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Dependence of drivers affects risks associated with
compound events
Jakob Zscheischler* and Sonia I. Seneviratne

Compound climate extremes are receiving increasing attention because of their disproportionate impacts on
humans and ecosystems. However, risks assessments generally focus on univariate statistics. We analyze the co-
occurrence of hot and dry summers and show that these are correlated, inducing a much higher frequency of
concurrent hot and dry summers than what would be assumed from the independent combination of the uni-
variate statistics. Our results demonstrate how the dependence structure between variables affects the occurrence
frequency of multivariate extremes. Assessments based on univariate statistics can thus strongly underestimate risks
associated with given extremes, if impacts depend on multiple (dependent) variables. We conclude that a multi-
variate perspective is necessary to appropriately assess changes in climate extremes and their impacts and to design
adaptation strategies.
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INTRODUCTION
Compound climate extremes are extreme events for which more than
one variable is involved. These events often have disproportionate im-
pacts on humans and ecosystems (1–4). Risk assessments so far usu-
ally focus on univariate statistics (5, 6), even when multiple stressors
are considered (5, 7, 8). Different definitions for a compound event
have been suggested in recent years (1, 5), and generally, extreme im-
pacts are part of the definition. For instance, Leonard et al. (1) define a
compound event as “an extreme impact that depends on multiple sta-
tistically dependent variables or events.” The risk of an extreme impact
is thus related to the dependence structure of the driving variables.
Stronger dependence between drivers can increase the risk of a com-
pound event (9). Risk can be defined as follows (10): Risk = Hazard ×
Vulnerability × Exposure. Here, hazard comprises the probability of a
climate extreme with a potentially large impact. Throughout the pa-
per, we focus on the hazard part of the equation. However, a change in
likelihood of the hazard directly affects risk.

Concurrent extreme droughts and heat waves have been observed
to cause a suite of extreme impacts on natural and human systems alike.
For example, they can substantially affect vegetation health (11–13),
prompting tree mortality (14) and thereby facilitating insect outbreaks
(15) and fires (16). In addition, hot droughts have the potential to trig-
ger and intensify fires (17, 18) and can cause severe economic damage
(19). By promoting disease spread, extremely hot and dry conditions
also strongly affect human health (20–22).

Temperature and precipitation play a vital role for all living sys-
tems, and in particular, plants are sensitive to climatic variations dur-
ing the growing season. It has long been known that during summer,
temperature and precipitation are generally anticorrelated at interannual
scales (23, 24). A global analysis reveals that precipitation and temper-
ature averaged over the warmest 3 months (denoted by “warm season”
in the remainder of the article) are strongly negatively correlated in
many land regions of the world (Fig. 1). This negative correlation,
prevalent in most models (fig. S1), is to a large extent driven by land
surface feedbacks (24–26), associated with impacts of soil moisture lim-
itation on surface temperature (25, 27). These feedbacks tend to be
dominant in transitional climate regimes between dry and wet climates
(25, 28) and also include interactions with boundary layer processes
(29). In addition, synoptic-scale correspondence between cloud
cover/precipitation and incoming shortwave radiation can play a role
(26). Regions with a particularly high negative correlation include the
southeastern United States, the Amazon region, southern Africa, west-
ern Russia, large parts of India, and northern Australia. Over ocean
regions, this correlation is often positive, in particular, for regions
affected by El Niño, indicating that ocean conditions drive the atmo-
sphere (24). The negative correlation between temperature and precip-
itation during the warm season over land should lead to an occurrence
rate of hot and dry summers that is higher than if both variables were
uncorrelated. Here, we focus on land only and aim at quantifying this
effect. Furthermore, because of their wide-ranging impacts, detecting
and quantifying changes in the co-occurrence of extremes in tempera-
ture and precipitation (30, 31) under a warming climate are important
for making reliable risk projections. Hao et al. (30) quantified changes
in concurrent monthly extremes in temperature and precipitation over
the observational period and detected substantial increases in the oc-
currence of joint warm and dry months. Similarly, Mazdiyasni and
AghaKouchak (31) demonstrated an increase in concurrent meteoro-
logical droughts and heat waves in the United States. However, these
studies do not separate the overall warming trend from changes in the
dependence between temperature and precipitation. Here, we quantify
how the dependence structure between warm season temperature and
precipitation changes under a strong greenhouse-gas forcing scenario
and how this influences the likelihood of extremely hot and dry
warm seasons.
RESULTS
A simple approach to investigate the occurrence rate of extremely hot
and dry warm seasons consists of counting the number of years in which
both variables exceed a quantile-based threshold (30). As an example, we
pick a grid point in western Russia where precipitation and temperature
are strongly negatively correlated in summer (r = −0.63; 1901–2013).
We now count the number of summers in which temperature exceeds
the 90th percentile and in which precipitation is at the same time below
the 10th percentile (that is, negative precipitation exceeds the 90th
percentile). Five summers fulfill this criterion (Fig. 2A). If precipita-
tion and temperature were uncorrelated, this number would lie be-
tween 1 and 2 [the expected number is (1 − 0.9)*(1 − 0.9)*113 = 1.13].
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Although this is a straightforward approach to investigate compound
extremes, it has the disadvantage that, for very extreme events, these
exceedances contain only very few samples, thus requiring very long
time series. For instance, if temperature and precipitation are uncor-
related and we count occurrences for which both variables exceed
their 90th percentile, this results in only one event, on average, in the
case of a 100-year time series, rendering an investigation of changes in
occurrence rates unfeasible. To overcome the shortcomings of counting
exceedances, we model here the dependence structure of temperature
and precipitation with copulas (32) and subsequently derive excee-
dance probabilities and return periods (Materials and Methods). Anal-
ogous to the simple approach introduced above, we define bivariate
Zscheischler and Seneviratne, Sci. Adv. 2017;3 : e1700263 28 June 2017
extremes as the concurrent exceedance of some predefined quantile.
For two random variables X (for example, temperature) and Y (for
example, negative precipitation), we compute

p ¼ PrðX > x ∩ Y > yÞ ð1Þ

for some x and y representing the same quantile of X and Y, respec-
tively. We model Eq. 1 with the help of copulas, which model the de-
pendence between X and Y (see Materials and Methods). This
dependence thus affects the probability p of a bivariate extreme.
The return period RP in years of this bivariate extreme is then given
as RP = 1/p (note that we have one value per year). We quantify the
Fig. 1. Correlation between temperature and precipitation during the warm season. The warm season is determined as the hottest 3-month period in the tem-
perature climatology. The correlation is computed as the interannual correlation of the yearly averaged values of temperature and precipitation over the considered 3-month
period. (A) Model mean of correlations of all CMIP5 models (1870–1969). Stippling is shaded according to the fraction of models that show significant correlations at the 0.05
level if this fraction is larger than 0.5. (B) Mean of the correlations of the observation-based data sets CRU (1901–2013), Princeton (1901–2012), and Delaware (1901–2012).
Oceans and areas, where less than two of the three data sets show significant correlations at the 0.05 level, are colored in gray.
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impact of the correlation between temperature and precipitation on
the likelihood of extremely hot and dry warm seasons (see Fig. 2
and Materials and Methods). For instance, for the grid point in west-
ern Russia, a 20-year event (p = 0.05) based on independent (per-
muted) temperature and precipitation becomes an 8-year event (p ≈
0.13) if the correlation between temperature and precipitation is
taken into account (Fig. 2B). Similarly, a 50-year event (p = 0.02)
becomes a 1-year event (p ≈ 0.08). Dependence (measured here as
correlation) between climate variables thus directly influences the
likelihood of compound extremes (Fig. 2C). Both approaches, the
Zscheischler and Seneviratne, Sci. Adv. 2017;3 : e1700263 28 June 2017
counting approach and the approach based on copulas, lead to similar
results on artificial data (Fig. 2C), although with higher uncertainty
associated with the counting approach. The comparison is shown
for bivariate extremes based on 90th percentiles (corresponding to a
100-year event for independent data, that is, p = 0.01). In principle, it is
also possible that variables are strongly correlated, but their extremes do
not co-occur [so-called tail independence (32); see Materials and
Methods]. However, below, we show that the correlation between
temperature and precipitation is a good indicator for the likelihood
of an extremely hot and dry warm season. This may be related to
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Fig. 2. Dependence affects the likelihood of bivariate extremes. (A) Temperature and negative precipitation averaged across June, July, and August (warm season)
at 56.25°E, 51.25°N in CRU for the time period 1901–2013 (red). Data where the values of temperature are randomly permutated are shown in gray. (B) Same data as in
(A) transformed into normalized ranks. The regions where both variables concurrently exceed both 78th (solid), 86th (dashed), and 90th percentiles (dotted),
corresponding to 20-year (p = 0.05), 50-year (p = 0.02), and 100-year (p = 0.01) bivariate return periods for independent data under the condition that temperature
and negative precipitation exceed the same quantile (u = v), are depicted. Return periods of the original, correlated data based on the same thresholds correspond to
approximately 8 years (p ≈ 0.13), 13 years (p ≈ 0.08), and 18 years (p ≈ 0.05). (C) Comparison between estimating changes in the likelihood of bivariate extremes by
counting extremes (light bars) and modeling the extremes with copulas (dark bars) for different coefficients of correlation. The increase in likelihood due to the
correlation is shown, taking an event in which both variables are independent and exceed their 90th percentile as reference (that is, a 100-year event). Whiskers
represent 1 SD over 83 repetitions.
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the fact that the analyzed events are not extreme enough to see the
effect of tail (in)dependence.

The return period of an extremely hot and dry warm season that
has a 100-year return period if temperature and precipitation were
not correlated is reduced to merely 16 years in some regions due to
the negative correlation between temperature and precipitation (fig.
S2). This corresponds to a sixfold increase in likelihood (Fig. 3, A
and B). The spatial distribution of this change in likelihood of ex-
tremely hot and dry warm seasons explains why some regions ex-
perience these compound events more often than others do. For
example, averaged over central North America, the likelihood of
a 100-year summer based on independent temperature and precip-
itation is increased by a factor 4.0 ± 0.9 because of their correlation.
The likelihood of a 100-year event is increased by a factor of 3.6 ± 0.6
and 3.4 ± 0.5 in the Amazon and South Africa, respectively; by a factor
of 3.2 ± 1.0 and 3.2 ± 0.5 in central Europe and South Asia, respec-
tively; and by a factor of 3.0 ± 0.7 in East Asia (Fig. 3C). These num-
bers are based on state-of-the art climate models (see Materials and
Methods) and are smaller for observation-based data sets (Fig. 3D),
probably due to noise and incomplete coverage by weather stations
(see Materials and Methods).

Greenhouse gas–induced climate change is projected to lead to a
strong increase in temperature in many regions of the world, accom-
panied by differing trends in precipitation (33). Under the business-
as-usual climate change scenario, the state-of-the-art climate models
Zscheischler and Seneviratne, Sci. Adv. 2017;3 : e1700263 28 June 2017
collected in the Coupled Model Intercomparison Project Phase 5
(CMIP5) project very large increases in the concurrent exceedance
of the historical 90th percentiles of temperature and dryness during
the warm season (Fig. 4A). In many regions, the occurrence rate of
extremely hot and dry warm seasons increases by a factor of 10 be-
tween the historical time periods (1870–1969) and the 21st century.
These exceptional changes are largely driven by strong long-term
trends in temperature and precipitation. If we subtract these trends
(see Materials and Methods), the CMIP5 models project and inten-
sification of the predominant negative interannual correlation be-
tween temperature and precipitation in many regions of the world
(Fig. 4B). That is, this negative interannual correlation between tem-
perature and precipitation (Fig. 1) intensifies under future climate
change, in addition to the change in mean climate. Particularly in the
northern extratropics, but also in the Amazon region and in Indonesia,
the change in negative correlation can be up to −0.2 in the model mean.
Little change or a slight increase in correlation (that is, decrease in neg-
ative correlation) is projected in the Mediterranean, Central America,
the Sahel, and northern and eastern Australia. As demonstrated below,
an increase in negative correlation translates into an increase of the
occurrence rate of extremely dry and hot warm seasons (see also
Fig. 2C).

Although important for assessments of future risks associated
with climate extremes, the investigation of changes in the occurrence
of compound events has received only limited attention so far (5, 6).
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Fig. 3. Increase in likelihood of extremely hot and dry warm seasons due to dependence. Starting from a 100-year event with independent temperature and
negative precipitation (that is, both exceed their 90th percentile), the increase in likelihood of these events due to the dependence between temperature and cor-
relation is shown. (A) Average of the increases in likelihood across all CMIP5 models. (B) Average of the increases in likelihood in the data sets CRU, Princeton, and
Delaware. (C) Increases in likelihood were averaged over CMIP5 models across the regions central North America (CNA), Amazon (AMZ), central Europe (CEU), South
Africa (SAF), East Asia (EAS), and South Asia (SAS). Whiskers represent 1 SD over all models. (D) As in (C) but averaged over observation-based data sets CRU, Princeton,
and Delaware. Whiskers represent 1 SD over all three data sets.
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Fig. 4. Future projections. (A) Increase in likelihood of concurrently exceeding the historical 90th percentiles of temperature and negative precipitation averaged over
the warm season during the 21st century. The average over all CMIP5 models is shown. (B) Change in interannual correlation between temperature and precipitation

averaged over the warm season between 1870–1969 and the 21st century. The average over all CMIP5 models is shown. (C) Change in likelihood that an extremely hot
and dry warm season with a return period of 100 years during 1870–1969 will occur during the 21st century. The average across all CMIP5 models is shown. Stippling
highlights locations where models show a significant increase in likelihood in the 21st century (P < 0.1). For (B) and (C), temperature and precipitation during the warm
season were linearly detrended in both time periods before further analysis.
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Here, we translate the detected changes in correlation between de-
trended temperature and precipitation into changes in likelihood of
experiencing concurrent extremes. Counting the occurrence of events
lying above the 90th percentile for temperature and below the 10th
percentile of precipitation slightly increases between the two periods
1871–1969 and 2001–2100 (fig. S3), with spatial patterns approxi-
mately resembling the change in correlation (Fig. 4B). However, un-
certainties are spatially high.

Using copulas tomodel the dependence of temperature and precip-
itation allows an assessment of the change in likelihood of a 100-year
event between the historical time period and the 21st century, ignoring
the climate change signal on the trend. This likelihood is increased by a
factor of up to 2 in the model average in some regions (spatial mean,
1.32), leading to a doubling in occurrence rate (Fig. 4C). Spatial patterns
for changes in likelihood of 20- and 50-year events look similar (fig. S4).
Corresponding to the change in negative correlation between tempera-
ture and precipitation (Fig. 4B), the increase in likelihood of extremely
hot and drywarm seasons is largest in the northern extratropics, eastern
Asia, and some parts of western South America. Despite large model
uncertainties, in about 19% of the land area, this increase in likelihood
is significant (P < 0.1; see Materials and Methods), including in eastern
North America, eastern Asia, northwestern Russia, and some regions in
the Amazon.
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DISCUSSION
Warmer temperatures naturally lead to an increase in the co-occurrence
of hot temperatures and meteorological droughts, if precipitation does
not change (30, 31, 34). Our results demonstrate that, in addition to
the trend induced by warming, the strengthening of the dependence
between temperature and precipitation further exacerbates the in-
crease in co-occurrence of very hot and dry warm seasons in many
regions. This increase can approach a doubling of probability in the
21st century for 100-year events of the historical time period. These
results suggest that even if systems adapt to mean climate change, they
will be hit by extremely hot and dry warm seasons more frequently.
Quantifying this effect is highly relevant for future projections of
impact assessments because the co-occurrence of extremely hot and
dry conditions causes disproportionate impacts. Statistical projections
of future impacts for which temperature and precipitation are relevant
may thus not be very reliable. For making reliable projections, Earth
system models need to be validated to represent the correct covariability
between climatic variables. For many regions, this is a challenge because
observational data sets are not well constrained (see fig. S5 and
Materials and Methods).

The intensification of the interannual correlation between tem-
perature and precipitation during the warm season (Fig. 4B) is pos-
sibly caused by an increased land-atmosphere feedback in a warmer
climate (25). Warmer temperatures and stronger radiative forcing
generate higher evaporation rates, potentially drying out the soil ear-
lier in the season and therefore reducing evaporative cooling during
summer (25). In particular, in higher latitudes, an overall greener land
surface in combination with a longer growing season may also lead to
higher transpiration rates in spring (13), decreasing soil moisture and
thus potentially further increasing temperatures by increasing sensible
heat (35). The importance of the land surface for this change in corre-
lation is also underlined by the fact that, over oceans, the negative cor-
relation between temperature and precipitation is absent or reversed
(Fig. 1A). In addition to land surface feedbacks, changes in dynam-
Zscheischler and Seneviratne, Sci. Adv. 2017;3 : e1700263 28 June 2017
ical forcing may explain some of the observed trends in interannual
correlation. In particular, changes in atmospheric circulation patterns
related to changes in planetary waves may be partly responsible for the
detected change in correlation in some regions (36). For instance, cer-
tain planetary waves have been linked to extreme conditions in precip-
itation and temperature in midlatitudes (37–39) and may be amplified
in response to anthropogenic climate change (38, 39). However, model
projections of circulation patterns are highly uncertain (40). Unravel-
ing the drivers of the change in correlation is important for assessing
the robustness of the model results and estimating future risks related
to compound events.

Our analysis suggests that univariate assessments of extremes may
fall short in communicating risks related to impacts of climate ex-
tremes, because often several variables are responsible for causing
extreme impacts (1, 9). In addition, as we have shown, the multivariate
structure may change over time. Thus, including the multivariate
structure of relevant driver variables is crucial to realistically assess po-
tential impacts related to compound events.
MATERIALS AND METHODS
Data
We used temperature (T) and precipitation (P) data from observation-
baseddata sets andmodels fromtheCMIP5archive (41). For observation-
based data sets, we included CRU (V3.22, 1901–2013) (42), Princeton
(1901–2012) (43), and Delaware (V3.01, 1900–2010) (44). From
CMIP5, we used runs from 40models covering the historic time period
(1870–2005) and climate projections with the strongest greenhouse-gas
forcing for the future (RCP8.5, 2006–2100). The names of the models,
including the number of individual runs performed, are listed in table S1.
In total, there are 83 runs available for the RCP8.5 scenario.

All our analyses are based on seasonal averages over the warm sea-
son (that is, one value per year). We defined the warm season as the
hottest 3 months of the climatology of T. For the CMIP5 models, the
warm season was defined based on 1870–1969. A change in time pe-
riods has little impact on the definition of warmest season or the in-
terannual correlation between T and P (see below).

For CMIP5 data, before all calculations, all data were bilinearly in-
terpolated to an equal 2.5° spatial grid. To compute changes in bivar-
iate 100-year return periods of extremely hot and dry warm seasons, we
chose the two time periods 1870–1969 and 2001–2100. These time
periods were chosen as a trade-off between maximizing the climate
change signal and, at the same time, maximizing the number of samples
for computing bivariate extremes. Choosing 3 months as the length
of an event is a compromise between potentially longer-lasting
droughts and heat waves, which occur on shorter time scales. The
combination of summer means in temperature and precipitation is
a good indicator for the extremeness of the summer and its impacts
(45). The computation of bivariate return periods and changes
therein are described below.

Statistical analysis
Interannual correlations and model-data comparison
We computed interannual correlations between T and P averaged
over the warm season at each location and model/data set. We in-
vestigated correlations in CMIP5 for the whole globe (land and ocean),
but we used only land data for observation-based data sets. To eliminate
the climate change signal on long-term trends, we linearly detrended
both variables before computing correlations. Detrending has little
6 of 10
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impact on the correlation for the period 1870–1969 (fig. S6A) but
strongly affects the correlation during the 21st century (fig. S6B). This
is because the strong warming trend in T in the 21st century overrides
correlations at the interannual scale.

In comparison to observation-based data sets, CMIP5 models cap-
ture the negative correlation between T and P quite well (fig. S5).
Observation-based data sets lie within the 10th-to-90th percentile
range of CMIP5 models in 75% of the land area. In the remaining
areas, the negative correlations between T and P were generally much
stronger in CMIP5, for instance, in the Amazon, Mexico, large parts of
Africa and western Australia, and northern Canada and Greenland.
Although this might suggest that CMIP5 models generally overestimate
the strength of correlation between T and P during the warm season
in these areas, this may partly also be related to noise in the observation-
based data sets and the spatial coverage of actual climate stations (46).
Correlations in CMIP5 were stronger especially in the tropics and sub-
tropics, where the station cover for deriving observation-based gridded
climate data is sparse (42), thus leaving the covariation between T and
P less well constrained.

To incorporate potential impacts of serial correlation, we tested
whether seasonally averaged T and P are significantly serially cor-
related in time. Figure S7 shows that for most regions on land and
most models, T and P are not significantly correlated at lag 1 (P < 0.05).
For some tropical areas, including the Amazon, Congo, and Indonesia,
most models show significant serial correlation at lag 1 for T. However,
this is not the case for P. Hence, we concluded that serial correlation
should not have a significant impact on the assessment of bivariate ex-
tremes. All the remaining analyses were based on land data only.
Compound extremes
We used two different approaches to investigate compound extremes
of extremely hot and dry warm seasons: (i) We counted concurrent
exceedances of T over the 90th percentile (“hot”) and P below the 10th
percentile (“dry”), and (ii) we modeled the dependence of T and −P
with copulas and computed the bivariate return period from the fitted
copula. Modeling dependence with a copula allowed us to investigate
the effect of the dependence of T and P on bivariate return periods
(see below).
Bivariate return periods with copulas
We analyzed bivariate return period using the concept of copulas,
which are often used to describe the dependence between random var-
iables (32). Here, we computed bivariate return periods of hot and dry
warm seasons; accordingly, our two variables are T and −P, averaged
over the warm season (47). For two random variables X (for exam-
ple, T) and Y (for example, −P) with cumulative distribution functions
FX(x) = Pr(X ≤ x) and FY(y) = Pr(Y ≤ y), the joint distribution func-
tion of X and Y can be written as

Fðx; yÞ ¼ PrðX ≤ x; Y ≤ yÞ ¼ C
�
FXðxÞ; FYðyÞ

� ð2Þ

with a copula C (48). C is a joint distribution function of the trans-
formed random variables U = FX(X) and V = FY(Y). Because of this
transformation, the marginals U and V have uniform distribution. The
probability of an event, where both variables exceed a given threshold,
is given by (49, 50)

p ¼ PrðU > u ∩ V > vÞ ¼ 1� u� v þ Cðu; vÞ ð3Þ

Bivariate extremes can be defined in other ways (49). However, this
Zscheischler and Seneviratne, Sci. Adv. 2017;3 : e1700263 28 June 2017
definition, using the AND operator (51), is consistent with the approach
of counting concurrent exceedances (see above). We defined bivariate
extremes as the area where both variables exceed the same quantile-
based threshold; hence, we always set u = v. The return period in years
associated with the exceedance probability p is given by

RP ¼ 1=p ð4Þ

Note that our analysis is based on one value per year.
Archimedean copulas used in this study
We used four Archimedean copulas in this study: Frank, Clayton,
Gumbel, and Joe. Archimedean copulas can be written as (32)

C : ½0; 1�2→ ½0; 1�; Cðu; vÞ :¼ φ½�1��φðuÞ þ φðvÞ� ð5Þ

with the generator φ and

φ½�1� ¼ φ�1ðtÞ; 0 ≤ t ≤ φ
0; otherwise

�
ð6Þ

the pseudo inverse of φ. The generator functions for the four copulas
are given by

Frank copula: φ tð Þ ¼ � ln
e�ϑt � 1
e�t � 1

� �
; ϑ > 0 ð7Þ

Clayton copula: φ tð Þ ¼ 1
ϑ

t�ϑ � 1
� �

; ϑ > 0 ð8Þ

Gumbel copula: φðtÞ ¼ ð� ln tÞϑ; ϑ > 1 ð9Þ

Joe copula: φðtÞ ¼ � ln
�
1� ð1� tÞϑ

�
; ϑ > 1 ð10Þ

To illustrate how these four copulas look like, we plotted 1000 ran-
dom samples from the Frank, Clayton, Gumbel, and Joe copulas in fig.
S8. Some of these copulas are able to model tail dependence, that is,
the property that extremes are correlated. As illustrated in fig. S8,
the Frank copula has no tail dependence, the Clayton copula has lower
tail dependence, and the Gumbel and Joe copulas have upper tail
dependence.

We further made use of the independent copula, which is given by

Cðu; vÞ ¼ uv ð11Þ

Model fitting
To obtain uniform distributions in the marginals, we transformed
marginal distributions into normalized ranks, which is a common
procedure when working with copulas (52, 53) and is the only rea-
sonable choice if goodness of fit is to be tested appropriately
(54). We fit four different Archimedean copulas (Clayton, Frank,
Gumbel, and Joe; see above and fig. S8) and selected the one with
the best fit relying on the Bayesian Information Criterion imple-
mented in the R package VineCopula (55). Goodness of fit was
tested based on the Cramér–von Mises statistic (54) implemented
in the R package copula (56). P values below 0.05 (rejecting the
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hypothesis that the copula is a good fit) were obtained for about 3%
of the fits, which is an acceptable rate.

Although our analysis focused on bivariate extremes, because we
used a copula-based approach, goodness of fit was tested on the whole
distribution. Hence, goodness-of-fit statistics may be largely driven by
the less extreme values. However, using copulas allowed us to switch
between different return periods without the need to fit a new model
for each of the different return periods (for example, see Figs. 2 and
4C and fig. S4). In addition, all results were averaged across >80 model
runs (table S1), which reduced some of the uncertainty related to the
fitting procedure (57). Figure 2C provides some confidence that our
approach based on copulas captures the desired change in likelihood
due to a change in dependence well.
Dependence affects risk of multivariate extremes
We analyzed the impact of varying correlation on bivariate return
periods using simulated data. We simulated four times 100 samples
from a Frank copula with q = 0, 1.9, 4.4, and 12 with uniform mar-
ginals. This resulted in correlation coefficients of approximately 0, 0.3,
0.6, and 0.9, respectively (note that q = 0 corresponds to the indepen-
dent copula). We computed changes in return periods due to dependence
as follows: Let C0 be the independent copula (Eq. 11), representing no
correlation, and C1 be one of the Frank copulas. For a given return period
RP0 and the corresponding probability of exceedance p0 = 1/RP0, we
can use Eqs. 3, 4, and 11 and compute

u ¼ v ¼ 1� ffiffiffiffiffi
p0

p ð12Þ

We now look for the return period of C1, whose exceedance thresh-
olds are defined by the same u and v. The new exceedance probability
p1 is given by (Eq. 2; setting u = v)

p1 ¼ 1� 2ð1� ffiffiffiffiffi
p0

p Þ þ Cð1� ffiffiffiffiffi
p0

p
; 1� ffiffiffiffiffi

p0
p Þ ð13Þ

and hence, RP1 = 1/p1. For an example, see Fig. 2. We further defined
the likelihood multiplication factor as p1/p0. Figure 2C shows the influ-
ence of dependence (measured as correlation) on the likelihood multipli-
cation factor of a 100-year event (p0 = 0.01) using the copula approach
and simple counting. Uncertainty estimates are based on 83 repetitions,
which is equivalent to the number of model runs used in this study. The
counting approach is associated with much larger uncertainties as
compared to the copula-based approach. This is related to the rela-
tively small sample size (100) compared to the extremeness of the
considered event (100-year event) and the fact that, in the counting
approach, only discrete numbers are possible. The uncertainty for
the copula approach at r = 0 reflects the uncertainty related to the
fitting of the copula.

For modeled and observation-based T and P averaged over the warm
season, we computed the likelihood multiplication factor starting with
p0 = 0.01, corresponding to a 100-year return period for independent
variables (Fig. 3). Figure S2 shows the effective return period if the
thresholds to compute return periods had been defined under the as-
sumption that T and P were independent (that is, showing RP1).

Correlation is only one indicator for dependence between two
variables and does not capture the dependence in the extremes well
because it is based on the full range of the data. However, as our anal-
ysis shows, for seasonal T and P, the correlation coefficient is generally
a good indicator for the influence of dependence on the likelihood of
bivariate extremes.
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Changes in bivariate return periods
The likelihood of a bivariate extreme may change if the dependence
structure of the two underlying variables changes. A simple approach
of assessing changes in bivariate extremes is to count concurrent ex-
ceedances of 90th percentiles in detrended T and −P in 1870–1969
and 2001–2100. Figure S3 shows the differences in these counts. How-
ever, in this approach, the historical exceedance probabilities vary
according to their dependence, and we cannot assess changes in, for
example, 100-year events.

We investigated changes in the likelihood of bivariate extremes in
CMIP5 by comparing their occurrence probabilities, as estimated by
Eq. 3 between the two time periods. Let C1 and C2 be two copulas cap-
turing the dependence between detrended T and −P for the two time
periods 1870–1969 and 2001–2100, respectively. For a given probability
of occurrence p1, we obtained the thresholds u = v = u* by solving Eq. 3
for u.We then computed the new probability of occurrence p2 as (Eq. 3)

p2 ¼ 1� 2u*þ C2ðu*; u*Þ ð14Þ

As above, we computed the likelihoodmultiplication factor as p2/p1.
We report changes in likelihood of a historic 100-year event (Fig. 4C)
and 20- and 50-year events (fig. S4).

We tested whether the ensemble median of the models shows an
increase in likelihood with the one-sided sign test (58). We corrected for
multiple testing by controlling the false discovery rate, as suggested by
Wilks (59), and highlighted regions for which the model ensemble
median of the likelihood multiplication factor is significantly larger
than 1 with stippling (adjusted P < 0.1).
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/3/6/e1700263/DC1
table S1. Global climate models used in this study, with number of runs in brackets.
fig. S1. Fraction of CMIP5 models with negative correlation between temperature and
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fig. S4. Change in likelihood that hot and dry warm seasons with return periods of 20 and
50 years during 1870–1969 will occur during the 21st century.
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observation-based data sets.
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fig. S7. Serial correlation in seasonal temperature and precipitation averaged over thewarm season.
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