
ETH Library

Many-query join: efficient shared
execution of relational joins on
modern hardware

Journal Article

Author(s):
Makreshanski, Darko; Giannikis, Georgios; Alonso, Gustavo; Kossmann, Donald

Publication date:
2018-10

Permanent link:
https://doi.org/10.3929/ethz-b-000192365

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
The VLDB Journal 27(5), https://doi.org/10.1007/s00778-017-0475-4

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000192365
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1007/s00778-017-0475-4
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

The VLDB Journal (2018) 27:669–692
https://doi.org/10.1007/s00778-017-0475-4

SPECIAL ISSUE PAPER

Many-query join: efficient shared execution of relational joins
on modern hardware

Darko Makreshanski1 · Georgios Giannikis2 · Gustavo Alonso1 ·
Donald Kossmann3

Received: 15 January 2017 / Revised: 26 May 2017 / Accepted: 25 July 2017 / Published online: 30 August 2017
© Springer-Verlag GmbH Germany 2017

Abstract Database architectures typically process queries
one at a time, executing concurrent queries in independent
execution contexts. Often, such a design leads to unpre-
dictable performance and poor scalability. One approach
to circumvent the problem is to take advantage of shar-
ing opportunities across concurrently running queries. In
this paper, we propose many-query join (MQJoin), a novel
method for sharing the execution of a join that can efficiently
deal with hundreds of concurrent queries. This is achieved
by minimizing redundant work and making efficient use of
main-memory bandwidth andmulti-core architectures. Com-
pared to existing proposals, MQJoin is able to efficiently
handle larger workloads regardless of the schema by exploit-
ing more sharing opportunities. We also compared MQJoin
to two commercial main-memory column-store databases.
For a TPC-H-based workload, we show that MQJoin pro-
vides 2–5× higher throughput with significantly more stable
response times.

B Darko Makreshanski
darkoma@inf.ethz.ch

Georgios Giannikis
georgios.giannikis@oracle.com

Gustavo Alonso
alonso@inf.ethz.ch

Donald Kossmann
donaldk@microsoft.com

1 Department of Computer Science, ETH Zurich, Zurich,
Switzerland

2 Oracle Labs Zurich, Zurich, Switzerland

3 Microsoft Research, Redmond, WA, USA

Keywords RDBMS · OLAP · Analytics · Join · MQJoin ·
Shared join ·Mainmemory · TPC-H ·Xeon Phi ·MCDRAM

1 Introduction

In recent years, increased connectivity and availability of
information have changed the requirements for databases.
Systems catering to large user bases must provide robust
performance with strong guarantees. This, together with the
trend toward real-time data analytics, has put a strain on
database architectures. Under these circumstances, systems
must be designed to provide guaranteed response times for
complete workloads, rather than the fastest performance for
individual queries. For instance, reservation systems used in
the airline industry need to execute hundreds of decision sup-
port queries per second with tight latency guarantees while
sustaining high update rates [47].

An emerging approach to deal with such requirements
is to exploit the sharing opportunities available in these
workloads. Various techniques for sharing query execu-
tion have been explored to date, ranging from exploiting
common subexpressions in multi-query optimization [44];
simultaneous pipelining in QPipe [20]; sharing of scans in
MonetDB [49], Blink [39,41] and Crescando [47]; sharing
global query plans in CJoin [11], Datapath [3] and SharedDB
[16].

As one of the most expensive relational operations, effi-
cient join processing is crucial for performance. Exploiting
sharing opportunities in joins across multiple queries is
important to sustain throughput in highly concurrent work-
loads.

In this paper, we present MQJoin, a method for sharing
join execution that is able to efficiently exploit sharing oppor-
tunities and provide high performance for up to hundreds of

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-017-0475-4&domain=pdf
http://orcid.org/0000-0002-3135-0172

670 D. Makreshanski et al.

concurrent join queries. Similarly to CJoin [11], Datapath [3]
andSharedDB [16],MQJoin shares query execution by anno-
tating intermediate results with additional information.What
differentiates our approach is the use of several techniques
that enables a significantly higher degree of sharing and an
efficient use ofmain-memory bandwidth andCPU resources.
This allows MQJoin to outperform state-of-the-art commer-
cial analytical main-memory databases for workloads with
high concurrency.

To evaluate MQJoin, we first present a series of
microbenchmarks to illustrate the benefits and overhead of
the approach with respect to a query-at-a-time counterpart.
We analyze how much overlap should intermediate relations
of queries have so that sharing pays off. Using an exist-
ing shared scan implementation as a storage engine, we
then compare MQJoin integrated into a complete system
to commercial databases and related work. Performance-
wise, we compare to two leading main-memory analytical
databases, namely VectorWise and another popular com-
mercial database which we refer to as System X, on a
TPC-H-based workload. We show that our system outper-
forms its commercial counterparts in terms of throughput
when the load grows beyond 60 clients. Furthermore, it
provides significantly more stable and predictable response
times, having a lower 99th percentile even for a hand-
ful of clients. In terms of scalability we also compare
to CJoin, the closest approach to ours, and show that
for the star schema benchmark [37] for which CJoin was
designed, MQJoin is able to provide up to an order of mag-
nitude more throughput while maintaining lower response
times.

The main contributions of the paper are: (1) We present
a method for sharing joins for highly concurrent workloads
that supports one order ofmagnitudemore concurrent queries
than the best published result to date; (2) we provide an
analysis of the impact of sharing on main-memory joins
showing how to adapt existing join algorithms to support
sharing; and (3) we validate the potential of the idea through
a comparison of a shared scan/join system to leading main-
memory analytical databases demonstrating 2–5× higher
performance.

The rest of the paper is organized as follows: Sect. 2 dis-
cusses related work on join algorithms and shared query
execution systems; Sect. 3 gives a model of the shared join
execution approach that we use; Sect. 4 analyzes effects of
sharing on state-of-the-art join algorithms; Sect. 5 explains
the two-way join algorithm in detail; Sect. 6 explains how
multi-way joins are handled; Sect. 7 explains the system
architecture, including integration with shared scans; Sect. 8
provides extensive analysis on the effects of sharing and the
performance of MQJoin; Sect. 8.5 investigates an alternative
toMQJoin where the shared scans are executed after the join;
Sect. 9 concludes the paper.

2 Background and related work

2.1 Main-memory join execution

The performance of a join is very important in a relational
database. Due to the availability of systems with large main
memories, recent research has focused on optimizing in-
memory joins. Shatdal et al. [45] proposed partitioning the
relations so that they fit in cache to avoid high random access
latencies. Manegold et al. [32] partition the relations in two
steps to avoid expensive TLB misses during partitioning.
Chen et al. [13,14] propose software prefetching techniques
to hide the memory latencies of random accesses. More
recently, there has also been discussions on whether sort–
merge join or hash-based join are better suited for modern
architectures [5,7,24], on complexity and similarity of hash-
ing and sorting [35], as well as whether it is worth tuning
to the underlying architecture [6,9]. There is also a line of
work that investigates main-memory joins for NUMA archi-
tectures [2] and Xeon Phi coprocessors [22] and memory
efficient hash joins [8]. We have carefully evaluated these
results to design a join that is as efficient as possible but
supports shared execution.

2.2 Shared query execution

Several techniques for shared query execution have been
developed to date. Sharing execution was initially proposed
in the form of multi-query optimization (MQO) [44]. MQO
detects and jointly executes common subexpressions in mul-
tiple queries including execution of join operations. The
idea of MQO has been further extended in various forms, for
instance for query result caching [12]; as part of the Volcano
optimizer [42] in the presence of materialized/cached views;
or for reusing intermediate results [21,34]. StagedDB [19]
and QPipe [20] use a simultaneous pipelining technique to
share execution of queries that arrive within a certain time-
frame. Using a system based on these techniques, Johnson
et al. [23] show that there is a trade-off between sharing and
parallelism. A limitation in these systems is that they rely on
temporal overlap for sharing. Typical results show sharing
for a few tens of queries [20].

Sharing data and work for scans has been shown to be
effective in various forms and use cases. MonetDB [49] opti-
mizes disk bandwidth utilization by doing cooperative scans
where queries are dynamically scheduled according to their
data requests and the current status of the disk buffers. Sim-
ilarly, systems such as IBM UDB [26,27] perform dynamic
scan grouping and ungrouping as well as adaptive throt-
tling of scan speeds to increase buffer locality. Blink [39,41]
and Crescando [47] go one step further and answer multi-
ple queries in one table scan, independently of the query
predicates, thereby sharing disk bandwidth and memory

123

Many-query join: efficient shared execution of relational joins on modern hardware 671

bandwidth. In those systems, the degree of sharing is between
a few hundred to several thousand queries.

Recently, several systems propose shared execution of
complex operations such as joins, for queries without com-
mon subexpressions. CJoin [11] achieves high scalability,
handling up to 256 concurrent queries, by using a single
always-on plan of operators that executes all queries. The
approach is tailored to star schemas. Datapath [3] makes the
case for a data-centric approach to analytical databases, advo-
cating a push-based model to query processing instead of the
traditional pull-based. They work with a more general TPC-
H schema and show sharing for up to 7 concurrent queries. A
push-based, data-flow model for query processing was also
used in the Eddies project [4]. While Eddies are similar to
sharing, they were designed to provide runtime adaptivity of
query execution where a static query plan generation is not
sufficient. They cannot provide high throughput for concur-
rent workloads.

SharedDB [16,17] shows that a shared query execution
system based on a global query plan and batching can give
robust performance for highly concurrent workloads of up
to thousands of queries. SharedDB, however, uses single-
threaded operators.

Psaroudakis et al. [38] integrate the approaches of CJoin
and QPipe. This work shows that a combination of global
query plans with shared operators and simultaneous pipelin-
ing is better suited for high concurrency, while traditional
query execution with simultaneous pipelining is better suited
for low concurrency workloads. Like CJoin, the authors also
focus on star schema workloads.

Ebenstein et al. [15] propose FluxQuery, a model for
representing the likelihood of queries in highly interactive
workloads and a method for handling queries from such
workloads. FluxQuery is designed to handle thousands of
concurrent queries, where the concurrency comes from the
large amount of possible queries derived from an ambiguous
query intent of a user input, for instance when the join pred-
icate between two relations is not yet specified. The query
processing method is based on a cyclic scan-based approach
that combines nested loop joins and hash joins. This pro-
vides a balance between the performance of hash joins and
responsivity of nested loop joins.

3 Shared join model

This section presents a model for the input and output char-
acteristics of the shared join algorithm. The algorithm itself
is described in Sect. 5. For simplicity, this model represents
only sharing of two-way inner joins. Handling of other join
types is described in Sect. 5.5, while Sect. 6 coversmulti-way
joins. Before defining a shared join, we will describe a join
across two relations. We then formally define a shared scan

and then define a shared join as the join between two shared
scans.

Let R and S be two relations, and tR ∈ R and tS ∈ S
be tuples of the corresponding relations. A scan and select
operation on the relation R is then defined as a function σ R :
R → {�,⊥}, and the output of this scan is noted as σ R for
brevity. A join on selections σ R , σ S of the two relations is
then defined as:

Definition 1 Join

σ R �� σ S = {(tR, tS) |
σ R(tR) ∧ σ S(tS) ∧ f��(tR, tS)}

	

where f�� : R × S → {�,⊥} is the join predicate function
and (tR, tS) is a concatenation of the attributes tR and tS .

A shared join for a set of queries Q = {q1, q2, . . . qn},
where qi = σ R

i �� σ S
i for i ∈ {1, 2, . . . n}, is defined as the

join between the result of the shared scans σ R
Q , σ

S
Q . The result

of a shared scan σ R
Q can be defined as:

Definition 2 Shared Scan

σ R
Q =

{(
tR,

(
bRq1 , b

R
q2 , . . . b

R
qn

))
|

(
bRqi = � ⇐⇒ σ R

i (tR)
)

∧
∃i.bRqi = �

}

	

Thus, a shared scan outputs intermediate relations with an

extended schema that has one extra Boolean attribute bRqi for
every query qi . The attribute bRqi for a tuple tR holds a value
of true if and only if the query qi is interested in that tuple,
i.e., σ R

qi (tR) = �. Furthermore, a tuple tR is output by the
shared scan if at least one query is interested in tR . The set
of the attributes bRqi for all queries qi ∈ Q is denoted as bRQ
and a set of values of these attributes for a particular tuple
tR is called the set of query IDs for tR . Having the output of
a shared scan defined, we define a shared join as the join of
the output of two shared scans or:

Definition 3 Shared Join

σ R
Q �� σ S

Q = { (tR, tS, (b
R��S
q1 , bR��S

q2 , . . . bR��S
qn))|

(bR��S
qi = � ⇐⇒

(bRqi = � ∧ bSqi = �)) ∧
∃i.bR��S

qi = � ∧
f��(tR, tS)}

	

123

672 D. Makreshanski et al.

Fig. 1 Sample shared join on attribute NID

In other words, a shared join outputs a relation with
extended schema that also contains one extra attribute bR��S

qi
for eachqueryqi . This attribute is the result of the conjunction
of the corresponding attributes of the input relations:bRqi ∧bSqi .
Similarly to the shared scan, the shared join outputs only
tuples for which at least one query is interested. As for the
single query join (Definition 1), the shared join (Definition
3) also filters out tuple combinations using a join predicate
function f��. The function f�� is the same for all queries. One
thing to note is that this shared join model assumes that all
queries ask for the inner join. Section 5.5 discuses ways of
sharing the join for queries with other join types.

An example for the input and output relations of a shared
join is shown in Fig. 1. Here we show a shared join for
three queries: Q1, Q2 and Q3, on two relations Cus-
tomers (C I D, Name, N I D) and Nations (N I D, Nation)

with each query having different predicates on each relation.
The upper part of Fig. 1 shows the two input relations of
the join or, in other words, the output relations of the shared
scan. As explained previously, intermediate relations have
an additional Boolean attribute for each query, which has a
value of 1 if the corresponding tuple belongs to the query
or 0 otherwise. The set of query IDs in this case is the set
of values of all Boolean attributes for a particular tuple. The
bottom part of Fig. 1 shows the output of the shared join,
where the set of query IDs of an output tuple is simply an
intersection of the sets of query IDs of the matching pair of
input tuples.

3.1 Query ID set representation

As explained above, shared query execution introduces an
additional attribute for each intermediate tuple in the system.
This attribute keeps information on which queries are inter-
ested in each tuple. There are severalways to store and handle
this attribute, each with advantages and disadvantages. One
way to represent this attribute is as an array of integers each
of which represents the ID of the query that is interested in
the tuple. The impact of this is that the size of the attribute is

Ni · sint bytes where Ni is the number of queries interested
in the tuple and sint is the size of the integer.

Another way of representing the set of query IDs is to use
a bitset where each query in the system has a dedicated bit
position in the bitset. For a certain tuple with a bitset B, and
a query Q whose bit position is i if the i th bit in B is 1, then
the query is interested in the tuple, and vice-versa if the bit is
0. The size of the attribute is then the size of the bitset which
is Ns

8 bytes where Ns is the total number of concurrently
running queries.

One factor affecting the performance trade-off between
the two methods is the ratio Avg(Ni)

Ns
of average number

of queries per tuple Avg(Ni) to the number of concurrent
queries Ns . Bitsets work well when this ratio is high or Ns is
sufficiently low. Arrays work well in cases where this ratio
is low and Ns is very high. In practice, we found that, for
analytical workloads, bitsets perform better.

3.2 Query scheduling

Our model for sharing joins assumes a fixed set of queries
during the join operation. To satisfy this property, the join
runs in cycles for batches of queries where arriving queries
wait in a queue if the system is busy executing a join,
similarly to SharedDB. One might argue that this waiting
causes response times to increase. The waiting, however, is
more than compensated by allowing the system to organize
the join execution in a way the whole join operation, that is
both the build and probe phases of the hash join algorithm,
is shared for all queries currently being executed. The result
is, as we will show, higher throughput and more predictable
performance.

The other alternative is to schedule queries immediately
as they arrive. This is common for systems that share scans
such as IBM DB2 [26,27] and MonetDB [49], and is also
used by CJoin [11] and Datapath [3]. The effect on join exe-
cution is that, for a hash join algorithm, the build and probe
phases need to be executed concurrently in a pipeline fash-
ion. The problem is in the redundant work to be done for a
set of concurrently running queries, which is the first stage
of the pipeline, i.e., the build phase. The effect on perfor-
mance depends on the relative cost between the build and
probe phases and the amount of sharing missed. The effect
is aggravated in cases of multi-way joins where there are
multiple stages in the pipeline.

4 Choice of join algorithm

Before we introduce the algorithm for MQJoin, we analyze
existing query-at-a-time join algorithms focusing on proper-
ties affected by sharing. In particular, in the model of sharing
described above a key difference of the shared join compared

123

Many-query join: efficient shared execution of relational joins on modern hardware 673

to single query join is the handling of additional boolean
attributes represented as bitsets.

As column-store database engines have become prevalent
for analytical query processing, the current state of the art in
main-memory join processing is focused on joins for column-
store databaseswith narrow tuples (around 8 to 16 bytes). It is
unclear how existing algorithms will be affected by the wider
tuples (reminiscent of row-oriented storage) created by the
additional query IDs. In particular, for a set of 1024 queries,
the bitsets will add an additional 128 bytes to each tuple
significantly increasing its size. For this reason, we provide
an analysis of existing hash join algorithms focusing on the
impact of wider tuples.

First we analyze hash join algorithms in terms of the
amount of main-memory bandwidth consumed per tuple for
various key (tuple) sizes, and then, we benchmark state-
of-the-art hash join algorithms. Note that the model of
bandwidth consumptionwe use resembles costmodels for in-
memory join processing [25,30,33]. In this case, we are not
concerned with accurately predicting the performance, but
rather explaining the impact of larger tuples (keys), caused
by the additional query ID bitsets, on efficient state-of-the-art
join algorithms.

4.1 Memory bandwidth usage model

Join processing is inherently a data movement operation that
stresses, and is often bottleneckedby, thememory subsystem.
For this reason, calculating thememory bandwidth consump-
tion is an effective way to model the upper bound and predict
the join performance.

To analyze the effect of wider tuples, we first provide a
model of join algorithms in terms of the amount of memory
bandwidth consumed per tuple. We focus on state-of-the-art
hash join algorithms, as they have been shown to have highest
performance on modern architectures [5,24]. In particular,
we focus onmain-memory join processing in a single shared-
memory system. The model consists of several components
which are building blocks of hash join algorithms: building
a hash table, probing a hash table and partitioning a relation.

Table 1 shows the bandwidth consumption model for var-
ious operations used in hash join algorithms. For simplicity,

Table 1 Model for memory bandwidth consumed per tuple for subop-
erations of hash join algorithms

Bytes read Bytes written

Out-of-cache build CL + t CL

Out-of-cache probe CL · � t+m
CL � + t 0

In-cache build t 0

In-cache probe t 0

Partition t t

the model makes the following assumptions: (1) build and
probe tuples are identical in size, (2) the entire tuple is read
during both building and probing, (3) keys in the build rela-
tion are unique and (4) there are no hash collisions in the hash
table. Note that this is just the bandwidth, not looking at the
different costs of whether data are cache resident or not.

In the model, CL represents the cacheline size, t is the
tuple size and m is the extra metadata stored in every hash
table bucket. The first two rows correspond to building and
probing a hash table out-of-cache where the CPU cache is
smaller than the hash table. In this case, it is assumed that
hash table accesses incur cachemisses and cause one ormore
cacheline transfers. Building causes one cacheline read and
write to access and modify the hash bucket’s metadata and
store a part (or thewhole) tuple in the hash bucket’s cacheline.
Probing causes as many cacheline reads as it takes to read
the metadata and the building tuple. There is an additional
cost of t bytes to read an input building/probing tuple.

In the case of in-cache building andprobingof a hash table,
the only memory bandwidth consumed is reading the build-
ing and probing tuples. For partitioning, the model assumes
that streaming stores are used, also referred to as partitioning
with software-managed buffers [5].

Based on the model from Table 1 and assuming 64-byte
cachelines and a 16-byte metadata structure, Fig. 2 shows
bytes transferred per tuple for several hash join variants. The
upper and lower plots show bytes transferred per building
and probing tuple, respectively, for a hash join algorithm: (1)
without partitioning where the number of bytes transferred
per build andprobe corresponds to themodel for out-of-cache

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100 120

B
yt

es
 p

er
 B

ui
ld

 T
up

le

Tuple Width (Bytes)

No Part.
1-Pass Part.
2-Pass Part.

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100 120

B
yt

es
 p

er
 P

ro
be

 T
up

le

Tuple Width (Bytes)

No Part.
1-Pass Part.
2-Pass Part.

Fig. 2 Model-based memory bandwidth consumption for multiple
variants of hash join algorithms and different tuple sizes

123

674 D. Makreshanski et al.

0

10

20

30

40

50

60

 0 20 40 60 80 100 120

C
yc

le
s

pe
r

O
ut

pu
t T

up
le

Tuple Size

AMD Magny-cours

 0 20 40 60 80 100 120

Tuple Size

AMD Bulldozer

 0 20 40 60 80 100 120

Tuple Size

Intel Sandy-bridge

1-Pass Partitioning (radix-join) No Partitioning (n-part)

Fig. 3 Hash join performance for various tuple sizes with- and without partitioning (code taken from [5])

hash table building and probing, (2) with a single partitioning
where the bytes transferred is consisted of one partition step
and one in-cache hash table building and probing and (3)with
two partitioning steps which corresponds to two partitioning
steps and an in-cache hash table building and probing (3).
Based on the results, performing an out-of-cache hash join
without partitioning uses significantly more memory band-
width than a partitioning-based approach for narrow tuples,
characteristic for joins in column stores. The reason is that
the out-of-cache hash table accesses transfer entire cache-
lines while only using a small part of them. Partitioned hash
join algorithms use sequential accesses to memory, thereby
making efficient use of the bandwidth.

For larger tuples, corresponding to join operations for
large join predicates (such as our query IDs) or row stores,
the join without partitioning makes more efficient use of the
memory bandwidth it consumes.

4.2 Experimental results

Next, we verify the conclusions from the model. We took
state-of-the-art algorithms in hash join processing that con-
tain partitioning and both in-cache join processing and
out-of-cache join processing from Balkesen et al. [5].1 We
ran microbenchmark experiments with two algorithms, one
without partitioning (n-part), which is an optimization of the
algorithm from Blanas et al. [9] and one with partitioning
(radix join). We measured the execution time when running
a join of two relations, each containing 64 million tuples.
The order of keys in both relations are randomized to avoid
sequential accesses to the hash table. The join is a full table
join and for every probing tuple there is exactly one tuple
with a matching key in the building relation. The result of
the join is not materialized. Instead, only the number of out-
put tuples is counted, which is also 64 million. All available
hardware threads are used for running the join and we report

1 Code can be downloaded from: https://www.systems.ethz.ch/node/
334.

the number of CPU cycles spent per output tuple. This is
obtained using the formula:

execution_t ime · cpu_ f requency
#output_tuples

. (1)

We tested performance on three hardware platforms: (1)
AMD Magny-Cours machine with four Opteron 6174 pro-
cessors, (2)AMDBulldozermachinewith fourOpteron 6276
processors and (3) Intel Sandy Bridge machine with four
Xeon E5−4640 processors. The results shown in Fig. 3 con-
firm the hypothesis in the model. First, for 8-byte tuples the
hash join without partitioning is slower than the partitioned
one. As the size of the tuples grow, its performance curve
resembles a step function that increases whenever the num-
ber of cachelines needed for a building and probing operation
increase. The performance of the partitioned hash join, on the
other hand, is proportional to the tuple size and for signifi-
cantly wide tuples of more than 64 bytes it performs slightly
worse than its counterpart. Since we aim at running several
hundred queries in a single shared join, the space we require
for a tuple is farmore than a cacheline.Hence, for ourMQJoin
algorithm, we opted for an algorithm that does not partition
the input relations.

5 Two-way join algorithm

We faced two key challenges when designing MQJoin: Min-
imize the time spent per tuple and minimize the number of
tuples processed for a set of queries. To address the first
challenge, we combine approaches from related work on
optimizing joins with techniques to efficiently reuse data
structures over multiple join sessions and to minimize the
overhead imposed by sharing, such as handling query IDs.
To address the second challenge, we use techniques that
schedule queries in a way that minimizes redundant work
and develop ways to share execution of queries that require
different types of joins.

123

https://www.systems.ethz.ch/node/334
https://www.systems.ethz.ch/node/334

Many-query join: efficient shared execution of relational joins on modern hardware 675

5.1 Algorithm overview

From a high level perspective, the algorithm is a parallel hash
join running on a single multi-core machine based on state-
of-the-art hash join algorithms [6,9,13]. During the build
step, multiple threads consume the build relation to populate
the hash table. In the next phase, the threads consume the
probe relation and probe the hash table to find matches of
tuples. Unlike a traditional hash join algorithm, the threads
do an additional step of computing the intersection of the
query ID sets of all matching pairs of tuples and filtering out
tuples with an empty intersection.

The algorithmwe use inherits several features from recent
work on main-memory hash joins. Similarly to Blanas et
al. [9], threads during the build step synchronize using spin
locks, where there is one lock per hash entry in the table.
Similarly to Balkesen et al. [6], we optimize the algorithm
by minimizing the number of random accesses per tuple.
As discussed in the previous section, we do not partition the
input relations so that they fit in cache. Instead, the hash table
is built and probed directly from main memory. To reduce
the latency of random accesses, we use a grouped software
prefetching technique as proposed by Chen et al. [13,14].
One novelty in our approach, relevant also to query-at-a-
time processing, is the introduction of a session ID attribute
to each hash entry to provide an efficient reset operation of
the hash table.

5.2 Hash table structure

The hash table is structured in a way that each bucket is
aligned at the 64B cacheline boundary, guaranteeing that
each hash bucket lookup will access a single cacheline. The
structure of a bucket is shown in Fig. 4. A hash bucket con-
sists of the followingfields:Lck:Lock is used to synchronize
between threads during building of the hash table; SID: ses-
sion ID is used to identify the last session when this hash
bucketwas updated. This is needed in order to reuse themem-
ory of a hash table for multiple join cycles without the need
of an expensive memzero operation; Record Ptr points to
the address in memory where the record is located. This can
be either in the buffer space of the hash bucket or somewhere
else; Query ID Set Ptr points to the address in memory
where the set of query IDs for the tuple are located; Next
Bucket Ptr points to the next hash bucket in cases of over-
flow. Each thread has its own dedicated pool of overflow
buckets; Key: Join Key is the attribute(s) used in the join
predicate that is cached in the hash bucket for quick access.
The hash bucket structure shown in Fig. 4 corresponds to
an example where the key is a 4-byte integer.; Buffer space
is the extra memory located on the cacheline that is used to
store the record and/or the query ID set in cases when they

Fig. 4 Structure of a hash bucket

are small enough. In this example where the key is 4 bytes,
the buffer space is 32 bytes.

Algorithm 1 Build Phase
for group ∈ relation do

for tuple ∈ group do
bucket ← computeBucketAddress(tuple)S1

⎧
⎨
⎩

prefetch(bucket)
end for
for tuple ∈ group do

lockBucket

if bucket.SI D ! = current S I D then
populateBucket(tuple, bucket)
bucket.SI D = current S I D

else
of bucket ← getOverflowBucketS2

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

swapNextBucketPtrs(bucket, of bucket)
populateBucket(tuple, of bucket)

end if
unlockBucket

end for
end for

5.3 Join procedure

Next we explain the build and probe phases of the hash join
algorithm in more detail. For clarification purposes, we also
provide an example shown in Fig. 5 and work through the
example as we explain the algorithms. The figure shows a
simple setup with a building relation of 5 tuples, probing
relation with 10 tuples and the populated hash table.

Both the build and probe algorithms divide their input
intermediate relations in small groups and iterate over these
groups multiple times before proceeding to the next group.
The reason for this is to avoid highmemory access latencies to
memory locations not present in the cache. In each iteration,
addresses to non-cache resident memory to be accessed in
the next iteration are calculated and prefetch instructions are
issued.Weexperimentedwith different group sizes and found
that groups of about 50 tuples are enough to hide random
main-memory access latencies. For simplicity, in the example
in Fig. 5 we use group sizes of 5 tuples, so there is only one
group for the building relation and two groups for the probing
relation.

The build phase (Algorithm 1) consists of two iterations
over the small groups of tuples. In the first iteration (S1),
the hashes of the join keys are precomputed and prefetch
statements to the addresses of the corresponding hash buckets
are issued. In the second iteration (S2), the hash buckets are

123

676 D. Makreshanski et al.

Pr
ob

e
G

ro
up

 1
Probing Relation

Record QIDs

B
uild

G
roup 1

Building Relation
Record QIDs

8

1
2

4

1
4
2
5
8

Hash Buckets Overflow Buckets

PT 1
PT 2
PT 3
PT 4
PT 5
PT 6
PT 7
PT 8
PT 9
PT10

Key Key
BT 1
BT 2
BT 3
BT 4
BT 5

HB 1
HB 2
HB 3
HB 4

OB 1

OB 2
Key Rec.

Ptr
QID
Ptr

Next
Buck.

Next
Buck.

5

8

1

5

1

8

8

8

5

4

2

Pr
ob

e
G

ro
up

 2

Rec.
Ptr

QID
Ptr

Key reffuBreffuB

Fig. 5 Two-way join algorithm example

populated with the input tuples. If a hash bucket is already
populated, the input tuple is populated in an overflow bucket
and the pointer of the hash bucket is updated to point to the
overflow bucket.

The input tuples to the join consist of pointers to the corre-
sponding query ID bitset and the record. The query ID bitset
for each tuple is generated either by a shared scan operator
or by a probe part of a shared join operator. When populating
a hash bucket with an input tuple, the bitset and/or record is
copied into the buffer space of the hash bucket if they fit.

For the example join, in the first step key hashes of
tuples BT{1,2,3,4,5} are computed and the prefetch instruc-
tions are issued on the hash buckets HB{1,4,2,1,4} in the
corresponding order. In the second step, building tuples
BT{1,2,3} are populated in hash buckets HB{1,2,4}, respec-
tively, while tuples BT{4,5} are populated in new overflow
tuples OB{1,2} that are linked to hash buckets HB{1,4}. In
this example, the buffer space in the buckets is enough to
hold the QIDs bitset, but not enough to store the record as
well. Therefore, only the bitsets are copied into the buffer
space of buckets and QID pointers are set to point to the
buffer space, while the record pointers are set to point to the
original memory of the input relation.

The probe phase (Algorithm 2) is a bit more involved.
Step 1 (S1) computes hashes and prefetches the hash buck-
ets. Step 2 (S2) evaluates join predicates and prefetches the
set of query IDs and the records. If the set of query IDs and
the record span multiple cachelines, it issues a prefetch state-
ment for each cacheline. In case of overflow, it also issues a
prefetch statement to the overflow buckets. Step 3 (S3) com-
putes the set intersection of the query ID sets andmaterializes
the output tuple if the set intersection is not empty. The out-
put tuple is projected to contain the union of all attributes
requested by the batch of queries that is currently being exe-
cuted. In cases of overflows, the procedure from step 2 to
step 3 is repeated as many times as the length of the longest
bucket chain.

Algorithm 2 Probe Phase
for group ∈ relation do

for tuple ∈ group do
bucket ← computeBucketAddress(tuple)S1

⎧
⎨
⎩

prefetch(bucket)
end for
while group != [] do

otherGroup ← []
keyMatchGroup ← []
for tuple ∈ group do

if bucket.SI D == current S I D then
if bucket.key == tuple.key then

addToKeyMatchGroup(tuple)
prefetch(bucket.queryIDs)
prefetch(bucket.record)

end ifS2

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if hasNextBucket(bucket) then
addToOtherGroup(tuple)
prefetch(bucket.next Bucket)

end if
end if

end for
for tuple ∈ keyMatchGroup do

resQI Ds ← Intersect(tuple.QI Ds, bucket.QI Ds)
if !EmptySet(resQI Ds) then

outputTuple(tuple, bucket, resQI Ds)S3

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

end if
end for
swap(group, otherGroup)

end while
end for

In the example in Fig. 5, the probing procedure for the
first probing tuple group will be the following. In the first
iteration (S1), key hashes of probing tuples PT{1,2,3,4,5}
are computed and prefetch instructions are issued on the
memory addresses of hash buckets HB{1,4,2,4,1} in the cor-
responding order. In the next iteration (S2), key comparison
of corresponding tuples and hash buckets are performed and
the record and QID pointers are prefetched for the buck-
ets with matching key comparison (HB{1,2}). In the same
iteration (S2), prefetch instructions are also issued for the
overflow buckets OB{1,2}. In the next iteration (S3), QID
set intersection is performed and output tuples are material-
ized for tuple pairs: {(BT1,PT1), (BT3,PT3)}. Since there are
overflow buckets, steps S2 and S3 are repeated for the over-
flow buckets. In the next iteration (S2), key comparison is
performed for tuple–bucket pairs: {(OB2,PT2), (OB2,PT4),
(OB1,PT5)}, and since all keysmatch, record andQID point-
ers are prefetched for both overflow buckets OB{1,2}. No
overflow buckets are prefetched in this S2 iteration since all
next bucket pointers are null. Finally, the algorithm proceeds
with the last iteration of the first probing group of tuples (S3)
with performing set intersection and output tuple material-
ization of tuple pairs: {(BT5,PT2), (BT5,PT4), (BT4, PT5)}.
As the algorithm processed all overflow buckets, it exits the
while loop and continues on with the next group of probing
tuples in a similar manner.

123

Many-query join: efficient shared execution of relational joins on modern hardware 677

5.4 Discussion

MQJoin is similar to CJoin and Datapath in using bitsets to
handle the query ID set for each tuple, as well as the use of
a hash-based algorithm.

An important difference to CJoin and Datapath is that in
those systems the build and probe phases are executed con-
currently. As a result, the hash table is constantly updated for
all incoming and outgoing queries, which introduces extra
work per query. In CJoin, for instance, the hash table is
updated for each query individually, both when the query
enters and exits the system. This works for star schemas
and low concurrency cases where the effort required in the
build phase is significantly lower than during the probe phase.
In Datapath, colliding hash table entries from newly arrived
queries will be placed in the next available entry in the hash
table. This causes extra work to be done during probing and
it is unclear how the hash table is purged when queries fin-
ish. To minimize the work required for building, updating
and clearing the hash table, our join algorithm runs in cycles,
performing build and probe one after the other in each cycle.
This allows us to share the build operation for all queries that
are being executed in the current cycle. At the end of each
cycle, we clear all data in the hash table by simply incre-
menting the session ID number. This avoids replaying build
subqueries to clear data from the hash table.

Another difference is in the microarchitectural proper-
ties of the algorithm. SharedDB uses single-threaded join
operators which is inefficient for analytical workloads on
multi-core systems. Similarly, CJoin builds and updates the
hash table in a single thread, which is inefficient if the build
relations are not insignificantly small. This is another reason
why CJoin is restricted to star schemas. Datapath uses a sin-
gle hash table for all joins which is divided in 64 regions with
exclusive locks. To avoid contention on these locks, it needs
to update the hash table in two phases. Our algorithm paral-
lelizes both build and probe phases and synchronizes build
operations on a per-bucket basis. We optimize for both CPU
and bandwidth efficiency by hiding random access latencies
through software prefetching and minimizing the number of
randomcachelines accessed per tuple. Thus, the performance
MQJoin is comparable to that of the state-of-the-art query-at-
a-time join algorithms, something that none of the competing
versions can do.

5.5 Sharing execution for other join types

The algorithm we just described works for queries that
require inner joins. It can be extended to share execution
for queries that also require (left, right, full) outer joins and
(anti) semi-joins, provided that they are all on the same
equality predicate. Consider a simple schema of relations
S(Aint, Bint) and R(Aint,Cint), and a shared join opera-

1. SELECT * FROM S, R WHERE S.A = R.A
2. SELECT * FROM S LEFT OUTER JOIN R ON S.A = R.A
3. SELECT * FROM S RIGHT OUTER JOIN R ON S.A = R.A
4. SELECT * FROM S FULL OUTER JOIN R ON S.A = R.A
5. SELECT * FROM S WHERE S.A IN (SELECT R.A FROM R)
6. SELECT * FROM S WHERE S.A NOT IN

(SELECT R.A FROM R)
7. SELECT * FROM R WHERE R.A IN (SELECT S.A FROM S)
8. SELECT * FROM R WHERE R.A NOT IN

(SELECT S.A FROM S)

Fig. 6 List of queries whose join can be shared

tor which builds the hash table with the relation S and probes
with the relation R. Then consider the set of queries shown in
Fig. 6. To handle these queries, the algorithm is extended to
perform additional operations on the bitsets. These additional
operations depend on the join type and can be setting bits of
individual queries to 1, conditional set to zero, or bit-wise
OR. This extension allows to answer the queries 2, 4, 5, 6 and
7 from Fig. 6. Another extension is to modify tuples’ bitsets
in the hash table during probing, and iterate over the build
relation again after probing to output tuples which did not
have a match in the probing relation. This extension allows
to answer the queries 3, 4 and 8.

The specific additional bitset operations andmodifications
are shown in Table 2. In particular, it includes the needed
operations to join execution of standard inner joins, left (and
right) outer, semi and anti joins. Full outer joins would con-
tain the modifications for both the left and right outer joins.
To distinguish left and right relations, we assume that the
hash table is built with the left relation and probed with the
right relation. Furthermore, we distinguish cases where the
join attributes in the left (building) relation are unique or not.

The columns in the table correspond to the following bitset
operations:

– the output query ID bitset during probing when a match-
ing tuple is found;

– the output query ID bitset during probing when a match-
ing tuple is not found (for a building relation with unique
keys) orwhenfinishedwith a probing tuple (for a building
relation with non-unique keys);

– themodification of the left (building tuple) or right (prob-
ing tuple) bitset when a matching tuple is found during
probing;

– the output query IDbitsetwhen the left (building) relation
is scanned again after probing.

The bitsets in the formulas are constructed using the fol-
lowing abbreviations:

– L and R correspond to the input query ID bitsets of the
left (building) and right (probing) tuple, respectively;

123

678 D. Makreshanski et al.

Table 2 Bitset operations for sharing execution of different join types

During probing Output bitset
on post-probe
left side scanOutput bitset

on match
Output bitset on non-
match; after probe

Left; right bitset
modification

Inner join (R & L) 0; 0 L ; R

Right Unique Outer join (R & L) |RO J RO J ; 0 L ; R

Semi join (R & L) 0; 0 L ; R

Anti join (R & L) & !RAJ RAJ ; 0 L ; R

Non-unique Outer join (R & L) 0; !(R � 1) & RO J L ; R|((L & R & RO J) � 1)

Semi join (R & L) 0; 0 L ; R & !(R & L & RSJ)

Anti join (R & L) & !RAJ 0 ; R & RAJ L ; R & !(L & R & RAJ)

Left Outer join (R & L) 0; 0 L| ((L & R & LOJ) � 1); R !(L � 1) & LO J

Semi join (R & L) 0; 0 L & !((L & R) & LSJ); R

Anti join R & (L & !L AJ) 0; 0 L & !((L& R) & LAJ); R L & LAJ

– ROJ, RSJ, RAJ, LOJ, LSJ, LAJ correspond to bitsets
which hold the information of the particular type of each
query. For instance, if the join for a query with an ID 3 is
a right outer join, the third bit in the ROJ bitset will be set
to 1. These six bitsets are specific to each join operator
and are static for a set of queries.

In general, most of the bitset operations are composed
of simple bit-wise and (&), or (|) and not (!) operations.
Exceptions are the left shift (�) and right shift (�) oper-
ations present in left outer join and right outer join with
non-unique keys in the building relation. In this case, the
system needs to store an extra bit of information per tuple
and query that can be achieved by allocating one more bit in
the bitset for queries with joins of this type. In particular, for
the left outer join, the adjacent bit is used to identify tuples in
the building relation that had a match in the probing relation.
The same mechanism is used for the right outer join.

The corresponding instructions of the bitset operations
used (and, or, not, left shift and right shift) are all simple and
are executed efficiently on modern processors. Therefore,
they would not cause significant performance degradation
in the case when the join is shared for queries with other
non-inner join types.

5.6 Further optimizations

The approach of MQJoin can also benefit from other tech-
niques that optimize execution of single query join operation.
For instance, bloom filters can be used to perform early fil-
tering of tuples during the probing phase. This technique is
used by several systems, including IBM DB2 [40], Vector-
Wise [43], SQL Server [29] and HyPer [28]. Bloom filters
provide the benefit of reducing expensive accesses to non-

cache resident hash tables at the cost of probing the bloom
filter for every tuple. Bloom filters for in-memory hash joins
are beneficial when the join is highly selective and the hash
table does not fit into CPU caches. In MQJoin, the input (and
output) relations represent the union of input (and output)
relations for all concurrent queries, meaning that hash table
is less likely to fit into CPU caches, but the selectivity of
the shared join operation is also lower compared to a single
query join.

Another optimization is to use auxiliary index data struc-
tures, such as join indexes [36,48] or indexes on join
attributes (for the purpose of using indexed nested loop join).
These data structures may reduce the execution time of join
operations at the additional maintenance cost when handling
updates. Shared execution of joins is also possible in the
presence of indexes. Similarly as the bloom filters, the lower
selectivity of a shared join compared to a single query join
would affect the decision of the optimizer whether to use
indexes.

6 Multi-way joins

In this section, we describe how multiple join operations are
handled. As with the query-at-a-time approach, the shared
join approach also requires an optimization decision on how
to create query plans involving multiple joins. The shared
join optimizer not only needs to decide the order of a multi-
way join but also which queries’ execution should be shared.
It can be undesirable to share the execution of some queries
either for performance isolation reasons or if sharing would
hurt overall performance.

Building such an optimizer is actually a non-trivial task
and is out-of-scope of this paper. Recent work by Giannikis

123

Many-query join: efficient shared execution of relational joins on modern hardware 679

et al. [17] has addressed this problem and these techniques
can also be applied to our approach. In this paper, we focus
on one end of the spectrum, that is, to maximize sharing
across all concurrent queries. While this might not be always
optimal or desirable, it provides a lower bound for the perfor-
mance of our approach. The ordering of the joins is currently
done by hand. Next we explain howwemaximize sharing for
queries with multi-way joins. The key challenge to address is
handling queries without common subplans. In this regard,
we use two techniques: query plan equalization and global
query batching.

6.1 Query plan equalization

A key property of our shared join approach that minimizes
the number of tuples processed in the join operators is that
a join operation is shared even for queries without common
subplans.We illustrate thiswith an example. Figure 7 shows a
sample database with three relations: Orders, Customers and
Nations together with 3 queries with various joins and pred-
icates on the three relations. The three queries share almost
no common subexpressions: Q1 asks for all the orders from
John, Q2 asks for all orders after December 21, 2012, from
USA, and Q3 asks for all customers from Germany. The

Relation Orders:
OID CID Date
1 2 2012.JUL.01
2 3 2013.JAN.01
3 1 2011.NOV.31
4 3 2013.FEB.01
5 2 2012.NOV.15
5 2 2012.DEC.14

Relation Customers:
CID Name NID
1 John 1
2 Maria 1
3 Dieter 2

Relation Nations:
NID Name
1 USA
2 Germany

Q1 SELECT * FROM Orders O, Customers C
WHERE O.CID = C.CID AND C.Name = ’John’

Q2 SELECT * FROM Orders O, Customers C, Nations N
WHERE O.CID = C.CID AND C.NID = N.NID
AND O.Date > 2012.DEC.21 AND N.Name = ’USA’

Q3 SELECT * FROM Customers C, Nations N
WHERE C.CID = N.NID AND N.Name = ’Germany’

(a)

(b)

(c)

Fig. 7 Sample database with queries. a Sample database. b Sample
queries. c Shared join plan for Q1, Q2, Q3

query execution plan that we create to execute all 3 queries
together is shown in Fig. 7c.

One can notice that the organization of join operations in
the plan does not directly correspond to the join operations
required by all queries. In particular, Query 1 does not require
the join of Customers ��Nations; however, it is still included
in its plan. The reason is that it allows for the Orders �� Cus-
tomers join to be shared for Query 1 and 2.

We considered the two following techniques to exploit
this type of sharing opportunity: (i) modify the query plan of
Query 1 to include an unnecessary full table scan of Nations
followed by a join with Customers and (ii) have the Cus-
tomer ��Nations join always forward tuples for whichQuery
1 is interested. Both methods have advantages and disadvan-
tages, and could be used interchangeably depending on the
situation. The advantage of the first method is that it requires
less computation per tuple; however, it might process more
tuples. Thiswould not be a problem, if for instance a full table
join is already required by the union of all joins that are pro-
cessed. The advantage of the second method is that it might
process less tuples, but would require more computation per
tuple. Currently we modify the query plans to include extra
full table scans and joins. This technique can be referred to
as query plan equalization where query plans are modified
to increase sharing opportunities. The approach differs the
ones in Datapath and SharedDB where, for join queries with
different subplans, the join operations are either replicated
or process intermediate relations from separate query plans,
thereby creating redundant work.

6.2 Global query batching

As explained earlier, to exploit more sharing opportuni-
ties, our algorithm requires a fixed set of queries during
its execution. This means that queries or subqueries need
to be coscheduled (or batched), so that they are executed
together. To facilitate this, we use query queues where there
is one queue for each class of queries or subqueries that
need to be coscheduled. If the system is busy executing a
certain class of queries, arriving queries of that class will
wait in the queue. The decision of how many queues to
have involves making a trade-off between the amount of
sharing exploited and isolation of query performance. To
show the effects of sharing compared to query-at-a-time
execution, we focus on one end of this spectrum which
maximizes sharing. Therefore, we use a single query queue
which gives the systemmaximumflexibility in how to sched-
ule execution of concurrent queries. We refer to the use of
a single query queue as global query batching. The effect
of this can also be shown with the example in Fig. 7.
Assume that there are many clients connected to the sys-
tem where each client repeatedly executes one of the three
queries at random. Although the instances of Query 3 do

123

680 D. Makreshanski et al.

Thread 1 Thread N

Thread 1 Thread N Thread 1 Thread N

Step 2

Shared
Join

(1
-Probe)Sh

ar
ed

Jo
in

(1
-B

ui
ld
)

Step 1

Push()

Push()

Push()Push()

. . .

Push()

Push()

. . .

. . .
A
ggregate

Shared
Scan

R
elation

S

Sh
ar
ed

Sc
an

R
el
at
io
n
R

. Hash Table

Shared
Join

(2
-Probe)

. . .

Push() Push()

Fig. 8 Integration with shared scans

not require the Orders��Customers join like Query 1 and
2, all queries will be coscheduled together. This means
that query execution can be organized in a way that the
Customers��Nations join is executedonly once for all queries
that are being executed at the same time, minimizing redun-
dant work.

7 System architecture

For an efficient end-to-end query execution, a shared join
must run on topof a storage engine that supports shared scans.
Sharing computation and bandwidth in scans is a common
technique used in many systems. Some examples include:
Blink [39], MonetDB [49] and Crescando [16]. To provide a
clearer picture of the performance ofMQJoin when it runs as
part of a complete system, we integrated it with Crescando.
Crescando is a row-oriented storage engine where relations
are partitioned across cores and fully reside in main memory.
Therefore, neither the scan nor the join need to fetch data
from disk to execute queries.

An example of how this integration works is shown in
Fig. 8. This example depicts two shared scan operations, one
join operator divided into build and probe parts, an aggregate
operator, and the probe part of another join operator.

Query execution in our architecture is performed in one
or more steps. In each step, a set of threads work on separate
partitions, and execution progresses to the next step only
when all threads are done processing their partition. In the
example in Fig. 8, there are two steps, where in step 1, n
threads scan the R relation and build a hash table, and in step
2 they scan the S relation, probe the hash table, perform an

aggregation and probe another hash table (the building of this
hash table is not depicted).

For optimizing data and instruction cache locality, tuples
in each step are processed in vectors in a pipelined fash-
ion similarly to MonetDB/X100 [10]. Within a step, threads
switch contexts between operations when they fill up a buffer
of 1000 tuples. For instance in step 1, thread 1 will scan its
partition of relation R until it fills up the buffer with 1000
tuples. Consequently, it will push the buffer of tuples to the
operator on top, which in this case is a function call to the
build operator.

We use a push-based query processing pipelinewhere data
producing operators call a Push() function of the consumer
operators. This is unlike the pull-based approach of Volcano
[18] where consumer operators perform a function call next()
of the producer operator. This push-based approach allows
for intermediate results to be consumed bymultpile operators
and still be processed in a pipeline fashion without the need
for materialization. This is shown in the example in Fig. 8
where both the aggregate and shared join (2 - Probe) opera-
tors consume the result of the shared join (1 − Probe) in a
pipeline fashion.

7.1 Interpreting the results of the shared join

The shared join outputs intermediate results in a similar way
as it gets the input, by including a bitset to every tuple rep-
resenting the query ID sets. These intermediate relations can
be used by any other operator or can be sent directly to the
clients. In the absence of mechanisms to support the execu-
tion ofmore complex queries,we only add a simple aggregate
operator on top of the join operator, which can evaluate arbi-

123

Many-query join: efficient shared execution of relational joins on modern hardware 681

trarily complex expressions for each query individually. This
aggregate operator iterates over the bits in the bitset for each
query, evaluates the expressions of the corresponding queries
and updates their states. This way we avoid sending large
materialized relations over the network.

7.2 Tuple format

Since we built MQJoin on top of a row-oriented stor-
age engine, the system uses a row-wise format (NSM)
throughout the whole query execution process. Nevertheless,
MQJoin could also be integrated with column-oriented stor-
age engines that use a column-wise format (DSM) to store
relations. In this case, wewould need to employ an on-the-fly
conversion betweenDSMandNSM to be able to benefit from
both formats. Zukowski et al. [50] showed that this kind of
conversion can be efficiently implemented and that it enables
significant performance improvement for in-memory analyt-
ical query processing.

7.3 Handling transactional and analytical workloads

While the description of the system so far focused on
static datasets, the design principles of MQJoin, such as not
relying on index data structures for query processing and
batch scheduling of queries, make it suitable for handling
large update-intensive transactional workloads in addition
to the read-only analytical workloads. Handling of both
transactional and analytical workloads is possible with a
primary–secondary form of replication where the primary
replica is dedicated for transactional workloads and the sec-
ondary replica is used by the system described so far to
handle analytical workloads. Additional techniques such as
lightweight update extraction and propagation, and batch
scheduling of queries and updates provide high performance
and minimum load interaction between the transactional and
analytical workloads, as well as high level of data freshness
and snapshot isolation consistency guarantees for the analyt-
ical queries [31].

7.4 Main-memory footprint

One may argue that sharing the execution of multiple join
operations increases the main-memory requirements of a
database. The reason behind is based on a traditional trade-off
between the number of concurrent queries and the available
memory. While our shared join does take more memory than
a single join, we run many queries through it and exploit the
sharing opportunities that arise, thereby reducing the overall
demand formemorywhen considering howmany queries are
being executed concurrently.

7.5 Scaling out

Asmainmemory gets cheaper and larger, an increasing num-
ber of datasets can fit in the memory of a single machine.
For this reason, our algorithm assumes that relations and
intermediate data structures are memory resident. Neverthe-
less, although our system is designed for single-node join
processing, the techniqueswe use can also be applied in a dis-
tributed setting. As a memory intensive operation, network
bandwidth is a limiting factor when running a join across
multiple machines. Therefore, our approach of sharing the
bandwidth for multiple queries will also be beneficial in this
case. Similar rationale can also be applied to disk-based joins
that spill intermediate relations to disk.

8 Evaluation

To evaluate the performance of MQJoin, we first run a series
of microbenchmarks where we investigate the microarchi-
tectural effects of sharing the join. We then evaluate MQJoin
running on top of a shared scan with a TPC-H-based scan
and join workload and compare the performance to main-
memory, column-store databases optimized for analytical
workloads such as TPC-H, namely VectorWise [51] and Sys-
tem X. We also compare our approach with CJoin using the
star schema benchmark and based on the code provided by
the authors ofCJoin.Unless otherwise noted, the experiments
were done on amachine with 4× twelve-core AMDOpteron
6174 ‘Magny-Cours’ processors clocked at 2200 MHz. The
machine has 8 NUMA nodes each with 16 GB of memory,
for a total of 128 GB of RAM.

8.1 Microbenchmarks

The purpose of these microbenchmarks is to show how shar-
ing affects the performance of a join between two relations.
We evaluate performance and compare it to a query-at-a-
time join for various relevant factors, such as number of
concurrent queries, hash table size, tuple size and workload
type. All experiments refer to an equi-join between rela-
tions R(int A, int B) and S(int A, int C). Unless otherwise
noted, both relations have 100 million tuples, each of which
is 8 bytes, where the first 4 bytes contain the join key. The join
key ranges from 1 to 100 million and is randomly distributed
across tuples in both relations. The relationship between R
and S is a primary key–foreign key relationship; thus, the
join key in R is always unique. There is no skew in the work-
load, so keys in S are evenly distributed. The reason this
workload is chosen is that it resembles workloads used to
evaluate query-at-a-time join algorithms in related work on
joins [6,9,24], giving us a fair base for comparison.

123

682 D. Makreshanski et al.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 200 400 600 800 1000
 0

 10

 20

 30

 40

 50

 60
E

xe
cu

tio
n

T
im

e
(s

)

C
yc

le
s

pe
r

O
ut

pu
t T

up
le

Query Scaling - 48 Threads

 0
 10
 20
 30
 40
 50
 60
 70

 0 200 400 600 800 1000

E
xe

cu
tio

n
T

im
e

(s
)

Number of Queries

Query Scaling - Single Thread

8B Tup.
64B Tup.

128B Tup.
256B Tup.

Fig. 9 Performance of a 100 M × 100 MMQJoin for various number
of queries and record size

8.1.1 Scaling with the number of concurrent queries and
record size

In the first experiment (Fig. 9), we measure absolute per-
formance of our join algorithm in isolation and investigate
how performance is affected by the size of the bitset, i.e.,
the number of concurrently running queries, as well as, the
record size. We measure the time it takes to execute all join
queries while varying the number of queries. To keep the
number of tuples constant and to minimize the effect of the
scan, all queries ask for a full table join of the two relations.
We show performance for two cases: one where the join runs
on 48 cores and one where it runs on a single core. This indi-
cates how the algorithm performs in bothmemory-bound and
compute-bound scenarios.

The first thing to note is the absolute performance of the
algorithm compared to state-of-the-art join algorithms. From
the 48-thread graph, we see that the maximum performance
obtained for small-sized tuples and few queries is a little bit
less than 0.5 s, which for our 100M×100M join corresponds
to around 200 million tuples per second. Next, we analyze
the performance effect of bitset and record size. Dealing with
bitsets is an important source of overhead as it is not present
in query-at-a-time join algorithms. We note that the differ-
ence in performance of sharing join execution for around 500
concurrent queries instead of 1 is in general small and at most
a factor of 2, the main reason being that 500 bits can still be
accommodated in a single cacheline of 64 bytes.

The overhead of dealing with larger record sizes is also
important, since queries might be interested in different
attributes requiring for larger records to be projected and pro-
cessed by the join operators. Similarly to the bitset size, the
results show that increasing the record sizes from 8 bytes to a
cacheline size of 64 bytes has amarginal overhead. Enlarging
the records to sizes bigger than a cacheline of up to 256 bytes,
however, adds a significant overhead and performance starts
degrading linearly with the record size as more non-cache
resident memory has to be accessed per probe operation. To
avoid this type of overhead, several techniques can be used.
One way is to employ standard techniques used in current
databases to avoid processing large records in the join such
as data compression and late materialization. Another way
is to compress individual records and have record-specific
projection using only the attributes that are of interest to
the queries the record belongs to. This technique prevents
the increase in record size at the expense of having more
complex data-dependent code. In our case, we found that
such techniques are not necessary, since for the workloads
we used the tuples did not exceed 64 bytes. And asmentioned
before, the impact on performance in this case is negligibly
small.

8.1.2 Effect of hash table size

The join is an operation which scales supralinear with rela-
tion size. Typical breaking points are when the hash table no
longer fits in cache or no longer fits in main memory. When
sharing a join, the input relations are a union of all relations
required by the queries. Thus, knowing how exactly does a
join scale with the size of a hash table is important to under-
stand the effect of sharing the join.

In this paper, we focus on main-memory databases. Thus,
we consider only the cases when a hash table fits in main
memory. We vary the size of relation R from 1000 tuples to
100million tupleswhich covers the cases fromwhen the hash
table fits in L1 cache until it is much larger than L3 cache. As
before, we measure performance of full table joins for a join
on 1 core and 48 cores. Since the size of the build relation is
not constant, we only measure the performance of the probe
operation. We take measurements for 3 different join cases.
The first one is a query-at-a-time join for which we used our
join algorithm without sharing support. The second one is a
shared join with only few queries (<64). Finally, the third
one is a shared join with 512 queries which is already enough
to feel the impact of the bitset size.

The most important thing to get from these graphs is the
ratio between the lowest performance of the shared join and
the highest performance of a query-at-a-time join. The reason
this is important is that it depicts a worst-case scenario where
the hash tables of each individual query fits in cache, but the
union of all hash tables does not fit in cache. The highest

123

Many-query join: efficient shared execution of relational joins on modern hardware 683

ratio in this case is around 6, which means in the worst case
a probe operation will cost 6 times more for a shared join.
However, it is important to note that since this corresponds
to shared execution of 512 concurrent queries, the extra cost
is compensated by the sharing.

Another observation to make is that the single-threaded
case is less sensitive to hash table size, and does not experi-
ence a performance drop as the hash table grows larger than
the L3 cache. This means that the software prefetching tech-
nique we use is able to successfully hide the large random
main-memory access latencies which occur when each hash
table access is a cache miss.

8.2 Performance on Xeon Phi Knights landing

Asdiscussed above, a disadvantageof sharedquery execution
is that the working set size, which in the case of join is the
hash table, is larger when sharing. The benchmark results in
Fig. 10, which use a standard CPUwith a cache of few dozen
megabytes, show that probe performance degrades when the
building relation is about 100 thousand tuples.

This problem can be alleviated with modern microar-
chitectures such as the Xeon Phi Knights Landing (KNL)
[46] that feature a high bandwidth on package memory
called multi-channel DRAM (MCDRAM) in addition to
standard DDR4 memory. MCDRAM in the KNL chips con-
tains capacity of up to 16 GB and, according to Intel,
4x higher performance than DDR4 memory. In our exper-
iments, we were able to verify this for a system with

 0
 1
 2
 3
 4
 5
 6
 7
 8

103 104 105 106 107 108C
yc

le
s

pe
r

Pr
ob

e
O

pe
ra

tio
n Relation Size Scaling - 48 Threads

 0

 50

 100

 150

 200

 250

 300

103 104 105 106 107 108C
yc

le
s

pe
r

Pr
ob

e
O

pe
ra

tio
n

Size of Build Relation (Tuples)

Relation Size Scaling - Single Thread

L3 Cache

Query-at-a-time Join
MQJoin - 1 Query

MQJoin - 512 Queries

Fig. 10 Probe performance versus build relation size

Xeon Phi KNL 7210 with 64 Cores (256 hardware threads)
@ 1.3GHz with 16GB of MCDRAM and 196 GB of
DDR4. In particular, with a simple bandwidth measur-
ing benchmark with 256 threads, we measured around 76
and 320 GB/s sequential access bandwidth to the DDR4
and MCDRAM memory, respectively. The measured ran-
dom access bandwidth was 68 and 240 GB/s, respectively.
Thus, the MCDRAM can be seen as a last-level (software-
managed) cache.

In the case of sharing hash joins, this means that the prob-
lem of larger hash tables is less of a concern since we now
have a fast cache of 16GB which is almost 3 orders of mag-
nitude larger than standard CPU caches. We tested this effect
by benchmarking our MQJoin algorithm on the Xeon Phi
system. In particular, we varied the hash table size, and mea-
sured probing speed for query-at-a-time join, sharing with a
single query and sharing with 512 queries. We performed the
same experiment in two cases: (1)when the hash table resides
in the normal DDRAM memory and (2) when it resides in
the MCDRAM memory.

The results of this experiment are shown in Fig. 11.
The upper and lower plots depict the cases when the hash
table resides in standard DDRAM and MCDRAM memory,
respectively. From the results, we can see the benefits of
MCDRAM where the probing performance starts degrad-
ing for significantly larger build relation size, or about 3
orders of magnitude as also suggested by the size of the

 0

 1

 2

 3

 4

 5

103 104 105 106 107 108 109C
yc

le
s

pe
r

Pr
ob

e
O

pe
ra

tio
n DDRAM-resident Hash Table

 0

 1

 2

 3

 4

 5

103 104 105 106 107 108 109

C
yc

le
s

pe
r

Pr
ob

e
O

pe
ra

tio
n

Size of Build Relation (Tuples)

MCDRAM-resident Hash Table

Query-at-a-time Join
MQJoin - 1 Query

MQJoin - 512 Queries

Fig. 11 Probe performance versus build relation size on Xeon Phi
Knights landing

123

684 D. Makreshanski et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000
 0

 2

 4

 6

8

 10

 12
E

xe
cu

tio
n

T
im

e
(s

)

C
yc

le
s

pe
r

O
ut

pu
t T

up
le

Number of Queries

MCDRAM DDRAM

Fig. 12 Performance of a 100 M × 100 M MQJoin on Xeon Phi
Knights landing on for various number of queries and hash table storage
mediums

MCDRAM memory. Hence, we can conclude that for these
emerging platforms the increasingworking set sizes imposed
by shared execution of queries is less of a concern. One thing
to note is the less predictable performance in the MCDRAM
case exhibited by isolated performance drops for 105 and
107 tuples. This may come from the interaction between
variations in memory placement and the complex NUMA
architecture of KNL with a 2D mesh interconnect.

We also show the general performance of MQJoin on
this platform where we vary the number of queries for a
100Mx100M tuple join with 8B tuples. We also show the
performance when the hash table resides in DDRAM or
MCDRAM. The results are shown in Fig. 12. In particular,
for a single query join with a hash table in the MCDRAM
MQJoin is able to achieve a speed of more than 800 million
tuples per second.

8.2.1 Effects of sharing the join

In the following experiment,we illustrate the effect of sharing
the join for queries with predicates. We vary the selectivity
as well as the location of the predicates, and wemeasure how
much time it would take to execute a set of queries if they
were to be executed with a shared join or one by one with a
query-at-a-time join. We consider three types of queries with
predicates: one where all queries have a predicate on one of
the relations; one where all queries have predicates on both
relations; and one where half of the queries have a predicate
on one relation and the other half have a predicate on the
other relation. We use the default relations R and S both
with 100 million tuples. A selectivity of a predicate of, for
instance 0.001% on relation R, means that that query selects
randomly around 1000 tuples from R. To avoid measuring
the effects from scanning and evaluation of predicates, the
input relations are precomputed for both the shared join and
the query-at-a-time join. Results are shown in Fig. 13.

One important thing to emphasize from these results is
that the execution time of the shared join has a ceiling. This
represents the point where the union of all tuples is the whole
relation, and thus, shared join does a full table join. The
performance then is constant until the size of the bitset gets
high enough to make an impact.

8.3 TPC-H benchmark

For the first type of queries where all predicates are on one
relation, a shared join almost always performs better than a
query-at-a-time approach. This is true even in the cases when

0.001

0.01

0.1

1

E
xe

cu
tio

n
T

im
e

(s
)

Predicate on Build Relation Predicate on Both Relations

Q
ue

ry
-a

t-
a-

tim
e

Jo
in

Predicate on Random Relation

0.001

0.01

0.1

1

1 10 100

E
xe

cu
tio

n
T

im
e

(s
)

Number of Queries
1 10 100

Number of Queries
1 10 100

Sh
ar

ed
 J

oi
n

Number of Queries

Predicate Selectivity:
0.0001% 0.01% 1% 100%

Fig. 13 Performance of MQJoin versus query-at-a-time join

123

Many-query join: efficient shared execution of relational joins on modern hardware 685

Lineitem

Probe

Probe

Σ

Step 10

Orders

Probe

Build

Step 9

Customer

Probe

Build

Step 8

Step 3,7

Nation

Probe

Build

Region

Build

Step 2,6

Partsupp

Probe

Probe

Build

Step 5

Σ

Part

Build

Step 1

Supplier

Probe

Build

Step 4

Fig. 14 Global join plan for the TPC-H workload

the predicates are mutually exclusive for all queries, making
the output relations mutually exclusive as well. The benefit
in this case comes from sharing the probe relation, where
every probing tuple is shared for all queries.

For the second type of queries where each query has a
predicate on both relations, we can see that a shared join is
only beneficial if there are some common tuples between the
queries. Due to the randomness of the predicates in this setup,
only the queries with lower selectivity predicates share tuples
as the number of queries increase. As the bitsets increasewith
more queries, the performance of the shared join will suffer.
However, if there are no common tuples between queries,
then the bitset will contain mostly zeros so it will be easily
compressible.

While the previous two cases were interesting to point
out, we expect that a realistic workload will consist of more
diverse sets of queries. The worst-case scenario for shared
join is when there are two queries one with a predicate on
one relation, while the other has a predicate on the other
relation. The shared join in this case will do a full table join,
and the number of queries in this case required for the shared
join to do better than the query-at-a-time join depends the
impact of the size of the hash table on the join, which is what
we see in Fig. refvaryspsbuildspssize.

The TPC-H benchmark suite [1] consists of 22 analytical
queries most of which require heavy scans and joins on large
portions of data. Aswe focus only on the scan and join opera-
tions of the queries, we took the TPC-H queries and extracted
their scan and join subqueries. In order to avoid sending large
materialized relations over the network, we included sim-
ple SUM aggregate on top of every query. To ensure that all
attributes are projected during the joins as required in the
original queries, we added all necessary attributes to the SUM

aggregate expression. For instance the transformed version
of Query 9 is shown in Listing 1. The rest of the queries used
are shown in Appendix 1

Listing 1 Transformed SQL version of Query 9

SELECT SUM(
ps_supplycost + l_extendedprice +

l_discount
l_quantity + s_nationkey +

o_totalprice)
FROM lineitem , part , supplier , partsup ,

orders
WHERE l_orderkey = o_orderkey
AND l_partkey = p_partkey
AND l_suppkey = s_suppkey
AND l_partkey = ps_partkey
AND l_suppkey = ps_suppkey
AND p_name LIKE ‘%[COLOR]%’;

Furthermore, we removed any queries that required no
joins, queries that contain more complex predicates which
our shared scan implementation does not yet support and
queries that required joins other than equi-joins, which are
not currently supported by our system. Thefinal set of queries
include 13 query templates that contained the scan and join
subqueries of the following TPC-H queries: 2, 3, 5, 7, 8, 9,
10, 11, 14, 16, 17, 19, 20. For comparison, related work uses
a smaller subset of TPC-H. Both QPipe and Datapath work
with only 8 queries. The global operator plan that is used
to process these queries is shown in Fig. 14. This plan was
created as described in Sect. 6 to maximize sharing for a
batch of queries. The scale of the TPC-H data used was 10.

8.3.1 TPC-H execution

To compare our approach to a query-at-a-time system, we
run an experiment with multiple clients where each client
executes theTPC-H-based queries one by one, in randomized
order, and with randomized parameters as per the TPC-H
specification. The clients execute the queries without think
time for a particular period of time, while we vary the number
of clients and measure throughput and response time.

123

686 D. Makreshanski et al.

0

500

1’000

1’500

2’000

2’500

3’000

3’500

4’000

 0 64 128 192 256 320 384 448 512

 (
Q

ue
ri

es
 p

er
 M

in
ut

e)

Number of Clients

MQJoin
Vectorwise
System X

(a)

 0

 10

 20

 30

 40

 50

4 16 64 256 512

R
es

po
ns

e
T

im
e

(s
)

Number of Clients

50th
90th
99th

MQJoin
Vectorwise

System X

(b)

Fig. 15 Throughput and response time for TPC-H-based workload on
a database of scale 10. a TPC-H throughput. b TPC-H response time
percentiles

Our shared join system in this case is running on all 48
cores,with everyTPC-H relation partitioned across the cores.
The memory of each partition is bound to the NUMA node
of the core, while the memory of the hash tables is inter-
leaved across all NUMA nodes. As mentioned before, the
system executes queries in batches where queries are queued
up in a batch while the current batch is being executed. For
VectorWise, we have one connection per client for up to 64
clients. With more than 64 clients, the clients start sharing
64 connections in a FCFS fashion.

In Fig. 15a, we show the throughput comparison of our
system, VectorWise and SystemX aswe increase the number
of clients. The results indicate that our system outperforms
both commercial counterparts for more than 60 clients and
gives 2-5x higher throughput for 256 clients. Although this
might not seem to be a large improvement, it should be
taken into account that we are comparing to systems that
are leading TPC-H benchmark performers for single-node
main-memory processing. There are many optimizations in
VectorWise and SystemX that are orthogonal to shared query
processing, in particular column-wise processing. The rea-
son why performance increase slows down from 256 to 512
queries is explained in the next section where we profile the
performance of our system.

 0
 200
 400
 600
 800

 1000
 1200
 1400

 64 128 192 256 320 384 448 512

N
um

be
r

of
 P

ro
ce

ss
ed

 J

oi
n

T
up

le
s

(M
ill

io
n)

Number of Queries

MQJoin
System X

Fig. 16 Number of tuples processed in join operations in MQJoin ver-
sus system X

In Fig. 15b, we show response time percentiles for the
same experiment. This graph shows that our system has sig-
nificantly more stable and consistent response time. Both
VectorWise and System X are slower for the most expen-
sive queries for as low as 4 clients. This graph also shows
the equalization effect of the single query queue on response
time. This might not always be a desired property for all
queries in the system; however, it provides predictable per-
formance that is important for systems which must provide
response time guarantees.

Figure 16 illustrates the advantage of MQJoin over its
query-at-a-time counterparts. For this experiment, we mea-
sured the total number of input and output tuples processed
by hash join operators for different sized sets of concurrently
running queries. Due to technical limitations we only col-
lected these data from MQJoin and System X. Nevertheless,
the results clearly show the difference between MQJoin and
a traditional query-at-a-time approach. For small number of
concurrent queries, SystemXprocesses significantly less join
tuples than MQJoin since it can optimize the join order of
each query individually. Furthermore, System X makes use
of bitmaps to prefilter join tuples, further reducing them at
additional cost to the scan operation. On the other side, the
number of processed join tuples in MQJoin grows signif-
icantly slower reaching a plateau due to the sharing effect
as shown in Fig. 13. This enables MQJoin to process larger
workloads more efficiently reaching higher performance.

8.3.2 Performance profiling

In the performance results in the previous experiment, the
throughput no longer increased for MQJoin after a certain
point. In the following experiment, we show the reason
behind this. Figure 17 shows the breakdown of CPU time
spent in our system per operator class while varying the num-
ber of concurrently running queries. The concurrent queries
are a multiple of the set of 13 TPC-H-based queries with
randomized parameter values. The results show that, as the
number of queries in the batch increase, the scan operators
take most of the CPU time. The reason for this is that, as
shown previously, a shared join scales almost constantly with

123

Many-query join: efficient shared execution of relational joins on modern hardware 687

 0

 1

 2

 3

 4

 5

 6

 64 128 192 256 320 384 448 512

C
PU

 T
im

e
pe

r
C

or
e

(s
)

Number of Queries

Scan
Join

Aggregate

Fig. 17 CPU time spent per operator class for TPC-H-based workload

Table 3 Workload properties: selectivity and number of possible
parameters per query template

Select. (%) #Param. Select. (%) #Param.

Q2 0.08 1250 Q11 4 25

Q3 0.465 155 Q14 0.277 60

Q5 4 25 Q16 2 3750

Q7 0.064 625 Q17 0.1 1000

Q8 0.0053 18750 Q19 0.0028 250

Q9 5.26 92 Q20 0.043 2300

Q10 4.16 24

the number of queries as soon as the point of doing full table
joins is reached. On the other hand, scaling the evaluation of
predicates is more difficult and depends on workload param-
eters such as complexity and selectivity of the predicates.

8.3.3 Workload properties

Sincewe are running aworkloadwith hundreds of concurrent
queries, it is important to understand the amount of overlap
in the queries and its effect on performance. For this reason,
we performed both a static analysis of each of the 13 query
templates and a dynamic analysis on the workload as it is
being executed in the system. The results show little overlap
in the amount of data queries are interested in and demon-
strates the reason whyMQJoin is able to benefit from sharing
opportunities in this case.

Table 3 shows the summary from the static workload
analysis with two key properties for each of the 13 query tem-
plates. The number of possible predicate parameters indicate
how many unique queries there are in a certain workload.
For the largest workload of 512 concurrent clients, this cor-
responds to around 40 query instantiations per template. As
the table shows, only 3 of the 13 templates have less than 40
possible parameter values, the smallest one having 24. The
rest havemanymore possible parameter values, meaning that
even in a set of 512 concurrent queries, the expected amount
of identical queries will be marginally small.

The selectivity values show the combined selectivity of
the predicates for each query template. The results show that

 0

 20

 40

 60

 80

 100

 120

 64 128 192 256 320 384 448 512

N
um

be
r

of

 Q
ue

ri
es

 p
er

 T
up

le

Number of Concurrent Queries

Join Output
Scan Output

Scan Output (w/o Full Table Scans)

Fig. 18 Amount of data overlap in intermediate results

the majority of the queries have a selectivity of less than 1
percent, which indicates possibly little overlap in the data of
interest even for several hundred queries. This is confirmed
by the results of our dynamic workload analysis shown in
Fig. 18. In this experiment, we measured the average number
of queries per tuple for different types of intermediate results.
The solid red line corresponds to the intermediate results,
which are the output of join operators and input to aggregate
operators. The very small amount of queries per tuple of
around 1.4 for 100 queries and 2.6 for 400 queries confirms
the small overlap in data mentioned before.

Unlike the output, the input to the join operators contains
a larger overlap in data with an average of 120 queries per
tuple for 400 concurrent queries. For this case, we measured
the average number of queries per tuple in the intermediate
results that are the output of scan operators and input to join
operators. As is also shown in Fig. 18, the majority of this
overlap comes from full table scans. This experiment demon-
strates the benefits of sharing join execution even for queries
with a disjoint set of predicates, since there is still a large
overlap in the data that needs to be processed.

8.4 Comparison to CJoin

As the closest related work, we also compare our approach
to CJoin [11]. We use the same star schema benchmark [37]
workload used to test CJoin. The dataset has a scale of 100
andwe use three workload types. The first two come from the
sameworkload used in theCJoin paperwith the predicates on
the dimension relations set to 1 and 10%, respectively. The
third one uses the queries and selectivity as defined by the
star schema benchmark specification. We do not use queries
1.1, 1.2 and 1.3 as they contain predicates on the fact relation
which is not supported by CJoin. Since we do not support a
group by operation, we used a corresponding sum opera-
tion for CJoin as well. To avoid any disk accesses for CJoin,
we placed the underlying Postgres instance in a temporary
in-memory file system. For both systems, we varied the num-
ber of clients and measured response time and throughput.
Clients issue queries one after another without think time.

The results are shown in Fig. 19. The first thing to note is
the large performance difference between the two systems.

123

688 D. Makreshanski et al.

1

10

100

1,000

10,000

 1 10 100 1000

M
ed

ia
n

R
es

po
ns

e
T

im
e

(s
)

Number of Clients

1

10

100

1,000

10,000

100,000

1e+06

 1 10 100 1000

T
hr

ou
gh

pu
t (

Q
ue

ri
es

 /
H

ou
r)

Number of Clients

MQJoin
1% Selectivity

10% Selectivity
SSB Predicates

CJoin
1% Selectivity

10% Selectivity
SSB Predicates

Fig. 19 MQJoin and CJoin performance for star schema benchmark dataset of scale 100

(a) (b)

Fig. 20 An example of sharing of scans and joins with two different approaches. a Shared scan before join. b Shared scan after join

One reason is that CJoin was designed with a disk resident
fact relation in mind, and was run on a smaller machine with
8 cores. Although Postgres resides fully in main memory, the
streaming of the fact relation fromPostgres toCJoin becomes
a bottleneck and is not able to supply the CJoin operator
running on 40+ cores. Nevertheless, the main conclusion
to draw from these results comes from the relative perfor-
mance of the two systems as the number of clients increases.
CJoin’s performance starts degrading significantly sooner as
a result of missed sharing opportunities. Since CJoin updates
the hash tables for each query as the query arrives to the
system, it misses out on sharing the build operation for con-
current queries. As the number of clients increase, updating
the hash tables becomes a bottleneck. The per-query cost of
building and updating the hash table is also a relevant factor.
As shown in the results, workloadswith less selective ormore
complex predicates on the dimension relations aggravate the

problem. It is also for this reason why CJoin is suitable only
in a star schema scenario.

8.5 Post-join shared scan execution

As we analyzed with the microbenchmarks in Sect. 8.1, the
additional bitsets used in MQJoin cause a certain overhead
per tuple when processing the join. An alternative which
would avoid the use of bitsets is to use a technique where
the shared scan predicates are evaluated after the shared join.

In this case, the input to the join will essentially be full
table scans without any query ID bitset annotations. The join
will be executed as a single common subexpression operation
that in essence denormalizes the entire dataset.

An example shared scan execution before and after the
join is depicted in Fig. 20. The example shown in Fig. 20a
depicts the approach of MQJoin, while the example shown

123

Many-query join: efficient shared execution of relational joins on modern hardware 689

in Fig. 20b depicts the case where the shared scan is executed
after the join.

The problem of this approach is that that the shared exe-
cution of predicates becomes more expensive after the join.
We explain this effect using the example shown in Fig. 20.
In this case, any predicates on the nation table will be twice
as expensive when they are evaluated after the join. This is
because tuples from the nation relation are duplicated when
the join with the customer nation is executed.

To test the effect of this, we performed an experiment
where we compare the performance for two setups:

1. shared scan followed by a shared join on normalized
lineitem and orders relations

2. shared scan on a denormalized lineorders relation

The first setup resembles our standard MQJoin setup,
while the second setup is even stronger than the scan-after-
join approach since it does not actually perform any join.

The queries we use are shown in Listing 2 and 3. The
CSTART and CEND parameters are randomized for each
query and the difference between them is set such that the
queries select around 5% of the Customer relation. The
database is populated with 3 million order and 48 million
lineitem records.

Listing 2 Normalized Scan and Join Query

SELECT SUM(l_extendedprice)
FROM lineitem , orders
WHERE

l_orderkey = o_orderkey
AND o_custkey >= [CSTART]
AND o_custkey < [CEND]

Listing 3 Denormalized Scan Query

SELECT SUM(l_extendedprice)
FROM lineorders
WHERE

o_custkey >= [CSTART]
AND o_custkey < [CEND]

Results are shown in Fig. 21. We can see that for a
few queries the simple denormalized scan performs signif-
icantly better as it does not perform any join between the
two relations. As we add more queries, though, the scan on
the denormalized relation has a worse scaling factor and at
some point becomes even more expensive than scanning and
joining two normalized relations. If we would include the
join cost to the denormalized scan so that it resembles the
scan-after-join setup, it wouldmore quickly become less effi-
cient than the scan-before-join setup of MQJoin. The reason
behind this is that the shared scan and shared join scale dif-
ferently with the number of queries, as we have shown earlier
in Sect. 8.3.2 and Fig. 17. In particular, in our case the join
scales better, and after a certain point in the CPU time is
dominated by the scan.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 64 128 192 256 320 384 448 512

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

Number of Concurrent Queries

Normalized (Shared Scan-and-Join)
Denormalized (Shared Scan)

Fig. 21 Effect of number of concurrent queries on: (1) shared scan on
a denormalized relation versus (2) shared scan with shared join on two
normalized relations

8.6 Key takeaways

Finally, we summarize the key takeaways of this evalu-
ation of our MQJoin approach. The above experiments
demonstrate thatMQJoin’s algorithm for shared execution of
joins achieves performance comparable to the state-of-the-art
query-at-a-time join algorithms and experiences a per-tuple
performance degradation of only a factor of 3 when execut-
ing 1000 join operations as opposed to one (Sect. 8.1.1). The
additional performance degradation that can occur due to a
lower combined selectivity of a shared join operation (leading
to larger hash table sizes) is less of a concern in compute-
bound cases (Sect. 8.1.2) and can be aleviated by emerging
hardware technologies, such as MCDRAM, that introduce
an additional layer in the memory hierarchy in between last-
level CPU caches and main memory (Sect. 8.2). Also, while
the benefits of MQJoin depend on predicate location and
selectivity of individual queries, the work done has an upper
bound, that is, a full table join between the relations leading
to predictable performance and increasing benefits of sharing
as the number of concurrent queries increases (Sect. 8.2.1).

In the main experiment based on a TPC-H-based bench-
mark, where concurrent queries have little overlap
(Sect. 8.3.3), a system based on MQJoin outperforms state-
of-the-art analytical query processing engines (Sect. 8.3)
reaching up to 5 times higher throughput for 512 clients and
significantly lower 99th percentile response times for as low
as 4 clients (Sect. 8.3.1). The analysis of CPU time spent
reveals that for large number of clients the majority of time
is spent in predicate evaluation (Sect. 8.3.2), demonstrating
the better scalability of join evaluation as opposed to predi-
cate evaluation as the number of concurrent queries increases.
This, in turn, shows the need for a shared join execution with
predicates evaluatedmore efficiently on a normalized schema
as opposed to evaluating the predicates on a denormalized
schema after a join operation (Sect. 8.5).

Finally, the comparison to relatedwork (Sect. 8.4) demon-
strates the significantly higher performance of MQJoin due
to efficient use of modern hardware as well as better scalabil-

123

690 D. Makreshanski et al.

ity with the number of concurrent queries due to exploiting
of more sharing opportunities.

9 Conclusions

This paper presented an algorithm that exploits the sharing
potential of join execution up to a very high level to meet the
demands of such workloads. The goal is achieved by using
techniques that minimize redundant work across concurrent
queries and efficiently use the hardware resources such as
CPU and memory bandwidth. The resulting method handles
significantly larger workloads than the state of the art and
outperforms leading main-memory analytical databases by
providing higher throughput and more stable and predictable
response times.

Appendix: A modified TPC-H queries

Listing 4: Modified TPC-H Queries
Q2: select sum(p s supp lyco s t)

from part , supp l i e r , partsupp , nation ,
r eg i on

where p partkey = ps partkey
and s suppkey = ps suppkey
and p s i z e = $1
and p type l ike $2
and s nat ionkey = n nat ionkey
and n reg ionkey = r r eg i onkey
and r name = $3 ;

Q3 : select sum(l e x t endedp r i c e + l d i s c oun t +
l o rd e rk ey)

from customer , orders , l i n e i t em
where c mktsegment = $1

and c cus tkey = o custkey
and l o r d e rk ey = o orderkey
and o orderdate < $2
and l s h i pd a t e > $2 ;

Q5 : select sum(l e x t endedp r i c e + l d i s c oun t +
c nat ionkey + s nat ionkey)

from customer , orders , l ine i t em , supp l i e r
,

nat ion n1 , r eg i on r1 , nat ion n2 ,
r eg i on r2

where c cus tkey = o custkey
and l o r d e rk ey = o orderkey
and l suppkey = s suppkey
and c nat ionkey = n2 . n nat ionkey
and n2 . n reg ionkey = r2 . r r e g i onkey
and r2 . r name = $1
and s nat ionkey = n1 . n nat ionkey
and n1 . n reg ionkey = r1 . r r e g i onkey
and r1 . r name = $1
and o orderdate >= $2
and o orderdate < $2 + interval ’ 1 ’

year ;

Q7 : select sum(l e x t endedp r i c e + l d i s c oun t +
c nat ionkey + s nat ionkey) as

revenue
from supp l i e r , l i n e i t em , orders , customer

,
nat ion n1 , nat ion n2

where s suppkey = l suppkey
and o orderkey = l o rd e rk ey
and c cus tkey = o custkey
and s nat ionkey = n1 . n nat ionkey
and c nat ionkey = n2 . n nat ionkey
and n1 . n name = $1
and n2 . n name = $2
and l s h i pd a t e between date ’

1995−01−01 ’
and date ’

1996−12−31 ’ ;

Q8 : select sum(l e x t endedp r i c e + l d i s c oun t +
o t o t a l p r i c e + s nat ionkey)

from part , supp l i e r , l i n e i t em , orders ,
customer ,

nat ion n1 , nat ion n2 , r eg i on
where p partkey = l pa r tk ey

and s suppkey = l suppkey
and l o r d e rk ey = o orderkey
and o custkey = c cus tkey
and c nat ionkey = n1 . n nat ionkey
and n1 . n reg ionkey = r r eg i onkey
and r name = $2
and s nat ionkey = n2 . n nat ionkey
and n2 . n name = $1
and o orderdate between date ’

1995−01−01 ’
and date ’

1996−12−31 ’
and p type = $3 ;

Q9 : select sum(p s supp lyco s t + l ex t endedp r i c e
+

l d i s c oun t + l quan t i t y +
s nat ionkey +

o t o t a l p r i c e)

from l i ne i t em , part , supp l i e r , partsupp
where l p a r t k ey = p partkey

and l suppkey = s suppkey
and p name l ike $1
and l p a r t k ey = ps partkey
and l suppkey = ps suppkey ;

Q10 : select sum(l e x t endedp r i c e + l d i s c oun t) as
revenue
from orders , l i n e i t em
where o orderkey = l o rd e rk ey

and o orderdate >= $1
and o orderdate < $1 + interval ’ 3 ’

month
and l r e t u r n f l a g = ’R ’ ;

Q11 : select sum(p s supp lyco s t + p s ava i l q t y +
ps partkey)

from partsupp , supp l i e r , nat ion
where ps suppkey = s suppkey

and s nat ionkey = n nat ionkey
and n name = $1 ;

Q14 : select count (∗)
from l i ne i t em , part
where l p a r t k ey = p partkey

and l s h i pd a t e >= $1
and l s h i pd a t e < $1 + interval ’ 1 ’

month
and p type l ike ’%PROMO%’ ;

Q16 : select sum(p s i z e)
from part , (select ∗

from partsupp
where ps suppkey in (

(select s suppkey
from s upp l i e r
where s comment

not l ike ’%
Complaints%’)

) as suppcnttb l

123

Many-query join: efficient shared execution of relational joins on modern hardware 691

where p partkey = ps partkey
and p brand <> $1
and p type not l ike $2
and p s i z e = $3 ;

Q17 : select sum(l e x t endedp r i c e + l quan t i t y)
from l i ne i t em , part
where p partkey = l pa r tk ey

and p brand = $1
and p conta ine r = $2 ;

Q19 : select sum(l e x t endedp r i c e + l d i s c oun t)
from l i ne i t em , part
where p partkey = l pa r tk ey

and p brand = $1
and p conta ine r l ike ’%SM%’
and l q u an t i t y >= $2
and l q u an t i t y <= $2 + 10
and p s i z e between 1 and 5
and l sh ipmode = ’AIR ’
and l s h i p i n s t r u c t = ’DELIVER IN

PERSON’ ;
Q20 : select sum(p s supp lyco s t)

from part , supp l i e r , partsupp , nat ion
where ps suppkey = s suppkey

and s nat ionkey = n nat ionkey
and n name = $2
and ps partkey = p partkey
and p name l ike $1 ;

References

1. TPC-H Benchmark. http://www.tpc.org/tpch/spec/tpch2.17.0.pdf
2. Albutiu, M.-C., Kemper, A., Neumann, T.: Massively parallel sort-

merge joins in mainmemorymulti-core database systems. PVLDB
5(10), 1064–1075 (2012)

3. Arumugam, S., Dobra, A., Jermaine, C.M., Pansare, N., Perez, L.:
The DataPath system: a data-centric analytic processing engine for
large data warehouses. Proc. SIGMOD 2010, 519–530 (2010)

4. Avnur, R., Hellerstein, J.M.: Eddies: continuously adaptive query
processing. Proc. SIGMOD 2000, 261–272 (2000)

5. Balkesen, C., Alonso, G., Teubner, J., Özsu, M.T.: Multi-core,
main-memory joins: sort versus hash revisited. PVLDB 7(1), 85–
96 (2013)

6. Balkesen, C., Teubner, J., Alonso, G., Özsu, M.T.: Main-memory
hash joins on multi-core CPUs: tuning to the underlying hardware.
Proc. ICDE 2013, 362–373 (2013)

7. Balkesen, C., Teubner, J., Alonso, G., Özsu, T.:Main-memory hash
joins on modern processor architectures. IEEE Trans. Knowl. Data
Eng. 27(7), 1754–1766 (2015)

8. Barber, R., Lohman, G., Pandis, I., Raman, V., Sidle, R., Attaluri,
G., Chainani, N., Lightstone, S., Sharpe,D.:Memory-efficient hash
joins. Proc. VLDB 8(4), 353–364 (2014)

9. Blanas, S., Li, Y., Patel, J.M.: Design and evaluation of main mem-
ory hash join algorithms for multi-core CPUs. Proc. SIGMOD
2011, 37–48 (2011)

10. Boncz, P.A., Zukowski, M., Nes, N.: MonetDB/X100: hyper-
pipelining query execution. Proc. CIDR 2005, 225–237 (2005)

11. Candea, G., Polyzotis, N., Vingralek, R.: A scalable, predictable
join operator for highly concurrent data warehouses. PVLDB 2(1),
277–288 (2009)

12. Chen, C., Roussopoulos, N.: The implementation and performance
evaluation of the ADMS query optimizer: integrating query result
caching and matching. In: Proc EDBT, pp. 323–336 (1994)

13. Chen, S., Ailamaki, A., Gibbons, P. B., Mowry, T. C.: Improving
hash join performance through prefetching. In: Proc. ICDE 2004,
pp. 116– (2004)

14. Chen, S., Ailamaki, A., Gibbons, P.B., Mowry, T.C.: Improving
hash join performance through prefetching. ACM Trans. Database
Syst. 32(3), 17 (2007)

15. Ebenstein, R., Kamat, N., Nandi, A.: FluxQuery: an execution
framework for highly interactive query workloads. In: Proc SIG-
MOD, pp. 1333–1345. ACM, New York, NY, USA (2016)

16. Giannikis, G., Alonso, G., Kossmann, D.: SharedDB: killing one
thousand queries with one stone. PVLDB 5(6), 526–537 (2012)

17. Giannikis, G., Makreshanski, D., Alonso, G., Kossmann, D.:
Shared workload optimization. PVLDB 7(6), 429–440 (2014)

18. Graefe, G.: Volcano— an extensible and parallel query evalu-
ation system. IEEE Trans. Knowl. Data Eng. 6(1), 120–135 (1994)

19. Harizopoulos, S., Ailamaki, A.: StagedDB: designing database
servers for modern hardware. In: In IEEE Data, pp. 11–16 (2005)

20. Harizopoulos, S., Shkapenyuk, V., Ailamaki, A.: QPipe: a simul-
taneously pipelined relational query engine. Proc. SIGMOD 2005,
383–394 (2005)

21. Ivanova, M. G., Kersten, M. L., Nes, N. J., Gonçalves, R. A.: An
architecture for recycling intermediates in a column-store. In: Proc.
SIGMOD, pp. 309–320. ACM, New York, NY, USA (2009)

22. Jha, S., He, B., Lu, M., Cheng, X., Huynh, H.P.: Improving main
memory hash joins on intel xeon phi processors: an experimental
approach. PVLDB 8(6), 642–653 (2015)

23. Johnson, R., Harizopoulos, S., Hardavellas, N., Sabirli, K., Pandis,
I., Ailamaki, A., Mancheril, N.G., Falsafi, B.: To share or not to
share? Proc. VLDB 2007, 351–362 (2007)

24. Kim, C., Kaldewey, T., Lee, V.W., Sedlar, E., Nguyen, A.D., Satish,
N., Chhugani, J., Di Blas, A., Dubey, P.: Sort versus hash revis-
ited: fast join implementation onmodernmulti-coreCPUs. PVLDB
2(2), 1378–1389 (2009)

25. Krikellas, K., Inc, G., Viglas, S. D., Cintra, M.: Modeling mul-
tithreaded query execution on chip multiprocessors. In ADMS
(2010)

26. Lang, C.A., Bhattacharjee, B., Malkemus, T., Padmanabhan, S.,
Wong, K.: Increasing buffer-locality for multiple relational table
scans through grouping and throttling. Proc. ICDE 2007, 1136–
1145 (2007)

27. Lang, C.A., Bhattacharjee, B.,Malkemus, T.,Wong,K.: Increasing
buffer-locality for multiple index based scans through intelligent
placement and index scan speed control. In: Proc.VLDB, pp. 1298–
1309 (2007)

28. Lang, H., Mühlbauer, T., Funke, F., Boncz, P. A., Neumann, T.,
Kemper, A.: Data blocks: hybrid OLTP and OLAP on compressed
storage using both vectorization and compilation. In: Proceedings
of the 2016 International Conference onManagement ofData, SIG-
MOD ’16, pp. 311–326. ACM, New York, NY, USA (2016)

29. Larson, P.-A., Birka, A., Hanson, E.N., Huang, W., Nowakiewicz,
M., Papadimos, V.: Real-time analytical processing with SQL
server. Proc. VLDB 8(12), 1740–1751 (2015)

30. Liu, F., Blanas, S.: Forecasting the cost of processing multi-join
queries via hashing for main-memory databases. In Proc. SoCC,
pp. 153–166. ACM, New York, NY, USA (2015)

31. Makreshanski, D., Giceva, J., Barthels, C., Alonso, G.: BatchDB:
efficient isolated execution of hybrid OLTP+OLAP workloads for
interactive applications. In: Proc. SIGMOD, pp. 37–50.ACM,New
York, NY, USA (2017)

32. Manegold, S., Boncz, P., Kersten, M.: Optimizing main-memory
join on modern hardware. IEEE Trans. Knowl. Data Eng. 14(4),
709–730 (2002)

33. Manegold, S., Boncz, P., Kersten, M. L.: Generic database cost
models for hierarchical memory systems. In: Proc VLDB, pp. 191–
202. VLDB Endowment (2002)

34. Manegold, S., Pellenkoft, A., Kersten, M. L.: A multi-query opti-
mizer for Monet. In: Proc. BNCOD, pp. 36–50. Springer, London,
UK (2000)

35. Müller, I., Sanders, P., Lacurie, A., Lehner, W., Färber, F.: Cache-
efficient aggregation: hashing is sorting. In: Proceedings of the
2015 ACM SIGMOD International Conference on Management

123

http://www.tpc.org/tpch/spec/tpch2.17.0.pdf

692 D. Makreshanski et al.

of Data, Proc. SIGMOD 2015, pp. 1123–1136. ACM, New York,
NY, USA (2015)

36. O’Neil, P., Graefe, G.: Multi-table joins through bitmapped join
indices. SIGMOD Rec. 24(3), 8–11 (1995)

37. O’Neil, P., O’Neal, B., Chen, X.: Star schema benchmark. http://
www.cs.umb.edu/~poneil/StarSchemaB.PDF

38. Psaroudakis, I., Athanassoulis, M., Ailamaki, A.: Sharing data and
work across concurrent analytical queries. PVLDB 6(9), 637–648
(2013)

39. Qiao, L., Raman, V., Reiss, F., Haas, P.J., Lohman, G.M.: Main-
memory scan sharing for multi-core CPUs. PVLDB 1(1), 610–621
(2008)

40. Raman, V., Attaluri, G., Barber, R., Chainani, N., Kalmuk, D.,
KulandaiSamy, V., Leenstra, J., Lightstone, S., Liu, S., Lohman,
G.M., Malkemus, T., Mueller, R., Pandis, I., Schiefer, B., Sharpe,
D., Sidle, R., Storm, A., Zhang, L.: DB2 with BLU acceleration:
so much more than just a column store. Proc. VLDB 6(11), 1080–
1091 (2013)

41. Raman, V., Swart, G., Qiao, L., Reiss, F., Dialani, V., Kossmann,
D., Narang, I., Sidle, R.: Constant-time query processing. In: Proc.
ICDE 2008, pp. 60–69 (2008)

42. Roy, P., Seshadri, S., Sudarshan, S., Bhobe, S.: Efficient and exten-
sible algorithms for multi query optimization. In: Proc. SIGMOD,
pp. 249–260. ACM, New York, NY, USA (2000)

43. Răducanu, B., Boncz, P., Zukowski, M.: Micro adaptivity in vec-
torwise. In: Proc. SIGMOD, pp. 1231–1242. ACM,NewYork, NY,
USA (2013)

44. Sellis, T.K.: Multiple-query optimization. ACM Trans. Database
Syst. 13(1), 23–52 (1988)

45. Shatdal, A., Kant, C., Naughton, J.F.: Cache conscious algorithms
for relational query processing. Proc. VLDB 1994, 510–521 (1994)

46. Sodani, A.: Knights landing (knl): 2nd generation intel(r) xeon phi
processor. In: 2015 IEEE Hot Chips 27 Symposium (HCS), pp.
1–24 (Aug 2015)

47. Unterbrunner, P., Giannikis, G., Alonso, G., Fauser, D., Kossmann,
D.: Predictable performance for unpredictable workloads. PVLDB
2(1), 706–717 (2009)

48. Valduriez, P.: Join indices. ACMTrans. Database Syst. 12(2), 218–
246 (1987)

49. Zukowski, M., Héman, S., Nes, N., Boncz, P.: Cooperative scans:
dynamic bandwidth sharing in a DBMS. Proc. VLDB 2007, 723–
734 (2007)

50. Zukowski, M., Nes, N., Boncz, P.: DSM versus NSM: CPU per-
formance tradeoffs in block-oriented query processing. In: Proc.
DaMoN 2008, pp. 47–54 (2008)

51. Zukowski,M., van deWiel,M., Boncz, P.: Vectorwise: a vectorized
analytical DBMS. Proc. ICDE 2012, 1349–1350 (2012)

123

http://www.cs.umb.edu/~poneil/StarSchemaB.PDF
http://www.cs.umb.edu/~poneil/StarSchemaB.PDF

