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We theoretically investigate the interparticle force between a pair of spherical aerosol nanoparticles in a dual
counterpropagating Bessel beam configuration. We study the dependence of optical binding in the aerosol phase
on the wavelength of the electromagnetic radiation, the particle radius, and the refractive index, including the
cases of weak, moderate, and strong light absorption by the particles. We also investigate the relation between
optical binding and the time-averaged intensity of the incident and scattered light. Our results show that optical
binding in the aerosol phase depends strongly on the specific values of these parameters. This explains some of
the difficulties associated with optical binding experiments with aerosol nanoparticles.
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I. INTRODUCTION

The momentum of light and the exertion of optical forces
has been at the core of major advances in the research of
atomic to microparticle systems over the past few decades.
Laser cooling [1] and Bose-Einstein condensation [2] are the
primary examples for atomic systems, while the mechanical
effects of light have also been exploited in larger systems,
for example through the controlled motion or trapping of
microscopic particles by light with no physical contact or
damage whatsoever [3,4]. This ability to move colloidal
particles at will has led to important advances in biological
sciences [5], and also other areas, where studies of the
laws of thermodynamics [6,7] and Brownian dynamics at
the microscopic level [8], optical angular momentum transfer
[9,10], and microrheology of particles [11,12] have benefited
from the targeted application of optical forces.

Optical forces on particles arise from the change of their
momentum due to the interaction with the incident light.
They are often classified into scattering and gradient forces
[3]. Scattering forces arise from temporal changes in light
momentum upon the scattering from an object and point in
the direction of propagation of the light [13]. Gradient forces
occur whenever spatial intensity [5] or phase gradients [14]
are present. For small objects, with sizes much smaller than
the wavelength, they are described by the interaction of an
induced dipole with the spatial field gradient of the focused
electromagnetic radiation. For particles much larger than the
wavelength of the light, and with a refractive index exceeding
that of the surroundings the refraction of light causes the
particle to be pulled towards the maximum field intensity. In
general, a proper treatment requires the calculation of optical
forces by Maxwell’s stress tensor [15]. The increased interest
in optical forces arises from the fact that optical scattering
forces have properties that differ from electrostatic forces, e.g.,
they are not conservative [14] and can result in nonreciprocal
interactions between constituents [16].
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A peculiar manifestation of optical forces is the phe-
nomenon of optical binding [13,15], which can be realized,
for example, in dual counterpropagating (CP) beam config-
urations. In addition to the forces from the incident beams,
the binding forces rely on the modification of the incident
electromagnetic fields, primarily through interference, by the
presence of multiple simultaneously illuminated objects. The
phenomenon of optical binding comprises both attractive
and repulsive forces. More precisely, under “optical binding”
one can understand the mechanism based on light-mediated
momentum exchange between particles leading to spatial con-
figurations of particles or clusters of particles with distances
between them larger than the extent of any electrostatic forces
from any surface charge distributions present [15].

Initially more of a side topic in the field of optical trapping
and manipulation [17–20], optical binding has become a rich
research area of its own. After first demonstrations [17,18],
increased interest in optical binding forces has arisen due to
the fact that it features some very interesting physics, including
optical force measurement in liquids [21], optical binding in
air [22,23] and liquids [24], optical binding of aerosols in white
light [25], optical binding of cells in vivo [26], evanescent field
optical binding in solution [27–29], angular optical binding of
colloids [30], broadband transverse optical binding in vacuum
[31], and optical binding in standing waves in water [32,33].
We also note that theoretical work has been published on
deriving optical binding and its properties from quantum
electrodynamics [34–37]; however, such first-principle studies
so far can only provide an approximate description of two
particles in a laser field, still relatively far away from a
realistic simulation of submicron particles in laser beams
corresponding to realistic experimental configurations.

Moreover, optical scattering forces have a complex depen-
dence on the interparticle distance, so that optical binding can
hardly be predetermined by the spatial shaping of the incident
beam, in contrast to the case of single or multiple beam optical
trapping [15].

Manifestation of optical binding in systems in the con-
densed phase has attracted a considerable amount of exper-
imental and theoretical work [17,18,21,24,27–29,32,33,38–
41], while work on optical binding of aerosol systems is sparse
[22,23,25,31]. A main reason for this is that optical binding in
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solutions can be more easily studied experimentally, as well
as theoretically. In experiments, optical binding in condensed
phase is easier to observe than in air as particle diffusion is
much slower; in addition, for the same reason, optical binding
in liquids is more robust, i.e., much less sensitive to small
parameter changes, than in air. In theory, the small contrast
between the refractive index of the particles with respect to the
refractive index of the medium makes calculations of optical
forces on particles in liquids less computationally demanding
than in vacuum; nevertheless, most theoretical work on optical
binding in liquids uses approximative methods, instead of
solving the exact Maxwell’s equations for the matter-light
system.

Unfortunately, work on optical binding in the condensed
phase is of very limited value for optical binding of aerosol
systems due to the nonrepresentative small contrast of the
particle-medium refractive index, as well as the approximative
methodologies used. Moreover, there is very little work in
the literature on how various parameters, such as the size
and refractive index of the two particles, and the wavelength
and intensity of the illuminating light, affect the possibility of
optical binding in the condensed phase. It is thus not surprising
that practically nothing is known on this subject for aerosol
particle pairs. With the increasing interest in optical binding,
we believe that it is high time for such a study; even more so in
hindsight as our investigation of these parameters with respect
to optical binding in submicron aerosol particles clearly shows
that in such a case optical binding exists as a fine balance
between those parameters.

In this work we systematically investigate the properties of
longitudinal optical binding of a pair of dielectric nanoparticles
in air in the geometry of two counterpropagating Bessel
beams (CPBB) [42], with respect to the wavelength of the
electromagnetic radiation, the size of the particle, and its
complex index of refraction.

This paper is organized as follows. Section II briefly
presents our methodology for modeling optical binding be-
tween spherical particles in a dual CPBB configuration. In
Sec. III, we discuss the dependence of optical binding on
the size of two dielectric nanoparticles in such a geometry.
We further investigate the interrelation of particle radius,
wavelength, and the real part of the index of refraction
in controlling the optical binding of a pair of identical
(nonabsorbing) nanoparticles in a dual CPBB geometry in
Sec. IV. In Sec. V we consider the dependence of optical
binding on the absorption of light and the role of the light
intensity. We conclude in Sec. VI.

II. MODELING OPTICAL BINDING IN A CPBB

In this work, we study the optical forces between submicron
particles (200–700 nm) of spherical shape (radius r) in a
configuration of two CPBBs in air (refractive index equal 1).
Exploiting their “nondiffractive” properties, Bessel beams
(BBs) have been used for trapping and guiding of aerosol
particles (for a detailed discussion, see Ref. [42] and references
therein). In a previous study we investigated the possibility of
optical binding of two dielectric submicron particles in the
geometry of two CPBBs with a relative polarization angle
of 90◦ [42]. Here we further study the dependence of optical

FIG. 1. Top: sketch of the geometrical arrangement of BBs and
particles. For each BB the direction of propagation is indicated by the
red arrow and the direction of polarization by the blue arrow. r (i) is
the radius of particle i and � is the distance between the two particle
surfaces. The origin lies at the midpoint between the two particle
surfaces so that the center of particle (1) is located at Z = −�/2 − r (1)

and that of particle (2) at Z = �/2 + r (2). Bottom: calculated electric-
field intensity (in V2m−2) profile of an individual zeroth-order BB as
used in the present work. The corresponding wavelength is 532 nm.

binding of such particles in a CPBBs configuration on the radii
of the particles, the wavelength of the light, and the complex
refractive index of the particle.

A. CPBB configuration

The geometrical arrangement of a particle pair in the CPBB
configuration is illustrated in the upper panel of Fig. 1, with
X,Y,Z standing for the Cartesian axes of the laboratory frame.
Each individual BB is assumed to be an ideal linearly polarized
pseudo-diffraction-free zeroth-order Bessel beam in its own
beam-fixed Cartesian axis system (x̂,ŷ,ẑ). The definition of
the electric (�E) and magnetic ( �H) field components of a x-
polarized BB traveling along the z direction as function of the
position �r = (x,y,z) in the beam frame is given in Appendix A.
Both particles are located on the axis of propagation of the two
BBs (propagating forward and backward, respectively), which
we define as the Z axis of the laboratory frame.

We define the orientation of each individual BB in space
by a rotation (M) followed by a translation (d�r) of the

063813-2



MODELING OF OPTICAL BINDING OF SUBMICRON . . . PHYSICAL REVIEW A 95, 063813 (2017)

beam-fixed Cartesian axis system (x̂,ŷ,ẑ) with respect to a
laboratory-fixed Cartesian axis system (X̂,Ŷ,Ẑ). Both are right
handed. The beam-fixed axes are tied to the directions of
polarization (x̂) and propagation (ẑ) with the origin at the
point of maximum intensity, i.e., the center of the beam at
half of the diffraction-free propagation distance of the BB (see
Appendix A for a detailed discussion). The transformation
of laboratory-fixed coordinates �R = (X,Y,Z) to beam-fixed
coordinates �r = (x,y,z) is given in Appendix A. With this
definition, the fields arising from multiple BBs are first
calculated individually (�Eb, �Hb) in their respective beam-fixed
systems, followed by the rotation back to the laboratory-fixed
system, and finally added up to yield the total fields �Etot and
�Htot (discussed in detail in Appendix A).

The BB parameters used in our calculations are given in
Appendix A. In the lower panel of Fig. 1, the calculated
electric-field intensity I (x,y,0) ≡ |�E(x,y,z)|2 (in V2m−2)
profile of a single zeroth-order BB used as in the present
work is shown. The corresponding wavelength is 532 nm. The
typical bright, circular core surrounded by concentric rings of
approximately the same power is visible. Note that the power
in the core is about 7 mW and about 9 mW in each of the rings.

B. Optical forces

We calculate the optical force �F acting on a particle by
integrating Maxwell’s stress tensor T̂ over the (closed) surface
S of the particle [43],

�F =
〈 ∮

S

T̂ · n̂ dS

〉
t

, (1)

with

T̂ = ε0 �E ⊗ �E + μ0 �H ⊗ �H − q(X̂ ⊗ X̂ + Ŷ ⊗ Ŷ + Ẑ ⊗ Ẑ),

(2)

where q ≡ (ε0E
2 + μ0H

2)/2, ⊗ denotes the dyadic product,
n̂ stands for the unit vector normal to dS, and X̂,Ŷ,Ẑ stand for
the Cartesian unit vectors of the laboratory frame. The 〈 . . . 〉

t

symbol denotes time averaging over the duration of the particle
illumination.

We solve Eqs. (1) and (2) with the finite-difference time
domain (FDTD) method [44,45] as implemented in the FDTD
Solutions package [46] under the assumption of perfect
coherence between the two CPBBs, i.e., we use the total
fields �Etot and �Htot in Eq. (2), obtained as discussed above.
The FDTD approach is exact, but also becomes numerically
very demanding as the particle size increases. To converge the
forces to better than 1%, a particle with a radius comparable
to the wavelength λ in the Bessel beam specified above
required simulation boxes extending for more than ±40λ

in the transverse directions and a grid finesse significantly
better than λ/100 close to the particle. The solution of the
FDTD equations on grids of such size (>108 cells including
absorbing boundaries) typically took 10 h on 64 processors
(AMD Opteron 6174) sharing 64 GB of memory. If not
otherwise stated, we expect all FDTD results quoted in this
work to be accurate within a few percent. We note that the
significant computational expense of FDTD calculations is a
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FIG. 2. Interparticle force Fz(�) (top panel) and the optical
binding potential V (�) (bottom panel) for a pair of two identical
particles as a function of the distance � between the two particle
surfaces. The particles have a radius of 250 nm and are nonabsorbing
with an index of refraction n = 1.42.

serious limiting factor on the density of calculated points for
each case investigated below.

III. DEPENDENCE OF OPTICAL BINDING ON
PARTICLE SIZE

A. Optical binding of a symmetric particle pair

We first consider two identical nonabsorbing spherical
particles. The wavelength of light is λ = 532 nm and the
refractive index equals n = 1.42. We note that for spheres with
n = 1.42 and radii between 250 and 400 nm, no pronounced
Mie resonances occur in the wavelength range between 450
and 600 nm. The corresponding scattering cross sections as
a function of λ are slowly varying, almost flat, curves (not
shown here). Therefore, we expect that the results obtained
with λ = 532 nm are typical for the above wavelength range.

In the top panel of Fig. 2, we show the interparticle
force between two spherical nonabsorbing particles, Fz(�) =
(F (2)

z − F (1)
z )/2, of radius r = 250 nm as a function of the

interparticle distance � between the two particle surfaces. F (i)
z

is the force on particle i (see Fig. 1). Fz > 0 corresponds to
particle repulsion and Fz < 0 to particle attraction. Fz(�) = 0
corresponds to a stationary point with dFz(�)/d� < 0 for a
stable equilibrium position and dFz(�)/d� > 0 for a barrier.

063813-3



I. THANOPULOS, D. LUCKHAUS, AND R. SIGNORELL PHYSICAL REVIEW A 95, 063813 (2017)

0 2 4 6 8 10 12 14
 (μm)

-0.8

-0.4

0

0.4

0.8
F z (p

N
)

0 0.4 0.8 1.2 1.6
 (μm)

-0.6
-0.4
-0.2

0
0.2
0.4

F z (p
N

)

0 2 4 6 8 10 12 14
 (μm)

-0.8

-0.6

-0.4

-0.2

0

0.2

V
 (1

0-1
8 Jo

ul
e)

FIG. 3. Interparticle force Fz(�) (top panel) as function of the
distance of the two particle surfaces � (the inset focuses on � < 1.6
microns) and the optical binding potential V (�) (bottom panel) for a
pair of two identical nonabsorbing spherical particles with n = 1.42
and r = 300 nm.

For this particle pair, the equilibrium position lies at about
7 microns (Fig. 2). At shorter distances, the particles repel
each other with maximum repulsion in the range � ≈ 400–800
nm. The repulsion between the two particles vanishes as �

approaches zero, which implies that particles with sufficient
kinetic energy can eventually coalesce. The energy required
for coalescence can be estimated from the optical binding pair
potential, V (�), given by

V (�) = −
∫ �

0
Fz(x)dx, with V (0) = 0. (3)

For the pair of identical nonabsorbing particles (r = 250 nm;
n = 1.42) the result is shown in the bottom panel of Fig. 2. The
interparticle equilibrium distance for optical binding, at � ≈ 7
microns, is the distance corresponding to the bottom of the
potential well. The potential difference from the equilibrium
position to the position of � = 0 is about ≈1 aJ. This energy is
the (minimal) kinetic energy for the particle pair to coalesce,
which for a particle of this size, and with a typical density of
1.1 g/cm3, corresponds to a velocity of ≈17 cm/s.

In Fig. 3, we show the interparticle force Fz(�) and potential
V (�), in the top and bottom panel, respectively, for a pair
of identical nonabsorbing particles with a radius of 300
nm, again with n = 1.42 at λ = 523 nm. The equilibrium
distance is ≈5.5 microns, shorter than for 250 nm particles;
in addition, a barrier exists at about 200 nm. The binding
force Fz(�) becomes attractive, at very short interparticle

distances, � � 200 nm (Fig. 3, left). Therefore, coagulation
of the two particles is possible, and more facile than for a pair
of particles with 250 nm radius. The minimal kinetic energy
for coalescence of such a particle pair is a little less than in the
case of particles with 250 nm radius, estimated to be ≈0.75 aJ.
For a particle with 300 nm radius, and with a typical density
of 1.1 g/cm3, this corresponds to a velocity of ≈11 cm/s.

The particle velocities of 10–20 cm/s required for coa-
lescence in the above cases are much larger than particle
velocities occurring in typical experiments. For larger radii
r � 350 nm, however, the optical interparticle force between
identical nonabsorbing particles (n = 1.42 at λ = 532 nm),
turns out to be always attractive [42]; thus no optical
binding is possible in those cases and particles would readily
coalesce.

We note that in general dispersion forces between the two
spherical particles are always, i.e., in free space or under
irradiation, present [47]. These forces are attractive between
the two particles; moreover, one can estimate [47] that for
particles of radius R, the force F max

disp (�) = A
24π

(R2

�3 ) is an
upper bound for the corresponding dispersion forces, where A

stands for the Hamaker constant [47], a material characteristic
constant, and � is the distance between the particles. [F max

disp (�) is
obtained as the dispersion force between two parallel circular
disks of radius R at distance �.] For dielectric materials,
the Hamaker constants do not exceed 102 × 10−20 J [47].
Therefore, the corresponding forces are several orders of
magnitude smaller than the optical forces between the particles
under the conditions discussed here. The dynamics of the two
particles is thus characterized predominantly by the features
of the optical binding forces.

B. Optical binding of an asymmetric particle pair

We now focus on a pair of spheres of different size (radius
r (1) and r (2), respectively), again with refractive index n =
1.42 at λ = 532 nm. We compute the interparticle force, as
a function of the distance between the two particle surfaces
�, for pairs with particle radii of r (1) = 250,300,350 nm and
200 � r (2) � 700 nm.

In Fig. 4, we present contour plots of the interparticle
force Fz(�) in pN, for particle pairs with r (1) = 250 nm (top
panel), r (1) = 300 nm (middle panel), and r (1) = 350 nm
(bottom panel), as a function of r (2) (200 � r (2) � 700 nm),
and the interparticle distance �. We find optical binding for
pairs with particle radii r (2) in the range ≈200–400 nm. The
optical binding equilibrium distance, i.e., the value of � where
the optical force changes from negative to positive, varies
between 0.5 and 6.5 microns for pairs with at least one particle
with a radius larger than 250 nm. When both particles have
radii smaller than 250 nm, the equilibrium distance can even
exceed 9 microns. In all three panels of Fig. 4 we observe
the general trend that the magnitude of attractive interparticle
forces [Fz(�) < 0] increases with increasing difference in size
between the two spheres, up to 3.5 pN in absolute value.
By contrast, repulsive interparticle forces [Fz(�) > 0], which
occur for small differences between the two particle radii, are
always less than 0.5 pN in magnitude.

We note that the contour plots in Fig. 4 are obtained by two-
dimensional linear interpolation of the calculated Fz(r (2),�)
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FIG. 4. Contour plots of the interparticle force Fz(�) (in pN) as
function of the distance � between the two particle surfaces, and the
radius of the second particle r (2), for first particle radius r (1) = 250 nm
(top panel), r (1) = 300 nm (middle panel), and r (1) = 350 nm (bottom
panel). The refractive index is n = 1.42 and λ = 532 nm.

given in Tables I–III in Appendix B. The sharp features in the
contour lines only arise from the finite numerical resolution
and have no physical meaning. We refrain from using nonlinear
interpolation methods for smoothing out these discontinuities
because such methods introduce artifacts in the contour plot
representation arising from the nonlinear interpolation method
used.

IV. DEPENDENCE OF OPTICAL BINDING ON
WAVELENGTH AND REAL REFRACTIVE INDEX

The particle radius r , its real refractive index n, and the
wavelength λ of the trapping light are three basic parameters
that influence the optical force on a particle [15]. Two of
them also enter in the definition of the size parameter, 2πr/λ

(assuming the refractive index of the medium is equal to
1), which is a characteristic quantity in light scattering by
a sphere [48]. Many scaling properties remain the same for
identical size parameter. Therefore, one might expect that
optical binding also shows a certain trend with, for example,
the size parameter. In this section, we investigate the optical
binding force for a pair of identical particles, regarding the
above three parameters. First, we consider cases where two of
the above parameters fulfill a certain mathematical relation,
i.e., fixed ratios r/λ and λ/n, and fixed product r · n. We then
investigate the dependence of the optical force on each of the
parameters λ and n independently. In this section we only
consider nonabsorbing particles. The dependence of optical
binding on light absorption is discussed in the next section.

In the top panel of Fig. 5, we present the optical binding
force Fz(�) for the case of fixed λ/n = 345.4 nm, for a pair of
particles with radius r = 350 nm, for λ = 449.09 nm and n =
1.3 (black curve) and λ = 532 nm and n = 1.54 (red curve).
In the middle panel of the same figure, we show Fz(�) for the
case of fixed r/λ = 0.56, for a pair of particles with n = 1.42,
for r = 250 nm and λ = 449.09 nm (black curve) and r = 350
nm and λ = 625 nm (red curve). Lastly, in the bottom panel of
Fig. 5, we present the case of fixed r · n = 455 nm, at wave-
length λ = 440.09 nm, for r = 250 nm and n = 1.82 (black
curve) and r = 350 nm and n = 1.3 (red curve). The results,
in all three cases, clearly demonstrate that the optical binding
force of a particle pair can be quantitatively [magnitude of
Fz(�)] and qualitatively [sign of Fz(�)] different, even when
the ratios or product of two parameters out of (λ,r,n) are fixed
and the third parameter is the same. In particular, there is no
general trend as a function of the size parameter 2πr/λ.

We further study the dependence of the interparticle force
between a pair of identical particles on the above three
parameters without any mathematical relation between them.
Here, we only address the dependence on the wavelength of
light λ and the particle refractive index n, since the dependence
on r has already been discussed in Sec. III above.

In the top panel of Fig. 6, we present the optical binding
force Fz(�) for different λ for n = 1.42. For decreasing
wavelength, we observe that the optical binding force becomes
gradually more attractive, with similar qualitative features,
e.g., the Fz(�) curves retain a similar shape as λ changes from
532 nm to 449.09 nm. However, the changes in magnitude
of Fz(�) do not reflect the magnitude of the change in λ in a
quantitative way.
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FIG. 5. Optical binding force Fz(�) of a pair of identical spherical
nonabsorbing particles as function of the distance � between their
surfaces, for fixed λ/n and r = 350 nm (top panel), fixed r/λ and
n = 1.42 (middle panel), and fixed r · n and λ = 449.09 nm (bottom
panel). See text for discussion.

The bottom panel of Fig. 6 shows the dependence of Fz(�)
for a pair of identical particles with real refractive indices n

between 1.3 and 1.54, irradiated by light at a fixed wavelength
of 487.09 nm. Here, we find that the interparticle force can
change qualitatively as the refractive index increases, altering
from repulsive to attractive. Moreover, the shape of the Fz(�)
curves differ qualitatively for different values of n; while the
shape of Fz(�) for n = 1.3 resembles that for n = 1.42, this is
not the case for the curve with n = 1.54. Note that the relative
change in the refractive index from 1.3 to 1.42 and from 1.42
to 1.54 is the same. There is apparently no direct quantitative
relationship between the change in the magnitude of Fz(�) and
the change in the value of n.
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FIG. 6. Optical binding force Fz(�) for a pair of identical spherical
nonabsorbing particles of 350 nm radius. Top panel: n = 1.42 and
various values of the wavelength λ. Bottom panel: λ = 487.04 nm
and various values of the refractive index n.

The results shown in Fig. 6 are for a pair of spherical
particles with 350 nm radius. We have also studied the case of
r = 250 nm (not shown here) with similar results as found for
the case r = 350 nm.

V. OPTICAL BINDING OF ABSORBING PARTICLES

So far, we have neglected the influence of light absorption
on optical binding. Here, we address this issue by considering
a complex refractive index n = 1.42 + ik, with nonvanishing
imaginary part k. We neglect photophoresis effects [49] due to
the heating of the particles by the absorbed light [50], which is
important primarily for optical binding in liquids. We also note
that any momentum acquired through the process of photon
absorption, in these absorbing systems, would be compensated
by the counterpropagating beam geometry.

In Fig. 7, we present the optical binding force Fz(�) of a pair
of identical spheres for various values of k, ranging from weak
absorption, k = 0.01, to very strong absorption, k = 1. In the
top panel of this figure, we show Fz(�) for an interparticle
distance � of less than one micron. The optical binding force
for � > 1 microns is depicted in the bottom panel of Fig. 7.

The results in Fig. 7 show two qualitatively different aspects
of optical binding for absorbing particles. For weak to mod-
erate absorption (k < 0.1), we observe that the Fz(�) curves
are not very different from the Fz(�) curve corresponding to
nonabsorbing particles. More importantly, weak to moderate
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FIG. 7. Optical binding force Fz(�), for � < 1 micron (top panel)
and for � > 1 micron (bottom panel), for a pair of identical absorbing
spheres of radius r = 250 nm with complex refractive index n =
1.42 + ik, as a function of the imaginary part k.

absorption does not necessarily lead to a reduction of repulsive
forces, contrary to what one might expect, based on the
argument that when the intensity of light in between the
particles is reduced by absorption (“shadowing”), the light
pressure on each particle will dominate, resulting in enhanced
attraction between the particles. The fact that this is not the
case is a strong indication that optical binding of particles, even
under conditions of moderate light absorption, arises primarily
from the interference of the incident and scattered light, and
is thus very hard to predict “intuitively.” Only when the light
absorption becomes strong, (k > 0.1) can enhanced particle
attraction be expected, since the light pressure on each particle
will dominate; this is confirmed by the results shown in Fig. 7.

The conjecture that optical binding is primarily an in-
terference effect even under conditions of light absorption
can be further tested by looking for a relation between the
optical interparticle force and the light intensity distribution in
between the particle surfaces. For this purpose, we calculate the
integrated time-averaged electric-field intensity Ī (z), which is
directly proportional to the light intensity along the beam prop-
agation axis z integrated over the other two spatial dimensions:

Ī (z) = 1

T

∫ T

0

∫ ∞

0

∫ ∞

0
| �E(x,y,z,t)|2dx dy dt. (4)

T stands for the duration of the irradiation. We consider
three cases regarding absorption: (i) no absorption (k = 0), (ii)
moderate absorption (k = 0.5), and (iii) strong absorption (k =
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z (μm)
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 (1
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(

FIG. 8. Integrated time-averaged electric-field intensity Ī (z),
along the beam propagation axis z for two spherical absorbing particle
of 250 nm radius, located at z = ±0.3 microns. As the particles are
identical Ī (z) is symmetric with respect to z = 0. The black part of
each curve corresponds to the average intensity inside the particle.
See text for discussion.

1). Figure 8 shows the results for two identical particles with a
radius of 250 nm located at z = ±0.3 microns, which yields an
interparticle surface distance of � = 100 nm. For the purpose
of investigating the above conjecture it is sufficient to consider
Ī (z) in the region |z| < 0.6 microns because the optical forces
on the particles are completely determined by the Maxwell
stress tensor on surfaces just enclosing the respective particle.

Since Ī (z) is symmetric with respect to z = 0 for two identi-
cal particles, Fig. 8 only shows the results in the region around
the particle located at z = −0.3 microns. The black part of each
curve in Fig. 8 corresponds to the intensity inside the particle.
The optical binding force for cases (i)–(iii) is F (i)

z = 0.134 pN
(repulsion), F (ii)

z = 0.364 pN (repulsion), and F (iii)
z = −1.951

pN (attraction), respectively. The behavior of Ī (z) for the
three cases depicted in this figure indicate that no simple
quantitative, nor even qualitative, relation exists between the
interparticle force and the intensity of light in the dual CPBB
geometry. On the basis of the results for cases (i) and (ii) one
might have speculated that repulsion can be observed when
Ī (z) is larger in the region in between the particles than on
the sides facing the incoming light. Closer inspection of case
(iii), however, contradicts such an hypothesis. Here Ī (z) is
practically equal on both sides of the particle, while the optical
force on this particle is far from vanishing.

In this section, we have investigated a pair of particles of
r = 250 nm radius. For particles of 300 nm radius similar
results were found.

VI. CONCLUSIONS

In this work, we have investigated the optical binding force
between a pair of submicron dielectric spherical aerosol par-
ticles in a dual CPBB configuration. We have studied particle
pairs of the same as well as of different size. We have also
investigated the dependence of the optical binding force on the
wavelength of the light, the particle radius, and the refractive
index, including the cases of weak, moderate, and strong light
absorption by the particles. Our results demonstrate the lack
of a general systematic relationship between those parameters
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and the optical binding force that would allow one to make
qualitative predictions on the occurrence of optical binding
for a particular dual CPBB configuration. Our calculations do
not show any indications for a quantitative relation between
optical binding and the light intensity distribution in a dual
CPBB configuration. Therefore, we come to the conclusion
that there is no intuitively simple way to understand optical
binding in a dual CPBB configuration in the aerosol phase.
Optical binding of aerosol particles is ultimately based on
a fine balance of many parameters making its experimental
realization a difficult and treacherous enterprise.
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APPENDIX A: CALCULATION OF THE �Etot AND �Htot

FIELDS IN A MULTIPLE BB CONFIGURATION

The geometrical arrangement of a particle pair in the
CPBB configuration is illustrated in the top panel of Fig. 1,
with X,Y,Z standing for the Cartesian unit vectors of the
laboratory frame. Both particles are located on the axis
of propagation of the two BBs (propagating forward and
backward, respectively), which we define as the Z axis of
the laboratory frame.

All individual BBs are assumed to be ideal linearly
polarized pseudo-diffraction-free zeroth-order Bessel beams
as defined in Ref. [42]. They result from Gaussian beams
(wave number k, waist radius wc) passing through an axicon
with an internal angle δ and a refractive index nax , which yields
a semiapex angle

θ0 = arcsin

(
nax

n0
sin δ

)
− δ. (A1)

n0 is the refractive index of the surrounding medium (n0 = 1
is valid for this work). Such a beam propagates approximately
diffraction free over a distance zmax starting from the tip of the
axicon given by

zmax = wc

tan θ0
. (A2)

For an x-polarized BB in its own beam-fixed Cartesian
axis system (x̂,ŷ,ẑ), traveling along z, the electric- (�E) and
magnetic- ( �H) field components as a function of position �r =
(x,y,z) are given [42] (we are using SI units throughout):

�E(x,y,z) = E0f (z̃)(Ex x̂ + Ey ŷ + Ezẑ), (A3)

�H(x,y,z) = n0

c0μ0
H0f (z̃)(Hx x̂ + Hy ŷ + Hzẑ), (A4)

with

f (z̃) = √
2z̃ exp[−z̃2 + ik̃zz̃ + (1 − iπ )/4], (A5)

Ex = J0(ρ) + χ2J2(ρ) cos(2φ), (A6)

Ey = χ2J2(ρ) sin(2φ), (A7)

Ez = −2iJ1(ρ) cos(φ), (A8)

Hx = χ2J2(ρ) sin(2φ), (A9)

Hy = J0(ρ) − χ2J2(ρ) cos(2φ), (A10)

Hz = −2iJ1(ρ) sin(φ), (A11)

where c0 is the speed of light in vacuum, μ0 is the mag-
netic constant, Jm are Bessel functions of the first kind
of order m, k̃z = kzmax cos θ0, χ = sin θ0/(1 + cos θ0)ρ =
k sin θ0

√
x2 + y2, φ = arctan(y/x), and z̃ = (z − z0)/zmax.

The tip of the axicon is located at �r = (0,0,z0). E0 is
the maximum field amplitude of the beam obtained with a
Gaussian beam of power PT ,

E0 =
∣∣∣∣�E

(
0,0,z0 + zmax

2

)∣∣∣∣ =
√

4PT k sin θ0

wcc0ε0n0
√

e
, (A12)

where e is Euler’s number and ε0 is the electric constant. The
core size (rc) of such a Bessel beam is given by the first zero
in radial direction. For χ � 1, one obtains

rc ≈ 2.4048

k sin θ0
. (A13)

The BB parameters used in our calculations are PT = 500 mW
(for each individual beam), wc = 0.3 mm, and θ0 = 6.95. The
resulting core size and propagation length are rc = 1.68 μm
and zmax = 2.46 mm, respectively.

We further define the orientation of each individual BB
in space by a rotation (M) followed by a translation (d�r) of
a beam-fixed Cartesian axis system (x̂,ŷ,ẑ) with respect to
a laboratory-fixed Cartesian axis system (X̂,Ŷ,Ẑ). Both are
right handed. The beam-fixed axes are tied to the directions of
polarization (x̂) and propagation (ẑ) with the origin at the point
of maximum intensity (i.e., the center of the beam at a distance
zmax/2 from the tip of the axicon in the direction of prop-
agation). The transformation of laboratory-fixed coordinates
�R = (X,Y,Z) to beam-fixed coordinates �r = (x,y,z) is given
by �r = M �R − d�r. The rotation of the coordinate system is
defined in terms of three Euler angles (α,β,γ ) for consecutive
right-handed rotations: a rotation by α around the Z axis,
followed by a rotation by β around the new (intermediate) x ′
axis, followed by a rotation by γ around the new z axis. The
matrix elements Mi,j (i,j = 1, . . . ,3) of the rotation matrix M
are given by

M1,1 = cos α cos γ − sin α cos β sin γ, (A14)

M1,2 = sin α cos γ + cos α cos β sin γ, (A15)

M1,3 = sin β sin γ, (A16)

M2,1 = − cos α sin γ − sin α cos β cos γ, (A17)

M2,2 = − sin α sin γ + cos α cos β cos γ, (A18)

M2,3 = sin β cos γ, (A19)

M3,1 = sin α sin β, (A20)

M3,2 = − cos α sin β, (A21)

M3,3 = cos β. (A22)
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We note that this is a passive rotation, i.e., �R and �r are the
coordinates of the same vector in two different coordinate
systems. The orientation of each of the multiple Bessel beams
b (b is the enumerating index for each BB) is defined by the
values for (αb,βb,γb) and d�rb = (dxb,dyb,dzb).

With this definition, the fields arising from multiple BBs are
first calculated individually (�Eb, �Hb) in their respective beam-
fixed systems, followed by the rotation back to the laboratory-
fixed system, and finally added up to yield the total fields:

�Etot =
∑

b

MT
b

�Eb(Mb
�R − d�rb) (A23)

and

�Htot =
∑

b

MT
b

�Hb(Mb
�R − d�rb), (A24)

where MT stands for the transpose matrix of M.

TABLE I. Interparticle force Fz(�) (in pN) as function of the
distance � between the two particle surfaces, and the radius of the
second particle r (2), for first particle radius r (1) = 250 nm.

r (2) (nm) � / μ

0.5 2.5 4.5 6.5 9

200 0.29945 0.12406 0.03626 0.01226 0.01498
250 0.34557 0.15904 0.04638 0.00616 − 0.00341
300 0.33993 0.20098 0.03488 − 0.01014 − 0.05018
350 0.09298 0.14366 − 0.00014 − 0.05691 − 0.11081
400 − 0.26881 0.04325 − 0.06027 − 0.12270 − 0.19848
450 − 0.85738 − 0.13103 − 0.17701 − 0.21520 − 0.29881
500 − 1.32465 − 0.32218 − 0.28350 − 0.32144 − 0.37887
600 − 2.08964 − 0.77321 − 0.56879 − 0.49056 − 0.47920
700 − 2.04384 − 1.06828 − 0.66504 − 0.52234 − 0.47952

APPENDIX B: DATA USED IN FIG. 5

Tables I–III present the data used in Fig. 5.

TABLE II. Interparticle force Fz(�) (in pN) as function of the
distance � between the two particle surfaces, and the radius of the
second particle r (2), for first particle radius r (1) = 300 nm.

r (2) (nm) � / μ

0.5 2.5 4.5 6.5 9

200 0.51879 0.12604 0.05708 − 0.00297 0.00129
250 0.33567 0.20650 0.03169 − 0.00642 − 0.04308
300 0.49177 0.01520 0.03280 − 0.08497 − 0.13216
350 − 0.14811 0.09759 − 0.10727 − 0.14965 − 0.23707
400 − 0.58805 − 0.19961 − 0.21351 − 0.32672 − 0.39860
450 − 1.48683 − 0.43172 − 0.47883 − 0.46041 − 0.55956
500 − 2.06050 − 0.77611 − 0.66487 − 0.65007 − 0.68521
600 − 2.81114 − 1.49116 − 1.11510 − 0.94567 − 0.85281
700 − 2.37096 − 1.90908 − 1.24847 − 1.00870 − 0.48531

TABLE III. Interparticle force Fz(�) (in pN) as function of the
distance � between the two particle surfaces, and the radius of the
second particle r (2), for first particle radius r (1) = 350 nm.

r (2) (nm) � / μ

0.5 2.5 4.5 6.5 9

200 0.30480 0.17014 0.01443 0.00932 − 0.03533
250 0.09663 0.15122 0.00092 − 0.05210 − 0.10549
300 − 0.14994 0.09979 − 0.10562 − 0.14802 − 0.23571
350 − 0.95000 − 0.15478 − 0.27643 − 0.33182 − 0.36715
400 − 1.71182 − 0.52686 − 0.54794 − 0.56796 − 0.62181
450 − 2.79464 − 1.00968 − 0.85616 − 0.85710 − 0.85513
500 − 3.30647 − 1.47029 − 1.18509 − 1.11118 − 1.04972
600 − 3.57203 − 2.42372 − 1.79757 − 1.52081 − 1.32125
700 − 2.62382 − 2.82398 − 1.99776 − 1.61044 − 1.35651
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