

Learning from smart cards: Lessons from Singapore

Presentation

Author(s): Axhausen, Kay W. (b)

Publication date: 2017-10-16

Permanent link: https://doi.org/10.3929/ethz-b-000197229

Rights / license: In Copyright - Non-Commercial Use Permitted Axhausen, K.W. (2017) Learning from smart cards: Lessons from Singapore, Seminar *"Bringing new types of data closer into practice in transport planning and modelling",* KTH, Stockholm, October 2017.

.

Learning from smart cards: Lessons from Singapore

KW Axhausen

IVT ETH Zürich

October 2017

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Module 8 of FCL, Singapore, but especially:

- A Erath
- P Fourie,
- S Ordonez
- L Sun

Variable	Diary	GPS (logger or mobile) (no prompted recall)	GSM traces
\$/reported day	High	High-medium	Very low
Duration	1 day (- 6 weeks)	1 day (- 6 weeks)	1 day (Unlimited)
Stage	Yes, underreported	(Yes)	No
Trip	Yes, underreported	Yes	(Yes)
Journey	Yes	Yes	(Yes)
Time	Rounded	Exact	Imputed
Location	Rounded	Exact	Imputed
Mode	Yes	Imputed	Imputed
Purpose	Yes	Imputed	Imputed
Group composition	Yes	No	No
Expenditure	Yes	No	No

Variable	Smart cards	Comments	
\$/reported day	Very low		
Duration	Unlimited	but for their churn	
Stage	Yes	but transit only	
Trip	(Yes)	but for long walks or longer activities	
Journey	No	unless one makes strong assumptions	
Time	Yes		
Location	Yes	but not the true origin of the trip	
Mode	Yes	but transit only	
Purpose	Imputed		
Group composition	Yes	if everybody uses smart cards	
Expenditure	(Transport only)		

Objective:

- Build an agent-based model of Singapore using MATSim
- Extend the capabilities of MATSim

Data available

- National travel diary (HITS)
- EZ-link/Cepas, national smart card (transit, tolls, other services)
- Usual network data
- Usual operational data

System:

- Tap in/tap out
- Covering 98% of all stages, even if they are free of charge

Issues:

- Late tap-in/Early tap-out
- Precision of on-board GPS units
- Time between tap in/out and boarding/egress from MRT trains

MATSim

Software:

- Open source and well documented
- About 80+ person years development effort
- JAVA

Approach:

- SUE of the activity schedules of the agent (networks)
- Co-evolutionary search
- User chosen facets: duration, start time, route, mode, location, parking, number/sequence of activities

MATSim applications around the world

© Marce Rieser, senozon

MATSim Singapur

Cleaning it

Time of day

Clustering weekly work patterns

DBScan based on purpose imputation which integrates HITS data and location

Dwell time model

Boarding and alighting process

Results of statistical model

Critical occupancy at 63% of total capacity.

Low floor allows short dwell processes.

Double decker alighting time per pax 0.285 seconds longer.

With higher occupancy and number of boarding and alighting passenger -> shorter activity time

Average time between two alighting passengers (seconds)

Accounting for travel time and its variability

Spatial regression of travel times/speeds

Static variables

- Availability of bus lane
- Number of intersections
- Number of left/right turns
- Curviness
- Deviation from crowfly distance
- Number of traffic lights
- Intersection density

Time-dependent variables

• Boarding/alighting activites in 500m radius

Validation

Access, egress times removed from matsim bus times

The reliability of a long bus line

Reliability: Excess waiting time along line EW

Smart cards are

- Useful supplement, especially if
 - Matched with a domain specific simulation platform

Otherwise

- Sampling issues
- Identification of tours (journeys)
- Identification of leisure/shopping purposes

