programming

AOP is a powerful programming paradigm that enables to enhance the modularity of a
program. Functionality which does not concern the main logic of a program, so-called

11http://www.omg.org/spec/OCL/2.4/PDF/

http://www.omg.org/spec/OCL/2.4/PDF/
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cross-cutting concerns such as security, logging, persistence, debugging, tracing, distri-
bution and performance monitoring, can be separated from the rest of the system [89].
This is especially helpful in large applications, for example, to reduce code duplication.
AOP allows to add additional behaviour, defined in additional pieces of code (so-called
advices), to existing code without modifying the code itself. Pointcuts specify where
advices can be injected into the code, such as before or after the call of a method with a
certain name. The combination of a pointcut and an advice is called aspect. The cross-
cutting concern, in our case the constraint checking logic, is defined in such aspects.
Join points specify when aspects should be executed in the control flow of a program,
such as before or after a method execution. A weaving process injects the aspects into
the application code at the specific pointcuts.

AOP implementations in Java are, for example, AspectJ12 and Spring AOP13.

List. 2.5 shows an AspectJ aspect definition.

aspect Person {

pointcut callSetMethod() : execution(* Person.set*(..));

void around() : callSetFieldMethod() {

// validation code

}

}

Listing 2.5: AspectJ pointcut example

Before each call of a method with the prefix set in its name which is defined on the
Person entity, the method callSetFieldMethod is executed. Considering the Person-
Entity example from above, the callSetFieldMethod is executed before the methods
setName(String name) and setEmail(String email) are called. The relevant con-
straints can be validated since the validation code is able to access the parameters
provided to the method. The execution of the method is continued if the arguments do
not violate any constraints. If the arguments do not fulfil a constraint, an appropriate
action can be executed, such as correcting the data or throwing an exception.

2.4.7 Design by Contract

Many constraint languages/frameworks, such as OCL and BV, support the declaration
of invariants and/or preconditions and postconditions on operations. This is used in
the software engineering concept of DbC where encapsulated logic is associated with,
and relies on, other logic. It was introduced by Bertrand Meyer and states that the
single program modules define formal contracts which assert that they do not accept
and do not provide invalid data [120].

‘DbC is a methodology to guide analysis, design, documentation, testing and other
tasks of software development. The application of DbC to software design requires
the developer to build software systems based on precisely defined contracts between
cooperating components. Contracts, similar to real-life contracts, define the relationship

12http://projects.eclipse.org/projects/tools.aspectj
13http://docs.spring.io/spring/docs/current/spring-framework-reference/html/aop.
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between two cooperating components – the client and the supplier – by expressing each
party’s expectations and guarantees’ [9].

According to the definition above, DbC can be used for constraint checking similar
to described in the previous Sect. 2.4.6 on AOP. It is checked whether the input received
by the setter method fulfils the contract which is in our case the constraint.

Some less widely used programming languages, such as D14, Eiffel15, Clojure16 and
Ada17, natively support DbC at least partly. Since version 4, the .NET framework18

contains the class System.Diagnostics.Contracts which can be used to implement
DbC.

Java is a programming language which does not natively support DbC. BV is a DbC
extension for Java that supports the pre- and postcondition concepts of DbC. Thus,
before and after a method is called which manipulates a data instance, the contracts, or
in our case the constraints, are checked. Since BV version 1.1, there exists the possibility
to define pre- and postconditions directly in the method headers through annotations
which was previously already available in the OVal framework and in JML for Java.
Other implementations, such as GContracts19 for Groovy use Application Programming
Interfaces (APIs) for compiler extensions in order to add language elements.

2.4.8 Business Rules Engines

Business rules and rule engines provide another way of defining and validating con-
straints.

A Business Rules Engine (BRE) is a software system that executes rules in any form
to validate data and enables execution separated from the application code. Given data
can be validated based on one or more sets of rules. Examples of such BREs are the Java-
based Drools20 and the JavaScript-based Nools21. Drools is a solution for a Business
Rules Management System (BRMS) which provides a BRE and a rules management
application. Nools can be used directly in browsers or with Node.js22 and supports
JavaScript development with a simple BRE.

The basis for many BREs, such as the one used in Drools, is the Rete algorithm
which was designed by Forgy [62]. It is a pattern matching algorithm used to determine
which rule in a set of system rules should fire based on its data store. For BREs, it is
a de facto standard although newer algorithms, based on Rete, such as the PHREAK
algorithm for Drools, might be used.

Business rules are used to define or constrain complex aspects of business in a
convenient way. They enable to define actions which are executed dependent on the
fulfilment of a condition at certain events during the runtime of an application. Business
rules can be used to express integrity constraints for data validation or conditions of
operations, such as preconditions.

14https://dlang.org/spec/contracts.html
15https://www.eiffel.com/values/design-by-contract/
16https://clojure.github.io/core.contracts/
17http://www.ada-auth.org/standards/12rat/html/Rat12-1-3-1.html
18https://msdn.microsoft.com/en-us/library/dd264808(v=vs.110).aspx
19https://github.com/andresteingress/gcontracts/wiki
20http://www.drools.org/
21https://github.com/C2FO/nools
22https://nodejs.org/en/
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List. 2.6 shows how constraints can be defined with the BRMS Drools based on the
example already used in the previous subsections.

rule "Person_name"

when

$a : Person (! (name != null && name.trim().length() > 1))

then

<actions>

end;

rule "Person_email"

when

$a : Person (! (email != null && validateEmail(email) == true))

then

<actions>

end;

}

Listing 2.6: Drools example

In Drools, business rules consist of a condition and a consequence. The condition
is the constraint which reduces the whole domain of objects, reachable by the BRE,
into a subset. In case of object validations, this is the subset of those objects that
do not fulfil constraints. The objects of the subset can then be matched with the
corresponding consequence. The consequence is the action that is executed in the case
that the condition is evaluated to true, for example, writing a log entry.

The keyword when precedes the condition while the keyword then precedes the
consequence. The consequence part is denoted in List. 2.6 with <actions> where any
actions could be defined that execute when objects fulfil the condition of particular
rules. In Drools, the body of the condition expresses the constraints which can be
defined in Drools or Java language expressions syntax.

2.5 Unified constraint management

In software engineering, often data is stored in an information system and used by
multiple applications. Constraints are scattered throughout the applications which
makes it hard to maintain them consistently. This is known as Application-Oriented
Integrity Maintenance (AOIM) [200, 43].

In almost any software design process, integrity constraints are very important and
violating them leads to erroneous system behaviour. If the enforcement of constraints
is mostly the responsibility of the application programmer, several problems can occur.
Application programs contain code for consistency checks and exception handling which
expands the code. Same or similar constraints may be checked multiple times which
increases code redundancy. Changing constraints may lead to rewriting several parts
of the software possibly also in different applications. Programmers might not be able
to provide efficient code for constraint checking because they lack knowledge about
the techniques used for implementing the database or knowledge base. Therefore, the
centralisation and automation of consistency enforcement would simplify the process of
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software engineering [49].
Let us examine in more detail the case of an information system with a web interface

and a mobile application on the presentation tier, a logic tier and a database on the data
tier. In this scenario, shown in Fig. 2.2, the web interface is implemented in HTML5
and JavaScript, the mobile application in mobile platform languages, and the business
logic in Java.

To reach high DQ, data should only be stored in the database if the data require-
ments are fulfilled. Usually, this is done by ensuring that no constraints are violated by
the data input, or that the data input is rejected.

The web interface provides HTML forms which allow the user to enter data into the
information system. The POST-data is transmitted to the business logic over the HTTP
protocol where it is received and further processed. Based on constraint definitions, the
user input data has to be validated to check if it fulfils the data requirements. The
constraint definitions and the constraint checking logic must be implemented twice in
the case of a web application, once on the logic tier, and once on the presentation tier
in HTML and JavaScript.

Business logic
Java

Presentation tier 
(Web interface)
HTML / JavaScript

Application database
PostgreSQL

Presentation tier 
(Mobile app)

Java / Objective-C

Other information 
system

API

Figure 2.2: Example of a distributed information system

Alternatively, all validation code could be placed in the business logic while no
validation would be done in the web interface. However, this is not recommended due
to the following reasons: (1) For each validation, the input data is transmitted to the
business logic which causes a complete HTTP transmission cycle, even in the case of
very simple validations, such as a check for a correct format of a value; (2) After having
submitted a form, a user has to wait for the success or error validation result of the
business logic. It is desirable for users to receive instantaneous feedback, if possible
even while they are still typing which requires constraint checking in the web interface.
Another alternative would be to restrict constraint checking to the web interface. Due to
security reasons, this solution has to be rejected since HTML and JavaScript validators
can easily be bypassed.

In summary, constraint checking cannot happen in only one tier or component.
Thus, the challenge is to ensure that the constraint checking logic is consistent while
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the constraint definition and validation code is distributed among all components which
interact with the data.

What typically happens in practice, for performing constraint checking in the web
interface as well as in the server application, is that everything is implemented twice,
once in HTML and/or JavaScript and once in Java. Consequently, this means that
a change to a constraint definition usually requires that both a back-end/middleware
developer for the server-side and a front-end developer with HTML and JavaScript
know-how update the validation code (or one developer with both skills). This manual
approach quickly leads to a serious issue once an environment is considered where
multiple applications or other interacting information systems are transferring data
with the logic tier.

It can be argued that constraint maintenance is simple since there exist proven
constraint checking mechanisms for many programming languages, for example BV for
Java. This might be the case for small information systems with a monolithic archi-
tecture. However, the majority of information systems are built with a distributed
architecture that includes many (sub-)systems which are interacting together. Further,
they are often implemented with different programming languages and potentially de-
ployed on different platforms. An information system which consists of both a web
interface and a mobile application for data input and output, as well as a business logic
component, is an example for such a heterogeneous and distributed system. Usually,
the business logic component is implemented with different programming languages and
deployed on a different platform than the web interface and the mobile application.

In summary, constraint checking code is often distributed among the different com-
ponents of an information system which results in an error-prone and recurrent task
of defining and checking constraints during the implementation and maintenance of
an information system. Thus, it is easy to miss a location where constraint checking
happens in the code. Usually, data validation takes place at different tiers of an infor-
mation system. For example, in the logic tier to prevent persisting incorrect data to
the database, and in the presentation tier where users receive instant notification in the
case of incorrect input data.

Even if only one information system or application, respectively, is accessing data,
the appropriate constraints are usually distributed among the various layers and com-
ponents. To examine the different approaches to constraint specification and data valid-
ation in more detail, consider a typical three-tier architecture consisting of presentation,
logic and data tiers as shown in Fig. 2.3. The logic tier is a bundling of presentation,
business and data access layers.

As already indicated, database constraints support data validation in the data tier.
Relational and object-relational databases specify constraints in SQL as discussed in
detail by [176]. Although object databases usually leave it to the programmer to handle
much of the data validation beyond basic typing, several approaches have been proposed
in research such as the use of a constraints catalogue to validate objects at well-defined
points [135]. Data validation can be performed in the presentation tier on the client-side
using form field validation supported directly in HTML5 or client-side code. Power-
Forms [19] is a proposal for a declarative and domain-specific language for client-side
form field validation that allows constraints over several HTML elements to be declared
using regular expressions. There the constraints are defined in a power form document,
and are then translated to JavaScript and HTML. This approach does not cover the
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Figure 2.3: Typical three-tier architecture

server-side of the web application, but it generates JavaScript and allows non-JavaScript
programmers to create the validation code.

A lot of research has addressed ways in which data validation code within the
logic tier can be supported, often through automatic code generation. In the case of
presentation layer validation, the layer generates the front-end that is shipped to the
presentation tier including data validation components. For example, web forms can
be generated automatically from UML and OCL [54].

A survey of approaches for performing validation in the business layer is presented
in [65]. There, the different validation techniques within the Java programming lan-
guage environment range from hand-crafted constraints using if-then-else statements
and exception mechanisms over code instrumentation and compiler-based approaches
to explicit constraint classes and interceptor mechanisms. Different approaches for
constraint checking using OCL are compared in [4] where they consider hand-crafted
if-then-else statements and Java assertions as well as approaches based on DbC. Ad-
ditionally, in [180], an approach is described that translates OCL constraints on UML
diagrams into code using object-oriented mechanisms to represent constraints.

Cross-layer validation is not coupled to a specific layer within the logic tier. An
example is presented in [70] where they use a sub-language of WebDSL [79, 69] to
handle data validation rules. WebDSL is a domain-specific language for creating web
applications translated to a running Java web application relying on a customised Java
framework. Since the focus is on web applications, it is not directly applicable to
desktop applications. A system may also use cross-tier validation that allows data
to be validated in different tiers using the same concept. Researchers have proposed
many different solutions for this including tools to transform integrity constraints into
running code [22]. Moreover, Wang and Mathur [183] present a system that analyses the
request/response messages between a client and a server to detect possible constraint
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violations based on the interfaces of the given domain model. A sophisticated concept
for validating input data using the idea of an abstraction of a data category that can
be used for data validation is proposed in [167]. The abstraction is transformed into
executable code and a similarity function checks the actual value against the defined
constraint.

In previous publications, we have already presented different approaches for tackling
the issue of distributed constraints and for providing unified constraint management.
In [191], for example, a framework for data access layer validation was presented where
constraints are defined in a configuration file using a special constraint definition lan-
guage. The validation process follows the ECA paradigm where an application can
register for certain database events, e.g. a commit. Further, it is possible to define con-
straints which do not have a clear-cut criteria for their satisfaction and assign custom
validations. Another approach presented in [193] supports bi-directional translations
between an OCL-like platform-independent constraint model and multiple technology-
specific representations, allowing for multi-translations between technology-specific rep-
resentations. There, our OCL extension, called UnifiedOCL, enables constraints to be
defined in a detached state from the UML class diagram and, by using pluggable label
dictionaries, we provide a means of defining common platform-dependent constraint
definitions in a convenient platform-independent manner.

2.5.1 Constraint management functionality in databases

A lot of research has been conducted in the field of semantic data models, for ex-
ample early efforts include [133, 142, 74] where data models with semantically rich
constructs and forms of constraints were proposed. These models are targeted at cap-
turing the semantics of an application domain in a more natural way. For example,
in [133], an object-oriented model is proposed that integrates features of extended
Entity-Relationship-Models (ERMs) such as rich classification structures over collec-
tions of objects and relationships. Several approaches of embedding constraints into
object databases have been introduced. In [130] they provide simple error check meth-
ods for individual classes as well as the organisation of integrity constraints into duplic-
ated classes. In [50, 18], they propose constraint checking in basic update operations.
A more advanced approach is DICE [57] where every integrity constraint type is imple-
mented by a parametrised integrity check method and an exception handling method.
Nonetheless, such an approach has not been applied in practice and is not integrated
in current object databases.

In fact, current databases generally lack sophisticated constraint support. RDBMSs
typically provide support for integrity constraints, such as key and domain constraints.
Inherent integrity constraints are represented with the DDL at schema definition time
and explicit constraints are expressed and enforced by verification mechanisms such
as check conditions and assertions. For simple validations these checks can be easily
defined but quickly become complex for more advanced constraints. Stored procedures
and user-defined functions are relatively simple mechanisms for extending capabilities of
databases. Further, triggers can be used to automatically execute procedural statements
when a database is modified but cannot trigger on select-queries. Moreover, these
verification mechanisms are limited to the schema definition time and inherently to
validation in the database layer.
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Object databases provide even less constraint support. For example, the commer-
cial product Versant23 only provides unique field constraints and explicit constraints
are usually specified by means of (callback-)methods [13]. For constraint enforcement,
typically active database techniques such as the ECA paradigm are used [141]. The
checking of integrity constraints in object databases is a fundamental problem in da-
tabase design [154, 63] and the functionality to declare, enforce and maintain integrity
constraints in existing object databases is still very limited [200, 63, 49]. Furthermore,
both relational and object database management systems lack functionality for defin-
ing more complex constraints or relaxed validations of DQ controls, which, for example,
only indicate possible DQ deficiency.

OODBMSs especially do not have adequate support for constraints defined in class
composition and inheritance hierarchies [5, 42, 63]. Zaqaibeh et al. [201] present an
Assertion Model of Integrity Constraints (AMIC) which especially can represent con-
straints and complex relationships among attributes and classes that are derived from
such composition and inheritance hierarchies. Their approach considers both the val-
idation of a constraint set given by a software designer during compile-time and the
enforcement of data integrity during the runtime for data given by software end-users.

Other approaches have been proposed to overcome the distribution of constraints
and consequent redundancies as well as facilitating constraint management. So-called
Centralised Integrity Maintenance (CIM) approaches [200, 43, 49, 177] introduce a
dedicated component next to the database that centralises the management of integ-
rity constraints and is responsible for constraint enforcement. Defining and managing
constraints separately from the object database allows the definition of complex and
sophisticated constraint types which may go beyond the constraint support proposed
for object databases, for example [57].

2.5.2 Bean Validation

To decide on a unified constraint management approach, we also analysed program-
ming language features, libraries, frameworks and language specifications. The most
suitable technology for the Java programming language turned out to be BV, which
is the most common representative of cross-tier validation. As a cross-tier validation
concept, it naturally also supports cross-layer validation. BV as specified in the recent
Java Specification Request (JSR) 349 (BV 1.1) allows constraints to be defined in a
uniform way. Thus, BV constraints are layer/tier independent and can be used for
validation at different places within a three-tier architecture, thereby avoiding redund-
ancy, as there is no need to replicate constraints in, for example, the database and
on the client-side. BV centralises the definition of validation logic by introducing a
metadata model and API to validate JavaBeans. The idea is to enrich JavaBeans with
annotations to express constraints within the domain model. The metadata model is
not restricted to a specific layer and can be used with other technologies. Further-
more, BV introduces constraints for method arguments and return values, but does not
intend to provide a full ‘Programming by Contract’ framework. In BV, developers usu-
ally annotate Beans with Java constraint annotations, but if a developer really wants to
separate the constraint definitions in a configuration file, BV also offers the opportunity

23http://www.actian.com/products/operational-databases/versant/#VOD
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to create a corresponding Extensible Markup Language (XML) file. Analysing the in-
tegration convenience of BV, we evaluated several Java Graphical User Interface (GUI)
technologies including JavaServer Faces (JSF)24, Google Web Toolkit (GWT)25, Java
Foundation Classes Swing26, Standard Widget Toolkit (SWT)27, JavaFX28 and the Ec-
lipse Rich Client Platform (RCP)29. For JSF (since version 2.0) and GWT (since version
2.5), BV is fully integrated. BV is only partially integrated for Swing, SWT, JFace,
RCP and JavaFX since some manual steps have to be taken to completely integrate
it, such as handling the validation process with action/event listeners, which in turn
invoke the BV. Nonetheless, there exist certain libraries, such as Swing Form Builder30,
JFace standard validation31, JFace BV with JFace Data Binding32 and FXForm233,
which integrate BV for the appropriate technology or which can be used to overcome
the issue of non-existing data validation mechanisms. BV also easily integrates with
JSR 338 (Java Persistence API (JPA) 2.1), which defines a standard for managing the
mapping between Java objects and relational databases. The standard explicitly states
that its purpose is only the mapping from objects to relational databases, but some
implementations of the standard, such as Hibernate OGM, also support NoSQL data-
bases. Since BV is a cross-tier validation approach, it satisfies our requirement for using
a single constraint model and managing constraints in a single place. Further, since it is
based on Java annotations, which are already familiar to developers and integrated into
various GUI technologies, it meets our additional requirement for ease of use. Given
the trend observed for increased integration of BV into various Java technologies, we
believe that the case for using it will become even stronger in the future.

At the time of writing, the new JSR 38034 for BV 2.0 is in the review process. The
main focus of this specification lies in supporting and leveraging Java 8, but other issues
such as the support for more customised payloads of constraint violations might also
be addressed.

2.5.3 Aspect-Oriented Programming

A variant of OCL is proposed in [68] which enables to express constraints that specify
system properties such as computation precision or timing. The author recognised that
slight variations of the same constraints are used at different locations in the system.
The work proposes an approach based on AOP to define constraints in a modular way.
This AOP approach provides the possibility for defining and managing constraints in a
single place which reduces redundancy in terms of constraint definition.

An example for an aspect-oriented constraint checking language is Limes [119].
Limes allows to check constraints, defined on a UML-model level, after the implementa-

24http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
25http://www.gwtproject.org/
26http://docs.oracle.com/javase/tutorial/uiswing/start/about.html
27https://www.eclipse.org/swt/
28http://docs.oracle.com/javafx
29https://wiki.eclipse.org/Rich_Client_Platform
30https://github.com/aeremenok/swing-formbuilder
31http://wiki.eclipse.org/JFace
32http://wiki.eclipse.org/JFace_Data_Binding
33http://dooapp.github.io/FXForm2/
34https://jcp.org/en/jsr/detail?id=380
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tion. The validation procedures and the specification of when and where the constraint
checking takes place is defined with AspectJ based on AOP. Thus, for the constraint
checking there is no need for modifying the implementation.

If the validation logic aspects are organised in a separated constraint definition file,
the AOP approach allows constraints to be added and modified during runtime, so that
the constraint modifications are immediately effective without the need for recompiling
the application.

In [24] an aspect-oriented approach is proposed which deals with information sys-
tem development, while avoiding information restatement, code duplication and prob-
lems related to cross-cutting concerns. In their work, they divide system concerns,
describe them separately and let them compose together through an aspect weaver.
Their aspect-oriented framework provides automatic integration of business rules and
dynamic construction of contex-aware UIs. Further approaches based on AOP, such
as [168, 26, 25, 96, 97], focus on generating UIs and are therefore described later in
Sect. 6.1 where we present related work on adaptive UIs in mobile applications.

2.5.4 Business Rules Engines

BRMSs/BREs, such as Drools and Nools (see also Sect. 2.4.8), provide comprehensive
functionality for resolving business rules in information systems. Rules can be modi-
fied without changing the software code base since their definition is decoupled from
the application which is consuming them. With BRMSs it is possible to define and
check constraints, although they are not primarily optimised for data input validation
with resulting validation feedback or general capabilities related to DQ. Thus, it must
be carefully weighed if the overhead for integrating and managing them is worth the
provided functionality.

There exist many different approaches which use BREs or ECA rules for maintain-
ing and checking integrity constraints, for example [85] which proposes a rule-based ap-
proach for the runtime monitoring of instance-spanning constraints, [6] which presents a
transformation based approach to automate the process of transforming business rules
to OCL, and [84] which presents a model for maintaining the consistency of mobile
databases with a rule-based mechanism based on ECA rules. Further work is even
concerned with the assessment of DQ with rule-based approaches. For example: [116]
proposes the use of logic rules to assess the quality of measures in a data warehouse.
[111] proposes a business rules approach to building a data validation engine that trans-
forms declarative DQ rules into code that objectively measures and reports levels of DQ
based on user expectations. [110] describes a framework for defining DQ and business
rules that qualify data values within their context, as well as the mechanism for using
a rule-based system for measuring conformity to these business rules.

In summary, we can identify the following advantages in using a BRE for the work
with constraints: (1) Validation based on a BRE separates the definition of constraints/
rules and the logic for checking them from the rest of the information system; (2) All
constraints/rules can be managed in one place; (3) The definition of rules is easy to
understand.
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2.5.5 Constraint translations

During the last years, MDA techniques have been comprehensively developed and con-
sequently translation mechanisms for modelling languages have also gained a lot of
attention. Demuth et al. [41] propose Constraint-Driven Modelling (CDM) as a generic
approach that guides the construction of new models while conserving consistency with
the related models and eliminating issues arising from re-transformation, uncertainties,
and bi-directionality. In their work, transformations are used to generate constraints
on a target model rather than the target model itself but the resulting constraint rep-
resentation cannot be used for validation during the runtime of an application.

Since OCL is unable to express some forms of constraints frequently used by de-
velopers and cannot be validated directly at runtime, and constraint definitions are
usually distributed in various components, an approach is needed which enables de-
velopers to specify their constraints in a unified way and automatically map these to
technology-specific representations which are validated during runtime.

Regarding constraint transformations there exist a few approaches which translate
modelling languages such as OCL to another technology-specific language in which as-
sertions during runtime can be performed. In the remainder of this section we discuss
the works reported in literature that provide support for translating OCL to and from
other constraint representations. Additionally, we discuss an implementation which
translates BV annotations to a JavaScript Object Notation (JSON) representation
which we used for one of our approaches.

Most of the approaches provide translations from OCL to mainly SQL such as [138,
136, 48, 76]. Obrenovic et al. [136] for example present an approach for the transforma-
tion of check constraints specified at the platform independent level into the relational
model, and further transformation into executable SQL/DDL code. Therefore, they
also developed a DSL and embedded it into a tool for platform independent design and
automated prototyping on information systems. There exist also various translation ap-
proaches to Java [194, 44] and specifically also to JML [104] such as [73, 75, 3]. There
are also AOP approaches such as [99, 28] where design constraints defined in OCL are
translated into aspects that, when applied to a particular implementation, check the
constraints at runtime. A comparison of different approaches for constraint checking
using OCL is provided in [4] where they consider several approaches including direct
translation to implementation languages, use of executable assertion languages, and use
of AOP languages. As a state-of-the-art tool for model-driven software development,
AndroMDA35 is a code generation framework that follows the MDA paradigm. It takes
a UML model from a UML tool and generates classes and deployable components (J2EE
or other) specific for an application architecture.

Very few approaches target translations from a technology-specific representation.
An example is the work of Cosentino and Mart́ınez [30] which discusses a reverse engin-
eering approach focused on extracting integrity constraints from relational databases
and mapping them into OCL expressions. They also provide a working tool capable
of inferring those OCL constraints from SQL schema elements (column constraints,
triggers). The authors introduce a mapping from an SQL schema into a UML class
diagram since OCL constraints are not context-free and therefore cannot exist in a
detached state from the UML class diagram.

35http://andromda.sourceforge.net/
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Most related to our work is that of Moiseev et al. in [126, 125] and Baresi and
Young [10] concerning translations from OCL to any assertion, and the work of Shimba
et al. [170] which is one of the very few works concerning bi-directional translations
between OCL and JML.

Moiseev et al. [126, 125] used the same MDA approach as we do by building an
Abstract Syntax Tree (AST) but they were focussing on similarities between particular
languages (e.g. imperative ones), and they applied sequences of hierarchical trans-
formations for concepts derived from language similarities. Thus, their transformations
are more fine-grained, but only consider constructs in isolation. Our approach clearly
defines just one intermediate form, but is powerful enough to capture all the concepts.
Further, their work is more related to OCL construct transformations in depth, while
we are not focussing on the transformations itself but on constraints and their trans-
formations as part of a whole framework. A limitation of their solution is the fact that
they only consider unidirectional transformations. Thus, they can only transform OCL
to other languages while our solution is bi-directional.

Baresi and Young [10] present a prototype of a tool for translating OCL assertions
to implementation assertions which is also limited to unidirectional transformations.
Their translations are accomplished by applying externally defined rules, which can
vary according to the target notation and users’ needs. Unfortunately, they do not
describe these rules in detail and their work in this area seems to be discontinued.

Shimba et al. [170] present a concrete method of implementing the translation from
OCL to JML as well as the reverse translation using Eclipse Modelling Tools36. Like
ours, their implementation is based on Eclipse37 and Xtext38. However, although they
mention Query/View/Transformation (QVT) Operational39 and the ATL Transforma-
tion Language (ATL)40, they do not explicitly state if they use it for writing transla-
tion rules. We used QVT for only one case, using Xtend41 for all others. With their
bi-directional translation between OCL and JML, the authors support development
by Round Trip Engineering at the design level but do not support multi-translations
among various specification languages.

Allowing multi-translations between technology-specific representations is especially
beneficial if legacy systems want to move from one constraint representation to another
or if a software developer prefers not to use a specific representation.

An implementation of a specific constraint translation is Valdr42, which provides
client-side constraint checking in combination with a constraint transformation mech-
anism as a JavaScript application. Constraints are homogeneously defined in a JSON
file which is consumed by an AngularJS web client plugin. Valdr further takes care
of the data input validation and of notifying the user with the validation feedback.
The constraint checking and the notifications are decoupled from the web interface in
most cases. The forms which need constraint checking have to be annotated with a
specific Cascading Style Sheets (CSS) class to make use of the client-side validation

36https://www.eclipse.org/downloads/packages/eclipse-modeling-tools/junosr1
37https://eclipse.org/
38http://www.eclipse.org/Xtext/
39https://projects.eclipse.org/projects/modeling.mmt.qvt-oml
40https://wiki.eclipse.org/ATL
41https://eclipse.org/xtend/
42https://github.com/netceteragroup/valdr
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functionality provided by Valdr. Besides, a mechanism for the transformation of BV
annotations to the appropriate JSON representation is provided. Thus, it is possible to
modify the constraints on the server-side and generate the corresponding JSON file by
running the transformation process. Consequently, the constraint modifications take
effect immediately on the client-side.

[1] proposes an algebraic approach with constraint modifications and transforma-
tions for data schema transformation. They suggest to formalise the propagation and
introduction of constraints by using enhanced data refinement laws during schema trans-
formation. This allows for preserving or modifying constraints during the modification
of the data schema, as an example of data schema mapping from XML to SQL.

2.6 Data quality with regards to constraints

After having given an overview of DQ, DQMFs, constraints, general concepts and uni-
fied constraint management we will now provide the background of bringing DQ in
relation to constraints.

It is not obvious how DQ can be measured and quantified for individual information
systems, but it is clear that data considered to be of poor quality in some sense can
cause several problems in an information system, see for example [113, 182, 185].

Although the research community has been concerned with several conceptual/de-
scriptive frameworks for DQ, there does not exist a DQMF implementation which is
based on a model that integrates all types of constraints.

Approaches on how to assess DQ and identify requirements is comprehensively ana-
lysed by [11] where three core aspects of such approaches are identified, namely ‘data
and process analysis’, ‘DQ requirements analysis’ and ‘DQ analysis’. In our work, we
assume that the DQ requirements are already identified and expressed by constraints
in order to focus on the DQ analysis where datasets are analysed regarding their ‘con-
straint compliance’.

As described above, integrity constraints are commonly defined for relational data-
bases in the database schema. At any point in time, these constraints must be fulfilled
for all data which is stored in the database [12]. The main focus of integrity constraints
is the accuracy dimension. However, their usage is limited to the validation of relatively
simple accuracy checks, such as a length check of a ZIP code. Usually, it is not possible
with integrity constraints to encompass all requirements for accuracy, such as a correct
non-standard ZIP code format [186].

The use of constraint checking methods for simplifying the evaluation of DQ appears
to be applicable since (integrity) constraints and quality can both be described by
assertions. Similarities and differences between integrity and quality are described
in [33]. Nonetheless, linking constraints to DQ is difficult since constraints usually are
defined upfront and cannot capture all DQ issues, such as semantic errors. Therefore,
constraints can never be exhaustive for indicating the quality of data, which means that
a dataset that satisfies every constraint might still be of bad quality. As an example,
suppose that a constraint states that the grades for an exam should be whole numbers
between 0 and 20, the satisfaction of the constraint does not ensure that the grades
entered in the system are a correct representation of the grades noted on the exam
scripts. Likewise, objects that are subject to no constraints are not linked to DQ or
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would receive a default DQ score. There is no certainty that an item that is not subject
to any formal constraint is always a valid data item. Validity and correctness are mostly
evaluated by comparing data to real world values. Therefore, assessing the quality of
an item based on constraints, as proposed in this work, results in a measurement of
‘constraint compliance’ which is simply seen as an indicator for DQ rather than an
absolute measure.

An approach for improving DQ of relational databases based on Conditional Func-
tional Dependencies (CFDs) is proposed in [60, 58]. CFDs are a class of integrity
constraints that are intended to capture DQ issues or conditions, and be used to dir-
ectly support data cleaning processes [163]. Their work is focusing on checking and
enforcing integrity constraints in a DBMS and not the application logic. Decker [33]
describes an approach which expresses quality properties as constraints and monitors
them with inconsistency-tolerant integrity checking methods. He also argues for two
benefits: (1) Using the expressive power of the syntax of semantic integrity constraints
also for describing arbitrarily general quality properties of data; (2) Making use of es-
tablished integrity checking methods in order to efficiently check data also for quality.
How integrity constraints can be used to model, measure, monitor and repair the quality
of information stored in databases is presented in [37, 35, 36, 38, 34], where they focus
on measuring quality by measuring inconsistency. They provide several inconsistency
metrics by not only counting constraint violations but also assigning and aggregat-
ing specific application-dependent weights to different constraint violations. The work
of Decker as mentioned above is most closely related to our work, but it focusses on
constraints in relational databases. Further, it handles neither unified constraint man-
agement nor customisable constraint checking as investigated in our work.

As proposed by Presser [146], constraints in relation to DQ can be classified gener-
ally into hard constraints, soft constraints and other indicators. Hard constraints are
necessary conditions that data has to fulfil to be valid. If a hard constraint is violated,
DQ is deficient. Soft constraints are not just valid or invalid, but rather increase or
decrease DQ. A soft constraint in a food composition database could be defined, for
example, in the dimension completeness for a food and its nutrient values. It could be
requested that a food should have at least four nutrient values such as carbohydrate,
energy, fat and protein. Another example would be that a measurement method or
information to samples should be given for each nutrient. But it also could be possible
that there is no such detailed information available. In such a case, the soft constraint is
violated and the DQ lowered but not considered deficient. In the definition of Presser,
DQ indicators also only increase or decrease DQ like soft constraints but they are DQ
requirements that can, but do not have to, have an impact on the DQ. For example, a
typical DQ indicator would be the age of data as it might indicate that the methods
used to collect the data are outdated [146].

Usually a data model is defined in terms of the structures, constraints and operations
and the notion of (hard) constraints in data models is well known. By also taking soft
constraints and other DQ indicators into account for our constraint model, and by
refining and expanding them, we go beyond the commonly known (hard) constraints.
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2.6.1 Data integrity rules for continuous data quality improvement

Linking quality to a continuous improvement process is described in Total Quality Man-
agement (TQM) [93, 40] which is a practical approach for improving quality. Madnick
and Wang [114] introduced an adaptation of TQM principles for the context of DQ.
Their Total Data Quality Management (TDQM) cycle consists of defining, measuring,
analysing, and improving DQ through multiple, continuous improvement cycles. Thus,
(1) a definition of DQ is acquired where, in a typical DQ improvement project, a subset
of DQ dimensions are chosen, (2) DQ is measured along the chosen dimensions using DQ
metrics which are measurable at a reasonable cost and useful for improvement activities,
(3) the measures are analysed and it is decided whether and how to improve the quality
of data, and (4) improvement actions are taken to change data values directly and/or
change the processes that generate the data. The result of the improvement activities
are refinements to the definition and metrics for DQ which are then used for a next
TDQM cycle. Measures of DQ during phase 3, such as a percentage of values outside
the range are used to investigate problematic values and to determine root causes of
out-of-specification values. The improvement is either to adapt inappropriate quality
definitions or apply corrective actions to the data and/or processes. Changing processes
is important since incorrect processes otherwise continue to produce poor quality data.

In [106] the authors propose an approach to reflect the dynamic and global context
of business process changes. Their action research merges data integrity theory with
management theories about quality improvement using a DQ lens. They go beyond the
conventional practice for the application of data integrity as a one-time static process
applied when data enters the database. Instead they propose that the application of
data integrity be viewed as a dynamic, continuous process, embedded in an overall
DQ improvement process. They argue that constraint-based rules in databases help
ensure that data represents the real-world states, but that a real-world state is dynamic,
not static, changing over time and therefore organisations are in need of a process
that guides the mapping of changing real-world states into redefined data integrity
rules. Thus, they propose an action research cycle for DQ improvement which extends
the TDQM cycle by the phases (1) Identifying Inquiry, (2) Diagnosing Problems, (3)
Planning Solution, (4) Implementing Solution, and (5) Reflecting and Learning. Further
they present how their cycle was applied to process-embedded data integrity in a global
manufacturing company for different data integrity constraint categories.

2.6.2 Data quality measurement and metrics

If DQ is seen as a constraint compliance problem, which means that measuring and
quantifying DQ in an information system is based on the degree to which data complies
with certain constraints, the set of requirements can be expressed by a set of constraints.
However, specific measurements for DQ are not supported in most information systems,
which tend to rely on a set of constraints that only validate to either true or false. Thus,
either a user enters valid data and is able to store it in the database or the data is
rejected. In many cases, this is not sufficient, as it might be appropriate to distinguish
several levels of DQ or even use a continuous range from very good DQ to very poor
DQ. This requires another concept for validation as well as metrics for DQ.

We therefore chose to investigate how constraint models could be extended to sup-
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port DQ management. Our goal was to design a general framework that could be used
to analyse and provide feedback on DQ for any information system. Given that DQ
requirements are highly dependent on the context in which the data is used in terms
of the domain, the application and the user, it is important that the computation of
DQ is highly flexible and easily configurable. In particular, the set of DQ dimensions
considered should not be fixed.

In [143] it is emphasised that the process of measuring DQ must confront two major
questions: (1) Exactly what should be measured? and (2) What is the metric that will
be used to measure the variable? The author also states that, often, it is much more
difficult answering the first question than the second.

Organisations are in need to quantify and improve the quality of their data since
their decision making is based on their data. Due to the diversity of DQ definitions,
many approaches exist on how the quality of data in an information system can be
assessed, scored and quantified.

A summary of methodologies for assessing and improving DQ is provided in [11]
where a sequence of the following three common DQ methodology phases is presented:

1. State reconstruction: Collect context information about the processes and ser-
vices in the organisation, data collections and related procedures, DQ issues and
associated costs. This phase can be skipped if documentation exists from previous
analyses.

2. Assessment/measurement: Define relevant DQ dimensions and measure the qual-
ity of a data collection along these dimensions.

3. Improvement: Select steps, strategies and techniques to correct the issues collec-
ted in phase 1 and consequently improve the DQ.

In our work, we mainly focus on the second and third phases. The DQ issues are
represented by constraint violations. For the assessment of DQ in the second phase,
we provide metrics for indicating DQ based on constraint compliance with configurable
DQ dimensions associated. The third phase is addressed by including features that
support DQ improvement processes.

A simple method to determine the accuracy of a data point is to calculate the
distance between the value of a data point and its real value. In the case of empirical
sciences such as physics, chemistry, biology, environmental science and food science,
real values are often not known and are only approximately measurable. For example,
if one considers the Vitamin C value of an apple, a food scientist can only measure
this nutrient using the most current analysis method. As methods improve over time,
the measured value should hopefully come closer to the real value, but the real value
remains unknown. Whether the apples currently in a specific fruit bowl have the same
value is also unknown.

With empirical data, the source of the data as well as the methods used to meas-
ure and process values, all contribute to a scientist’s assessment of the reliability of
that data. This means that the life cycle of empirical data plays an important role in
determining DQ. This was also recognised in the work of [53] which proposes an infor-
mation quality framework where the dimensions of information quality are categorised
according to four levels and four phases. The four levels describe the relation of data to
the target community, the information product, information process and infrastructure.
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The four phases represent the information life cycle from a user’s point of view, namely
finding information, understanding and evaluating it, adapting it to the user’s context
and applying it in the correct manner. In case of empirical data, it is important to
determine what the appropriate phases of its life cycle are and what criteria are im-
portant in each of these phases to produce a measure of DQ. Based on these criteria, a
DQ framework could be designed to manage the quality of empirical data as part of a
scientific information system by storing the relevant metadata and using it to derive a
measure of the reliability of data values.

The use of metadata to evaluate DQ has been proposed by other researchers, for
example [121] and [162]. Specifically, Rothenberg argues that information producers
should perform verification, validation, and certification of their data and then provide
DQ metadata along with the datasets. Also, [131] presented a mediation framework
for the querying of data in molecular biology where data is selected from different data
sources based on DQ information stored as metadata. The authors based their approach
on the DQ framework of Wang and Strong [187], defining scores for each of the DQ
dimensions and normalising them to build a weighted sum. The DQ information for
the different sources is stored as metadata and the mediator performs a quality-driven
source selection when executing queries, returning only data of higher quality to users.

Caballero et al. [21], with their Data Quality Measurement Information Model (DQ-
MIM) approach, provide ideas on how to assess DQ by means of the reliability of the
data sources and on how different DQ dimension measures can be combined. They
further present a concept on how data, provided in an DQ XML file, can be validated
for different roles of stakeholders, such as ‘Information Supplier’, ‘Information Man-
ufacturer’, ‘Information Consumer’, and ‘Information Manager’ as identified by [184].
They base their work on the idea of storing data together with metadata, and on recom-
mendations, that measures about DQ should be stored with the data model, to allow
for reusing the measures in other measurement processes [139]. For each measurement
process, different values of metadata can be required by different roles. Both data and
its corresponding metadata are brought together for each role which is related to the
concept of tagging. Tagging data with quality indicators, which are objective charac-
teristics of the data and its manufacturing process, is proposed in [185] where the user
may assess the data’s quality for the intended application based on these indicators.
Caballero et al. [21] store the DQ metadata as a measurement plan for various stake-
holders in a DQMIM XML file which together with the data (DQ XML as mentioned
above) can be processed for appropriate measurement results. Although they provide a
concept, which is related to our contracts approach, their work is limited to processing
XML files and no tool (case study) has so far been implemented for automating the
measurement of appropriate data in an application.

The impact of DQ information (such as DQ metadata or tags) on decision making
processes and decision outcomes is described in recent work such as [124, 150] where it
is also indicated that providing DQ metadata along with the actual data is important
so that decision makers can gauge the appropriateness of the DQ level for the task at
hand [27]. Moges et al. [124] also provide an overview of the different DQ metadata
formats explored in the literature such as ‘Ordinal’, ‘Interval’, ‘Probability’, ‘Range’
and ‘Graphical’.

Research on tools and metrics to support DQ management in practice tends to be
limited to specific dimensions or domains. For example, specific metrics have been pro-
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posed for the DQ dimensions of timeliness [101, 80, 8] and accuracy [101, 80]. Pipino et
al. [144] on the other hand presented three general ways, so-called functional forms, of
deriving measures of DQ based on simple ratio, the minimum or maximum operation
and the weighted average. The simple ratio measures the ratio of current outcomes
to total outcomes. For instance, if a column of a table should contain at least one
occurrence of all 50 US states but it only contains 43 states, then we have population
incompleteness and a ratio of 43/50. Minimum or maximum can be used to aggregate
multiple DQ dimensions by simply selecting the minimum or maximum value, respect-
ively, from the normalised DQ values of the individual DQ dimensions. Alternatively,
one could use a weighted average to allow that certain dimensions are given more im-
portance than others in determining DQ. Further approaches for the measurement of
DQ are presented, for example, in [77, 21, 145].

In [145] the authors provide an overview of measurements including the different
classes of scales, such as nominal, ordinal, interval, and ratio. They state that a lack
of attention to the scale type can lead to improper interpretation and application of
measurement results, especially, if different dimensions are combined to develop an
overall index of DQ in an organisation. Thus, it is indispensable that DQ is precisely
defined and the correct scales are applied for the appropriate DQ dimensions. In their
work, they present exact definitions of several DQ dimensions (completeness, correct-
ness, system currency, storage time, and volatility) and show that these dimensions can
be measured using the ratio scale. Further, they propose DQ measures for each DQ di-
mension and generalise the results to any DQ dimension for which certain prerequisites
hold.

Due to a lack of common DQ measurement terminology, Caballero et al. [21] provide
an overview of DQ measurement terms found in the literature, focussing on the most
representative proposals [105, 109, 157, 132, 51]. Their DQMIM approach provides
a standardisation of the referred terms by following ISO/IEC 15939 [88] as a basis.
Further, they analyse DQ measurement terms by categorising them in several question
topics important for DQ assessment, such as why, what, where, who, whose, how,
how much, how many, and when. In the ‘When to measure?’ question, for example,
static and dynamic ways of performing a measurement as proposed by [109], can be
distinguished. Thus, different DQ snapshots (static measurements) could be taken at
different points of the data life cycle (dynamic measurement) for tracking the different
DQ values through the information system. In their work, they state that measurements
should have a clearly defined purpose and propose a measurement plan based on the
information needs.

Two different perspectives on the measurement of quality can be distinguished [78,
93, 174]: ‘Quality of Design’ and ‘Quality of Conformance’. As defined by Heinrich
et al. [77], ‘Quality of Design denotes the degree of correspondence between the users’
requirements and the specification of the information system (e.g. specified by means
of data schemata). In contrast, Quality of Conformance represents the degree of corres-
pondence between the specification and the existing realisation in information systems
(e.g. data schemata vs. set of stored customer data).’ Similar to our work, they focus
in their work on ‘Quality of Conformance’, where they analysed how DQ can be quan-
tified with respect to particular dimensions. As a basis for their analysis of metrics
in the literature and their design of new metrics for the dimensions of correctness and
timeliness, they state the following requirements for designing adequate metrics:
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R1 Normalisation: To assure that the values of the metrics are comparable, an ad-
equate normalisation is necessary.

R2 Inverval scale: Metrics are required to be interval scaled to support both the
monitoring of how DQ level changes over time and the economic evaluation of
metrics.

R3 Interpretability : DQ metrics have to be comprehensible to provide measurements
which are easy to interpret by business users.

R4 Aggregation: Metrics shall allow a flexible application where it must be possible
to quantify DQ on the level of attribute values, tuples, relations and the whole
database.

– Interpretation consistency : On each level the values must have consistent
semantic interpretation.

– Aggregation consistency : On a given level to the next higher level, metrics
must allow aggregation of values.

R5 Adaptivity : The metrics should be adaptable to the context of a particular ap-
plication.

R6 Feasibility : Metrics should be based on input parameters that are determinable
and the measurement procedure should be accomplished at a high level of auto-
mation.

In summary, there is still not a universal set of DQ dimensions valid for any context
nor an exhaustive set of measures for these dimensions [23]. Further, little has been
done on addressing the general requirements of DQ in scientific information systems
with a view to developing a tool to support DQ management in practice. As a first step,
it is important to gain an in-depth understanding of what DQ means to the various
stakeholders in a scientific information system. Further, it is necessary to investigate
not only how work practices can affect DQ, but also how a tool to manage DQ could
have a positive influence on work practices and support the planning of future work.

In [144], the authors raise the question ‘Is there a single aggregate DQ measure?’.
They argue that, in practice, companies would want to develop an index of DQ as a
single aggregate measure of their DQ. ‘A single-valued, aggregate DQ measure would
be subject to all the deficiencies associated with widely used indexes like the Dow Jones
Industrial Average and the Consumer Price Index.’ [144] With our approaches on DQ
metrics and measurements we also followed this goal of a single aggregate DQ measure
as an index of DQ.

Objective and subjective data quality assessment

Most DQ measures aim to solve specific problems and are therefore developed on an ad
hoc basis [82, 103]. But to provide a complete DQ assessment, both the objective meas-
urements based on the dataset itself, and the subjective perceptions of the individuals
involved with the data have to be taken into account [144].

The experiences and needs of the various stakeholders are reflect by subjective DQ
assessments [8, 184] where questionnaires can be used to measure the perceptions of
stakeholders concerning the various DQ dimensions. One example that has been used
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in practice is the Information Quality Assessment (IQA) instrument [105] or a subset of
the IQA, e.g. statements such as ‘The information is incomplete’, ‘The information is
believable’, and ‘The information is correct’ [143]. Objective DQ assessments are either
task-independent or task-dependent. Metrics for task-independent DQ assessments can
be applied to any dataset regardless of the context and task while metrics for task-
dependent DQ assessments, such as business rules, regulations, and constraints, cannot
be established without knowledge of the specific application contexts. Examples of such
objective DQ metrics are the three functional forms presented above [144].

Pipino et al. [144] and Lee et al. [105] describe principles that can help organisations
develop usable DQ metrics where they present subjective and objective DQ assessments
and an approach that combines both assessments and illustrate how it has been used
in practice. They argue that the following three steps, presented in [144], are needed
to use the subjective and objective metrics to improve organisational DQ:

1. ‘Performing subjective and objective DQ assessments’

2. ‘Comparing the results of the assessments, identifying discrepancies, and determ-
ining root causes of discrepancies’

3. ‘Determining and taking necessary actions for improvement’

They propose to compare the subjective and objective assessments of a specific DQ
dimension during the analysis. The outcome of the analysis is a categorisation into
one of the four combinations of objective and subjective DQ assessments: low/low,
low/high, high/low and high/high. The goal is to achieve a DQ state of the combination
high/high. For any other combination, the company must examine root causes and
perform corrective actions, which differ for each combination.

A variant of the approach above is to assess (1) subjective perceptions of informa-
tion quality, that is, the perceived quality of information along some specific quality
dimensions, and (2) objective quantitative measures of the same dimensions, where
measurable [143]. It is stated that ‘these subjective measures can provide comparisons
across stakeholders and, as a consequence, provide valuable information regarding the
disconnects among the different stakeholders with respect to specific data’.

One of the approaches for a DQMF presented in this work includes, besides object-
ive DQ assessment, two concepts for subjective DQ assessment which are established
in research, but are not extensively explored in the context of DQ: ‘Implicit user feed-
back’ and ‘explicit user feedback’. Implicit feedback is information collected from user
behaviour, such as click-trough data on the web. Typically, implicit feedback can be
gathered at much lower cost, but the interpretation of implicit feedback is much more
complex than the interpretation of explicit feedback [91]. Explicit feedback is informa-
tion that users provide deliberately, for example by filling in a feedback form.

In our work, we infer implicit feedback from user click-data which enables us to rate
the user’s interest in the diverse data instances. This feedback is used to determine the
importance of an instance or entity related to the other instances and entities contained
in the information system.

In e-commerce, explicit feedback has grown strongly, where the influence on po-
tential new customers based on online hotel reviews is the prime example [181]. We
investigate the usefulness of explicit feedback related to the assessment of DQ. Our aim
is to use user feedback on the quality of data to improve the analysis of quality issues
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and to enhance the DQ in an information system. Therefore, we provide an implement-
ation of a mechanism to collect explicit feedback during data input as well as to enable
the assessment of the received feedback for improving DQ.

2.7 Giving feedback on data quality

How can good quality of data in an information system be ensured? Most obviously, we
think first of restricting the input process so that data of poor quality cannot be entered
into the system. This can be done at the UI level, within application programs or at
the database level using constraints. Alongside data input validation, there exists the
possibility of analysing the quality of the data already stored in the database. Users (or
power users) can then be informed about any problems and take actions to deal with
them. Such an analysis is related to DQ assurance or data cleaning which is concerned
with the correction and improvement of data in databases as described in [66].

For both types of validation, referred to as DQIF and DQAF, respectively, it is
necessary to give feedback to the user to enable the user to correct the data. We will
look at the requirements of each of these in turn before going on to discuss what has
been done so far on DQ in the domain of food sciences.

Data Quality Input Feedback There exist many possibilities for UI data input val-
idation feedback. We give an overview of the most common techniques and distinguish
three aspects of the feedback, namely (1) where, (2) how and (3) when.

1. In a UI, usually there exists an input area and many input components such as
form fields. Feedback can be given close to the input data (e.g. above or to the
right of a field or as a tool tip) or outside of the input area (above or below).

2. How to give feedback also depends on where the feedback is given. Textual feed-
back or feedback with symbols (e.g. a stop sign) can be given anywhere. The
feedback can be supported by colouring the various components such as messages,
field labels or the field itself. Usually green, yellow and red are used to show the
different states from valid to invalid data. When colouring a field, there exist
variations such as a glow effect or change to the line or background colour.

3. Validation and feedback can take place either when a single data item is entered
or after all data in an input area has been entered. A validation time could, for
example, be defined as when the focus changes from one field to another or when
pressing a specific button. It is also possible to check the input as the user is
entering it in the case of an input text field.

If the data submitted by the user is valid, it is good practice to let the user know
that everything went as planned. If it is invalid, the user should be informed (1) that an
error has occurred, (2) where the error occurred and (3) how the error can be repaired.
Thus, feedback not only involves highlighting where an error occurred but also providing
information about what is missing or needs to be changed in order for the data to be
valid or of higher quality.

Figure 2.4a shows an example of validation feedback outside of the input area sup-
ported by a warning symbol and a surrounding red line for the message area. Fig. 2.4b
and Fig. 2.5 show examples of feedback next to the input data, in both cases with
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(a) Amazon (b) Gmail

Figure 2.4: Various feedback variants

examples of correct input. In Fig. 2.4b, the fields are also highlighted with a red line
colour, whereas in Fig. 2.5 a small bar shows the quality of the password field as the
data is entered.

Figure 2.5: Twitter

Researchers have proposed a number
of ways of making it easier for developers
to specify validation conditions as well as
feedback to be given. PowerForms [19] is
a proposal for a declarative and domain-
specific language for client-side form field

validation. While editing a form field, the data is checked against the specified regular
expression and small traffic lights show the validation status in three phases. On sub-
mit, validation violations are displayed within a JavaScript alert box. [17] state that
to facilitate the ease of use of UIs, users should be guided in ways such as highlight-
ing and describing invalid input, and showing/hiding or enabling/disabling particular
UI widgets. They present a formal model and prototype (Cepheus) for enabling the
specification of user input evaluation rules and interface responses by domain experts.
[70] present a sublanguage of WebDSL to handle data validation rules. Error messages
are either shown directly at the input field if the input is not well-formed or causes
a violation of a data invariant, or, at the form element that triggered the execution
process (e.g. a submit button) if a data invariant was violated during execution.

Data Quality Analysis Feedback In contrast to DQIF, the user gets feedback about
multiple or all entities in a database at the same time in DQAF. Therefore, the feedback
should include ways of identifying datasets where a correction might be required. Many
different visualisations based for example on charts and tables can be used to give
the appropriate feedback. It is also important to provide a means of navigating from
overviews to individual data entities and their associated violations in order to identify
problems.

Data cleaning tasks such as the removal of duplicate records, data standardisation
and data profiling are described in [66]. The authors provide a guide offering practical
advice on options available for building or choosing a data cleaning solution. Such
solutions also include the automated correction of invalid data once the defects have
been determined. The prime example used in data cleaning is the domain of address
data where tools such as SQL Power DQguru43, OpenRefine44 and Wrangler [95] have
been developed.

43http://www.sqlpower.ca/page/dqguru
44http://openrefine.org

http://www.sqlpower.ca/page/dqguru
http://openrefine.org
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Methods for error detection that go beyond integrity analysis are reviewed and
presented in [115]. The applicable methods include: statistical outlier detection, pattern
matching, clustering and data mining techniques.

Studies on data feedback already exist in domains other than food science. For
example, the study of [20] in the healthcare domain illustrates the diversity of hospital-
based efforts for data feedback and highlights successful strategies and common pitfalls
in designing and implementing data feedback to support performance improvement.
They came up with seven key themes such as ‘The source and timeliness of data are
critical to perceived validity’.

The initial DQ evaluation procedures developed by the US Department of Agricul-
ture (USDA)45 were manual processes to assess the quality of analytical data for iron,
selenium and carotenoids in foods. In the course of a redesign of the software system
used at the USDA, these procedures were taken a step further and a generic system
was developed [81]. The five original evaluation categories ‘Sampling Plan’, ‘Number
of Samples’, ‘Sample Handling’, ‘Analytical Method’ and ‘Analytical Quality Control’
were maintained, but the quality assessment questions were made more objective. Ac-
cording to the answers to these questions, a single numeric Quality Index (QIX) is
assigned to a nutritional component. At aggregation, a Confidence Code (ConfC) is
assigned to the combined value, which is calculated as the weighted mean of the indi-
vidual values from the different sources of data. The ConfC is derived from the QIXs
by summing up the adjusted ratings of the individual values.

The European Food Information Resource (EuroFIR)46 developed a QIX [166] sim-
ilar to that of USDA. In fact, they adopted the five categories from the USDA QIX and
additionally added ‘Food Description’ and ‘Component Identification’. For all of the
seven categories, a set of questions is defined. There are 34 questions in total, which,
all except one, can be answered with ‘Yes’, ‘No’ or ‘Not Applicable’.

Although several conceptual frameworks for DQ have been proposed, there is still a
lack of general tools and metrics to measure and control the quality of data in practice.
As a first step in this direction, Presser [147, 146] carried out a detailed study of
DQ requirements for the FoodCASE information system to manage food composition
data. As users, system designers and developers as well as food compilers and project
managers were included. In addition to determining which dimensions of DQ specified
in existing conceptual frameworks users consider important in assessing the reliability
of data, the users were also asked to assess the importance of various criteria related
specifically to empirical data.

Based on the results of this analysis, Presser [146] integrated enhanced functionality
for defining, validating, measuring and visualising DQ into a first version of FoodCASE.
Based on constraint definitions, this version of FoodCASE already provided measure-
ments, calculations and visualisation components for visualising DQ and helped users
monitor constraints and DQ. The concept and implementation includes the validation
and feedback for both DQIF and DQAF.

In addition to performing constraint checking during transaction execution as sup-
ported in traditional databases, in this former version of FoodCASE it is also possible
to trigger DQ analysis which will use constraints to measure the quality of data. Its

45https://www.usda.gov/wps/portal/usda/usdahome
46http://www.eurofir.org/

https://www.usda.gov/wps/portal/usda/usdahome
http://www.eurofir.org/


52 Chapter 2. Background

integrated DQ framework is general and application developers can define their own
DQ measurements and configure customised DQ feedback. Presser [146] identified 156
DQ requirements specific to the food science domain which are validated in FoodCASE
and to which the end user gets DQ feedback.

2.8 Data quality and constraints in mobile applications

As a result of rapid developments in portable computing technologies and wireless
communication, mobile development is gaining in importance [45]. Nonetheless, only
little research exists which investigates issues in mobile applications related to DQ.
Thus, there is the need for concepts concerning DQ especially for mobile solutions.
Mobile applications have small screens, reduced performance capacities, limited battery
life and they are always with a user. These features characterise mobile applications
which can open a new perspective for investigations.

Data quality In [47], a novel framework is presented for providing Quality of Infor-
mation evaluation in the context of image applications in constrained networks. The
approach proposes the mapping of data attributes related to DQ dimensions, such as
timeliness, accuracy and precision, to a measure of quality of information. The data,
that is, an image, is separated from information which is contained in this data, for
example, the number of people on the image. The approach suggests that the ability
to extract useful and meaningful information from data implies high DQ.

For DQ research, one of the most popular application domains is medicine and
medical records. The importance of medicine and human’s health demand for very
high quality of the data. The DQ of paper care data against mobile care data for
medical records is compared by De La Harpe [32] from a semiotic point of view. Several
parameters, which are important for medical DQ, were evaluated and De La Harpe
concludes that mobile health solutions are promising to result in better quality care
data. However, the human involvement as well as all features of DQ must be considered.

In desktop and mobile applications it is in equal measure important to track DQ
and inform users about potential DQ improvements. However, since mobile applica-
tions possess special characteristics, as mentioned above, different ways of examining
a DQMF are needed. Possibilities for participatory sensing using mobile devices were
investigated in [155]. The authors developed a framework for work evaluation which
does not correspond entirely to the traditional DQ attributes. The framework provides
interesting features for giving feedback to users: Prompts, adaptive interfaces, posit-
ive reinforcement and social validation. Besides using the characteristics of the mobile
devices for these features, also the social behaviour of mobile users was exploited. The
aim was to encourage users to be more active and interact with other people.

In [188] the quality of spatial data in Geographic Information System (GIS) ap-
plications is discussed. DQ plays a very important role in these applications since the
accuracy of the presented information and the user experience fully depend on the DQ.
Thus, it is inevitable for GIS applications to support elaborate data checks to guar-
antee a constant high DQ. The work provides visualisations for DQ assessment in an
application with the aim to support users to understand the acquired DQ in an easy
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and convenient manner. These visualisations should also be understandable for persons
who are not specialised in GIS applications.

Constraints In [46] a framework is proposed which caches relevant data items that
are needed during integrity constraint checking in mobile databases. Choi et al. [29]
propose a synchronisation algorithm between a server-side database and a mobile da-
tabase which is based on message digest. Based on the work of [201], which focuses on
constraint checking in OODBMSs, an extended approach is presented in [202] which
is designed to enforce and maintain integrity constraints also in mobile databases. In
addition to their adapted assertion constraint model they specify an Object Assertion
Language for Integrity Constraints (OALIC) that is proposed to handle classes and their
attributes and constraints. The OALIC grammar facilitates the usage of their model
and is designed to simplify constraints to any object data model. In their work, con-
straints are translated into rules and relationships, regardless of whether the constraints
are derived from composition or inheritance hierarchies.

2.9 Conclusions

In this chapter, we have presented an overview to DQ and different types of DQMFs.
We provided a summary of constraints with related general concepts and explained
the issues concerning unified constraint management as well as associating constraints
with DQ. Moreover, after having given an overview of feedback on DQ, we specifically
explained DQ and constraints in the context of mobile applications.

Most existing work concerning DQ and constraint management has focused on either
just theoretical studies or more practical ones covering only one requirement, such as
the constraint representation or the constraint applications/usage.

We have shown that only very few existing work focuses on expressing DQ by means
of constraints. Although several conceptual frameworks for DQ have been proposed,
there is still a lack of general tools and metrics to measure and control the quality of
data in practice. None of the existing work presents a general framework that could be
used to analyse and provide feedback on DQ for any information system.

Moreover, we have shown that there is a need for DQMFs which manage constraints
in a unified way in information systems that are implemented in a distributed manner.
Such DQMFs must provide measures and concepts to indicate DQ based on constraint
compliance although it is not obvious how DQ can be measured and quantified for indi-
vidual information systems. Further, it is advisable to include measures and concepts
that combine objective DQ assessment, such as constraint compliance, with subjective
DQ assessment since it can be used to better understand quality issues and to improve
DQ.

To the best of our knowledge, there is no DQMF that provides a unified way of
defining and validating DQ requirements by means of constraint compliance and sub-
jective DQ assessment combined with extended constraint checking, DQIF and DQAF
as presented in this work.





3
Initial approaches

In this chapter the concepts, implementation and evaluation of the initial approaches
for DQMFs are presented. With the initial approaches we investigated the different
requirements and goals presented in Chap. 1 by exploring alternative solutions to ful-
filling them. The specific aim of these approaches was to explore various ways of (1)
defining and checking simple and complex constraints, (2) measures of constraint com-
pliance, (3) bringing constraint compliance in relation to DQ, and (4) giving DQIF
and DQAF. In the beginning we focussed on unified constraint management as well as
constraint-based DQ measurement and feedback with the objective to build a know-
ledge base for the final decision on an appropriate approach. All initial approaches,
except for the one presented in Sect. 3.1 (Guidance on data quality feedback), already
satisfy unified constraint management in different ways and base objective DQ assess-
ment on constraint compliance. After having explored the various initial approaches,
we recognised that there was not a decision to take for one single combined approach
but for a variation of approaches for different problems and complexities. Thus, as we
will see in the subsequent chapters, these initial approaches build the knowledge and
decision basis for our final approaches, which consolidate and extend concepts from the
initial approaches to fulfil all our proposed requirements of a DQMF for various initial
software development scenarios.

We first give an overview of all initial approaches before explaining each approach in
detail in the subsequent sections. For all approaches, we summarise their main features
and distinguish between DQMFs which follow either an integrated approach and as such
are dependent on the specific implementation, or a separated approach which facilitates
applying it to any information system. In Tab. 3.1 all initial approaches are listed
with their approach name (Approach), a brief description of the main topic (Topic),
their main features (Features), their categorisation of dependency (Dep.) where ‘Int.’
indicates an integrated approach and ‘Sep.’ a separated approach, and a reference to
the section (Sect.) where the approach is described in detail.

In Sect. 3.1, Guidance on data quality feedback, we provide general guidance
on giving feedback on DQ in an information system based on the concepts and imple-
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Approach Topic Features Dep. Sect.

Guidance on
data quality
feedback

Feedback on DQ DQIF and DQAF; DQ re-
quirements as Hard Constraints
(HCs) and Soft Constraints
(SCs); initial measures; first ver-
sion of the FoodCASE DQMFs

Int. 3.1

Object database
data quality
management

ODB constraints
extension

unified constraint management
in a separated repository defined
in own definition language; ECA
based; HCs/SCs; extensible for
new constraint types

Sep. 3.2

Data quality
extended Bean
Validation

Several exten-
sions for BV

unified constraint management
based on BV; new extended
HCs/SCs; new measures; sup-
port of runtime configuration;
complex constraints (cardinal-
ity, temporal); time-triggered
validation

Int. 3.3

Bean Validation
OCL extension

OCL extension
for BV

unified constraint manage-
ment based on BV; extended
HCs/SCs; definition of con-
straints with OCL for BV;
limited runtime constraint
definition

Int. 3.4

Data quality
monitoring
framework

Independent DQ
monitoring

DQ monitoring; new fine
grained severity scale; general
DQIs; new measures; limited
constraint inheritance; associ-
ation of individual constraints
with DQ dimensions; new
DQAF

Sep. 3.5

Table 3.1: Overview of the initial approaches

mentation of the first integrated DQMF in FoodCASE developed by Presser [146]. The
framework introduced in this approach allows users to configure both the DQ metrics
and how these metrics are visualised, already including initial measures for DQ require-
ments as HCs and SCs, and initial proposals for DQIF and DQAF. Note however, that
this approach was not concerned about unified constraint management, extended con-
straint checking and extended DQIs. We evaluated both the DQMF and how feedback
on DQ is presented to the users with experts in the food sciences and present their
feedback as a foundation for the approaches developed in this thesis.

In Sect. 3.2, Object database data quality management, we propose an ap-
proach to enhance object databases with constraint functionality in a unified way where
we used a component external to the database, for a centralised management of integrity
constraints. This approach complements object databases with support for constraint
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definition, management and validation. We introduce a framework where DQ controls
are specified by means of constraints which are defined and managed within the frame-
work and checked against the database based on an ECA paradigm. This approach
provides flexible and customisable constraint checking, where constraints can either be
used to ensure DQ in a strict and traditional way with constraint violations resulting in
exceptions, or in a relaxed way where constraint violation will generate user warnings
and indicate possible deficiencies in DQ.

In Sect. 3.3, Data quality extended Bean Validation, we present a DQMF that
uses a single constraint model to avoid inconsistencies and redundancy within the con-
straint specification and validation processes. Further, we discuss how classic constraint
models need to be extended to support the various forms of data validation required
for the management of DQ and show how this has been realised in the context of the
Java programming language environment by building on BV. Specifically, we describe
how we have extended BV to support runtime configuration of cardinality constraints
over associations as well as temporal constraints together with a time-triggered valida-
tion component for the scheduling of validation jobs. We also introduce a new concept
of SCs in the context of BV to support more flexible forms of DQ management that,
instead of prohibiting values which violate constraints, marks them as being of low qual-
ity. In contrast to the former introduced SCs, the new concept includes a distinction
of different groups and constraint violation severities for SCs.

Further, we propose in Sect. 3.4, Bean Validation OCL extension, another ap-
proach that enables Java developers to ensure that certain integrity guarantees of an
information system can be met through a single, extended constraint model. This ap-
proach also rests on the new concept of SCs, introduced in Sect. 3.3, as a basis for
measuring DQ alongside the traditional HCs that prohibit invalid data. We describe
how the approach can be realised by extending BV to support the definition of con-
straints with OCL. Further, we show how it is possible to dynamically update constraint
definitions during application runtime to support more flexible and powerful ways of
managing DQ requirements.

In Sect. 3.5, Data quality monitoring framework, we explain how we have
extended classic constraint models to provide a general, independent DQ monitoring
framework for analysing and giving feedback on DQ in information systems. The basic
idea was to extend the concept of constraints to a concept of general DQIs by associating
individual constraints with DQ dimensions and assigning violation penalties to them.
With these violation penalties, we provide a customisable, fine grained distinction of
different severities associated with DQ in the case that constraints are violated. We
also used this concept of fine grained severities for our final approaches, which can be
seen as an enhancement of the concept of HCs and SCs. In this approach, our model
has been realised as a complete DQMF together with a data analysis tool that allows
users to inspect different dimensions of DQ for single and multiple object instances,
single and multiple object classes and the overall DQ independent of the application
and data model. We further propose a means of measuring and calculating DQ for the
various levels of DQ feedback taking constraint inheritance into account. We present
our DQ analysis tool which provides different types of textual and visual feedback and
report on an initial user study.
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3.1 Guidance on data quality feedback

So far we have shown that DQ is of major importance to information systems and may
vary over time, especially also in the management and processing of scientific data. In
previous work [147], we introduced a DQ requirements framework and have shown the
importance of the different DQ dimensions for various user groups in the food science
domain. With the concepts presented in this section, we address the issue of how to
give feedback on DQ to users of an application.

We examine here how and when users should be given feedback about DQ based on
a concept for validation which distinguishes several levels of DQ and metrics for DQ
which were introduced by Presser [146]. Presser’s approach was implemented as a DQ
toolkit for measuring and visualising DQ integrated into FoodCASE. The toolkit offers
a variety of charts and tables that can be used to provide users with feedback on DQ
and help them identify areas where action might be required. It also provides tools to
drill down on the DQ issues and identify individual problems.

To evaluate the approach concerning the proposed means of providing feedback on
DQ, such as DQIF and DQAF, we carried out a survey involving several food science
data experts across Europe.

The work presented in the remainder of this section was previously published in [192].
Therefore, we present here only the main features of the DQ toolkit along with a sum-
mary of the results of our survey. We focus on the most interesting insights and con-
clusions concerning how DQ requirements should be defined, who should define them
and how feedback should be given to users. For the interested reader, we refer to [192].

3.1.1 Approach

The DQ analysis toolkit is based on the concept of a RODQ model developed by [146].
A RODQ model is a conceptual model that describes the DQ requirements of an infor-
mation system independently of its implementation, as described in Chap. 2 on page 19.
In this respect, it complements other established modelling languages such as ERM and
UML. Furthermore, the RODQ model describes how to assess the DQ.

The central element of an RODQ model is the DQ requirements where [146] distin-
guishes three types of DQ requirements:

• A HC is a DQ requirement which absolutely must be fulfilled. If an HC is violated,
the data is invalid and cannot be used. Therefore, the system should enforce
checking HCs and not allow input data to be stored unless all HCs are satisfied.

• A SC is a DQ requirement which is highly recommended to be fulfilled. If a SC is
not satisfied, DQ decreases. However, it might not always be possible to adhere
to all SCs. Hence, the system cannot enforce checking them.

• An indicator is a property that can be used to estimate DQ, rather than a con-
straint that can be clearly satisfied or not. A typical example is the age of the
data. If the data is old, it is likely to be outdated, but it is still possible that it
is correct.

As already introduced, we distinguish between two types of validation and DQ
feedback for the user, namely DQIF and DQAF. Both make use of the DQ requirements
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defined in the information system. DQIF is only concerned with the DQ requirements
of the input data entity which can include relations to other entities whereas DQAF
analyses all DQ requirements in the information system. For each type, we will present
an example from the FoodCASE system and describe briefly how feedback is given to
the user. For the sake of briefness, we will only give an overview of the main features
here. A detailed description of the toolkit can be found in [122].

Figure 3.1: Data quality input feedback

Fig. 3.1 shows
an example of the
DQIF for a food
entity. On every
screen where data
can be edited, there
exists a DQ evalu-
ation panel at the
bottom. This panel
lists all problems
of the current data
record. Problems
are divided into two
categories: errors
and warnings. Er-
rors correspond to
the violation of HCs
and are displayed
on the panel in red:
If any are present,
the data cannot be
saved. Warnings
corresponding to the
violation of SCs and
presence of low qual-
ity indicators are
displayed on the
panel in orange. No
additional
background colour

change is triggered for warnings.
The example shows a food entity with the violation of one HC and two SCs. The

appropriate DQ requirements are: (1) Attribute ‘English name’ is mandatory and can-
not be empty (HC); (2) The attribute ‘Retention factor classification’ is not mandatory
but recommended. It is possible to leave it empty but consequently all retention factors
are assumed to have the value one (SC); (3) The attribute ‘Density’ (not visible in the
screenshot since it is on a subtab of the input area) is not mandatory but can be re-
quired if the food is used for a recipe calculation (SC). On the upper right of the DQ
evaluation panel, a shortcut button provides quick access to the data record in the DQ
analysis toolkit.

Concerning the where, how and when of giving feedback introduced in Sect. 2.7, it
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was decided to give all textual feedback in a single location below the input area with
the colouring indicating the severity of the problems. Only the evaluation panel is used
for textual feedback since the error and warning messages are often rather long and it
would be difficult to show an abbreviation close to the appropriate field with such a
high density of information and UI components as in FoodCASE. It is also indicated
where HCs have been violated by changing the background colour of appropriate fields.
This is only done for HCs to keep the colouring within the input area to a minimum.
The validation is triggered when the focus is moved from a field and consequently
feedback is given immediately on data input for single components in the input area.
The input is not checked as the user is entering data in order to reduce the client
server communication for performance reasons. The DQ evaluation panel also shows
hints for how problems can be repaired if this information has been provided with the
appropriate DQ requirement.

For the DQAF, the DQ analysis toolkit first runs a DQ assessment where all relevant
data is fetched from the database, all DQ requirements checked, the presentation of the
DQ prepared and the results stored in the database for later analysis. Thus, it can
be considered as a snapshot of the current DQ in the system. A DQ assessment can
be triggered manually by the system administrator or automatically by a timer. Upon
completion, a variety of different charts and tables support the user in judging where
action is needed.

In the toolkit, every DQ requirement is assigned a type (HC/SC/indicator) which
determines how the associated DQ measures will be rendered. The type of the DQ
requirement will also be taken into account by the users when specifying the weights
(importance) of the DQ requirements. The DQ analysis toolkit provides a total of
eleven different views which can be divided into two categories: (1) DQ views provide
an overview of the DQ by visualising the DQ of either a selected tree node and its
direct children or the entire DQ tree; (2) Problem views on the other hand provide the
possibility to drill down on the DQ issues and identify individual problems.

The toolkit provides flexible means of allowing users to configure their own analysis
tree definitions and analysis runs. It is beyond the scope of this section to describe
this in detail, but we show an example of one of the many possible visualisations in
Fig. 3.2 where the feedback is shown as a tree. For a food entity, there exists a DQ
requirement specifying that a value for the attribute energy should be provided since
various calculations depend on it. This is defined as a SC since it is not something that
the system can enforce to be checked at all points in time. The example shows a custom
tree view for aggregated food entities to analyse mandatory components in detail. The
DQ tree view shows the entire DQ tree with each node labelled with the mean DQ.
Nodes (and edges) can be selected by clicking on them. A table will appear which shows
the statistical properties of the selected node. To switch to another view, the buttons at
the top or the context menu can be used. The lowest level can be collapsed/uncollapsed
using the context menu or keyboard shortcuts. All nodes are rendered as progress bars
indicating the DQ of the criteria they represent. The DQ requirement ‘For every food
energy must be provided’ is displayed as a subnode of ‘Mandatory Components’ and
‘Aggregated Food Data’. By default, all the DQ values in the DQ analysis toolkit are
displayed as percentages. In this example, it can be seen that only 99.6% of the data
fulfil this DQ requirement.
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Figure 3.2: Tree visualisation of data quality analysis feedback

From this over-
view, it is pos-
sible to drill down
on the DQ issues
and identify indi-
vidual problems in
the data. The user
can switch to the
problem table view
which is depicted
in Fig. 3.3. It
shows that four ag-
gregated foods have
been identified where
the component en-
ergy is missing. By
double-clicking on
a row, the data
record is opened
in the appropriate

FoodCASE entity editor screen and the problem can be fixed. It was chosen to visual-
ise the DQAF with the most common charts such as Box Plot, Histogram, Bar Chart,
Line Chart, Spider Chart, Pie Chart, Table and Tree Table since with this choice of
visualisations it is possible to analyse the various facets of DQ very well and these types
are already familiar to users. The Tree serves as main DQ view since it gives the best
overview and navigation options.

Figure 3.3: Problem table view

According to [146],
a DQ requirement
is always associated
with a DQ object,
where a DQ ob-
ject corresponds to
a real world ob-
ject on which the
DQ check should be
performed. In the
DQ analysis toolkit,
the DQ objects are
the database entit-
ies corresponding to
the business con-
cepts of food sci-
ence data. In the

following, we will refer to these entities as the DQ entities. Each DQ requirement
has to map every data record in the DQ entity to a DQ value between 0.0 (worst)
and 1.0 (best). If a DQ requirement is not applicable to a certain data record, null
may be returned. For example, if a database table contains data about customers, a
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DQ requirement could be defined as ‘For every person, last name and first name must
be provided’. Now if there is a customer for whom only the last name but not the
first name is known, the DQ requirement is only partially fulfilled. So the DQ could
be defined to be 0.7 (70%) because usually the last name is more important than the
first name. If a customer is not a person but a company, the DQ requirement is not
applicable, so null should be returned.

Once all DQ requirements are gathered, similar DQ requirements can be grouped
together. This process can be repeated recursively ending up with a DQ tree. The
root node will then be a single number representing the overall DQ. Since the grouping
of the DQ requirements may be a matter of individual taste, it is possible to define
different DQ analysis trees using the same DQ requirements. Similarly, the importance
of the DQ requirement may be controversial. Because of this, the weight of each DQ
requirement can be specified in each tree definition independently.

3.1.2 Evaluation

To evaluate how the DQ feedback of our information system is perceived by users and
how it can be improved, we presented our information system FoodCASE with the
integrated DQ analysis toolkit to food science experts and subsequently conducted a
survey.

As part of an annual general assembly meeting of the European project TDS-
Exposure, we organised a workshop with several food science data experts from different
countries in Europe. The participants had a variety of roles including food compiler,
head of unit, project coordinator, exposure assessment researcher, food database man-
ager, research assistant, scientific manager/assistant, post doctoral researcher and PhD
student. We used half a day to present the information system with the different pos-
sibilities for managing scientific food data explained by using screenshots of the various
GUIs and showing how to enter data for various use cases. After the presentation of the
information system and a subsequent extensive discussion in the plenum, we provided
a questionnaire which the participants had to fill out. A total of 16 participants com-
pleted the questionnaire, which, although a relatively small number, included food
science experts from most of the partners involved in the TDS-Exposure project.

The questionnaire included 49 questions on various topics such as ‘DQ in general’,
‘Who should be able to define DQ requirements’, ‘How should DQ requirements be
defined’, ‘How should DQ feedback be given to users’, ‘Distinction between HCs and
SCs’ and ‘Personal information and user skills’.

Based on the survey results, we present here only a short list of the most important
key findings for DQ feedback in the domain of food science data. For the interested
reader, we refer to [192].

1. An information system should clearly offer the functionality to analyse and im-
prove DQ

2. Access to data should be controlled and restricted. At the same time, providing
users with the possibility to recall the change history of data is clearly important
where changes should be traceable to users.
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3. It should be possible for the institution using the software to define DQ require-
ments, but this should be done by a non-IT person and limited to ‘power users’

4. DQ requirements should be managed in one place and in a unified way

5. It should be possible to rate the relevancy of each DQ requirement because not
all requirements have the same importance

6. It is clearly not preferable to provide the possibility to deactivate all DQ require-
ments

7. A summary such as ‘5 of 9 DQ requirements are satisfied’ would motivate users
to increase DQ

8. A panel at the bottom of a GUI is a good solution for the DQ feedback but, for
a lot of users, it would be preferable if DQ feedback was displayed close to the
corresponding field(s)

9. An accentuation such as highlighting or colouring the corresponding field(s) and
the usage of colours to indicate different types of DQ requirements is considered
helpful

10. The distinction between HCs and SCs is useful and both types should exist

11. The number of HCs should be as small as possible with most users preferring to
have more SCs than HCs

3.1.3 Conclusions

Presser [146] has designed and implemented a general DQ analysis toolkit which allows
DQ in information systems to be measured and visualised in a customised way. To
evaluate the toolkit, it was integrated into the FoodCASE system for managing food
composition data and solicited feedback from experts in the domain.

The toolkit allows users in a particular domain to define their own DQ requirement
and configure the metrics for measuring DQ as well as how results of DQ analysis are
visualised. In the case of the food science domain, this means that the system is not
limited to the quality measures as defined by the USDA and EuroFIR and can easily
be extended to meet the requirements of a particular institution or group of users. For
example, Presser has identified and defined 156 DQ requirements for the food science
domain in total which the toolkit is able to validate and for which DQ feedback can
be provided. Furthermore, it is possible to define whether the current DQ should be
analysed or a historical snapshot is used. Once it is recognised that there are problems
in a certain area of the data, the toolkit allows the user to quantify the extent of the
problem and drill down on them.

Based on feedback from experts in the food sciences, we presented a list of key
findings indicating the needs for users to get DQ feedback. Based on these findings, we
conclude with a summary of the features that the toolkit already supports followed by
proposals for future extensions and enhancements which we took into account for our
further approaches described in the subsequent sections.
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The information system FoodCASE already provided the following: (1) The func-
tionality to analyse and improve DQ; (2) The access to data is controlled and restricted;
(3) It is possible to recall the change history and each change of data is traceable to a
given user; (4) DQ requirements can be defined by certain power users; (5) It is possible
to rate the relevancy of each DQ requirement by defining custom DQ feedback trees
with custom weights of certain DQ requirements; (6) The definition of DQ requirements
as HCs, SCs or indicators is possible and the user is free to decide how to categorise
individual DQ requirements; (7) Feedback distinction between different types of DQ
requirements is visualised in a DQ evaluation panel at the bottom of each screen.

Based on the evaluation outcome, we planned to: (1) Define and manage the DQ
requirements in one place in a unified way, by changing the DQ requirement definitions
to annotations in the entities and performing the validation by the means of BV; (2)
Provide a DQ summary in each screen such as ‘5 of 9 DQ requirements are satisfied’
in order to motivate users to increase DQ; (3) Keep the evaluation panel for detailed
feedback but add short DQ feedback close to the appropriate fields, if need be by an
additional accompanied symbol such as a light bulb with attached tooltip.

Additionally we planned to: (1) Make the distinction between HCs, SCs and in-
dicators transparent and only distinguish between different actions that are triggered
by violations; (2) Render the validation and measurement of DQ with different metrics
dependent on profiles for diverse applications; (3) Provide the possibility to let the DQ
metrics undergo a DQ evolution since DQ evaluation can change over time. (4) Conduct
a user study and survey for the adapted information system within the TDS-Exposure
project; (4) Gather more detailed feedback about the DQAF for further improvement.

3.2 Object database data quality management

In this section, we present a constraint-based approach to DQ that extends and comple-
ments object databases with support for constraint-based DQ management. With this
approach, information systems are designed by means of a semantically rich data model,
from which constraints are extracted and imported into our separated constraints frame-
work. Users are free to configure additional constraint definitions to those extracted.
The constraints are managed within the framework and validated against the database
using an ECA paradigm.

While constraint violations are typically prevented by an action that, for example,
aborts a transaction or throws an error message, in this approach, such actions may be
configured to perform arbitrary functionality. For instance, there may be cases where
constraint violations should be handled in a more relaxed way such as simply informing
the user of possible DQ deficiencies.

This approach avoids the distribution of constraint definitions, such as basic checks
for type safety of an input field in a GUI or complex business rules, across the informa-
tion system and that DQ checks are performed in different parts of the system. Thus, by
using this approach, software engineers are no longer forced to implement DQ controls
in the application code which facilitates keeping an overview of all DQ controls and
managing them efficiently. Consequently, it can be avoided that identical constraints
are defined and checked multiple times in different layers of an information system, or
even in different client applications, which results in reduced maintenance effort and
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increased performance.
We implemented the approach in a framework that is extensible and provides de-

velopers the freedom to define new custom constraint types. Moreover, the fact that
constraints are managed in a separate component, independent of the application code,
allows for the reuse of constraint definitions across applications. This further reduces
redundancies and increases development efficiency.

The work presented in the remainder of this section was previously published in [191].
Therefore, we present here only the main features of the approach and framework along
with a discussion and summary. For the interested reader, we refer to [191].

3.2.1 Approach

It is a complex undertaking to ensure DQ in large applications. Our approach, presented
in this subsection, supports a software developer in defining, checking and maintaining
constraints in information systems in order to enhance and control the DQ. The goal of
this approach is to provide the uniform handling of different constraint types. Therefore,
we separate the constraint definitions and data validations of a given application domain
from its database, business logic and graphical user interface and propose a framework
that manages and validates constraints in a clearly represented and well organised
manner. Our focus lies on managing constraints for semantically rich data models in
order to complement object databases with an extended DQ management facility. This
approach distinguishes two types of constraints, based on the constraint types described
in the antecedent section Guidance on data quality feedback, in Sect. 3.1.1: HCs and
SCs. HCs such as integrity constraints are necessary conditions that data has to fulfil
to be valid. If a HC is violated, DQ is deficient. For example, a HC could specify that
an attribute value for email address has to contain an @ in order to be valid. To offer
more flexibility, SCs are constraints that are validated in a more relaxed way compared
to HCs. They could also be seen as recommendations since they are not just valid or
invalid, but rather increase or decrease DQ. For example, an attribute description could
be recommended to be longer than 30 characters to increase DQ. Another example is
the age of data, which could indicate that data is outdated. Violations of SCs do not
lead to errors, but the user is instead informed of possible DQ deficiencies. For the
sake of simplicity, we only distinguished here between HCs and SCs by including the
indicators, described in Sect. 3.1.1, in the category of SCs.

As shown in the top part of Fig. 3.4, the design of an application is divided into
the design of the structural data model and DQ controls represented by means of
constraints. In this approach, DQ controls consist of inherent HCs that are extracted
from the application model into constraint definitions and additional explicit constraints
may be defined by the developer. Such explicit constraints can either be HCs or SCs. As
shown in Fig. 3.4 on the right side, these constraint definitions are taken as input to the
constraints framework which manages and validates the defined constraints while the
applications are running. As indicated in Fig. 3.4, this approach allows the definition
of constraints for various applications that access the same database and it is possible
to reuse constraint definitions from one application in another. For example, a course
management application running on top of a university database could reuse constraints
defined in a study management application running on top of the same database. The
constraints framework interacts with the database based on an ECA paradigm, where
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constraint checks are triggered by database events. In the case of a violation of a HC,
the framework triggers an exception in the application, while a warning is thrown in
the case of a SC violation.

3.2.2 Constraints framework

In this subsection, we present the constraints framework which realises this approach
and is used to define, validate and manage constraints.

The constraints for an application are defined with a constraint definition language
that is based on the DDL proposed in [197]. Our approach supports the definition
of simple constraints such as consistency constraints for single attributes, but it is
also possible to define constraints that involve more than one object. We distinguish
the definition of HCs and SCs with the appropriate key words hardconstraint and
softconstraint.

The constraint definitions can have different structures depending on the constraint
type but are always of the form of

type name details [events] validator {’message’};

The type defines if the constraint is validated as a HC or SC. Each constraint has
a name which identifies the kind of constraint and details which provide information
about the individual attributes and conditions. The details are followed by a list of
database events upon which the validation should take place. The validator defines the
validation type. This can be the standard validator or a custom one. The standard
validator offers simple attribute validations, while the custom validators usually offer
more complex validations. The message is optional, and, if present, it will be used for
the exception or text message, respectively. Otherwise, a standard text will be used.
Below, we give an excerpt of a constraint definition file with four constraint definitions.
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hardconstraint length Address.phone = 13 [Creating, Updating] Standard;

softconstraint length Course.description >=30 [Creating, Updating] Standard;

hardconstraint association attends from Student (5:*) to Course (0:*)

[Committing] Custom;

hardconstraint cover (Staff and Student) Person [Committing] Custom ’Cover

violated’;

Listing 3.1: Constraint examples

As shown in the example in List. 3.1, the length constraint could be defined as
a HC or SC. The first constraint definition defines that the attribute phone of the
class Address must have the length of 13. This will be checked upon the database
events Creating and Updating, thus when an Address object is created or updated
and the object is to be stored in the database. The validation will be done with the
standard validator and, if a violation occurs, an error with the default message for the
length constraint will be thrown. The length constraints are instances of two different
constraint types with the same constraint name but different validations. The default
message is of the form ‘Constraint violated:’ with an output of the constraint details
attached as a string. The second line also defines a length constraint specifying that
the attribute description of the class Course should be at least 30 characters long.
If a violation occurs only a message will be thrown as a hint that the DQ could be
increased by adding more details to the description. On the third and fourth line,
more complex constraints are defined: an association with cardinality constraints and a
cover constraint specifying that every person must be either staff or student (or both).
Both definitions are validated with a custom validator upon the Committing event.
The cover constraint defines a custom message which is passed to the application upon
constraint violation.

Figure 3.5: Association constraint

The constraint types are represented by Java classes defining particular attributes
that hold the detailed information. As an example, the UML diagram of an association
constraint is depicted in Fig. 3.5. It shows the attributes that are required to store the
detailed information of the association constraint and the customValidate method.

Fig. 3.6 gives an overview of the constraints framework and its different components.
In the left upper corner, the input file is depicted that contains all constraint definitions.
The ConstraintsGenerator is responsible for parsing the input file and generating the
appropriate constraint definition objects and validation configuration. The constraint
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definition objects and the validation configuration are stored in the constraints reposit-
ory. The EventConstraintsRegistry is responsible for linking the constraints from the
repository to the appropriate EventListeners depending on the database events that
were configured with the constraints in the input file. The EventConstraintsRegistry
also adds the EventListeners as listeners to the adequate db4o database events. For
example, an association that is defined with the Creating event and custom valida-
tion would cause the framework to associate the ‘CreatingListener’ and the concrete
association constraint to it. Afterwards, the ‘CreatingListener’ would be added as a
listener to the Creating event. Upon notification, the ‘CreatingListener’ would trigger
the custom validation.

The method EventConstraintRegistry.registerForValidation(DB) is invoked
by applications to register themselves and their database, DB, with the constraints
framework.

The framework works with an ECA mechanism. If a database event occurs due
to database operations triggered by the applications, the applicable EventListener

is notified. The EventListener holds a list of constraints that were configured to be
validated with the according event. Upon a triggered event, the suitable EventListener
passes the constraint list with the associated objects for validation to the Validator.
The Validator decides which validation method has to be invoked for each constraint
based on the configured validation type in the constraint and consequently invokes the
validation of the constraint with the objects received from the database event. As a
standard validator, we use the validator from the validation framework OVal1. OVal
is a pragmatic and extensible general purpose validation framework for Java where
objects can easily be validated on demand. OVal supports, but is not limited to, the
validation of JavaBeans and can therefore also be considered as a BV framework. To
validate objects, it extracts a validation configuration from the constraints repository.
As shown in Fig. 3.6, the validations can imply the participating objects received from
the db4o event but validations can also perform extensive checks against the database.
Depending on the validation result, an exception or a message is thrown, and the
transaction may be aborted. HCs will rather raise an exception while SCs will alert with
a message. The application then has to handle the validation result of the framework.

1http://oval.sourceforge.net/

http://oval.sourceforge.net/
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3.2.3 Conclusions

In this section, we have presented an approach and framework of a constraint-based
approach to DQ management for object databases, in particular proposing a solution for
the object database db4o. The framework, however, could also be used for other object
databases and we also planned to support the relational model to provide advanced
support for data validation based on constraints. The approach therefore is designed
to offer a separated framework rather than as an integral part of a database.

The framework provides support for basic constraint checks as offered by OVal as
well as rich classification constraints. We planned to extend the framework with con-
straint types that allow the definition of complex DQ controls that cover DQ dimensions
such as the ones defined in [187, 182]. Such an extension could also identify for which di-
mensions constraints can be implemented and for which dimensions it would be difficult
or even impossible. For example, we can think of defining constraints for dimensions
such as timeliness and completeness but it seems to be difficult to define constraints for
other dimensions like reliability. Since the implementation of a comprehensive set of
constraints types covering all these DQ dimensions is still work in progress, we do not
have a complete formal definition of the constraints language. Our definition language
is based on the OMS DDL presented in [197] and the complete formal definition would
be a goal of future work.

Furthermore, while the implementation supports the definition and checking of HCs
and SCs, we planned to generalise this approach so that arbitrary actions can be per-
formed upon a constraint violation.

3.3 Data quality extended Bean Validation

We now describe in this section a first integrated DQMF approach which addresses
the problems of distributed constraint definitions and data validation, as introduced in
Sect. 1.2.1.

We present a DQMF that allows constraints to be specified and managed in a single
place. The constraint model is not coupled to a specific layer or technology. Although
a constraint needs to be specified only once, it can be used in different parts of an
application, providing the possibility that data is validated only once. The framework
also makes it possible to reuse data validation in other applications.

Reviewing the options of a unified constraint management approach explicitly for
the Java programming language revealed BV as most promising approach to base on.
Therefore, the solution, proposed in this section, has been implemented in the Java
programming language environment by building on BV. Although BV has the necessary
support for cross-tier validation and already supports a rich set of constraints, it does not
support various features essential for more extensive DQ management which are needed
to fulfil the requirements of a DQMF. For example, it is not possible to control the
time when data is validated to allow temporary inconsistencies. Nor can constraints be
updated dynamically which is required, for example, to allow users to specify cardinality
constraints over associations at runtime. Further, constraints in BV are considered as
all-or-nothing in the sense that data which violates constraints is prohibited. To achieve
that data is not prohibited but instead will be associated with a particular quality
indicator, we have enhanced the already introduced concept of SCs further to associate
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different levels of penalties with data in the case of BV constraint violations in order
to calculate the appropriate DQI.

3.3.1 Approach

Our aim for this integrated approach was to provide developers with a unified constraint
framework that will avoid inconsistencies and redundancies. Specifically, it should meet
the following requirements: (1) The possibility to specify all constraints for a data model
using a single constraint model; (2) Constraints need only be defined once within a
system to avoid redundancy; (3) Validation within a system is performed based on the
defined constraints only; (4) Single validation of any constraint to avoid redundancy in
system validation processes; (5) Constraints can be specified and changed dynamically
during runtime; (6) The use of constraints to express and measure different levels of
DQ; (7) Control over when constraints are validated; (8) Control over the validation
processes and what happens when a constraint is violated.

Usually, data validation happens in different tiers and layers as depicted in Fig. 2.3
on page 34, resulting in separate validation mechanisms for each tier and layer. This
approach centralises the validation mechanism using constraint annotations within the
domain model based on BV as shown in Fig. 3.7.
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Figure 3.7: Unified constraint model with centralised validation mechanism using Bean
Validation

We note that, since it can sometimes be necessary in a multi-tier architecture to
re-validate data in a specific layer at a given time, we give developers the freedom to
invoke the validation process manually at any time which is also generally supported
by BV.

Using BV, requirements 1 to 4 are already met in terms of the architectural re-
quirement. Further, any technology that integrates BV will be able to make use of the
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DQMF, presented in this section. However, BV does not satisfy requirements 5 to 8
and it was therefore necessary to extend BV and introduce new concepts to support
these requirements. In the remainder of this subsection, we will examine each of these
requirements in more detail along with the concepts that were introduced to support
them.

Association constraint As an example of a constraint that needs to be specified dy-
namically, we take the example of a cardinality constraint over an association. Consider
the case of a university where the number of students attending a course cannot be
greater than the room size. Then, each course instance must have its own limit for the
maximum number of students. Although, BV provides a way to constrain the cardin-
alities of an association at compile time, it does not allow constraints to be configured
at runtime per object instance since Java annotations only allow the use of constants.
This means that it would not be possible to specify the actual cardinalities at runtime.

We therefore introduced our own association constraint with a special data structure
which allows the cardinalities of an association to be specified for individual object
instances at runtime which fulfils requirement 5 for cardinality constraints. This results
in a more flexible solution which is statically type safe and reusable.

Temporal constraint BV also does not support deferred constraint checking which is
necessary in certain situations. For example, consider a system that handles registra-
tions for events. People can register for events within a certain date range and there
exists a deadline for enrolment. It might not make sense to arrange some events if there
are too few people enrolled. Therefore, for each event, we could specify the minimum
number of enrolments as a constraint. However, the validation of this constraint needs
to be deferred to the deadline date, so that only the events which have too few people
registered and are past the deadline will result in a violation.

We therefore introduced the concept of a temporal constraint which is a constraint
coupled with a deadline. The constraint may be violated before the deadline, but has to
hold afterwards. In other words, the temporal constraint can only be invalid at a future
point in time specified by the deadline, and therefore the validation process should only
be invoked at that time.

While developers can create a temporal constraint by combining any form of con-
straint with a deadline, for ease of use, we provide implementations for several forms of
commonly used temporal constraints in the framework.

Time-triggered validation component Closely connected to temporal constraints,
we offer a time-triggered validation component TTVC to provide a developer with the
possibility to define and schedule validation jobs at certain points in time or within
a specified interval. A job can be defined as a unit of work and a trigger within
the framework is a mechanism by which jobs are scheduled. Many triggers can point
to the same job, but a single trigger can only point to one job. The scheduler is
the central subcomponent which manages all relevant information to start jobs with
individual triggers. A job listener observes the state of a job and is called if certain
events occur. The framework provides several predefined components which enable
developers to create their own validation jobs that can use the functionality of BV and
JPA and it consists of a universal validation job which can access objects in a data
store. It also provides the triggers for one-time and repeatable jobs.
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TTVC can be used to trigger the validation of objects with any constraints but it is
especially useful to validate objects which contain temporal constraints since they have
to be valid after a certain deadline. By providing temporal constraints and the TTVC
we fulfil requirement 7.

Flexible data validation Another limitation of BV for DQ management is that it does
not allow for cases where data validation requires something more flexible than a strict
true/false outcome. Assume, for example, that persons with a name and email address
are stored in an information system. The name is a mandatory attribute which can be
validated with a ‘not null’ constraint. Persons can exist which do not have an email
address and therefore it is not possible to define the email attribute as mandatory.
Nevertheless, we might want to associate such instances as having a lower DQ with
respect to completeness in cases where the person is known to have an email address
but it has not been supplied.

To provide developers with control over the validation process and allow them to as-
sociate DQIs with data items, we used the notions of HCs and SCs as already introduced
in earlier approaches and adapted their definition for this approach.

The notions presented below are related to the concept of hardgoals and softgoals
in the Requirements Engineering literature, as described in Sect. 1.4.2.

A HC is a restriction on a Bean instance, on the value of a field or the value of a
JavaBean property, e.g. a getter method, that can be validated against a given value
with two possible outcomes of the validation. The outcome is True if the given value
fulfils the HC and False otherwise. In summary:

validate (HC, value) =

{
True, if value fulfils HC
False, otherwise

This is equivalent to the BV definition of constraints and hence every declared constraint
is by default a HC.

In contrast to HCs, a SC can associate a penalty with a violation rather than
prohibiting a violation. Formally, a SC is a restriction on a Bean instance, the value of
a field or the value of a JavaBean property, e.g. a getter method, that can be validated
against a given value. A value can violate a SC resulting in a penalty, in which case
the validation process itself is still valid. In summary:

validate (SC, value) =

{
True, if value fulfils SC
P, SC is violated, penalty P added

With our new approach on HCs and SCs, requirement 6 is fulfilled. In the sub-
sequent subsection, we will discuss how these constraints can be used to measure DQ.
The combined usage of the features presented in this subsection, this approach fulfils
requirement 8.

Having described the additional features supported in the framework over BV, an
overview of the main components is given in Fig. 3.8.

3.3.2 Managing data quality using constraints

We now list the components available in the framework and show how data can be
validated in a flexible way using a single constraint model.
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Figure 3.8: Data quality management framework features

The BV standard specifies a set of the most common constraints such as @NotNull
and @Max which can be used as Java annotations in JavaBeans. The concrete imple-
mentation for BV that we used, Hibernate Validator 5, additionally provides specific
built-in constraints such as @Email and @CreditCardNumber for checking data value
formats. Therefore, the framework supports all constraints from the standard plus the
specific ones from Hibernate Validator. A detailed list of these constraints is available
in the Hibernate Validator documentation2.

In our framework, presented in this section, all constraints are defined using Java
annotations and validated using the concept of BV where it provides the following
additional constraint support: (1) The annotation @VariableSize for the association
constraint; (2) The annotation @Deadline which can be combined with other con-
straints to give temporal constraints; (3) A set of primitive temporal data types such
as TemporalBoolean which can be used for temporal constraints; (4) A set of temporal
constraints for the most common existing constraints such as @AssertTrueOnDeadline;
(5) A time-triggered validation component (TTVC); (6) A mechanism to define and
validate HCs and SCs by adding appropriate Group and Payload elements to Bean
annotations.

Details of the full set of temporal data types and temporal constraints are described
in [151].

The concept of HCs and SCs described in Sect. 3.3.1 enables a developer to validate
data and enhance DQ in a more flexible way. Due to their enhanced definition in this
approach, SCs can be used to distinguish different severity levels of constraint violations
by configuring them into different SC groups such as Info and Warning. Also, it is
possible to add individual penalty scores to SCs such as LowPenalty, MediumPenalty
and HighPenalty which makes it possible to set the importance of the fulfilment of a
constraint in a more fine grained way.

In contrast to HCs, SCs can be considered as ‘nice to be fulfilled’ rather than ‘need
to be fulfilled’. The penalty score can be used to assess how important it is that a SC
should be fulfilled. With respect to SCs, data is therefore considered to be of ‘high’
quality if the sum of all penalty scores is low. Therefore, SCs can be considered as
indicators for DQ.

3.3.3 Use of framework

Having described the types of constraints and mechanisms supported in the framework,
we give examples for all the components to show how a developer would use it and to
show that the aims defined in Sect. 3.3.1 can be achieved with the framework using BV.

2http://hibernate.org/validator/

http://hibernate.org/validator/
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An association constraint is specified by declaring a field with the type of our custom
data structure AssociationCollection<T> within the class where the association is
required. Our custom annotation @VariableSize represents the association constraint
and can be used directly at the corresponding field or an appropriate getter method
which accesses the field. The annotation does not take any additional arguments and
can only be used on data types conforming to our interface Association.

Assume the classes Course and Student in a university system and the association
‘attended by’ between courses and students as depicted in Fig. 3.9. We add a collection
of students to the course class and annotate it with our @VariableSize annotation as
depicted in List. 3.2.

-name : String
-email : String
-registered: TemporalBoolean
getter and setter methods

Student
-title : String

getter and setter methods

Course

attended by

min..max
students

Figure 3.9: UML class diagram for the university domain

@VariableSize

AssociationCollection<Student> students = new

AssociationCollection<Student>(new ArrayList<Student>());

Listing 3.2: Code fragment showing the usage of the @VariableSize annotation.

At runtime, an application can create Course instances and set the minimum and
maximum cardinalities of the association by using for example a constructor as depicted
in List. 3.3. To set the cardinalities after the instantiation appropriate setter methods
could be used.

public Course(String title, int min, int max) {

this.title = title;

students.setMinimum(min);

students.setMaximum(max);

}

Listing 3.3: Code fragment showing the usage of the association constraint.

We use @AssertTrueOnDeadline to explain the use of temporal constraints. In
List. 3.4, our temporal constraint annotation @AssertTrueOnDeadline is given for the
attribute registered in class Student.

@AssertTrueOnDeadline

private TemporalBoolean registered;

public void setRegistered(TemporalBoolean registered) {

this.registered = registered;

}

Listing 3.4: Usage of the temporal constraint annotation @AssertTrueOnDeadline.
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The Boolean constraint and its deadline can be applied at runtime, for example, as
depicted in List. 3.5 where the deadline parameter is a Java Date. TemporalBoolean
is one of the primitive temporal data types which we provide in the framework.

student.setRegistered(new TemporalBoolean(true, deadline));

Listing 3.5: Example for setting a deadline.

To use our TTVC, either our abstract job classes can be used to create own jobs to
make use of the additional BV and JPA functionality, or, our concrete
UniversalJPAValidationJob can be used.

The following example shows how to set up a job to validate a persistent JPA entity
class with a daily trigger based on BV. For the class Student depicted in List. 3.6,
assume there is a JPA entity (@Entity) persisted in a table STUDENT that defines a HC
@NotEmpty on the field name.

@Entity

@Table(name = "STUDENT")

public class Student {

...

@NotEmpty(message = "name is mandatory")

private String name;

...

}

Listing 3.6: Example of a Student class.

We set up an entity validation data builder (EntityValidationData) with
Student.class and use it to build a job with our JPAValidationJobBuilder as de-
picted in List. 3.7. We create a job JobDetail with the job-id job-01, entity id id-01,
a job description ‘Validate Student’ and the validation job class
UniversalJPAValidationJob.class.

// Set up the entity validation data builder with the entity

EntityValidationData.Builder entityIdbuilder = new

EntityValidationData.Builder(Student.class);

// Build a job based on the entity class

JobDetail universalJob = new JPAValidationJobBuilder(

"job-01", entityIdbuilder

.withEntityId("id-01")

.withJobDescription("Validate Student")

.withValidationJobClass(UniversalJPAValidationJob.class)

.build();

Listing 3.7: Example of building a job with JPAValidationJobBuilder.

A trigger is then created with our DailyTriggerBuilder and the job scheduled
with the trigger by using our JPAValidationScheduler as depicted in List. 3.8 where
db_name defines the data store.
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// Building trigger that fires daily at 18:30 o’clock

Trigger dailyTrigger = new DailyTriggerBuilder("t1", 18, 30)

.withTriggerGroup("ttvc-tests-triggers").build();

// Set the data store

JPAValidationScheduler jpaValidationScheduler = new

JPAValidationScheduler("db_name");

// Schedule the job with the trigger

Scheduler scheduler = jpaValidationScheduler.getScheduler();

scheduler.start();

scheduler.scheduleJob(universalJob, dailyTrigger);

Listing 3.8: Example of scheduling a job with a trigger.

As explained in Sect. 3.3.1, every constraint declared without further configuration
using BV is automatically a HC. To implement SCs using BV, we use the Group and
Payload elements of the BV standard.

An example showing the use of HCs and SCs is given in List. 3.9 where a class,
e.g. Student, has a HC (without group and payload element) for the field name and a
SC (with group Info and payload LowPenalty) for the field email. Both constraints
assert that the appropriate field should not be null, but in the case of the SC a null
value would be allowed but given a penalty.

@NotNull(message = "name is mandatory")

private String name;

@NotNull(message = "not mandatory",

payload = LowPenalty.class, groups = Info.class)

private String email;

Listing 3.9: Definition of a HC and a SC.

3.3.4 Implementation

We now briefly present the concrete technologies used for the implementation of our
framework, presented in this section, and details of selected components. A detailed
description of the implementation can be found in [151].

For BV, we used Hibernate Validator 5 which is the reference implementation for
BV 1.1. It is the only implementation so far that supports BV 1.1 (instead of 1.0) and
it provides features which we use for the implementation of temporal constraints.

We also used the reference implementation EclipseLink for JPA 2.1 to provide the
complete list of features of the DQMF in combination with a persistence tier. It is
needed to persist the data structure of our association constraint and the specified
deadline for objects that contain a temporal constraint.

Our constraints are implemented as Java annotations where classes, methods and
variables may be annotated. For each annotation such as
@VariableSize, we implemented an appropriate validator and associated it to the an-
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notation as depicted in List. 3.10. The listing shows that the @VariableSize annotation
is associated with our VariableSizeValidator.

@Constraint(validatedBy = { VariableSizeValidator.class })

public @interface VariableSize {

...

}

Listing 3.10: Implementation of the @VariableSize annotation.

This approach solves the setting of cardinalities for an association per object instance
with the help of our custom data structure AssociationCollection<T>. Together
with our Association interface implementation, the association collection can control
the cardinalities of an association with the appropriate getter and setter methods as
depicted in Fig. 3.10.

+getMinimum() : Integer
+setMinimum(in min : Integer)
+getMaximum() : Integer
+setMaximum(in max : Integer)
+getSize() : Integer

<<interface>> Association
-minimum : Integer
-maximum : Integer
-collection : Collection<T>

getter and setter methods

AssociationCollection<T><<interface>>
Collection<T>

Figure 3.10: Association collection

For the temporal constraints, we made use of constraint composition which is a
feature of BV and allows a developer to create a new constraint based on existing ones.
We combined our deadline constraint (@Deadline) with several existing constraints to
get a set of temporal constraints. For example, we combined @Deadline with the built-
in @AssertTrue which resulted in the new annotation @AssertTrueOnDeadline for the
combined constraint.

The @Deadline annotation does not take any additional arguments and is associated
with our DeadlineValidator. Since a usage of @Deadline on its own does not make
sense, the scope of the annotation usage is restricted in that the annotation can only
be used in composition with other annotations. Moreover, the @Deadline annotation
and any composition including it can only be used on our declared type Temporal. The
Temporal interface provides the methods for getting and setting a deadline as a Java
date.

Our implementation of the TTVC is based on BV 1.1, JPA 2.1 and the open
source job scheduling library Quartz3. Our jobs extend the Quartz Job, while our
JPAValidationScheduler consists of a Quartz scheduler.

We provide the abstract jobs AbstractValidationJob for validating objects us-
ing BV and AbstractJPAValidationJob to access and validate objects in a data
store using JPA. Those abstract classes can be used by developers to create their
own Quartz job details and make usage of our additional BV and JPA functional-
ity. Our UniversalJPAValidationJob extends the AbstractJPAValidationJob and
implements the concrete method execute which gets all necessary objects from the
database. A simplified UML diagram of the job classes is depicted in Fig. 3.11.

3http://quartz-scheduler.org

http://quartz-scheduler.org
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+execute(context : 
JobExecutionContext)

UniversalJPAValidationJob <<abstract>>
Abstr.JPAVal.Job

<<abstract>>
Abstr.Val.Job

~execute(context : 
JobExecutionContext)

<<interface>>
Job

Figure 3.11: Time-triggered validation classes

Triggers are created by our builder classes UnrepeatableTriggerBuilder and
DailyTriggerBuilder which use the common builder pattern.

For the grouping of constraints, we created the group SoftConstraint and its two
subsets Info and Warning. Using this group design, we are able to validate every
subgroup of the SoftConstraint group which we consider as SCs. If no group is
specified, the BV implementation considers the constraint to be part of the Default

group and it is treated as a HC.

To realise the penalty scores, we created an interface PenaltyLevel that extends the
standard Payload interface and contains a value method to return the corresponding
penalty score. Additionally, we implemented three penalty classes such as LowPenalty
(depicted in Fig. 3.12) which implement our PenaltyLevel interface. Therefore, we are
able to get the individual penalty scores of each penalty level to make a quantitative
analysis about the fulfilment of the SCs.

+value : int = 10
+value() : int

LowPenalty

+value() : int

<<interface>>
PenaltyLevel

<<interface>>
Payload

Figure 3.12: Penalty level LowPenalty

The framework is also extensible since it is possible to extend the data structure for
temporal constraints, to create customised temporal constraints and to add additional
groups and penalty levels for SCs.

We experienced during our research that the BV integration process for the present-
ation and data access layer (e.g. how to enable BV) does not cause much overhead.
Moreover, BV is a standardised concept which runs in any Java SE and EE environ-
ment which also supports our decision for BV because we think that more features and
an even better integration could be launched in the near future if a technology is a
standard. Furthermore, it allows a developer to create custom constraints introducing
new annotations.

3.3.5 Conclusions

In this section, we have presented a framework for Java developers to support the man-
agement of DQ in information systems. The framework builds on BV which supports
a classic constraint model, but was then extended with additional forms of constraints
and functionality to provide more control over when and how validation is done and
what happens when constraints are violated. In particular, we introduced a runtime
configuration of cardinality constraints over associations, temporal constraints that al-
low validation to be deferred until a deadline and SCs that can be used to associate
different levels of DQ with values.
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The resulting framework therefore achieves the main goals that we defined in this
section. Nevertheless, there remained several extensions which we addressed with fur-
ther approaches or which still have to be addresses in the future, respectively. One
major direction of research is to investigate in more detail what measures of constraints
fulfilment would be most appropriate and how information on overall and detailed DQ
based on these should be presented.

We also planned to integrate this approach into our FoodCASE information system.
This enables us to evaluate the approach and framework in terms of DQ requirements
in an existing scientific information system, as well as application developer support.
We note that this involves integrating the framework into a typical client-server envir-
onment.

3.4 Bean Validation OCL extension
The approach presented in this section is related to the approach presented in the ante-
cedent Sect. 3.3, Data quality extended Bean Validation. Not only since we aimed to
address the same issues and fulfil the same requirements for unified constraint man-
agement and indicating DQ with it, but also since it is as well based on BV. In the
Data quality extended Bean Validation approach, we experienced the difficulty of defin-
ing (1) complex constraints with standard BV constraint definitions and (2) arbitrary
constraints at runtime with BV.

BV provides constraint definitions with predefined annotations for basic constraints.
For complex constraints it is necessary to define customised annotations and appropriate
Java validators. Our decision to adopt a constraint-based approach to DQ requires
that also complex constraints can be defined in a way that is convenient as possible.
Therefore, we saw the need to explore how BV could be extended to define constraints
with a powerful constraint definition language such as OCL for the expression of complex
rules, which adds additional convenience for software developers.

Besides the need for a more flexible concept of constraints to support our notion of
SCs, for maximum flexibility, a DQMF should provide the possibility to add, remove
and update constraints dynamically at runtime. With standard BV it is neither possible
to associate data with a particular quality indicator nor to manage constraints during
runtime.

Since BV does not support all of the features essential for more extensive DQ man-
agement outlined above, we extended the BV approach to allow constraints to be spe-
cified using OCL also at runtime and introduced our concept of SCs which associate
penalties with data in the case of violation in order to calculate an appropriate DQ
indicator.

The framework which we present, as an implementation of this approach, uses the
object validation framework OVal which we already used for the approach presented in
Sect. 3.2, Object database data quality management, and was introduced in Sect. 3.2.2.
It provides programming by contract, a limited constraint definition during runtime
and a scripting extension API.

The solution we present in this section, is designed to support developers working
in the Java programming language environment and using Java Data Objects (JDO)4

for persistence based on relational or object technologies.

4http://www.oracle.com/technetwork/java/index-jsp-135919.html

http://www.oracle.com/technetwork/java/index-jsp-135919.html
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3.4.1 Approach

Our aim for this integrated approach was to provide developers with a unified con-
straint framework with which it is possible to avoid inconsistencies and redundancies.
The framework must support the definition and validation of complex rules with OCL
not limited to compile time and supply the basis for measuring and calculating DQ.
Specifically, it should meet the six (1-6) requirements presented in Sect. 3.3.1 and ad-
ditionally (7) The ability to define constraints in OCL.

We note that the statements which base on BV in the approach Data quality exten-
ded Bean Validation, presented in Sect. 3.3.1, are also valid for this approach such as
that this approach centralises the validation mechanism using constraint annotations
within the domain model based on BV as shown in Fig. 3.7.

Further, using BV, requirements 1 to 4 are already met in terms of the architectural
requirement and any technology that integrates BV will be able to make use of the
DQMF, presented in this section. However, BV does not satisfy requirements 5 to 7
and it was therefore necessary to extend BV and introduce new concepts to support
these requirements. In the remainder of this section, we will examine each of these
requirements in more detail along with the concepts that were introduced to support
them.

To enable all our requirements to be met, we decided to base the framework on
OVal which provides more suitable features for this approach than the reference imple-
mentation of BV 1.1 (JSR 349), Hibernate Validator. Although it does not implement
all requirements of the BV standard, it is possible to configure OVal to interpret BV
(JSR 303)5 and JavaBean-JPA annotations. Moreover, on the roadmap for OVal is
support for inherited constraints, the complete implementation of the BV standard
and a tighter integration with web application frameworks such as JSF, Struts, etc. In
OVal three different configurers exist which enable developers to define constraints with
annotations, in an XML file or as Plain Old Java Objects (POJOs).

It would have been possible to use Hibernate Validator to express and measure
different levels of DQ (requirement 6), for example by using the groups and payload
attributes (as in the approach Data quality extended Bean Validation, presented in
Sect. 3.3.1), but there is no support for external constraint languages such as OCL
(besides the XML descriptors) although it should be possible to implement an OCL
parser based on the programmatic API (requirement 7). Further, Hibernate Validator
does not provide a mechanism for specifying constraints during runtime (requirement
5).

Our extensions, which we explain in more detail below, are depicted in the upper
part of Fig. 3.13 which provides an overview of the main framework components. The
extensions for requirements 5 and 7 are depicted in the component ‘OCL- & runtime
support for JDO databases’ while the extensions for requirement 6 is depicted in the
component ‘Data quality indicator extension’.

OCL extension Extending BV with the ability to define constraints with OCL could
be done using either an implementation of the OCL OMG standard such as Eclipse
OCL or Dresden OCL as an interpreter for OCL expressions in the constraint defini-
tions or by writing our own OCL interpreter and parser. We opted to use an existing

5https://jcp.org/en/jsr/detail?id=303

https://jcp.org/en/jsr/detail?id=303
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Figure 3.13: Framework components

implementation to reduce the implementation and maintenance effort, but wanted to
use one which is not dependent on a particular meta model such as UML or Ecore of
the Eclipse Modeling Framework6. We therefore chose to extend BV using Dresden
OCL7 which provides a set of tools to parse and evaluate OCL constraints on various
models such as UML and Ecore but additionally on a simplified model in Java. While
OVal takes care of the validation process, Dresden OCL serves as a flexible and extens-
ible standalone interpreter for OCL expressions, enabling an application programmer
to define constraints in OCL based only on the simplified model in Java rather than
requiring them to use a meta model.

Although OVal already supports many expression languages, there is no built-in
support for OCL. Fortunately, it is possible to implement support for new expression
languages and register them for assertions as well as pre- and post-conditions. The
framework, presented in this section, therefore provides its own constraint annotation
(@OclConstraint), an OCL constraint check extension to the OVal annotation check,
an OVal expression language extension implementation of OCL, an additional OVal
configurer implementation for OCL and an extension to the JDO persistence manager
(constraint manager) and persistence manager factory (constraint manager factory).
Our constraint manager includes an extension to the OVal validator to support our
OCL constraint checks.

In summary, we provide an extension to BV based on OVal and Dresden OCL with
which it is possible to define constraints in OCL either by using our annotations, an
OCL configuration file, constraints as POJOs or any combination of these and thus
fulfils requirement 7.

6http://eclipse.org/modeling/emf/
7https://github.com/dresden-ocl

http://eclipse.org/modeling/emf/
https://github.com/dresden-ocl
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Dynamic constraint definition Whether method is used to define constraints in OVal,
the framework always generates constraint POJOs behind the scenes. It is also possible
to directly define constraints as POJOs and add, remove or update them during runtime.
Our OCL constraint check extension to the OVal annotation check, as described above,
can be used as such a POJO. By using the OVal POJO configurer, our OCL constraints
can therefore also be specified and changed dynamically during runtime which fulfils
requirement 5.

DQ indicators In Sect. 3.3.1 on page 72 we have presented the notions of HCs and
SCs adapted to the Data quality extended Bean Validation approach. For the approach
presented in this section we base on the same definitions.

We will discuss how these constraints can be used to measure DQ in the subsequent
subsection.

For our own constraint annotation @OclConstraint, it is possible to define profiles
and a severity (given as an integer) together with an OCL expression as designed in the
OVal framework. An application developer can make use of these profiles to distinguish
not only between the two major levels of DQ, HCs and SCs, but also between additional
levels of DQ within the SCs. The severity can be used as the penalty for SCs which is
why they can be used as synonyms. Assigning constraints a profile and a penalty allows
fine-grained control over constraint evaluation and provides the basis for measuring
different levels of DQ which fulfils requirement 6.

Our framework is based on the JDO-API and therefore completely independent of
the underlying database apart from the fact that it must support JDO. We support the
coupling modes immediate and deferred but not yet separate of the ECA paradigm.

3.4.2 Managing data quality using constraints

We now describe the components available in our framework and show how data can
be validated in a flexible way using a single constraint model.

The BV standard specifies a set of the most common constraints such as @NotNull
and @Max which can be used as Java annotations. The concrete implementation for BV
that we use, OVal, additionally provides specific built-in constraints such as @Email for
checking data value formats. Therefore, the framework supports all constraints from
the standard plus the specific ones from OVal. A detailed list of these constraints is
available in the OVal documentation8.

In the framework, all constraints can be defined using Java annotations, OCL config-
uration files, XML configuration files or POJOs and are validated using the concept of
BV with our framework providing the following additional constraint support: (1) The
annotations @Unique and @PrimaryKey specify unique and primary key constraints, re-
spectively. The primary key constraint can also be defined as a composite for multiple
attributes and ensures both not null and unique, while unique only ensures that a value
or a combination of values is unique within all instances of a class. The appropriate val-
idation checks the database and all concurrent transactions for competing entries; (2)
The annotation @ForeignKey specifies a foreign key constraint which ensures referential
integrity. All of the possibly referenced objects are checked to ensure that referenced

8http://oval.sourceforge.net/api/net/sf/oval/constraint/package-summary.html

http://oval.sourceforge.net/api/net/sf/oval/constraint/package-summary.html
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values exist. Only entries that are already persistent or will be persisted within the
same transaction are checked; (3) The annotation @OclConstraint supports the defin-
ition of an arbitrary OCL expression for the validation of single or multiple attributes
of an entity where profiles and penalties can be defined to express different levels of DQ
as explained in Sect. 3.4.1.

The extensions @PrimaryKey and @ForeignKey are especially helpful if object da-
tabases are used since they often lack support for such constraints whereas relational
databases usually already provide them.

The concept of HCs and SCs described in Sect. 3.3.1 enables a developer to validate
data and enhance DQ in a more flexible way. SCs can be used to distinguish different
severity levels of constraint violations by configuring them into different SC groups such
as Info and Warning. Also, it is possible to add individual penalty scores to SCs such
as Low, Medium and High which makes it possible to set the importance of the fulfilment
of a constraint in a more fine-grained way. Please note that the framework is not limited
to a number of constants for strings such as Info or constants for integers such as Low.
Any string respectively integer can be used to define profiles respectively penalties.

The interpretations of the SCs penalty scores and their sums are identical to the
ones presented in Sect. 3.3.2.

3.4.3 Use of framework

Having described the types of constraints and mechanisms supported in the framework,
we now give examples to show how a developer would use it and that the requirements
presented in Sect. 3.4.1 can be achieved with the framework, presented in this section,
using BV. We do not describe the examples in very detail but try to give examples
which are as self-explanatory as possible.

As mentioned in Sect. 3.4.1, we make use of the simplified model provided by
Dresden OCL which can be configured by a Java class listing all classes for which OCL
constraints are defined. List. 3.11 shows a model class ModelProviderClass which
contains the entities Student, Professor, Course and Department.

public class ModelProviderClass {

protected Student student;

protected Professor professor;

protected Course course;

protected Department department;

}

Listing 3.11: Example of ModelProviderClass.

List. 3.12 and 3.13 show the usage of our constraint annotations @PrimaryKey,
@ForeignKey and @Unique. The examples show the constraints specified for certain
profile constants but it would also be possible to add additional penalties.
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@PrimaryKey(keys="profID", profiles=Profile.PRIMARY)

public class Professor {

private int profID;

@ForeignKey(clazz=Department.class,

attr = "deptID", profiles=Profile.FOREIGN)

private int deptID;

...

Listing 3.12: Usage of @PrimaryKey and @ForeignKey annotations.

@Unique(attr="title", profiles=Profile.UNIQUE)

public class Course {

private String title;

...

Listing 3.13: Usage of the @Unique annotation.

List. 3.14 shows an @OclConstraint annotation which allows constraints to be
defined by means of the OCL language and to assign a severity level and profiles.
To allow multiple @OclConstraint annotations to be attached to the same attribute,
method or class, we provide the annotation @OclConstraints.

@OclConstraints(

@OclConstraint(expr="context Student inv: self.age>18",

profiles=Profile.INFO, severity=Penalty.LOW))

@OclConstraint(expr="...

)

public class Student {

private int age;

...

Listing 3.14: Usage of @OclConstraint and @OclConstraints annotations.

An example of specifying a constraint as a POJO with our OclConstraintCheck is
shown in List. 3.15 for the attribute age of Student.

OclConstraintCheck check = new OclConstraintCheck();

check.setExpr("context Student inv: self.age>18");

check.setProfiles(Profile.INFO);

check.setSeverity(Penalty.LOW);

ConstraintManagerFactory.addChecks(

ReflectionUtils.getField(Student.class, "age"), check);

Listing 3.15: Example of OclConstraintCheck as POJO.

Besides specifying constraints with annotations, it is possible to use a configuration
file which defines constraints in plain OCL. An example of such a constraints.ocl

file is shown in List. 3.16.
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package my::company::package::example

context Person

inv: self.age>18

inv: self.name.size()>6

endpackage

Listing 3.16: Example of an OCL constraint definition file.

List. 3.17 shows the usage of an OCL constraints definition file (constraints.ocl).
First a JDO PersistenceManagerFactory (PMF) is initialised. For each OCL file, an
OCLConfig with a certain profile and penalty is created and used together with the
ModelProviderClass to create a ValidatorFactory (VF). Next our
ConstraintManagerFactory (CMF) is initialised with the PMF and the VF so that
finally we can get our ConstraintManager (CM) from the CMF for a certain coupling
mode.

// Initialise the JDO PMF with the database properties

PersistenceManagerFactory pmf =

JDOHelper.getPersistenceManagerFactory(props);

// Initialise the VF with the \gls{ocl} model and the \gls{ocl} file

File modelProviderClass = new File(

resources,"path/ModelProviderClass.class");

File oclConfig = new File(

resources, "constraints/constraints.ocl");

ArrayList<OCLConfig> oclConfigs = new ArrayList<OCLConfig>();

oclConfigs.add(

new OCLConfig(oclConfig, Profile.WARNING, Penalty.HIGH));

ValidatorFactory vf =

new ValidatorFactory(modelProviderClass, oclConfigs);

// Finally initialise the CM

ConstraintManagerFactory.initialize(pmf,vf);

ConstraintManager cm =

ConstraintManagerFactory.getConstraintManager(

CouplingMode.DEFERRED);

Listing 3.17: Usage of OCL constraint definition files.

List. 3.18 shows an example of how to validate a Student for the constraints which
are configured with the profile INFO with our CM. The violations
ConstraintViolation contain the configured penalties and therefore can be used to-
gether with the profile information to calculate the DQ.
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try{

// begin transaction: write

cm.begin();

cm.disableAllProfiles();

cm.enableProfile(Profile.INFO);

cm.makePersistent(new Student("David", "Smith"));

cm.commit();

} catch (ConstraintsViolatedException e) {

// get constraint violations

for(ConstraintViolation violation :

e.getConstraintViolations()) {

LOG.info(violation.getMessage());

int severity = constraintViolation.getSeverity();

...

}

// Calculate data quality based on the profile

// and the severities

}

Listing 3.18: Validation for a certain profile.

3.4.4 Implementation & evaluation

Fig. 3.14 presents an overview of our implementation where our extensions are marked
with a blue background colour. We provide the annotations @PrimaryKey, @ForeignKey,
@Unique and @OclConstraint as described in Sect. 3.4.2 which are implemented as Java
@interface. The annotations are connected with our appropriate check classes by the
OVal @Constraint annotation as shown on the right part of Fig. 3.14. For example,
the @OclConstraint is connected with
@Constraint(checkWith = OclConstraintCheck.class).
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Figure 3.14: Implementation overview

Annotations are convenient for developers and the actual constraint evaluation is
done in the check classes. On the left of Fig. 3.14, our ConstraintManager (CM) and
ConstraintManagerFactory (CMF) are shown. A CM can be instantiated by the CMF
with one of two coupling modes immediate or deferred of the ECA paradigm and gets
a JDO PersistentManager (PM) and an extended OVal Validator (VAL) from the
factory to handle our OclConstraintCheck. The CMF has a JDO
PersistentManagerFactory (PMF) and, with it, the connection to the database. Ad-
ditionally, it has a ValidatorFactory (VALF) extended from OVal which registers our
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ExpressionLanguageOclImpl for each OVal validator. It is also able to be initialised
with our OCLConfig which is not depicted in the figure since it only encapsulates an
OCL file name, profiles and the severity as a helper class. By configuring different
CMFs with different profiles, CMs can be produced with different profiles. The VALF
is initialised with the Dresden OCL Java model ModelProviderClass and loads all
OVal configurers such as AnnotationsConfigurer (@), XMLConfigurer (XML) and
POJOConfigurer (POJO) as well as our OCLConfigurer (OCL) as shown in the middle
of Fig. 3.14.

We already presented in Sect. 3.4.3 how the components are initialised and the
validation is triggered. After the initialisation, the application only has to handle
the validation with the CM(s). If multiple CMs exist, they are produced with the
same constraint definitions from the CMF but, afterwards, are independent of each
other. They maintain their own list of constraints (by a deep copy) for their particular
profile(s). Thus, if constraints are added, removed or changed during runtime and/or
profiles are enabled or disabled for one CM, it does not influence the other CMs. Besides
the coupling modes, our framework uses the JDO Life Cycle Listeners which support
the ECA paradigm. If a validation is triggered by an event such as an update, the
managed objects of a CM which are new or in the life cycle persistent dirty are checked
for constraint violations. For each of its configurers, VAL invokes the validation of all
constraints which belong to its profile(s). The validation collects all violations and will
eventually throw a ConstraintsViolatedException or, in case of deferred evaluation,
commit the transaction. If an exception is thrown, it is the obligation of the programmer
to decide whether to force a commit or rollback.

To validate the approach, presented in this section, we developed a simplified uni-
versity information system with information about departments, professors, students
and courses. We implemented it as a web application using JSF and the object data-
base ZooDB which is implemented fully in Java and based on the JDO 3.0 standard.
ZooDB is licensed under GPLv3 (GNU Public License) and available on github9. A
detailed description of the implementation and evaluation is available as a report10 and
the source code is available as the constraints branch of ZooDB.

3.4.5 Conclusions

In this section, we have presented a framework for Java developers that supports the
management of DQ in information systems with JDO-aware databases. The framework
builds on BV which supports a classic constraint model, but was extended with addi-
tional functionality to manage DQ. In particular, we introduced OCL as a constraint
definition language for BV applicable in all definition scenarios such as annotations, con-
figuration files and POJOs, a runtime configuration for constraints, and the concepts
of SCs that can be used to associate different levels of DQ with values.

The resulting framework therefore achieves the main goals that we defined in this
section. Nevertheless, there still remained several extensions which we addressed with
further approaches.

We also planned to investigate more formally what types and aspects of DQ are or

9https://github.com/tzaeschke/zoodb
10http://dx.doi.org/10.3929/ethz-a-010286836

https://github.com/tzaeschke/zoodb
http://dx.doi.org/10.3929/ethz-a-010286836
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could be supported with this or other approaches. Moreover, to provide a thorough
evaluation, we planned likewise to the approach presented in Sect. 3.3 (Data quality
extended Bean Validation) to integrate this framework into our FoodCASE information
system.

3.5 Data quality monitoring framework

For the investigation of how constraint models could be extended to support DQ man-
agement, the approach presented in this section provided a further missing element in
exploring different approaches on DQ and appropriate DQMFs. Assume an information
system with an already working constraint management facility (unified or not) where
software developers and users are confident with its data validation. Nonetheless, there
are no, or very limited, mechanisms to provide feedback on the DQ in the system. In
this situation, a separated DQMF which analyses the constraint checking violations
and provides ways of visualising and analysing the quality of the data would be very
helpful.

Therefore, we investigated a general framework for analysing and giving feedback on
DQ in information systems based on an independent data validation, as an extension
to classic constraint models. Data validation information from a main application, as
origin of constraint violations, is received and further processed in the DQ monitoring
framework which provides appropriate DQ analysis and visualisation tools.

The processing of data validation information includes the association of individual
constraints with fine-grained violation penalties and also DQ dimensions. In addition,
it includes the measurement and calculation of DQ ratings at different levels considering
also constraint inheritance. With this approach, we extended the concept of constraints
to a concept of general DQIs for giving feedback on DQ.

Independent of the application and data model, the DQ monitoring framework with
its data analysis tool, allows users to inspect different dimensions of DQ for single
and multiple object instances, single and multiple object classes and the overall DQ.
Feedback on DQ can be viewed in a variety of textual and visual forms.

Our goal was to design a general framework that could be used to analyse and
provide feedback on DQ for any information system. Given that DQ requirements are
highly dependent on the context in which the data is used in terms of the domain, the
application and the user, it is important that the computation of DQ is highly flexible
and easily configurable. In particular, the set of DQ dimensions considered should not
be fixed. We therefore simply identify a chosen DQ dimension by name, and the defined
constraints are mapped to one or more of those DQ dimensions.

To evaluate the approach, we conducted a user study for our DQ analysis tool
with participants from both the research community and software engineering industry.
The participants were asked to solve various data analysis tasks using our framework
and then completed a questionnaire to give their feedback on several aspects of the
framework.

3.5.1 Approach

In this approach, constraints are mapped to, potentially multiple, DQ dimensions. In-
dividual constraint-dimension mappings are associated with violation penalties which
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correspond to the subjective importance of the constraints and are used to compute
and provide feedback on DQ. Since these mappings can easily be configured for differ-
ent contexts, independent of the application and data model, the approach supports
individual and subjective DQ analysis.

DQ can be computed at various levels of detail to provide a user with feedback
on all or specified parts of data in an information system. Each constraint violation
contributes its assigned penalty value to the rating score for the appropriate feedback
level, enabling users to be given feedback based on a continuous fine-grained range from
very good DQ to very poor DQ instead of the classical constraint checking values of true
or false. The feedback levels include single and multiple object instances, single and
multiple object classes as well as overall DQ. Moreover, in the case of multiple entities or
classes, we offer both separated and aggregated analysis for each of the levels so the user
can decide whether they want DQ feedback on each of the individual entities or classes
separately, or they want the feedback aggregated into a single combined information
item. Note that the computation of DQ must take into account constraint inheritance.

Our data analysis tool can provide DQ feedback for any information system using
as input the static information about (1) the object hierarchy, (2) object identifications,
and (3) the configuration for the mapping of constraints, dimensions and penalties, as
well as (4) the dynamic information about the actual constraint violations from the
running information system. The tool offers various options for providing textual and
visual feedback.

It is important to provide such different feedback options, not only since individuals
have different preferences, but since they enable the view on data to be adapted to
answer specific questions during DQ analysis. For instance, consider the two potential
questions: Which instance of the class A has the worst quality? Which DQ dimension
of the whole system is the worst? To answer the first question, one would have to set
the scope of the analysis to a single class type A and analyse the data for separated
instances. In the case of the second question, one would have to set the scope of analysis
to multiple (all) classes and analyse the data in an aggregated manner. Therefore, to
give a complete overview of the DQ of a system and provide the functionality to drill
down to investigate specific data causing low DQ, the various feedback options and
levels have to be used as a complete set of tools.

An overview of this approach is given in Fig. 3.15. The two prerequisites for an
information system to use the approach are depicted on the left hand side: The upper
box represents (1) constraint definitions of the information system given in various forms
such as BV annotations, SQL statements or business rules. The lower box, together
with the connected validation box to the right of it, depicts the (2) classic constraint
checking of the running information system which generates and handles constraint
violations. The format of data will depend on the system and may, for example, be
object instances or table rows.

The DQ analyser tool shown on the right hand side of Fig. 3.15 receives four files
as input depicted by the connected arrows and file icons. The upper one is the static
configuration file for the mapping of constraints, dimensions and penalties. The
one in the middle represents two files, one for the static information about the object
hierarchy and one for the object identifications, while the lower arrow depicts the
dynamic information of the constraint violations. The static data is only needed
once, but the constraint violations change over time in the running information system
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Figure 3.15: Concept overview

and therefore this information has to be resent at the time of analysis. The DQ analyser
computes the DQ based on this data and gives feedback which can form the starting
point for interactive data analysis.

The approach is not limited to transferring files for the input data from a main
application to the DQ analyser tool. It rather provides the possibility to call the tool
programmatically using the provided API which is not separately depicted in Fig. 3.15.

Thus, an information system can generate the required input according to the spe-
cified input format which will be described in detail in Sect. 3.5.4. However, this
approach also supports the automatic generation of (1) a DQ mapping file stub for pen-
alties and dimensions based on the constraint definitions, (2) the object identification
and type hierarchy based on the application data, and (3) the violation representation
based on the constraint checking. Each of these is marked in Fig. 3.15 with a file icon.

To configure the DQ mapping for a particular context, the data analyst only has to
group constraints into dimensions and provide the individual mappings of dimensions
and violation penalties for the constraints in the prepared DQ mapping file. This pro-
cess is depicted by the ‘Mapping’ box in the upper middle of Fig. 3.15. Dimensions
can be chosen and labelled at will, but their names have to be unique. An entry of the
mapping file contains the constraint location, the constraint name and one or multiple
DQ dimensions, each associated with a violation penalty. The constraint location and
name together uniquely identify a constraint. The penalty values correspond to the
numerical scale of [0.0, 1.0] where a higher value represents a more severe constraint vi-
olation which results, if violated, in a stronger negative influence on the DQ evaluation.
The general syntax of one mapping file entry can be summarised as depicted below:

Location Name [Dimension1 Penalty1, Dimension2 Penalty2, ...]

For example, a Person entity that is located in a Java package model could have
a NotNull constraint defined on its attribute name which is mapped to the dimension
Completeness and assigned a high penalty of 0.8. This would then be represented in
a mapping file entry as follows:

model_person_name NotNull [Completeness 0.8]

The details of how DQ is computed in this approach are given in the subsequent
subsection.

3.5.2 Computing data quality

On our numerical scale of [0.0, 1.0] for penalty values, the quality of flawless data which
does not violate any constraint is equal to 1.0. To compute the score of DQ for a
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particular dimension, we subtract from this maximum value a normalised sum of all
penalties assigned to violated constraints which are mapped to that dimension. Which
constraints and object instances are taken into account and how the normalisation is
applied depends on the desired abstraction level. For DQ feedback, we distinguish five
different levels of granularity which either correspond to a single class or multiple classes
in terms of the object data model. In particular, we provide the DQ computation for (1)
a single object instance, multiple instances of one class (2) separated or (3) aggregated,
and all instances of multiple classes (4) separated or (5) aggregated.

When validating constraints, not only in the database but in any object of an
information system, it must be considered that objects may form subclass-superclass
relationships constituting complex hierarchies. The resulting constraint inheritance
affects how constraints are evaluated and which are taken into account when computing
a DQ score for the selected DQ dimension at a particular level. As a consequence, during
analysis of constraint violations for a single object, we take into account all constraints
defined for its type and, additionally, all the constraints defined in all of its supertypes
recursively. This is sufficient for analysis on the level of a single class. If multiple classes
in the same type hierarchy are analysed, we also have to ensure that constraints are not
taken into account multiple times, for example from a subclass and also a superclass.

We now detail how the DQ dimension scores (dqds) are defined on all five levels.
The penalty for a particular constraint c and dimension d are given as:

penalty(c, d) =


0.0 if constraint c is not mapped

to the DQ dimension d
p ∈ (0.0, 1.0] if constraint c is mapped to the DQ

dimension d with the penalty value p

We define a violation function for a constraint c and object instance i as:

violation(i, c) =

{
1 if instance i violates constraint c
0 otherwise

The DQ score dqds for a given dimension and selected object instances depends on
the particular analysis level. For a single object instance, dqds is defined by Eq. 3.1:

dqds(d, it) = 1−
∑

c∈C+
t
violation(it, c) · penalty(c, d)∑

c∈C+
t
penalty(c, d)

(3.1)

where d is a DQ dimension, it is a single instance of a data object of type t (either
the type t or any of its subtypes), c is a constraint and C+

t is the set of all constraints
defined for the type t including constraints defined also for supertypes of t. Note that
type t can be variable in form, for example a class in Java or a table in SQL. If a
single object instance has no constraints associated with a particular DQ dimension,
the penalty is 0 which does not distort the final DQ score value.

For the analysis of multiple instances of one class separated, we use the formula
for a single object instance given above and iterate over the set of multiple instances.

For multiple instances of one class aggregated, dqds is defined by Eq. 3.2:

dqds(d, It) = 1−
∑

i∈It
∑

c∈C+
t
violation(i, c) · penalty(c, d)

|It| ·
∑

c∈C+
t
penalty(c, d)

(3.2)
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where we use the same nomenclature as in Eq. 3.1 and additionally It is a set of
instances of data objects of type t (either the type t or any of its subtypes) and i is
a single instance of a data object. Obviously, the formula for multiple instances of
one class aggregated can also be used to compute the appropriate dqds for all object
instances of one class aggregated.

For the analysis of all instances of multiple classes separated, we use the
formula presented for multiple instances of one class aggregated above, taking into
account all object instances of one class and iterating over the set of types.

For all instances of multiple classes aggregated, dqds is defined by Eq. 3.3:

dqds(d, T ) = 1−
∑

t∈T+

∑
i∈I∗t

∑
c∈Ct

violation(i, c) · penalty(c, d)∑
t∈T+

(
|I∗t | ·

∑
c∈Ct

penalty(c, d)
) (3.3)

where we use the same nomenclature as in Eq. 3.1 and Eq. 3.3 and additionally T
is a set of types, T+ is the closure of the set of types, i.e. all types in the set T and all
their supertypes recursively, I∗t is a set of all instances of data objects of type t (either
the type t or any of its subtypes) and Ct is the set of all constraints defined for the type
t exclusively.

Finally, the overall DQ of the whole system can be computed using the formula for
all instances of multiple classes aggregated for the set of all types.

A more detailed description of how the constraint inheritance is taken into account
when computing DQ and explanations of all computation formulae including examples
is presented in [173].

3.5.3 Data quality feedback

Our DQ analyser tool is the central component of our DQ feedback system which
computes the DQ scores of dimensions for the given, uniquely identified, instances
of the application data. It matches constraint violations with constraint-dimension
mappings taking into account the constraints and class types hierarchy.

To give feedback on DQ, we have chosen to provide three main feedback types which
can all be configured with various analysis options. The main types are a textual report
and two graphical representations – bar plots and spider web plots.

Before presenting the individual feedback types, we give an overview of the tool
with its components in Fig. 3.16 where the components are labelled 1 to 8.

Using the tabbed pane (1), it is possible to switch between the main feedback types
which are then displayed in the centre. The last tab ‘Class Dependency Graph’ displays
the hierarchy of class types.

Figure 3.17: Hierarchy graph

A sample graph of such a hierarchy
for a simple airline domain is presented
in Fig. 3.17 where the highlighted node
‘model.Person’ represents the class that
is currently being analysed. The ‘Scope’
combo box (2) allows the analysis scope to
be selected i.e. either a concrete class type
or multiple types. The ‘Grouping mode’
(3) is used to specify whether the DQ dimension scores should be presented for each
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Figure 3.16: DQ analyser overview

entity separated or aggregated over the set of entities. The ‘Display mode’ (4) defines
whether the DQ is presented according to the classes/types (scores of DQ dimensions
grouped by entities) or DQ dimensions (scores of DQ dimensions grouped by dimen-
sions). The ‘Difference tracking’ option (5) allows differences between two different
selections to be compared in components 6 and 7. When the button ‘Make snapshot’
is clicked, the current selection of entities and DQ dimensions is temporarily stored.
When the check box ‘Display differences’ is selected, not only the current selection of
components 6 and 7 is visualised but also the one stored as a snapshot. Changing
a choice in components 2, 3 or 4 clears the stored snapshot since the comparison for
different scopes does not make sense. The ‘Entity selection’ list (6) allows multiple
entities such as class types or instances to be chosen. The ‘Data Quality dimensions’
list (7) allows the selection of the DQ dimensions to be visualised. The list only shows
dimensions which are actually specified for the particular scope dependent on the se-
lection in component 2, either all specified dimensions for a concrete class or multiple
classes, respectively. The selection buttons (8) enable all entries of the check box list
above to be selected or none. This is possible for both the ‘Entity selection’ list and
the ‘Data Quality dimensions’ list. With combinations of choices in the components 2,
3 and 4, the various analysis levels presented in Sect. 3.5.2 can be selected.

In the ‘DQ Feedback’ menu shown in the upper left corner of Fig. 3.16, the appro-
priate input files described in Sect. 3.5.1 can be loaded. After they are loaded, a data
analyst can start their analysis using the options described above.

In the remainder of this section, we will describe the main feedback types which are
visualised in the central tabbed pane of the tool.

A textual report, such as the example given in Fig. 3.18b, contains detailed numer-
ical scores about DQ dimensions with regard to the selected granularity level and result
aggregation options. This type of feedback is suitable for particular DQ dimensions
and for the overall DQ feedback.
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An example of a bar plot is shown in the centre of Fig. 3.16. The purpose of the bar
plot is very similar to the textual report described above since they both show detailed
numerical scores, but the graphical representation makes the perception of differences
between scores much easier. It is suitable for both overall DQ feedback and scores of
particular DQ dimensions.

(a) Spider web plot (b) Report

Figure 3.18: Various feedback variants

A spider web plot, such as that shown in Fig. 3.18a, illustrates differences in the
DQ either for different classes/instances or different DQ dimensions depending on the
aggregation mode. Each axis is scaled from 0.0 to 1.0. The further the point lies from
the origin, the better the DQ. This plot also allows for the comparison of various DQ
dimensions for many classes/instances by drawing them all in a single plot. It is not
suitable for the overall DQ as it should reflect similar features, while the overall DQ
is an aggregated feature of all DQ dimensions. The plot in Fig. 3.18a also shows the
comparison of a stored snapshot with a current selection of components as described
above in the components overview.

3.5.4 Implementation

The DQ analyser is built as a Java application using the Swing11 toolkit for the GUI. It
implements the Model-View-Presenter (MVP) approach which enables us to keep the
code, which is processing the data (model), independent from the code responsible for
the visualisation (presentation) and the view. As a result, we can easily replace the

11http://docs.oracle.com/javase/8/docs/technotes/guides/swing/

http://docs.oracle.com/javase/8/docs/technotes/guides/swing/
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existing GUI with another one without any alteration to the model. In the same way,
we can expand the model without the necessity to change the presentation layer.

Fig. 3.19 depicts a simplified overview of the components in the framework where
we abbreviate data quality with DQ and feedback with FB. The components DQFBView,
DQFBWindow, DQFBPresenter and DQFBModel are the main components of the DQ ana-
lyser that implement the MVP design pattern. DQFBView is an interface defining all
the ways in which a presenter (DQFBPresenter) may interact with the view. The
class DQFBWindow is an actual implementation of the GUI. The class DQFBPresenter

is the component that mediates the communication between the model and the view.
The class DQFBModel is the main component of the model which is responsible for
storing all the data needed to visualise the scores of the particular DQ dimensions,
i.e. constraint to DQ dimension mappings (DQMapping), a list of constraint violations
(ConstraintViolations), all entities for which the DQ feedback should be presented,
the types hierarchy graph required for correctly computing scores for particular DQ di-
mensions and the name of the top level package (scope) that should be visualised. The
class DQComputer is responsible for computing the score of a particular DQ dimension
for a given set of data. It takes into account the given mapping, the types hierarchy,
the list of all entities and constraint violations and contains the implementation of all
formulae discussed in Sect. 3.5.2.

DQFB View

DQFB Window

DQFB Presenter

View Presenter Model

DQFB Model
DQ Mapping

ConstraintViolation

DQ Computer

Figure 3.19: Main components

The DQ analyser is delivered as a Java Archive (JAR) and can be used either as a
standalone application or called programmatically using the provided API contained in
the same archive. In the first case, the input data, described in Sect. 3.5.1, is provided
as files, whilst, in the second case, as Java object maps. Having these potential inputs
ensures independence from the technology and validation framework, at the same time
enforcing a well-defined interface usage.

As mentioned in Sect. 3.5.1, this approach also supports the automatic generation
of the DQ mapping file stub, the object identification, the type hierarchy and the
violation representation based on the constraint definitions and the application data.
For that, we also provide an API where developers can invoke the appropriate methods
in our utility classes such as DQUtil and PostgresUtil, which extract information from
entities, constraint violations or by querying the database, and build simple structures
that are serialised to JSON or our DQ mapping, respectively.

In the remainder of this section, we will provide examples for the input data of a
simple airline domain.

List. 3.19 shows a DQ mapping file where three constraints are mapped to appropri-
ate DQ dimensions. The custom CorrectTime constraint is defined as a class constraint
since the constraint location only includes a class name. The Pattern and NotNull

constraints are defined for an attribute name on the ‘Flight’ and ‘Person’ entity, respect-
ively.



96 Chapter 3. Initial approaches

model_flight CorrectTime [Consistency 0.2, Timeliness 0.5]

model_flight_name Pattern [Correctness 0.2]

model_person_name NotNull [Completeness 0.2]

Listing 3.19: Example of DQ mapping file (mapping.dqm)

A constraint location is an unquoted string without white spaces that contains a
path to the place where the constraint is located. The interpretation of such a path
depends on the specific technology, therefore the only general requirement is to separate
path segments with an underscore sign ( ). For example, for a method parameter name
in Java, this could be a package name + class name + method name + parameter name
where the underscores are used instead of dots.

An example of a JSON type hierarchy is depicted in List. 3.20 where Pilot and
Passenger are subclasses of Person, while Person is a subclass of Object and Object

does not have a superclass. The first segment, for example model.Pilot, defines a
class, while the second segment, for example model.Person, defines its superclass.

{

"model.Pilot": ["model.Person"],

"model.Passenger": ["model.Person"],

"model.Person": ["java.lang.Object"],

"java.lang.Object": []

}

Listing 3.20: Example of JSON type hierarchy

List. 3.21 presents a JSON object identification definition where a ‘Flight’ and a
‘Passenger’ object are identified. The first segment, for example Flight 7 [id=7],
defines a unique object ID and the second segment, for example model.Flight, defines
its class type. Any unique string can be used as IDs, for example the return value of a
toString method in Java called on the given object for which the ID is generated.

{

"Flight 7 [id=7]": "model.Flight",

"Passenger [id=4]": "model.Passenger"

}

Listing 3.21: Example of JSON object identification

List. 3.22 shows an example of a JSON constraint violation definition where three
constraint violations are defined by means of the first segments entity, constraintName
and constraintLocation.
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{

"entity": "Flight 7 [id=7]",

"constraintName": "CorrectTime",

"constraintLocation": "model_flight"

}, {

"entity": "Flight 7 [id=7]",

"constraintName": "Pattern",

"constraintLocation": "model_flight_name"

}, {

"entity": "Passenger [id=4]",

"constraintName": "NotNull",

"constraintLocation": "model_passenger_name"

}

Listing 3.22: Example of JSON constraint violations

The appropriate second segments such as Flight 7 [id=7], CorrectTime and
model Flight have to correspond with the definitions in the other input data.

3.5.5 Evaluation

To evaluate how the DQ framework approach and implementation was perceived by
potential users and to find out ways in which it could be improved, we conducted a
user study where we focussed on participants with at least a basic knowledge of software
engineering. In particular, we wanted to observe which types of feedback and analysis
options were most appreciated and how users rated this approach and tool for providing
feedback on DQ.

In total, twenty participants contributed to the study of whom 50% had at some
time studied or worked in a university and 75% had at some time worked in industry.
75% were male and 25% female, with 10% between 20 and 25 years old, 35% between
26 and 30, 25% between 31 and 35 and 30% over 36. Only 25% of the participants
stated that they already had a good knowledge of DQ in information systems with 75%
stating that they had no or only poor previous knowledge.

The participants were given an introduction to our DQ analyser tool along with
explanations of different modes and types of feedback that are available. They then
had to solve five DQ analysis tasks with the help of our tool for a sample dataset in
a simple airline domain. After solving each task, they had to fill out a questionnaire
where they stated their solution to the question, which feedback type they used, which
analysis scope, which grouping mode, which display mode and if they used the difference
tracking. After solving all the tasks, they had to fill out an overall feedback form where
they could also provide comments.

Tab. 3.2 gives an overview of the types and options, as described in Sect. 3.5.3, that
were used for solving the following five tasks: (1) Which instance of the class ‘Flight’
is of the worst quality? (2) Which DQ dimension of the class ‘Flight’ is the worst? (3)
Which DQ dimension of the whole system is the worst? (4) Which DQ dimension is
affected the most when considering the class ‘Person’ and including only pilots instead
of only passengers? (5) Which classes contain inconsistent data?
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Task FB Type Scope Grouping Disp.mode Diff.used

Bar Spider Report Single Multiple Comb.Sep. Class Dim.

1 20 20 20 19 1 0
2 18 2 20 12 8 14 6 0
3 19 1 20 15 5 14 6 0
4 10 9 1 15 5 17 3 16 4 18
5 16 3 1 1 19 13 7 14 6 0

Table 3.2: Chosen feedback types and analysis options

In general, the majority of participants had chosen the analysis options we expected
for the individual tasks which means that the usage of the tool was intuitive and easy
to understand. Nonetheless, there were some choices concerning the ‘Grouping mode’,
highlighted in Tab. 3.2 with a grey background, which are worth discussing. Since
task 2 asked for the rating of a certain dimension instead of an instance, we would
have expected the participants to choose the combined grouping mode. Although, the
majority (12) did so, several had chosen the separated mode. In task 5, we asked for
certain classes and thus we would have expected that the participants would choose the
separated grouping mode, but the majority (13) had chosen the combined mode. Thus,
grouping seems not to be as intuitive and might need more explanation for potential
users.

We did not expect a particular choice for the feedback types since all of them are
suitable for solving the tasks, but there was a clear preference for the bar plots with
only one participant using the raw data report. Interestingly, the spider web plots were
used mostly by the users who claimed to already have good knowledge of DQ.

The snapshot feature turned out to be well understood since the large majority (18)
used it to solve the fourth task which was the most natural and simple way to find the
answer.

To evaluate the overall feedback, the participants had to answer five questions using
a Likert-type scale with possible answers ‘totally agree’, ‘agree’, ‘neutral’, ‘disagree’ and
‘totally disagree’. For the evaluation here, we consider the first two values as agree and
last two values as disagree. 90% of the participants agreed that ‘the tool was easy to
use’ while 10% disagreed. 70% agreed that they ‘had no problem finding the answers’
while only 10% disagreed. 80% agreed that ‘the tool informs well about the DQ’ while
no one disagreed. Even 90% affirmed that they ‘understood the plots’ while no one
disagreed, and 80% agreed that ‘it was easy to learn the tool’ while only 5% disagreed.

To sum up, the feedback on the tool was very positive in terms of the information
given, being useful and easy to understand. Most of the participants found it easy to use
and easy to learn. Nonetheless, for a small group, which had an exclusively industrial
background, the user interface turned out to be less easy to use than for the rest of
the participants. Thus, a direction of future work is to consider improvements to the
user interface. A couple of minor improvements mentioned in the comments were to
provide indicators to show if a snapshot has already been recorded, and whether the
‘Make snapshot’ action was successful.
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3.5.6 Conclusions

In this section, we have presented how we extended the concept of constraints to a
concept of general DQ indicators by associating individual constraints with DQ dimen-
sions and violation penalties. We further introduced the DQ analyser framework and
tool which provides new ways of analysing DQ of an information system independ-
ent of the application and data model based on our new DQ mapping, measuring and
calculating approach. The mapping can be changed between individual analysis runs
and therefore provides a functionality of switching contexts easily. The conducted user
study showed that potential users are able to find answers for detailed, real life DQ
issues using our tool which helps to increase the reliability of information systems and
to minimise operational costs. Therefore, we made a step forward towards a better
management of DQ problems in information systems.

In further work, we were extending our general DQ analysis framework to support
the generation of DQ mapping file stubs based on unified constraint definitions and
various transformations between arbitrary constraint representations. We also planned
to explore in more detail what types and aspects of DQ are, or could be, supported by
the framework.

3.6 Summary

With the initial approaches, presented in this chapter, we arrived at diversified solutions
to constraint-based approaches to DQ in information systems with the goal to provide
a complete DQMF addressing the various challenges.

In Sect. 3.1, Guidance on data quality feedback, we presented a proposal of giving
feedback on DQ to users without providing details on an underlying data validation and
measurement of DQ. The focus was on giving answers to the question ‘How to give feed-
back on DQ?’ and to provide an evaluation from end-users which we used as foundation
for further approaches on DQIF and DQAF. With the separated approach presented in
Sect. 3.2 (Object database data quality management), the integrated approach presen-
ted in Sect. 3.3 (Data quality extended Bean Validation) and the integrated approach
presented in Sect. 3.4 (Bean Validation OCL extension) we presented different ap-
proaches mainly concerned about data validation, unified constraint management and
measures for DQ based on constraint violations. In these three approaches we provided
ways of calculating DQ related to constraint compliance as a basis for giving feedback
on DQ but we did not provide proposals of presenting the feedback to users. The general
approach and framework presented in Sect. 3.5, Data quality monitoring framework,
with its focus of independent analysing and giving feedback on DQ, completed our first
exploration on bringing unified constraint management in relation to DQ.

In the beginning we thought that it would be desirable to provide one DQMF which
is adequate for all purposes. While exploring the different approaches, we realised that
there exist many different requirements to DQMFs dependent on the type of information
system. For example, one existing system might want to keep its data validation and
only needs functionality to analyse the quality of the data. Other systems, existing or
to be built from scratch, might need data validation and DQ feedback functionality but,
dependent on the technologies used, differ in the dependency to a DQMF. In particular,
some systems might want to use an integrated DQMF based on BV where other might
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require different integrated approaches or even separated approaches which offer more
flexibility in defining constraints, i.e. during runtime. We further realised that there is
also the need for keeping constraint definitions distributed in an information system by
using different constraint representations/technologies in the various components.

The goal then was to build further DQMFs for different purposes based on the
knowledge gained in our initial approaches. Therefore, we present in the subsequent
chapter such approaches which serve for varying purposes. These approaches integrate
on the one hand various concepts already explored with the approaches described in
this chapter but on the other hand introduce additional features and concepts.



4
Unified data quality assurance and
analysis based on Bean Validation

In our initial work, presented in the previous chapter, we built DQMFs where the focus
was on providing unified constraint management, data validation and feedback on DQ
either separated from an application/database (Sect. 3.2) or integrated into an infor-
mation system (Sect. 3.1, 3.3, 3.4). After investigating these approaches, we recognised
that, in many cases, it can be beneficial if a DQMF only deals with the DQ computation
and DQ feedback, leaving the definition of constraints and the data validation to the
separated information system being analysed. Thus, our initial approaches also include
a separated DQMF used only for monitoring and analysing the DQ based on provided
validation information (Sect. 3.5).

We continued our initial work and present in this and the following chapters, our final
approaches, where we consolidate the initial approaches but also propose novel concepts
for highly flexible and configurable DQMFs that can easily be adapted to the needs of
different users and applications. Likewise to the initial approaches, our final approaches
enable developers to ensure that certain integrity guarantees of an information system
can be met through a single, extended constraint model that avoids any inconsistencies
and redundancy within the constraint specification and validation processes. They aim
to fulfil all of our proposed requirements of a DQMF but vary in terms of the type
of the DQMF since we recognised that different initial software development scenarios
call for different DQMF approaches. We describe how our approaches can be realised
and how our DQMFs allow the users to validate data during input, as well as analyse,
quantify and visualise the specific and overall quality of the data at any time.

One main insight from our initial approaches was the fact, that there does not ex-
ist a ‘one size fits all’ solution to provide unified constraint-based DQ management in
information systems. Initial software development scenarios can differ in many aspects,
such as whether an information system will be built from scratch or an existing infor-
mation system is to be enhanced with appropriate functionality. In the latter case, the
freedom of choosing an approach is certainly more restricted due to the existing im-
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plementation. But even if a new information system is planned, choosing an approach
is dependent on the requirements and goals for DQ management. Most importantly,
it has to be distinguished whether the subject is a homogeneous information system
built with technologies that naturally work together, or if it is a heterogeneous system
where different components in various technologies interact with each other. Further,
the architecture of a system, how components are working together and the chosen
technologies for developers is essential to decide on a approach. For a homogeneous
system, it is much simpler to provide a unified constraint representation in a specific
technology. In contrast, for a heterogeneous system, an approach has to be chosen that
is based on different constraint representations which have to be translated into each
other, and therefore introduces more complexity into the approach. Once this general
decision is taken, the details of the approach further depend on the complexity of the
constraints required, the need for runtime adaptation of constraint definitions and DQ
calculations, and the intended level of DQ feedback.

One goal during our TDS-Exposure project was to investigate an advanced DQMF
for our FoodCASE information system. The constraints in the food science domain are
inherently complex. Further, we gathered from the project participants the requirement
for flexible and customisable validation that distinguishes different user groups and the
need for detailed DQ feedback for input data and data analysis. Since FoodCASE is a
homogeneous three tier system implemented exclusively in Java, we had the chance to
investigate a homogeneous integrated approach with the focus on the Java programming
language that would include complex constraints, customisable validation and detailed
DQ feedback. This general approach and implementation is presented in this chapter.

Thus, our work presented in this chapter focuses on the creation of a constraint-based
DQ modelling and calculation concept that can be applied to any type of (homogen-
eous) information system and enables all constraints to be managed in a unified way.
This concept is used as the basis for creating a highly flexible DQMF that allows the
users of the information system to configure the details of every quality-related aspect
according to their needs. Our concept of indicating DQ and giving feedback on con-
straint violations is integrated with our concept of contracts and, additionally, provides
the potential to configure default and constant importance weights, validation groups
and an error threshold. The DQMF that we introduce consists of an input validation
module, a DQ analysis module for DQ feedback and an administrative tools module for
its configuration.

To address the issues of limited support for constraints in databases and distributed
data validation processes with the negative consequences of redundancy, code duplica-
tion, possible inconsistencies and increased maintenance effort, we propose an extended
constraint model along with a DQMF to specify and manage constraints in a single
place.

By advancing the concept of DQIs, already introduced in our initial approaches, we
are able to provide new measures for indicating DQ as an interpretation of constraint
compliance. Thus, we are able to address a wide variety of DQ issues not limited
to purely preserving integrity as with traditional database constraints. To calculate
appropriate DQ scores, our DQIs are based on the importance of constraints and the
severity of constraint violations which are highly configurable in the approach presented
in this chapter.

For giving feedback on DQ, this approach is based on our initial approach presen-
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ted in Sect. 3.1. Constraint checking and data validation is based on BV as already
explored in the two initial BV approaches presented in Sect. 3.3 and 3.4, respectively.
By using BV, this approach enables constraints to be specified and checked only once,
even if constraint checking is used in different layers, components or technologies of an
application.

To evaluate this approach, we implemented the DQMF for the FoodCASE food
science data management system as an integrated framework. This implementation
was presented to several food science experts from across Europe, who were then asked
to assess it and provide their feedback on several aspects of the framework. An analysis
of this assessment and feedback is also part of this chapter.

4.1 Approach

Our aim for this integrated approach was to provide software developers and application
users as data consumers with a highly flexible and easily customisable framework. It
should be possible to define and validate DQIs as complex rules in order to avoid
inconsistencies and redundancies. Further, the framework should provide the basis
for measuring, calculating and giving feedback on DQ both for input validation and
analysis of existing data.

Specifically, it should meet the following requirements from the approach presented
in Sect. 3.3: (1) The potential to specify all constraints for a data model using a
single constraint model; (2) Constraints need only be defined once within a system to
avoid redundancy; (3) Validation within a system is performed based on the defined
constraints only; (4) Single validation of any constraint to avoid redundancy in system
validation processes; (5) The use of constraints to express and indicate different levels
of DQ with so-called DQIs. For this approach, we did not include the requirement
that constraints can be specified and changed dynamically during runtime. But the
approach includes the following two additional requirements: (6) The weighting of DQIs
is highly flexible and easily configurable, and can be specified and changed dynamically
during runtime; (7) DQ feedback is given during input validation as well as during data
analysis.

The need for data validation in different tiers and layers of an information system
usually causes the implementation of separate validation mechanisms for each tier and
layer as explained in Sect. 2.5 and depicted in the left of Fig. 4.1 by the multiple
validation locations. By basing data validation on BV, where constraint annotations
are defined within the domain model, the approach presented in this section, inherently
centralises the validation mechanism as shown in Fig. 4.1 on the right most bar. BV
naturally is used for validation in the domain entities within the logic tier but can
also be used in the presentation tier and therefore provides the possibility for cross-tier
validation.

BV generally supports invoking the validation process manually which gives de-
velopers using this approach, the freedom to re-validate data in a multi-tier architecture
in a specific layer at any given time. This is especially necessary in this approach, since
the data validation is not only used for the inevitable input validation to maintain data
integrity but also for the analysis of already existing data to provide DQIF as well as
DQAF.
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Figure 4.1: Typical three-tier architecture with unified validation mechanism using
Bean Validation

Using BV, requirements 1 to 4 are already met in terms of the architectural re-
quirement. Further, any technology that integrates BV will be able to make use of
the proposed DQMF. To support requirements 5 to 7, it was necessary to introduce
the new concepts of DQIs, contracts, DQ measurement and calculation, error threshold
and validation groups, which we will examine in more detail in the remainder of this
section.

In our concept, constraints are combined with an importance weight that is the
basis for evaluating DQ in a more fine-grained way on various levels and aggregations.
DQIs provide feedback on each of these levels. The weights used for the DQ calculation
are defined separately from the constraints in contracts which are key-value collections
assigning the importance, and potentially other parameters, to constraints and which
can be exchanged at runtime. Therefore, the weights are not determined only once in
an empirical objective way, but rather designed to be customisable.

4.1.1 Data quality indicators

For measuring, calculating and giving feedback concerning DQ, we first based our solu-
tions in the initial approaches on the concept of HCs and SCs. But already with the
approach presented in Sect. 3.5 from the initial approaches, we introduced the concept
of general DQIs as a basis for indicating DQ alongside the traditional constraints that
prohibit invalid data. Thus, our DQIs have evolved from simpler HCs/SCs definitions
for single constraints to more complex general DQIs for multiple constraints, object
instances and entities. We will now present how the evolved DQIs are realised in our
concept for BV.

The features and benefits of BV were summarised previously, but a limitation of BV
for DQ management is that it does not allow for cases where data validation requires
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something more flexible than a strict true/false outcome. Assume, for example, that
persons with a name and email address are stored in an information system. The name
is a mandatory attribute that can be validated with a ‘not null’ constraint. Persons
can exist without an email address and, therefore, the email attribute is not specified
as mandatory. Nevertheless, we might want to associate such instances as having lower
DQ with respect to completeness if the person is known to have an email address that
has not been supplied.

To provide developers with control over the validation process, and allow them to
associate DQ feedback with constraint violations for single and aggregated data items,
we enhanced the notion of DQI introduced in our initial approaches.

A DQI provides a rating for one or multiple constraints applied to one or more
instances of one or more entities where constraints are weighted with a certain im-
portance measure. If multiple constraints and/or multiple instances are considered, we
refer to these as aggregated Quality Indicators (QIs), while single QIs refer to cases
where only one constraint and one instance are considered. In terms of an object data
model, an entity is a class and an instance is an object instance of a class. A single
QI assigns an importance weight to a particular constraint definition where the scope
of the constraint definition can be an entity type or an entity attribute. This does
not exclude that other entities are taken into account while validating the constraint,
but defines that the rating for the QI is applied to the single entity. Based on that,
we can aggregate multiple single QIs at several levels in order to provide a rating for
various combinations of instances and constraints. We have defined the aggregated
DQIs ‘OIQI’, ‘MIQI’ and ‘MEQI’, which are depicted in Tab. 4.1. The ‘OIQI’ provides
a DQ measure for multiple constraints of one instance of one particular entity. Thus,
it is ideal to use for the feedback on DQ during data input for a single instance, for
example in a single instance detail frame. The ‘MIQI’ provides a DQ measure for one
or multiple constraints of multiple instances of one particular entity. Thus, it is ideal
to use for the feedback on DQ during data analysis if a DQ analyst is interested in a
certain entity of an information system. The ‘MEQI’ provides a DQ measure for one or
multiple constraints of multiple instances of multiple entities. Thus, it is ideal to use
for the feedback on DQ during data analysis if a DQ analyst is interested in multiple
entities of an information system or an overall DQ score for all data in an information
system. Appropriate calculations of the QIs are described in the following subsection.

DQI calculation Constraints Instances and entities

OIQI Multiple One instance (of one particular entity)
MIQI One or multiple Multiple instances of a particular entity
MEQI One or multiple Multiple instances of multiple entities

Table 4.1: Aggregated data quality indicators overview

4.1.2 Data quality measurement and calculation

With the framework, we provide DQ measurement, calculation and feedback based
on the ideas presented in our initial approaches, but calculate the DQ using the DQ
measurement of our DQIs, which take the importance weights into account. This DQ
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calculation results in a rating for a DQ score where we distinguish different levels of
aggregation, as explained above and summarised in Tab. 4.1.

For the aggregation, we used a weighted arithmetic mean since it uses every value
in the data and is a good representative of the data. Moreover, we wanted to provide
an easily understandable indicator which was also affirmed by the users of our system.
Nonetheless, this approach allows configuration of the formulas used and therefore it
would also be possible to use the weighted geometric mean, min/max operators or other
metrics.

Both the importance weights assigned to constraints, and the DQ score scale, range
from 0 to 100, similar to the ‘Interval’ scale in DQ metadata formats. In terms of
weights, 0 is the least and 100 the most important while, in terms of the DQ score, 0
is the lowest and 100 the highest. Corresponding to Tab. 4.1, we defined the following
three aggregated DQI calculations:

The OIQI is a weighted arithmetic mean used to calculate the DQ score for One
Instance of one entity and is defined by Eq. 4.1 where n is the number of constraints
that are defined for the current entity, ωi is the weight of constraint i and σi is either
1, if constraint i is satisfied, or 0, if constraint i is violated. Thus, a constraint with
a higher importance weight has more influence on the DQ score for one entity. The
weights of all satisfied constraints in one instance is summed up, divided by the total
sum of all constraint weights and multiplied by 100.

OIQI =

∣∣∣∣∣∣∣∣100 ·

n∑
i=1

σi · ωi
n∑
i=1

ωi

∣∣∣∣∣∣∣∣ (4.1)

The MIQI is an arithmetic mean used to calculate the DQ score for Multiple
Instances of one entity and is defined by Eq. 4.2 where m is the number of object
instances for the current entity and OIQIi is the OIQI of instance i. The OIQI DQ
scores of all object instances for a certain entity are summed up and divided by the
total number of appropriate object instances.

MIQI =

∣∣∣∣∣∣∣∣
m∑
i=1

OIQIi

m

∣∣∣∣∣∣∣∣ (4.2)

The MEQI is a weighted arithmetic mean used to calculate the DQ score for
Multiple Entities and is defined by Eq. 4.3 where k is the number of entities, MIQIi
is the MIQI of entity i and εi is the weight of entity i. The weighted MIQI DQ scores
for all entities of multiple entities are summed up and divided by the total sum of all
entity weights.

MEQI =

∣∣∣∣∣∣∣∣∣
k∑
i=1

MIQIi · εi
k∑
i=1

εi

∣∣∣∣∣∣∣∣∣ (4.3)
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The weight of an entity is defined by Eq. 4.4 where n is the number of constraints
that are defined for the current entity i of Eq. 4.3, ωj is the weight of constraint j and
θ is a custom importance value. The sum of weights is taken into account in order to
give constraints with a higher total importance more influence on the DQ score while
with θ it is possible to configure a custom importance for each entity. In our domain
we did not need to include custom entity importance and, therefore, set θ to 1 for all
entities.

ε =

∣∣∣∣∣
(

n∑
j=1

ωj

)
· θ

∣∣∣∣∣ (4.4)

The smallest amount of data for which we calculate a DQ score is an entity. There-
fore, we do not calculate DQ scores for single QIs. A single QI can be rated based on
its assigned weight. Calculating the DQ score of a single QI, as the only constraint
defined in an entity, results in the OIQI calculation being either 100, if the constraint
is satisfied, or 0, if the constraint is violated.

4.1.3 Contracts

A contract is a collection of single QIs. Each single QI is represented as a key-value
pair where the key is a unique constraint identifier and the value is the associated
importance optionally followed by a status (active or inactive). If the status is
omitted, the constraint is considered active. If the status is set to inactive, the
appropriate single QI will not be taken into account for the calculation of the DQ score.
The key is defined as the combination of an entity name, an optional entity attribute
and a constraint name. The general definition can be summarised as

entityName.[attributeName].constraintName=importance[, status]

where the brackets [] denote optional parts of a contract collection item.
Several contracts can be specified that are used to define customised analysis and

validation profiles for different users and applications of an information system. For
input validation and data analysis, different contracts can be applied but always only
one contract is configured to be used for the calculation of the DQ scores at a single
point in time for each of them. Contracts can also be easily shared between users. Thus,
it is possible for a user to have multiple contracts, while multiple users can share the
same contract. Moreover, a default contract can be specified that serves as a fallback
in cases where there is no customised contract defined. If a contract does not include
all constraints that are defined in the system, a default importance (e.g. 80) is applied.

4.1.4 Error threshold

A threshold for the importance weight is a configurable framework parameter within the
scale of 0 to 100 (e.g. 50), which defines the distinction between two types of violations:
warnings below the threshold, which are less severe, and errors equal to or above the
threshold, which are more severe. This distinction allows us to take different actions
based on the type of violations encountered. Examples of these actions include the type
of feedback that the user receives during data input, which will be described later, as
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well as whether the user should be able to save their input when such a violation occurs.
We decided to prohibit the storing of data items that contain constraint violations rated
as errors. This distinction is related to the concept of hardgoals (or simply goals) and
softgoals in the Requirements Engineering literature, as already described.

4.1.5 Validation groups

Each constraint can belong to one or more validation groups, which are used to or-
ganise constraints into logical units. For instance, by using validation groups, we can
categorise constraints according to their type. Then, we can use this categorisation to
distinguish between different types of constraints, such as accuracy-related constraints,
completeness-related constraints, or consistency-related constraints. Validation groups
allow users to limit data input validation or quality analysis to only the constraints that
they are most interested in at any given time. With this concept of validation groups,
it is possible to map constraint definitions/violations to any data validation categor-
isation, such as specific DQ dimensions. For example, arbitrary groups can be defined,
such as CompletenessChecks or MinimumValueChecks which then can be assigned to
a ‘not null’ or a ‘mininum value’ constraint, respectively, as explained in detail later in
Sect. 4.3.

4.1.6 Constant importance weights

At the point of defining constraints, it is also possible to define a constant importance
weight to each constraint that will be taken into account for the DQ calculation instead
of an appropriate weight configured in a contract. The reasoning behind this concept is
that some constraints might need to always have a particular weight that should stay
constant and not be overridden by contracts. For instance, a constraint might be deemed
extremely important and should have the highest weight of 100 in any case. However,
an authorised user is allowed to disable the constant weights. For example, arbitrary
representative values can be defined, such as SevereError or Warning which then can
be assigned to an appropriate constraint, as explained in detail later in Sect. 4.3.

With our DQIs, and the appropriate DQ measurement and calculation, we express and
indicate different levels of DQ with the use of constraints and hence fulfil requirement
(5). With our contracts, the weighting of DQIs is highly flexible and easily config-
urable, and can be specified and changed dynamically during runtime and, thus, we
fulfil requirement (6). Constant importance weights are an additional feature to limit
the power of contracts if necessary, while our error threshold and validation groups in
addition enhance the functionality on which our feedback to the user is based. The
fulfilment of requirement (7) will be elaborated in the following section.

4.2 Data quality feedback

In our framework, we provide DQ feedback for input validation (DQIF) and data ana-
lysis (DQAF) as previously proposed in our initial approach in Sect. 3.1. We now
describe how DQIF and DQAF were realised for this approach.
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For DQIF, every screen where data can be edited has a DQ evaluation panel at the
bottom. This panel lists all problems with the current data record. Problems can either
be errors or warnings depending on the error threshold explained previously. Violation
messages corresponding to errors are displayed in red and prevent the data record from
being saved. Warning messages are displayed in orange and indicate problems with the
record as shown in Fig. 4.2 at the bottom, but do not prevent it from being saved. In
addition, the user is provided with a DQ score for the data record (object instance of
an entity) based on the OIQI. The DQ score text changes its colour dependent on the
types of violations. It is red, if there is at least one error present, orange if all discovered
violations are warnings, or green if no violations were found.

Figure 4.2: Data quality input validation

The data input fields which correspond to the identified constraint violations are
also marked with the appropriate background colour, as shown in Fig. 4.2 in the top
and middle part, to easily identify the input fields which are the sources of validation
issues.
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The DQ analysis can be run from the application, but is opened in a separate DQ
analysis tool as depicted in Fig. 4.3. The DQAF is presented in the lower area, while
the appropriate contract and validation groups can be selected in the upper region.
Once the analysis has been run, the tabs in the lower part present the DQAF in various
forms. The first tab provides a textual DQAF, such as the number of instances and
constraints that have been validated and how many violations occurred.

Figure 4.3: Data quality analysis tool

As a summary, the aggregated DQ score for all instances of each entity is provided
followed by the overall QI of all instances of all entities. The output provided is based
on MIQI and MEQI. As visualisations of the DQ, we present the number of constraint
violations per entity type in a pie chart (VEPC) or bar chart (VEBC), and a graph
showing the constraints per weight interval (CWRC) in the other tabs. The latter
is depicted in Fig. 4.4 on the left hand side where five importance weight ranges are
plotted on the x-axis.

The leftmost (0-20) represents the least important weights, while the rightmost
(80-100) represents the most important weights. The y-axis represents the number of
constraints where the lower parts of the stacked bars (green) represent the number
of satisfied constraints, while the upper parts (red) represent the number of violated
constraints. Thus, it is easy for the user to see the number of constraints violated
within the highest importance range on the rightmost bar. The pie and bar chart allow
a user to easily see the number and percentage of constraint violations categorised by
the different entities, as depicted on the left side in Fig. 4.5 and Fig. 4.6, respectively.
With these charts, a user can easily identify entities with the most constraint violations.

For all of the charts, the user can click on a part of the chart to get more informa-
tion. For example, in Fig. 4.4, we show two data panels to the right of the chart. The
one in the middle shows information about the total number of violations. In the case
of CWRC, the items represent violations per weight range, which are sorted by entity,
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Figure 4.4: Constraints per weight interval

Figure 4.5: Percentage of constraint violations as pie chart

constraint and weight. In the case of VEPC and VEBC, the items represent violations
per constraint type, which are sorted by constraint and weight. If the user clicks on an
item in the middle panel, they can drill down to the concrete data records containing
the constraint violations by double-clicking on items in the list of corresponding en-
tity instances displayed in the rightmost panel. The data record can then be edited,
enabling the user to access and correct the data record, thereby improving DQ in a
straightforward manner. If a data record has already been opened, the item changes
its colour in the list to violet as depicted in Fig. 4.4 for the item with ID 9.

OIQI is used for DQIF, while MIQI and MEQI are used for the textual feedback in
DQAF. Note, however, that the necessary calculations for CWRC, VEPC and VEBC
in DQAF are independent of those of QI.

By providing the DQ feedback during input validation as well as during data ana-
lysis, as presented above, we fulfil requirement (7) defined for this approach.

4.2.1 Validation and feedback configuration

Our administrative tools module, which is only accessible by power users, provides
interfaces to configure the various validation settings, such as contract creation and
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Figure 4.6: Percentage of constraint violations as bar chart

editing, general validation and analysis settings (use of constant importance weights,
default constraint weight, error threshold) and input validation settings (active contract
and validation groups, enabling of warnings). It consists of three parts which we will
describe briefly in the remainder of this section.

With a first panel for contract editing and creation, depicted in Fig. 4.7, we provide
users with the functionality to edit existing contracts and create new ones.

Figure 4.7: Contract editing and creation

To edit a contract, a user can select in the upper part one of the existing contracts.
The contract settings are then displayed in a 6-column table presented in the centre of
Fig. 4.7 where each row represents a constraint of the contract. The first four leftmost
columns identify the characteristics of the constraint which are not editable. They
provide information about the name of the entity where the constraint is defined, the
corresponding entity field (if applicable), the name of the constraint and if a constant
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importance weight is defined. The two rightmost columns are editable by the user and
provide the possibility to define the individual constraint weight and to activate or
deactivate the individual constraint checking. By pressing the corresponding button at
the bottom, a user can create a new contract. After choosing a name for the contract,
the table shows all existing constraints with blank weights where all constraints are
initially activated.

With a second panel, depicted in Fig. 4.8, we provide users with the functionality
to configure general settings for the validation and analysis.

Figure 4.8: General validation and analysis settings

Here the power user is able to edit general settings which apply to both the analysis
and input validation. At the top, it can be decided whether the constant importance
weights should override the given weights in the contracts. Below, the user can configure
the default weight which is taken for DQ calculation if neither a constraint weight is
defined in the contract nor given as a constant importance weight. Further below, the
warning to error threshold can be defined.

With a third panel, depicted in Fig. 4.9, we provide users with the functionality to
configure settings for the input validation.

The power user can select a contract at the top that is then used for the input
validation. On the left side, the entities can be chosen to which the input validation
is limited. Finally, at the bottom, it can be configured whether warnings should be
displayed during input validation, as described above, or if they should be omitted and
only errors should be displayed.
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Figure 4.9: Input validation settings

4.3 Implementation

EJB is a server-side component architecture for the Java Platform Enterprise Edition.
The EJB model enables the encapsulation of the business logic of an application. As
our application FoodCASE is designed, based on the EJB model, the business logic of
the DQMF is implemented as Stateless Session EJBs.

For BV, we use the Hibernate Validator (HV) 51, which is the reference implement-
ation for BV 1.1. At the point of implementing the DQMF, it was the only imple-
mentation that supported BV 1.1 and provided features such as validation groups and
payloads, which we could directly use for our validation groups and constant important
weights, respectively. A list of built-in constraints can be found in the HV reference
guide.

Our constraints are implemented exclusively as Java annotations in our EJBs
where classes and fields may be annotated. An example of a constraint declaration is
depicted in List. 4.1 in which the annotation of the declared constraint is @Min with
four attributes specified: value, which is mandatory for this constraint and message,
groups and payload, which are always part of any constraint’s definition but can
be omitted in its declaration. Besides using the HV built-in constraints, it is also
possible to implement custom constraints which can range from relatively simple class-
level constraints to more complex ones involving checks in multiple entities. Class-level
constraints are particularly useful when the validation depends on a correlation between
several fields of the object.

1http://docs.jboss.org/hibernate/validator/5.1/reference/en-US/html/

http://docs.jboss.org/hibernate/validator/5.1/reference/en-US/html/
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@Min(

value = 0,

message = "The value must be greater than or equal to {value}.\n",

groups = MinimumValueChecks.class,

payload = Severity.SevereError.class

)

Listing 4.1: Constraint definition

Our contracts are created as .properties files in which each property represents
a constraint with its assigned importance weight. Contracts can be created and edited
either via an administrative GUI, as previously presented, or by creating or editing the
contract files directly using a text editor.

If we assume the Min constraint mentioned above for the attribute age of a Person

entity, the corresponding active contract entry for a single QI with an importance
weight of 60 would be defined as:

Person.age.Min=60, active

We chose to define contracts as .properties files instead of persisting the corres-
ponding information in the database in order to ensure that the contracts can be shared
easily amongst users and applications.

Validation groups are defined as simple tagging interfaces, i.e. interfaces without
any methods. HV provides the default group javax.validation.groups.Default,
which contains all the constraints where no other group is specified. Custom groups can
be defined and added to the groups attribute in the constraint definition, as presented
in List. 4.1, which can then be used for configuring the input and analysis validation
during runtime.

The concept of payloads is part of the BV specification where they are typically used
to associate metadata information with a given constraint declaration. In our frame-
work, payloads have been repurposed as a way of specifying constant importance
weights. In our Severity class, we predefined six distinctive payloads as interface
extensions of the HV Payload tagging interface. Each of these payloads corresponds to
a different predefined importance weight (Payload=weight): Info=0, Suggestion=20,
Recommendation=40, Warning=60, Error=80, and SevereError=100.

An example of a constant importance weight definition is depicted in List. 4.1 with

payload = Severity.SevereError.class

where the Severity.SevereError.class corresponds to the predefined importance
weight 100.

Our business logic, which is additional to functionality already provided by BV such
as custom constraint and constraint group validation, quality analysis and calculation
of all types of QIs, is implemented in an EJB session bean and a few helper classes. To
create new contracts, for example, we provide the logic to scan all analysable entities
with BV annotations for declared constraints and create a new contract .properties

file with no weights predefined. Not all functionalities are described here and, for the
interested reader, we refer to [67, p.40-50] where a detailed description is provided.
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4.4 Evaluation

As part of an annual General Assembly meeting of the TDS-Exposure project, we organ-
ised a workshop in February 2015 with several food science data experts from different
countries in Europe. The participants had a variety of roles including food compiler,
project coordinator, exposure assessment researcher, food database manager, research
assistant, postdoctoral researcher, and PhD student. The half-day workshop consisted
of an explanation of the main concepts and ideas behind the framework, followed by
a demonstration of the three modules for input validation, DQ analysis and admin-
istration in our information system FoodCASE. In order to evaluate how our DQMF
concept and implementation was perceived by its target users, and understand ways in
which it could be improved, the participants were asked to complete a questionnaire
about several aspects of the framework at the end of the workshop. The questionnaire
was answered by 15 of the participants, which, although a relatively small number,
represents experts from 5 of 7 European countries that have experience in this partic-
ular project. In this section, we present the most interesting results revealed by our
analysis of the questionnaire answers. The full list of questions contained in our ques-
tionnaire are presented in Appendix A and a detailed evaluation of each single question
is provided in Appendix B.

Contracts: Around 90% of the participants endorsed the concept of assigning import-
ance weights to constraints and rated the scale (0 to 100) as intuitive. Almost 50%
considered having different contracts for different users and applications of the system
useful, while no one disagreed. 60% welcomed the opportunity to share and exchange
contracts with other users, with only around 7% disagreeing. Being able to deactivate
and activate constraints at runtime had both supporters (40%) and opponents (30%).

Constraint definition: For most of the participants, it was acceptable for new con-
straints to be defined by developers with around 13% disagreeing. While 40% thought
that the definition of constraints at runtime was not necessary, around 27% disagreed.

Groups: Most participants liked being able to organise constraints into groups and
rated it as acceptable if constraints could only be assigned to groups by developers.
Nonetheless, 20% believed that assigning constraints to groups should be available
to users too and around 53% would like to be able to define customised groups of
constraints during runtime.

Constant importance weights: Only 40% of the participants rated the constant im-
portance weight as useful with almost all the remaining participants being neutral.
Almost 70% did not mind if only developers could define the constant importance
weight, but around 27% disagreed.

Error threshold: Almost 70% of the participants believed that only authorised users
should be able to change the error threshold.
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DQIF: All of the participants considered having a QI useful and around 73% liked
also having a visual representation of quality during data input. Around 87% agreed
that, when an important constraint is violated, it should not be possible to store the
data, while 80% agreed that storing should be possible if less important constraints are
violated. When violations occur, 80% would like the system to provide an example of
appropriate data and only around 13% would like it to insert the most probable value
by default.

DQAF: 80% of the participants rated the overall DQ analysis as useful and almost
70% as desirable that the DQ analysis is available to any user. Many also welcomed
being able to select the entities (60%) and constraint groups (73%) to be analysed.
While the participants like having both a textual DQ representation with QIs (53%)
and a visual DQ representation (80%) of the results, they indicate a greater preference
towards the visual representation. Overall, the results of the questionnaire were very
encouraging for our framework, as most of the findings indicated that the participants
of the workshop agreed with the majority of the framework’s aspects. The answers
also indicated that some participants are sceptical about the degree of freedom that
should be available for the analysis and input validation, and would prefer to restrict
access to important settings to power-users only. Finally, most of the participants were
satisfied if constraints, constant important weights and validation groups could only
be defined by developers, while a minor, but significant, proportion of the participants
would prefer to be able to define these during runtime.

4.5 Conclusions

With the approach presented in this chapter, we have introduced a novel concept and
framework for managing DQ in information systems. We understand DQ as a constraint
problem, which means that we measure and quantify DQ in an information system based
on the degree to which data complies with certain constraints. While this approach
cannot cover all aspects of DQ, it enables constraint checking methods to be used to
simplify the evaluation of DQ for a significant proportion. Our concept takes into
account that not all constraint violations should be considered equal when it comes
to calculating DQ. We, therefore, introduce the notion of contracts that allow weights
to be assigned to constraints that are then used to calculate DQ. This is done in a
highly flexible way, allowing contracts to be defined on a fine-grained scale, adapted at
runtime and shared between different users and applications. Further, an error threshold
is used to distinguish warnings from errors. By using our concept and framework,
(1) developers can benefit from unified constraint definition and validation to avoid
constraint inconsistencies and maintenance overhead, (2) data consumers can benefit
from flexible configuration, allowing them to decide exactly what they wish to validate
and analyse as well as how important each constraint should be and (3) data consumers
can benefit from our novel DQ measurement and calculation scheme that results in a
quantitative representation of DQ.

We note that the framework is extensible, enabling the proposed DQI calculations
to be replaced if required and new visualisations to be added for data input and data
analysis feedback. Moreover, our contracts could be extended with additional para-
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meters such as the custom importance of entities (θ) for the DQI calculations. On the
implementation side, so far, we have only used bean constraints but it would be possible
to expand the framework to also support method constraints.

The implementation of our framework is actually embedded in our information sys-
tem FoodCASE which is why the evaluation was done using our system. Consequently,
future evaluation should also be done by applying our concepts to other information
systems and conducting studies with a larger group of participants. Our validation
groups can be used to link requirements expressed as constraint definitions with DQ
dimensions which can then be included for the DQ feedback. Nonetheless, further in-
vestigation should be done in mapping between constraints and concrete dimensions,
for example mapping a ‘not null’ constraint to the completeness dimension.

For many information systems, it might not be desirable that constraints are defined
only in the business layer if, for example, they should also inhibit invalid data or low
quality data from being entered directly into the database. Nonetheless, it is desirable
that, if possible, the definition and maintenance of constraints is done in a unified
way in a single place, such as with BV. Thus, another focus of our work was to enable
developers to generate various constraint representations, such as BV annotations, SQL,
JavaScript or Business Rules, from a single unified representation which we describe in
the approach presented in the subsequent chapter.



5
System-wide constraint

representations with UnifiedOCL

In the previous chapter, we have presented an approach based on a single technology
(BV) that is used for managing constraints in all components of an information system.
There, the presented DQMF is dependent on the information system where the unified
constraint definitions are an integrated part of the application components. This is a
convenient solution, if feasible, but as already motivated in Sect. 1.2.1, constraint defin-
itions also tend to be distributed across the components of an information system using
a variety of technology-specific representations to guarantee consistency and data cor-
rectness in databases, GUIs and business-logic components. Therefore, in this chapter,
we propose an approach and unified constraint representation that enables software
developers to manage all constraints in a single place based on OCL with extensions
for technology-specific concepts. These constraints are then mapped to the technology-
specific representations which can be validated at runtime. Since the unified constraint
definitions are clearly managed separately from the information system, the DQMF,
presented in this approach, is separated from the information system.

To achieve that constraint definitions can be managed in a single place and are
automatically mapped to component-specific implementations for runtime validation,
we have developed an approach in line with MDA where a technology-independent
model serves as a basis for technology-specific code generation. In our model, con-
straints are expressed in our UnifiedOCL, a DSL which extends OCL with capabilities
to represent technology-specific constraints. To cater for the integration of different
technologies, the grammar of UnifiedOCL is extensible by means of so-called labels
which are grouped into dictionaries. Furthermore, our concept enables the constraints
defined in UnifiedOCL to be associated with violation penalties and mapped to specific
DQ dimensions.

We studied alternative approaches and technologies for bi-directional translations
between various models and representations. This resulted in an extensible toolkit cap-
able of efficiently translating constraints to and from UnifiedOCL. As a consequence,
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the system allows for translation from any source representation to any target repres-
entation, which we call multi-translations. Our proof-of-concept implementation sup-
ports three technology-specific representations: relational databases (SQL), an object-
oriented language (Java), and business rules (Drools), which let us explore and cover a
broad range of constraints.

Consider the example from Sect. 1.2.1, where the Food entity name attribute of the
type String must be at least 3 characters long. The appropriate technology-specific
representations for SQL, BV and Drools are given in List. 5.1, 5.2 and 5.3, respectively.

CREATE TABLE Food (

name VARCHAR NOT NULL,

CONSTRAINT ck_food_name CHECK (length(name::text) >= 3)

);

Listing 5.1: SQL translation example

package org.example;

public class Food {

@Length(min = 3)

public String name;

}

Listing 5.2: Java BV translation example

rule "Food_name_minlength"

when Food (name.length < 3)

then

...

end;

Listing 5.3: Drools translation example

These three diverse technology-specific representations are used in different compon-
ents of an information system, for example in the data tier, logic tier and presentation
tier, specifying the same constraint. With our non-technology-specific representation in
UnifiedOCL and our constraint translations, it is possible to define the constraint once
in a unified way and generate all required technology-specific representations accord-
ingly. Further, there is no need of a separated domain model for constraint definitions,
as in OCL, since the model is also part of the UnifiedOCL definition. Constraints in
UnifiedOCL can be defined with pure OCL syntax or with our labels. The attribute
length constraint exists in OCL (as size) and therefore the minimum length constraint
of the name attribute from the example above could be defined in UnifiedOCL with
OCL syntax as

invariant NameMinLength : self.name -> size() > 2;

which can be considered as a convenient way of defining a constraint. With our labels,
we provide even more convenient definitions, also for constraints which do not exist in
OCL as such. Consider, for example, the email constraint of an email attribute for
a Person entity, as described in Sect. 2.4.5, which ensures a valid email address. The
appropriate constraint in OCL syntax could be defined as

invariant Email:

self.email.matches(’^[a-z0-9_\+-\.]@[a-z0-9-\.]+\.([a-z]{2,4})$’)

which we consider as an inconvenient way of defining a constraint due to the complex
pattern definition, especially if it has to be defined multiple times for different attributes
and/or entities. In the HV implementation for BV, a specific notation @Email exists
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for an email constraint which we also provide in UnifiedOCL. Thus, the appropriate
constraint in UnifiedOCL could be defined in a very convenient way with the help of
our label email, as depicted below. Where the label is simply included in curly brackets
after the type.

public attribute email: String {email};

For a primary key constraint, which exists in SQL but does not exist as such in OCL,
the according constraint in UnifiedOCL could be defined with the help of our label
primarykey, as shown below.

public attribute id: Integer {primarykey};

By providing bi-directional translations of constraint definitions between our UnifiedOCL
representation and any technology-specific representation, existing components can eas-
ily be integrated into the system and developers are not required to use our represent-
ation. We present an implementation of the approach along with the results of a user
study of the resulting system carried out with developers in industry and research.

The work presented in the remainder of this chapter is an extended version of a
previous publication [193].

5.1 Approach

The goals of the approach presented in this section are: (1) To support Model-Driven
Software Development with regard to constraint definition; (2) To provide a constraint
representation from which various technology-specific constraint representations can be
generated that can be validated at runtime; (3) To provide a multi-translation mech-
anism which allows any constraint representation within an information system to be
translated into another, and which is also easily extensible; (4) To support DQ by
providing an association between constraint definitions and constraint violation penal-
ties related to DQ dimensions.

With (2) we enable all constraints to be managed in a single place, guaranteeing
constraint coherence and reducing the effort of defining and maintaining constraints
across components and multiple layers in an information system. With (3) we support
the translation of legacy constraint representations and allow developers to choose their
main constraint representation.

Fig. 5.1 presents an overview of this approach. The various technology-specific
constraint representations from the example discussed in Sect. 1.2.1 are depicted at
the bottom (BV, SQL, Drools). Each representation could be used in one or more
components of the information system.

To fulfil (2), we propose a unified non-technology-specific assertion representation
(UnifiedOCL) depicted in the centre of Fig. 5.1 in combination with individual trans-
lations to the technology-specific representations. The syntax and constraint repres-
entation capabilities of UnifiedOCL will be presented in Sect. 5.2, while details of the
constraint translations will be given in Sect. 5.3.

We created UnifiedOCL to overcome limitations of constraint representation im-
posed by the OCL syntax with regard to technology-specific representations as ex-
plained in Sect. 2.5.5. It is implemented as a new DSL and designed as a textual
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Figure 5.1: Approach overview

representation which should provide human readability also for non-programmers while
enabling efficient processing for our translation needs. UnifiedOCL combines structural
domain information (UML), constraint definitions from OCL and additional constraint
definitions, so-called labels. Thus, the model is a part of the UnifiedOCL definition.
Labels provide a convenient way of defining constraints, which are either not available
in OCL (such as primary key in SQL) or not convenient to define in OCL (such as email
and credit card constraints). With UnifiedOCL, developers can define a great variety
of constraints in a textual representation, with the labels providing a compact way of
specifying common constraints by simply labelling elements without providing details
of the validation implementation.

Having the notation of UnifiedOCL already supports MDSD, but, to fulfil (1), we
also introduced the conversion of a UML model including constraint definitions to our
UnifiedOCL representation. It is therefore possible to model an information system
using a UML editor and enhancing the model with constraints defined in the standard
OCL notation or with our labels notation which offers a seamless integration with UML.

The UML model enriched with constraints is depicted at the top of Fig. 5.1. Accord-
ing to MDE, this model constitutes the PIM. To convert the PIM to PSMs, a developer
has two options: One option is to stick to the UML graphical representation enhanced
with constraints and convert it first to UnifiedOCL and then to the desired represent-
ation(s). Another option is to choose the textual representation of UnifiedOCL, which
is also a PIM, and convert it in a single step to the desired representation(s).

This unified approach also enables (3) to be fulfilled by additionally introducing
individual translations from all technology-specific representations to UnifiedOCL as
indicated by the bi-directional arrows in Fig. 5.1. To add an extension for a technology-
specific representation, only one additional bi-directional translation to and from Uni-
fiedOCL has to be provided in order to achieve multi-translations as depicted at the
bottom of Fig. 5.1. A multi-translation is always carried out with a translation to and
from UnifiedOCL.

Furthermore, it is possible to translate our UnifiedOCL representation to pure OCL
and exchange UnifiedOCL in an XML format.

With UnifiedOCL, we were focussing on system-wide constraint representations but
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also integrated concepts of relating constraint definitions/violations to DQ feedback,
as already proposed in the initial approach presented in Sect. 3.5.1. Consequently, our
approach also fulfils our goal (4).

5.2 UnifiedOCL

UnifiedOCL specifies both the constraints and the data structure which provides the
context in which constraints exist, such as an SQL table schema or a Java class.

An example of UnifiedOCL is presented in List. 5.4 where the OCL syntax together
with our concept of labels are used to define constraints.

package org.example {

public abstract class Employee {

public attribute id: Integer {primarykey};

public attribute name: String {notnull};

public attribute birthDate: Date {past};

public attribute email: String {email};

public attribute salary: Real {range(min=2500, max=5300)};

public attribute bonus: Real;

public reference subordinates: Employee[0..*]{unique};

invariant BonusNotExceeded: self.bonus<self.salary;

invariant PersonId: not self.id.oclIsUndefined() and self.allInstances()

->forAll(a : Person|a<>self implies a.id<>self.id);

public operation checkIn (time: in Date,

checkedIn: inout Boolean): String {

precondition NotAlreadyCheckedIn: checkedIn=false;

body CheckInBody: checkedIn=true;

postcondition SuccessfullyCheckedIn: result=true;

};

...

Listing 5.4: Example of UnifiedOCL

In List. 5.4, the data structure of a class Employee is given in a certain package

(org.example) with the attributes (id, name, etc.) of various data types (Integer,
String, etc.). UnifiedOCL labels are used to define constraints associated with these.
For example, the attribute id is labelled as a primarykey based on the primary key
concept from SQL. The labels past and email define pattern matches that are not
supported in OCL, while the notnull, range and unique labels provide a convenient
way of defining the appropriate constraints. The past label represents a time-related
constraint which ensures that a date is in the past, such as the date of birth for a
person.

Additionally, the reference (subordinates) has a label unique specifying that
duplicates are not allowed in the collection along with cardinality constraints specifying
that any number of subordinates can exist. The cardinality constraints syntax such as
[0..*] is part of the UnifiedOCL grammar. It defines in this example that an Employee
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can have zero or more Employees as subordinates.
In contrast, the invariant constraints BonusNotExceeded and PersonId are defined

using OCL notation. The BonusNotExceeded invariant defines that the bonus of an
Employee has to be less than the salary of an Employee. The PersonId invariant defines
that the id of an Employee cannot be undefined and that the id must be different to the
ids of all other Employee instances. This is a deliberately included duplicate definition
of the primarykey constraint defined as a UnifiedOCL label on the public attribute id

just to emphasise the convenience of using UnifiedOCL labels over OCL notation.
UnifiedOCL also allows directionalities (in, out, and inout) to be specified for

the parameters of operations as shown in the definition of the checkIn operation.
The time: in Date defines that the parameter time of the type Date can be used for
input only in the method. The checkedIn: inout Boolean defines that the parameter
checkedIn of the type Boolean is used for input and output (the result) in the method.
In addition, pre-, body- and post-conditions are defined for this operation, which means
here that the checkedIn parameter has to have the Boolean value false when entering
the method and true within the method body and at the end of the method.

As seen in the example of List. 5.4, constraints can be specified either using OCL
syntax or our UnifiedOCL labels in cases where the constraint cannot be expressed in
OCL or for reasons of convenience. Labels not only provide a shorthand for specifying
common forms of constraints, but also provide a way of extending the language with
technology-specific concepts. Thus, each time support for a new technology-specific
representation is integrated, the set of labels may need to be expanded. This is not the
case, if all of the constraints in the new technology-specific representation are already
included in the set of labels and the appropriate OCL representation is inconvenient.
Many technology-specific representations use a similar set of constraint definitions, such
as ‘not null’, ‘size’, ‘pattern’, and ‘maximum’ constraints. Therefore, new labels would
only have to be introduced if completely new constraint definitions would be introduced
with an additional technology-specific representation. We note that the use of the OCL
syntax to define constraints is especially useful where constraints are easily expressed
using imperative statements or involve graphs of interrelated objects.

The OCL expressions are embedded into the data structure representation of Uni-
fiedOCL in the same way as in OCLinEcore[137]. They are specified within the scope of
classifiers, methods or structural features. Therefore, the original OCL scope specifica-
tion – the context clause – is no longer needed. As a result, the use of the OCL syntax
is significantly simplified. To specify OCL constraints within the body of one of the
allowed data structure representation components, one just needs to use the keyword
(type of the OCL statement), optionally followed by its name, and the body of the
OCL expression. The syntax of the UnifiedOCL labels can be expressed using EBNF
notation as follows:

UNIFIEDOCL-EXPRESSION := ’{’, { label-name,

[ ’(’, {PARAMETER-EXPRESSION}, ’)’ ]

}, ’}’

PARAMETER-EXPRESSION := parameter-name, ’=’,

parameter-value, [’,’]

where label-name and parameter-name are unquoted strings, i.e. just a name or an
identifier, and parameter-value is one of the following literals: an integer number, a
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real number, a Boolean value, or a string (unquoted or single/double quoted).
For standard BV, we provide labels for the following constraints: @AssertTrue,

@AssertFalse, @DecimalMin, @DecimalMax, @Min, @Max, @Size, @Future, @Past,
@Digits, @Pattern, @Null, and @NotNull. For specific HV constraints, we provide ad-
ditional labels for the following constraints: @NotEmpty, @NotBlank, @Length, @Range,
@Email, @CreditCardNumber, @EAN, and @URL. Moreover, we provide labels for the fol-
lowing SQL constraints: PRIMARY KEY, FOREIGN KEY, NOT NULL, NULL, UNIQUE, SERIAL,
column type NUMBER, column type VARCHAR, and CHECK. A list of all supported labels
with their parameters can be found in Appendix C.

When specifying constraints in UnifiedOCL using labels, the developer only has to
name commonly used constraints and not care about the implementation in terms of
specific, potentially complex, validation code. The technology-specific representation
and validation of these constraints is the concern of the constraint translation which is
discussed in the subsequent section.

UnifiedOCL is based on the OCLinEcore syntax which allows an
EMF Ecore model [172] to be combined with OCL statements. The OCLinEcore gram-
mar extends the EssentialOCL[55] grammar, which allows OCL expressions to be spe-
cified but has no relation to the Ecore (or any other) data model. The OCLinEcore
language and the Ecore metamodel fitted already well for our needs, but we aimed for
UnifiedOCL being more suitable for UML concepts than for Ecore ones and further
were in need of additional components to fulfil our requirements as explained below.

Thus, we derived UnifiedOCL by extending the EssentialOCL language and re-
using the OCLinEcore language components and Ecore metamodel. We changed the
metamodel by extending OCLinEcore concepts with attributes or relationships required
to reflect the structure of a UML class diagram. For example, this involved introducing
(1) a grammar element to reflect the concept of encapsulation levels (modifiers public,
private, protected, package), (2) simple exceptions, (3) a directionality meaning
for method parameters (in, out, inout), (4) user-defined primitive types, (5) a Date

built-in primitive type aimed to store time and date related values (not supported
in OCLinEcore), and (6) a grammar element to allow operations to be specified as
multithreaded. Additionally, and most important, we introduced in the UnifiedOCL
metamodel support for the special constraint representation labels described above.
We further extended the metamodel to support the association of constraints to DQ
dimensions with appropriate constraint violation penalties as described below.

To support DQ, we extended the UnifiedOCL syntax in order to represent DQ map-
pings directly in UnifiedOCL. With the following grammar, it is possible to represent
any mapping from a label or OCL invariant, respectively, to DQ dimensions and con-
straint violation penalties.

DQ-MAPPINGS_DEFINITION := ’[’, DQ-MAPPING,

{[’,’] DQ-MAPPING}, ’]’

DQ-MAPPING := dimension-name, penalty-value

This grammar element can be placed directly after the definition of a label or the
invariant specification, respectively, as shown in the example below.

public attribute salary : Real { range(min=2500, max=5300)

[Correctness 0.2] } ;
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Consequently, our framework is able to generate mapping file stubs for a given spe-
cific technology (e.g. Java BV annotations) as part of the translation from UnifiedOCL
to the concrete technology-specific representations. The mapping file stubs can then
be used for an appropriate mapping file (mapping.dqm). The constraint violations
from the translated technology-specific representation can then be sent, for example,
to a DQ monitoring framework such as the one presented in our initial approaches in
Sect. 3.5, where the information from the mapping file is used for the DQ calculations
and appropriate feedback on DQ is given.

In this section, we explained the language components available in UnifiedOCL
by focussing also on extensions to EssentialOCL and OCLinEcore. For the complete
detailed language definition, we refer the interested reader to [173, p.27-48].

5.3 Constraint translations

We distinguish between a non-technology-specific constraint definition and a technology-
specific representation. In UnifiedOCL, the only information required about a con-
straint is the non-technology-specific constraint definition and its particular related
component(s) of the data structure. A technology-specific representation is depend-
ent on the particular programming language where it is used as validation code. Our
bi-directional translations between UnifiedOCL and the technology-specific representa-
tions are concerned with generating the validation code from the non-technology-specific
constraint definition and vice versa.

We will first show an example of the various representations before delving into the
details of the translation process. For the example from Sect. 1.2.1, we could model a
Food entity with a name attribute of type string in a UML editor, add a constraint that
the string length must be at least 3 and then translate this to UnifiedOCL from which
technology-specific representations could be generated.

Thus the non-technology-specific constraint definition would be represented in Uni-
fiedOCL as shown in List. 5.5.

package org.example {

public abstract class Food {

public attribute name: String {length(min=3)};

}

}

Listing 5.5: UnifiedOCL translation example

The technology-specific representations for SQL, BV and Drools were already given
in the beginning of this chapter in List. 5.1, 5.2 and 5.3, respectively.

All translations, except for pure OCL extractions, use the model-to-text (M2T)[195]
approach and consist of three main steps: (1) Obtaining a traversable in-memory model
instance from the source file(s); (2) Model discovery and analysis; (3) Performing a
model to text serialisation.

To get an in-memory model such as an AST, we used three different approaches.
In some cases such as Drools, an existing parser that accompanies the technology was
used. For SQL, a parser was generated with the help of the modelling framework Xtext1

1https://eclipse.org/Xtext

https://eclipse.org/Xtext
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which is based on the ANTLR2 parser. BV is an example where a model discovery tool
such as MoDisco3 was used.

Usually, it is not possible to generate an intermediary model which can later be
serialised to text from a traversable model in a single pass. Therefore, serialisation to the
technology-specific representation cannot run in parallel to model discovery. Frequently,
language concepts are divided among various constructs or scopes, may be nested or
embedded in some external scopes, and may include circular dependencies. In such
cases, we need to analyse the entire model instance, gathering the relevant information
which is then processed and used to produce the output. For example, constraints in
SQL can be defined as part of a column definition, at the table level or as an ALTER

TABLE statement defined completely outside of the table, possibly in a different script.
They all can express the same constraint and we may not be aware of the existence of
a constraint when it is defined in a different posterior location. Therefore, serialisation
is postponed until after the entire intermediary model is discovered and analysed.

Once the intermediary model is complete, it has to be converted to the target textual
representation. This is non-trivial since it requires knowledge about where constraints
can be used in the model and how data structure definitions are affected by them.

In the following two paragraphs, we describe the bi-directional translation process
in more detail before presenting the remaining three translations from UML to Uni-
fiedOCL, OCL extraction and the XML conversion.

When analysing a source model, we identify constraint occurrences with regular
expressions and create Abstract Constraint Representations (ACRs) which contain all
the information about the constraint in a technology independent way. Therefore,
we introduced dictionaries that define which positions of a regular expression string
correspond to which parameters of the constraint. An ACR is the intermediary model
and includes the constraint location, the type of constraint, a constraint name and the
constraint parameters and values. To generate a target representation, we use specific
Target Representation Producers (TRPs) which are also defined in dictionaries and able
to serialise the ACRs to the target textual representation.

If we consider the BV example from List. 5.2, the technology-specific constraint
@Length(min = 3) would be matched with an abstract size constraint from our
Java2UnifiedOCL dictionary. The resulting ACR would then have the location
org.example.Food.name, the type size, a unique name and the lowerBound parameter
with a value of 3. Our General2UnifiedOCL dictionary can be used to translate any
ACR to a specific UnifiedOCL representation. Thus, it would be used here to generate
the representation in List. 5.5. If we would consider the opposite translation from
UnifiedOCL to BV, our UnifiedOCL2Java dictionary would be used for creating both
the ACR and the specific Java representation.

There exist many UML editors and, unfortunately, they do not all use the same
UML file format. Our translation from the graphical UML representation (including
constraints) to UnifiedOCL is based on the UML2 format4 which is the Ecore-based
implementation of the OMG UML standard. It is stored in the XML Metadata In-
terchange (XMI) format, that uses the UML2 schema definition. We do not support

2http://www.antlr.org/
3https://eclipse.org/MoDisco
4http://wiki.eclipse.org/MDT-UML2

http://www.antlr.org/
https://eclipse.org/MoDisco
http://wiki.eclipse.org/MDT-UML2
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the reverse translation since it requires anticipation about the graphical aspects of the
model (colours, positioning, layers, etc.).

Besides our translation from the graphical UML representation to UnifiedOCL and
the bi-directional main translations between UnifiedOCL and the technology-specific
representations, we also support two additional translations. The extraction of OCL
statements from UnifiedOCL increases the usefulness of our system since there exist
tools such as DresdenOCL5 which allow objects such as JavaBeans to be validated based
on the pure OCL specification. Further, we ensure portability with a bi-directional
conversion between the UnifiedOCL and the XML format.

5.4 Evaluation

To evaluate how this approach and implementation was perceived by potential users
and find ways in which it could be improved, we conducted a user study with software
engineers from both research and industry. We had 20 participants (75% male, 25%
female) of whom 50% had at some time studied or worked in a university and 75% had
at some time worked in industry.

The participants had to solve three tasks with the help of our tool. Before each task,
any additional features of the tool relevant to the task were explained. A feedback
questionnaire based on a 5-point Likert-type scale (‘totally agree’, ‘agree’, ‘neutral’,
‘disagree’ and ‘totally disagree’) was used. In the summary of results given here, we
combine the first two values into ‘agree’ and the last two values into ‘disagree’.

In the first task, participants were presented with a UML diagram showing two
simple, connected entities without any constraints that had a total of eight attributes.
They had to choose a representation from Java, SQL or Drools and manually convert
the entity specifications into code. They were then presented with the same UML
diagram with seven constraint definitions using the UnifiedOCL label notation and had
to enrich their code with the corresponding code without providing an introduction to
the notation. Finally, they had to generate the same technology-specific representation
using our tool, analysing the generated code and editing it if it did not meet their
expectations.

For the second task, participants were given a short introduction to UnifiedOCL
and then asked to add a field to one of the classes from task 1 along with a specific
constraint.

In the third task, participants were given one definition in Java and one in SQL
with ten attributes and eight constraints and given the task of combining these to come
up with a single representation in Java, SQL or UnifiedOCL. They were first asked
to compare the definitions manually and then use the tool to perform any necessary
translations to their choice of representation. With this task, we not only wanted to find
out their preferences and test how well they remembered features of the system from
the first task, but also to allow them to explore use cases and discover the potential of
the system.

We now present a summary of the results and note that full details of the results
are provided in [173, p.136-143].

5https://github.com/dresden-ocl

https://github.com/dresden-ocl
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85% of the participants chose Java in task 1, with only 15% choosing SQL. Nobody
used Drools. Only 30% of the participants were able to manually solve the task com-
pletely, while 70% solved it partially. Moreover, almost half of those who completed the
task partially (43%) declared their knowledge in the selected technology as very good.
The great majority of users (80%) declared their understanding of UML as at least
good. Therefore, it is unlikely that the main reason for not solving the task completely
would be the misunderstanding of the diagram, especially since it was very simple. The
average time users spent on writing code in the selected technology was 185 sec (with a
standard deviation of 70 sec). Enriching the representation with constraints took users
on average 224 sec (with a standard deviation of 73 sec). The average time needed to
solve the task using our tool was 46 sec (with a standard deviation of 21 sec). Taking
into account the fact that the system was new to them, this is a good indication that the
system could save developer time. Moreover, all participants agreed that the generated
code met their expectations. Only five of them needed to slightly adjust the code by
applying formatting, organising imports, or altering names. The great majority of the
participants (80%) agreed that our tool solved all of the difficulties encountered during
the manual code creation. All participants agreed that the tool was easy to learn and
use. Also all agreed that it makes the process of code generation faster and nobody
disagreed that it simplifies the process of the technology-specific code generation.

Task two was successfully solved by almost all participants (90% knew how to define
the field and 85% the constraint). The reason for failing this task was misunderstanding
what to do rather than not knowing how to do it. 90% of users agreed that the
UnifiedOCL syntax is intuitive. Similarly, almost all (75%) agreed that they would
remember the UnifiedOCL syntax required to solve this task in the future.

For task three, all participants knew how to translate files from the source repres-
entation into the target representation (80% totally agree, 20% agree). Moreover, we
observed that almost all the participants knew immediately what action was required
to execute the translation which shows a good level of memorability for the system.
Also, there were no errors in the use of the system and none of the participants stated
that they did not understand the concepts of constraint translations and our unified
constraint model. 85% of users considered the manual comparison of two representa-
tions to be time-consuming, with 55% agreeing that it is not an easy task. 75% agreed
that the translation between two representations is difficult, while 95% agreed that it
is time-consuming.

Most users (60%) chose UnifiedOCL as the common format used for the compar-
ison. They motivated their choice with statements such as ‘UnifiedOCL can represent
all constraints whereas Java and SQL will have some problems with certain constraints’,
‘this translation is easier and more obvious’ and ‘this representation benefits from syn-
tax highlighting with UnifiedOCL labels for a better perception of constraints’. This
indicates that UnifiedOCL has a user-friendly representation and a convenient code
editor. It is interesting to note that their choice of UnifiedOCL came after just a short
introduction in task 2, which suggests that it is both intuitive and easy to learn. Most
participants selecting the conversion to Java or SQL justified it in terms of familiarity,
but one of them stated that UnifiedOCL would be the preferred choice if they had more
experience with it.

95% of participants agreed that the system really helps in a comparison of various
constraint translations (70% totally agree, 25% agree). 85% also agreed that transla-
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tions would be helpful for solving various software engineering tasks, while 90% agreed
that it would be helpful in system modelling.

All participants agreed that the tool was efficient and convenient to use, and 85%
were satisfied with the results. Those who were not satisfied were missing some sort
of order of the attributes in the target representation. We decided to maintain the
same order of attributes as in the source representation, but nevertheless it is one of
the extensions that should be considered since it was mentioned by seven participants
(35%).

5.5 Conclusions

With the approach described in this chapter, we have presented UnifiedOCL, a uni-
fied constraint representation for constraints that is expressive enough to cover most
concepts from UML class diagrams together with their constraints. A developer can
define constraints using a mix of OCL syntax and UnifiedOCL labels which is a conveni-
ent way of labelling common forms of constraints, some of which cannot be expressed
in OCL. Labels can be used to express constraints that are technology-specific such as
those supported in BV, SQL and Drools. UnifiedOCL is extensible as new labels can be
introduced at any time. Moreover, constraints defined in UnifiedOCL can be associated
with constraint violation penalties and mapped to specific DQ dimensions. Therefore,
UnifiedOCL provides the basis for DQ measures which can be used to calculate DQ
scores and give feedback on DQ.

By providing constraint translation from UML to UnifiedOCL as well as bi-directional
translations between UnifiedOCL and various technology-specific representations, we of-
fer a technology-independent repository for constraint definitions that are validated in
different components of an information system, thereby facilitating model-driven man-
agement of constraints. The bi-directional translations can be extended by means of
plugins with new representations such as JML or JavaScript.

We also discussed a general architecture for translations, elaborating common steps
required to construct a code generator for translating a constraint from one representa-
tion to another. We implemented all translations along with the UnifiedOCL represent-
ation as a set of Eclipse plugins. A user study supported our claims that the problems
addressed by our system are important and can reduce developer effort.

So far, UnifiedOCL labels are applicable only to attributes, but they could be ex-
tended to entire classes, method parameters and return values. Further, our constraint
translations generate complete target representations without regard to previously gen-
erated output. It could be useful to regenerate just parts of the output, so that existing
pieces of code in the target representation could be preserved. This could be achieved by
annotating parts of the source or target code specification, as well as the intermediate
representation UnifiedOCL.

Currently, our implemented system relies heavily on Eclipse Modeling Framework
(EMF) and hence is dependent on the Eclipse Integrated Development Environments
(IDE). To use our system outside of the Eclipse IDE, it is possible to create a Headless
Build which includes all the required Open Service Gateway Initiative (OSGi) bundles.

Finally, we note that, although our system provides a translation from UnifiedOCL
to pure OCL, we do not support Round Trip Engineering (RTE) since we only handle
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a unidirectional translation from UML to UnifiedOCL.
Another focus of our work was to also include implicit and explicit feedback of users

to the quality of data items which enriches our concepts to cover additional aspects of
DQ which cannot be covered by constraint compliance. We present such an approach
in Chap. 7.





6
Data quality management in mobile

applications

Smartphones and the use of mobile applications nowadays play an essential role in
our modern world. Beyond dispute, users around the globe spend a large amount of
time accessing information via their mobile devices. Often, mobile applications are
dependent applications which communicate with other applications and transfer data
to and from information systems. With this interdependence, and since requirements
and constraints usually change over time, the question arises how sets of constraints,
which exist in information systems and their dependent mobile applications, can be
managed in a uniform way and kept consistent during software evolution.

Further, mobile applications shape new ways of accessing, displaying and editing
information, since they usually provide simpler interfaces than classical desktop ap-
plications in order to provide convenient and appropriate data management for small
screens. Nonetheless, managing data on a portable device must not negatively influence
the DQ such as the correctness of input data. Thus, it is important, besides having
a consistent constraint set, to provide appropriate feedback on DQ also for mobile
applications.

In this chapter, we present an approach for synchronising constraint sets between a
main and a mobile application and explore ways of giving feedback on DQ for portable
devices. With this approach, a constraint set is managed in the main information sys-
tem and a subset of this constraint set is injected into the dependent mobile application
without requiring the developer to take care of it. We translate the constraint subset
from the main application to business rules which are validated in the mobile applica-
tion by a rule engine. Further, we propose a responsive GUI which adapts automatically
to the synchronised constraint subset. In general, this approach is not limited to inject-
ing a constraint set into a mobile application but could be applied to any dependent
information system with business rules.

As an extension of our FoodCASE information system, we developed a mobile applic-
ation for managing food item purchases within a TDS. The resulting scientific shopping
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data is transferred to FoodCASE where it is further used as the food consumption data.
Since the final risk assessment in a TDS is also based on this data, it is essential to
provide a high level of DQ.

We investigated and implemented different DQ feedback presentations based on
the device size and evaluated our approach with a user study where participants had
to compare the different presentations. At the end of the chapter, we report on our
findings.

6.1 Related work

Adaptive interfaces have been investigated in research for multiple domains and various
needs. For example, an adaptive interface in a tool for passive persuasion of participants
is suggested in [155]. With the adaptive interface, the authors intend to make feedback
continually effective within their tool. Other examples include [71, 92, 83, 26].

In [153], the authors specifically conducted an analysis for small screens by using
ideas from rule-based programming. With their approach, it is possible to match any
source pattern with several transformation rules and to determine which rules should be
applied by using conflict resolution. They use multiple models which are subsequently
transformed from one to another, while different interface parts are matched with vari-
ous proposed rules. The result of the matching is the positioning of all interface parts
to a predefined screen size. The following three main objectives are proposed to op-
timise this process: (1) Maximum use of the available space; (2) Minimum amount of
navigation clicks; (3) Minimum scrolling.

The adaptive user interface of a personalised transportation system was investigated
in [129]. The usual routes that users have build the basis for providing an interface.
As soon as a new route is added, the user interface is extended. The authors compare
their adaptive interface solution with two other approaches showing decreased click and
time costs for the adaptive interface.

A more general method for providing an adaptive interface, which combines a user
interface runtime architecture and runtime user interface models, is presented in [160].
In their model-based approach, the user interface can be adapted at runtime to nu-
merous contexts-of-use. Their system is able to generate the interface based on the
dynamic context information from the environment.

Adaptive UIs are concerned about providing easy-to-use UIs which adjust to specific
preferences of users and/or changing data. In [26, 25], a technique, called Rich Entity
Aspect/Audit Design (READ), is proposed that provides adaptive UIs for production
enterprise systems. Their aim was to reduce development and maintenance effort to a
degree which is equivalent to the development of a single UI. With this technique, it is
not necessary for developers to design tables or forms for each panel or page. ‘Instead,
they design generic and reusable transformation rules capable of presenting application
data instances in the UI while considering the runtime context.’ [25] Their approach
considers existing standards for application frameworks and AOP. To face the efforts
and complexity related to adaptive UI design, their approach employs code-inspection,
where they propose the inspection and reuse of application business rules. The work also
includes the development of the library ‘AspectFaces’ for Java systems that implements
their READ framework. In their work, aspects are added based on annotations.
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An approach for generating UIs from domain objects is presented in [96, 97]. Their
framework, called ‘Metawidget’, is based on MDD and capable of inspecting an applic-
ation’s back-end architecture. Based on this information, native UI subcomponents are
created which match the back-end (model).

In [168], the design of a framework for adaptive user interfaces on mobile devices
for the Android1 platform is proposed. Their focus is context-aware computing, in-
volving hardware elements of devices, such as Global Positioning System (GPS) and
light sensors. They propose a concern-separating style of AOP which provides de-
velopers with access to the context of device sensors to adapt individual application
aspects.

6.2 Approach

In this section, we present our approach to unified constraint management and DQ
feedback for two dependent applications. To illustrate the approach, we will use the
example of the FoodCASE main application (client, server and database) and mobile
application (with its own database) already introduced in Chap. 1 on pages 4 and 6. A
simplified depiction of this scenario information system is presented in Fig. 6.1.

Desktop
Application

W
EB

 A
PI Cross‐platform 

Mobile Application

Figure 6.1: Scenario information system

We distinguish between a source system, for example the FoodCASE main applica-
tion depicted on the left side, and a target system, for example the FoodCASE mobile
application depicted on the right side.

In our scenario, the FoodCASE client is used to manage all data, while the mobile
application is used to manage a subset of data related to buying food samples in grocery
stores. Both systems contain a set of constraints which differ from each other and
therefore it is necessary to keep track of the set of relevant constraints for each system
and keep them synchronised.

The source system is the main application for which a set of constraints is defined
and managed. The target system is the mobile application which is connected with the
source system by transferring data, as depicted in the centre of Fig. 6.1. Since the target
system delivers input data to the source system, it shares a subset of the constraint
set from the source system. This subset of constraints is used in the target system
for two purposes: (1) Data validation where the constraint violations are the basis for

1https://developer.android.com/index.html

https://developer.android.com/index.html
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calculating and giving feedback on DQ to the users of the target system; (2) Generating
the UI which adapts to the set of constraints. Different levels of constraint importance
can be considered for the UI generation, for example, to place attribute fields with more
important constraints at a prominent position. Further, in our approach, the way of
giving feedback on DQ to the users of the target system is dependent on the device
screen size. Thus, the way of giving feedback on DQ differs for different devices such
as desktop screens, tablets and mobile phones.

In summary, our approach consists of three components which work hand in hand
based on the same constraint set: (1) Constraint injection/synchronisation which tar-
gets the problem of unified constraint management; (2) Adaptive user interface which
simplifies the creation and maintenance of GUIs for changing constraints over time; (3)
DQ feedback appropriate to the device screen size which brings constraint compliance
in relation to DQ feedback especially for different display devices. In the remainder of
this section, we will first present how these components are integrated before going on
to describe each of these components in detail.

Fig. 6.2 shows an overview of the three components. The source constraint set,
depicted on the left, is initially defined by the developer or afterwards adapted by the
developer. A modification and translation process generates the appropriate subset of
target constraints for the source set which is depicted by the circle arrow between the
systems. The subset is then ready for injection into the target system.

Adaptive interface

Source system

DQ feedback 
responsiveness

Target system

Constraint 
injection

Constraint 
set

Synchronised
generation

Feedback

Components Integration

Figure 6.2: Components integration

The target system receives the constraint subset and updates its constraint repos-
itory. This set is then used to generate the adaptive user interface, depicted in the
upper right corner of the target system, and, the data validation and the dependent
DQ feedback, depicted in the lower right corner.

This approach therefore enables unified constraint management with the develop-
ment of a flexible target system that adapts its data validation and GUI according to
changing constraints. With this and the responsive DQ feedback, it reduces develop-
ment and maintenance effort.

6.2.1 Constraint injection

Constraint injection denotes the transferring of a set of constraints from a source system
to a target system, where the target system’s data validation is then based on the
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injected constraint set without being influenced in its other runtime processes. If the
source and target system use the same constraint representations, the constraints can be
taken as defined in the source system. There solely might be a filtering of unnecessary
constraints which do not apply to any data in the target system. We consider here the
more complex case where the source and target system contain different mechanisms for
data validation and consequently the constraint representations in the two systems are
different. Therefore, a translation process is needed which translates the constraints
from the source representation to the target representation. This is related to the
approach presented in the previous chapter, but here only one particular translation
has to be implemented, instead of multiple bi-directional translations and consequent
multi-translations.

An overview of the constraint injection is presented in Fig. 6.3. The source constraint
set on the left is given in a certain representation, such as BV. Constraints in the set
are divided into and ordered by different groups/levels of importance, indicated by the
leftmost colour graded triangle. More important constraints are indicated with a larger
red bar in the triangle while less important constraints are indicated with a smaller
green bar in the triangle.

Constraint injection
Source system Target system

Synchronised
generation

Constraint Injection Overview

Figure 6.3: Constraint injection overview

An example of a small constraint set with an importance ordering is given in Fig. 6.4.
We use an example of our FoodCASE system for food items. Three constraints are de-
picted there, where the type of constraint and the name are presented in the boxes on
the left side, the constraint itself is presented in the boxes in the centre and the asso-
ciation to a constraint group is presented in the boxes on the right side. Consequently,
a food item (1) must have a name, (2) must have a total weight of at least 100 grams,
and (3) should state the origin of the product.

The background colour of the constraints distinguishes the different levels of im-
portance. The first two constraints, ‘name’ and ‘weight’, are of high importance and
therefore coloured in red. The third constraint, ‘origin’, is only of medium importance
and therefore coloured in orange. Thus, users should be forced to input the first two
attributes but only be recommended to input the third attribute. This example shows
the distinction between two importance groups, nonetheless, our approach is not lim-
ited to a certain number of groups. All subsequent operations and modifications on the
set of constraints is based on the information as given in Fig. 6.4.

Based on the source constraint information, the set of constraints for the target
system is then generated, which is indicated in the centre of Fig. 6.3 by the arrow
from the source to the target system. This includes in a first step the grouping in
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name: text name is present

weight: 
number weight >= 100 grams

origin: text origin is present

mandatory input

mandatory input

non‐mandatory 
input

Figure 6.4: Example constraint set

different importance levels and the filtering of constraints due to various criteria. One
essential criteria is to only keep constraints which are related to appropriate attributes
in the target data. But it is also possible to filter certain types of constraints or certain
importance levels. If we consider the example from above and, if we do not filter any of
the constraints, the information about the constraint importance is used to generate two
constraint sets: Highly important constraints (name and weight), where we consider
the associated attributes as ‘mandatory input’ and less important constraints (origin),
where we consider attributes as ‘non-mandatory input’.

The next important step is to translate each constraint of the filtered source con-
straint set to the appropriate target constraint representation. In the given scenario,
we translate the source constraints to business rules which are then validated in the
target mobile application with a rule engine. A rule file is generated for each import-
ance group. Thus, the generation for the example above results in two rule files for
constraints related to mandatory and non-mandatory input data, respectively. The
target system, depicted in Fig. 6.3 on the right, uses these target constraint sets for
its data validation. For this approach, it is assumed that the target constraint set is
stored and updated in a way that does not influence other target system processes.
This is guaranteed, for example, by using a rule engine that validates data based on the
different rule sets, for the different constraint importances, provided as different files.

The constraint set can be injected more than once to handle changes to the original
set or the filtering process. Thus, constraint synchronisation from the source system
to the target is provided which is indicated in the centre of Fig. 6.3 with the two
circling arrows. The synchronisation can be achieved by either manually triggering
the generation process again, or by automatically running the generation process upon
update of the original constraint set or filtering.

6.2.2 Adaptive user interface

Over the lifetime of software, requirements can change which means that not only
the functionalities may need to be adapted but also the data validation. The source
constraint set can bear the following changes: (1) New constraints might be added; (2)
Existing constraints might be deleted; (3) Constraint importances might be changed;
(4) Constraints themselves might be changed. With constraint synchronisation, as
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described previously, all these changes in the constraint set are taken into account,
which already reduces the maintenance effort. Nonetheless, the target system must also
take these changes into account by adapting its input forms. Otherwise, the mapping
between constraints and appropriate attributes for the data input will be broken.

Consider, for example, the adapted constraint set depicted in Fig. 6.5. The colouring
of the boxes again indicates the importance of the constraints as in the example above.
Two changes were made to the original source constraint set: (1) A new mandatory
constraint for the attribute ‘brand’ was introduced which ensures that the brand name
is present; (2) The importance for the constraint related to the ‘weight’ attribute is now
associated to the non-mandatory input constraint group.

name: text name is present

weight: 
number

origin: text

mandatory input

non‐mandatory 
input

non‐mandatory 
input

brand: text brand name is present mandatory input

weight >= 100 grams

origin is present

Figure 6.5: Adapted example constraint set

The data validation in the target system should now only recommend the input of
the ‘weight’ which is already guaranteed by the constraint synchronisation. For the
constraint concerning the attribute ‘brand’, a new input field must be generated and
placed appropriately in the GUI and the according mandatory constraint checking must
be applied. Thus, an adjustment in the GUI might be needed each time the constraint
set changes. We therefore recommend that the GUI should be built automatically based
on the set of constraints in the target system. This avoids manual code modification
for the GUI and ensures the correct mapping between input attributes and constraints.
Such an adaptive GUI in the dependent target system further reduces the maintenance
effort not only for constraint checking but also in terms of provided input fields. Nev-
ertheless, a developer has to take care of all other functionality concerning the changed
attributes, such as further processing of the input data in addition to data validation.

Fig. 6.6 gives an overview of the adaptive interface generation. The generation is
based on the target constraint set depicted on the far left side.

This set was processed during the constraint injection and extracted into different
constraint set files according to the importance levels, depicted on the left in the target
system. The target system analyses the types and groups of constraints before generat-
ing, the appropriate input forms in the GUI. This is presented in Fig. 6.6 on the right.
The input forms are placed in the GUI according to the importance of their constraint
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Figure 6.6: Adaptive interface generation

checking association.
We generate interfaces for each of the importance groups, placing fields of the same

importance in separate panels and present the panels in order of decreasing importance.
In the case of the example depicted in Fig. 6.5, a user therefore will be presented first
with the mandatory input fields for ‘name’ and ‘brand’. After having entered the
appropriate data without constraint violations, the user is presented with the non-
mandatory input fields ‘weight’ and ‘origin’ which they are only recommended to fill
in. This helps a user focus on the main data input fields and ensures that data which
is required by the system cannot be skipped. In the case of shortage on time or other
reasons, a user can skip the less important input fields or return to them later. In our
scenario application, users are entering data for many input attributes of one entity
(a food item) where they first focus on the most important attributes due to time
limitation and are able to enter less important attributes to a later point in time.

6.2.3 Data quality feedback responsiveness

For guaranteeing the high quality of data, it is crucial to provide users of an information
system with the result of data validation, such as the constraint violations of appropriate
input forms. It is essential that users are aware of the state of DQ in the system and
encouraged to improve it. How feedback on DQ can be given was previously discussed
but it also depends on the capabilities of a system and, within the context of mobile
devices, this is also related to the screen size of a device. Small screens call for different
feedback representations due to the limited available screen space. Therefore, we present
here an approach which provides a responsive DQ feedback for mobile devices.

Since we already adapt the GUI of the target system according to the target con-
straint set, as described in the subsection above, we can also take the screen size into
account to generate a convenient GUI for DQ feedback. We distinguish two screen sizes:
(1) Big screens as depicted in Fig. 6.7 on the left side; (2) Small screens as depicted
in Fig. 6.7 on the right side. Big screens encompass tablets or other big screen devices
while small screens encompass mobile phones. This distinction can be configured since
different application domains, content, goals and design of applications can influence
the way in which feedback should be given.

For both big and small screens, we provide results of the constraint checking directly
on the data input fields to ensure that users are always aware of constraint violations.
For big screens, we provide DQ feedback as part of the main screen, for example, below
input forms, as already discussed in previous approaches. For small screens, we provide
DQ feedback on separated side-panels which can be access by swiping to the left and
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Figure 6.7: Different screen sizes

right from an input form panel. Therefore, users can use the full small screen for their
main interaction with the application and access the additional panels for DQ feedback
if needed, with the side-panels providing the most relevant feedback on DQ. Further, we
provide additional feedback, such as detailed statistics, on a separate view which can
be accessed via a navigation button. Dependent on the screen size type, DQ feedback
is presented in different ways, such as with plots, tables or both plots and tables.

6.3 Implementation

To realise our approach in the TDS-Exposure project, we developed a mobile applica-
tion as part of the FoodCASE information system, to support the sampling step where
subsamples (concrete food items) have to be bought in shops. Shopping lists for sub-
samples can be created in the main FoodCASE desktop application which are then
downloaded onto mobile devices. Thus, the mobile application contains only a subset
of the FoodCASE main application data, namely subsample data for buying concrete
food items in grocery stores. The shopping lists on the mobile devices are used by
the appropriate personnel to find and buy the correct food items and to enter detailed
information about each food item through the mobile application. This subset of shop-
ping data is then transferred to the FoodCASE main application where it is further
processed. How the sampling step is embedded in the whole TDS process was already
introduced in Chap. 1 on pages 4 and 6.

Since a significant amount of input data is transferred from the mobile application
to the FoodCASE main application, it is inevitable that the constraint checking and
a high level of DQ is already guaranteed while entering data into the mobile applic-
ation. Constraints on the subsample entity in the mobile application are identical to
the constraints on the subsample entity in the FoodCASE main application. But no
constraints from other entities of the FoodCASE main application are necessary in the
mobile application. Thus, one main requirement was to synchronise the constraint set
from the FoodCASE main application, as the source system, with the constraint set in
the mobile application, as the target system. Further, besides the pre-defined business
processes, we defined the requirements that the mobile application should be connected
to the desktop application through a Web API, that it should work on multiple mobile
operating systems (cross-platform) and that it should provide DQ measurements and
DQ feedback based on constraint compliance.

To enable cross-platform development, we decided for the open-source cross-platform
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framework PhoneGap2 which provides a large amount of plugins and has a large com-
munity. For the implementation of the GUIs we used the Ionic Framework3 which is
based on Cordova4 and AngularJS5 and supports the building of native-feeling mobile
applications using web technologies such as HTML, CSS and JavaScript.

For the constraint management in the mobile application, it was required that the
data validation could be performed solely in the mobile application without a connection
to the source system, since it must be possible to work completely offline during a
shopping trip. For mobile applications lightweight solutions are always favoured to
reduce the application package size, amount of memory used and battery consumption.
To realise our approach, it was most important that constraint definition was de-coupled
from the source code and possible to update during runtime of the mobile application.
We therefore decided on rule-based validation implemented with Nools which is a Rete
algorithm based rule engine written entirely in JavaScript. The Nools rule engine
provides the following important features for our approach: (1) It is possible to define
rules in a separate file using the Nools language; (2) It is possible to express very
complex rules; (3) Rules can be compiled and used on-the-go which enables changing
rules during runtime without negatively influencing the application.

The mobile application had to be able to store data persistently, including data
received from the source system, input data and high resolution photographs of food
items. We decided to use the SQLite6 database, since it met our requirements for
data storage, is well supported, is compatible with PhoneGap, has a large developer
community, and provides stable releases as well as detailed documentation.

Within the FoodCASE main application, we implemented a Web API for data trans-
fer with the mobile application and a constraint generation component to translate con-
straints from the source system to the target system representation. Here, we will only
explain the constraint generation which is essential for our constraint synchronisation
approach.

6.3.1 Constraint injection

To perform the constraint translations, first all constraints from the FoodCASE entity
TdsSubSample are collected, since it is the only entity required for the mobile applic-
ation. List. 6.1 shows the BV constraint definitions from the example presented in
Fig. 6.5. The constraint definitions with BV annotations in the example are similar to
previously presented BV examples, where the annotation type, such as @NotNull and
@Min, defines the constraint type and the payload element, such as Mandatory.class

and NonMandatory.class, defines the importance of the constraint. We currently dis-
tinguish only two groups of importance in our implementation but it would also be
possible to define other importance classes.

2http://phonegap.com/
3http://ionicframework.com/
4https://cordova.apache.org/
5https://angular.io/
6https://www.sqlite.org/

http://phonegap.com/
http://ionicframework.com/
https://cordova.apache.org/
https://angular.io/
https://www.sqlite.org/
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public class TdsSubSample {

@NotNull(payload = Mandatory.class)

private String name;

@NotNull(payload = Mandatory.class)

private String brand;

@Min(value = 100, payload = NonMandatory.class)

private Integer weight;

@NotNull(payload = NonMandatory.class)

private String origin;

}

Listing 6.1: BV example

Our implementation analyses the available constraints and extracts the following
details: (1) The importance, such as mandatory or non-mandatory; (2) The validated
field, such as name, brand, weight and origin; (3) The field type, such as String and
Integer. Our ValidationGenerator class then translates the constraint definitions
to appropriate Nools rules and writes separated rule files for each importance level. In
our case, two files are created for mandatory and non-mandatory rules, respectively.
List. 6.2 shows the example for the generated mandatory rules file where the two rules
for the name and brand attributes are defined.

rule CheckNameRequired {

when {

m : Model isUndefinedOrNull(m.name) or m.name.length eq 0;

}

then {

m.errors.push("name is required");

}

}

rule CheckBrandRequired {

when {

m : Model isUndefinedOrNull(m.brand) or m.brand.length eq 0;

}

then {

m.errors.push("brand is required");

}

}

Listing 6.2: Nools example

With the generation of the Nools rules files, the source side constraint synchron-
isation part is finished and the rule files are ready for the constraint injection process
to the target system. The rule files are then sent to the target system as described in
Sect. 6.2.1.
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6.3.2 Adaptive user interface

In our mobile application, there exist three use cases where constraint checking is
needed: (1) Editing data of an existing item in the shop before purchase; (2) Adding a
new item with input data in the shop for purchase; (3) Input of additional information
after purchase outside of the shop. For all these cases, the constraint checking within
the mobile application, based on the injected rule files, is implemented as follows. If
a user invokes one of the three use cases, the rules from the rule files are extracted,
and the appropriate GUI with all associated attribute fields and a local model object is
created. The local model is then used for all operations that require a constraint check.

The constraint checking process is implemented as follows: (1) For each change in
an attribute field of the GUI, a check function is called based on the local model; (2)
The match function for the model is executed, which triggers the appropriate constraint
checking, and returns either a set of errors in the case of constraint violations, or an
empty set if no constraint violations occurred; (3) If errors exist, the corresponding
error message(s), defined in the rule file, is/are displayed beneath the attribute field
in an error message box, as depicted in Fig. 6.8. If check functions are called multiple
times without changes to the rule files, the model does not have to be re-created again.

Figure 6.8: Mandatory input validation
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6.3.3 Data quality feedback

The error message boxes which appear upon constraint violations beneath the appro-
priate attribute fields in the GUI, as described in the previous subsection, are a direct
way of giving feedback on DQ during data input.

To give additional feedback on DQ, we implemented three different feedback versions
which were then evaluated in a user study, described in the next section. The first
version, named basic, is a responsive DQ feedback which realises our approach presented
in Sect. 6.2.3. We considered a screen height below 650 pixels as a small screen size
device, while others were considered as large screen size devices.

Fig. 6.9a shows the DQ feedback for large screens, where the feedback with a pie
chart and detailed information in a table is positioned at the bottom of the GUI panel,
taking 35% of the screen size. It provides an overview of the buying status of all food
items. Fig. 6.9b shows the DQ feedback for small screens, where the same feedback
content is available on a side panel of the application, visible if a user swipes right.

(a) Large screen (b) Small screen

Figure 6.9: Basic version: responsive data quality feedback

In both cases, more detailed feedback information is available on a separate ap-
plication page which can be opened by clicking on the button ‘Detailed statistics’. It
contains bar charts representing the DQ levels in each shop. DQ is calculated as a rela-
tion of filled and empty data input fields in each shop for the most relevant attributes,



146 Chapter 6. Data quality management in mobile applications

which provides a measure of completeness.
The second feedback version, named weather, introduces a metaphorical repres-

entation of DQ, where five different weather conditions (thunderstorm, rain, cloudy,
intermediate, sunny) represent different levels of DQ. Again the completeness for the
most relative attributes per food item is calculated as a measure for DQ. The appropri-
ate mapping to a certain weather condition is displayed as a small icon on the top panel
of the application, as shown in Fig. 6.10a. Additionally, on the available side panel the
weather condition icon replaces the pie chart from the basic feedback approach, as
shown in Fig. 6.10b.

(a) Icon feedback (b) Side panel feedback

Figure 6.10: Weather version

The third feedback version, named modal, provides again an overview of the buying
status of all food items with a pie chart and a table, but available in a special pop-up
window, as shown in Fig. 6.11. The pop-up window only appears if the status of a
food item was changed, for example when it was bought. In this version, the status
change is the only event that triggers the DQ feedback. During data input, no detailed
information on DQ is available for a food item.
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Figure 6.11: Modal version

6.4 Evaluation

To evaluate our responsive DQ feedback, we carried out a user study with thirteen
participants, mainly studying or working in the computer science area, to investigate
the three different versions of DQ feedback. The goal of the study was to identify the
user’s preferences and assess the usability of the mobile application also concerning DQ
feedback.

We were simulating a shop visit where the users were asked to buy five different
food items which we presented to the users. They had to buy, edit or delete food items
with the help of our mobile application provided in all three different versions basic,
weather and modal. Besides the DQ feedback which they received from the application
during runtime, we also presented screenshots of different constraint violation messages
that could occur during the use of the application. In order to avoid a learning effect
in using our mobile application, the users could familiarise themselves first by using
the application without any DQ feedback and were then presented with the different
versions in a shuffled order for each participant.

During the study, the users had to fill out a questionnaire related to the following
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four parts: (1) DQ feedback; (2) Usability; (3) Data validation; (4) Personal user
feedback. In all parts, except the personal user feedback, the participants answered the
questions by ticking a checkbox on a Likert-type scale with possible answers ‘strongly
agree’, ‘agree’, ‘neutral’, ‘disagree’ and ‘strongly disagree’.

In the DQ feedback part, the participants purchased the food items with each mobile
application version and answered the following three questions for each version: ‘The
data quality feedback representation was clear for me’, ‘I found the feedback useful’, and
‘The feedback was helpful in improving the data quality’. The usability part contained
thirteen questions about the general usability of the different versions, such as ‘The
navigation was clear and consistent’, ‘It was clear how to use this application’, ‘I was
able to complete the tasks efficiently using this application’, ‘’, ‘It was easy to add the
data’, ‘The help provided by the application was clear’ and ‘The application’s error
messages helped me to fix the problem’. We presented three screenshots in the data
validation part with different error messages for which the participants were asked if
they could correct the errors. Concerning that, they had to answer the following three
questions: ‘It was easy for me to understand where incorrect data was entered’, ‘It
was easy for me to understand how I need to change the input data in order to satisfy
the validation constraints’, and ‘The validation errors were displayed clearly’. In the
personal user feedback part, the participants had to answer the following three questions
with their own words: ‘Please specify, which application version you like the most and
why’, ‘Please add any feedback that you think might be valuable for the application
development’, and the optional question about paper prototyping ‘Please compose the
application interface in a way you see its ideal version’.

For the sake of brevity, we will present only a summary of the most important
findings in the remainder of this section. The detailed description of the study setup
and the full list of questions and results are provided in [15] on pages 43 to 50 and 66
to 75, respectively.

For the majority of the users, all the DQ feedback representations were clearly un-
derstandable. Thus, our pie charts, tables and metaphorical weather depiction are gen-
erally good solutions for visualising DQ feedback. The basic and weather versions were
rated more useful than the modal version, possibly due to the simple representations
and their non-invasive nature. The weather version was rated as the most helpful in im-
proving DQ and giving the strongest motivation to improve DQ. This perception could
be due to its simplicity and the immediately visible effect as soon as DQ is affected. On
the contrary, the modal version was not appreciated that much since it seems to show
not enough information to perform DQ improvements and is less motivating for the
users. All users were generally satisfied with the usability of the application, the ma-
jority rated the application as easy to use and that they were able to complete the tasks
efficiently. The error messages which were encountered during the study were rated as
helpful in fixing the problems and only two participants stated that the help provided
by the application is not enough. The error representation for the validation feedback
was also rated as good and sufficiently detailed for the majority of the participants to
cope with the issues. From the personal feedback of the participants, it can be seen
that less invasive and easy to understand DQ representations are preferred. Further,
providing motivating ways to improve DQ is important to encourage users to instantly
enhance DQ. Overall, the basic and weather versions were rated as comparably good
in regard to the usefulness of feedback. The weather version was the most appreciated
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but even it could be improved by combining it with features from the basic version,
such as additional configurable charts. Further, it could be indicated how much DQ
improvement is needed to reach the next higher DQ level or better weather condition,
respectively.

6.5 Conclusions

With the approach presented in this chapter, we have introduced a novel constraint
injection concept which allows for a one-way synchronisation of constraints including
individual constraint importance levels between dependent information system applica-
tions. Thus, changes to the constraints in a source system can be propagated automat-
ically to a target system. We further introduced an adaptive user interface generation
based on the injected constraint set which reduces manual creation and adjustments of
GUI code in the target system. Input forms for the GUI are generated and grouped
dependent on the constraint set and the individual constraint importances, such as
mandatory and non-mandatory constraints. More important attributes for input data
are placed in a prominent position to facilitate maintaining a high level of DQ. We
presented different ways of providing data validation and DQ feedback in a mobile ap-
plication which includes an approach on responsive DQ feedback that automatically
adjusts feedback content and position depending on the device screen size. With this,
DQ feedback is customised to the available data input device and therefore further
enhances the possibilities to motivate users to improve DQ while entering data. Our
concepts were implemented within our FoodCASE information system, as a desktop
and dependent mobile application and a user study was carried out to evaluate the
different DQ feedback representations. The feedback from the study participants was
positive and provides insights on giving DQ feedback in mobile applications.

The presented approach is explicitly applicable for the injection of a constraint set
from one main system to a dependent system which is designed to manage a subset of
the main data or at most the same data. The constraints are injected in one direction
from the source to the target system where the constraint definitions in the target
system cannot exceed the definitions of the source system. Although the input forms
of the GUI in the target system are generated automatically, a developer has to take
care of the additional business logic which handles the appropriate input attributes.





7
Hybrid approach with subjective data

quality assessment

So far, our final approaches tackle the problem of unified constraint management by
covering (1) homogeneous usage of constraint definitions throughout an information sys-
tem, such as BV, (2) a unified constraint representation combined with bi-directional
translations to and from technology-specific constraint representations for the different
components in an information system, and (3) a specific constraint injection from a
main system into a dependent application. For giving feedback on DQ, we have presen-
ted various measurement, calculation and visualisation concepts, always based only on
constraint compliance. While the appropriate DQMFs for (1) and (3) are implemented
as part of an information system, and hence are considered as integrated approaches,
the DQMF for (2) is implemented external to an information system, and hence is
considered as a separated approach.

With the approach described in this chapter, we aimed to provide a convenient uni-
fied constraint management and data validation mechanism for systems with heterogen-
eous constraint definitions following a hybrid approach, as a combination of previously
introduced integrated and separated concepts. The validation logic is implemented in
validation components for different tiers as part of the DQMF. Therefore, the approach
could be considered as a separated approach. But the components are integrated in
an information system for data validation independent of the DQMF. Due to this val-
idation component injection, the approach enables validation functionality from the
separated DQMF to be integrated into an information system, and hence is considered
as a hybrid approach.

The hybrid dependency between the DQMF and an information system in com-
bination with an architecture that allows for separated DQ analysis monitoring, as
introduced in the initial approach in Sect. 3.5, was the driving factor for this approach.
The further aim was to incorporate previously presented concepts and provide addi-
tional new features for assessing DQ with a combination of objective and subjective
DQ metrics/measures.

151
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Therefore, the approach incorporates all previously presented concepts concern-
ing unified constraint management, input data validation (DQIF), and DQ analysis
(DQAF). The presented DQMF also provides unified constraint definitions, measures
and calculations to analyse the quality of data, and feedback on how to improve DQ.
It further supports different constraint definitions for different user groups and offers
flexible data validation with multiple constraint violation severities. The constraint
checking is based on constraint repositories and AOP where we also provide the free-
dom to modify, add and delete constraints during the runtime of an information system.

We distinguish between a monitored information system and our DQMF. A mon-
itored information system is the main system which provides input validation based on
unified constraint definitions stored in constraint repositories central to the monitored
information system. Our DQMF provides constraint checking components (a module
and a library) which can be used in different tiers of a monitored information system,
such as the presentation and the logic tier, to guarantee input validation in multiple
tiers based on the central constraint repositories. At the same time, the constraint
checking components are used to send validation and feedback metadata from the mon-
itored information system to our DQMF which processes the metadata as a separately
running application for DQ analysis and DQ monitoring. Thus, our components are in-
tegrated into the monitored information system for data validation but the DQ analysis
is processed in our separated DQ management application. Therefore, the DQ analysis
and DQ monitoring can be performed in the separated application without influencing
the runtime of the main system. Nonetheless, the identification of data is guaranteed to
enable single data instances in the monitored information system to be improved upon
indication of deficient DQ in the DQ management application. The DQ management
application further provides functionality to maintain the constraints in the constraint
repositories, where changes to the constraints take immediate effect on data validation
in the monitored information system.

With this approach, we base DQ measures and feedback not only on constraint
compliance but provide new concepts to include implicit and explicit user feedback for
our DQ calculations to incorporate both objective and subjective DQ assessment. As
already indicated in Sect. 2.6.2, not all DQ issues can be identified by objective DQ
assessment expressed by constraint checking. There exist, for example, semantic issues
which cannot be identified by a machine and therefore call for additional subjective DQ
assessment. Moreover, within objective DQ assessment based on constraint checking,
a set of constraints might also include incorrect constraint definitions or definitions
might be missing which could be discovered by comparing objective and subjective DQ
assessment.

Therefore, we propose a DQ vector space model which represents DQ in the three
dimensions constraint compliance, explicit user feedback and importance. Constraint
compliance is the fulfilment of the constraint checking which means that the more
constraints are fulfilled, the better the DQ is assumed to be. Explicit user feedback
is a rating of perceived quality from the application users concerning data instances
and constraints. Importance is a combination of the user’s interest in a data instance,
measured by number of clicks, and the importance of an entity as defined by domain
experts, who know the domain and information system well enough to rate the entity.
Explicit user feedback and importance are interesting additional measures which enable
DQ to be indicated as a verification of the constraint compliance DQ indicator or where
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constraint compliance is not applicable for indicating DQ. It is especially promising to
use explicit user feedback in an information system since, due to the Web 2.0, Internet
users turned from data consumers to data producers by editing and rating information,
given for example in images, social networks and product ratings. With this approach,
we also investigated how motivated users of an information system could be to rate the
quality of data they work with.

Based on the DQ vector space model, we provide further measures, so-called DQ
improvement tendencies and a DQ improvement urgency score, to support a DQ analyst
in identifying and enhancing data instances of bad DQ. Thus, our approach provides
measures and visualisations for DQ analysis that go beyond solely constraint compli-
ance, as well as enhanced suggestions for DQ improvement.

To evaluate our approach, we implemented a scenario application FoodCASEWeb
as a web-based counterpart to our FoodCASE desktop application in the food science
domain. FoodCASEWeb provides the most important functionalities of FoodCASE
and operates on the same scientific data. It represents the monitored information
system which sends input validation and user feedback metadata to our separated DQ
management application, named DQAnalytics. In order to evaluate the usefulness and
usability of DQAnalytics, we conducted a user study and present its results where one
outcome was that explicit user feedback is perceived as an important and promising
DQ indicator.

7.1 Approach

Fig. 7.1 gives an overview of the components of our DQMF presented in this chapter.
The monitored information system, as introduced above, is depicted on the left side
in a three-tier architecture with its presentation tier, logic tier and database. The
components of our DQMF are highlighted with a grey background. It consists of four
components: A user input module used in the presentation tier, a business logic library
used in the logic tier, potentially multiple constraint repositories used by both the
module and the library, and a DQ management application depicted on the right side.

The user input module in the presentation tier handles the validation of the data
input in a client application based on the constraint repositories central to the monitored
information system. Further, it provides the functionality to collect implicit and explicit
user feedback on data instances. If a user enters or changes data in the client application,
the defined constraints are checked and immediate validation feedback is given to the
user. Based on the validation results, it can be decided if a data instance can be stored
or needs further DQ improvement. Additionally, information concerning constraint
violations, as well as implicit and explicit user feedback is sent to the connected business
logic library.

The business logic library in the logic tier handles the validation of the data available
in a server application. Further, it provides the functionality to generate metadata on
the constraint checking results for the data validation and the implicit and explicit user
feedback which is used by the DQ management application for DQ analysis and DQ
monitoring. Both the module and the library base their data validation on the same
constraint repositories, available in the monitored information system.

The DQ metadata is then sent to the DQ management application, as depicted in
Fig. 7.1 in the centre with an arrow from the monitored information system to the DQ
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Figure 7.1: Data quality management framework components overview

management application. There, the metadata can be processed independently of the
runtime of the monitored information system to provide feedback on DQ analysis and
DQ monitoring to users of the DQ management application. The DQ management
application stores the metadata in its own database and also provides functionality
to manage the set of constraints in the monitored information system. When a user
of the DQ management application adapts the constraints, the appropriate changes
are propagated to the constraint repositories through the business logic library in the
monitored information system, as depicted in Fig. 7.1 in the centre with an arrow from
the DQ management application to the monitored information system. In the monitored
information system, the constraint repositories are then adapted accordingly and with
immediate effect, with the changed set of constraints being used for validation in the
logic tier and presentation tier.

Thus, the DQMF provides three main capabilities to the monitored information
system: (1) Unified constraint management; (2) Constraint checking; (3) DQ analysis.
In the remainder of this section, we will summarise these capabilities briefly before
providing more details on each of these capabilities in the subsequent sections.

Unified constraint management is achieved by defining constraints in constraint
repositories located at a central place in the monitored information system. The con-
straints are composed in a non-technology-specific way, similar to UnifiedOCL, presen-
ted in Sect. 5.2, extended with the possibility to define individual constraint sets for spe-
cific user groups, which we previously proposed as ‘contracts’ in Chap. 4. This enables
different feedback on DQ to be configured for different user groups. Each constraint set
of a user group is stored in a separate constraint repository. These constraint sets are
used for all validation components, such as the module and the library in the monitored
information system, and are maintained centrally to guarantee constraint management
without redundancy. In addition to previously presented work, this DQMF supports
constraint repository inheritance. Thus, a repository can extend a similar repository
which further reduces redundancy and simplifies constraint maintenance. Moreover,
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the management of constraints in repositories enables the full functionality of adding,
modifying and deleting constraints at runtime. Even if code changes in a logic tier
would need a compilation phase, constraints become active in the monitored informa-
tion system as soon as they are adapted in a repository.

With the module and library, constraint checking is guaranteed in multiple tiers
which is necessary in many cases, as motivated earlier. As in the previous approaches,
constraints are associated with a fine-grained penalty scale which enables multiple dif-
ferent constraint violation severities to be distinguished. We also differentiate between
constraints with a high penalty which must be fulfilled in order not to reject the data,
and constraints with a lower penalty which are only recommended to be fulfilled to
increase the DQ. The different severity levels are again the basis for giving appropriate
DQ feedback to a user, such as error messages and warnings, respectively. The con-
straints are stored in constraint repository files and are not hard-coded in a specific
programming language. This enables the constraint repository files to be used in both
the module and library where the files are parsed and prepared for data validation dur-
ing the runtime. Therefore, changes to the constraints in the repository files during the
runtime can be reflected in the data validation without further effort. For the real-time
parsing of the constraint repository files, and checking of the constraints, we use an
AOP approach in Java for the business logic library, which is applied to a Java-based
logic tier. For the user input module, we use a constraint translation approach in JavaS-
cript, which is applied to a web-based presentation tier.

The data quality analysis in the DQ management application, separated from the
monitored information system, is based on the DQ metadata which is sent from the
business logic library to the DQ management application whenever a data instance is
persisted to the database. The metadata contains information about which constraints
were violated and which were not, from which the constraint compliance of the instances
can be calculated.

With the metadata and the user feedback information, all instances of the monitored
information system can be mapped to our DQ vector space model. Thus, the data qual-
ity analysis is based on our DQ vector space model from which we derive measures and
indicators for DQ concerning the three dimensional space with the dimensions con-
straint compliance, explicit feedback and importance, as introduced above. In previous
approaches, we always only considered constraint compliance as the basis for indicat-
ing DQ. By taking the two additional dimensions into account, a more comprehensive
analysis of DQ can be provided in an information system.

The explicit user feedback can be used to detect semantic issues in the data which
cannot be indicated by constraint checking. For example, consider a constraint which
defines that a person’s name must not be null and must have a minimum length of
2 characters. If the input data contains ‘Paul’, the constraint is valid although the
person’s real name might be ‘Peter’. Or consider that food items with a certain name,
e.g. ‘Apple, Belle de Boskoop’, are supplemented with a mandatory appropriate image
of the food in FoodCASE. If someone uploads an image of a different species of apple,
e.g. an ‘Apple, Gala’, it is complex or impossible for a system to verify the apple in
the image. For a human, semantic issues might be obvious to discover in the data and
therefore explicit user feedback can be given to indicate the low DQ.



156 Chapter 7. Hybrid approach with subjective data quality assessment

Further, explicit user feedback can be used to control the correctness of the set
of constraints. Users can give explicit user feedback on the quality of data they are
accessing or that they do not agree with the DQ feedback based on the constraint
checking. By comparing the indication on DQ based on constraint compliance with that
based on explicit user feedback, constraint compliance can be verified and additional
indication on DQ provided.

The importance can be used to give an entity a certain weight within the compre-
hensive DQ assessment which helps to indicate what data instances of bad DQ should be
improved first. Our new measures, DQ improvement tendencies and DQ improvement
urgency score, base their indication for DQ on two or three dimensions, respectively,
from our DQ vector space model. DQ improvement tendencies help to indicate whether
there exist issues in the data and/or the constraints. The DQ improvement urgency
score helps to rank data instances in terms of improvement urgency and to decide where
DQ should be enhanced first. In our DQMF, we provide ways of collecting additional
feedback information, measures and visualisations to analyse data and indicate DQ
based on our DQ vector space model. In any case where constraints give a different
indication on DQ to the explicit user feedback, a detailed analysis is appropriate where
our DQ management application provides the necessary tools.

7.2 Unified constraint management

We propose a non-technology-specific constraint definition which is therefore independ-
ent of the programming languages with which it is used. The constraint repository files
which contain the constraint definitions should be stored as close as possible to the
monitored information system for fast read access. Defining and adapting constraints
can be done directly in the repository files or with our DQ management application
which provides a GUI with the appropriate functionalities.

As constraints, we consider field constraints and class invariants. Field constraints
are defined for one specific attribute in an entity, for example, to check if an email

attribute of a Person entity complies to the correct email pattern. Class invariants are
defined for multiple attributes in an entity and can include multiple instances for the
constraint checking. For example, if an entity Employee has the attributes salary and
bonus, a class invariant can be defined to check that the bonus value is less than the
salary value.

We decided to define the constraint repository files in JSON since it fulfils the follow-
ing requirements: (1) The definitions should be in machine-readable format which can
be consumed by different platforms and programming languages; (2) Humans should be
able to easily modify the definitions and add new constraints; (3) Built-in parsers, for a
variety of programming languages, should exist for the constraint definition format. An
example content of a JSON constraint repository file is provided in List. 7.1. It is defined
for a user group of a food science institution in Britain ("groupId": "BRITAIN") and
contains constraints for the entities food (TdsFood) and sample (TdsSample), with field
constraints (size, required) for various fields (TdsFood.name, TdsFood.englishname,
TdsSample.name) and a class invariant for the sample entity. A food (e.g. red cherries)
is an entity from a TDS food list which is pooled to a food pool, a so-called sample
entity (e.g. cherries).
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1 { "groupId": "BRITAIN",

2 "extends": "DEFAULT",

3 "versioning": {"version": 128},

4 "settings": {"severityThreshold": 80},

5 "entities": {

6 "TdsFood": {

7 "name": {

8 "size": {

9 "identifier": "TdsFood.name.size#1",

10 "min": 2,

11 "severity": 60,

12 "message": "A food name should have a size of >= 2 characters",

13 "dimensions": [["accuracy",60]]

14 },

15 "required": {

16 "identifier": "TdsFood.name.required#1",

17 "severity": 100,

18 "message": "A food must have a name",

19 "dimensions": [["completeness",100]]

20 }

21 },

22 "englishname": {

23 "required": {

24 "identifier": "TdsFood.englishname.required#1",

25 "disabled": true

26 }}, ... // more fields

27 },

28 "TdsSample": {

29 "name": {

30 "required": {

31 "identifier": "TdsSample.name.required#1",

32 "severity": 100,

33 "message": "A sample must have a name",

34 "dimensions": [["completeness",100]]

35 }

36 },

37 "_invariants": [

38 {

39 "identifier": "TdsSample._invariants.sampleediblequantity#1",

40 "severity": 60,

41 "minWeight": 100,

42 "name": "sampleediblequantity",

43 "message": "The subsamples that contribute to the sample should

have an edible weight of > 100g",

44 "dimensions": [["completeness",60]]

45 } ... // more invariants

46 ]}}}

Listing 7.1: JSON constraint repository example
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A repository is organised in a tree structure and contains several repository-specific
attributes and constraints defined for a set of entities, of the information system. A
conceptional overview of the constraint repository structure is given in Fig. 7.2 for the
tree levels 0 to 2 and Fig. 7.3 for the tree levels 2 to 5.

Repository_A

entities

Entity_A etc... Entity_n

groupId:
Group_Name

extends:
Repository_XY

versioning

version: Integer

settings

severityThreshold:
Integer

Figure 7.2: Constraint repository structure [level 0-2]
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Constraint_1
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etc... Constraint_n

etc... Field_n invariants

Invariant_1 etc... Invariant_n

Figure 7.3: Constraint repository structure [level 2-5]

We will now describe the conceptional structure exemplified by the elements in
List. 7.1.

The root node of the tree defines the repository name which is also used for the JSON
repository file name. The general attributes, specific to a repository, are direct subnodes
of the root node, depicted in Fig. 7.2 on the first level by the four rightmost attributes.
These general attributes are defined in the first four lines of the JSON repository file,
given in List. 7.1. The groupId node defines the group name for which the repository
is applicable. The extends node defines from which repository the actual repository is
extended (inheritance). The versioning node with its version value defines the actual
repository version number. The version number is needed so that the DQ analysis
can keep track of changes in the repositories to be able to recalculate appropriate DQ
measures. The settings node with its severityThreshold value defines a threshold value
above which constraint severity a constraint violation is considered an error.
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The remaining direct root subnode entities, depicted in Fig. 7.2 on the first level
by the leftmost attribute and in List. 7.1 on the fifth line, contains all entity nodes
for which constraints are defined. List. 7.1 shows the entities TdsFood and TdsSample

on lines 6 and 28, respectively. The subtree of an entity node Entity A is depicted in
Fig. 7.3.

An entity node, such as Entity A/TdsFood/TdsSample, contains on a subnode for
each of the appropriate entity fields and one subnode invariants for all class invariants
(lines 7, 22, 29, 37 in List. 7.1). A field node (e.g. Field 1/name) contains subnodes for
each field constraint definition where the invariants node contains subnodes for each
class invariant. A field constraint is of a certain constraint type, such as size and
required shown in List. 7.1 on the lines 8, 15, 23 and 30. The type determines the
built-in validation logic which is explained later. A field constraint node (e.g. Con-
straint 1/size) and a class invariant node (e.g. Invariant 1/lines 38-45 in List. 7.1)
both require certain constraint definition attributes which are listed below. The ap-
propriate attributes are also shown in Fig. 7.3 on the lowest level and in List. 7.1, for
example, on lines 9-13 and 25.

• identifier String

• disabled Boolean (optional)

• severity Integer[0, 100]

• message String

• dimensions Array

– dimension1−n String

– severity1−n Integer[0, 100]

• argument1−k (String, any)

The attribute identifier uniquely identifies a constraint which is used for con-
straint repository inheritance together with the optional attribute disabled. A con-
straint definition is ignored for the validation if disabled is set to true. The severity

attribute defines the influence, in the range of [0,100], of the constraint violation for the
DQ calculation, as already presented in previous approaches. The attribute message

defines the message used for the constraint violation feedback in the user input module.
Depending on the severity attribute and the severityThreshold value, it can be decided
upon constraint violation, if an appropriate data instance can be stored and what kind
of feedback (error/warning) is given to the user to provide a higher DQ. The attribute
dimensions is used to associate one or multiple DQ dimensions (dimensionn) with an
individual severity to a certain constraint, such as the ‘accuracy’ dimension with a
severity of 60 to the size field constraint in List. 7.1 on line 13. Note that the severity of
the constraint is independent of the severity/severities of the dimension(s). Dependent
on the constraint type, additional attributes (argument1 to argumentk) may need to be
provided. Consider, for example, the size field constraint for the field TdsFood.name

in List. 7.1 on lines 8 to 14. A built-in size field constraint type accepts the argument
min as an integer and consequently is violated during validation if the given field value
is below the min value. A required field constraint, for example, does not need any
additional arguments and is violated if the given field value is null.

In our DQMF, multiple built-in field constraint types are available, where we selected
the set of predefined constraint types based on the available constraints in BV. The
complete list of supported built-in field constraint types is available in Appendix D.

In contrast to the built-in field constraint types for which our DQMF provides the
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appropriate predefined validation, class invariants need a custom implemented validator.
The according constraint checking logic is indicated in the class invariant definition with
the type attribute and loaded by our business logic library upon validation.

Constraint repository inheritance is achieved in our DQMF by defining a single
inheritance from one repository to another with the extends attribute, as described
above. If Repository B extends Repository A, the constraints from Repository A are
included in Repository B. Constraints are excluded from inheritance in two cases: (1)
If the same constraint from Repository A is already defined in Repository B with the
same entity, same field and same constraint type; (2) If a constraint in Repository B
has the same identifier defined as a constraint in Repository A and the constraint in
Repository B has the attribute disabled set to true. Thus, case (1) enables constraints
from Repository A to be overwritten in Repository B, and case (2) enables certain
constraints to be explicitly excluded from Repository B, as shown in List. 7.1 on lines
22 to 26.

7.3 Constraint checking

Our DQMF provides constraint checking with our user input model in the presentation
tier and the business logic library in the logic tier. We further provide, as introduced
in previously presented approaches, a fine-grained scale to associate constraints with
a constraint violation severity to calculate and give appropriate feedback on DQ. The
severity scale and severityThreshold were already described in the previous section.
The checking of a constraint always results in a validation to true or false. Thus, a
constraint is either violated or not. Only the association with a severity and the inter-
pretation based on a severity threshold provides the possibility to give a differentiated
feedback on DQ.

Based on the severityThreshold, we can also distinguish between ‘error’ messages
and ‘warning’ messages when giving feedback to the users in the GUI. Thus, on mandat-
ory fields where a constraint with a severity equal or above the severityThreshold is
defined, we provide ‘error’ messages in red colour while on non-mandatory fields where
a constraint with a severity below the severityThreshold is defined, we provide ‘warn-
ing’ messages in orange colour. We distinguish similar severity levels, as presented in
the approach in Chap. 4, namely (Constraint violation type=[Severity range]):
Notice=[0-19], Warning Low=[20-39], Warning Medium=[40-59], Warning High=[60-
79], Error=[80-100]
As in previous approaches, the severity levels can be customised and are not limited to
our choice of levels.

We base our constraint checking in the logic tier on domain entities as is
usual in OO programming. In the business logic, instances should comply with the
constraints defined on each entity. It is important to prohibit instances from being
stored in the database due to deficient DQ if at least one mandatory constraint with
a severity higher than the threshold is violated. This is ensured by our business logic
library which prevents modifications of an instance which would cause the violation
of a mandatory constraint. Our library catches all events in the business logic which
try to modify instance attributes and injects the appropriate validation logic, based
on AOP, prior to the modification. If a mandatory constraint would be violated, the
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modification is aborted.
With AOP it is possible to inject cross-cutting concerns in the code at defined

join points which are controlled by aspects, as described in Sect. 2.4.6. We inject
constraint checking at two join points in the business logic: (1) Before a setter method
of an instance is called in order to validate field constraints; (2) Before an instance is
persisted to the database in order to validate class invariants.

In accordance with widely accepted Java style guidelines, we defined two catch
method calls in the form of Entity.setField(*) for the first join point, and method
calls in the form of Entity.save() for the second join point. Aspects are stored in files
and contain the join point definition and the code that is injected at the places that
match the join points.

Consider the first constraint example from List. 7.1 where a name attribute of a
TdsFood entity should be at least two characters long, which is defined with a size

constraint. The join points would be before the setter method setName and the entity
save method TdsFood.save are invoked. There, the validation code for all appropriate
constraints, such as the size constraint for the name attribute, is injected.

The data that is needed for constraint checking in the validation logic are the entity,
the field, input parameters and the appropriate constraint. For example, if a join point
matches the method call TdsFood.setName(’Apple’), the data ‘TdsFood’, ‘Name’
and ‘Apple’ is exposed by the aspect. The business logic library uses this information
from the aspect during the parsing of constraint repository files for data validation. It
traverses the tree structure, explained in the previous section, to find the appropriate
constraints which have to be checked, depending on which field or class is involved in
the validation.

For the example from above, the library would parse the repository file and find the
size and required constraints that are defined for the field name of the entity TdsFood.
Then it checks these constraints with the input data ‘Apple’ to validate that the string
is not null and that it is at least two characters long. Since no constraints would
be violated, the TdsFood.setName(’Apple’) method would be invoked. If the input
data is not null but contains only one character, the setter would be invoked since the
severity of the size constraint is set to 60 which is below the severityThreshold, of
80. If the input data is null, the validation would abort the invocation of the setter
method.

For constraint checking in the presentation tier, we focus on the scenario of a
web interface for data input, but the concepts presented here are not restricted to web
interfaces. With a presentation tier implemented as web interface in HTML/JavaScript
and connected to a logic tier implemented in a programming language such as Java,
heterogeneous constraint checking would be needed. Thus, the constraint definition
and data validation logic would be duplicated for the client and server application, as
motivated earlier.

Our DQMF overcomes this issue with the injection of our user input module to the
presentation tier. Fig. 7.4 shows the logic tier of the monitored information system
which uses our business logic library in the lower part. The presentation tier of the
monitored information system which uses our user input module is shown in the upper
part.

The same constraint repositories, used in the business logic library are passed
through the library to the module which uses them for its data validation. Instead
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Monitored information system - Presentation tier

Constraint 
repositories

DQMF User input module
Perform input validation logic

DQMF Business logic library
Input validation

DQ metadata generation

Monitored information system - Logic tier

provide

Figure 7.4: Client-side constraint checking

of adding the validation logic explicitly, the module parses the constraint repositories
and applies constraint checking to the HTML form field for the input data validation.
Depending on the constraint violation severities and the severity threshold, the appro-
priate feedback can be given to the user directly at the form fields. The example in the
upper left part of Fig. 7.4 shows the input of an incorrect email address, which viol-
ates a mandatory constraint, and therefore the form field is marked with a red border
with an appropriate message alongside and the ‘Submit’ button is disabled. Thus, the
user is informed about the constraint violation on a specific field, and prevented from
submitting the data with deficient DQ to the logic tier.

The name HTML attribute defines the association between the constraint repositor-
ies and the HTML forms for web interfaces. For example, the form name (e.g. Person)
with an input field (e.g. email) is associated by the user input module with an entity
(e.g. Person) and the appropriate entity field (e.g. email).

7.4 Data quality analysis

Our DQ management application provides means to quantify and analyse DQ which
helps to solve DQ issues. The provided information and tools are helpful for a DQ
analyst, who can use it as a base for his decisions on enhancing the quality of data
in an information system. The DQ management application supports a DQ analyst in
answering three essential questions for improving DQ: (1) How good is the quality of
the data in the information system? (2) Did the DQ significantly change over time?
(3) What data items need quality improvements most urgently, and how can they be
improved?

Answering the first question gives an indication of how reliable the data is for de-
cision taking. The better the DQ, the more valuable is the data for basing further
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processes on it. Moreover, the underlying measures for answering the first question
build the foundation for answering the other two questions.

The second question is concerned about the evolution of DQ. It aims to identify
changes to the information system which negatively influenced the DQ in a large scale.
Basically, four types of potential changes exist: (1) Changes to the data; (2) Changes
to the constraints; (3) Changes to the DQ measures; (4) Time-dependent constraints
turn from valid to invalid or vice versa (e.g. future and past constraints). A drop in DQ
based on such changes during time and their causes should be detected by answering
the second question. Issues, for example, could be wrong or missing DQ constraints,
failed data import processes and bugs in the information system. Note that a fifth type
would be the receipt of negative subjective DQ assessment feedback, if it is included for
indicating DQ in an information system, as described later in this section. Nonetheless,
for this type, the DQ would already be lowered, but not identified before the subjective
DQ assessment.

Answers to the third question should help identify the data instances that contribute
the most to low DQ. In the DQ management application, we can indicate DQ issues
on aggregated levels but also down to an entity and data instance level, as already
proposed in previous approaches. It is possible to detect and correct instances with the
most issues concerning DQ but also to give an indication of potential error sources that
lead to bad DQ. This is based on objective DQ assessment by analysing the constraint
compliance and also on subjective DQ assessment by analysing implicit and explicit
user feedback.

As depicted in Fig. 7.1 in the centre, our business logic library continuously sends
data validation metadata from the monitored information system to our DQ manage-
ment application. We will now describe what is included in the metadata before we
describe the concept of our DQ vector space model. The metadata contains information
about the (1) constraint compliance of the instances, (2) explicit feedback provided by
the users, and (3) implicit feedback. It is stored in the DQ management application
database and builds the basis for our DQ vector space model and all DQ monitoring
and analysis support. The metadata consists of single metadata objects which contain
DQ information specific to an instance and entity in the monitored information system.
Due to privacy and redundancy reasons, the metadata does not contain any data from
the information system.

(1) The constraint compliance information is generated whenever an object in-
stance is persisted to the database in the monitored information system. The AOP
aspect in the business logic library gathers the list of all constraints of the instance
including their severity and the information whether a constraint was violated or not.

(2) The user input module continuously sends the explicit user feedback for
object instances to the business logic library.

(3) As soon as an instance is viewed in the presentation tier, an appropriate log entry
of the implicit user feedback is sent from the user input module to the business logic
library.

The metadata about constraint compliance, explicit and implicit user feedback is
continuously sent from the business logic library to the DQ management application.
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7.4.1 Data quality vector space model

Based on the metadata of the object instances, DQ indications concerning the three
dimensions constraint compliance, explicit user feedback, and importance can
be calculated and each instance can be mapped to a data point in our DQ vector space
model. We will now define our DQ vector space model, depicted in Fig. 7.5, and each
dimension in more detail.

C

Importance

DExplicit feedback
100

-100

0 100

-100

100

Constraint compliance

A B

Figure 7.5: Data quality vector space model

The possible values in the dimensions constraint compliance and explicit user
feedback are in the range of [-100,100], while the range for the importance dimension
is [0,100], which together define the space of our DQ vector space model. A value of
100 for constraint compliance expresses the highest DQ in this dimension since all
constraints are fulfilled. In contrast, a value of -100 for constraint compliance expresses
the lowest DQ in this dimension since all constraints are violated. A value of 0 for
constraint compliance expresses that the fulfilled and violated constraints are cancelling
each other out or that there are no constraints defined. A value of 100 for explicit user
feedback expresses the highest DQ in this dimension where only positive feedback is
received. In contrast, a value of -100 for explicit user feedback expresses the lowest DQ
in this dimension where only negative feedback is received. A value of 0 for explicit
user feedback expresses that the positive and negative feedback is in balance. A value
of 100 for importance expresses the highest importance for an instance while a value of
0 for importance expresses the lowest importance for an instance.

Four exemplary instance mappings are depicted in Fig. 7.5 where the data points for
each instance are marked in the DQ vector space model with the characters (A), (B),
(C), and (D). Instance A and B, both have a low constraint compliance and negative
explicit feedback. This means that users indicate DQ issues which is in line with the
low DQ indication from the constraint violations or that users indicate issues with the



7.4. Data quality analysis 165

constraint definitions. Thus, the data and constraint details of both instances should
be analysed to find the sources that lower the DQ. However, instance B has a much
higher importance in the system than instance A. Therefore, its influence on DQ is
stronger and should be considered first for the improvement of DQ. Instance C has a
very high importance and received very positive feedback but a very low DQ indicated
by the constraint compliance. Thus, the negative constraint compliance is not in line
with the positive user feedback which is an indication that issues exist in the constraint
definitions for this instance, if it is assumed that the feedback is correct. Instance D
has a high importance, a very positive feedback and a very high constraint compliance.
Thus, there is no indication that there exist any issues concerning DQ with instance D.

Constraint compliance is calculated on an instance level which results in a con-
straint compliance value for each instance. Eq. 7.1 defines the constraint compliance
cci of an instance i with constraints c1, .., cn.

cci = 100 ·

⌈∑n
j=1 severityj · validj∑n

j=1 severityj

⌉
∈ [−100, 100] (7.1)

The severity attribute of constraint j, as defined in the constraint repository, is
represented by the term severityj. The term validj is either 1 if the constraint cj is
not violated or -1 if the constraint cj is violated. Taking into account the non violated
constraints as well differentiates this calculation from constraint compliance in previous
approaches.

Concerning the explicit user feedback, a user k can provide an explicit rating
value ef ratingi,k of the perceived DQ of an instance i. The rating value is in the
range of [-2,2], which represents a five point Likert-type scale for the rating values:
very bad = -2, bad = -1, neutral = 0, good = 1, very good = 2. Additionally to the
explicit rating value, a user can provide details on the rating with a text comment,
where for example hints can be given on how to improve an instance with corrected
data or missing constraints.

The calculation of the explicit user feedback is presented in Eq. 7.2, which is based
on the collected explicit ratings ef ratingi,k of an instance i by all users where we also
consider a reputation score reputationk ∈ N>0 for each user k. The rating of a user
with a higher reputation score has a stronger influence on the overall rating than a user
with a lower reputation score.

efi = 100 ·
⌈∑n

k=1 reputationk · ef ratingi,k
max |ef |

⌉
∈ [−100, 100] (7.2)

To normalise the ratings to the range [−1, 1] we use the highest absolute feedback
rating available in the system max |ef | in the denominator.

The importance dimension is not an indicator for DQ but used to classify instances
and entities due to their importance in the information system. The higher the relevance
of an instance/entity is, to users and the system’s purpose, the higher is its importance.
We consider instances/entities with a higher importance as also more important to be
corrected, if the other dimensions indicate bad DQ. In Eq. 7.3 our calculation of the
importance impi of an instance i of entity type e is presented, where we distinguish the
two factors interest and entity importance which contribute to the importance.
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impi = max(100, α ·entityImportancee+(1−α) ·100 · interesti
max |interest|

) ∈ [0, 100] (7.3)

The interesti value represents how often the instance i was viewed by the users.
It is derived from the implicit user feedback, as explained above. Thus, an instance
is considered to be of higher interest if it is often opened. The entityImportancee ∈
[0, 100] is the importance indication due to the relevance of instance i to the information
system, which can be configured for each entity, as explained above, and which is
adopted for all instances of an entity.

The interest in data instances is tracked only for instances which a user can directly
view in the presentation tier. Nonetheless, there can exist instances which are never
opened by a user but are of high importance to the system’s purpose. Consequently,
such instances will have a zero interest but can contribute with their entity import-
ance. Further, instances could contain wrong data which could cause that they are
never fetched by correct database queries and consequently would not be shown in the
presentation tier.

We use the parameter α ∈ [0, 1] to weight the impact of the interest compared to
the entity importance. Further, we normalise with max |interest| so that the poten-
tially widespread interest values result in a value in the range [0, 1]. This denominator
represents the highest absolute interest value of any instance in the system.

If α is set to 1, the importance impi of an instance equals the entity importance,
entityImportancee. This can be useful, for example, if an information system receives
a lot of automated requests which cause a lack of trust in the data of interest.

7.4.2 Data quality improvement tendencies

In the previous subsection, we have already presented examples of how single data
points in the DQ vector space model can be interpreted. Since it would be a tedious
task for a DQ analyst to interpret each data point, we provide further measures, which
support DQ analysts in identifying data instances with low DQ and consequently help
increasing the DQ in an information system. In this subsection, we present our DQ
improvement tendencies and in the subsequent subsection our DQ improvement urgency
score, which are both measures based on the DQ vector space model.

If an instance receives negative explicit user feedback and/or its constraint compli-
ance is low, we generally can assume that its DQ is low. However, several cases can
cause low DQ: (1) The data instance is of low quality; (2) The data instance is of good
quality, but the constraints defined on the instance are wrong; (3) The data instance is
of low quality, and the constraints defined on the instance are wrong.

We assume that the explicit user feedback is a trustworthy source of information, at
least if multiple users have given their consistent feedback. Thus, we can use the explicit
user feedback as a comparison to our constraint compliance results, as explained above.
This comparison can provide indications on the different causes of low DQ, presented in
the previous paragraph. To provide such indications, we introduce our DQ improvement
tendencies. Although we assume that the feedback is trustworthy, it should always be
considered that there is the possibility of incorrect feedback. Therefore, in case of
doubt, the feedback should be checked and deleted if wrong.
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In any case, it should be possible to improve the DQ by correcting data instances
and/or constraint definitions. Correcting actions should always not only correct data
but also correct or add constraints, if possible, to prohibit the input of data with low
DQ in the future. However, constraints cannot be used to identify low DQ in all
cases, especially in case of semantic issues. Therefore explicit user feedback is the only
identification possibility of low DQ in such cases.

With our DQ improvement tendencies, we compare the subjective (explicit user feed-
back) and objective (constraint compliance) DQ assessments, as proposed by Pipino et
al. [144]. (1) We gather subjective and objective DQ assessment information from the
explicit user feedback and constraint compliance, respectively; (2) We compare the res-
ults of the assessments by placing a data instance on the surface of our DQ vector space
model with the dimensions Constraint compliance and Explicit feedback as depicted in
Fig. 7.6 on the x-axis and y-axis, respectively; (3) We identify discrepancies, and de-
termine root causes of discrepancies with the help of our DQ improvement tendencies;
(4) We determine necessary actions, such as improve data or adapt constraints based
on the outcome of (3). A DQ analyst can use our DQMF to follow these steps and
carry out the necessary actions for DQ improvement.
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Figure 7.6: Data quality improvement tendencies

Similar to the approach of Pipino et al. [144], described in Sect. 2.6.2, we propose
the categorisation of four combinations of objective and subjective DQ assessments,
depicted in Fig. 7.6 by the four quadrants. As an extension to the work of Pipino et
al. [144], we provide for each category/quadrant the analysis of the root causes and
recommendations for corrective actions, expressed by our DQ improvement tendencies.
An instance is located in one of the four quadrants based on its dimension values for ex-



168 Chapter 7. Hybrid approach with subjective data quality assessment

plicit feedback and constraint compliance, and consequently assigned to the appropriate
tendency.

We describe now our distinction of the four tendencies, which are presented in
Fig. 7.6 in quadrants I to IV. Each tendency indicates a different prioritisation for DQ
improvement, which is depicted by the different background colours. The prioritisation
order is consistent with the quadrant numbering, where quadrant I has the lowest DQ
improvement priority and quadrant IV the highest DQ improvement priority.

Rather good (quadrant I): The feedback and constraint compliance are rather high.
Both dimensions are indicating good DQ, which is the desirable state. We cannot give
clear improvement recommendations, if at all necessary. This is the regular case of high
DQ. The priority to improve DQ is rather low.

Improve constraints (quadrant II): The feedback is rather high but the constraints
compliance is rather low. The dimensions are indicating a different DQ. Since we trust
the feedback, we assume that the DQ is good, but the constraints should be improved to
better reflect the data requirements. This is the case of good DQ where the constraints
give a wrong lower DQ indication. The priority to improve DQ is still rather low
since the DQ is assumed to be good and the data validation is rather too strict, which
prohibits entering data of low DQ in the future.

Improve data (quadrant III): Both the feedback and constraint compliance indicate
low DQ. This is not a desirable state, but at least there are no contradicting indications.
The data should be improved to increase the DQ. This is the regular case of low DQ.
The priority to improve DQ is rather high since there is a strong indication that the
DQ in the information system is low.

Improve data and constraints (quadrant IV): The feedback is rather low but the
constraints compliance is rather high. The dimensions are indicating a different DQ.
Since we trust the feedback, we assume that the DQ is low, and therefore the data
should be improved to increase the DQ. Further, the constraints should be improved
since they indicate a contradicting good DQ. This is the case of low DQ where the
constraints give a false higher DQ indication. We rate the priority to improve DQ for
this tendency even higher than in quadrant III, since the DQ is assumed to be low and
the data validation is rather too loose, which enables data of low DQ to be entered in
the future. Not only the data but also the constraints must be enhanced, if possible,
to ensure correct data validation in the future. This tendency can also indicate that
there are semantic issues, which cannot be expressed by constraints. In such a case, it
would be even more important to identify the issues and find ways, beyond constraint
checking, to ensure a high DQ.

These tendencies give recommendations on how to improve DQ but they are not
to be understood as clear categorisations since the transitions within and between the
quadrants/tendencies are smooth and open to interpretation. For example, an instance
at the data point A1 in Fig. 7.6 is assumed to be of much lower DQ than the data point
A2, since fewer constraints are fulfilled and the feedback is less positive. Thus, A1 needs
more improvement than A2, although they are assigned to the same tendency.

Therefore, we also indicate general tendencies for the transitions within and between
the DQ improvement tendencies, depicted by the arrows in the upper, lower and left
part of Fig. 7.6. The arrow on the left Improve data indicates that the lower the explicit
feedback value is, the lower the DQ is and the higher the likelihood that the data has
to be improved. This is consistent for both comparing the upper quadrants I and II
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with the lower quadrants III and IV and within a quadrant for single data points. The
arrows labelled with Improve constraints at the top, valid for quadrants I and II, and
the bottom, valid for quadrants III and IV, indicate the likelihood that the constraints
have to be improved. For quadrants I and II it increases from right to left, since the DQ
is assumed to be rather good but the constraints compliance gets more contradictory
to the left. For quadrants III and IV, it increases in the opposite direction, from left
to right, since the DQ is assumed to be rather low but the constraints compliance gets
more contradictory to the right.

7.4.3 Data quality improvement urgency score

Our DQ improvement urgency score is a measure for DQ which includes all three
dimensions from our DQ vector space model, including the importance dimension which
is not considered in our DQ improvement tendencies. Based on the values for each
dimension, we calculate a score which indicates how important it is to improve DQ
for a certain instance. The DQ improvement urgency score is in the range of [0, 100].
An instance with an urgency score of 0 does not need improvement, while it is very
urgent to improve an instance with an urgency score of 100. This enables a DQ analyst
to distinguish data instances with a high priority from ones with lower priority. The
DQ improvement tendencies, presented in the previous subsection, already give an
indication of the improvement priority. DQ analysis based on the tendencies can be
seen as a tool to quickly categorise instances into one of the four improvement priorities,
also as an indication of the root causes with recommendations on what actions have to
be taken to improve DQ. The DQ improvement urgency score goes a step further, to
provide more distinct analysis for each data point than the DQ improvement tendencies,
also including the third dimension importance.

We will explain first, how we derived our new measure DQ improvement urgency
score before presenting the complete calculation. Therefore, consider again the surface
of our DQ vector space model with the dimensions constraint compliance and explicit
feedback as depicted in Fig. 7.7.

The green arrows, show in which direction generally the DQ increases considering the
x-axis/y-axis but not the divergence between the dimensions. The higher the constraint
compliance and/or the higher the explicit feedback, the higher also the DQ. The red
arrows close to the dashed angle bisections in the four quadrants, symbolise how the
urgency to improve the quality of constraints and/or data increases in the direction
of the arrows, taking both dimensions into consideration. In quadrant I and III, the
feedback and constraint compliance correspond on the dashed angle bisections and the
urgency to improve DQ increases the further down left a data point is located. Thus,
a point in the top right corner has a very low urgency to improve DQ, a point at the
origin of the coordinate system a higher urgency and a point at the lower left corner a
very high urgency. By deviating from the angle bisections in quadrants I and III, the
divergence between the two dimensions increases.

In contrast, the maximal divergence between the dimensions resides in quadrants
II and IV on their angle bisections. There, the urgency to improve the quality of
constraints and/or data is lowest at the origin of the coordinate system and increases
towards the upper left and the lower right corner, if the divergence between the dimen-
sions is considered. Deviating from the angle bisections in quadrants II and IV will
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Figure 7.7: Coordinate system with angle bisections

decrease the divergence between the two dimensions.
Since the divergence of the two dimension values is an indication for issues in the

quality of constraints and/or data we consider the angle from the origin to a data
point in a quadrant for determining the urgency score. We use the polar form of the
coordinate system, as known from complex numbers, depicted in Fig. 7.8.
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Figure 7.8: Complex plane transformation

As the real part, we consider the constraint compliance c, while we consider the
feedback f as the imaginary part, as shown in Eq. 7.4 for the complex number z.

z = c+ fi (7.4)
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The values c and f are the values for constraint compliance and explicit user feed-
back, respectively, from a data point in the DQ vector space model.

According to Eq. 7.5, we calculate the absolute value or magnitude r of the complex
number.

r = |z| =
√
c2 + f 2 (7.5)

Further, we calculate the angle or phase ϕ with Eq. 7.6.

ϕ = arg(z) =



arctan(f
c
) if c > 0

arctan(f
c
) + π if c < 0 and f ≥ 0

arctan(f
c
)− π if c < 0 and f < 0

π
2

if c = 0 and f > 0

−π
2

if c = 0 and f < 0

indeterminate if c = 0 and f = 0

(7.6)

For the calculation of an overall DQ improvement urgency score, we combine four
measures: (1) The urgency of improving DQ based on the explicit feedback; (2) The
urgency of improving DQ based on the constraint compliance; (3) The urgency of
improving the constraints based on the divergence of explicit feedback and constraint
compliance; (4) The importance. The polar form, as explained above, enables us to
determine the urgency to improve the quality of constraints and/or data, based on the
two dimensions explicit user feedback and constraint compliance.

To extract the imaginary part from the polar form, i.e. the explicit user feedback,
we use Eq. 7.7.

y = Im(z) = r · sin(ϕ) (7.7)

We further map the imaginary part from the range [−100, 100] to the range [0, 100]
and invert it to get the Eq. 7.8 which represents the urgency based on the explicit
feedback uf .

uf =
100− r · sin(ϕ)

2
∈ [0, 100] (7.8)

Likewise, we extract the real part from the polar form, i.e. the constraint compliance,
with Eq. 7.9 and transform it in a similar manner as above to get Eq. 7.10 which
represents the urgency based on the constraint compliance uc.

x = Re(z) = r · cos(ϕ) (7.9)

uc =
100− r · cos(ϕ)

2
∈ [0, 100] (7.10)

If the indication of DQ diverges for constraint compliance and explicit feedback, the
constraints have to be improved, since we assume precedence of explicit user feedback
over constraint compliance, as previously explained.

With the help of the polar form, we can express an appropriate penalty score by
multiplying the scaled amplitude with the absolute sine of the phase. We consider the
offset −1

4
π for the phase, so that the phase reaches its maximum at the angle bisections

of the quadrants II and IV at 3
4
π and 7

4
π and its minimum at the angle bisections of
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Figure 7.9: Shifted absolute sine for constraint compliance

quadrants I and III at 1
4
π and 5

4
π. The resulting shifted absolute sine for constraint

compliance is depicted in Fig. 7.9.
The penalty for the urgency of improving the constraints up, based on the divergence

of explicit feedback and constraint compliance, is consequently calculated with Eq. 7.11.

up =
r√
2
· |sin(ϕ− 1

4
π)| ∈ [0, 100] (7.11)

The last measure that we take into account for the DQ improvement urgency score is
the importance dimension. Its value range is [0, 100], where 0 represents a not important
and 100 a very important instance, as described in Sect. 7.4.1.

We define the importance imp with Eq. 7.12, where i is the importance value from
the DQ vector space model and wi is a weight to control the influence of the importance
on the final DQ improvement urgency score.

imp =
1 + wi · i/100

1 + wi
∈ (0, 1] (7.12)

We normalise the overall DQ improvement urgency score to the range [0, 100].
Therefore, the importance imp, as defined in Eq. 7.12, has the upper bound i = 100
while its lower bound is determined by the weight of the importance wi. Thus, the
higher the weight of the importance wi is, the closer the importance imp can get to
zero.

Now we can sum up the urgency based on the explicit feedback uf , the urgency
based on the constraint compliance uc, and the penalty for the urgency of improving
the constraints up to define an overall urgency which does not include the importance
yet, as depicted in Eq. 7.13.

urgency = wf · uf + wc · uc + wp · up (7.13)

When considering again the decreasing and increasing characteristics for the urgency
described above with Fig. 7.7, uf and uc represent the characteristics of the green arrows,
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while up represents the characteristics of the red arrows.
We multiply each measure part (uf , uc, up) with an appropriate weight (wf , wc, wp)

to be able to control the contribution of each measure part to the urgency. To scale the
urgency to the range [0, 100], it has to be divided by the maximal possible weighting
factor.

Since uc, uf and up are in the same range [0, 100] we can sum up the three weighting
factors, as defined in Eq. 7.14, to calculate the scale.

scale = sum(wc, wf , wp) (7.14)

As a last step, we combine the importance imp by multiplying it with the urgency
and dividing it by the scale to derive the final formula for the DQ improvement urgency
score urgencyScore, defined in Eq. 7.15. The importance imp is in the range (0, 1] and
therefore reduces the urgency accordingly.

urgencyScore =
imp · urgency

scale
(7.15)

A list of all parameters for configuring the calculation of the DQ improvement
urgency score urgencyScore is provided in Tab. 7.1.

Parameter Description
c ∈ [−100, 100] constraint compliance
f ∈ [−100, 100] explicit feedback
i ∈ [0, 100] importance
wc ∈ R weight of constraint compliance
wf ∈ R weight of explicit feedback
wi ∈ R weight of importance
wp ∈ R weight of penalty function

Table 7.1: Urgency score parameters

The weights wf , wc, wp, and wi can be any rational number. They do not have to be
in a certain range, such as [0, 1], since only the ratio between the weights is important.
Our default configuration of the weights is depicted below, where the precedence of
explicit user feedback over constraint compliance is adhered.

wc = 1
wp = 2 · wc = 2
wf = 2 · wp = 4
wi = 1

With a default weight of 1 for the importance weight wi, the urgency can be reduced
with the factor 0.5 to 50% at most for the minimum importance value i of 0. The higher
the weight, the closer to zero the importance can get and therefore the more reduced
the urgency can be.

With Fig. 7.10, we want to provide a clearly understandable visual representation of
the DQ improvement urgency score and enable a comparison with the DQ improvement
tendencies, presented in Fig. 7.6. Therefore, the urgencyScore in Fig. 7.10 is reduced to
the two dimensions explicit feedback and constraint compliance by setting the weight
of the importance wi to zero. Defining wi larger than zero would decrease the DQ
improvement urgency according to the importance value.
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Figure 7.10: Urgency score map for wi = 0, wc = 1, wp = 2, wf = 4

To exemplify the influence of the three measure parts uf , uc, and up, we describe
below the appropriate values in the four corner points of Fig. 7.10:

Upper right corner: c=100, f=100, uf=0, uc=0, up=0
Upper left corner: c=-100, f=100, uf=0, uc=max, up=max
Lower left corner: c=-100, f=-100, uf=max, uc=max, up=0
Lower right corner: c=100, f=-100, uf=max, uc=0, up=max

Fig. 7.10 is intentionally plotted with only 64 colours to visualise the different gradi-
ents and to be able to compare data points which are located in different quadrants but
have the same urgency score. The colour representation of the urgency score depicts
data points with low urgency in dark green, rather low urgency in light green, fair ur-
gency in yellow, rather high urgency in orange, and high urgency in red. The general
priority precedence of the different quadrants is still adhered, as explained with Fig. 7.6
in Sect. 7.4.2. Further, the decreasing and increasing characteristics for the urgency
within the quadrants and the quadrant transitions is achieved, as described earlier with
Fig. 7.7.

By combining the views of the DQ improvement urgency score with the DQ improve-
ment tendencies, we are able to present a consolidated view on improvement urgency,
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improvement priorities, root causes of issues and recommended DQ improvement. This
is depicted in Fig. 7.11 where the four improvement tendencies are shown on the ho-
rizontal axis and the urgency of improvement of an instance inside an improvement
tendency is represented on the vertical axis. By trend, the tendencies on the right side
have a lower improvement urgency than the ones on the left side, but this is not the case
for all data points within the tendencies, as explained above with the DQ improvement
urgency score.

Improvement 
urgency

Improve data and 
constraints

Improve data Improve constraints

I1

Rather good

I3

Improvement tendencies

I4

I2

Figure 7.11: Data quality improvement urgency score

This visualisation enables us to provide DQ feedback to a DQ analyst, where the
urgency of improving instances, such as I1, I2, I3, and I4 in Fig. 7.11, is presented.
The more an instance is located towards the top, the higher is the urgency/need for
its improvement. Moreover, it can be concluded from the tendency where the instance
is located, what causes the low DQ and what countermeasures could be taken. The
background gradient colouring assists the perception from higher urgency with red to
lower urgency with green.

The measures presented above support the analysis of DQ of an information system
at a particular point in time. Different types of changes in an information system can
cause the quality of data to change and it is important to track their impact on DQ
during the evolution of DQ over time, as described earlier. For example, by identifying
certain events in the time line that introduced changes to the system, more indications
on what has caused a lower DQ can be provided. Moreover, the DQ trend for certain
instances, entities and the whole information system can be tracked and visualised to
provide alerts that report on a sudden drop in the quality of the data.

With our DQMF, we also support the tracking of changes to the DQ over time. Our
business logic library is continuously generating metadata objects corresponding to
changes in the data and user feedback which have a timestamp assigned. With our DQ
management application, it is possible to request the re-computation of the constraint
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compliance in the business logic library. Thus, it is possible to trigger the validation at
various points in time and receive the appropriate generated new metadata, for example,
when a constraint repository was updated.

Based on the metadata with various timestamps, we provide an overview of the
DQ evolution, as presented in Fig. 7.12. This builds the basis for further means of
identifying issues, as described above.

Data quality

Time

Figure 7.12: Evolution of the data quality of an instance over time

7.5 Implementation

We now present certain details of our DQAnalytics DQMF and our monitored infor-
mation system FoodCASEWeb which together build our case scenario and implement
the concepts of our DQMF, as introduced above. The scenario architecture was already
presented with Fig. 7.1. The implementation of our DQMF includes the DQAnalytics
application (DQ management application), the DQAnalytics Library (business logic
library), and the DQAnalytics Web module (user input module). In the remainder of
this section, we refer to the DQAnalytics Library as library and to the DQAnalytics
Web module as web module.

Both GUIs of the DQAnalytics application and FoodCASEWeb are implemented as
web interfaces, using AngularJS/JavaScript and HTML5. The DQAnalytics applica-
tion is connected to the library via a REST interface. Its business logic is implemented
with the Express1 web framework and Node.js2. The FoodCASEWeb business logic is
implemented in Java. Since the FoodCASE desktop application is based on a Postgr-
eSQL database, the FoodCASEWeb data is also received from a PostgreSQL database.
The DQAnalytics application uses MongoDB for the persistence, since its data model
is suitable for storing the DQ metadata in JSON format. All communication between
the web module, the library and the DQAnalytics application is done over HTTP.

1https://expressjs.com/
2https://nodejs.org/en/

https://expressjs.com/
https://nodejs.org/en/


7.5. Implementation 177

7.5.1 DQAnalytics Library

FoodCASEWeb provides user authentication which assigns an authority, specifying a
user group and a reputation, to each user. According to the authority, the appropriate
group-specific constraint repository is used by the library for the data validation. To
rate the relevancy of the explicit user feedback, the reputation is taken into account.

The library provides the constraint checking functionality in the logic tier for data
which is received from FoodCASEWeb. It uses AspectJ3 for AOP to inject the validation
code based on the constraint repository, at the appropriate places in the business logic
of FoodCASEWeb.

Performance analysis

The library not only provides the validation injection into the monitored information
system, FoodCASEWeb, but also the generation of DQ metadata for the appropriate
validation results and received explicit/implicit user feedback, which is then analysed in
our separated DQAnalytics application. This is a convenient solution for data validation
and DQ analysis for the monitored information system by a separated DQMF. Non-
etheless, the question arises how the required additional computation time influences
the monitored information system.

The execution time of the validation and metadata generation depends on two para-
meters: (1) The number of field constraints and invariants that have to be validated;
(2) The number of constraint repositories for which the metadata has to be generated.

Therefore, we have conducted a preliminary benchmark for creating a new instance
in FoodCASEWeb with three scenarios: (I) No AOP injection with consequently neither
constraint checking nor metadata generation; (II) AOP injection, with a constraint
repository, containing five field constraints (two of type size, three of type required)
defined on three fields, used for only constraint checking; (III) The same setup as in
the second scenario, but with additional metadata generation.

Inserting an instance in scenario (I) took around 15ms, while the execution time
increased by 60% for scenario (II) and by 130% for scenario (III), compared to scenario
(I). Thus, there is a clear indication on the influence to the monitored information
system, but further extensive benchmarks would have to be conducted to present a
detailed analysis.

In the current implementation, constraint repositories are loaded and parsed for each
constraint that is validated and for each metadata object that is generated. Further,
if a constraint is inherited from another repository, both the original constraint and
inherited constraint are checked. Thus, there is potential for improving the execution
time in the library by caching constraint repositories and enhancing the checking of
inherited constraints.

7.5.2 DQAnalytics Web module

For the validation in the FoodCASEWeb GUI, our web module uses a modified version of
the Valdr AngularJS module. The original Valdr module provides data input validation
of HTML input elements based on constraints defined in a JSON file. We adapted the

3https://eclipse.org/aspectj/

https://eclipse.org/aspectj/
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Valdr module to support the format of our constraint repository files, introduced in
Sect. 7.2. Further, we extended the constraint checking logic of Valdr to introduce the
distinction between errors and warnings, in case of a constraint violation.

Data quality input feedback

Based on the validation in our web module, we provide DQIF as proposed in previ-
ous approaches. An example of a data input detail dialogue for a food instance with
constraint violation is presented in Fig. 7.13. A data input detail dialogue is used in
FoodCASEWeb to view/modify detailed attributes of an instance or to create/delete
an instance. According the constraint example, presented in List. 7.1, a required con-
straint is defined on the food name attribute with a severity above the error threshold.
Consequently, the appropriate error message ‘A food must have a name’ is shown below
the ‘Food name’ input field and the ‘Save’ button is disabled.

Error A food must have a name

Figure 7.13: FoodCASEWeb GUI – Detail dialogue for a food instance with constraint
violation

Further, we provide a DQ indicator bar in a DQ panel below the input fields, which
presents a DQ rating in the range of [0, 100] based on the constraint compliance. The
rating is adapted in real-time according to the user input.
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Collecting explicit and implicit user feedback

To collect explicit user feedback, we designed a feedback form, which is attached to the
data input detail dialogue. The form is opened on the right hand side of the dialogue,
upon request. Both the dialogue and the feedback form are depicted in Fig. 7.14.

Figure 7.14: FoodCASEWeb GUI – Explicit feedback form attached to the food detail
dialogue

The feedback form contains three sections: (1) A structured field-specific feedback;
(2) A DQ rating for the instance; (3) General feedback to an instance as free text.
By selecting the blue area, covering a specific form field, issues with the appropriate
field value in the first section can be reported. A user on the one hand can choose, if
a field ‘has wrong/incomplete data’ and/or ‘has wrong constraints’, and on the other
hand can use free text to describe the issues in more detail and/or to provide correct
data. In the second section, a general DQ rating for the instance can be selected on a
five point Likert-type scale, according to the description in Sect. 7.4.1. This rating is
used to calculate the explicit feedback dimension in our DQ vector space model. The
text area in the third section, can be used to give any further comments that provide
general feedback to an instance, for example, if an additional instance attribute would
be required.

Once the ‘Submit Explicit Feedback’ button is clicked, the feedback is submitted
in a JSON object to the library. The feedback form, as presented in Fig. 7.14, is an
enhanced version of our initial feedback form, which was less intuitive concerning the
field-specific feedback.

Whenever a data input detail dialogue is opened, the web module sends an ap-
propriate notification through the library to the DQAnalytics application, where an
instance-specific counter is incremented. This implicit feedback is then used to calcu-
late the interest of users for the various instances.
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7.5.3 DQAnalytics application

The DQAnalytics application fulfils four main purposes in our DQMF: (1) Persisting
the DQ metadata, received from the library; (2) Computing the DQ information based
on the metadata; (3) Providing tools to visualise and analyse DQ; (4) Providing a
GUI to manage the constraint repositories. In this subsection, we are predominantly
presenting the tools to visualise and analyse DQ.

The web interface of our DQAnalytics application provides three main modules for
analysing DQ: (1) The scoreboard gives a brief overview of the DQ in the system; (2)
Different views for the DQ enhancement analysis provide means to identify DQ issues
and to recommend countermeasures; (3) The DQ evolution analysis can be used to
monitor DQ over time. From the main DQ enhancement analysis views, a user can
deepen the analysis by using multiple additional subviews.

The scoreboard is the entry point of the DQAnalytics application. It provides an
overview of the DQ based on the constraint compliance, for each entity in the monitored
system in a small chart. An example of two charts for a TDS food and subsample are
presented in Fig. 7.15. In the centre of each chart, the constraint compliance for the
appropriate entity is presented for the three DQ calculation snapshots ‘1 week’ ago,
‘three days’ ago, and ‘today’. These charts enable the user to see how the DQ has
evolved in the past week at a glance. Additionally, a trend indicator in the upper right
corner of each chart, visualises with upwards, sideways or downwards pointing arrows
whether the constraint compliance has increased, remained constant or has decreased
in the past three days. Below the charts (not shown in the figure), a system log is
presented which keeps a user informed about recent events in the system, such as an
update of the constraint repository that triggered the recalculation of the constraint
compliance.

Figure 7.15: DQAnalytics scoreboard – Evolution of the constraint compliance on an
entity level

The DQ enhancement analysis provides main DQ visualisations for the DQ
improvement tendencies and the vector space model. From these visualisations, it is
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possible to navigate to further visualisations, so-called subviews, which provide further
details on different aspects of the DQ, for example, the DQ improvement urgency
analysis.

In all visualisations, we distinguish between an analysis on an instance or on an
entity level. On the instance level, all single instances are presented individually, while
on the entity level all appropriate instance values are aggregated to an entity value.
Aggregation of single instance values is always calculated with the arithmetic average.
Further, we provide faceted filtering, where it can be chosen for which groups (constraint
repositories) and entities the analysis should be refined.

Data quality improvement tendencies chart

An example visualisation of the DQ improvement tendencies is presented in Fig. 7.16,
where the instances/entities are represented with blue circles. Instances/entities are
assigned and located in the appropriate quadrants according to their constraint com-
pliance and explicit feedback values, as described in Sect. 7.4.2. Additionally to the
two dimensions constraint compliance and explicit feedback, we visualise in this chart
the importance value of instances/entities which is reflected by the radius of the circles.
The larger the radius, the more important is the appropriate instance/entity. For cal-
culating the importance, we use Eq. 7.3. By hovering with the mouse over a circle,
the appropriate DQ indication values are shown for the single dimensions constraint
compliance, explicit feedback and importance.

Figure 7.16: DQAnalytics – Improvement tendency chart

We also provide a vector space model chart based on the same data used for the
DQ improvement tendencies chart. There, the data is visualised in a three dimensional
chart, that can be moved and turned in all directions, where also zooming and panning is
possible. The user study, presented later, showed that the DQ improvement tendencies
chart is more intuitive for analysing DQ regarding the three dimensions, than the vector
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space model chart. Note that we also provided an example visualisation with Fig. E.1
in Appendix E.

Subviews

To have tools at hand for providing more detailed DQ information on instances/entities
that are presented in the main DQ analysis views, we implemented four additional views,
which are loaded upon clicking on the instances/entities circles. Only upon opening a
subview, is the required metadata loaded and the appropriate calculations performed.

(1) The DQ improvement urgency analysis provides the visualisation for the DQ
improvement urgency score, as described in Sect. 7.4.3. This is a new visualisation
concept, which we explain with an example below.

(2) The DQ dimensions analysis provides visualisations to analyse data concerning
the DQ dimensions, assigned to the constraint definitions, such as accuracy and com-
pleteness. For example, a bar chart shows the constraint compliance for instances/entit-
ies associated to and grouped by DQ dimensions. The visualisation concept is adopted
from our previous approaches. Note that we also provided an example visualisation
with Fig. E.2 in Appendix E.

(3) The constraint compliance analysis provides a list overview of the single con-
straints, where it shows the fulfilment rate of the constraints for all instances, grouped
by constraint repositories. The fulfilment rate is visualised with bars that are coloured
in red or green, depending on the fulfilment rate. The visualisation concept is adopted
from our previous approaches. Note that we also provided an example visualisation
with Fig. E.3 in Appendix E.

(4) The explicit feedback analysis provides a list overview of the explicit user feed-
back which is a new visualisation concept. Note that we also provided an example
visualisation with Fig. E.4 in Appendix E. All the details of the single explicit user
feedback entries can be viewed and entries can be marked as resolved on a field and
instance level. Before marking an entry as resolved, the appropriate issue should be
fixed. A resolved explicit user feedback, which was probably a negative feedback, is
then excluded from further DQ calculations.

An example chart for the DQ improvement urgency analysis is depicted in
Fig. 7.17. The visualisation is based on the DQ improvement urgency score. The
example shows different instances of the TDS food located on the chart according to
their DQ improvement urgency score. On the horizontal axis, the DQ improvement
tendencies are distinguished, while the vertical axis represents the DQ improvement
urgency score. The numbers, depicted in the blue circles, represent the number of
instances which are located at the appropriate urgency score. The size of the circles
also depends on this number. The higher the number of instances, the larger the circle.
For example, the top left circle gives an indication on the twelve instances with the
highest DQ improvement urgency score.

Note that the range of the urgency score is only within [0, 60] instead of [0, 100],
since there exist no instances in the example with a higher score than 60. A user can
further click on a circle to open a dialogue which presents the identifiers of all instances,
associated to the appropriate circle. Based on this information, a user can enhance the
DQ of the individual instances in the monitored information system.
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Figure 7.17: DQAnalytics – Urgency score chart

Further details of the implementation of the DQAnalytics DQMF are provided in [14]
on pages 45 to 99.

7.6 Evaluation

To evaluate the usefulness and usability of the DQAnalytics DQMF, we conducted a user
study, where the participants had to solve three tasks using the DQAnalytics DQMF
functionality in FoodCASEWeb and the DQAnalytics application. The participants
provided their feedback in a questionnaire, where we asked task-specific questions and
general questions on the usefulness and usability of the DQAnalytics DQMF, but also
general questions about issues in the management of distributed constraints and DQ
monitoring.

Besides getting feedback on the usefulness and usability of the DQAnalytics DQMF
and on how it could be improved, the goal of the study was also to obtain insights
from computer scientists and software engineers on questions, such as: (1) Do they
perceive issues in the management of distributed constraints in practice, and if so,
what are the issues? (2) Is it desired to provide unified constraint definitions in an
information system? (3) Is it desired to provide means of measuring and tracking DQ,
i.e. DQ monitoring, in an information system? (4) What kind of constraint definitions,
in terms of paradigms and technologies, are most often used? (5) Are the participants
willing, as users of an information system, to provide explicit feedback on DQ? The full
list of questions contained in our questionnaire is presented in Appendix F.

In total, 13 people with experience in general computer science or software engin-
eering participated in the study, of which 12 where male. The ages were between 26
and 41 years, with an average age of 30.5. All participants hold a degree in computer
science, 69.2% a master, 23.1% a PhD and 7.7% a bachelor. At the time of conducting
the study, all but two of the participants were working at least part-time as software
engineers, 61.5% full-time and 23.1% part-time.
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Participants had to rate their skills with respect to five computer science topics, on a
numeric 7-point Likert-type scale from 1 to 7, where 1 means no experience and 7 means
expert. We considered all values from and above 4 as at least good knowledge in the
appropriate topic. Consequently, we present the percentage of participants, which had
at least good knowledge in the following topics: General software engineering (100%),
Web engineering (75%), JSON (70%), Data quality (62%), Constraint modelling (62%).

We will now briefly describe the three tasks that the participants had to solve using
FoodCASEWeb and the DQAnalytics application, before presenting the results for the
task-specific and general questions. The complete task description sheet is available in
Appendix F.

In task 1, the participants were asked to randomly choose five food instances in a
list provided by the FoodCASEWeb GUI, and inspect the data for each of the instances
by opening the detail dialogue, as presented in Fig. 7.13. They then had to provide
their explicit feedback on the DQ for the instances using the feedback form presented
in Fig. 7.14. With this task, we aimed to evaluate the usability of the explicit feedback
form, and to emphasise the effort for providing explicit feedback.

In task 2, the participants had to modify a constraint repository file, where they
had to add a required and size constraint to the scientificname attribute of a TDS
food entity. With this task, we aimed to evaluate, to what degree the participants
understood the structure of the constraint repositories, and how difficult they perceive
the modification of the repositories.

In task 3, the participants had to analyse the DQ of the monitored information
system, using various tools of the DQAnalytics application. They had to answer specific
analysis questions, such as: ‘When you look at the improvement tendency chart, which
of the entities that are available for analysis would you improve first?’ The full list
of specific analysis questions is provided in Appendix F. With this task, we aimed to
evaluate the usability of the tools provided in the DQAnalytics application.

After finishing each task, the participants answered the appropriate task-specific
questions. Most of the answers to task-specific and general questions were based on
a 5-point Likert-type scale (‘totally agree’, ‘agree’, ‘neutral’, ‘disagree’ and ‘totally
disagree’). For the evaluation here, we consider the first two values as agree and last
two values as disagree.

For the sake of brevity, we will present only a summary of the most important
findings in the remainder of this section. A detailed description of the study setup and
the results are provided in [14] on pages 102 to 112.

The participants had to state, if they had experience with distributed constraint
management, where constraints are used in different representations. 76.9% of the
participants had such experience, while the remaining 23.1% stated that they either
need or use no constraints at all in their projects, or that they do not need distributed
constraints specifically. The 10 participants with experience, had to answer further
questions about distributed constraint management, while the 3 participants without
experience skipped them. There is a clear indication, that input validation is important
to ensure DQ (100% agree) and that maintaining multiple constraint repositories is
time consuming (100% agree), hard (90% agree), and a frequent source of failures
(80% agree). Also 60% agree that there is lack of supporting tools and paradigms
to develop and maintain multiple constraint representations in distributed systems,
where the remaining 40% are neutral. Almost all participants (90%), define constraints
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in various components of the application, such as GUI, business logic, and database.
Complex constraints are rather defined in the business logic than in the database (70%
agree), while 80% of the participants usually define no or only a few constraints in the
database.

The remaining task-specific and general questions were again answered by all par-
ticipants.

For task 1, we can conclude that most of the participants were satisfied with the
features provided by the feedback form. It is easy to use (100% agree), and enabled
the participants to express their feedback (85% agree, 15% neutral). The 15% neutral
answers probably relate to the issue that, during the study, it was only possible to give
free text comments to the overall instance. We added the specific text field comment
and other suggested enhancements to the final version of our feedback form which was
presented in the previous section.

For task 2, we can conclude, that our JSON format for the constraint repositories
is easy to learn (92.5% agree, 7.5% neutral). Further, the format enables an intuitive
definition of constraints since 100% of the participants agreed that the task was easy
to solve, and that the obtained result is what they expected. Nonetheless, we received
multiple suggestions for enhancement, such as a more advanced constraint repository
management application, where constraints can be added and moved in a drag-and-drop
manner, or an additional syntax-check for the format.

For task 3, we can conclude, that our tools support the analysis of DQ since 100%
of the participants agreed that the task was easy to solve. Further, the usage of our
improvement tendency chart is intuitive (100% agree), but only 54% of the participants
agree that the vector space model chart is intuitive to use (31% neutral, 15% disagree).
We also received feedback that it takes some time to understand the filters, different
colours and symbols that represent the instances/entities. This could probably be
improved by adding additional descriptions to the specific features. Further, it was
suggested that instances and entities should be displayed at the same time in the charts,
which could enhance the interpretation of the distributed instances, and provide better
insights on how the entity value is calculated.

The next results correspond to questions related to the usability of DQAnalytics.
The overall feedback for the usability of DQAnalytics was very good. 85% of the
participants rated it as easy to use (15% neutral), and also 85% felt confident using
the system (7.5% neutral). 77% of the participants think that they would not have
to learn a lot before being able to use the system (15% neutral). Further, 85% of the
participants agreed that the functionality in the system is well integrated (15% neutral).
Thus, the participants were satisfied with DQAnalytics but the understandability of its
capabilities can still be improved. We generally assume that such an application, to
analyse and monitor DQ would be used rather frequently by users who would therefore
be willing to invest time to familiarise themselves with the application. Therefore, good
documentation and/or short tutorial would be helpful. We also received feedback from
two participants that it would be convenient to be able to correct data directly after
clicking on an instance in the charts, as we provide it in previously presented integrated
approaches.

The remaining results correspond to general questions. Almost all of the participants
agreed that there is a need for tools that provide information about the DQ in an
information system (92.5% agree, 7.5 neutral), and that DQAnalytics provides a good
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understanding of the quality of data of the monitored information system (92.5% agree,
7.5 neutral). Further, almost all of the participants (92.5% agree, 7.5 neutral) stated
that they would invest time to provide explicit feedback to an information system
in order to help increase the DQ. All participants agreed that explicit user feedback
can be used to better understand the DQ in an information system. The participants
would use DQAnalytics in their software products due to the provided unified constraint
management (92.5% agree, 7.5 neutral), and due to the provided DQ analysis tools
(100% agree).

Overall, the results are very promising for our approach, especially the fact that our
integration of explicit user feedback was rated as an important indicator for DQ, and
that our approach seems to provide the appropriate convenient tools.

7.7 Conclusions

We have presented a DQMF which provides components that can be used by an infor-
mation system to inject data validation at different tiers, based on central constraint
repositories and AOP. The constraint repositories are convenient to maintain, and are
used for all validations, which guarantees unified constraint management. Further, the
DQMF provides a separated application with tools to analyse and monitor the DQ of
an information system. It provides means of receiving DQ metadata, such as validation
results and explicit/implicit DQ feedback from the users of an information system, and
concepts to analyse the DQ in an information system as a combination of objective and
subjective DQ assessment.

Therefore, we have introduced a DQ vector space model which expresses the DQ of
data instances with three different indications on DQ, namely compliance, explicit user
feedback and importance. Based on this vector space model, it is possible to associate
data instances to different DQ improvement tendencies and calculate a DQ improve-
ment urgency score, which both take the objective and subjective DQ assessment into
account. We have shown how to use these measures to evaluate causes of low DQ and
to determine actions to improve the DQ.

Further, we showed that user feedback, as subjective DQ assessment, is very use-
ful, not only to indicate DQ and recognise semantic errors in the data, but also to
identify mistakes in the constraint definitions, when it is combined with objective DQ
assessment.

To evaluate our approach, we implemented a case scenario, that consists of a mon-
itored information system, FoodCASEWeb, a DQ management application, DQAnalyt-
ics application, and the two components DQAnalytics Web module and DQAnalytics
Library. The DQAnalytics application, the web module and the library represent the
implementation of our DQMF DQAnalytics. Based on this implementation, we con-
ducted a user study which indicated very good usability and usefulness of DQAnalytics
and its provided tools. An important result is that the user study participants would
invest time and effort to provide explicit feedback to an information systems they work
with, to help improve its DQ.

The injected functionality from our DQMF into a monitored information system is a
great advantage compared to previously presented integrated approaches. Nonetheless,
it also comes with an increase of runtime in the monitored information system. We
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conducted a brief benchmark to provide an indication on the runtime overhead but
further benchmarks would be needed to give a clear indication. The approach should
also be compared with other integrated validation mechanisms, such as BV, since they
also cause an increase of the runtime.

There still exist many ways of optimising the runtime of our approach. For example,
the constraint repositories could be cached to avoid loading and parsing runtime for the
checking of constraints and the generation of DQ metadata.

On purpose, our approach does not propose the transferring of data instances
between the monitored information system and the DQ management application. Thus,
the data instances with low DQ always have to be corrected in the monitored infor-
mation system, although we provide the necessary tools to identify them in the DQ
management application. Directly adapting the data instances in the DQ management
application could be achieved by adding appropriate functionality to the monitored
information system, or by a concrete data transfer of the instances between the mon-
itored information system and the DQ management application. Nonetheless, this is a
trade-off between integrated functionality and independence of a DQMF.





8
Conclusion & outlook

In this thesis, we have presented alternative approaches for managing constraints in
a unified way in information systems to reduce the constraint maintenance effort and
the likelihood of incorrect constraint definitions as well as constraint inconsistencies.
Moreover, we have introduced concepts which enable individual data validation for dif-
ferent user groups. Further, we have shown, how constraints can be associated with
additional attributes, such as constraint violation severities and DQ dimensions, and
presented alternative measures and concepts to indicate DQ based on constraint com-
pliance. Additionally, we have presented measures and concepts that combine such
objective DQ assessment with subjective DQ assessment, such as explicit and implicit
user feedback, to provide an extended analysis of DQ. As part of our approaches, we
have presented diverse tools to analyse DQ, and diverse ways of giving feedback to users
of an information system, both during data input and data analysis.

Our research was motivated from the experience of the author in large, partly agile,
projects in both the financial sector and in the food science domain with the extension
of the FoodCASE system described in this thesis.

To investigate our concepts and approaches, we mainly focussed on contexts in-
volving object-oriented programming languages.

From our analysis of FoodCASE, we identified several requirements, issues and solu-
tions which we implemented and evaluated with our alternative approaches. At the
beginning, we had the vision that there could be one final approach to meet all re-
quirements. During the work on our initial approaches, we recognised that there is
no ‘one size fits all’ solution, due to the different scenarios of software development
and the diverse requirements for different information systems. Consequently, we have
shown with our alternative approaches how to cope with different scenarios of software
development concerning unified constraint management and DQ assessment.

In the remainder of this chapter, we will first briefly outline the main contributions
and present an overview and brief assessment of our alternative final approaches. We
will then conclude with a discussion on the criteria for deciding on an approach, before
giving an outlook on future work.

189
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With the explanation of our alternative approaches and findings, we aimed to
provide guidance for software architects and developers who have to decide on a suitable
solution for constraint-based data validation, potentially in relation to DQ assessment,
for their individual information system scenario. There are four main contributions con-
tained within these approaches by providing concepts concerning (1) unified constraint
management for software developers, (2) expressing DQ by constraints and beyond con-
straint compliance, (3) extended constraint checking for different users/applications,
and (4) giving feedback on DQ during data input and data analysis for different end-
users of an information system.

With our approaches, we satisfy unified constraint management in different
ways for different requirements and scenarios. This includes both existing systems,
which should be improved with unified constraint management, and systems that are
planned from scratch. We further bridge the gap between formal methods in software
engineering and the practice of software development with an MDA approach.

How to analyse and improve the DQ of an information system has been investigated
from many different viewpoints by many different researchers. We provide one of the few
works focusing on expressing DQ by means of constraints. Our approaches show
how to support giving indications on DQ with DQMFs which are part of an information
system, or which provide analysis tools in a monitoring application, external to the
information system. With our concept of indicating DQ based on constraint compliance,
we provide objective DQ assessment in all approaches. Moreover, we have shown how
subjective DQ information can be collected in an information system, and used in
combination with objective DQ assessment to provide new measures and indications on
DQ.

Based on the requirements obtained in the TDS-Exposure project, we have presen-
ted concepts that enable data validation specific to user groups as well as unified con-
straint management. In combination with our concepts of expressing DQ by means of
constraints, this extended constraint checking provides highly customisable data
validation and indication on DQ during data input and data analysis. Further, we have
pointed out the difficulties of defining constraints during the runtime of an application,
and provided solutions which tackle these issues.

Our approaches also give guidance on how to give feedback on DQ by providing
many tools for DQIF and DQAF. We have shown that the alternative approaches
offer different possibilities for a user to analyse and improve DQ. For example, with
DQMFs which are integrated into an information system, it is simpler to provide tools
to drill down to single instances which have DQ issues. This becomes more complicated
with DQMFs which are separated from an information system since these DQMFs, by
themselves, might not have access to the data.

Further, we have presented different user studies for our alternative approaches,
which not only aimed to evaluate the usability and usefulness of our implementations,
but also to provide insights into the issues which developers and users of information
systems have, concerning distributed constraint management, data validation, DQ ana-
lysis and feedback on DQ.
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8.1 Final approaches summary

Similar to the overview of our initial approaches in Chap. 3, we give here an overview
of all final approaches where we also point out the strengths and weaknesses of each ap-
proach. But first, we present the criteria used to categorise our alternative approaches.

We distinguish the two main criteria (1) constraint representation uniformity for
the categorisation of information systems concerning their homogeneity of constraint
representations, and (2) level of dependence for the categorisation of DQMFs according
to their extent of integration with an information system.

With the constraint representation uniformity, we categorise into (1-A) homogeneous
information systems, where uniform constraint definitions are used for data validation
in all components, and into (1-B) heterogeneous information systems, where diverse
constraint representations are used for data validation in the different components.

With the level of dependence, we categorise into (2-A) integrated DQMFs, where
the DQMF is implemented as part of the information system, into (2-B) separated
DQMFs, where the DQMF is separately implemented from the information system,
and into (2-C) hybrid DQMFs which combine criteria from integrated and separated
DQMFs.

The resulting categorisation for our final approaches is presented in Tab. 8.1, where
the row labels represent the criteria for the constraint representation uniformity, and
the column labels represent the criteria for the level of dependence.

Note that this categorisation only considers different solutions for fulfilling the re-
quirements of unified constraint management and not the different concepts for accom-
plishing DQ assessment.

integrated (2-A) separated (2-B) hybrid (2-C)

homogeneous
(1-A)

Bean Validation
approach
(Chap. 4)

heterogeneous
(1-B)

Constraint
injection approach

(Chap. 6)

UnifiedOCL
approach
(Chap. 5)

DQAnalytics
approach

(Chap. 7)

Table 8.1: Approaches categorisation

For all approaches, we summarise now their main features and provide a brief assess-
ment for each approach. In Tab. 8.2 all final approaches are listed with their approach
name (Approach), a brief description of the main topic (Topic), their main features (Fea-
tures), their categorisation for the level of dependence (Dep.) where ‘Int.’ indicates an
integrated approach, ‘Sep.’ a separated approach, and ‘Hyb.’ a hybrid approach, and
a reference to the chapter (Chap.) where the approach is described in detail. Please
note that for each approach, an individual, detailed discussion is provided at the end
of the corresponding chapter.

In Chap. 4, we presented an approach for integrated DQMFs using BV. It was based
on our experiences gained in the initial approaches Guidance on data quality feedback
(Sect. 3.1), Data quality extended Bean Validation (Sect. 3.3) and Bean Validation
OCL extension (Sect. 3.4). The approach was implemented as the second version of
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Approach Topic Features Dep. Chap.

Unified data
quality as-
surance and
analysis based
on Bean Valid-
ation

Integrated
and extended
constraint man-
agement based
on BV

fine-grained severity; new meas-
ures for general DQIs; DQ score;
customised validation with con-
tracts, error threshold and val-
idation groups; new DQIF and
new DQAF; second version of
the FoodCASE DQMF for TDS

Int. 4

System-wide
constraint
representa-
tions with
UnifiedOCL

Achieving uni-
fied constraint
representations
with a new DSL
(UnifiedOCL)
and constraint
translations

MDA support; fine-grained
severity; new measures; power-
ful unified model and constraint
definition based on OCL; plug-
gable label dictionaries for
convenient constraint definition;
mapping from constraints to
DQ dimensions; bi-directional
constraint translations and
multi-translations

Sep. 5

Data quality
management
in mobile
applications

Constraint syn-
chronisation
between differ-
ent applications

mobile focus; constraint injec-
tion/synchronisation; adaptive
GUI; rule engine based; Food-
CASE extension

Int. 6

Hybrid ap-
proach with
subjective
data quality
assessment

Combination of
integrated valid-
ation and separ-
ated monitoring
including object-
ive and subject-
ive DQ assess-
ment based on
AOP

consolidation of approaches; val-
idation library and web module;
validation logic translation; fine-
grained severity; DQ dimen-
sions mapping; runtime con-
straint definition; AOP based;
new measures; including sub-
jective DQ assessment; new DQ
monitoring; new DQIF and new
DQAF

Hyb. 7

Table 8.2: Overview of the final approaches

a DQMF within FoodCASE for the TDS-Exposure project. It provides a fine-grained
severity scale for constraint violations where a threshold can be defined that discrim-
inates warnings from errors. Moreover, constraint definitions can be associated with
customisable validation groups, which enable the mapping of constraint violations to
any data validation categorisation. We extended our DQ measurement and calculation
concepts and presented measures of general DQIs for different levels in the DQAF as
well as DQ scores for entities in the DQIF. Based on these measures, we also provided
new tools to support the analysis and enhancement of DQ in an information system.
Further, this approach enables highly customisable constraint checking and data valida-
tion with validation profiles, so-called contracts, configurable for different user groups or
applications. We also presented an evaluation of this approach conducted with various
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food science experts participating in the TDS-Exposure project.
This approach is well suited to homogeneous systems where BV constraints conveni-

ently can be defined in the logic tier. Further, BV also can be used in the presentation
tier, where it can be integrated with appropriate technologies. Predefined constraint
types cope with a wide range of constraints, but the static definition of parameters
reduces their flexibility. Custom constraints, which enable complex business rules to
be defined, partly compensate for this lack of flexibility. Defining custom constraints
always adds more complexity but is still convenient here, since it is an integrated ap-
proach. Implementing our concepts is highly dependable on the given functionality of
BV, which reduces the potential for custom extension.

In Chap. 5, we proposed an approach where constraints are managed in a single
place using OCL with extensions for technology-specific concepts. Constraints are
defined with our powerful DSL UnifiedOCL which includes pluggable label dictionaries
for convenient constraint definition. These constraints are then mapped to technology-
specific representations which are validated at runtime. Bi-directional translations of
constraint definitions then allow existing components to be easily integrated into the
system. With this approach, we support MDA and the need for intentionally distrib-
uted constraints across an information system. It further integrates the association of
penalties for constraint violations on a fine-grained severity scale and the mapping of
constraint definitions to DQ dimensions. As proof of concept, we implemented this
approach as a set of Eclipse plugins and presented the results of a user study which
support our claims that the problems addressed by our system are important and can
reduce developer effort.

This approach is well suited to heterogeneous systems, where constraints have to
be used in potentially many different technology-specific representations. Since the
DQMF is completely separated from the information system, where the technology-
specific constraint representations are used for data validation, it is applicable in many
cases and provides high flexibility. Nonetheless, although this approach provides a
translation from UnifiedOCL to pure OCL, it does not support RTE since it only
handles a unidirectional translation from UML to UnifiedOCL.

In Chap. 6, we introduced an approach for interconnected applications which share
constraint definitions and have to synchronise their separated constraint (sub)sets on
a regular basis. We used the scenario of a main application as a source system from
which constraint definitions are injected to a mobile application as a target system.
The constraint injection includes the translation from the source to the target con-
straint representation as well as the transfer and update of the constraint set in the
target system without influencing the runtime of both systems, besides the constraint
sets and data validation. In this approach, the target constraint set is represented by
business rules and validated with a rule engine. With the focus on mobile applications,
this approach also proposed an adaptive GUI which automatically adjusts the input
forms of the target system according to the received constraint set. In terms of DQIF
for mobile applications, we also presented a responsive DQ feedback interface which
informs users about the quality of data in different ways, dependent on the screen size
of their device. As proof of concept, we extended our FoodCASE information system
with a mobile application with appropriate constraint synchronisation functionality. To
evaluate different ways of giving DQ feedback in mobile applications, we also conducted
a user study.
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This approach is well suited to heterogeneous systems where one component/applic-
ation is dependent on another component/application. Only one constraint translation
is needed which is integrated in the source system and is therefore highly customisable.
The constraint checking, based on a rule engine, provides a high flexibility to define
business rules. Nonetheless, with this approach it is only possible to inject constraints
from a source system to a target system and not vice versa.

The approach proposed in Chap. 7, is a combination of an integrated validation
framework and an independent monitoring framework for DQ including not only ob-
jective DQ assessment, represented as constraint compliance, but also subjective DQ
assessment. This approach and its DQMF provide unified constraint management based
on AOP and consolidates our integrated and separated approaches. The constraint
checking mechanisms can be injected into different tiers of a software system by in-
cluding our validation library and/or web module and applying appropriate validation
translations. Constraint definitions can be created, adapted and deleted during runtime
while also being associated with penalties on a fine-grained constraint violation scale and
mapped to certain DQ dimensions. Besides including constraint compliance for our DQ
measures, as already proposed in our other approaches, we also included explicit/impli-
cit user feedback and the importance of individual domain entities as a subjective DQ
assessment in terms of a DQ vector space model. Based on this model, we provided new
measures, referred to as DQ improvement tendencies and a DQ improvement urgency
score, which give further indications on enhancing DQ. Consequently, this approach
provides additional features and visualisations for DQIF, DQAF and monitoring DQ.
Our case scenario implementation of the resulting DQMF, called DQAnalytics, was real-
ised as a web application in the domain of food science, complementing our FoodCASE
information system. We also presented the results of a user study which we conduc-
ted to evaluate the concepts included in this approach and the usefulness/usability of
DQAnalytics.

This approach is well suited to heterogeneous systems where aspects can be used for
data validation in the logic tier and one constraint translation is sufficient for the data
validation in the presentation tier. It provides high flexibility for all our concepts, also
due to the custom constraint definition representation in JSON. The hybrid injection
of validation and DQ assessment logic into a monitored information system through
this DQMF is very convenient. Nonetheless, this is a trade-off between integrated
functionality and separation of a DQMF which causes, for example, the problem of
accessing concrete data during the DQ assessment.

8.2 Discussion

With the initial approaches, we investigated the different requirements and goals presen-
ted in Chap. 1 by exploring alternative solutions to fulfilling them. The specific aim
of these approaches was to explore various ways of (1) defining and checking simple
and complex constraints, (2) measures of constraint compliance, (3) relating constraint
compliance to DQ, and (4) giving DQIF and DQAF. Having explored the different
initial approaches, we recognised that instead of trying to achieve a single combined
approach, it was better to offer different solutions for different scenarios. Thus, the ini-
tial approaches built the knowledge and decision basis for our final approaches, which
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consolidate and extend concepts from the initial approaches to fulfil all of our proposed
requirements of a DQMF for various initial software development scenarios.

In this thesis, we have described how our approaches can be realised and how our
DQMFs allow the users to validate data during input, as well as analyse, quantify and
visualise the specific and overall quality of the data at any time.

The initial software development scenario for an information system, in terms of
whether parts of it already exist or it is to be developed from scratch, is crucial for the
choice of the approach and its implementation. Therefore, additional to the architec-
ture of an information system, the constraint requirements, and the targeted goals for
constraint definition, constraint checking, DQ measuring, DQ feedback and DQ mon-
itoring have all to be taken into account when deciding on appropriate concepts and
approaches.

In the remainder of this section, we will provide a set of questions, which aim to
help software architects/developers clarify the requirements of an information system
concerning constraint checking and DQ assessment, and choose the appropriate com-
bination of concepts presented in our approaches. We therefore hope that this thesis
can contribute to constraint-based approaches to DQ in information systems, both for
the research community and industry.

First, it is necessary to gather the constraint requirements or business rules,
from the different stakeholders by getting answers to the two basic questions: (1) What
kind of simple and complex constraints are needed? (2) How do the constraint viol-
ations differ in terms of severity? The answer to the first question can then be used
to define accurate constraint checking for the domain entities and additional business
rules. The answer to the second question determines whether a distinction between
different constraint violation severities is needed. If it is not needed, all constraints
have the same importance and can be traditionally validated to true/false. If different
constraint violation severities are needed, the answer to the second question provides
the information on the individual constraint importance, also taking into account the
potential need of different user groups. To get the information for these two questions,
it is possible to conduct an appropriate evaluation with the different stakeholders, such
as domain experts and potential end users of the information system.

In the TDS-Exposure project, for example, we identified in a first step, a set of
entities with their manifold attributes relevant to the TDS-Exposure domain which
built the data model of our extended FoodCASE. Further, we defined multiple simpler
consistency constraints and multiple complex rules as a proposal for the evaluation. In
the evaluation with our project partners and domain experts, we received feedback on
our already defined simple and complex constraints and gathered additional constraint
and rule definitions which we incorporated into FoodCASE. Based on the feedback, it
was possible to rate constraint violations with individual different severities by also dis-
tinguishing different users groups, such as different institutions from different countries.

In combination with the answers to the two basic constraint requirements questions
from above, answers to further questions concerning implementation requirements
and technical details provide the evaluation basis for deciding on appropriate con-
cepts and approaches. Please note, that we provide here a list of possible questions,
without the claim for completeness. Below, from top left down to bottom right, the
questions are group by the topics, constraint definitions (1-6), system components (7-
10), DQ – requirements (11-13), DQ – technical aspects (14-15), various (16-19).
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1. Where have the constraints to be
defined? Central possible? Many
components?

2. What constraint definition is con-
venient/needed for developers?
Close to the code, as part of the
programming language, separated as
configuration, etc.

3. How complex are the constraint
definitions? Standard checking, cus-
tomised validators, checking with
metadata/statistics, depending on
data source reputation, reusing of
constraints, etc.

4. Who will define/maintain the con-
straint definitions?

5. Are customised user group-specific
constraints needed?

6. Is it needed to change/apply con-
straint definitions during runtime?

7. How many and what kind of compon-
ents are involved? Database, server,
GUI, mobile (online/offline, respons-
ive), multiple applications/databases
etc.

8. How many and what kind of techno-
logies are involved?

9. What architecture is pos-
sible/needed? From scratch? Leg-

acy system? Federated solution or
consolidation?

10. Is there a need for constraint syn-
chronisation/injection?

11. What are the needs for DQIF?

12. What are the needs for DQAF and
reporting?

13. Is an objective DQ assessment (con-
straint compliance) sufficient as an
indicator for DQ or is additional sub-
jective DQ assessment needed?

14. Is an information system integ-
rated or separated DQMF necessar-
y/desired?

15. Is it needed to change measurements
for DQ during the information sys-
tem’s life cycle?

16. Is there a need for an adaptive
GUI dependent on constraint defini-
tions, and device screen sizes, and/or
users?

17. Is there a need for data cleaning?

18. Is there a need for constraints inter-
dependence/contradictions checking
(validation of constraint sets them-
selves)?

19. Is data imported on a regular basis?

Answering these questions should provide insights on which concepts are needed
to which level of detail. Since it should be obvious for the reader which questions
target which decisions, we do not discuss the questions in further detail. We rather
want to provide general guidance. For homogeneous systems, if possible, it is con-
venient to define constraints in a unified way, such as with BV. If necessary, legacy
or heterogeneous constraint definitions can be transformed once into a unified repres-
entation, for example with or via UnifiedOCL and appropriate translations. If using a
single constraint representation is not possible, since the system is heterogeneous, it is
necessary to use a constraint transformation approach, such as UnifiedOCL with trans-
lations for multiple technology-specific representations, a single translation approach
with constraint injection, or constraint repositories with AOP and constraint transla-
tion. Depending on the requirements for constraints, implementation, technical details
and DQ assessment, appropriate concepts from our approaches can then be realised for
a specific solution.
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8.3 Outlook

With our approaches, we have tackled the issue of defining constraints during the
runtime of an application, with immediate effect on the data validation. While this
is accomplished for predefined constraint types, the definition of complex custom con-
straints still provides issues for unified constraint management, applied to different
components in an information system. For custom constraints, it seems to be inevit-
able in certain cases to recompile at least parts of the application or validation code. A
solution could be to provide hot deployment of validation code and/or specific custom
class loaders, which we did not address in this thesis.

We provide the concepts for associating DQ dimensions with constraint checking
to enable DQ analysis also based on DQ dimensions. On purpose, we leave it open
to the user, which DQ dimensions are associated to constraint definitions in order to
provide flexible configuration. Further, more formal investigations should be carried
out to establish what types and aspects of DQ are, or could be, supported with these
approaches. This would allow guidelines to be provided about which constraint types
can be related to what DQ dimensions. For example, the objective DQ assessment
could also consider the data source reputation, such as different laboratories, for an
indication of DQ. Reputation is an important factor, especially when handling scientific
data, as with FoodCASE. If analytical values are received from different laboratories
with different levels of reputation, the DQ assessment could indicate the data from a
laboratory with low reputation as of lower quality. Such a DQ assessment could be
realised by associating the DQ dimension reputation with an appropriate severity to
analytical results.

With our UnifiedOCL approach, our constraint translations generate complete tar-
get representations without regard to previously generated output. It could be useful to
regenerate just parts of the output, so that existing pieces of code in the target repres-
entation could be preserved. This could be achieved by annotating parts of the source
or target code specification, as well as the intermediate representation UnifiedOCL.

There still exist many ways of optimising the runtime of our AOP-based approach,
presented in Chap. 7. For example, the constraint repositories could be cached to avoid
loading and parsing runtime for the checking of constraints and the generation of DQ
metadata.

We think that DQIF and DQAF can always provide more possibilities giving feed-
back on DQ. For example, it would be possible to give the user an indication of con-
straint dependencies between data input fields in the GUI, for example caused by class
constraints. It would also be convenient to present DQIF by adding short DQ feedback
close to the appropriate fields, if need be by an additional accompanied symbol such as
a light bulb with attached tooltip.

The work in this thesis provides numerous opportunities for future research in com-
bination with our approaches and we outline a few possible directions below.

We have not addressed the problem of constraint validation for sets of constraints.
Sets of constraints, which are used for unified constraint management, should also
be validated themselves, to identify and resolve interdependences and contradictions
between constraint definitions.

In our approaches, constraint checking is always done on the basis of precisely defined
constraints. It would also be possible to define constraints in a more generic way,
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checking them against available metadata, statistics, or existing data in the database.
For example, a range constraint for an analytical value could be defined, which checks
if a new value is in the range of already stored values. If not, it could be an indication
of incorrect data or an outlier value. Note that such constraint checks would have
to be delayed until a number of reliable values are stored in the database. Based
on metadata, the objective DQ assessment could also consider the specific type of
data, such as different substances, for an indication of DQ. For example, if different
substances, such as selenium and mercury, are checked for certain value ranges, the
validation could depend on the type of substance, even if the substances represent the
same entity. Such a DQ assessment could be realised by including additional metadata
for the substances during the assessment process.

In our approaches, we give indications of how DQ can be improved, but we always
leave it up to the user to actually correct the data. A reasoning system could support
the data correction process by semi-automatically, or even automatically, adapting data.
Since automatically adapting data can be disastrous for the DQ in case of faulty reas-
oning, at least recommendations could be provided which then could be approved by
users.

Constraint checking and DQ assessment on data items is the basis for accumulating
DQ information for higher purposes. The accumulated numbers could be used for charts
and reports to give an overview for business processes and business summaries. Based
on such overviews, decisions are taken in business. We assume, that there is a lack
of including such detailed DQ information in management reports which are the basis
for important decisions. For example, it would be beneficial if the concepts provided
in this work could be included in enterprise management software, such as the SAP
Information Steward1. There, the focus lies on data cleaning, such as deduplication
and address data validation.

1https://www.sap.com/products/data-profiling-steward.html

https://www.sap.com/products/data-profiling-steward.html


A
TDS-Exposure workshop 2015 –

Questionnaire

We provide here the list of questions from the questionnaire that was completed by
the participants of the TDS-Exposure workshop 2015 in Zurich. The introductory
questions asked for the participants’ position and skills and aimed to provide some
degree of context to their responses. For the questions in Sect. A to Sect. A, the
participants were asked to choose from a five-level Likert-type scale if they ‘Strongly
Disagree’, ‘Disagree’, are ‘Neutral’, ‘Agree’ or ‘Strongly Agree’. The remainder of the
questions (Sect. A to Sect. A) could be answered in own words, with the exception of
questions A-1 and A-3, which accepted a ‘Yes’ or ‘No’ answer.

Intro and user skills

• Position

• Name (optional)

• How would you estimate your computer skills? (Choose from 1-5, where 1=be-
ginner, 3=average user, 5=professional)

Contracts

1. I find it useful to be able to assign a weight (or ‘importance score’) to each data
constraint

2. I find specifying the constraint weights using a scale of 0-100 (where 0=not im-
portant and 100=most important) intuitive
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3. I would like the option to have different ‘contracts’ or quality profiles (different
constraint importance scores and different active/inactive constraints) for different
users and applications of the system

4. I would like to be able to share and exchange contract files with other users

5. I would like to be able to easily activate/deactivate constraints at runtime

6. For some constraints, it would be useful to have a weight (importance score) that
would override the contract weights of the constraint

7. It is acceptable if the weight can only be defined by a developer

Input validation

1. During input validation, I find a quality indicator percentage useful

2. I would like to have a visual representation of quality during input validation

3. If I don’t specify a contract for input validation, I would like all constraints to be
of equal weight

4. If I don’t specify a contract for input validation, I would like a default contract
to be used

5. When some important constraints are violated, it should not be possible to save
the data

6. When some less important constraints are violated, it is OK to be able to save
the data

7. In some cases I would like to be able to save the data even if important constraints
are violated, as long as I am aware of the violations and can provide an explanation
about their occurrence (e.g. data not available yet)

8. When a constraint violation occurs during data input, I would like the system to
provide an example of data that satisfies the constraint

9. When a constraint violation occurs during data input, I would like the system to
insert the most probable value that satisfies the constraint

Analysis

1. I think that being able to perform an overall data quality analysis is a useful
feature

2. I would like to be able to analyse the data quality according to certain constraint
groups (e.g. only perform data completeness checks or value correctness controls)

3. I would like to be able to only analyse certain data entities (e.g. samples)
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4. I find it useful to have the data quality analysis results in textual form

5. I would like to have visual representations (e.g. graphs, pie charts) of data quality
analysis results

Access rights

1. Anyone should be able to perform a data quality analysis

2. Anyone should be able to decide on the weight threshold that distinguishes errors
from warnings

3. Anyone should be able to disable warnings during input validation

Constraints

1. It is acceptable that new constraints can only be defined by developers and not
any user of the application

2. It would be useful to be able to organize constraints into groups (logical units) in
order to be able to validate/analyse only these groups

3. It is acceptable if constraints can only be assigned to groups by developers

4. It would be necessary that the constraints could be defined during the running
application by a non-developer such as a power user

5. It would be helpful for users of the application (non-developers) to be able to
define customized groups of constraints during runtime

Constraint grouping

1. Can you think of additional ways to group constraints that would be useful to
you? If so, please describe.

Comparison with existing food composition data quality
framework

1. Have you had experience using the existing Food Composition input validation
framework? (Yes/No)

2. If yes, how would you compare it to the Contaminant input validation framework
that was presented today?

3. Have you had experience using the existing Food Composition data quality ana-
lysis framework? (Yes/No)
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4. If yes, how would you compare it to the Contaminant data quality analysis frame-
work that was presented today?

Additional comments or suggestions

1. Do you have any comments or suggestions related to the data quality framework?
If so, please describe.



B
TDS-Exposure workshop 2015 –

Questionnaire findings

We present here our detailed findings for the questionnaire answered at the TDS-
Exposure workshop 2015 in Zurich. The findings are organised according to the general
question category that they correspond to. In all the presented answers, the parti-
cipants could choose in the appropriate question from a five-level Likert-type scale if
they ‘Strongly Agree’ (SA), ‘Agree’ (A), are ‘Neutral’ (N), ‘Disagree’ (D) or ‘Strongly
Disagree’ (SD). Next to each finding, we indicate the percentages of answers that led
to its conclusion.

Contracts

# Finding SA% A% N% D% SD%

1 Almost 90% of the participants con-
sider assigning a weight to each data
constraint useful

40 46.67 13.33 - -

2 Almost 90% find the 0-100 weight scale
intuitive

33.33 53.33 6.67 6.67 -

3 Almost half of the participants consider
having different contracts for different
users and applications of the system
useful

6.67 40 53.33 - -

4 60% would like to be able to share and
exchange contract files with other users

13.33 46.67 33.33 6.67 -

Continued on next page
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Table B.1 – Continued from previous page

# Finding SA% A% N% D% SD%

5 While 40% of the participants would
like to be able to activate or deactiv-
ate constraints at runtime, about 30%
disagree

13.33 26.67 33.33 13.33 13.33

6 40% find the existence of payload
weights useful

6.67 33.33 53.33 6.67 -

7 Almost 70% find it acceptable if the
payload weight can only be defined by
developers, while more than 25% dis-
agree

6.67 60 6.67 20 6.67

Table B.1: Findings related to the concept of contracts

Input validation

# Finding SA% A% N% D% SD%

1 100% of the participants find a qual-
ity indicator during input validation
(IV QI) useful

13.33 86.67 - - -

2 Almost 75% would like to have a visual
representation of quality during input
validation

13.33 60 13.33 13.33 -

3 While about 35% of the participants
would like all constraints to be con-
sidered equivalent if a contract is not
selected, 40% disagree

6.67 26.67 26.67 26.67 13.33

4 Almost 70% agree that if a contract is
not selected for input validation, a de-
fault contract should be used

6.67 60 26.67 6.67 -

5 More than 85% of the participants
agree that when an important con-
straint is violated, it shouldn’t be pos-
sible to save the data

13.33 73.33 6.67 6.67 -

6 80% agree that if less important con-
straints are violated, it should be pos-
sible to save the data

20 60 6.67 13.33 -

Continued on next page
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Table B.2 – Continued from previous page

# Finding SA% A% N% D% SD%

7 While more than 50% would like to be
able to save the data even if important
constraints are violated, as long as they
are aware of the violations and can ex-
plain their occurrence, 30% disagree

- 53.33 13.33 33.33 -

8 If a violation occurs during input val-
idation, 80% would like the system to
provide an example of appropriate data

- 80 20 - -

9 If a violation occurs during input val-
idation, almost 70% would not like
the system to insert the most probable
value that satisfies the constraint

6.67 6.67 20 46.67 20

Table B.2: Findings related to input validation

Analysis

# Finding SA% A% N% D% SD%

1 80% of the participants agree that be-
ing able to perform an overall data
quality analysis is a useful feature

20 60 20 - -

2 More than 70% would like to be able to
analyse the data quality according to
certain constraint groups

6.67 66.67 20 6.67 -

3 60% would like to be able to only ana-
lyse certain data entities

6.67 53.33 20 20 -

4 More than half of the participants find
having the analysis results in textual
form useful

- 53.33 46.67 - -

5 80% would like to have visual repres-
entations of the analysis results

33.33 46.67 20 - -

Table B.3: Findings related to data quality analysis
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Access rights

# Finding SA% A% N% D% SD%

1 Almost 70% of the participants believe
that anyone should be able to perform
a data quality analysis

6.67 60 26.67 6.67 -

2 Almost 70% of the participants don’t
think that the weight threshold that
distinguishes errors from warnings
should be decided by any type of user

- 13.33 20 53.33 13.33

3 More than 70% disagree with allowing
any type of user to disable input valid-
ation warnings

- 13.33 13.33 73.33 -

Table B.4: Findings related to user access rights

Constraints

# Finding SA% A% N% D% SD%

1 More than half of the participants find
it acceptable if new constraints can only
be defined by developers

20 33.33 33.33 13.33 -

2 More than 70% find organizing con-
straints into groups useful

- 73.33 26.67 - -

3 While 40% of the participants find it
acceptable if constraints can only be
assigned to groups by developers, 20%
disagree

- 40 40 20 -

4 While about 25% of the participants
believe it would be necessary that the
constraints could be defined during the
running application by a non-developer
(such as a power user), 40% disagree

- 26.67 33.33 33.33 6.67

5 More than 50% would like to be able to
define customized groups of constraints
during runtime

6.67 46.67 46.67 - -

Table B.5: Findings related to constraints



C
List of supported constraints with

UnifiedOCL labels

We present here the list of all constraints supported by UnifiedOCL labels originating
from BV, HV and PostgreSQL including the appropriate parameters.
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BV annotation UnifiedOCL label UnifiedOCL label parameters

@AssertTrue asserttrue
@AssertFalse assertfalse
@DecimalMin decimalmin value (STRING)

inclusive (BOOLEAN)
@DecimalMax decimalmax value (STRING)

inclusive (BOOLEAN)
@Min decimalmin value (INTEGER)

inclusive (BOOLEAN)
@Max decimalmin value (INTEGER)

inclusive (BOOLEAN)
@Size size min (INTEGER)

max (INTEGER)
inclusive (BOOLEAN)

@Future future
@Past past
@Digits digits integer (INTEGER)

fraction (INTEGER)
@Pattern pattern regexp (STRING)

flag (STRING) – partially sup-
ported

@Null null
@NotNull notnull

Table C.1: Bean Validation – Supported constraints
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HV annotation UnifiedOCL label UnifiedOCL label parameters

@NotEmpty notempty
@NotBlank notblank
@Length length min (INTEGER)

max (INTEGER)
@Range range min (INTEGER)

max (INTEGER)
@Email email
@CreditCardNumber creditcard ignoreNonDigitCharacters

(BOOLEAN) – partially suppor-
ted

@EAN ean type (INTEGER)
@URL url protocol (STRING)

host (STRING)
port (STRING)
regexp (STRING) – partially
supported
flags (STRING) – partially sup-
ported

Table C.2: Hibernate Validator – Supported constraints
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SQL constraint UnifiedOCL label
or UnifiedOCL
concept

UnifiedOCL label parameters

PRIMARY KEY primarykey
FOREIGN KEY foreignkey table (IDENTIFIER)
REFERENCES column (IDENTIFIER)

UnifiedOCL structural
feature that is of class
or interface type

NOT NULL notnull
NULL null
UNIQUE unique
SERIAL autoincrement
column type NUMBER with
defined precision of num-
bers

digits integer (INTEGER)

fraction (INTEGER)
column type VARCHAR with
defined max length

length max (INTEGER)

CHECK constraints that cov-
ers most of the correspond-
ing concepts from BV and
HV

see UnifiedOCL labels
from Tab. C.2 and
Tab. C.1

Table C.3: SQL (PostgreSQL) – Supported constraints



D
List of supported built-in field

constraint types of the DQAnalytics
framework

We present here the list of the built-in field constraint types available in our DQMF,
described in Chap. 7. The choice of predefined constraint types, presented in Table
D.1, was motivated by the supported constraints of standard BV and HV, respectively.

The supported field constraints are mostly consistent with BV/HV but we provide
an additional field constraint type compare. The compare field constraint allows to
compare a field value with the value of another field. Consider, for example, an ana-
lytical value in food science which contains multiple attributes to store the analytical
results, such as single analytical results from different portions of a sample, a mean
value for on average of all results, and a minimum (min) and maximum (max) value
for the lower and upper analytical results. Thus, the compare field constraint can be
defined on the max field of the analytical value entity, the compareop set to ‘≥’ and
compareto can refer to the min field of the analytical value entity. Consequently, the
compare field constraint guarantees that the max value is greater or equal to the min

value.
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Constraint
Type

Description Arguments

required True if the validated value is not null -
size True if the validated value has a charac-

ter length between (and including) ar-
guments min and max. If min or max
is not available, any upper or lower
bound is accepted

min (Integer),
max (Integer)

max True if value to be stored is smaller or
equals the value defined in argument
value.

value (Numeric)

min True if value to be stored is greater or
equals the value defined in argument
value.

value (Numeric)

pattern True if value to be stored fulfils the pat-
tern defined in argument value.

value (String)

future True if date to be stored is in the future -
past True if the date to be stored is in the

past
-

digits True if number to be stored consists of
argument integer numbers of digits be-
fore the decimal point, and argument
fraction numbers of digits after the
decimal point

integer (In-
teger),
fraction (In-
teger)

null True if the value to be stored is null -
false True if the value to be stored is Boolean

false
-

true True if the value to be stored is a
Boolean true

-

url True if the value to be stored is a valid
url

-

email True if the value to be stored is a valid
e-mail address

-

compare True if the value to be stored fulfils
the compare operator defined in argu-
ment compareop with the value in field
defined by argument compareto.

compareop
(String),
compareto
(String)

Table D.1: Built-in field constraint types



E
Various data quality analysis

visualisations of the DQAnalytics
framework

Figure E.1: DQAnalytics – Vector space model chart
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Figure E.2: DQAnalytics – Dimension compliance chart
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F
User study of the DQAnalytics

framework

Questionnaire

Study Section 1 - Basic Information

1. Gender female/male

2. Year of Birth Numeric Input

3. What is the highest level of education you have achieved?

• Bachelor in CS (or similar)

• Master in CS (or similar)

• PhD in CS (or similar)

• Bachelor in applied sciences

• Master in applied sciences

• Apprenticeship

• Other

4. Are you working in Software Engineering

• Yes, Full Time

• Yes, Part Time

• No

5. Rate your general Software Engineering Skills 1-7 Likert-Scale (from no
experience to expert
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6. Rate your Web Engineering Skills 1-7 Likert-Scale

7. Rate your experience in data quality topics 1-7 Likert-Scale

8. Rate your experience in constraint modelling 1-7 Likert-Scale

9. Rate your experience with JSON 1-7 Likert-Scale

10. Do you have experience with Distributed Constraint Management (i.e.
Constraints in different representations, like JavaScript on client-side
and database constraints on database)

• Yes

• No

11. If you answered the previous question with no, please specify

• I do not need any constraints

• I do not need distributed constraints

• I never worked as a Software Engineer

• Other (Text Input)

Study Section 2 - Distributed Constraints in Client/Server Applica-
tions

Note: this section is only filled out if the participant answered question number 10
from section 1 with yes.

1. Input validation is important to ensure the quality of data 1-5 Likert-
Scale (from totally disagree to

2. Maintaining multiple constraint representations is time-consuming 1-5
Likert-Scale

3. Multiple constraint representations are hard to maintain 1-5 Likert-Scale

4. Multiple constraint representations are a frequent source of failures 1-5
Likert-Scale

5. There is a lack of supporting tools/paradigms to develop and maintain
multiple constraint representations in heterogeneous Client/Server Ap-
plications 1-5 Likert-Scale

6. In software development we (company) usually define constraints in
various components of our applications (such as GUI, business logic
and database) 1-5 Likert-Scale

7. In software development we (company) usually define complex con-
straints in the business logic rather than in the database 1-5 Likert-Scale
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8. In software development we (company) usually define no or just a very
few constraints in the database 1-5 Likert-Scale

9. List the paradigms/technologies which you are mainly using for con-
straint definitions in the various components of your (company) ap-
plications (such as JavaScript in the GUI, JavaBeans Validation in the
business logic and SQL in the database) Text Input

Study Section 3 - Answers to Task 1

1. Have you solved the task?

• Yes

• Partially

• No

2. Did you encounter any problems? If so, state them. Text Input

3. The feedback tool was easy to use 1-5 Likert-Scale

4. I was able to express my feedback through the form provided 1-5 Likert-
Scale

5. How would you simplify or improve the feedback process? Text Input

Study Section 4 - Answers to Task 2

1. Have you solved the task?

• Yes

• Partially

• No

2. Did you encounter any problems? If so, state them. Text Input

3. The task was easy to solve 1-5 Likert-Scale

4. The obtained result is what I expected 1-5 Likert-Scale

5. The constraint definition format (JSON) is easy to learn Text Input

6. How would you simplify or improve the constraint definition process?
Text Input
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Study Section 5 - Answers to Task 3

1. When you look at the improvement tendency chart, which of the entit-
ies that are available for analysis, would you improve first? Text Input

2. What is the most problematic constraint of the entity you have chosen
in 1.? Text Input

3. Give the ID of the instance of the entity you have chosen in 1. that
needs data quality improvements with the highest urgency. Text Input

4. Spatial View: Of all instances in the system, which one needs data
quality improvements with the lowest urgency? Text Input

5. Have you solved the task?

• Yes

• Partially

• No

6. Did you encounter any problems? If so, state them. Text Input

7. The task was easy to solve 1-5 Likert-Scale

8. In Data Quality Enhancement: Flat view is intuitive to use 1-5 Likert-
Scale

9. In Data Quality Enhancement: Spatial view is intuitive to use 1-5 Likert-
Scale

10. Do you suggest another form of visualization besides Flat and Spatial
view? Text Input

Study Section 6 - Usability Evaluation DQAnalytics

1. I think that I would like to use this system frequently 1-5 Likert-Scale

2. I found the system unnecessarily complex 1-5 Likert-Scale

3. I thought the system was easy to use 1-5 Likert-Scale

4. I think that I would need the support of a technical person to be able
to use this system 1-5 Likert-Scale

5. I found the various functions in this system were well integrated 1-5
Likert-Scale

6. I thought there was too much inconsistency in this system 1-5 Likert-
Scale

7. I felt very confident using the system 1-5 Likert-Scale
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8. I needed to learn a lot of things before I could get going with this
system 1-5 Likert-Scale

9. Did you encounter any undesirable or unexpected limitations? If so,
please mention or describe them. Text input

10. Please give an overall rating of the system 1-10 Likert-Scale

11. What features do you recommend to improve the future system design?
Text input

12. What services do you recommend to be integrated into the system?
Text input

13. Do you have any other comments or suggestions? Text input

Study Section 7 - Closing Questions

1. Data Quality monitoring helps to increase the quality of data 1-5 Likert-
Scale

2. There is a need for tools which provide information about the quality
of data in an Information System 1-5 Likert-Scale

3. DQAnalytics provides a good understanding of the quality of data of
the underlying system 1-5 Likert-Scale

4. How would you simplify or improve DQAnalytics? Text Input

5. As a user of an Information System, I would invest my time and provide
feedback to data instances in order to help increasing the data quality
1-5 Likert-Scale

6. As a System Administrator, I think user feedback can be used to better
understand the quality of data in an Information System 1-5 Likert-Scale

7. As a developer I would use DQAnalytics in my software products be-
cause of the unified constraint management 1-5 Likert-Scale

8. As a developer I would use DQAnalytics in my software products be-
cause of the data quality analysis tools 1-5 Likert-Scale

9. Any other Feedback you want to provide to DQAnalytics Text input

Task Description Sheet

The following task description sheet was handed out to the study participants to solve
the practical tasks.
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Task 1 
In this task you simulate an end-user of FoodCaseWEB. Browse through the TdsFood instances and look 
at the data available. Rate the perceived data quality of five instances, where you mainly look whether: 
 

- The instance has a correct looking name 
- The instance has a correct looking scientific name 
- The instance has a correct looking english name 

 
Express your feedback as accurately as possible. 

Task 2 
The administrators of FoodCASEWeb decided that TdsFood instances must have set a scientific name 
(importance: 100), and that the minimum length of the scientific name should be 3 characters 
(importance: 60). Both constraints should contribute to dimension “completeness” with a value of 100. 
 
General JSON Constraint Structure 
 

ConstraintName Description Arguments 

required True if validated value is not 
null 

- 

size True if the validated value 
has a character length 
between (and including) 
min and max. If min or 
max is not available, any 
upper or lower bound is 
accepted 

min (INTEGER, optional) 
max (INTEGER, optional) 

 
 
Your Task 

1. Modify the constraint repository such that the mentioned requirements are enforced by 
the constraints.  

2. Test whether your changes  are applied correctly when modifying instances in 
FoodCASEWeb 

 

Task 3 
Use DQAnalytics to answer the questions in Google Form Task 3. 

Figure F.1: User study task description sheet



G
Student contributions

The following students, which all have been personally supervised by this thesis’ author,
have made a significant contribution to this thesis as part of their Master’s or Bachelor’s
project.

• Oliver Probst has developed the DQMF presented in Sect. 3.3

• Benjamin Oser has developed the DQMF presented in Sect. 3.4 and contributed
to the measure presented in Sect. 7.4.3

• Konstantina Gemenetzi has developed the DQMF presented in Chap. 4

• Jakub Szymanek has developed the DQMFs presented in Sect. 3.5 and Chap. 5

• Diana Birenbaum has developed the DQMF presented in Chap. 6

• Michael Berli has developed the DQMF presented in Chap. 7
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1997 Matura type E (economics), Wirtschaftsgymnasium Hottingen grammar
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