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ABSTRACT1

A genetic algorithm to design efficient large-scale public transport networks is extended. It goes2

beyond existing approaches by incorporating a dynamic demand response towards both changes3

in the network and external disruptions. The algorithm is based on an agent-based (MATSim)4

simulation and tested for the city of Zurich. Compared to the existing public transport system, it5

proposes a sparser network with substantially higher frequencies. By doing so, the algorithm6

predicts a higher transit ridership at a lower level of subsidies, thus increasing the effectiveness7

of public transportation. Moreover, it reliably identifies corridors for potential capacity upgrades.8

The approach may help transport planners to assess their existing public transport networks and9

to plan public transport infrastructure for the era of automated vehicles.10
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INTRODUCTION1

Public transport provides connectivity within urban areas across the globe and contributes to2

social equity by providing basic mobility, accessibility and transport diversity regardless of car3

ownership, age or income. Other benefits attributable to public transport include less congestion,4

preservation of open space and the reduction of urban sprawl (1). The challenge in public5

transport network planning is to find a balance between the interests of both operators (supply)6

and passengers (demand). While passengers expect direct and frequent door-to-door connections7

across a city and throughout the day, operators aim to maximize profit and therefore prefer8

to concentrate on trunk lines during high-demand periods (2, 3). Thus, the planning process9

can be seen as an optimization problem with two objective functions focusing on maximizing10

both passenger and operator benefit. However, the process is often constrained by political11

authorities, who require a minimum level of service and pay out substantial subsidies in return (4).12

13

Historically, most of the public transport networks have evolved over time based on plan-14

ners’ past experience, simple guidelines or demands from local communities (5). Gradually,15

new routes were added or removed and frequencies were adapted following simple heuristics.16

Research on more efficient solutions for the complex problem of planning and evaluating public17

transport networks is still ongoing (6). Despite the substantial progress made in this field,18

most algorithms presented to this date rely on a static demand for public transportation. By19

doing so, they neglect the substantial demand impacts caused by changes in the supply (7) and20

cannot be used to predict public transport networks in changing environments e.g. induced21

by mobility-as-a-service (MaaS) schemes (8) or by policy interventions such as substantial22

congestion charges. This research addresses such limitations by proposing an agent-based23

evolutionary approach to generate efficient public transport networks based on service-responsive24

demand. The approach is tested for the city of Zurich.25

26

The paper is structured as follows: First a brief review of state-of-the-art practices in the27

field of public transport network planning is provided. Then, the simulation framework is28

introduced and the case study for the city of Zurich, Switzerland is described. Finally, the results29

are presented and discussed.30
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BACKGROUND1

According to Ceder and Wilson (9) the planning process of public transport networks consists of2

five main levels: network design, frequency setting, timetable development, bus scheduling and3

driver scheduling. Each of these planning activities is an NP-hard problem, leading to a great4

variety of approaches in the literature. There are a number of comprehensive literature reviews5

which provide an overview across the wide field of public transport network planning (3, 10, 11).6

In the following, a selection of relevant approaches are presented.7

8

The first heuristic approaches for public transport network planning were developed 40 years ago.9

For example, Sonntag (12) starts with a network containing a line for each origin destination10

pair. Then, from each OD pair, lines are iteratively deleted and recombined, and passengers11

are reassigned to new lines according to their travel time. The approach yields a network with12

short average travel times and few transfers. In contrast, Mandl (13) addresses the problem with13

an empty initial route set. In the first step, a feasible set of routes are generated based on the14

shortest path between a pair of terminals and the highest number of origin destination pairs.15

Then, heuristics are applied to improve the quality of the generated route set, minimizing the16

passengers’ total travel cost of (including waiting times, travel times as well as transfer penalties).17

A number of other algorithms followed (14).18

19

The growing computational power has allowed for a variety of new methodologies to solve20

the public transport network design problem. Mostly, they enhance a heuristic approach using21

computational methods. For example, Baaj and Mahmassani (15) combine Artificial Intelligence22

with heuristic approaches. Their algorithm consists of three stages: First, in the route generation,23

an initial set of routes is determined based on a demand matrix and user and operator costs.24

Meanwhile the search space is reduced by implementing designers’ knowledge. Thereafter,25

the network performance is evaluated (with respect to the number of direct trips, total waiting26

and transfer time) and is optimized using heuristics. Following a different approach, Zhao (16)27

developed a mathematical computation tool with minimal reliance on heuristics. The tool solves28

the public transport network planning problem in an efficient way by minimizing the number of29

transfers and total user costs while maximizing service coverage, given a static demand. The30

method has been successfully applied to a realistic large-scale scenario. Nikolic and Teodorovic31

(17) developed a model for the public transport network design problem which is based on32

the Bee Colony Optimization meta-heuristics. The algorithm maximizes the number of served33

passengers and at the same time minimizes the passengers’ total in-vehicle time as well as the34

total number of transfers.35

36

Recently, genetic algorithms have been found to be particularly well suited to address the37

public transport network design problem (18). In the first formulation by Chakroborty (18), bus38

lines explore the network through random line generation followed by cross-over and mutation39

operations, while a fitness function evaluates the competitiveness of the lines. The idea of using40

genetic algorithms for the public transport network design problem was followed by many later41

studies. A notable extension is the Memetic Algorithm proposed by Zhao et al. (19). Here, four42

types of operations, 2-opt move (Type A), 2-opt move (Type B), swap move and relocation move,43

are applied to bus lines to improve their fitness score. The algorithm efficiently minimizes the44

overall objective function. Another example of the application of genetic algorithms is Rahman45

et al. (20), who propose a hybridization of two meta-heuristic techniques to solve the public46

transport network design problem. The approach uses the exploratory feature of the Guided47

Local Search in combination with the Genetic Algorithm with Elitism.48
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1

Although meta-heuristic, and especially genetic algorithms, are found to fit the public transport2

network design problem in many studies, most of these studies rely on the assumption of a static3

demand, which represents a major limitation. In reality, passenger flows depend on the network4

design (7) and should be evaluated in an iterative process to allow for interaction between5

passenger flows (including mode choice) and the network design. In addition, most studies6

are based on predefined stop locations, which limits the choice set of the bus operators. In7

combination with a static demand, this very likely yields biased solutions.8

9

Recent research by Neumann (2) opens up a way to address these limitations. He has developed10

a co-evolutionary algorithm which is inspired by market-oriented and moreover self-organizing11

public transport systems. Examples of such systems are paratransit systems (21), which are12

common in developing countries, where they fill gaps left by formal public transport, i.e. by13

serving low income neighborhoods (22). Unlike formal public transport services, paratransit is14

mainly unsubsidized and relies on collected fares only. In the algorithm (as in reality) paratransit15

operators compete with each other trying to reduce their own cost whilst attracting as many16

passengers as possible. To do so, operators apply genetic procedures such as mutation and17

selection to their lines (2). This way, a bus network evolves which contains the most profitable18

lines while the unprofitable lines are gradually dropped. In the model, passengers are able to react19

to each mutation and to choose their routes accordingly; however, the total demand for public20

transportation is still assumed to be static given that no mode choice effects are considered. This21

work substantially extends the approach (2) to model large-scale formal public transportation22

networks including effects the of dynamic demand.23
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SIMULATION FRAMEWORK1

Public transport is in steady competition with other modes such as car, bike and more recent2

innovations like car-sharing. Improvements or deteriorations in the service of any of the available3

modes prompt changes to the travel demand of all other modes. Hence, modeling public transport4

network design with a dynamic demand response requires a simultaneous modeling of other5

modes to account for their interactions. Thereby, the fine-grained structure of upcoming services6

such as MaaS schemes requires a representation of travel behaviour on the level of individual7

persons. The multi-agent transport simulation MATSim (23) fulfills these conditions and is8

therefore used in this research. MATSim contains an elaborate behavioral model on the trip9

planning side, yet it also allows the simulation of large-scale scenarios within a reasonable10

computation time due to a queue-based traffic flow representation (23).11

12

In MATSim, each traveler is modeled as an individual agent with individual attributes (e.g.13

gender, age, income or car availability). An agent is part of a synthetic population, which14

represents the actual population of a city or region. Each agent acts according to a predefined15

plan which contains a chain of activities they are supposed to perform. Travel demand arises16

in the form of relocations required between any two activities. The performance of each agent17

is evaluated using a utility function, which as a general rule rewards performing an activity18

and penalizes travel or late arrivals. Following a co-evolutionary algorithm, a stochastic user19

equilibrium is reached by iteratively modifying the agents’ plans until the overall utility of the20

population stabilizes. Agents’ choice dimensions typically are: departure time, route, mode of21

transport and location of secondary activities (leisure, shopping etc.).22

23

The software allows a detailed modeling of public transport (24). Different vehicle types24

can be defined. They run along transit line routes according to a schedule with fixed capacities,25

picking up and dropping off passengers at stop locations. Public transport vehicles are part of26

the mobility simulation, and as such, they are physically routed through the network, hence they27

may be delayed by congestion just as cars are. However, the simulation does not consider bus28

and driver scheduling. Instead, vehicles and drivers are created at the beginning of a line and are29

removed from the simulation after the final stop of the line.30
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PUBLIC TRANSPORT NETWORK DESIGN IN MATSIM1

Afirst approach to model public transport network design inMATSimwas presented by Neumann2

(2). Inspired by (for-profit) paratransit systems in developing countries, the model uses a co-3

evolutionary algorithm. Bus operators are scored according to a fitness function (profit) and can4

improve their score by mutating their route (expanding it, reducing the number of stops, changing5

the service hours). After each iteration, the operators adjust the number of vehicles on their routes6

and announce their updated schedules, routes and the number of departures as well as the head-7

way allowing the passengers to react to the newly introduced schedule when replanning their trips.8

9

The algorithm is similar to a Stackelberg game (25) with operators as the leading players10

introducing their network supply. The passengers as the following players respond according11

to the least generalized cost path. Passengers will not choose a given travel option anymore if12

it scores badly. Operators, in turn, can then adjust their network capacity knowing how many13

passengers have taken a certain route. Although the operators do not cooperate, they have14

perfect information about the passengers’ behavior. In contrast, passengers may have incomplete15

information due to the changing public transport network. To avoid getting stuck in local optima,16

agents therefore have to be forced to reroute their trips regularly.17

18

To reduce complexity, the algorithm relies on the following simplifications: Every opera-19

tor manages only one bus line of the network, that may consist of multiple (overlapping)20

routes, which can be restricted to a certain service area. At the end of each iteration in the21

simulation, operators running at a surplus use all of their cash to buy new vehicles, while unprof-22

itable operators sell vehicles to balance their budget. Moreover, operators can move vehicles23

from low-performing routes to high-performing routes at this stage. Operators with negative24

equity (after a certain grace period) are removed from the market. Despite the above assump-25

tions, it can be expected that the algorithm in general provides a working public transport network.26

27

The algorithm by Neumann (2) has already been applied to real-world case studies to model28

both paratransit and formal transit networks (26, 27). However, especially for the case of formal29

transit networks, the approach still comes with substantial limitations decreasing its applicability30

to large-scale networks. For example, it relies on a fixed set of bus stops and does not allow31

mode choice among agents (i.e. it assumes static demand), which biases the resulting network to32

the default. Moreover, only one vehicle type (minibuses only) is considered.33

34

In this research, the work of Neumann (2) is extended to address the above limitations and to35

allow a more realistic modeling of formal public transport networks including a dynamic demand36

response.37

Public transport replanning module38

The first innovation aims at including dynamic demand in the model. To avoid local optima and39

ensure realistic results, this requires that the demand side (passengers) has (close to) complete40

information on the supply before taking a decision on its response. Hence, an approach was41

chosen, in which this global equillibrium state is approximated iteratively. As shown earlier,42

prices (or here: travel times) need to alter much more slowly than consumption in order to43

yield equilibrated markets (28). Therefore, a PT-Replanning Module (Figure 1(b)) is introduced,44

which artificially increases the demand elasticity.45

46
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The module is applied to a decreasing share of agents (from 60% in iteration 1 down to1

20% in iteration 200), who - if selected - take their worst performing day plan and reroute all2

trips in this plan using public transport. This plan then gets scored and marked as prefered. After3

that, all plans are executed and scored in a mobility simulation step. In the ordinary replanning4

step, agents can then actually choose a plan. The PT-Replanning Module ensures that during the5

second mobility simulation, agents can take more informed decisions on their travel behavior6

and provides operators with a valid demand response towards their actions. This is particularly7

important in the early iterations, when the public transport network is still sparse. In the later8

iterations, an exaggerated demand response may prevent operators from finding optimal routes9

and schedules.

Passenger Scoring

Mobility Simulation

Passenger Replanning

MATSim loop

(a) Standard MATSim loop (23)

2. Passenger Scoring

2. Mobility Simulation

Passenger Replanning

MATSim loop

Operator Scoring

Route Modification

Schedule Announcing

M
odel loop

1. Passenger Scoring

1. Mobility Simulation

'PT' - Replanning

PT-Replanning Module

(b) MATSim loop including the minibus contribution (29) and PT-
Replanning Module

FIGURE 1 The MATSim Loop
10

Modification strategies11

In each iteration, operators are allowed to modify their routes (cf. Figure 1(b)). In every instance,12

they choose one of the following modification strategies: time of operation, served stops and13

vehicle type. Technically, application of the first two strategies creates a new (additional) route,14

which is operated by one vehicle. Depending on the economic performance of the route, the15

operator will shift more vehicles to this route in later iterations. Conversely, in the vehicle type16

strategy, the whole fleet operating on a given route is changed to the new vehicle type. A detailed17

description of the original strategies is given in (2). In this research, the modification strategies18

were revised and extended to allow for a higher behavioural realism and to make the model19
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applicable for large-scale formal public transport operations.1

Operating hours2

There is a time extension (at the beginning or at the end) and a time reduction strategy. The3

decision on how long the period should be extended is based on a random draw with the4

support of a time provider. The time provider (2) supplies the operators with information about5

high-demand time slots. The time reduction is based on the knowledge of the operator, who is6

always aware of how many passengers were traveling in its network during each time slot in the7

previous iteration. The strategies were taken from (2) without major modifications.8

Served stops9

An operator may also extend or reduce the set of stops served by a route. When reducing the10

number of stops, the operator drops those stops for which the number of boarding and alighting11

passengers have fallen below a given threshold in the previous iteration (In future applications,12

this indicator may be replaced by the profit generated by passengers boarding at a stop.). For13

route extension, the operator can either extend the route at its end or within a given corridor. The14

stop provider (2) assists the operator in finding an appropriate stop within this area by supplying15

them with information on the demand pattern. In contrast to earlier versions of the algorithm,16

this research does not rely on a fixed set of stops. Instead, any node in the road network is17

considered a possible stop location. To still ensure reasonable solutions, a minimal buffer around18

existing stops and a maximal desired search distance are defined to constrain the set of potential19

stop locations.20

Vehicle type21

A vehicle type strategy is added here. It allows operators to tailor the capacity to the respective22

demand levels. A set of vehicle types is created with defined seat capacities and operating costs.23

At the beginning of the vehicle type decision process, the strategy manager randomly suggests a24

new vehicle type for the given route. The decision on the vehicle type is based on the expected25

profit, which is estimated in the following manner:26

1. The maximum number vehicles of the new type is calculated such that the new operating27

cost do not exceed the existing operating cost.28

2. The marginal occupancy is determined, i.e. the occupancy required for the new vehicle29

type to increase profit.30

3. The demand reaction towards the new frequency is estimated based on earlier results (A31

set of fixed bus lines was simulated with varying frequencies to obtain a functional relation32

between frequency and demand for the Sioux Falls scenario (30).). From this the expected33

occupancy of the vehicles is derived.34

The higher the difference between expected and marginal occupancy, the more likely the operator35

is to choose the new vehicle type. In this case, the whole fleet on the given route will be replaced36

by the new vehicle type.37

Subsidies38

In contrast to paratransit systems, many formal public transport networks are designed not39

only from a purely economic perspective, but they are also a means to provide basic mobility40

throughout a region and throughout a day, including low-demand areas and times. To this end, a41
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new feature was added to the simulation, which provides the option to subsidize operators if their1

network covers a pre-defined list of stops or areas. The subsidies are paid per passenger boarding2

at one of these stops and are added to the score of the respective route. In this research, all nodes,3

which after a certain iteration are located in a 500m × 500m cell, which is not connected by any4

bus line, are assumed eligible for subsidies.5
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SCENARIO AND SETUP1

Scenario overview2

The model is tested for Zurich, Switzerland. With about 400’000 inhabitants (as of 2016),3

it is the largest city in Switzerland. Zurich presents an interesting test case, because it has a4

relatively high public transport mode share of 34%. For this research, the MATSim scenario for5

Switzerland is used (31). It includes a highly detailed road and public transport network (32)6

and synthetic population as well as cross-border and freight traffic.7

8

To reduce computational complexity, the simulations are conducted for a cutout of the na-9

tional scenario containing the city of Zurich as well as Dietikon, a district directly adjacent to10

the city. Figure 2 provides a map of the study area. Note that this cutting process does not affect11

the street or the railway network. The trains will run as before, all over the railway network of12

Switzerland, and the agents are able to use every road shown in Figure 2. In the scenario, the13

eastern part (Zurich) represents a high-density, urban area, whereas the western part (Dietikon)14

shows a lower density and stands for a typical agglomeration and a more peripheral region.15

Since this scenario is only a fraction of the main scenario, the number of agents can be reduced16

substantially. That is, only those agents who perform activities in or cross through the scenario17

and a two kilometer buffer around it will be considered in the simulation. To further reduce18

computational burden, the scenario is scaled down to 10 % of the population, i.e. to a total of19

about 120’000 agents (31). To reduce discretization effects, the capacity of public transport20

vehicles was scaled down by a factor 6.67 only.

Source: (31); Shape files provided Swisstopo

FIGURE 2 The IVT Baseline Scenario
21

22

The public transport network in Zurich consists of buses (diesel and trolley), trams and23

trains. Due to their infrastructure-dependence, trains are not part of this research and will24

therefore not be altered. Agents are able to use the trains as before, within and outside of the25
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service area. The existing public transport network will be refered to as Reference Case. To test1

the algorithms, an empty network is generated. To that end, all tram lines as well as most of the2

bus lines are removed from the scenario. However, some bus lines leading out of the service3

area are kept in the scenario to minimize border effects.4

MATSim setup5

All simulation runs are conducted with 600 iterations. The agents are able to freely choose6

between all transport modes available in the Zurich scenario (cars, public transport, bikes and7

walk). Each agent stores five daily plans in its choice set. During the replanning step, they will8

select an existing plan with a 70% probability. Each of the modifications (rerouting, change9

mode, change departure time) has a 10% probability. These values have been found to allow10

convergence of the MATSim algorithm in earlier studies (23). The parameters for the scoring11

function are taken from recent studies in the Swiss context (33). All simulations were conducted12

using the state of the MATSim code and of the Minibus contribution (29) as of March 2nd, 2017.13

Model setup14

At the start, 25 bus operators offer their service each with one route and 5 vehicles. New15

operators launch a service whenever the number of operators falls below 25 or the share of16

profitable operators exceeds 90%. Initial and new operators have a grace period of five iterations17

before they have to hold positive equity. All routes of a line are required to overlap to prevent18

operators from offering routes in unconnected areas. The operators have three different vehicle19

types at their disposal, namely minibuses, standard-buses and articulated-buses. No more new20

operators will enter the market after 370 iterations, and the modification of the routes is no longer21

allowed after 420 iterations. However, operators are still allowed to buy and sell vehicles as22

well as move vehicles from less profitable to more profitable routes until the end of the simulation.23

24

After each MATSim iteration, operators can modify their routes. Modification strategies25

are assigned randomly with the following probabilities:26

• 40% change of operating hours,27

• 7.5% extend route at one end (within 100 - 1’500m buffer),28

• 7.5% sideways extension of a route (within 100 - 1’500m buffer),29

• 25% reduce set of stops served,30

• 20% choose new vehicle type.31

In the simulation, passengers pay a distance-based fare of 0.55CHF/km, which is directly32

credited towards the operator’s score (taxes and fees are neglected). Following Bösch et al.33

(34), the operating costs consist of a fixed cost of 400CHF per vehicle per day and a variable34

component depending on the operating hours, vehicle kilometers and vehicle type:35

• Minibus: costs of 2.25CHF/km and 45CHF/h, capacity: 20 pax36

• Standard bus: costs of 3.00CHF/km and 60CHF/h, capacity: 60 pax37

• Articulated bus: costs of 3.75CHF/km and 75CHF/h, capacity: 100 pax38

At the end of an iteration, operators use all remaining cash to buy additional vehicles and assign39

them to their routes based on the profit generated in the previous iteration. In case of a loss in40

the previous iteration, buses from the worst-performing routes are sold.41
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RESULTS1

The algorithm has been tested for the city of Zurich to evaluate its ability to solve a realistic2

public transport network design problem. Two scenarios are analysed: one scenario without3

any subsidies and one scenario with subsidies paid out in otherwise unprofitable areas. In the4

scenario with subsidies, eligible stops are first defined after 100 iterations. In the following5

iterations, all passenger boardings at these stops incur a subsidy of 5CHF each. The subsidy is6

increased to 10CHF for all those areas, which are still unconnected after 150 iterations.7

8

For each scenario, ten simulation runs have been conducted, with different random seeds9

for the algorithm. The runtime was 40 h per simulation run on three cores of the ETH cluster10

computer Euler (https://scicomp.ethz.ch/wiki/Euler).11

Network evolution12

Genetic algorithms usually do not produce optimal, but plausible solutions, provided that an13

equillibrium state is reached. Figure 3 presents the most important performance indicators for14

the two scenarios as well as the variation for 10 simulation runs each using different random15

seeds. In general, all graphs follow a saturation curve with a sharp increase in the beginning and16

levelling off at later iterations. Deviations from this behaviour occur at iteration 100, when the17

subsidies set in, at iteration 200, when the PT-Replanning Module is turned off and at iteration18

420, when operators stop route modifications (excluding changes in the number of vehicles) and19

passengers stop replanning (i.e. both stick to the available routes and (up to) five day plans).20

21

Figure 3(d) confirms that the PT-Replanning Module causes slight bias in the actual de-22

mand for public transportation; however, it seems to help generate suitable routes as no effect23

can be observed in Figure 3(b) at iteration 200. A much stronger discontinuity appears when the24

replanning modules for both operators and passengers are turned off. After that, the number25

of routes drops to almost half. In this consolidation process, the number of vehicles and agent26

scores only slightly decrease. Hence, a more efficient equillibrium state is reached.27

28

Additionally, there are substantial differences between the approach with and the one without29

subsidies. In the approach with subsidies, the number of operators, routes, vehicles and pas-30

sengers are almost twice as high. Figure 3(f) indicates a high variation in the subsidies paid31

in the different scenario runs. All of the simulation runs show a linear increase in subsidies,32

which only level off at later iterations, when replanning is disabled. The fact that the subsidies33

grow linearly until iteration 420 may indicate that in later iterations, operators concentrate their34

growth on subsidized routes. Yet, despite the subsidies, the median score of the agents is not35

significantly different from the unsubsidized case. However, significant improvements may occur36

if individual VoTs were considered in this model.37

Network features38

Table 1 compares the features of the twomodel networks with the current public transport network39

in the area (reference case). As can be seen from the table, the algorithm suggests a substantially40

shorter network with a smaller number of stops. This concentration is in line with Hotelling’s41

theory (35), stating that free competition yields median locations. As a result, passengers are42

provided shorter wait times at the expense of longer access walk. Also the in-vehicle time43

is longer, which is a result of operators trying to serve as many profit-generating passengers44

https://scicomp.ethz.ch/wiki/Euler
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FIGURE 3 Evolution of the several performance indicators of the model averaged over
all runs.
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as possible rather than providing the shortest path for each OD-pair. Nevertheless, there are1

substantial differences between the scenarios with and without subsidies: In the scenario with2

subsidies, the network is 30% longer and serves 70% more passengers resulting in 55% more3

trips. While the network is still considerably shorter than in the reference case, the subsidized4

model network produces more vehicle kilometers and serves substantially more passengers at a5

15% lower level of subsidies.

TABLE 1 Network statistics (averaged over 10 simulation runs)

Reference Case Algorithm
without subsidies with subsidies

Operator Perspective
Network length [km]: 463 217 290
Number of stops: 1 270 701 896
Avg. frequency peak houra: 4.7 6.7 9.0
Veh. time driven [h]: 5 862 2 630 5 698
Veh. km driven [km]: 92 411 45 700 101 989
Passengers [pax]: 51 161 40 992 68 520
Pax. km traveled [km]: 124 011 163 335 243 092
Subsidies [CHF]: 323 438b 0 270 159

Customer Perspective
Observed trips: 22 948 19 087 29 700
Avg. trip time [min]: 28.9 37.5 37.8
Avg. in-vehicle time [min]: 12.8 17.5 16.1
Median access walk distance [m]: 296 372 388
Median egress walk distance [m]: 271 346 369
Avg. waiting time at first stop [min]: 3.7 3.1 2.4
Avg. waiting time at transfers [min]: 4.0 3.8 3.8
Avg. number of transfers: 0.45 0.34 0.46
a Average number of departures per hour between 7.30/8.00 am and 5.30/6.00 pm per line.
b estimated based on the veh. km driven, average operating cost of 7.14CHF/km for city buses (34)
and subsidies of 50% of the operating costs (4)

6

Spatial coverage7

However, a comparison between the two networks would be incomplete without considering8

the spatial and the temporal dimensions. To this end, Figure 5 presents the network graphs of9

the public transport networks. In terms of capacity, the figure shows considerable differences10

between the unsubsidized model and the reference case. While the capacity provided by the11

algorithm without subsidies appears to be lower and more tailored to the main passenger flows,12

the reference case provides higher capacities both in the city center and towards the outskirts (in13

particular along the lake and towards the north). The algorithm with subsidies proposes a high14

level of capacities similar to the reference case. Interestingly, it also assigns particularly high15

capacities towards the western suburbs, to the Hardbrücke as well as to the north of the city of16

Zurich. In all three of these areas, larger upgrades in the public transport network are currently17
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planned by the city of Zurich.1

2

Following Hotelling’s theory (35), the unsubsidized network created by the algorithm is3

less dense than the reference case, and also shows a stronger hierarchy with only few main lines4

and many lines running at lower capacities (or only occuring in some of the ten simulation runs).5

Moreover, it only covers the city center and its connections to the northern boroughs. In contrast,6

the reference network and the subsidized model network cover the whole city of Zurich and the7

major activity locations in the district of Dietikon.8

9

According to the literature (36), the attractiveness of public transport (and thus, its over-10

all mode share) strongly depends on the availability of stops within walking distance of trip11

origins and destinations. Hence, a formal public transport operator aims at a high density of12

bus stops throughout the service area. A suitable indicator is the catchment area, here defined13

by a 500m buffer around bus stops. While in the reference case 99% of all households are14

located within this catchment area, this number is slightly lower for the model networks (88%15

with subsidies, 80% without subsidies). Hence, despite the different network structure, also the16

networks generated by the algorithm appear to provide a relatively high level of accessibility for17

the area.18

Service hours19

For the temporal dimension, a comparison of the number of agents en route with public trans-20

portaion for the different cases is presented in Figure 5(a). Throughout the day, the subsidited21

model network shows the highest load of travellers. Also the unsubsidized has a higher passenger22

load than the reference case, despite the total number of travellers being lower. This is a result23

of the considerably higher in-vehicle times in the model networks (cf. Table 1). In addition,24

the model networks only show peaks in demand around noon and in the afternoon, but not in25

the morning. Instead their load is stable throughout the morning, which may indicate that the26

systems (also) attracts different user groups than the formal public transport scheme, which27

currently is in place.28

29

Figure 5(b) confirmes earlier results, in that the model networks show higher average fre-30

quencies troughout the day. Especially in the morning, when the number of travellers en route is31

similar between the three cases, the frequencies in the model networks are substantially higher32

than in the reference case. This again indicates that a similar level of service is reached through33

higher frequencies on fewer different bus lines.34
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FIGURE 4 Capacity map (background: activity density)
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FIGURE 5 Temporal distribution of averaged frequencies and travellers

DISCUSSION1

As shown above, the algorithm presented in this research addresses the public transport network2

design problem on the city-level and with a dynamic demand response. This is achieved by3

extendingMATSim algorithms for paratransit network design (2) to incorporate dynamic demand,4

different vehicle types and subsidies. The approach overcomes limitations of earlier approaches,5

which mostly rely on static demand assumptions or only covered subnetworks (14, 16, 18, 27).6

Nevertheless, some aspects still have to be considered when interpreting the results.7

8

In contrast to formal public transport networks, which are planned to provide maximal accessibil-9

ity levels and to follow various political constraints, the main objective in the algorithm is profit.10

While political constraints can be incorporated using subsidies (or penalties), the algorithm11

focuses on efficient operations, which likely yields public transport networks different from the12

ones currently in existence. Moreover, it has to be noted that in the algorithms, operators are only13

active in single corridors and therefore do not perform optimizations from a global perspective14

such as minimizing transfer times or using certain less profitable lines as feeders for other lines.15

The algorithm (as other genetic algorithms, too) does not provide globally optimal solutions.16

However, the limitations are weak enough to still allow plausible, locally optimal solutions.17

18

It is important to understand that given the high level of randomness in the approach, there is19

significant variation in the networks generated by the algorithm. Therefore, multiple simulation20

runs using different random seeds need to be conducted. For posterior analyses as well as policy21

recommendations, a set of different simulation runs has to be combined. One way to reduce this22

randomness would be to define heuristics in the route modification step; though this may result23

in biased and thus less optimal solutions.24

25

Compared to the existing public transport network, the algorithm generates sparser networks, on26

which vehicles run at very high frequencies. Such a behaviour is in line with the more recent27

literature indicating that high frequencies are valued higher than shorter access times or even a28

low number of transfers (7, 37). In the case of unsubsidized operations, the algorithm suggests a29

network, which is limited to the central areas as well as major demand corridors. Similar to30

the reference network, the subsidized network generated by the algorithm also covers areas of31

lower demand. Thus, it can be assumed that despite minor differences in the network graphs,32
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the algorithms provide plausible and efficient solutions to the network design problem. As an1

immediate result, the case study shows that public transport operations in the city of Zurich could2

be conducted with substantially lower subsidies, while maintaining a similar level of accessibility3

and even increasing ridership.4

5

What makes the approach particularly interesting is that it can not only be used to assess6

the efficiency of current public transport operations or to identify corridors deserving an expan-7

sion in capacity (for all places where the algorithm proposes a higher capacity than the reference8

case, capacity upgrades are in progress). Because the approach does not rely on a static demand,9

it can be used as a planning tool to design public transport networks for changing environments,10

i.e. in lieu of a congestion charge or for a world of automated vehicles, where cost structures of11

both buses and taxis will change substantially (34).12
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