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S U M M A R Y
Full waveform inversion (FWI) is an increasingly popular tool for analysing seismic data.
Current practise is to record seismic data sets that are suitable for reflection processing, that
is, a very dense spatial sampling and a high fold are required. Using tools from optimized
experimental design (ED), we demonstrate that such a dense sampling is not necessary for
FWI purposes. With a simple noise-free acoustic example, we show that only a few suitably
selected source positions are required for computing high-quality images. A second, more
extensive study includes elastic FWI with noise-contaminated data and free-surface boundary
conditions on a typical near-surface setup, where surface waves play a crucial role. The
study reveals that it is sufficient to employ a receiver spacing in the order of the minimum
shear wavelength expected. Furthermore, we show that horizontally oriented sources and
multicomponent receivers are the preferred option for 2-D elastic FWI, and we found that with
a small amount of carefully selected source positions, similarly good results can be achieved, as
if as many sources as receivers would have been employed. For the sake of simplicity, we assume
in our simulations that the full data information content is available, but data pre-processing
and the presence of coloured noise may impose restrictions. Our ED procedure requires an
a priori subsurface model as input, but tests indicate that a relatively crude approximation
to the true model is adequate. A further pre-requisite of our ED algorithm is that a suitable
inversion strategy exists that accounts for the non-linearity of the FWI problem. Here, we
assume that such a strategy is available. For the sake of simplicity, we consider only 2-D FWI
experiments in this study, but our ED algorithm is sufficiently general and flexible, such that
it can be adapted to other configurations, such as crosshole, vertical seismic profiling or 3-D
surface setups, also including larger scale exploration experiments. It also offers interesting
possibilities for analysing existing large-scale data sets that are too large to be inverted. With
our methodology, it is possible to extract a small (and thus invertible) subset that offers similar
information content as the full data set.

Key words: Inverse theory; Waveform inversion; Seismic tomography.

1 I N T RO D U C T I O N

Seismic full waveform inversion (FWI) is a very promising tool for
obtaining high-resolution images of the subsurface. The expected
resolution is in the order of half the minimum wavelength (Wu &
Toksöz 1987). The theory behind FWI was already developed in the
1980s (Lailly 1983; Tarantola 1984; Mora 1987), but the method
only became popular recently due to the enormous computational
expenses. Comprehensive FWI overviews can be found in Plessix
(2008), Buske et al. (2009), Virieux & Operto (2009) and Fichtner
(2011). The method is nowadays applied to a broad range of scales,
ranging from laboratory investigations in the submetre range (e.g.
Pratt 1999; Bretaudeau et al. 2013), engineering and environmental
applications (a few tens to a few hundreds of metres, e.g. Smithyman

et al. 2009; Romdhane et al. 2011), exploration problems (a few
kilometres, e.g. Jaiswal et al. 2009; Bleibinhaus & Hilberg 2012;
Raknes et al. 2015), active source wide-angle surveys (a few tens of
kilometres, e.g. Operto et al. 2004; Malinowski et al. 2011), crustal-
scale passive seismic investigations (a few tens of kilometres, e.g.
Fichtner et al. 2013) to whole Earth studies (a few hundreds to a
few thousands of kilometres, e.g. French & Romanowicz 2014).

The FWI methodology applied to all these scales is similar, but
the specific goals and constraints impose different challenges and re-
quire different experimental setups. For example, laboratory exper-
iments may need to consider the finite size of the sensors; whereas
whole Earth studies are restricted by logistical constraints for plac-
ing sensors (e.g. it is challenging to obtain a station density in
oceanic areas that is comparable to regions on land). The survey
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design of active seismic experiments at exploration scales are typ-
ically governed by the requirements of reflection seismics, where
it has to be ensured that the spacing satisfies the Nyquist–Shannon
sampling criterion for avoiding aliasing effects. Here, FWI is em-
ployed primarily for determining velocity models that are later used
for pre-stack depth migration or reverse-time imaging (e.g. Rønholt
et al. 2014).

In near-surface seismic data sets, it is challenging to isolate re-
flections from other wave types, such as surface waves and guided
waves (e.g. Schmelzbach et al. 2005). FWI is expected to be par-
ticularly beneficial at such scales, because it requires no wave-type
separation and high-resolution images can be obtained. The data
sets to be acquired for FWI may not necessarily have to meet the
criteria dictated by seismic reflection processing methodology.

Experimental design (ED) tools offer suitable means to set up an
optimal survey or to choose an optimal subset of an existing dense
data set (e.g. Maurer et al. 2010). The methodology has successfully
been applied to electromagnetic problems (e.g. Maurer & Boerner
1998), geoelectrics (e.g. Stummer et al. 2004; Wilkinson et al.
2006), earthquake network design (e.g. Hardt & Scherbaum 1994)
and seismic crosshole applications (e.g. Curtis 1999a). So far, opti-
mized ED techniques have gained only little attention in the field of
FWI. Djikpesse et al. (2012) formulated an efficient Bayesian ED
methodology in order to optimize resolution in FWI and applied
it to a crosshole example. Other attempts to optimize the survey
design of FWI include the work of Romdhane et al. (2011) who
directly compare inversion results from x- and z-directed receivers
and decimate the number of sources employed, while keeping a
regular spacing. Brenders & Pratt (2007) investigated the influence
of the minimum frequency used and of spatial subsampling. Sir-
gue & Pratt (2004) designed optimal frequency selection schemes.
Likewise, Maurer et al. (2009) developed efficient frequency and
spatial sampling strategies for acoustic crosshole FWI. Manukyan
et al. (2012) investigated the information content offered by multi-
component recordings for elastic crosshole FWI problems. Similar
investigations by Vigh et al. (2014) also highlighted the importance
of multicomponent recordings for elastic marine applications.

An important question that remains to be answered is if it is
really necessary for near-surface seismic FWI purposes to acquire
high-fold data sets, as required for reflection processing, or if much
sparser data sets are sufficient. Initial investigations for crosshole
surveys indicated that a dense spatial sampling is not required for
FWI problems (Maurer et al. 2009), but it is unclear if this conclu-
sion can be transferred to surface-based surveys in a straightforward
manner. Here, sources and receivers are only located at or just be-
low the surface, which yields a less-constrained one-sided inversion
problem. More importantly, the free surface plays a very important
role, because high-amplitude surface waves are superimposing re-
flected phases. In order to model surface waves, the acoustic ap-
proximation is insufficient, and elastic FWI is mandatory.

In this paper, we provide an in-depth study on how to design
shallow seismic surveys, optimized for elastic FWI incorporating
surface waves. After introducing the theoretical background of our
FWI implementation, we present the basics of optimized ED and our
specific algorithm, whose performance is illustrated with a simple
acoustic example. This example is used for examining the depen-
dency of ED on the underlying subsurface model. Then, we discuss
the more realistic elastic case including noise, for which we inspect
the importance of numerous recording parameters, such as receiver
spacing, the choice of source and receiver types and optimal place-
ment of sources. Based on our results, we ultimately offer specific
guidelines for shallow seismic survey designs. Furthermore, we

highlight potential problems associated with the assumptions made
in our simulations.

2 T H E O RY

2.1 Full waveform inversion

The aim of FWI is to find a realistic subsurface model, for which for-
ward modelled data u can be computed that match the observed data
d within the data error bounds. This is typically achieved through
a linearized inversion procedure, in which the model parameters m
are updated successively, until the root-mean-square (rms) misfit
between u and d is minimized, that is, until convergence is achieved
(e.g. Tarantola 2005). Due to the dominance of surface waves in
shallow seismic data, the acoustic approximation is not justified,
but elastic FWI is required. We parametrize our subsurface models
with P- and S-wave speeds Vp and Vs and density ρ (i.e. m = [Vp,
Vs, ρ]), which are discretized on a regular 2-D grid. For the sake of
simplicity, we do not consider anisotropy and anelastic effects, but
it is conceptually possible to extend m, such that these effects can
be included.

In principle, any forward solver that predicts u(m) can be em-
ployed for an FWI algorithm. Here, we consider a frequency-domain
finite-element approach (Min et al. 2003; Latzel 2010). As outlined
by Pratt (1999), frequency-domain modelling is very efficient for
multiple sources, and typically the response for only a few distinct
frequencies needs to be computed. In finite-element modelling, the
free surface is the natural boundary condition, such that accurate
modelling of surface waves is possible at no extra costs. At the top
of the modelling domain, the free surface is maintained, while at
the other edges of the domain, it is replaced by perfectly matched
layer boundary conditions (Zheng & Huang 2002; Basu & Chopra
2003).

For the solution of the inverse problem, also carried out in the
frequency domain, we follow a Gauss–Newton approach (Pratt et al.
1998) using

mi+1 = (
JT J + α2I + β2LT L

)−1 {
JT

[
(d − u) + Jmi

] + α2Imi
}
.

(1)

The matrix J contains all sensitivities, I is the N × N identity
matrix with N being the number of model parameters contained
in m, L is the Laplacian smoothing operator and i is the iteration
index (mi=0 is the initial model). The scalars α and β determine
the weights of regularization in form of damping and smoothing,
which stabilize the inversion. These weights are adjusted to the
various parameter classes (Vp, Vs and ρ) in order to balance the
corresponding sensitivities and model updates (Manukyan et al.
2012). Damping is supposed to keep the model parameters close to
a given reference model. We have chosen the model parameters of
the previous iteration as a reference; therefore, damping essentially
controls the step length in our formalism. Prior to each model update
step, source functions are estimated using the approach described
by Maurer et al. (2012).

For large-scale inversion problems, it can be challenging to com-
pute and store the approximate Hessian matrix JTJ. Therefore, alter-
native options, such, as non-linear conjugate gradients or L-BFGS
methods (e.g. Nocedal & Wright 1999) have to be considered. How-
ever, for our subsequently described ED procedure the explicit com-
putation of JTJ is required. Since this matrix has to be established
anyway, we employ the Gauss–Newton algorithm in this study. We
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use the expressions by Zhou & Greenhalgh (2010) for calculating
the sensitivities.

2.2 Experimental design

The goal of ED is to set up a survey or choose data from a large
data set, such that benefit is optimized, while acquisition and/or
computational costs are minimized. For that purpose, we first need
to specify the terms ‘benefit’ and ‘cost’. The costs of a seismic
survey depend on several factors, such as accessibility, manpower
and many more. We assume that the costs linearly scale with the
number of sources employed. We restrict our definition of costs
to be a function of the number of sources only, although placing
receivers can be challenging too (e.g. three-component receivers or
ocean bottom sensors). It is important to note that the methodology
is sufficiently general, such that receivers could be included into the
design process too.

The survey benefit can be defined via the information content
offered by the data set. This can be quantified by means of measures
from linear inverse theory. As discussed by Curtis (1999a), a variety
of options exists to quantify the goodness of a particular data set.
Here, we consider measures that are based on the approximate
Hessian matrix JTJ. The reliability of the model reconstruction
depends on the ability to invert JTJ (Maurer et al. 2010). Without the
regularization terms (α = β = 0), this matrix is usually singular. The
regularization terms are therefore essential, but the ‘goodness’ of
JTJ shall be maximized, such that the contribution of regularization
is minimized. The sensitivities, contained in the Jacobian matrix
J, are governed primarily by the survey design. We can therefore
maximize the ‘goodness’ of JTJ by choosing appropriate source–
receiver configurations. As a consequence of the non-linearity of the
FWI problem, it is important to note that the sensitivities contained
in J depend on the model parameters. As further discussed in the
sequel of the paper, this needs to be considered when setting up ED.

A conceptual example is shown in Fig. 1. We assume that we
have M sources available in total, from which we would like to
choose a useful subset of source positions (while keeping all the
receivers active). Based on an a priori subsurface model, we com-
pute the sensitivities for all possible source–receiver configurations.
A data set that includes all possible source–receiver configurations
will be subsequently referred as a comprehensive data set �M. For

displaying the ‘goodness’ of the comprehensive matrix JTJ, we
show its eigenvalue spectrum (eigenvalues sorted by their mag-
nitude and normalized by the maximum eigenvalue; solid line in
Fig. 1a). In theory, the ‘goodness’ is proportional to the number of
non-zero eigenvalues. Due to finite numerical precision, the eigen-
values rarely equal zero. We therefore introduce a threshold, below
which an eigenvalue is considered insignificant. Here, and through-
out the paper, we define this threshold to be 10−10 times the largest
eigenvalue. As shown in Fig. 1(a), the intersection of the compre-
hensive eigenvalue spectrum with the threshold level is at about
45 per cent of the eigenvalues. Maurer et al. (2009) defined this
intersection to be the ‘relative eigenvalue range (RER)’. It is a mea-
sure of the resolved portion of the model space. The choice of the
threshold value is not critical; it only scales the RER values. We
have repeated our experiments with a range of threshold values and
the results were essentially identical.

For obtaining an optimized survey layout, we employ a greedy
algorithm (e.g. Coles et al. 2015). Initially, we compute eigenvalue
spectra and the corresponding RER values for subsets including
data from only one source at a time. The data from the source
associated with the largest RER will be chosen to form �1. Then,
the next source is chosen using

max
sources in �M /�k

RERk+1 (k = 1 . . . M − 1) (2)

with k + 1 being the index of the next selected source. For displaying
the performance of the algorithm, we construct benefit-cost curves
as shown in Fig. 1(b). The horizontal cost axis ranges from 0 (no
source) to 1 (all sources). The benefit, indicated on the vertical
axis, is displayed by means of a normalized RER (nRER), which
is defined as RERk/RERM. In this example, 80 per cent (nRER
= 0.8) of the maximally resolvable portion of the model space can
be resolved using only 10 per cent of all sources.

Our ED algorithm requires a large number of eigenvalue spec-
tra to be computed. This can be computationally prohibitive for
realistically sized FWI problems. Therefore, we have additionally
considered an alternative goodness function. The diagonal elements
of JTJ include the squared column sums of J. Meles et al. (2010)
showed that the (absolute) column sums of J are a good proxy for
the diagonal elements of the model resolution matrix (e.g. Menke
2012), which is also a measure of the ‘goodness’ of a particular

Figure 1. (a) Logarithmic eigenvalue spectra and RER values for a survey when using either 10 per cent or all (100 per cent) sources. (b) Benefit-cost curve for
a seismic experiment. Costs are defined by the normalized number of sources (1 = all sources), and benefit is defined as normalized RER (nRER) (1 = benefit
from all sources). The vertical double arrows specify the benefit-cost pairs related to the eigenvalue spectra in (a).
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survey layout. Therefore, we can define a new measure gk that offers
similar information as the RER, but is much cheaper to compute:

gk =
N∑

i=1

D�M
i

D�k
i + δ

, (3)

with D� = diag(JTJ) . The parameter δ is a small positive number
that stabilizes the procedure in the presence of very small D�k

i

values. Consequently, we can substitute eq. (2) by

min
shots in �/�k

gk+1 (4)

We have benchmarked the approximate measure in eq. (4) against
the term in eq. (2) using a small data set, and found that the design
results were quite similar for both measures. Therefore, we have
employed eq. (4) within the optimization procedure, but we still
use the corresponding nRER values for displaying the final benefit-
cost curves, because it is a measure for the resolved model space
(only a few eigenvalue decompositions need to be performed for
that purpose).

3 N U M E R I C A L E X A M P L E S

With a series of numerical examples we aim to find configurations
for acquiring near-surface seismic data optimized for FWI. After
introducing the general setup, we start with a simple noise-free
acoustic example to investigate the model dependency of our ED
results. We then move on to more realistic elastic investigations in-
cluding noise, with which we seek (i) a suitable receiver spacing, (ii)
optimized combinations of x- and z-directed sources and receivers
and (iii) the minimal number of sources employed and their appro-
priate positions. Finally, we test the robustness of our findings on a
different subsurface model.

3.1 Experimental setup

Fig. 2 shows the true and the initial models employed for the syn-
thetic experiments; for the elastic case, Vs is obtained from Vp by
applying a constant Poisson’s ratio of 0.29, density ρ is obtained
from Vp using Gardner’s relation (Gardner et al. 1974). A 24 Hz
Ricker wavelet was used for producing the synthetic data set. Seven
inversion frequencies are considered accordingly: 6.4, 9.6, 12.8,
19.2, 25.6, 36.8 and 48.0 Hz, in order to cover the full wavenum-
ber domain (Sirgue & Pratt 2004). The amplitude spectrum of the
Ricker wavelet further determines the weight, with which the fre-
quencies contribute to ED and FWI. This is favourable, because
in observed data, frequencies towards both ends of the spectrum
are expected to exhibit low signal-to-noise ratios. The maximum
frequency fmax governs the minimum wavelength λmin:

λmin = Vs,min

fmax
= 734 m s−1

48 Hz
= 15.3 m. (5)

In order to obtain good numerical accuracy, the size of the forward
modelling cells is set to 1 m. The expected spatial resolution of
FWI is in the order of half the minimum wavelength. Therefore, 25
forward modelling cells are merged into one inversion cell of size
5 × 5 m, which is still below the expected spatial resolution.

For the inversions, the frequencies are gathered into three partly
overlapping groups: (i) 6.4, 9.6 and 12.8 Hz; (ii) 12.8, 19.2 and
25.6 Hz and (iii) 25.6, 36.8 and 48.0 Hz. Each inversion is started

Figure 2. Models considered in the synthetic studies. Vs is obtained from
Vp by applying a fixed Poisson’s ratio of 0.29. Density ρ is obtained from
Vp with Gardner’s relation. (a) True model A; (b) true model B; (c) initial
model.

with the lowest frequency group and progressed to larger frequen-
cies as the model converges, in order to prevent cycle skipping. In
our case, only six iterations per frequency group are needed until
convergence is achieved, that is, until the rms deviation between d
and u did not change anymore by more than 3 per cent. For con-
sistency, all inversions are run with the same frequency schedule
and the same parameters, leaving the choice of the regularization
weight to a line search algorithm, which ensures that the rms is ef-
ficiently minimized (after Nocedal & Wright 1999). Two additional
constraints are given: (i) the weight of damping is four times higher
than the weight of smoothing (α = 2β in eq. 1), and (ii) damping
of the model update in ρ is five times higher than damping in Vp

and Vs, because it was observed that large model updates in ρ can
make the inversion unstable. All the inversion runs converged to a
comparable rms level.

3.2 Experimental design for acoustic FWI

We consider noise-free acoustic data modelled for 61 pressure re-
ceivers located at x = 60, 70, . . . , 660 m at 1 m depth and 62
potential source locations placed at x = 55, 65, . . . , 665 m at 1 m
depth, such that they do not coincide with the receivers.

For determining an optimal experimental layout, we need to spec-
ify a subsurface model, with which the sensitivities, contained
in JTJ, can be computed. Ideally, one would employ the true
model. However, the true model is unknown prior to the seismic
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Figure 3. Benefit-cost curves for the acoustic experiment. With 3 and 12
sources, an nRER value of 0.5 and 0.8 could be achieved, respectively. Open
dots indicate data sets for which inversion was carried out. The correspond-
ing images are shown in the figures indicated besides the open dots.

survey. Typically, all the a priori information available is included
in the initial model. Often, the initial model is obtained from trav-
eltime tomography, which ensures that it is sufficiently close to the
true model (e.g. Malinowski et al. 2011). The initial model is there-
fore an obvious choice for ED. However, it is unclear, if the discrep-
ancies between using the initial or the true model could affect the
design process in a negative way (due to the high non-linearity of
the FWI problem). Therefore, we repeat our ED procedure, using
either the initial or the true model, and compare the results.

We have mimicked the initial model with the vertical gradient
model shown in Fig. 2(c). Such a gradient model is relatively easy
to obtain, because it is characterized by three parameters only—Vp

at the surface, the velocity gradient and a fixed Poisson’s ratio. In
fact, it can still be obtained from the sparse data sets acquired with
optimized measurement geometry. If the traveltime tomography
result shall be used as initial model, the measurement geometry
shall additionally fulfill the corresponding needs. Using tools of
ED, we have found that mainly the far offsets are important in this
case.

The benefit-cost curves for these two scenarios are shown in
Fig. 3. Both curves show a rapid increase, when only a few source

positions are included. At about 12 sources, they both start to flatten
out and they reach the area of diminishing returns, that is, it becomes
very expensive to increase the information content of the data set.
Between 12 and 30 sources, the two benefit-cost curves show some
discrepancies, but overall they match very well. With both designs,
it is possible to get about 50 per cent of the full information content
with a mere 3 out of 62 sources, and 80 per cent of the information
can be obtained with only 12 sources.

It is noteworthy that the maximum RER reached with the true
model (RERmax = 0.25) is 14 per cent larger than the maximum
RER reached with the initial model (RERmax = 0.22). This can
be explained by the fact that the stochastic fluctuations in the true
model lead to a better illumination of the subsurface, because the
waves are scattered at the heterogeneities and illuminate the sub-
surface structures from different angles. However, the normalized
curves nRER versus costs, as shown in Fig. 3, are comparable. For
the crosshole case, the effect of scattering was further illustrated by
Maurer et al. (2009), who plot sensitivities and the spatial distribu-
tion of the diagonal elements of the model resolution matrix for two
models with various roughness.

To verify that the designs with the initial and true models are
indeed similar, we compare the images from FWI of the subsets
obtained from the source selections based on either the true or the
initial model. Inversions are performed for the comprehensive data
set including all 62 sources (Fig. 4a) and for subsets with 12 or 3
sources, chosen with ED based on either the initial (Figs 4b and c)
or the true model (Figs 4d and e). For the comprehensive data set
(Fig. 4a), all the important features are well reproduced, such as the
shallow high-velocity anomaly around (x, z) = (480 m, 20 m) and
the deep fault-like structure around (x, z) = (450 m, 200 m). With
12 sources (80 per cent benefit), the model can be resolved equally
well, regardless whether the sources are chosen based on the initial
model (Fig. 4b) or based on the true model (Fig. 4d). Even with
three sources only (50 per cent benefit), the main features are still
well recognizable, although slightly blurred (Figs 4c and e). Besides
visual comparison of the inversion results, we have quantified the
tomogram quality by the rms deviations between the true model
and the inversion results. We have also tested the cross-correlation
measure as applied by Reiser et al. (2017), which led to the same
conclusions. For this first acoustic example, all model rms values
lie within a very narrow window of about 3 per cent, indicating that
all setups yield reasonable inversion results.

The source patterns are indicated with open dots above the sub-
surface images in Fig. 4. For the initial model, the selection follows
the symmetry of the model, such that the patterns of selected sources
are symmetric. First, a few sources around the centre of the model

Figure 4. Acoustic FWI experiment with model A (Fig. 2a); images from (a) inverting data sets including all 62 sources, (b) 12 sources selected with the
initial model and (d) the true model, and (c) for three sources selected with the initial model and (e) the true model. The open dots above the images indicate
the pressure source positions employed. The rms deviations to the true model are indicated in the bottom right corners.
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are selected (Fig. 4c), but soon the sources at the edges of the spread
are added in (Fig. 4b), which ensures a regular illumination of the
model. The symmetry disappears when selecting the sources based
on the true model. Here, the source position selection is guided by
the pattern of the stochastic fluctuations in the model; the sources are
preferably located above the shallow high-velocity anomaly around
x = 480 m (Fig. 4d).

From this first acoustic simulation, we can already derive a few
interesting conclusions. Most importantly, it is found that only a few
sources are required for constraining the Vp model very well. Sec-
ondly, ED based on the initial model does yield a highly optimized
source selection, as long as the initial model is sufficiently close
to the true model (which is further a pre-requisite for FWI). Al-
though the source patterns for the two design models are different,
the benefit-cost curves and the resulting images are similar.

3.3 Experimental design for elastic FWI

The acoustic example described above offered interesting insights,
but for designing realistic near-surface surveys, we move on to the
elastic case with free-surface boundary conditions at the top of the
modelling and inversion domain. Incorporating surface waves is
crucial in near-surface FWI. Furthermore, we try to make our simu-
lations more realistic by adding considerable noise to the waveform
data. In the time domain, the standard deviation of the seismograms
was calculated and 30 per cent white noise relative to it was added.
Finally, we also include the receiver spacing into our ED consider-
ations. We invert for Vp, Vs and density, but we restrict the images
shown here to the wave speeds. It has been previously shown that it
is difficult to recover meaningful density images due to parameter
trade-offs (e.g. Operto et al. 2013). Therefore, we have artificially
damped the model update in density, such that the corresponding
images stay close to the initial model.

The full data space includes the same 62 source and 61 receiver
positions as already employed for the acoustic simulations. Instead
of pressure sources and receivers, we consider x- and z-directed
source and receiver components. For the sake of simplicity and
computational efficiency, we restrict ourselves to pure 2-D prob-
lems. Therefore, no source and receiver components perpendicular
to the tomographic planes are modelled. In real-data applications,
out-of-plane heterogeneity will also play an important role on the
quality of the model reconstruction. This aspect was studied by
Butzer et al. (2013) and placing sensors out of plane could be part
of ED, but this would be beyond the scope of this study.

In the following, we denote a particular source-receiver config-
uration as ‘src type-rec type’, where src type and rec type can be
either x, z or xz. For example, z-directed sources and multicompo-
nent receivers with x- and z-components are denoted as ‘z–xz’. It
is important to note that for the source type xz not necessarily both
components at a particular position must be activated. Instead, x-
and z-source directions can be chosen individually.

In principle, pressure (explosion) sources could also be included
in the design process. In this case, since pressure sources do not
produce primary shear waves, shear wave energy only stems from
P-to-S converted waves (e.g. at the surface). We have experimented
with pressure sources, and we found that the resulting images are
often prone to artefacts because S-wave speeds are less constrained.
We conclude that elastic near-surface FWI surveys should be per-
formed preferably with directed sources, which produce primary
shear waves; and we have thus not considered pressure sources in
our elastic simulations.

Figure 5. Benefit-cost curves for 10 m receiver spacing (black line, 61
receiver positions), 20 m spacing (dark grey line, 31 positions) and 40 m
spacing (light grey line, 16 positions).

With the acoustic example, we have demonstrated that the choice
of the design model is not overly critical. We have performed sim-
ilar tests for the elastic case, and we found that this conclusion
remains valid for elastic data as well. Therefore, we base our elastic
experiments on the a priori known initial model shown in Fig. 2(c).

3.3.1 Suitable receiver spacing

Due to the design of receiver cables and other logistical con-
straints, it seems unpractical to design receiver layouts with an
irregular spacing (although wireless receivers become available;
e.g. Savazzi & Spagnolin 2009). Instead, we compare three re-
ceiver deployments with regular spacings. Shannon’s sampling cri-
terion dictates spatial sampling of half the minimum wavelength,
which corresponds to �samp = 28.7 m for the first frequency group
(up to 12.8 Hz). However, Brenders & Pratt (2007) obtain satis-
factory waveform tomography images with source spacings well
beyond Shannon’s criterion. We therefore test three different re-
ceiver spacings: �r1 = 10 m = 0.35 × �samp (61 receivers),
�r2 = 20 m = 0.70 ×�samp (31 receivers) and �r3 = 40 m = 1.40 ×
�samp (16 receivers).

For the experimental procedure, we consider xz–xz configura-
tions, which include 124 possible sources (62 x-directed and 62
z-directed sources). The resulting benefit-cost curves are shown in
Fig. 5. The curves for 10 and 20 m spacing are relatively close to
each other, thereby indicating that doubling the number of receivers
offers only marginal benefits (only 3 per cent for the full cost exper-
iment including 124 sources). Using a very coarse receiver spacing
of 40 m still produces good results, but the loss of information is
significantly larger (8 per cent at the full cost level and up to 21
per cent in the critical zone, where the curves enter into the area of
diminishing returns (around 31 sources). From these observations,
we conclude that a receiver spacing of 20 m offers a reasonable
compromise between acquisition efforts and survey benefits, and
we have included only 31 receivers into our comprehensive data set
used for the subsequent simulations. This receiver spacing further-
more conforms Shannon’s sampling criterion, which is desirable
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Figure 6. Benefit-cost curves for selected source–receiver combinations.
Open dots refer to the figures with the corresponding FWI images (colour
coding according to the legend in the bottom right corner).

when later minimizing the number of sources used. In an acoustic
waveform tomography study, Brenders & Pratt (2007) have found
that the image quality is satisfactory until the receiver spacing ap-
proaches �samp, while using twice as large source spacing.

3.3.2 Suitable source–receiver configurations

Obviously, most subsurface information can be retrieved, when con-
sidering xz–xz configurations, but such a survey may be labour in-
tense and costly. Therefore, the majority of near-surface surveys
are acquired with z–z configurations using hammer, weight-drop or
vibrator sources. With our ED computations, we make an attempt
to quantify the value of the options available, and we check whether
other configurations can produce similarly good results as the xz–xz
configuration.

Fig. 6 shows the benefit-cost curves for selected configurations.
The data set xz–xz, serving as a reference, is indicated by the black
line. In Fig. 6, the nRER for all curves is obtained by normalizing all
RER values by the maximum RER value from the comprehensive
data set (i.e. all sources from the xz–xz configurations). This allows
cross-comparison of various configurations.

As expected, best results are obtained for the comprehensive xz–
xz data set (Figs 7a and b). The level of detail in Vs is eye-catching,
and the spatial resolution is excellent; the model rms deviation to
the true model accounts for 2.5 per cent only. Due to the larger P
wavelengths, Vp is less well resolved, therefore, the rms deviation
is slightly larger (3.2 per cent).

We continue our analysis by omitting more and more compo-
nents. First, we omit one of the source directions (x–xz and z–xz
configurations). The resulting benefit-cost curves almost coincide
with those of the xz–xz configurations (Fig. 6). Although, x–xz and
z–xz configurations include only 62 sources, a maximum nRER of
0.94 can be achieved. From a practical view, vertical sources (e.g.
hammer blow or drop weight) are more common, because it is more
difficult to design horizontal sources that transmit sufficient energy
into the ground (e.g. Knödel et al. 2004). Therefore, z–xz seems
to be a very favourable configuration. However, it is interesting to

note that the full-cost x–xz images (Figs 7c and d) are slightly better
than the corresponding z–xz images (Figs 7e and f), although the
model rms deviations are equal. Minor artefacts are visible in the
Vp image of the latter configuration. The x–xz images can hardly
be distinguished from the inversion of the comprehensive data set
(Figs 7a and b), but the model rms deviations are slightly larger (3.7
per cent and 2.8 per cent for Vp and Vs, respectively).

If the survey shall be restricted to one component on both the
source and the receiver side, the benefit-cost curves in Fig. 6 indi-
cate that it is most beneficial to use the x–z configuration (or the
reciprocal configuration z–x). They reach an nRER of 0.84 when
using all x-directed sources and z-directed receivers. In contrast, the
x–x configurations achieve only a maximum nRER of 0.78 and the
z–z configurations provide the lowest value (0.72). These results are
partially confirmed by the corresponding FWI images. For the x–z
case, a high-quality image for Vs can be obtained, but the inver-
sion is prone to artefacts, again mainly in Vp (Fig. 7g). FWI of x–x
components still yields a satisfactory image for Vs but the spatial
resolution in Vp at greater depths is poor (Figs 7i and j). The oppo-
site is the case for z–z (Figs 7k and l): A relatively good image for Vp

can be obtained, but the Vs image appears rather blurred, mainly at
greater depths. The comparison of the model rms deviations shows
that z–z yields the best image for Vp, while x–z yields the best image
for Vs in case of using one source and one receiver component.

3.3.3 Optimizing the number of sources

First, we consider the most commonly (and cheapest) employed con-
figurations z–z. For that purpose, we extract data sets offering 80 per
cent and 50 per cent of the information relative to the corresponding
full cost experiments (Fig. 6).

For the z–z case, 28 sources (45 per cent) are required to reach the
80 per cent benefit level and 11 sources (18 per cent) to reach the 50
per cent benefit level (Fig. 6), respectively. The FWI images at the
80 per cent level (Figs 8e and f) are only slightly degraded compared
with the z–z full-cost experiment (Figs 8c and d). At the 50 per cent
level, the corresponding images are degraded significantly (Figs 8g
and h), which also manifests itself in a strong increase of the rms
values.

Next, we repeat the analysis with our preferred x–xz configura-
tion. Only 20 sources (32 per cent) are needed for obtaining 80 per
cent benefit (Fig. 6). This reduction affects the reconstruction of Vp,
but the image obtained for Vs is still good (Figs 9e and f). With only
eight sources (13 per cent) the 50 per cent benefit can be reached
and the quality of the Vs image is still good (Figs 9g and h). The
image for Vp is somewhat blurred, especially at greater depths.

The source patterns are displayed on top of the corresponding
images in Figs 8 and 9. For all simulations, the algorithm initially
selects more or less regularly distributed source locations, but at
a later stage, the sources start clustering in the central parts of
the profile. It is noteworthy that the outermost source positions
do not seem to be of particularly high importance, and they are
not selected for reaching the 50 per cent benefit (Figs 8 and 9g
and h). Interestingly, the opposite is observed, when similar ED
computations are performed for refraction traveltime tomography
experiments. In that case, the algorithm picks preferably source
locations towards both ends of the profile for obtaining sufficient
depth penetration.

The source patterns selected with ED are irregular. Nevertheless,
a regularly spaced source deployment may offer logistical advan-
tages. We have tested this option, and it turned out that 50 per cent
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Figure 7. Model A: FWI images (left: Vp and right: Vs) for selected source–receiver combinations (see labels at the left). All source positions were considered
for computing the images. The rms deviations to the true model are indicated in the bottom right corners.

benefit can be reached with the same number of regular spaced
sources as with the sources selected by the ED algorithm. This
indicates that the ED problem includes ambiguities, that is, there
may exist several source configurations that lead to similar benefits.
Choosing 11 (z–z case) or 8 (x–xz case) regularly distributed sources
at once seems as optimal (in terms of benefit) as subsequently select-
ing them with the greedy algorithm. We have repeated the simula-
tions, shown in Figs 8 and 9(g) and (h), with regular source spacing.
In the z–z case, choosing regular source spacing slightly decreases
the rms values, but the images are still prone to artefacts (Figs 8i and
j). In the x–xz case, the rms and the artefacts are slightly increased
for regular source spacing, indicating that the source selection from
ED is superior to the regular spacing.

3.3.4 Checking the model dependency

Since our ED is based on the initial model, the results should be valid
for the inversion of any other models, for which this initial model

is appropriate. We test this hypothesis by repeating the inversions
experiments, shown in Fig. 9, with model B (Fig. 2b).

The images obtained with the comprehensive data set (Figs 10a
and b) and the increased rms values indicate that model B is more
challenging to recover. We observe a few artefacts around the source
positions, mainly visible in Vp. Results obtained with the x–xz con-
figurations (Figs 10c and d) are, however, very comparable to those
in Figs 10(a) and (b), just like it is the case for model A. With
20 sources (80 per cent benefit; Figs 10e and f), the model for Vp

appears rather blurred and it is difficult to distinguish artefacts from
structure. The reconstruction of Vs is still very good; it only de-
grades significantly, when employing not more than eight sources
(50 per cent benefit; Figs 10g and h). The decrease of image quality
when omitting sources, are comparable to model A; thereby indi-
cating a fairly general validity of our findings. Likewise, the source
patterns are comparable to those observed in Figs 8 and 9, and the
conclusions with regard to optimized versus regular source patterns
also apply to model B (Figs 8–10g–j).
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Figure 8. Model A: FWI images (left: Vp and right: Vs) for optimized z–z configurations. On the left-hand side, the number of sources employed and the
corresponding percentage of the full-cost experiment are displayed (see also Fig. 6). Selected z-directed sources are indicated above the images with downward
pointing triangles. The uppermost panels (a) and (b) show inversion results of the comprehensive data set (xz–xz) as a reference. The lowermost panels (i) and
(j) display the tomographic results obtained with the same number of sources as in (g) and (h) but with regular spacing. The rms deviations to the true model
are indicated in the bottom right corners.

4 D I S C U S S I O N

The simulations presented above demonstrated the usefulness of our
ED approach, but we also would like to emphasize a few challenges
related to the approach. Probably the most severe issue of the FWI
method in general, is its strong non-linearity. This problem is not
alleviated by our approach. We make the assumption that the choice
of the initial model, the frequency schedule and the regularization
scheme allow a full exploitation of the data information content,
that is, convergence to the global minimum can be achieved. This
is often, but not always the case. For example, there are artefacts
observed in some FWI images that were computed with data sets
exhibiting a relatively high nRER value (e.g. results for z–xz con-
figurations in Figs 7e and f). The results for these inversions may be
improved by fine-tuning the regularization parameters. However, for
the sake of consistency, we kept the inversion strategy unchanged
throughout all inversions, and we left the choice of the regularization
weight to our line search algorithm. Addressing the non-linearity
is an issue that must be always considered in FWI problems. Our

ED approach does not contribute directly to the solution of this
problem, but it offers improved subsurface information, when the
non-linearity problem has been addressed adequately. A possible
option to address the problem is non-linear ED, where an optimized
experimental setup is determined that is suitable for a range of likely
subsurface models (Maurer et al. 2010).

A potential limitation of our ED algorithm is imposed by the
simplified goodness function (eq. 3). This is demonstrated in Fig. 6
by means of the rarely used xz–x configuration (grey curve). In
order to minimize the alternative goodness functional (eq. 3), it
seems beneficial to select all x-directed sources (i.e. overlap with
the x–x curve until source 62) prior to selecting the first z-directed
source. The kink and the sudden increase of the slope in the xz–x
curve beyond source 62 indicate that it would likely be beneficial
to select z-directed sources at an earlier stage for maximizing the
RER. This problem is caused by the generally larger magnitudes
of the sensitivities of x-directed sources compared with z-directed
sources. The simplified goodness function in eq. (3) is more strongly
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Figure 9. Model A: FWI images (left: Vp and right: Vs) for optimized x–xz configurations. On the left-hand side, the number of sources employed and the
corresponding percentage of the full-cost experiment are displayed (see also Fig. 6). Selected x-directed source positions are indicated above the images with
triangles pointing to the right. The uppermost panels (a) and (b) show inversion results of the comprehensive data set (xz–xz) as a reference. The lowermost
panels (i) and (j) display the tomographic results obtained with the same number of sources as in (g) and (h), but with regular spacing. The rms deviations to
the true model are indicated in the bottom right corners.

governed by the sensitivity magnitudes than the eigenvalues related
with the RER measure. Interestingly, this problem does not seem to
affect the xz–xz curve, and it is of course not an issue when only a
single source component is available.

Further limitations can be imposed by data pre-processing that
may be necessary for obtaining stable inversion results. Pre-
processing typically includes frequency filtering and/or extracting
selected portions of the seismograms. Both options will affect the
information content offered by the comprehensive data set and may
thus have an impact on the ED results.

Frequency filtering is related to an optimal choice of frequen-
cies for FWI experiments. This topic has been discussed by Sirgue
& Pratt (2004) and Maurer et al. (2009). Likewise, selecting suit-
able time windows can be also a topic of ED, and first attempts
have been presented by Bernauer et al. (2014). In this contribu-
tion, we have assumed a prescribed frequency range computed
with the full seismograms. It will be a topic of future research
to combine the identification of optimized source–receiver combi-

nations with the choice of suitable frequencies and/or time win-
dows.

Besides a greedy algorithm, which chooses sources one after an-
other, a global algorithm, which chooses the desired number of
sources at once, could yield superior source distributions. This
is most obvious when looking at the extreme case of using two
sources only. The greedy algorithm chooses the first source prefer-
ably around the middle of the profile and the second source such
that it complements the first source. In contrast, we expect a global
algorithm to choose two sources that are distributed more regularly.
However, global algorithms are still prohibitively expensive for such
studies, even when using simplified goodness functions.

Goodness measures that are based on eigenvalue spectra, such as
the RER, are a valuable option, because they allow straightforward
quantification of the resolved model space and the null space. A
potential problem is that such measures provide no information on
particular model parameters. This is, for example, visible in Fig. 7:
The Vp image obtained with z–z configurations is superior to most
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Figure 10. Model B: FWI images (left: Vp and right: Vs) for optimized x–xz configurations. On the left-hand side, the number of sources employed and the
corresponding percentage of the full-cost experiment are displayed (see also Fig. 6). Selected x-directed sources positions are indicated above the images with
triangles pointing to the right. The uppermost panels (a) and (b) show inversion results of the comprehensive data set (xz–xz) as a reference. The lowermost
panels (i) and (j) display the tomographic results obtained with the same number of sources as in (g) and (h), but with regular spacing. The rms deviations to
the true model are indicated in the bottom right corners.

other Vp images computed with data sets related with larger nRER
values. The poor nRER score of the z–z configuration is caused by
its inability to produce good Vs images (Fig. 7l).

A possible extension of our current methodology is to include
goodness functions that maximize the resolution of a particular
parameter type (Vp, Vs or ρ). One could even focus on certain
subsurface regions that are of special interest. This is the topic of
focused ED, and can be achieved with benefit measures that are
based on the model resolution matrix (e.g. Curtis 1999b; Wagner
et al. 2015). In fact, our simplified goodness function, defined in
eq. (3), could also be employed for that purpose by summing over
the sensitivities with respect to the model parameters of interest
only.

The benefit-cost curves in Figs 3, 5 and 6 exhibit a relatively
smooth transition into the area of diminishing returns, and it is
difficult to identify a clear kink in the curves, where the benefit-cost
ratio is optimal. Therefore, we discuss the choice of a suitable data
set using the percentages relative to the full cost experiments. The
noise-free acoustic example indicates that choosing only a small

number of sources, that is, 50 per cent of the full cost experiment
or even fewer sources, still leads to very good results. We have
also experimented with noise-free elastic data and came to similar
conclusions. However, the results obtained with noise-contaminated
elastic data indicate that acquiring data sets at a level of at least 80
per cent of the corresponding full cost experiments is advisable,
depending on the extent of the full cost experiment.

For the sake of simplicity, we have considered only white noise in
our simulations, but in a realistic scenario the presence of coloured
noise must be expected. This survey-specific problem may be par-
tially alleviated with an increased data redundancy. Therefore, it
seems advisable to acquire slightly more data than indicated by the
ED procedure.

Our results will be most beneficial for designing shallow seis-
mic experiments, where the tomograms constitute the final product.
Seismic surveys performed on hydrocarbon exploration scales are
typically designed such that the data sets produce optimal pre-stack
depth migration or reverse-time migration images. Therefore, one
may conclude that our ED strategy is of lesser importance for such
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surveys. However, it is nowadays standard practice that FWI is
employed for establishing velocity models that serve as input for
the subsequently applied migration algorithms. Even with substan-
tial computing resources, it is still challenging to apply FWI to large
and densely sampled data sets. Therefore, strategies have been de-
veloped for alleviating the computational costs. For example, source
encoding techniques were devised, with which several sources can
be simulated simultaneously (e.g. Krebs et al. 2009). Alternatively,
posteriori ED could be applied, that is, our ED strategy could be
employed for selecting a small subset out of a large data volume for
performing FWI.

5 C O N C LU S I O N S

We have employed optimized ED techniques for delineating useful
source–receiver configurations that are amenable for acoustic and
elastic FWI. It was found that it is not necessary to employ a dense
spatial sampling and to achieve a high fold, as it is dictated by
Shannon’s sampling criterion and required for seismic reflection
processing techniques. Instead, a relatively coarse spatial sampling
is sufficient for obtaining detailed FWI images. More specifically,
we suggest designing shallow seismic surveys on the basis of the
following considerations:

(1) We recommend horizontal x-directed sources. In combina-
tion with multicomponent receivers, they offer similar information
content as multicomponent sources (i.e. x- and z-directed sources).
Using only z-directed sources (which may be easier to implement
in practise) is another reasonable strategy.

(2) For obtaining high-resolution Vs images, multicomponent
geophones clearly outperform single-component receivers. Al-
though the former are more expensive, we recommend using such
devices, whenever possible.

(3) When only single-component sources and receivers are avail-
able, it is recommended to use z-directed sources and x-directed
receivers or vice versa.

(4) A receiver spacing of the order of the minimum shear wave-
length is judged to be sufficient.

(5) The optimal number of sources and receivers and their lo-
cations can be determined with benefit-cost curves, as shown in
Figs 3, 5 and 6. The resulting source patterns generally exhibit a
denser spacing in the central parts of the profile, but regularly spaced
sources offer similarly good results.

The number of sources used can be optimized with our ED algo-
rithm. However, for real data one should not overly tweak the number
of sources. With high levels of correlated and uncorrelated noise
and/or unexpected earth features, additional sources can increase
the stability of the inversion. Likewise, all the other limitations
of our ED algorithm, mentioned in Section 4, must be considered
during the ED process.

Our ED methodology is sufficiently general, such that it can be
adapted to any type of seismic survey (large-scale seismic surveys,
crosshole applications, vertical seismic profiling, anisotropy, etc.).
For example, for including anisotropy, it will be necessary to con-
sider more subsurface parameters compared with isotropic prob-
lems, and it has to be made sure that all the parameters can be re-
solved independently. The corresponding survey layouts will likely
differ from those derived for isotropic cases, but the eigenvalue and
RER analysis, described in this paper, will be essentially identical.
Methodological FWI developments are progressing rapidly, but so
far, only little efforts have been made to establish optimized input

data sets. Our approach can fill this gap, and make FWI attractive
to a broader range of applications.
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