
ETH Library

GPU-Accelerated Real-Time Path
Planning and the Predictable
Execution Model

Conference Paper

Author(s):
Forsberg, Björn; Palossi, Daniele ; Marongiu, Andrea; Benini, Luca

Publication date:
2017

Permanent link:
https://doi.org/10.3929/ethz-b-000190803

Rights / license:
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Originally published in:
Procedia Computer Science 108, https://doi.org/10.1016/j.procs.2017.05.219

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0003-4487-0836
https://orcid.org/0000-0001-8068-3806
https://doi.org/10.3929/ethz-b-000190803
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.procs.2017.05.219
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 108C (2017) 2428–2432

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the International Conference on Computational Science
10.1016/j.procs.2017.05.219

International Conference on Computational Science, ICCS 2017, 12-14 June 2017,
Zurich, Switzerland

10.1016/j.procs.2017.05.219 1877-0509

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the International Conference on Computational Science

This space is reserved for the Procedia header, do not use it

GPU-Accelerated Real-Time Path Planning
and the Predictable Execution Model

Björn Forsberg1, Daniele Palossi1, Andrea Marongiu1,2, Luca Benini1,2

1) IIS – ETH Zürich, 2) DEI – University of Bologna

Abstract
Path planning is one of the key functional blocks for autonomous vehicles constantly up-

dating their route in real-time. Heterogeneous many-cores are appealing candidates for its
execution, but the high degree of resource sharing results in very unpredictable timing behav-
ior. The predictable execution model (PREM) has the potential to enable the deployment
of real-time applications on top of commercial off-the-shelf (COTS) heterogeneous systems by
separating compute and memory operations, and scheduling the latter in an interference-free
manner. This paper studies PREM applied to a state-of-the-art path planner running on a
NVIDIA Tegra X1, providing insight on memory sharing and its impact on performance and
predictability. The results show that PREM reduces the execution time variance to near-zero,
providing a 3× decrease in the worst case execution time.

Keywords: Heterogeneous Computing, GPGPU, Predictable Execution Model, Path Planning

1 Introduction

The interest in autonomous vehicles is growing constantly, with lots of practical applications
appearing on the marketplace. Notable examples are unmanned aerial vehicles (UAVs) [1] and
autonomous driving systems [2]. It is tempting to rely on integrated heterogeneous many-
cores [1, 3] for the practical deployment of such workloads, given their high computational
requirements, but their real-time requirements constitute an obstacle. Indeed, virtually all
industrial real-time systems are based on single-core devices, for which it is much easier to
derive solid guarantees about their timing behaviour. State-of-the-art timing and schedulability
analyses rely on worst case execution time (WCET) [4] as a pessimistic upper-bound to task
durations. In contrast to single-core processors, integrated heterogeneous devices share main
memory (DRAM) between several actors, which greatly complicates WCET calculation. [5].

Custom-designed, real-time hardware [6] could tighten WCET bounds, but with lower per-
formance and at considerably higher cost than general purpose systems. This has motivated
research aimed at making the deployment of real-time systems on commercial off-the-shelf
(COTS) hardware possible [7, 3]. Common approaches for doing this include enforcement of
strict per-core budgets of a shared resource [8], or separation of the program into multiple
phases that can be individually scheduled based on their use of shared resources [9, 10].

1

This space is reserved for the Procedia header, do not use it

GPU-Accelerated Real-Time Path Planning
and the Predictable Execution Model

Björn Forsberg1, Daniele Palossi1, Andrea Marongiu1,2, Luca Benini1,2

1) IIS – ETH Zürich, 2) DEI – University of Bologna

Abstract
Path planning is one of the key functional blocks for autonomous vehicles constantly up-

dating their route in real-time. Heterogeneous many-cores are appealing candidates for its
execution, but the high degree of resource sharing results in very unpredictable timing behav-
ior. The predictable execution model (PREM) has the potential to enable the deployment
of real-time applications on top of commercial off-the-shelf (COTS) heterogeneous systems by
separating compute and memory operations, and scheduling the latter in an interference-free
manner. This paper studies PREM applied to a state-of-the-art path planner running on a
NVIDIA Tegra X1, providing insight on memory sharing and its impact on performance and
predictability. The results show that PREM reduces the execution time variance to near-zero,
providing a 3× decrease in the worst case execution time.

Keywords: Heterogeneous Computing, GPGPU, Predictable Execution Model, Path Planning

1 Introduction

The interest in autonomous vehicles is growing constantly, with lots of practical applications
appearing on the marketplace. Notable examples are unmanned aerial vehicles (UAVs) [1] and
autonomous driving systems [2]. It is tempting to rely on integrated heterogeneous many-
cores [1, 3] for the practical deployment of such workloads, given their high computational
requirements, but their real-time requirements constitute an obstacle. Indeed, virtually all
industrial real-time systems are based on single-core devices, for which it is much easier to
derive solid guarantees about their timing behaviour. State-of-the-art timing and schedulability
analyses rely on worst case execution time (WCET) [4] as a pessimistic upper-bound to task
durations. In contrast to single-core processors, integrated heterogeneous devices share main
memory (DRAM) between several actors, which greatly complicates WCET calculation. [5].

Custom-designed, real-time hardware [6] could tighten WCET bounds, but with lower per-
formance and at considerably higher cost than general purpose systems. This has motivated
research aimed at making the deployment of real-time systems on commercial off-the-shelf
(COTS) hardware possible [7, 3]. Common approaches for doing this include enforcement of
strict per-core budgets of a shared resource [8], or separation of the program into multiple
phases that can be individually scheduled based on their use of shared resources [9, 10].

1

This space is reserved for the Procedia header, do not use it

GPU-Accelerated Real-Time Path Planning
and the Predictable Execution Model

Björn Forsberg1, Daniele Palossi1, Andrea Marongiu1,2, Luca Benini1,2

1) IIS – ETH Zürich, 2) DEI – University of Bologna

Abstract
Path planning is one of the key functional blocks for autonomous vehicles constantly up-

dating their route in real-time. Heterogeneous many-cores are appealing candidates for its
execution, but the high degree of resource sharing results in very unpredictable timing behav-
ior. The predictable execution model (PREM) has the potential to enable the deployment
of real-time applications on top of commercial off-the-shelf (COTS) heterogeneous systems by
separating compute and memory operations, and scheduling the latter in an interference-free
manner. This paper studies PREM applied to a state-of-the-art path planner running on a
NVIDIA Tegra X1, providing insight on memory sharing and its impact on performance and
predictability. The results show that PREM reduces the execution time variance to near-zero,
providing a 3× decrease in the worst case execution time.

Keywords: Heterogeneous Computing, GPGPU, Predictable Execution Model, Path Planning

1 Introduction

The interest in autonomous vehicles is growing constantly, with lots of practical applications
appearing on the marketplace. Notable examples are unmanned aerial vehicles (UAVs) [1] and
autonomous driving systems [2]. It is tempting to rely on integrated heterogeneous many-
cores [1, 3] for the practical deployment of such workloads, given their high computational
requirements, but their real-time requirements constitute an obstacle. Indeed, virtually all
industrial real-time systems are based on single-core devices, for which it is much easier to
derive solid guarantees about their timing behaviour. State-of-the-art timing and schedulability
analyses rely on worst case execution time (WCET) [4] as a pessimistic upper-bound to task
durations. In contrast to single-core processors, integrated heterogeneous devices share main
memory (DRAM) between several actors, which greatly complicates WCET calculation. [5].

Custom-designed, real-time hardware [6] could tighten WCET bounds, but with lower per-
formance and at considerably higher cost than general purpose systems. This has motivated
research aimed at making the deployment of real-time systems on commercial off-the-shelf
(COTS) hardware possible [7, 3]. Common approaches for doing this include enforcement of
strict per-core budgets of a shared resource [8], or separation of the program into multiple
phases that can be individually scheduled based on their use of shared resources [9, 10].

1

This space is reserved for the Procedia header, do not use it

GPU-Accelerated Real-Time Path Planning
and the Predictable Execution Model

Björn Forsberg1, Daniele Palossi1, Andrea Marongiu1,2, Luca Benini1,2

1) IIS – ETH Zürich, 2) DEI – University of Bologna

Abstract
Path planning is one of the key functional blocks for autonomous vehicles constantly up-

dating their route in real-time. Heterogeneous many-cores are appealing candidates for its
execution, but the high degree of resource sharing results in very unpredictable timing behav-
ior. The predictable execution model (PREM) has the potential to enable the deployment
of real-time applications on top of commercial off-the-shelf (COTS) heterogeneous systems by
separating compute and memory operations, and scheduling the latter in an interference-free
manner. This paper studies PREM applied to a state-of-the-art path planner running on a
NVIDIA Tegra X1, providing insight on memory sharing and its impact on performance and
predictability. The results show that PREM reduces the execution time variance to near-zero,
providing a 3× decrease in the worst case execution time.

Keywords: Heterogeneous Computing, GPGPU, Predictable Execution Model, Path Planning

1 Introduction

The interest in autonomous vehicles is growing constantly, with lots of practical applications
appearing on the marketplace. Notable examples are unmanned aerial vehicles (UAVs) [1] and
autonomous driving systems [2]. It is tempting to rely on integrated heterogeneous many-
cores [1, 3] for the practical deployment of such workloads, given their high computational
requirements, but their real-time requirements constitute an obstacle. Indeed, virtually all
industrial real-time systems are based on single-core devices, for which it is much easier to
derive solid guarantees about their timing behaviour. State-of-the-art timing and schedulability
analyses rely on worst case execution time (WCET) [4] as a pessimistic upper-bound to task
durations. In contrast to single-core processors, integrated heterogeneous devices share main
memory (DRAM) between several actors, which greatly complicates WCET calculation. [5].

Custom-designed, real-time hardware [6] could tighten WCET bounds, but with lower per-
formance and at considerably higher cost than general purpose systems. This has motivated
research aimed at making the deployment of real-time systems on commercial off-the-shelf
(COTS) hardware possible [7, 3]. Common approaches for doing this include enforcement of
strict per-core budgets of a shared resource [8], or separation of the program into multiple
phases that can be individually scheduled based on their use of shared resources [9, 10].

1

GPU-Accelerated Real-Time Path Planning and PREM B. Forsberg, D. Palossi, A. Marongiu, L. Benini

The predictable execution model (PREM), originally proposed for single-core [9] and sym-
metric multi-cores [10], works by separating programs into memory and compute phases that
can be independently scheduled, as to bound external interference. While its use in heteroge-
neous many-cores has been recently proposed [11] [12], its practical effectiveness in this context
has only been discussed conceptually, or by experimenting with synthetic benchmarks.

In this paper we study the applicability and effectiveness of PREM when applied to a real-
life, real-time workload, representative of a key functional block for autonomous navigation: a
near-optimal parallel path planner [1] executing on the NVIDIA Tegra TX1. We show that
for integrated devices, the GPU is highly susceptible to memory interference from the CPU,
and that PREM is capable of greatly mitigating this, reducing the execution time variance to
near-zero and providing a significant decrease in the WCET.

2 Path Planning and PREM

Reference path planner. The path planner used in this work relies on a non-deterministic
algorithm with lock-free cost updates of the graph [1]. This enables a 3.7× decrease in execution
time, at the cost of a small error in the path optimality (< 1.2%). First, automata synchronous
composition [13] merges a graph representing a discretized topology of the environment (i.e. the
map) to a second graph representing the kinematics of the robot. Second, the composite graph
is explored via Single Source Shortest Path (SSSP) (Dijkstra [14]). The main data structure
is a sparse state-transition matrix used to represent all the vertices and the connecting edges.
The matrix is stored in the global memory, that is mapped in system DRAM. The information
about which nodes are “to be visited” is kept in an auxiliary array called mask array, while
the cost to reach each node is stored in the cost array. At each iteration, a reference node is
visited, and the cost to reach its neighbors updated.

In contrast to the original program where all load/stores are done on the DRAM, with
PREM, on both the CPU and the GPU bring data from/to the DRAM to/from the L1 scratch-
pad during the memory phase, while the compute phase operates on the local copies. This
allows mutually exclusive access to the DRAM during memory access windows, which must
be dimensioned to accomodate the worst case execution time. To get the PREM version, we
first apply warp specialization [15], as shown in [12], as it provides a means for separating
GPU programs into memory and compute phases that can be independently scheduled, and are
identified at runtime via an if statement evaluating thread IDs. The entering of the copy in,
compute, and copy out steps is protected by synchronization points, and this is the only point
the PREM code differs from the warp-specialized code. In the warp specialized code these are
regular barriers, as outlined in [15], while in the PREM code these are synchronization points
with the CPU, as described in [12]. How to realize PREM on the CPU is discussed in [9].

Naive port experiments. We evaluate the effects of DRAM contention for the described
path planning application on an NVIDIA Tegra TX11. We evaluate the implementation on
map sizes of 100× 100. Results for the three versions of the path planner are shown in Figure
1 (A). Warp specialized code is significantly costlier for this implementation, due to memory
copies executing according to a single-buffering scheme (i.e., we are only accessing memory
during “half” the time). PREM-enabling synchronizations add marginal overhead.

To evaluate the effects of CPU interference on DRAM accesses, we repeat the test while
the CPU executes the stress tool, capable of generating large amounts of memory requests.
To produce the interference, we instruct stress to run 24 threads per core, which access a 32

1http://www.nvidia.com/object/jetson-tx1-dev-kit.html

2

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2017.05.219&domain=pdf

	 Björn Forsberg et al. / Procedia Computer Science 108C (2017) 2428–2432� 2429

This space is reserved for the Procedia header, do not use it

GPU-Accelerated Real-Time Path Planning
and the Predictable Execution Model

Björn Forsberg1, Daniele Palossi1, Andrea Marongiu1,2, Luca Benini1,2

1) IIS – ETH Zürich, 2) DEI – University of Bologna

Abstract
Path planning is one of the key functional blocks for autonomous vehicles constantly up-

dating their route in real-time. Heterogeneous many-cores are appealing candidates for its
execution, but the high degree of resource sharing results in very unpredictable timing behav-
ior. The predictable execution model (PREM) has the potential to enable the deployment
of real-time applications on top of commercial off-the-shelf (COTS) heterogeneous systems by
separating compute and memory operations, and scheduling the latter in an interference-free
manner. This paper studies PREM applied to a state-of-the-art path planner running on a
NVIDIA Tegra X1, providing insight on memory sharing and its impact on performance and
predictability. The results show that PREM reduces the execution time variance to near-zero,
providing a 3× decrease in the worst case execution time.

Keywords: Heterogeneous Computing, GPGPU, Predictable Execution Model, Path Planning

1 Introduction

The interest in autonomous vehicles is growing constantly, with lots of practical applications
appearing on the marketplace. Notable examples are unmanned aerial vehicles (UAVs) [1] and
autonomous driving systems [2]. It is tempting to rely on integrated heterogeneous many-
cores [1, 3] for the practical deployment of such workloads, given their high computational
requirements, but their real-time requirements constitute an obstacle. Indeed, virtually all
industrial real-time systems are based on single-core devices, for which it is much easier to
derive solid guarantees about their timing behaviour. State-of-the-art timing and schedulability
analyses rely on worst case execution time (WCET) [4] as a pessimistic upper-bound to task
durations. In contrast to single-core processors, integrated heterogeneous devices share main
memory (DRAM) between several actors, which greatly complicates WCET calculation. [5].

Custom-designed, real-time hardware [6] could tighten WCET bounds, but with lower per-
formance and at considerably higher cost than general purpose systems. This has motivated
research aimed at making the deployment of real-time systems on commercial off-the-shelf
(COTS) hardware possible [7, 3]. Common approaches for doing this include enforcement of
strict per-core budgets of a shared resource [8], or separation of the program into multiple
phases that can be individually scheduled based on their use of shared resources [9, 10].

1

This space is reserved for the Procedia header, do not use it

GPU-Accelerated Real-Time Path Planning
and the Predictable Execution Model

Björn Forsberg1, Daniele Palossi1, Andrea Marongiu1,2, Luca Benini1,2

1) IIS – ETH Zürich, 2) DEI – University of Bologna

Abstract
Path planning is one of the key functional blocks for autonomous vehicles constantly up-

dating their route in real-time. Heterogeneous many-cores are appealing candidates for its
execution, but the high degree of resource sharing results in very unpredictable timing behav-
ior. The predictable execution model (PREM) has the potential to enable the deployment
of real-time applications on top of commercial off-the-shelf (COTS) heterogeneous systems by
separating compute and memory operations, and scheduling the latter in an interference-free
manner. This paper studies PREM applied to a state-of-the-art path planner running on a
NVIDIA Tegra X1, providing insight on memory sharing and its impact on performance and
predictability. The results show that PREM reduces the execution time variance to near-zero,
providing a 3× decrease in the worst case execution time.

Keywords: Heterogeneous Computing, GPGPU, Predictable Execution Model, Path Planning

1 Introduction

The interest in autonomous vehicles is growing constantly, with lots of practical applications
appearing on the marketplace. Notable examples are unmanned aerial vehicles (UAVs) [1] and
autonomous driving systems [2]. It is tempting to rely on integrated heterogeneous many-
cores [1, 3] for the practical deployment of such workloads, given their high computational
requirements, but their real-time requirements constitute an obstacle. Indeed, virtually all
industrial real-time systems are based on single-core devices, for which it is much easier to
derive solid guarantees about their timing behaviour. State-of-the-art timing and schedulability
analyses rely on worst case execution time (WCET) [4] as a pessimistic upper-bound to task
durations. In contrast to single-core processors, integrated heterogeneous devices share main
memory (DRAM) between several actors, which greatly complicates WCET calculation. [5].

Custom-designed, real-time hardware [6] could tighten WCET bounds, but with lower per-
formance and at considerably higher cost than general purpose systems. This has motivated
research aimed at making the deployment of real-time systems on commercial off-the-shelf
(COTS) hardware possible [7, 3]. Common approaches for doing this include enforcement of
strict per-core budgets of a shared resource [8], or separation of the program into multiple
phases that can be individually scheduled based on their use of shared resources [9, 10].

1

This space is reserved for the Procedia header, do not use it

GPU-Accelerated Real-Time Path Planning
and the Predictable Execution Model

Björn Forsberg1, Daniele Palossi1, Andrea Marongiu1,2, Luca Benini1,2

1) IIS – ETH Zürich, 2) DEI – University of Bologna

Abstract
Path planning is one of the key functional blocks for autonomous vehicles constantly up-

dating their route in real-time. Heterogeneous many-cores are appealing candidates for its
execution, but the high degree of resource sharing results in very unpredictable timing behav-
ior. The predictable execution model (PREM) has the potential to enable the deployment
of real-time applications on top of commercial off-the-shelf (COTS) heterogeneous systems by
separating compute and memory operations, and scheduling the latter in an interference-free
manner. This paper studies PREM applied to a state-of-the-art path planner running on a
NVIDIA Tegra X1, providing insight on memory sharing and its impact on performance and
predictability. The results show that PREM reduces the execution time variance to near-zero,
providing a 3× decrease in the worst case execution time.

Keywords: Heterogeneous Computing, GPGPU, Predictable Execution Model, Path Planning

1 Introduction

The interest in autonomous vehicles is growing constantly, with lots of practical applications
appearing on the marketplace. Notable examples are unmanned aerial vehicles (UAVs) [1] and
autonomous driving systems [2]. It is tempting to rely on integrated heterogeneous many-
cores [1, 3] for the practical deployment of such workloads, given their high computational
requirements, but their real-time requirements constitute an obstacle. Indeed, virtually all
industrial real-time systems are based on single-core devices, for which it is much easier to
derive solid guarantees about their timing behaviour. State-of-the-art timing and schedulability
analyses rely on worst case execution time (WCET) [4] as a pessimistic upper-bound to task
durations. In contrast to single-core processors, integrated heterogeneous devices share main
memory (DRAM) between several actors, which greatly complicates WCET calculation. [5].

Custom-designed, real-time hardware [6] could tighten WCET bounds, but with lower per-
formance and at considerably higher cost than general purpose systems. This has motivated
research aimed at making the deployment of real-time systems on commercial off-the-shelf
(COTS) hardware possible [7, 3]. Common approaches for doing this include enforcement of
strict per-core budgets of a shared resource [8], or separation of the program into multiple
phases that can be individually scheduled based on their use of shared resources [9, 10].

1

This space is reserved for the Procedia header, do not use it

GPU-Accelerated Real-Time Path Planning
and the Predictable Execution Model

Björn Forsberg1, Daniele Palossi1, Andrea Marongiu1,2, Luca Benini1,2

1) IIS – ETH Zürich, 2) DEI – University of Bologna

Abstract
Path planning is one of the key functional blocks for autonomous vehicles constantly up-

dating their route in real-time. Heterogeneous many-cores are appealing candidates for its
execution, but the high degree of resource sharing results in very unpredictable timing behav-
ior. The predictable execution model (PREM) has the potential to enable the deployment
of real-time applications on top of commercial off-the-shelf (COTS) heterogeneous systems by
separating compute and memory operations, and scheduling the latter in an interference-free
manner. This paper studies PREM applied to a state-of-the-art path planner running on a
NVIDIA Tegra X1, providing insight on memory sharing and its impact on performance and
predictability. The results show that PREM reduces the execution time variance to near-zero,
providing a 3× decrease in the worst case execution time.

Keywords: Heterogeneous Computing, GPGPU, Predictable Execution Model, Path Planning

1 Introduction

The interest in autonomous vehicles is growing constantly, with lots of practical applications
appearing on the marketplace. Notable examples are unmanned aerial vehicles (UAVs) [1] and
autonomous driving systems [2]. It is tempting to rely on integrated heterogeneous many-
cores [1, 3] for the practical deployment of such workloads, given their high computational
requirements, but their real-time requirements constitute an obstacle. Indeed, virtually all
industrial real-time systems are based on single-core devices, for which it is much easier to
derive solid guarantees about their timing behaviour. State-of-the-art timing and schedulability
analyses rely on worst case execution time (WCET) [4] as a pessimistic upper-bound to task
durations. In contrast to single-core processors, integrated heterogeneous devices share main
memory (DRAM) between several actors, which greatly complicates WCET calculation. [5].

Custom-designed, real-time hardware [6] could tighten WCET bounds, but with lower per-
formance and at considerably higher cost than general purpose systems. This has motivated
research aimed at making the deployment of real-time systems on commercial off-the-shelf
(COTS) hardware possible [7, 3]. Common approaches for doing this include enforcement of
strict per-core budgets of a shared resource [8], or separation of the program into multiple
phases that can be individually scheduled based on their use of shared resources [9, 10].

1

GPU-Accelerated Real-Time Path Planning and PREM B. Forsberg, D. Palossi, A. Marongiu, L. Benini

The predictable execution model (PREM), originally proposed for single-core [9] and sym-
metric multi-cores [10], works by separating programs into memory and compute phases that
can be independently scheduled, as to bound external interference. While its use in heteroge-
neous many-cores has been recently proposed [11] [12], its practical effectiveness in this context
has only been discussed conceptually, or by experimenting with synthetic benchmarks.

In this paper we study the applicability and effectiveness of PREM when applied to a real-
life, real-time workload, representative of a key functional block for autonomous navigation: a
near-optimal parallel path planner [1] executing on the NVIDIA Tegra TX1. We show that
for integrated devices, the GPU is highly susceptible to memory interference from the CPU,
and that PREM is capable of greatly mitigating this, reducing the execution time variance to
near-zero and providing a significant decrease in the WCET.

2 Path Planning and PREM

Reference path planner. The path planner used in this work relies on a non-deterministic
algorithm with lock-free cost updates of the graph [1]. This enables a 3.7× decrease in execution
time, at the cost of a small error in the path optimality (< 1.2%). First, automata synchronous
composition [13] merges a graph representing a discretized topology of the environment (i.e. the
map) to a second graph representing the kinematics of the robot. Second, the composite graph
is explored via Single Source Shortest Path (SSSP) (Dijkstra [14]). The main data structure
is a sparse state-transition matrix used to represent all the vertices and the connecting edges.
The matrix is stored in the global memory, that is mapped in system DRAM. The information
about which nodes are “to be visited” is kept in an auxiliary array called mask array, while
the cost to reach each node is stored in the cost array. At each iteration, a reference node is
visited, and the cost to reach its neighbors updated.

In contrast to the original program where all load/stores are done on the DRAM, with
PREM, on both the CPU and the GPU bring data from/to the DRAM to/from the L1 scratch-
pad during the memory phase, while the compute phase operates on the local copies. This
allows mutually exclusive access to the DRAM during memory access windows, which must
be dimensioned to accomodate the worst case execution time. To get the PREM version, we
first apply warp specialization [15], as shown in [12], as it provides a means for separating
GPU programs into memory and compute phases that can be independently scheduled, and are
identified at runtime via an if statement evaluating thread IDs. The entering of the copy in,
compute, and copy out steps is protected by synchronization points, and this is the only point
the PREM code differs from the warp-specialized code. In the warp specialized code these are
regular barriers, as outlined in [15], while in the PREM code these are synchronization points
with the CPU, as described in [12]. How to realize PREM on the CPU is discussed in [9].

Naive port experiments. We evaluate the effects of DRAM contention for the described
path planning application on an NVIDIA Tegra TX11. We evaluate the implementation on
map sizes of 100× 100. Results for the three versions of the path planner are shown in Figure
1 (A). Warp specialized code is significantly costlier for this implementation, due to memory
copies executing according to a single-buffering scheme (i.e., we are only accessing memory
during “half” the time). PREM-enabling synchronizations add marginal overhead.

To evaluate the effects of CPU interference on DRAM accesses, we repeat the test while
the CPU executes the stress tool, capable of generating large amounts of memory requests.
To produce the interference, we instruct stress to run 24 threads per core, which access a 32

1http://www.nvidia.com/object/jetson-tx1-dev-kit.html

2

2430	 Björn Forsberg et al. / Procedia Computer Science 108C (2017) 2428–2432GPU-Accelerated Real-Time Path Planning and PREM B. Forsberg, D. Palossi, A. Marongiu, L. Benini

Absolute Execution Time

A B C

Relative Executime @ 1024 thds Relative Executime @ 64 thdsWCET WCET

Figure 1: The absolute execution times (A), and the effect of DRAM interference (B) for 1024
threads on the three implementations of Naive, and the same for 64 threads (C).

MB array in strides of 129 bytes. Each test is executed 20 times, with and without memory
contention. Figure 1 (B) shows that the PREM version has a much lower sensitivity to the
interference from the CPU. For all measurements except one the execution time variance is
near-zero, which is the expected result2. While the WCET of the baseline implementation
is higher under contention than that of the PREM-enabled version, the gain is rather small.
The reason for this is that the Naive port makes poor usage of the memory bandwidth. The
transition matrix is stored in a large matrix, with each node’s successors being stored at random
offsets. In addition, the cost array is indexed by the vertex ID that does not reflect the order
in which the vertices are visited, also leading to non-coalesced memory accesses, as shown in
Figure 2 (A). To confirm that the intuition is correct, we run the experiment with 64 threads.
As this corresponds to the number of physical processing elements, the GPU memory latency
hiding features are prevented (there are no more threads to schedule when one is blocked on a
memory transaction), leading to worst possible usage of the memory bandwidth. As expected,
Figure 1 (C) shows that PREM has negative gain in WCET in this case.

Implementing Coalesced Memory Accesses. To overcome the poor memory performance
of the Naive port, a preprocessing stage is introduced. This stage performs an offline exploration
of the empty map, reordering the elements of the transition matrix such that they come in the
order that they are explored by the sequential version. This change enables the streaming of the
transition matrix to the GPU, which implies coalesced memory accesses and maximum use of
the memory bandwidth3. As some vertices of the graph may be explored multiple times, to keep
the streaming property of the transition matrix, these vertices must be added multiple times.
We refer to this new version as Coal ; a visual representation of its access pattern is presented
in Figure 2 (B), which shows that each memory access now brings in multiple vertices at once.
As the cost array is updated by multiple nodes, storing it in the visit order would introduce
coherency issues due to the duplication, thus it is kept in the original format. The calculation
of the cost to reach each node is greedy, as inherited from the original Dijkstra implementation:
When nodes are explored, if the cost to reach the neighbor from the current reference node is
lower than the previous cost, the cost is updated to that of the current node plus the edge.
Thus, the algorithm breaks if a node which has not yet had its cost updated is explored, as this
error would propagate to all its successors. Especially on a GPU, where thousands of nodes
could be explored at once, a mechanism which prevents this must be implemented.

In the Naive implementation, this was addressed using the mask array, but for the streaming
transition matrix, this is no longer feasible. Instead, the concept of exploration frontiers is
introduced. The exploration frontiers is an enumeration of sets of vertices F , where all vertices

2We expect the outlier to disappear if real-time OS patches are used to bound the latency for the interrupts
used to trigger the synchronizations, which we will look into in future work.

3Note that this is representative of a typical GPU optimization, and is not specific of PREM.

3

GPU-Accelerated Real-Time Path Planning and PREM B. Forsberg, D. Palossi, A. Marongiu, L. Benini

Coalescent transition array

GPU

(A) reference version coalescent version (B)

Node

Exploration order

A B C D E F G
A B C D E F G S

1 1
1

111
1
1

2

2

2

3 3
3

333
3
3

3

3 3
3

333
3
3

S Starting node

1st frontier - 8 nodes

2nd frontier - 3 nodes

3rd frontier - 17 nodes(C)

State-transition matrix

A

B

C

D

E

F

G

Figure 2: Left: A visualization on the memory access pattern of the Naive (A) and Coal (B)
implementations. Right: An example on how the frontiers are constructed in Coal (C).

in Fn have been visited from at least one vertex in Fm for any m : 0 ≥ m < n. As shown
in Figure 2 (C), the base case is F0 which contains only the source vertex. The next frontier
is constructed by all the vertices that can be reached from the source vertex, and then the
remaining frontiers are in turn populated by the vertices that can be reached by the previous
frontier. The introduction of the frontier concept enables the insertion of breakpoints in the
streaming transition matrix, at which point all previous vertices have to have been explored
before the exploration can continue beyond that point in the stream, thus ensuring that nodes
are not visited out of order. All of these operations are done offline and encoded into the
streaming transition matrix. The warp-specialized and PREM codes are achieved in the same
manner as for the Naive port.

Evaluation of Coalesced Memory Access Path Planner. The execution times for the
different versions of the Coal path planner is presented in Figure 3 (A). The Coal path planner
is 6× faster than the naive port, and the cost of warp specialization is somewhat lower than
in the Naive port, which we attribute to the more efficient use of the memory bandwidth.
However, as can be seen in Figure 3 (A), PREM implies a much larger increase in execution
time. This is due to the breakpoints at frontier borders, as the current implementation will stop
loading vertices when it encounters a frontier breakpoint. This means that at some iterations,
the scratchpad buffers will not be completely filled. In the warp specialized implementation,
this is not a problem as the iteration will finish more quickly. However, in the PREM-enabled
implementation the worst case lengths of the phases are always enforced, which means that
the operations on a near-empty and a full buffer will require the same execution time (if less
work is available, a thread will idle until the timer for its phase has elapsed). This problem can
be solved by always loading as many vertices as possible, and deferring the frontier boundary
check to the computation phase. With such an optimization in place, the overhead for PREM
is reduced to the same near-zero levels that we observed for the Naive implementation.

When we execute the 1024-threaded Coal implementation under DRAM interference, the
unmodified version of the GPU application suffers a huge (8×) increase in execution time, as
shown in Figure 3 (B). At this point the GPU is using the memory bandwidth most efficienctly,
which means that it becomes extremely susceptible to interference. The PREM-enabled version
remains at the original execution time, which means that the PREM-enabled implementation
enables us to reduce the WCET by as much as 3×. In addition to this, the numbers reported for
PREM are very pessimistic, because of the buffer-fill problems described previously. In a fully
optimized GPU application, we believe the gains can be even larger. These results demonstrate
that the isolation property of PREM holds, and that the WCET bounds calculated for the
tasks in isolation, i.e., without interference, hold also in the contented case.

4

	 Björn Forsberg et al. / Procedia Computer Science 108C (2017) 2428–2432� 2431GPU-Accelerated Real-Time Path Planning and PREM B. Forsberg, D. Palossi, A. Marongiu, L. Benini

Absolute Execution Time

A B C

Relative Executime @ 1024 thds Relative Executime @ 64 thdsWCET WCET

Figure 1: The absolute execution times (A), and the effect of DRAM interference (B) for 1024
threads on the three implementations of Naive, and the same for 64 threads (C).

MB array in strides of 129 bytes. Each test is executed 20 times, with and without memory
contention. Figure 1 (B) shows that the PREM version has a much lower sensitivity to the
interference from the CPU. For all measurements except one the execution time variance is
near-zero, which is the expected result2. While the WCET of the baseline implementation
is higher under contention than that of the PREM-enabled version, the gain is rather small.
The reason for this is that the Naive port makes poor usage of the memory bandwidth. The
transition matrix is stored in a large matrix, with each node’s successors being stored at random
offsets. In addition, the cost array is indexed by the vertex ID that does not reflect the order
in which the vertices are visited, also leading to non-coalesced memory accesses, as shown in
Figure 2 (A). To confirm that the intuition is correct, we run the experiment with 64 threads.
As this corresponds to the number of physical processing elements, the GPU memory latency
hiding features are prevented (there are no more threads to schedule when one is blocked on a
memory transaction), leading to worst possible usage of the memory bandwidth. As expected,
Figure 1 (C) shows that PREM has negative gain in WCET in this case.

Implementing Coalesced Memory Accesses. To overcome the poor memory performance
of the Naive port, a preprocessing stage is introduced. This stage performs an offline exploration
of the empty map, reordering the elements of the transition matrix such that they come in the
order that they are explored by the sequential version. This change enables the streaming of the
transition matrix to the GPU, which implies coalesced memory accesses and maximum use of
the memory bandwidth3. As some vertices of the graph may be explored multiple times, to keep
the streaming property of the transition matrix, these vertices must be added multiple times.
We refer to this new version as Coal ; a visual representation of its access pattern is presented
in Figure 2 (B), which shows that each memory access now brings in multiple vertices at once.
As the cost array is updated by multiple nodes, storing it in the visit order would introduce
coherency issues due to the duplication, thus it is kept in the original format. The calculation
of the cost to reach each node is greedy, as inherited from the original Dijkstra implementation:
When nodes are explored, if the cost to reach the neighbor from the current reference node is
lower than the previous cost, the cost is updated to that of the current node plus the edge.
Thus, the algorithm breaks if a node which has not yet had its cost updated is explored, as this
error would propagate to all its successors. Especially on a GPU, where thousands of nodes
could be explored at once, a mechanism which prevents this must be implemented.

In the Naive implementation, this was addressed using the mask array, but for the streaming
transition matrix, this is no longer feasible. Instead, the concept of exploration frontiers is
introduced. The exploration frontiers is an enumeration of sets of vertices F , where all vertices

2We expect the outlier to disappear if real-time OS patches are used to bound the latency for the interrupts
used to trigger the synchronizations, which we will look into in future work.

3Note that this is representative of a typical GPU optimization, and is not specific of PREM.

3

GPU-Accelerated Real-Time Path Planning and PREM B. Forsberg, D. Palossi, A. Marongiu, L. Benini

Coalescent transition array

GPU

(A) reference version coalescent version (B)

Node

Exploration order

A B C D E F G
A B C D E F G S

1 1
1

111
1
1

2

2

2

3 3
3

333
3
3

3

3 3
3

333
3
3

S Starting node

1st frontier - 8 nodes

2nd frontier - 3 nodes

3rd frontier - 17 nodes(C)

State-transition matrix

A

B

C

D

E

F

G

Figure 2: Left: A visualization on the memory access pattern of the Naive (A) and Coal (B)
implementations. Right: An example on how the frontiers are constructed in Coal (C).

in Fn have been visited from at least one vertex in Fm for any m : 0 ≥ m < n. As shown
in Figure 2 (C), the base case is F0 which contains only the source vertex. The next frontier
is constructed by all the vertices that can be reached from the source vertex, and then the
remaining frontiers are in turn populated by the vertices that can be reached by the previous
frontier. The introduction of the frontier concept enables the insertion of breakpoints in the
streaming transition matrix, at which point all previous vertices have to have been explored
before the exploration can continue beyond that point in the stream, thus ensuring that nodes
are not visited out of order. All of these operations are done offline and encoded into the
streaming transition matrix. The warp-specialized and PREM codes are achieved in the same
manner as for the Naive port.

Evaluation of Coalesced Memory Access Path Planner. The execution times for the
different versions of the Coal path planner is presented in Figure 3 (A). The Coal path planner
is 6× faster than the naive port, and the cost of warp specialization is somewhat lower than
in the Naive port, which we attribute to the more efficient use of the memory bandwidth.
However, as can be seen in Figure 3 (A), PREM implies a much larger increase in execution
time. This is due to the breakpoints at frontier borders, as the current implementation will stop
loading vertices when it encounters a frontier breakpoint. This means that at some iterations,
the scratchpad buffers will not be completely filled. In the warp specialized implementation,
this is not a problem as the iteration will finish more quickly. However, in the PREM-enabled
implementation the worst case lengths of the phases are always enforced, which means that
the operations on a near-empty and a full buffer will require the same execution time (if less
work is available, a thread will idle until the timer for its phase has elapsed). This problem can
be solved by always loading as many vertices as possible, and deferring the frontier boundary
check to the computation phase. With such an optimization in place, the overhead for PREM
is reduced to the same near-zero levels that we observed for the Naive implementation.

When we execute the 1024-threaded Coal implementation under DRAM interference, the
unmodified version of the GPU application suffers a huge (8×) increase in execution time, as
shown in Figure 3 (B). At this point the GPU is using the memory bandwidth most efficienctly,
which means that it becomes extremely susceptible to interference. The PREM-enabled version
remains at the original execution time, which means that the PREM-enabled implementation
enables us to reduce the WCET by as much as 3×. In addition to this, the numbers reported for
PREM are very pessimistic, because of the buffer-fill problems described previously. In a fully
optimized GPU application, we believe the gains can be even larger. These results demonstrate
that the isolation property of PREM holds, and that the WCET bounds calculated for the
tasks in isolation, i.e., without interference, hold also in the contented case.

4

2432	 Björn Forsberg et al. / Procedia Computer Science 108C (2017) 2428–2432
GPU-Accelerated Real-Time Path Planning and PREM B. Forsberg, D. Palossi, A. Marongiu, L. Benini

Absolute Execution Time

A B

Relative Executime @ 1024 thds WCET

Figure 3: The absolute execution times (A), and the effects of DRAM interference (B) for 1024
threads execution on the three implementations of Coal, normalized to the Naive port.

3 Conclusion

This work studies the effects on PREM on heterogeneous COTS systems, applying it to a
path planning application for autonomous vehicles. We show that integrated GPUs are subject
to large increases in execution time under memory contention, that can be mitigated using a
heterogeneous extension to PREM. We show that the WCET of the GPU application can be
reduced by a factor of 3×, enabling better utilization of the hardware. We also show that the
memory access pattern of the GPU application is a key factor to the effectiveness of PREM.
This work has been supported by the EU H2020 project HERCULES (688860).

References

[1] D. Palossi et al., “An energy-efficient parallel algorithm for real-time near-optimal uav path planning,” in
Proceedings of the ACM International Conference on Computing Frontiers. ACM, 2016.

[2] D. Watzenig et al., Introduction to Automated Driving. Springer International, 2017.

[3] P. Burgio et al., “A software stack for next-generation automotive systems on many-core heterogeneous
platforms,” in Digital System Design (DSD). IEEE, 2016.

[4] S. Chattopadhyay et al., “Worst case execution time analysis of automotive software,” Procedia Engineer-
ing, 2012.

[5] A. Abel et al., Impact of Resource Sharing on Performance and Performance Prediction: A Survey.
Springer Berlin Heidelberg, 2013.

[6] M. D. Gomony et al., “A globally arbitrated memory tree for mixed-time-criticality systems,” IEEE Trans.
Computers, 2017.

[7] L. M. Pinho et al., “P-socrates: A parallel software framework for time-critical many-core systems,” Mi-
croprocessors and Microsystems, 2015.

[8] H. Yun et al., “Memguard: Memory bandwidth reservation system for efficient performance isolation in
multi-core platforms,” in RTAS, 2013 IEEE 19th. IEEE, 2013.

[9] R. Pellizzoni et al., “A predictable execution model for cots-based embedded systems,” in Real-Time and
Embedded Technology and Applications Symposium (RTAS). IEEE, 2011.

[10] A. Alhammad et al., “Time-predictable execution of multithreaded applications on multicore systems,” in
Design, Automation and Test in Europe (DATE). IEEE, 2014.

[11] P. Burgio et al., “A memory-centric approach to enable timing-predictability within embedded many-core
accelerators,” in Real-Time and Embedded Systems and Tech. (RTEST). IEEE, 2015.

[12] B. Forsberg et al., “Gpuguard: Towards supporting a predictable execution model for heterogeneous soc,”
in Design, Automation and Test in Europe (DATE), 2017.

[13] C. G. Cassandras et al., Introduction to discrete event systems. Springer Science & Business Media, 2009.

[14] E. Dijkstra, “A note on two problems in connexion with graph,” Numerische Mathematik, 1959.

[15] M. Bauer et al., “Cudadma: optimizing gpu memory bandwidth via warp specialization,” in High perfor-
mance computing, networking, storage and analysis. ACM, 2011.

5

