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Abstract

The paper analyzes the effects of varying climate impacts on the social cost
of carbon and economic growth. We use polynomial damage functions in a
model of an endogenously growing two-sector economy. The framework includes
nonrenewable natural resources which cause greenhouse gas emissions; pollution
stock harms capital and reduces economic growth. We find a big effect of the
selected damage function on the social cost of carbon and a significant impact on
the growth rate. In our calibration a quartic damage function raises the social
cost of carbon by more than a factor of ten compared to the linear function.
In the social optimum the growth rate remains positive even when the damage
function is highly convex. We test the robustness of the results by adding
pollution decay and lowering the elasticity of intertemporal substitution which
does not alter our results. We find that high marginal climate damages require
stringent climate policies but do not preclude positive economic growth despite
convexity, provided that policies are designed in an efficient manner.
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1 Introduction

1.1 Climate impacts

There is broad agreement that climate change has widespread effects on the economy and

the natural environment. It causes economic damages which worsen with increasing temper-

atures.2 For a thorough assessment of the consequences and the formulation of appropriate

climate policies the determination and the use of an appropriate damage function is in-

dispensable: it lies ”at the heart” of the economic analysis of climate change (Farmer et

al. 2015, p.332). Such a function specifies how economic damages change as a function of

greenhouse gas concentration in the atmosphere. The present paper thoroughly explores

the impact of damage modeling in a theoretical setup of an economy with climate change

and endogenous growth.

The economic impacts from climate change are difficult to be estimated on a global level

(IPCC 2014b). So far, there is no agreement on the form and the parametrization of a gen-

eral climate damage function. Nordhaus and Boyer (2000, p.23) state that ”estimating the

damages from greenhouse warming has proven extremely elusive.” According to Weitzman

the literature offers ”little guidance on why one specification or another” of a damage func-

tion has been selected (Weitzman 2010a). It is thus admitted that a strong empirical basis

for the damage functions used in the best-known models is lacking. What is more, climate

damages have implausibly small effects on economic growth in most integrated assessment

models even under extreme temperature scenarios (Stern 2013, Revesz et al. 2014).

The big challenge for formulating a comprehensive climate damage function is to prop-

erly aggregate various highly heterogeneous effects. Climate impacts on different regions

and ecosystems are provided in IPCC (2014b) and Roson and Sartori (2016).3 Yet, for a

global analysis of climate damages, the available data are not sufficiently complete. Bottom-

up studies may be used to inspire a general formula, but by their nature they are limited

in scope. It thus remains unclear which functional form for the damage function is suitable

(Moore and Diaz 2015) and where the limitations are to capture ”everything by a simple

function” (Farmer et al. 2015, p.332). Damage functions are one of various elements of

integrated assessment models which have recently been criticized. Farmer et al. (2015,

p.329) conclude that also the issues of risks, heterogeneity, and technical change are ”inad-

2The effects range from sea level rise, drop in crop yields, and human health to energy demand; in 2017,
strong hurricanes have caused immense damage: according to the Economist ”Hurricane Harvey already set
records as America’s most severe deluge.. The UN reckons that, in the 20 years to 2015, storms and floods
caused $1.7trn of destruction; the World Health Organisation estimates that, in real terms, the global cost
of hurricane damage is rising by 6% a year. Flood losses in Europe are predicted to increase fivefold by
2050.” Economist (2017, 2 Sept).

3These authors present estimations of damage functions parameters for 140 countries and regions and
for six climate impacts: sea level rise, variation in crop yields, heat effects on labor productivity, human
health, tourism and household energy demand showing the heterogeneity of the different damages.
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equately addressed” by climate modelers. In all these areas, model specifications strongly

affect the results and associated policy recommendations (Revesz et al. 2014). While recent

contributions have addressed the additional issues under critique,4 the functional form of

the climate damage function has received little attention,5 although its potential impact

on optimal policies is substantial and the critique has been especially sharp.6 The present

paper shows how important the specifications of the damage functions are in climate eco-

nomics. We use higher-order polynomial functions up to a cubic and quartic form to assess

the impact of climate damages on welfare and growth. In our model, damages affect the

capital stock, reducing both current income and economic growth; for a long-run ecological

phenomenon economic dynamics become crucial.

The agreed temperature targets of international climate policy suggest that marginal

climate damages become very large or even infinite once the temperature ceiling is reached.

Conversely, most economic models use constant or quadratic functions for climate damages

so that a specific threshold temperature does not emerge and optimum warming can exceed

the ceiling, depending on the benefits of climate policy. We want to keep the assumption of

a continuous damage function but aim at including high marginal damages by considering

highly convex damage functions. This brings the economic view of optimal pollution closer

to the view of climate physics and policymakers favoring temperature targets.7

We find a big effect of the damage function on the social cost of carbon and a significant

impact on the economic growth rate. Using a theoretical framework, this paper shows that

the negative impact of climate damages on economic growth grows with the degree of

convexity of the assumed damage function. Moreover, contrary to the prevalent opinion in

public discourse, optimally designed climate policies do not prevent the world economy from

experiencing positive growth rates despite the convexity of damage functions. However,

if climate policies aiming to correct the pollution externality are sub-optimally chosen,

damages to capital become higher and the economic growth rate may become negative in

the long run.8 Calibrating our model, we confirm that in the social optimum economic

growth rates are still positive in the long run even for highly convex damage functions and

assuming non logarithmic utility, i.e. for a quartic damage function and a low intertemporal

elasticity of consumption substitution. Specifically, a quartic damage function raises the

social cost of carbon by more than a factor of ten compared to the linear function.

4Technological change is addressed in Acemoglu et al. (2012), the impact of risk in Bretschger and
Vinogradova (2016), the spatial distribution in Brock and Xepapadeas (2017), the time distrubution in
Gerlagh and Liski (2017) and Bretschger and Karydas (2017) and the North-South aspects in Bretschger
and Suphaphiphat (2014).

5Notable exceptions are Moore and Diaz (2015) and Van den Bijgaart et al. (2016).
6In a well-known contribution, Pindyck (2013, p.860) writes: ”the models’ descriptions of the impact of

climate change are completely ad hoc, with no theoretical or empirical foundation.”
7Temperature targets (2◦C resp. 1.5◦C warming) are an important part of the Paris Climate Agreement.
8In this paper, we focus on analysing the social planner solution, so this result does not arise.
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1.2 Contribution to the Literature

Modeling externalities in the form of greenhouse gas emissions includes two components:

climate sensitivity, i.e. the increase in long-term temperature caused by growing concen-

tration of carbon dioxide in the atmosphere, and climate damage functions, capturing the

relationship between temperature rise and induced losses in the economy. Regarding the

former, the broadly used RICE/DICE model (Nordhaus and Boyer 2000) uses a small

structural model to describe the relationship between pollution stock, radiative forcing,

and climate change, suggesting that temperature is a concave function of pollution stock.

This crucial assumption is used in most of the climate economics literature, e.g. in Golosov

et al. (2014) and van den Bijgaart et al. (2016, p. 78) where it is said that the relation

”between atmospheric CO2 concentrations and equilibrium temperatures can be described

through a logarithmic curve..”. However, the IPCC has recently summarized all the rele-

vant research and explains: ”Multiple lines of evidence indicate a strong, consistent, almost

linear relationship between cumulative CO2 emissions and projected global temperature

change to the year 2100 ..” IPCC (2014a, p. 9). This suggests the IAM tradition should be

abandoned and climate sensitivity should be modelled using a linear rather than a concave

function, as we will apply below.

With respect to the second component —climate damage functions—, RICE/DICE as-

sumes that climate change affects current output negatively. Specifically, climate damages

D(·) are a quadratic function of temperature while a ”damage coefficient” Ω = 1/ [1 +D(·)]
is used to multiply final output to reflect the impact of climate change (0 < Ω < 1). The

higher the damage, the lower the coefficient and thus output and income.9 The functional

form of the damage function and its parametrization has been inspired by numerical esti-

mations of predicted climate damages. Nordhaus (2007) estimates that damages are 1.7

percent of output at 2.5◦C warming, which provides a parameter value for the quadratic

term; Hanemann (2008) presents estimates for the same temperature which are 2.4 times

as much, so a different value appears warranted.10 To deal with higher temperatures one

could use extrapolations of these models. However, Ackerman and Stanton (2012) find that

this procedure lets damages grow very slowly with temperature. Only half of world output

would be lost when temperatures increase by 19◦C in the Nordhaus case or 12◦C for the

Hanemann specification neither of which is very plausible. Weitzman (2010b) argues that

scientific evidence implies much greater losses, especially at higher temperatures. He mod-

ifies the RICE/DICE setup by adding a term to the damage function where temperature

is raised to the power of 6.76. As a result, damages turn out to be 50 percent of output at

9Golosov et al. (2012) adopt a slightly different functional form for D by assuming exponential damages
but this approximates the other function well.

10Even the higher estimate of Hanemann (2008) is not compatible with the 2◦C target of international
climate policy which implicitly assumes that damages of temperature rise exceeding 2◦C are very high.
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6◦C warming and 99 percent at 12◦C, which is closer to what natural science predicts. Evi-

dently, adding a quadratic or a higher order term to a linear specification of the D-function

increases output loss for any given temperature. But the use of the damage coefficient Ω

for multiplication with output implies that, with rising temperature, a total collapse of the

economy is only reached asymptotically, i.e. only a temperature of infinity would entail a

total income loss, which is an extreme assumption. Put differently, the relationship between

temperature and damages (measured as a share of output 1−Ω) becomes concave for high

temperatures (Ackerman and Stanton 2012, p. 11), which contradicts general expectations.

We will use polynomial damage functions including terms of higher order to reach a sig-

nificant degree of convexity but use the D-function for damages instead of coefficient Ω so

that damage concavity is removed. We will thoroughly analyze the impact of variations of

the damage functions in a climate economy model with endogenous growth where emissions

occur endogenously through exhaustible resource use.11

While the DICE model considers damages of climate change on current productivity,

Weitzman (2010a) analyzes climate effects on individual utility.12 We highlight that dam-

ages affect not only the output level but also the growth rate of an economy, which is an

important aspect of climate change (Moore and Diaz 2015, Bretschger and Vinogradova,

2016, Bretschger and Karydas 2017). Moore and Diaz (2015) add induced capital depre-

ciation to the DICE model and find that this entails more stringent climate policies in

the optimum and slows down growth, especially in poor countries. We continue this line

of research by including the dynamic effects of climate change in a full-fledged macroeco-

nomic growth model with focus on highly convex climate damage functions. We close the

gap between the moderately convex cost functions and the strict temperature targets of

international climate policy implying that marginal damages become very high when the

temperature target is exceeded. An alternative approach is to include a ceiling constraint

for pollution stock as presented in Amigues and Moreaux (2013). In the optimum, carbon

concentration increases up to the cap where the economy is constrained as long as natural

resources are still abundant and natural decay too weak. Conversely, in our model, dam-

ages already occur at a level which is lower than the cap and increase in a continuous way

so that discontinuities in consumption do not arise. Acemoglu et al. (2012) also assume

that the deterioration of environmental quality may induce an environmental disaster in

finite time. Such a state would cause infinite damage but in their model it is never formally

11Optimal resource depletion is characterized in the seminal contributions of Dasgupta and Heal (1974)
and Stiglitz (1974); endogenous growth with pollution builds on Bovenberg and Smulders (1995), Barbier
(1999), Smulders (1999), and Xepapadeas (2005); optimal carbon taxes in a growing economy have been
analyzed by Golosov et al. (2012) and van der Ploeg and Withagen (2014). As a consequence of optimal
resource extraction the use of resources decreases over time so that pollution stock accumulates as a concave
function of time which affects the optimal solutions in our model.

12An early contribution on the effects of stock pollution on utility in an endogenous growth model is
Michel and Rotillon (1995).
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reached because policy is able to avoid it.

The literature agrees that damages are a convex function of temperature but the degree

of the convexity is an open issue. The previous idea of IAMs (e.g. Golosov 2014) that the

mapping from the atmospheric carbon dioxide concentration to economic damages would

amount to a composition of a convex and a concave function and could potentially become

almost linear has to be discarded however; the concave relation between carbon emissions

and global temperature is not existent. The economic impact of climate change crucially

depends on the degree of the convexity of the damage function which we explore in this

contribution.

The structure of the paper is the following: In Section 2 the baseline model’s setup,

assumptions, and solution are described. In Section 3, the long-run steady state of the

economy is analysed. Section 4 describes the transition phase of the economy. Section 5 in-

troduces the extensions to the baseline model, namely pollution decay and non-logarithmic

utility. Section 6 concludes.

2 Baseline Model

2.1 The Setup

The model includes two sectors, one for final goods production and one for capital accu-

mulation; it assumes that nonrenewable resource use causes emissions which accumulate

aggregate pollution stock. Pollution negatively affects the existing capital stock; capital

loss is a highly convex function of pollution stock. Emissions, the social cost of carbon and

economic growth are endogenously determined from the model in closed-form solutions. To

reduce emissions, the economy needs to decrease resource use and will use and accumulate

more capital by reallocating inputs between the sectors.

Specifically, we assume that a fraction 0 < εt < 1 of total capital Kt is used for the

production of final goods Yt where it is combined with nonrenewable natural resources Rt,

think of oil or gas, so that

Y = F (εtKt, Rt) (1)

where F denotes a function and t the time index. The remaining fraction 1 − εt of capi-

tal Kt is used for the accumulation of new capital which is harmed by climate damages.

Specifically, we denote by K̇t the time derivative of capital and by D(Pt) a polynomial

function expressing the damages of the pollution stock Pt on capital, with the depreciation

rate ηD(Pt) ≤ 1 for any Pt, so that

K̇t = B(1− εt)Kt − ηD(Pt)Kt (2)
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where B > 0 is capital productivity in the investment sector.13 That climate change enters

the capital accumulation equation rather than the utility function follows a prominent

request by Stern (2013). The stock of greenhouse gases in the atmosphere is accumulated

with resource use according to

Ṗt = φRt − θ(Pt − P̄ ) (3)

with φ > 0. When pollution decay is neglected, θ is set equal 0, whereas when pollution

decay is present, θ is positive. P̄ denotes the preindustrial level of pollution, which is

assumed to be the lower bound of pollution. The stock of nonrenewable natural resource,

is depleted according to

Ṡt = −Rt (4)

with S0 the initial stock of the resource being exogenously given. As we follow the IPCC

(2014a) in assuming a linear relationship between pollution stock and temperature, we do

not need to introduce temperature as a separate variable. The utility function of households

Ut = U(Ct) closes the model.

2.2 Assumptions

1. Production

For the production of final goods of Eq. (1) we assume the Cobb-Douglas specification

Yt = A(εtKt)
αR1−α

t (5)

with A > 0. Both inputs are essential so that resources are always needed to obtain

positive output.

2. Utility

When σ denotes the coefficient of relative risk aversion, the utility function takes the

form

U(Ct) =
C1−σ
t − 1

1− σ (6)

for σ 6= 1 and

U(Ct) = lnCt (7)

for σ = 1. For the sake of clarity we assume σ = 1 in the main part of the paper and

provide a separate discussion for the case σ 6= 1 in a separate section below.

13Capital has constant returns in this sector like in the seminal contribution on endogenous growth of
Rebelo (1991). By excluding natural resources from the accumulative sector in the economy we follow
Grimaud and Rouge (2003).
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3. Pollution decay

It has been found that a small fraction of greenhouse gases in the atmosphere decays

rapidly in the short run and a substantial fraction remains in the atmosphere for a

very long time period (more than a thousand years). To highlight the second part of

the process we abstract in the baseline model from pollution decay, i.e. set θ = 0 but

will extend the model in a separate section by adopting a positive decay rate (θ > 0).

2.3 Solving the model

The social planner problem is characterized by the maximization of Eq. (7) under the

restrictions Eqs. (2) - (5) and the fact that output is entirely consumed at each t, that is

Yt = Ct. The associated Hamiltonian reads

H = lnYt+µY t
[
A(εtKt)

αR1−α
t − Yt

]
+µKt [B(1− εt)Kt − ηD(Pt)Kt]−µStRt+µPtφRt (8)

The first-order and transversality conditions of this problem as well as the necessary proofs

are given in the appendix. In particular we show that the share of capital used in the

final goods sector instantaneously jumps to its steady state value ε = ρ/B. We next derive

optimal resource extraction and pollution growth. The growth rates of output and capital

are found by using the production function, Yt = A(εtKt)
αR1−α

t , the capital accumulation

constraint, K̇t = B(1 − εt)Kt − ηD(Pt)Kt, and the steady state value of ε. Hence, we get

Ŷt = αK̂t + (1− α)R̂t and K̂t = B − ρ− ηD(Pt).

Using (34), (39), and (31), from the appendix, yields the growth of the pollution costate

variable as µ̂Pt = ρ + ηD′(Pt)
α

ρ

1

µPt
. Invoking (32) we write for resource growth −R̂t =

µSt
µSt − φµPt

µ̂St−
φµPt

µSt − φµPt
µ̂Pt. By defining the relative shadow price of the resource stock

according to ψt ≡
µSt

µSt − φµPt
, where 0 < ψt < 1, using Eqs. (34) and (35) we have

ψ̂t = −(1− ψt)
αηD′(Pt)
ρµPt

(9)

as well as

R̂t = −ρ− (1− ψt)
αηD′(Pt)
ρµPt

. (10)

Following Eq. (10) the growth rate of resource use R̂t is negative; it becomes more

negative with an increasing discount rate and rising marginal damage of climate change

D′(Pt). Higher convexity brings forward the resource use due to more severe consequences

of pollution in the future.

The social cost of carbon (SCC) reflects total damages from releasing greenhouse gas

emissions to the atmosphere at every point in time. This essential guideline for optimal
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climate policies has been the subject of many recent contributions (e.g. van den Bijgaart

et al. 2016, Ackerman and Stanton 2012). In our model we label SCC by χt, which is equal

to the marginal damage due to pollution, that is χt ≡ −
µPt
µY t

, whereas the social cost of

carbon per unit of output, which under general conditions equals the optimal carbon tax

in decentralized equilibrium, is χ̃t ≡
χt
Yt

= − µPt
µY tYt

= −µPt so that ˆ̃χt = µ̂Pt.

By defining the resource depletion rate as ut =
Rt
St

, equations (3) and (4) can be modified

to P̂t = φut
St
Pt

and Ŝt = −ut. We can then represent the model dynamics by a system of

five variables according to

ût = −ρ+ (1− ψt)
αηD′(Pt)
ρχ̃t

+ ut (11)

ψ̂t = (1− ψt)
αηD′(Pt)
ρχ̃t

(12)

ˆ̃χt = ρ− αηD′(Pt)
ρχ̃t

(13)

P̂t = φut
St
Pt

(14)

Ŝt = −ut. (15)

Using equations (14) and (15) as well as the fact that pollution and resource stock at

t = 0 are known, we can solve for pollution stock Pt following

Ṗt = −φṠt ⇒ Pt = P0 + φ(S0 − St). (16)

To better understand the dynamic characteristics of the system and the long-run equi-

librium it is useful to state that the growth rate of the resource depletion rate ut =
Rt
St

is

asymptotically constant and equal to zero; the formal proof is given in the Appendix. We

next present the main model solutions for the long-run equilibrium before we will turn to

the characteristics of the transition phase.

3 Long-run Steady State

We first analyse the long-run value of the social cost of carbon (SCC) and then turn to

economic growth. Starting from equation (34) and denoting that µKtKt =
α

ρ
, we find the

value of χ̃t at any time t according to

µ̇Pνe
−ρ(ν−t) − ρe−ρ(ν−t)µPν =

αη

ρ
D′(Pν)e−ρ(ν−t) ⇔

µPt = −αη
ρ

∞∫

t

D′(Pν)e−ρ(ν−t)dν ⇔

χ̃t =
αη

ρ

∞∫

t

D′(Pν)e−ρ(ν−t)dν.
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For the long-run value of SCC per unit of output we then obtain

lim
t→∞

χ̃t =
αηD′(P∞)

ρ2
. (17)

Eq. (17) shows that in our model the social cost of carbon per unit of output is the

discounted stream of all the future marginal damages due to pollution and depends on a few

variables only. Importantly, steady-state SCC per unit of output grows with the marginal

climate damage. We thus confirm that the algebraic form and the parametrization of the

damage function directly affect a society’s valuation of the externality. Long run SCC

per unit of output increases with the capital share α —because climate change affects the

capital input and therefore the cost climate change has on society— and with the damage

impact parameter η measuring pollution intensity caused by resource use. SCC per unit

of output is reduced by the discount rate which appears in the quadratic form in the

denominator, representing both the impatience in capital buildup and resource depletion.

In the next section we will use specific parameter values to directly determine SCC for

different specifications of the damage function.

We also want to explore whether the economy is still growing in the optimum with

climate change. Setting the system of equations (11) to (15) equal to zero, we can obtain

the asymptotic steady state values of the variables, namely

u∞ = ρ

ψ∞ = 1

χ̃∞ =
αηD′(P∞)

ρ2

P∞ = P0 + φS0

S∞ = 0.

The dynamic system of (11) to (15) can be solved by using the linearization method.14

The Jacobian matrix evaluated at the steady state gives us the eigenvalues, {0,−ρ,−ρ, ρ, ρ},
and the corresponding eigenvectors that specify the solution. At this point it is interesting

to note that the linearized dynamic system is subject to a zero eigenvalue. This would

mean that the dynamic system shows hysteresis. However in our case this does not happen

because the corresponding coefficient of this eigenvector has to be set equal to zero, given

our initial conditions. Moreover, in order to avoid solutions that result in diverging values

of the variables in infinity, we set the coefficients that correspond to positive eigenvalues

equal to zero and use appropriate initial values for u0 and χ0, while taking as exogenous

the initial values ψ0, P0 and S0.
15

14By construction of the method the precision of the values is high when we are close to the steady state.
15The linearized solution of the dynamic system can be found in the Appendix.
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Returning now to the initial variables, the growth rates of capital and output in infinite

time are given by

K̂∞ = B − ρ− ηD(P∞)

Ŷ∞ = α(B − ηD(P∞))− ρ. (18)

According to Eq. (18) the long-run growth rate of output is positive provided that

capital productivityB is high enough (B > ηD(P∞)) and the discount rate is sufficiently low

(ρ < α(B−ηD(P∞))). The range of possible ρ that result in positive growth becomes wider

with a higher capital share α.16 Thus, in order to have Ŷ∞ > 0⇔ B−ρ/α
η > D(P∞), there

is an upper bound to damage size. For the choice of parameters and further conclusions we

proceed to the analysis of transitional dynamics.

4 Transition Phase

We now determine how the form of the damage function has an impact not only on long-run

equilibrium but also on the time paths of the variables. Specifically, the time path of the

social cost of carbon (SCC) per output, given by χ̃t =
αη

ρ

∞∫
t

D′(Pν)e−ρ(ν−t)dν and approxi-

mated by χ̃t =
αηD′(P∞)

ρ2
− αηφD

′′(P∞)S0e
−ρt

2ρ2
close to the steady state, is increasing and

concave in time. Its concavity depends on the second derivative of the damage function

evaluated at infinite time. Hence, the higher the degree of the polynomial damage function,

the more concave the time path of χ̃t. The connection between the convexity of the damage

function and the concavity of the SCC per output can be better understood if we consider

the fact that with higher convexity of D(Pt), marginal damages increase more steeply when

pollution increases. In the social planner context, this leads to a higher value on every unit

of pollution added to the stock, and a higher SCC per output at every level of pollution.

Therefore, and given that pollution increases over time in the absence of decay, a more

convex damage function results in a more concave time path for the SCC per output. At

the special linear case, χ̃t is constant throughout time. Moreover, as can be seen from the

expressions for χ̃t as well as in figure 1, the social cost of carbon per output converges

asymptotically to a constant level given in Eq. (17), which was discussed in the previous

section. For capital and output growth we get the two following equations for the transition

phase

16For a CIES function (with σ for the relative risk aversion) and damages given by Dt = η
S0−St

Pt (P0 = 0)

Bretschger (2017) calculates growth as Ŷ = [α(B − ηφ) − ρ] /σ which is very similar to the result here.
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K̂t = B − ρ− ηD(Pt) (19)

Ŷt = α(B − ρ− ηD(Pt)) + (1− α)

[
−ρ+ (1− ψt)

αηD′(Pt)
ρχ̃t

]
(20)

To further specify the transition paths we calibrate the model, using standard parameter

values of literature. Specifically, we use for the discount rate ρ = 0.015, the output elasticity

of capital α = 0.9, and capital productivity B = 0.04 as well as the initial values P0 =

830GtC, S0 = 6000GtC, and Y0 = 49.8 trillion US$ which applies to the year 2010. The

following figures show the SCC and economic growth as a function of time for different

damage functions. In the graphs, the solid thin line corresponds to a linear damage function,

i.e. D(Pt) = κ1Pt, the largely dashed to a quadratic of the form D(Pt) = κ1Pt + κ2P
2
t , the

solid thick to a cubic, i.e. D(Pt) = κ1Pt + κ2P
2
t + κ3P

3
t , and finally the thinly dashed to a

quartic one, D(Pt) = κ1Pt + κ2P
2
t + κ3P

3
t + κ4P

4
t .

Figure 1 depicts the social cost of carbon (SCC) per output corresponding to the differ-

ent damage functions, when there is no decay in pollution and the utility is of logarithmic

form. The calibration of the coefficients κ1, κ2, κ3 and κ4 is based on the literature where

SCC in 2010 lies within the range of 20 US$/tC to 120 US$/tC (Van den Bijgaart 2016)

and global output is 49.8 trillion US$. To reflect that initial SCC depends positively on the

convexity of the damage function we use as a first calibration the following assumptions for

expositional convenience: With a linear damage function χ0 is set to be 20 US$/tC, with

a quadratic it is 50 US$/tC, with a cubic it is 80 US$/tC, and with a quartic it is 120

US$/tC; an alternative calibration approach is provided below.

****Figure 1****

(about here)

It can be seen from the figures that a linear damage function results in a constant SCC

per output, while higher degree polynomial damage functions cause a higher level of SCC

per output that is reached in infinite time. While the increase is not very pronounced

for the quadratic case it is highly visible for the cubic and quartic damage functions. It is

striking that long-run SCC per output differs by more than a factor of ten when the quartic

instead of the linear damage function is used.

In Figure 2 the growth rate of output can be seen. According to the figure, growth is

decreased by climate damages and the growth rate becomes lower with higher convexity of

the damage function. Put differently, for all the damage functions the optimal growth rate

of output declines over the next centuries and more convex damage functions require lower

growth rates of output, as a result of the negative impact of pollution on the accumulation of

11



capital. The difference in the resulting growth rates of output between the various damages

functions is significant albeit not of the same size as in the case of the SCC. Annual output

growth Ŷt stays almost constant in the case of a linear damage function only moving from

2.1% to 2.04%, while in the quadratic, cubic and quartic case it falls to 1.95%, 1.70% and

1.38%, respectively. Provided the economy is in the social optimum, the economy can still

have positive growth with climate change. For the decentralized equilibrium it says positive

growth is feasible provided that efficient climate policies replicating the social optimum are

implemented.

****Figure 2****

(about here)

The first calibration nicely exposes the analytical results using initial values of SCC per

output which are based on the range given in the IAM literature. Let us now assume, as

an alternative, that all the damage functions start from an equal SCC per output in the

beginning of global climate policy, which we set at the year 2000. For the sake of clarity

we restrict the analysis to the linear, quadratic, and quartic damage functions and present

again the results for the SCC per output and the growth rate.

****Figure 3****

(about here)

****Figure 4****

(about here)

With the new initial SCC per output we find a significant distinction between two

different scenarios. The first is to assume a linear or a quadratic function, where it turns

out that the time paths for χ̃t as well as Ŷt are almost identical. This result illustrates that

a second-degree polynomial damage function, despite being convex, does not affect the

variables as much as one would probably expect. Conversely, in the second scenario, when

we use a quartic damage function we can show that this introduces high-enough convexity

to have significant effects on both model variables; the same applies for the cubic function

to a somewhat lower degree.17

17To complete the analysis, the time paths for the model variables ut (depletion rate), ψt (ratio of shadow
prices), as well as for pollution stock Pt and resource stock St are shown in figures that are available from
the authors upon request.
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5 Model Extensions

5.1 Pollution Decay

In the following we modify the setup to allow for positive pollution decay. It is assumed

that pollution cannot be lower than the preindustrial level, noted by P̄ . Hence, the change

in the stock of pollution needs an additional term and now reads

Ṗt = φRt − θ(Pt − P̄ ) (21)

where 0 < θ < 1 and Pt ≥ P̄ . With the new assumptions, the dynamic system is given by

ût = −ρ+ (1− ψt)
[
αηD′(Pt)
ρχ̃t

− θ
]

+ ut

ψ̂t = (1− ψt)
[
αηD′(Pt)
ρχ̃t

− θ
]

ˆ̃χt = ρ−
[
αηD′(Pt)
ρχ̃t

− θ
]

P̂t = φut
St
Pt
− θPt − P̄

Pt

Ŝt = −ut

The four different damage functions are again calibrated so that the SCC in 2010 corre-

sponds to values often reported in the literature, namely 20$/tC, 50$/tC, 80$/tC, 120$/tC,

in the linear, quadratic, cubic and quartic case, respectively.

Due to the pollution decay, the stock of pollution does not evolve monotonically but

has a peak, which is seen in Figure 5.

We derive the decay rate from the representation of the carbon cycle in Nordhaus and

Boyer (2000) where the atmosphere, upper ocean layers and deep oceans are the three

main carbon reservoirs. The calibrated transfer rates from the atmosphere to the upper

ocean layer and from the upper oceans to the deep oceans imply an indirect transfer rate

from the atmosphere to deep oceans of approximately 0.0038 per year, see Bretschger and

Vinogradova (2016), which we use as the value of θ in our model.

****Figure 5 ****

(about here)

In this case, pollution stock does not reach the maximum, as in the previous case of θ = 0,

but eventually reaches the preindustrial level P̄ . Since the social cost of carbon per output

is directly affected by the time path of pollution stock, its time path for different damage

functions now can be seen on figure 6.

13



****Figure 6 ****

(about here)

From these graphs, it can be seen that the maximum level of pollution stock is reached

after the maximum level of the SCC per output is attained. This is due to the fact that

future damages are being discounted in the present.

Finally, the growth rate of output is declining to lower levels compared to the no decay

case, before it starts increasing again and return almost to its initial level in the very

long run. More precisely, the lowest growth rates of output for the four cases are 2.05%

for the linear damage function, 1.99% for the quadratic, 1.83% for the cubic and 0.94%

for the quartic. The reason for this behavior is that in addition perfect foresight, there

is also pollution decay in this extension of the model. Hence, Ŷt first reacts sharply to

the increasing pollution and eventually returns to a higher level, after pollution has been

absorbed by the environment.

****Figure 7 ****

(about here)

5.2 Non-Logarithmic Utility

We now turn to the case where the intertemporal elasticity of consumption substitution is

unequal unity by assuming that utility be given by Eq. (6) where σ 6= 1. Apart from that,

the optimization problem is identical to Eq. (8); the first-order conditions of this problem

are given in the Appendix. In the non-logarithmic case, the share of capital does not jump

to its steady state value but asymptotically approaches a steady-state value. In order to

prove that there is such a steady-state value of εt, we start from the transversality condition

limt→∞ µKtKte
−ρt = 0 and equation (41), from which we can see that µ̂Kt + K̂t− ρ < 0⇔

εt > 0. However, from the equation of capital accumulation and in order for the growth rate

of capital to be constant in the long run, we need limt→∞ ε̂t ≤ 0. Hence, we can conclude

that limt→∞ ε̂t = 0.

Using the same auxiliary variables as in the logarithmic case, we can convert the system
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of equations into

ût = −Bεt + ε̂t + (1− ψt)
αηD′(Pt)
Bεtχ̃t

+ ut (22)

ε̂t = −ρ+Bεt − (σ − 1)Ŷt (23)

Ŷt = α (ε̂t +B(1− εt)− ηD(Pt)) + (1− α)(ût − ut) (24)

ψ̂t = (1− ψt)
αηD′(Pt)
Bεtχ̃t

(25)

ˆ̃χt = Bεt − ε̂t −
αηD′(Pt)
Bεtχ̃t

(26)

P̂t = φut
St
Pt

(27)

Ŝt = −ut (28)

The long-run steady state values of these variables are, respectively

u∞ = Bε∞

ε∞ =
ρ+ α(σ − 1)(B − ηD(P∞))

Bσ
ψ∞ = 1

χ̃∞ =
αηD′(P∞)

(Bε∞)2

P∞ = P0 + φS0

S∞ = 0

The eigenvalues of the Jacobian matrix at the steady states are {0, −ρ+α(σ−1)(B−ηD(P∞))
σ , −

ρ+α(σ−1)(B−ηD(P∞))
σ , ρ+α(σ−1)(B−ηD(P∞))

σ , ρ+α(σ−1)(B−ηD(P∞))
σ , ρ+α(σ−1)(B−ηD(P∞))

σ }. For re-

alistic values of the parameters, we have that α(σ − 1)(B − ηD(P∞)) > 0. Therefore, the

last three eigenvalues are positive and the respective coefficients are set equal to zero in

order to eliminate non-convergent solutions.

The long-run growth rate of output is given by

Ŷ∞ =
α(B − ηD(P∞))− ρ

σ
(29)

which is very similar to the previous result given in Eq. (18) but more general as now we

do not impose σ = 1. We now turn to the characterization of transitional dynamics with

the help of calibrations and plotting of different time paths. As before, the solid thin line

corresponds to a linear damage function, the largely dashed to a quadratic, the solid thick

to a cubic, and finally the thinly dashed to a quartic one.

For the characterization of the transition path we first look at sectoral capital allo-

cation. In the previous case with σ = 1, the share of capital in the final output sector

immediately jumped to its steady state value (ε = ρ/B). Now, with a lower intertemporal
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elasticity of substitution (σ > 1), present consumption becomes more preferable compared

to future consumption, which in turn results in lower savings. Consequently, a higher share

of capital, εt, is used in the final output production in order to satisfy the higher current

consumption.18 The share converges to a steady state, which is higher than ρ/B for all

damage functions, as can be seen from figure 8.

****Figure 8****

(about here)

It is also worth noting that as convexity increases, ε∞ reaches a lower value. That is because

in the long run capital has to be shifted towards the capital producing sector, as damages

become more severe and a higher portion of the capital stock gets destroyed.

For non-logarithmic utility, the social cost of carbon per output for given parameters is

presented in figure 9. By comparing it to figure 1 we can see that when σ > 1, χ̃t is reduced

in terms of levels but grows more rapidly, approximating its long-run value sooner.

****Figure 9****

(about here)

Regarding growth rates of output with non-logarithmic utility, they are lower compared

to the baseline case at every point in time, which is due to the lower input allocation to

the capital sector. Higher polynomial-degree damage functions result in an interesting time

path for the growth rate Ŷt, see figure 10.19 We find a peak after several decades (at 35 and

40 years for cubic and quartic damage functions, respectively) before the growth rate starts

decreasing again. This is because the initially increased use of the polluting resource causes

the economy to grow in a first phase, without inducing sufficient capital accumulation as

a compensation for pollution losses in the second phase. As expected from Eq. (29), the

long-run growth rate of output for the calibarated value σ = 2 is half the respective value

of the baseline case where σ = 1.

****Figure 10****

(about here)

18Additionally, due to lower IES, the polluting resource extraction is shifted towards the present.
19For ease of comparison, the same damage functions as in the initial baseline case are being used in this

extension.
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6 Conclusions

The paper shows that the choice of a specific climate damage function has a big impact

on optimal climate policy and economic growth. We derive the effects of different damage

functions on the social cost of carbon and the growth rate of the economy for various

model specifications. In our baseline model, increasing convexity of the function raises

the social cost of carbon sharply, suggesting more stringent climate policy is needed with

growing pollution stock. The theory presented in this paper does not provide a criterion for

the selection of the most ”realistic” function but derives the economic consequences when

high convexity of climate damage functions is significant. This is strongly suggested by

empirical findings and implicitly assumed in the fixed temperature targets of international

climate policy. In our calibrated model we find that the long-run growth rate is still positive

for highly convex functions provided that we are in a social optimum which in reality is

achievable by efficient climate policies.

Assuming a natural decay for pollution stock entails a peak in the social cost of carbon

and a U-shaped pattern for optimal growth. Over time, the pollution stock grows less

rapidly because of fading resource use as before but is now also reduced by natural forces.

Note that the turning point of pollution stock is only reached after a very long time delay

so that a long first phase of development is very similar to the baseline case without decay.

When we posit that the intertemporal elasticity of consumption substitution is below unity

we find that the growth rate of the economy becomes lower, resource use is brought forward,

and the social cost of carbon grows less rapidly with damage convexity compared to the

baseline case.

Our approach can be extended both in the direction of the assumed growth mechanics

and the considered climate impact. It would also be rewarding to add the aspects of

risk and uncertainty. A broader use of the damage functions of this paper in integrated

assessment models would potentially give rise to novel policy conclusions. This is left for

future research.
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7 Appendix

7.1 Baseline model

The first-order conditions of the maximization problem given in Section 2.3 read

Yt :
1

Yt
= µY t ⇔ µY tYt = 1 (30)

εt :
αµY tYt
εt

= BµKtKt ⇔
α

µKtKt
= Bεt (31)

Rt : (1− α)
µY tYt
Rt

= µSt − φµPt ⇔
1− α
Rt

= µSt − φµPt (32)

Kt :
αµY tYt
Kt

+ µKt [B(1− εt)− ηD(Pt)] = ρµKt − µ̇Kt ⇔

µ̂Kt = ρ− α

µKtKt
− K̂t (33)

Pt : −ηD′(Pt)µKtKt = ρµPt − µ̇Pt ⇔ µ̂Pt = ρ+
ηD′(Pt)µKtKt

µPt
(34)

St : 0 = ρµSt − µ̇St ⇔ µ̂St = ρ (35)

and the transversality conditions are

lim
t→∞

µKtKte
−ρt = 0 (36)

lim
t→∞

µPtPte
−ρt = 0 (37)

lim
t→∞

µStSte
−ρt = 0. (38)

7.2 Capital share

To derive optimal capital allocation we use (33) and (31) to write −ε̂t = ρ − Bεt ⇔ ε̇t =

Bε2t − ρεt. This differential equation is of the Riccati form, hence its solution is given by
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εt =
ρC1e

−ρt

BC1e−ρt +BρC2
. Using the transversality condition (36) results in

lim
t→∞

αe−ρt

Bεt
= 0

lim
t→∞

α

ρC1
(C1e

−ρt + ρC2) = 0

C2 = 0

and therefore

εt =
ρ

B
≡ ε (39)

which says that the share of capital used in the final goods sector instantaneously jumps to

its steady state value. Put differently, capital allocation to the two sectors is determined

optimally in the beginning and does not change over time.20 From (31) and (39) we also

obtain µKtKt =
α

ρ
≡ µKK which says that capital stock multiplied with its shadow price

is a constant.

7.3 Depletion rate

Starting from the transversality condition (38) and given that for product µStSte
−ρt is

non-negative and declining over time, using (35) we have µ̂St + Ŝt − ρ < 0 ⇒ Ŝt < 0 ⇒
−ut < 0 ⇒ limt→∞ ut > 0. Due to the Cobb-Douglas form of the production function

and logarithmic utility resource extraction never ends, i.e. it only stops at infinite time,

i.e. limt→∞ St = 0 where Ŝ∞ is a negative constant. In order for consumption to be

asymptotically constant in infinite time, we need limt→∞ ût ≤ 0 and since ut cannot be

negative, we conclude that limt→∞ ût = 0. As a consequence, the growth rate of resource

use in infinite time, R̂∞, needs to be constant and non-positive.

7.4 Solution of the linearized system

Following the standard linearization procedure, the solution of the dynamic system of equa-

tions (11) - (15) can be approximated close to the long-run steady state by

ut = ρ− (1− ψ0)ρe
−ρt

2
ψt = 1− (1− ψ0)e

−ρt

χ̃t =
αηD′(P∞)

ρ2
− αηφD′′(P∞)S0e

−ρt

2ρ2

Pt = P0 + φ(S0 − St)
St = S0e

−ρt

20This result is modified below when we discuss the model extensions.
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7.5 Pollution decay model

The long-run values of the variables with θ > 0 are

u∞ = ρ

ψ∞ = 1

χ̃∞ =
αηD′(P∞)

ρ(ρ+ θ)

P∞ = P̄

S∞ = 0

7.6 Non-logarithmic utility

The first order conditions of the maximization problem given in Section 5.2 read

Yt : Y −σt = µY t ⇔ µY tY
σ
t = 1 (40)

εt :
αµY tYt
εt

= BµKtKt ⇔
α

µKtKt
= Bεt (41)

Rt : (1− α)
µY tYt
Rt

= µSt − φµPt ⇔
1− α
Rt

= µSt − φµPt (42)

Kt :
αµY tYt
Kt

+ µKt [B(1− εt)− ηD(Pt)] = ρµKt − µ̇Kt ⇔

µ̂Kt = ρ− α

µKtKt
− K̂t (43)

Pt : −ηD′(Pt)µKtKt = ρµPt − µ̇Pt ⇔ µ̂Pt = ρ+
ηD′(Pt)µKtKt

µPt
(44)

St : 0 = ρµSt − µ̇St ⇔ µ̂St = ρ (45)

8 Figures
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Figure 1: SCC per output for different damage functions with t0 = 2010, ρ = 0.015, σ = 1,
α = 0.9, φ = 1, B = 0.04, θ = 0, ψ0 = 0.65, P0 = 830GtC, S0 = 6000GtC, Y0 = 49.8
trillion US$

Figure 2: Growth rate of output for different damage functions with t0 = 2010, ρ = 0.015,
σ = 1, α = 0.9, φ = 1, B = 0.04, θ = 0, ψ0 = 0.65, P0 = 830GtC, S0 = 6000GtC, Y0 = 49.8
trillion US$
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Figure 3: SCC per output for different damage functions with t0 = 2010, ρ = 0.015, σ = 1,
α = 0.9, φ = 1, B = 0.04, θ = 0, ψ0 = 0.65, P0 = 830GtC, S0 = 6000GtC, Y0 = 49.8
trillion US$, alternative damage functions

Figure 4: Growth rate of output for different damage functions with t0 = 2010, ρ = 0.015,
σ = 1, α = 0.9, φ = 1, B = 0.04, θ = 0, ψ0 = 0.65, P0 = 830GtC, S0 = 6000GtC, Y0 = 49.8
trillion US$, alternative damage functions
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Figure 5: Pollution stock for different damage functions with t0 = 2010, ρ = 0.015, σ = 1,
α = 0.9, φ = 1, B = 0.04, θ = 0.0038, ψ0 = 0.65, P0 = 830GtC, S0 = 6000GtC,
P̄ = 581GtC, Y0 = 49.8 trillion US$

Figure 6: SCC per output for different damage functions with t0 = 2010, ρ = 0.015,
σ = 1, α = 0.9, φ = 1, B = 0.04, θ = 0.0038, ψ0 = 0.65, P0 = 830GtC, S0 = 6000GtC,
P̄ = 581GtC, Y0 = 49.8 trillion US$
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Figure 7: Growth rate of output for different damage functions with t0 = 2010, ρ = 0.015,
σ = 1, α = 0.9, φ = 1, B = 0.04, θ = 0.0038, ψ0 = 0.65, P0 = 830GtC, S0 = 6000GtC,
P̄ = 581GtC, Y0 = 49.8 trillion US$

Figure 8: Share of capital to final output production for different damage functions with
t0 = 2010, ρ = 0.015, σ = 2, α = 0.9, φ = 1, B = 0.04, θ = 0, ψ0 = 0.65, P0 = 830GtC,
S0 = 6000GtC, Y0 = 49.8 trillion US$
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Figure 9: SCC per output for different damage functions with t0 = 2010, ρ = 0.015, σ = 2,
α = 0.9, φ = 1, B = 0.04, θ = 0, ψ0 = 0.65, P0 = 830GtC, S0 = 6000GtC, Y0 = 49.8
trillion US$

Figure 10: Growth rate of output for different damage functions with t0 = 2010, ρ = 0.015,
σ = 2, α = 0.9, φ = 1, B = 0.04, θ = 0, ψ0 = 0.65, P0 = 830GtC, S0 = 6000GtC, Y0 = 49.8
trillion US$
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