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Abstract

Despite continuous investment in road and vehicle safety, as well as im-

provements in technology standards, the total amount of road traffic accidents

has been increasing over the last decades. Consequently, identifying ways of

effectively reducing the frequency and severity of traffic accidents is of utmost5

importance. In light of the depicted challenge, latest studies provide promising

evidence that in-vehicle decision support systems (DSSs) can have significant

positive effects on driving behaviour and collision avoidance. Going beyond ex-

isting research, we developed a comprehensive in-vehicle DSS, which provides

accident hotspot warnings to drivers based on location analytics applied to a10

national historical accident dataset, composed of over 266,000 accidents. As

such, we depict the design and field evaluation of an in-vehicle DSS, bridging

the gap between real world location analytics and in-vehicle warnings. The sys-

tem was tested in a country-wide field test of 57 professional drivers, with over

170,000km driven during a four-week period, where vehicle data were gathered15

via a connected car prototype system. Ultimately, we demonstrate that in-

vehicle warnings of accident hotspots have a significant improvement on driver

behaviour over time. In addition, we provide first evidence that an individual’s

personality plays a key role in the effectiveness of in-vehicle DSSs. However,

in contrast to existing lab experiments with very promising results, we were20

unable to find an immediate effect on driver behaviour. Hence, we see a strong

need for further field experiments with high resolution car data to confirm that

in-vehicle DSSs can deliver in diverse field situations.

Keywords

In-Vehicle Decision Support Systems, Location Analytics, Accident25

Hotspots
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1. Introduction

According to the World Health Organization (WHO) road traffic accidents

are the eighth leading cause of death globally. Moreover, since 2001 the num-

ber of road traffic fatalities steadily increased to over 1.2 million people each30

year [65]. An example of the growing risk can be seen in the USA, where, ac-

cording to the National Highway Traffic Safety Administration (NHTSA), the

number of deaths from traffic accidents in 2015 rose by 7% from the year before,

up to 35,092 [36]. Aside from the humanitarian concerns of so many injuries

and fatalities, the worldwide economic costs caused by the impact of traffic ac-35

cidents are estimated to account for a loss of approximately 3% of the global

GDP [28]. As such, the Department of Transport issued a call to action, encour-

aging the continuous research into different approaches that can help to reduce

the number of traffic accidents, both fatal and non-fatal.

In light of the depicted challenges, a huge variety of decision support systems40

(DSSs) have emerged to help tackle these problems. Due to the data require-

ments and the complexity of urban planning and transportation problems, there

has been a growing interest in the use of DSSs to analyse the strategic plan-

ning [8, 60], the multi-vehicle tactical [48] and the individual vehicle operational

levels [25, 44]. In particular, spatial DSSs have been shown to play a vital role in45

this domain, enabling a variety of analytics on road infrastructure challenges. As

an example, road accident hotspots were evaluated in India, where inadequate

development of transport networks led to traffic congestions and accidents. Geo-

information technology was used to help examine the location and distribution

of hotspots, highlighting the influence of spatial and temporal factors in their50

formation [41]. In addition, various research studies are geared towards how

in-vehicle DSSs can encourage drivers to adapt their driving behaviour when

necessary. Latest studies provide promising evidence that these systems can

indeed have significant positive effects on driving behaviour and collision avoid-

ance [23, 57, 63]. These systems can be delivered to vehicles through existing55

mobile or standalone satellite navigation systems [68].
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While the potential of in-vehicle systems is undisputed, the vast majority

of studies have focused on simulation experiments [33, 49] and controlled field

studies [45, 68], typically providing warnings to drivers to prevent a collision

with an upcoming vehicle or pedestrian. In this field, the benefit of real world60

location analytics on traffic accident hotspots as a source for in-vehicle warnings

has widely not been addressed. As such, the paper at hand depicts the design

and field evaluation of an in-vehicle DSS. In contrast to other in-vehicle studies,

location analytics were applied to a national historical accident dataset, com-

posed of over 266,000 accidents, and a complete in-vehicle DSS was developed65

providing warning interventions to drivers. This system was tested outside of

the simulation environment in a country-wide field test of 57 professional drivers,

over a period of four weeks, with a total of 170,000km driven. In order to assess

the impact of the system on driver behaviour and safety, real-time sensor data

from the vehicles were collected at a rate of up to 30Hz through a connected70

car prototype system. Ultimately, we demonstrate that in-vehicle warnings of

historically dangerous locations have a significant improvement on driver be-

haviour over time while crossing these hotspots. We additionally see evidence

that an individual’s personality plays a key role in the effectiveness of in-vehicle

DSSs, highlighting the importance of personality when researching DSS-based75

interventions. However, we were not able to confirm an immediate effect of

warnings. In essence, we see a strong need for further field experiments with

high resolution car data. While there are many lab experiments with impressive

results, field evidence is still weak and it remains unsure if in-vehicle DSSs can

deliver in diverse field situations on their “lab promises”.80

The contribution of the paper can be summarised as follows:

1. The in-vehicle DSS that we developed is, to the best of our knowledge,

the first of its kind, i.e. incorporating automatically generated accident

hotspot warnings as an alternative to human selected locations or up-

coming collision warnings.85

2. The system is one of the first in-vehicle warning systems to be tested in
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real world conditions across a longitudinal field study, providing evidence

of an improvement on driver behaviour over time.

3. Due to the integration of commonly collected accident location details, the

proposed DSS can be easily extended to other parts of the world where90

such data are compiled, either at a regional or national level.

In the remainder of this paper we outline the related work with regard to

in-vehicle DSSs providing warnings to drivers, followed by accident hotspot

identification and classification techniques. We then describe the system, with a

focus on the location analytics used to identify accident hotspots from historical95

data, and the generation of the contextual warnings for drivers. Finally, we

conclude with an evaluation of the system with regard to its effect on safe driving

behaviour, and a discussion of the results and implications of the research.

2. Related Work

2.1. In-Vehicle Warning Systems100

The promise of in-vehicle warning systems to improve driving safety has gen-

erated a substantial body of research [2, 18], and a positive impact is seen when

compared with traditional warning approaches in relation to driver behaviour

and accident frequency, e.g. in the context of railway crossings [56]. Common

conventional warning devices, such as the passive stop sign were compared to ac-105

tive variations, i.e. flashing lights and a half bloom-barrier with flashing lights.

The results showed that, on average, driver responses to passive warnings were

poor in comparison to active warnings [56]. In a later follow-up study, rumble

strips and in-vehicle audio warnings were compared to the previous active and

passive warnings at railway level crossings [57]. Results indicated that both110

the warning devices produced much higher levels of driver compliance than the

existing conventional warnings, demonstrating the positive impact in-vehicle

warning systems can have when compared to conventional approaches.

Various simulator based studies have shown that in-vehicle warning sys-

tems can have a positive impact on driving behaviour. In one example, early115
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warning signals displayed while approaching an intersection showed a positive

effect toward driving safer [63]. Participants adapted their driving behaviour

by turning with a lower velocity after waiting longer at the intersection, and

so avoided collisions. Visual warnings have also had a positive effect on drivers

braking reaction time, for both older and younger participants [23]. The largest120

improvement was seen in critical situations, where collisions were successfully

avoided due to the warning. Additionally, there was still a reduction in braking

reaction time in less critical situations, where the number of collisions was not a

suitable measure of improvement. In other studies, effects on driving behaviour

from advisory warnings were found to be strongly dependent on warning time,125

with earlier warnings more effective than late warnings [33]. Warnings were

much more greatly appreciated by drivers when given earlier, even though in

critical situations shorter warning times were still effective [34]. In situations

where there is low visibility of potential hazardous situations, the frequency of

critical situations was reduced when early advisory warnings were provided, es-130

pecially in surprising or unexpected situations [32]. With regard to the types

of warning that can be provided, contextual warnings had limited importance

to the behaviour of the driver, but users rated the system much higher due

to them [33]. Additionally, it has been shown that in less critical situations a

contextual caution warning sign is more suitable than a stop sign warning [23].135

Outside of simulation studies, a few controlled field studies have investigated

the impact of in-vehicle warnings on driver safety. The influence of warning ex-

pectancy and automation complacency on real-life emergency braking has been

investigated [45]. In particular, reliable warnings quickened the decision making

process and misleading warnings generated automation complacency, slowing vi-140

sual search for hazard detection. Additionally, specific spatially located hazards

have been investigated with regard to the effect of in-vehicle DSSs [68]. The haz-

ardous area tested was an intersection near an arch-shaped bridge, where traffic

accidents had often occurred due to poor visibility. The effects of different com-

binations of audio and visual warnings provided to a driver was investigated.145

It was demonstrated that information about the cause of accidents was more
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effective than information on road infrastructure in helping drivers to avoid

dangerous driving situations.

2.2. Accident Hotspot Analysis

Over the past sixty years, the topic of road accident hotspot analysis has150

been extensively researched and various hotspot identification (HSID) meth-

ods have been developed. Historically, the most common approaches have been

non-spatial techniques, capturing details on the underlying road structure and

considering traffic accidents which occurred on these defined sections of road.

Probably the simplest identification technique of this type is the so-called Crash155

Frequency (CF) method [9]. In this approach, a road segment’s perilousness is

determined by the number of accidents which occurred on it during a speci-

fied period. An example of this approach examined the frequency of highway

accidents, on the basis of a multivariate analysis of roadway geometries (e.g.

horizontal and vertical alignments), weather, and other seasonal effects [50].160

Similar to the concept of Crash Frequency, the Crash Rate (CR) method [17]

takes the number of accidents which happened on a road segment into account,

but additionally considers the traffic volume in its analysis. However, there are

some evident drawbacks of both methods, such as not considering random fluc-

tuations of the number of accidents [67]. From a statistical perspective, both165

CR and CF suffer worse performance when compared to other HSID meth-

ods [31, 67]. Despite this, both CF and CR are still commonly in use today,

with their popularity stemming from the ease of implementation and interpre-

tation. Over time, researchers have developed and utilised statistical models in

the analysis of accident hotspots [30, 38]. Probably the most prominent and170

applied accident hotspot identification technique using a statistical model is the

Empirical Bayesian (EB) method [15, 16]. Based on statistical evidence it is ar-

gued that the EB method outperforms other hotspot identification techniques,

including CR and CF [31].

However, classic hotspot identification techniques mostly neglect spatial as-175

pects and patterns of accidents, i.e. the actual locations of individual accidents,
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regardless of the underlying road structure [13, 64]. With the increasing ap-

pearance of Geographic Information Systems (GIS) and the larger availability

of precise, geo-coded data, as well as digital maps, researchers have started to

use spatial data analysis methods for identifying accident hotspots [3, 13, 37].180

This follows the theory that the concentration of individual accidents at cer-

tain locations is called forth by a set of common causes - implying a spatial

dependence of the accidents [3, 13]. Underlying causes for such a concentration

include weather effects, infrastructure or traffic conditions [14, 31, 66]. The

most common spatial accident hotspot identification approaches used are either185

the K-means clustering technique, spatial autocorrelation or the Kernel Density

Estimation (KDE) method. Especially the KDE method has been extensively

researched [11, 42, 66], and in general it is argued that it outperforms other

HSID methods, such as the spatial autocorrelation, CF or CR, and might per-

form equally well as the EB [13, 67]. In an example using this approach, hotspots190

on highways were explored and determined with two different methods of KDE

analysis and repeatability analysis [11], additionally a GIS was used as a man-

agement system for accident analysis and determination of hotspots in Turkey

with statistical analysis methods. Furthermore, a KDE and a K-means clus-

tering approach were used to profile road accident hotspots [3]. More recently,195

researchers have started to use the data mining clustering technique Density-

Based Spatial Clustering of Application with Noise (DBSCAN), to identify road

accident hotspots [53, 54]. DBSCAN is a density-based algorithm which clas-

sifies elements into clusters in such way that inside a cluster, the density of

elements is higher compared to the outside of the cluster [12]. Therefore, it can200

efficiently identify members of arbitrarily shaped clusters as well as outliers [26].

3. System Description

We developed an in-vehicle DSS for drivers, that provides contextual warn-

ings on up-coming historically hazardous locations. The architecture of provid-

ing these in-vehicle warnings was achieved through the following steps: Firstly,205
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accident hotspots were spatially identified from raw historic accident data. Sec-

ondly, these accidents hotspots were then classified into various categories based

on the accidents which they were composed of. Finally, the locations and cat-

egorisations of the hotspots were provided visually with an in-vehicle DSS in

the form of warnings. Figure 1 depicts this overall process. Additionally, a sep-210

arate application was developed to review the results of the identification and

classification of the accident hotspots. This accident hotspot ‘Explorer Tool’

was used to validate the parameters of the algorithms chosen, and provides

statistical overviews of the accident hotspots, potentially useful for road infras-

tructure specialists and other street authority decision makers. The remainder215

of this section outlines the accident hotspot spatial identification and classifica-

tion techniques employed, and the generation of the in-vehicle warnings.

Figure 1: System Overview of the DSS

3.1. Accident Hotspot Identification

The historical accident dataset was provided by the Swiss Federal Road Of-

fice (FEDRO), Statistics For Road Accidents. Since 2011, FEDRO has collected220

detailed information about every Swiss road accident for which the police were

called, building up an extensive accident register. This dataset is composed of

over 266,000 geo-located accident records, which occurred in Switzerland be-

tween the years 2011-2015. It includes a multitude of features related to each

accident, such as the reason for the accident occurring and the surrounding225

road infrastructure. Many of these features were used to generate appropriate
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warning feedback for the detected accident hotspots, as will be described in

Section 3.2. However, the hotspot identification algorithm required only infor-

mation regarding the coordinates of the accidents.

The literature review revealed multiple approaches to identify accident hot-230

spots, however, not all of them were compatible with the available dataset. The

EB approach, which is a commonly applied by governmental institutions, is well

known to produce good results. But, it is very sensitive to the quality of the

estimation function and requires detailed information about risk variables, such

as, traffic volumes or road parameters, e.g. curve radii [10]. Since the provided235

dataset of the FEDRO consisted only of rough traffic flow estimates and lacked

other road parameters, EB was discarded as a suitable approach. Promising

spatial analysis tools such as spatial autocorrelation or Kernel Density Estima-

tion are appropriate for identifying locations where many accidents happened.

However, current research suggests that spatial clustering techniques can achieve240

similar results, while being simpler and perform much more efficiently on large

datasets [54]. As it is not trivial to identify the hotspot boundaries that KDE

generates, and therefore identify the accidents which contribute to a hotspot,

DBSCAN was selected as a natural density based clustering technique which

clearly identifies observations contributing to a cluster.245

DBSCAN classifies elements into clusters in such a way that inside a cluster

the density of elements is higher compared to the outside of the cluster [12].

Elements, which are not part of any group, are considered as noise. As such,

identified clusters can be considered hotspots with a significantly higher den-

sity of accidents compared to other areas. Noise elements represent “random”250

accidents, which have no, or very little, spatial dependencies to other crashes.

DBSCAN’s performance in identifying clusters is very sensitive to the distance

between points considered part of the same cluster (ε), and the minimum num-

ber of points which must be within ε to form together a cluster (MinPts).

There exists no optimal choice of these parameters, and domain expertise is255

suggested to identify optimum values based on the intentions of the analysis. If

ε is too small, only accidents occurring in very close proximity to each other will
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be considered as hotspots, and if too large, hotspots can grow in size and cover

parallel roads. Likewise, if MinPts is too high, only the most severe clusters

are identified, and if too low, many small and “random” hotspots are found.260

Therefore, the following practical approaches were considered when applying

DBSCAN on the FEDRO dataset. The value of MinPts was discussed with

experts from one of the largest automotive clubs in Europe and hence defined

with the following heuristic: To call a specific location a hotspot, on average,

more than two accidents per year had to occur at that location. As a result,265

it was decided that MinPts cannot be smaller than ten as the hotspots were

formed out of a dataset covering accidents over five years. Finally, ε was fine-

tuned by a visual inspection of a selection of accident hotspots through the

previously mentioned ‘Explorer Tool’. Some of these accident hotspots were

closely connected to certain road infrastructure, and others were more spatially270

distributed. It was found that with ε = 15m DBSCAN produced results where

individual clusters did not span multiple roads. These parameters can be loosely

defined by the following natural definition: For an observation to be included

in an accident hotspot, at least ten accidents must have occurred within 15

meters of that location over five years. With these parameter settings for ε and275

MinPts, a total of 1,608 unique accidents hotspots were found in Switzerland

from over 266,000 geo-located accident records.

3.2. Accident Hotspot Classification

The in-vehicle DSS should provide drivers with warning feedback whenever

they are approaching an accident hotspot. Following the guidelines from the280

NHTSA, drivers should be provided with warning messages in the form of signs

and non-critical supporting text [7]. The feedback information varies depending

on the available contextual information derived from the spatially identified

accident hotspots. The assumption is that drivers can directly and quickly relate

the warning sign to the upcoming dangerous location. Additionally, the warning285

text should provide further non-time critical information, e.g. the predominant

cause of the accident hotspot.

10



The contextual information of each accident hotspot was derived based on

the corresponding accident protocols of the FEDRO. In these reports, police

officers recorded all related accident information and determined, besides other290

details, the leading cause and type of the accident. In order to not overwhelm

the drivers with too detailed or complicated warnings, a simple categorisation

algorithm was developed. The detailed contextual information of each accident

was summarised into three main categories: “What”, “Why”, and “Where”.

“What” refers to the type of objects which were involved in the accident, e.g.295

cars, cyclists or pedestrians. “Why” refers to the predominant cause and type

of the accident, e.g. disregarding right of way, speeding or swerving. Lastly,

“Where” refers to the location information about the predominant type of road

infrastructure at which the accident happened, e.g. at a crossroad intersection,

roundabout or traffic light. In other words, where possible, information was300

captured about what objects were involved in the accident, why it happened

and where it occurred. Out of this information a warning was generated, with

the purpose to provide more information about a specific typical appearance of

a hotspot instead of a general warning [23]. It has been shown that warnings

making use of contextual objects and directions are preferred by users [33].305

Therefore, when generating the warning, the preference of information primarily

shown was ranked in the following order: “What”, “Why” and “Where”.

As such, the warning intervention was generated through a ranked majority-

voting of the categorisation statistics of each accident hotspot [27]. In order to

capture true contextual information of a hotspot, more than 50% of the acci-310

dents involved had to share the same predominant contextual detail information.

Otherwise, a general warning sign and message was shown. Algorithm 1 out-

lines the classical DBSCAN pseudocode [12], which was modified so that once

a hotspot was identified, it was assigned a contextual warning type through the

pseudocode provided in Algorithm 2. In the majority of cases the official road315

warning signs of Switzerland were matched to the generated warnings and were

used in the intervention. This was to prevent a potential confusion about the

meaning of the shown warning messages. However, in some cases the creation
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Algorithm 1 Modified DBSCAN Pseudocode

accidentHotspotDBSCAN(D, ε, MinPts)

hotspot H = 0

for each accident A in dataset D

if A is visited then continue next accident

mark A as visited

Neighbours = all accidents within ε-radius around A

if sizeOf(Neighbours) < MinPts then mark A as NOISE

else

H = next hotspot

expandHotspot(A, Neighbours, H, ε, MinPts)

assignHotspotContext(H,D)

expandHotspot(A, Neighbours, H, ε, MinPts)

add A to hotspot H

for each accident A’ in Neighbours

if A’ is not visited then

mark A’ as visited

Neighbours’ = all accidents within ε-radius around A’

if sizeOf(Neighbours’) >= MinPts then

Neighbours = Neighbours union Neighbours’

if A’ is not yet member of any hotspot then add A’ to hotspot H

of new symbols was inevitable. In total, six new signs were generated, follow-

ing NHTSA standards [7]. This classification approach of the 1,608 detected320

hotspots led to a total number of 20 different warnings signs, and 36 unique

combinations of sign and text. Figure 2 shows a selection of four different types

of accident hotspot detected using DBSCAN and this classification approach.

For brevity the full list of sign and text combinations is omitted, however, the

top ten most commonly encountered combinations can be seen in Table 2, and325

the full list can be found online [47].

3.3. In-Vehicle Warning Intervention

The in-vehicle warning DSS was developed as a native Android application,

compatible with Android version 5.0 and later, and builds upon the work of

an earlier system [46]. It has been shown that in-vehicle audio-based warnings330
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Algorithm 2 Hotspot Classification Pseudocode

assignHotspotContext(H, D)

associativeArray WhatTypeCount =

for each whatType T in dataset D initialise with 0

associativeArray WhyTypeCount =

for each whyType T in dataset D initialise with 0

associativeArray WhereTypeCount =

for each whereType T in dataset D initialise with 0

for each accident A in hotspot H

increment WhatTypeCount(whatType(A))

increment WhyTypeCount(whyType(A))

increment WhereTypeCount(whereType(A))

if maxCount(WhatTypeCount) > 50% sizeOf(H) then

set warning W of hotspot H to maxType(WhatTypeCount)

else if maxCount(WhyTypeCount) > 50% sizeOf(H) then

set warning W of hotspot H to maxType(WhyTypeCount)

else if maxCount(WhereTypeCount) > 50% sizeOf(H) then

set warning W of hotspot H to maxType(WhereTypeCount)

else set warning W of hotspot H to ‘General’

may be as effective as both audio and visual warning information combined [68].

Additionally, tactile warnings, e.g. vibrations delivered through the vehicle seat,

pedal or seat belt, have previously been provided to drivers [29]. However, it

was not possible to deliver tactile feedback in our study setting, and it would

have been difficult to control for whether the driver had disabled the audio of335

the smartphone. Thus, only visual warnings were implemented as part the DSS

in the research at hand.

Regarding visual warnings, the NHTSA released a guideline for the design of

crash warning devices [7]. The project reflects a review of the human factors as-

sociated with the implementation of such warning system interfaces. The lessons340

learned were then developed into guidelines for interface design. The highest ef-

ficiency was achieved by the choice of a discrete display, providing binary on-off

information, and symbol or icon based information. Additionally, the alphanu-

meric display type lead to poor results and is commented with “Only appropriate

13



Figure 2: Selection of accident hotspots identified through DBSCAN, accidents contributing

to the hotspot are shown in red

(a) Roundabout Hotspot (b) Pedestrian Crossing Hotspot

(c) Train Hotpspot (d) Rear-end Hotspot

for non-time-critical complex information”. Based on these design suggestions,345

the warning sign is primarily displayed with the additional non-time-critical

warning text below. Visual warnings are displayed on the smartphone DSS as

the driver approaches an accident hotspot, and remain until the area surround-

ing the hotspot is passed. As earlier warnings are more effective and greater

appreciated by drivers than late warnings, the warnings were shown up to 15350
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seconds before a driver encountered an accident hotspot [33, 34]. During times

that the warnings were not shown, the system displayed eco-driving feedback

to encourage use of the DSS. Figure 3 shows examples of the in-vehicle warning

intervention provided to the drivers when approaching an accident hotspot.

Figure 3: Two examples of the in-vehicle warning intervention shown to drivers approaching

an accident hotspot

(a) Pedestrian Crosswalk Warning (b) Dangerous Tunnel Warning

4. System Evaluation355

4.1. Participants

The impact of the in-vehicle warning system on users decision making while

driving was assessed through a four week field study of professional drivers,

travelling for approximately four hours per day in Switzerland. Each of the

drivers worked for the same company across a variety of locations, and all drove360

Chevrolet Captivas of similar make and model. During the four week period over

170,000km were driven using the system, with an average of 144km travelled per

driver per day. Of the 72 recruited participants, 57 actively drove during the field

study and provided demographic details, such as age and gender. Drivers were

randomly allocated to either the control group (N=27) or intervention group365

(N=30). Of these 57 participants, all were male and ranged from 21 to 64 years

of age. Using the same categories as previous accident analysis studies [39, 40],

the majority of drivers (45.61%) fall between the ages of 35-59 years, with a

mean of 40.3 and a median of 39 years of age.
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Since prior research indicates that a driver’s personality may impact driv-370

ing behaviour [55], the personality of the participants was measured in order

to control for these factors when assessing the effect of the DSS. Therefore, the

Big-Five-Inventory-10 (BFI-10) questionnaire [43], a short version of the well-

established Big-Five-Inventory (BFI) [20], was provided to the drivers. The

BFI-10 consists of 10 items to cover the five personality factors, Agreeableness,375

Consciousness, Extraversion, Neuroticism and Openness, each with two items

accordingly and measured on a Likert scale from 1 (very low) to 5 (very high).

Psychometric properties do not reach the quality of the original BFI, but de-

liver sufficient values. The short version of the questionnaire was chosen due

to restrictions on participant’s time and to avoid attrition. Table 1 provides an380

overview of the distribution of each of the Big Five personality traits among

the drivers. Existing research into the impact of driver personality on driving

behaviour shows that various Big Five traits can be linked to four identified

driving styles [55]. The results found correlations between ‘reckless’ and ‘an-

gry’ driving styles and high levels of Extraversion, and low Agreeableness and385

Conscientiousness. Additionally, high levels for Agreeableness and Conscien-

tiousness and Openness were correlated to the ‘careful’ driving style. Finally,

the ‘anxious’ driving style was linked to high Neuroticism.

Table 1: Distribution of Big Five personality traits among participants

Personality Trait Mean Standard Deviation Median Minimum Maximum

Agreeableness 2.85 0.65 3.00 1.00 4.50

Conscientiousness 3.51 0.70 3.50 2.00 5.00

Extraversion 2.91 0.76 3.00 1.50 4.50

Neuroticism 3.50 0.65 3.50 2.00 5.00

Openness 2.94 0.56 3.00 1.50 4.50

4.2. Field Study Description

Existing studies which measure the impact of in-vehicle warnings through390

simulation environments and controlled field studies made use of a variety of
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features to assess the effect of warnings on driver behaviour. These include

variables such as ‘minimum-time-to-collision’, the time left for a participant to

avoid a collision with another object [35]. However, as the system at hand is

tested in the field and does not warn of a specific upcoming object, but instead395

a historically hazardous location, many of these variables are unavailable to

us. For example, measuring number of collisions or braking reaction time [24] is

unsuitable, as the distance to other objects is unknown and there may be no need

for a change in the driver’s behaviour. As such, our dependent variable is the

effect of the warnings on potentially dangerous braking events incurred by the400

driver, which is a key result of decision making driving behaviour. As the DSS

encourages awareness of historically dangerous areas, drivers that receive the

intervention should be more alert and able to plan ahead more effectively [68].

Therefore, we hypothesise a drop in dangerous braking events.

There are several methods of detecting heavy braking which have been ex-405

plored in recent literature. A selection of studies have explored the insights

that can be gained through smartphone accelerometer data [21]. Unfortunately,

this option comes with difficulties, such as drivers interacting with the phone

during the journey, triggering high acceleration values and thus leading to false

positive events. Therefore, various studies have made use of data which can be410

extracted from the vehicle itself to measure driving activities. On-board diag-

nostics (OBD-II) standardised data have been widely used in research as it is

mandatory for all vehicles manufactured or sold in the USA from 1996. This

data gives insights into features such as vehicle speed, and has been used to

detect hazardous driving behaviour [19]. However, specific unstandardised data415

are available on the Controller Area Network (CAN) Bus of a variety of vehicles,

and gives deeper insights into a vehicle’s operation. For example, characteris-

tics of aggressive and calm driving have been identified with access to CAN Bus

data [22].

As such, we access the CAN Bus of the Chevrolet Captivas involved in420

the study via an OBD-II dongle. This dongle is paired via Bluetooth with

the smartphone in the vehicle. The smartphone then transmits the CAN Bus
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signals in real-time to a server. For the purpose of this analysis we capture

the braking behaviour from the vehicle’s longitudinal acceleration. The vehicle

speed is additionally collected, calculated from averaging each of the individual425

wheel speeds. Dangerous braking events have previously been categorised as

Low Danger, Dangerous and High Danger levels, based on thresholds of decel-

eration values [4]. Low Danger events are those where vehicle deceleration was

between 1.0-2.0m/s2, Dangerous events between 2.0-4.0m/s2 and High Danger

events as greater than 4.0m/s2. As the system provides warnings in historically430

hazardous locations, we expect a large portion of events to fall into the Low

Danger category. Therefore, we consider the deceleration events over 2.0m/s2,

capturing Dangerous and High Danger level braking events. Only in 0.28% of

the cases where a driver crossed an accident hotspot, more than one danger-

ous braking event occurred. Thus, a binary measure was applied to generate435

the dependant variable, i.e. whether or not one or more dangerous events were

experienced while the hotspot was encountered.

The evaluation was conducted through collecting vehicle sensor data during

times that the warning intervention was shown to the driver. In the case of the

control group, data were collected while the warning would have been shown, i.e.440

when drivers crossed an identified hotspot but no warning was shown. Along

with the sensor data, various other variables were collected which have been

shown to have an effect on the likelihood of a traffic accident occurring [39, 40].

These values include the time of day, the day of the week and the speed that the

vehicle was travelling when the hotspot was encountered. For comparison, these445

variables are categorised into bands on the basis of previous studies [39, 40].

As shown in Figure 4, we see that the majority of hotspots were encountered

travelling between 30-60km/h, with similar distributions between the control

and intervention group. Additionally, an incremental count was collected for

each driver every time they encountered each specific accident hotspot.450

Finally, erroneous observations of encountered hotspots were cleansed from

the dataset in certain situations, i.e. where there were issues with the sensors

in the vehicle and data were not collected. This led to a total of 24,419 observa-

18



Figure 4: Distribution of speed and number of hotspots for control and intervention groups
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tions of encountered hotspots; 10,683 in the control group where no intervention

was provided, and 13,736 in the intervention group where the location based ac-455

cident hotspot warnings were shown. Table 2 shows the top ten most commonly

encountered warning interventions across the study. Additionally, the number

of hotspots encountered are shown, as well as occurrences of one or more heavy

braking events, for both the control and intervention groups.

4.3. Analysis and Results460

We apply multilevel mixed-effects logistic regression [51] to account for the

impact of the individual drivers among the control and intervention groups. Our

dependent variable was a binary measure of whether one or more dangerous

braking events occurred while each accident hotspot was encountered. In the

following section, we discuss the regression results shown in Table 3.465

Firstly, in Model (1) the regression was run with only the independent vari-

able ‘warning’ capturing whether or not the warning intervention was provided

to the driver, and thus the difference between the control and intervention

groups. Here we do not see any significant impact of the warnings provided.

This indicates that when only comparing the braking behaviour between the470

control group and the intervention group, the occurrence of a warning had no

significant impact on driver safety. Thus, we are unable to confirm the imme-

diate positive effect of warnings as seen across many lab studies.
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Table 2: Hotspots encountered, and occurrences of one or more heavy braking events, between

control and intervention group, for top ten most commonly encountered warnings

Hotspot Warning Total Control Intervention

Sign Text Count Events Count Events Count Events

Disregarding Right of Way 4541 777 2135 384 2406 393

Dangerous Crossroad 4378 783 2022 354 2356 429

Rear-end Collisions 3532 375 1407 138 2125 237

Disregarding Traffic Light 2037 284 951 120 1086 164

Control Speed 1927 87 586 36 1341 51

Caution Dangerous Area 1471 112 803 60 668 52

Swerving Accidents 964 108 317 35 647 73

Disregarding Right of Way 931 200 438 101 493 99

Dangerous Roundabout 880 201 407 95 473 106

Caution Cyclists 689 112 342 59 347 53

OTHER 3069 349 1275 150 1794 199

TOTAL 24419 3388 10683 1532 13736 1856

Exploring this further in Model (2), we add to the previous analysis an

additional independent variable ‘number of warnings’. This variable describes475

the number of times a driver in the intervention group has been shown the

warning for a specific accident hotspot. This way we can explore the learning

effect that repeated warnings of the same area have on a driver. Instead of

linear effects of the number of warnings experienced, we expect the effectiveness

of repeated warnings to decrease with each additional warning experienced.480

Thus, in line with existing studies [39, 40], we examine the time effects of the
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Table 3: Binary Logistic Regression Odds Ratio and Significance. Dependent Variable: Oc-

currence of a Dangerous or High Danger Braking Event. N = 24,419

(1) (2) (3) (4) (5) (6) (7)

Warning 0.950 1.115 1.081 1.124 0.997 0.976 1.021

Number of Warnings 0.892*** 0.922** 0.892*** 0.891*** 0.921** 1.276

Speed (vs. 0-30 km/h)

30-60 km/h 2.008*** 2.035*** 2.031***

60-90 km/h 1.611*** 1.632*** 1.632***

90+ km/h 0.472*** 0.477*** 0.479***

Time of Day (vs. 00-05 h)

05-18 h 1.038 1.054 1.049

18-21 h 0.874 0.876 0.876

21-24 h 0.768 0.759 0.765

Day of Week (vs. Monday)

Tuesday 1.183* 1.212* 1.219*

Wednesday 1.078 1.102 1.108

Thursday 1.067 1.094 1.101

Friday 1.107 1.126 1.128

Saturday 0.959 0.970 0.976

Sunday 1.127 1.143 1.148

Driver Age (vs. 18-25)

25-35 0.781 0.718 0.734

35-59 0.803 0.717 0.714

59+ 0.895 0.813 0.830

Driver Personality

Agreeableness 0.913* 0.913* 0.954

Conscentiousness 1.038 1.034 1.023

Extraversion 1.001 0.996 1.006

Neurotiscism 1.046 1.049 1.037

Openness 0.974 0.986 0.985

Driver Age Interactions (vs. 18-25)

Number of Warnings × 25-35 0.930

Number of Warnings × 35-59 1.000

Number of Warnings × 59+ 0.978

Driver Personality Interactions

Number of Warnings × Agreeableness 0.944*

Number of Warnings × Conscentiousness 1.013

Number of Warnings × Extraversion 0.988

Number of Warnings × Neurotiscism 1.005

Number of Warnings × Openness 0.994

Constant 0.164*** 0.164*** 0.103*** 0.151*** 0.266** 0.158*** 0.128***

L1 error 0.354*** 0.350*** 0.338*** 0.353*** 0.324*** 0.314*** 0.317***

*p < 0.05, **p < 0.01, ***p < 0.001
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variable using a logarithmic transformation. Here we see that the number of

times a warning has been shown has a significant effect on dangerous braking

behaviour. This indicates that the more times a driver is exposed to the same

warning in a hazardous area, the more cautious he drives and the less likely he485

is to have a dangerous braking event. Overall this is a positive result, and shows

that the accident hotspot warning intervention has a significant learning effect

on driving behaviour over time, but not an immediate short-term one.

Various models were analysed to test whether the significance of the learning

effect of the in-vehicle warnings remained stable. As additional independent490

variables we also considered the speed that the vehicle was travelling when the

warning was shown, the time of day, day of week, driver age and each of the Big

Five personality traits of the driver. Incorporating the speed as a predictor into

Model (3), we see that the immediate warning effect continues to be insignificant,

and the learning effect remains. Additionally we observe significant variations495

in the likelihood of a heavy braking event based on the speed that an accident

hotspot was approached at. The stability of the learning effect was also tested

with temporal variables in Model (4), which have historically been found to

influence the rate of crashes [39]. Both time of day and day of week categorical

independent variables were incorporated into the regression model. The short-500

term warning continues to be insignificant, and the learning effect remains at the

same level as seen in Model (2). Overall, in contrast to previous studies, no time

of day category was more or less dangerous at a significant level when compared

to the ‘00 - 05 h’ category. The only significant temporal effect was comparing

the days of the week, Monday compared to Tuesday, where on Tuesday it was505

found to be more likely to encounter a dangerous braking event.

Various studies have shown the effect of a driver’s age and personality fac-

tors on driving related behaviour [55]. In order to incorporate this into our

model, we added age categories and personality information of the drivers in

Model (5). As with the other models, the short-term effect of the warnings510

remained insignificant and the learning effect remained significant at a similar

level to Models (2) and (4). Although investigating the effect of driver person-

22



ality on driving behaviour is not the primary aim of this paper, based on our

sample of drivers we are able to see a significant effect of Agreeableness reduc-

ing the likelihood of a dangerous braking event. This seems to confirm findings515

from a previous study [55], where low levels of Agreeableness are correlated to

‘reckless’ and ‘angry’ driving styles, and high levels correlate to ‘careful’ driving

behaviour.

Each of the additional independent variables discussed in Models (3), (4)

and (5) were merged into the combined Model (6). We continue to see the520

insignificant immediate effect of the intervention and the learning effect remains

stable across all the models, showing a reduction in the likelihood of a dangerous

braking event. The other significant effects discussed in the previous models also

remain in the fully merged model, and no new features become significant.

Existing evidence suggest that an individual’s characteristics, such as age525

and personality, are important variables which might affect the generalizability

of our findings, for example, in the form of moderators [52, 55, 58]. Thus, we

enhance Model (6) with interactions between the observed learning effect and

age, as well as personality. Specifically, the interactions between the ‘number

of warnings’ and driver age and personality variables were added to generate530

Model (7). Here we see that neither the learning effect nor the effect of Agree-

ableness remain significant. However, the interaction between the two is. This

interaction indicates that the learning effect we have identified is dependent on

an individual’s level of Agreeableness, where only those with reasonable levels

improve their driving behaviour due to the warnings provided by the system.535

5. Discussion, Limitations and Future Work

Summing up, we demonstrated in a large field study that in-vehicle warnings

of accident hotspots can have a significant improvement on driver behaviour over

time. However, we did not see an immediate positive or negative effect of the

warnings on dangerous braking behaviour of the drivers. When investigating540

generalizability on the basis of interactions, results indicate that the learning
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effect requires an adequate level of driver Agreeableness. The Agreeableness

personality trait is linked to characteristics such as cooperation and social har-

mony [20]. Hence, drivers who do not accept advice from an in-vehicle DSS (lack

of willingness to cooperate) or do not care or reflect that they might harm others545

(lack of social harmony) might not benefit from such a system. Thus, in order

to improve driver safety, future work should investigate the key determinants

of, and how to best facilitate, the learning effects of such in-vehicle warning

DSSs [5, 6]. Finally, although the impact of vehicle speed on the likelihood of

heavy braking events is not a focus of this paper, we find a significant effect550

in our data, which is similar to previous work that considers the influence of

velocity on the exposure-accident relationship [39]. In line with our findings, the

literature generally associates higher velocities with a greater risk of accident

involvement [1]. This is primarily due to larger stopping distances and reduced

manoeuvrability at higher speeds.555

The presented work has implications both for researchers and practition-

ers. From a research perspective, the learning effect we observe is well known

with regard to digital interventions. Similar long-term effects are seen in other

domains, such as health [6] and education [5], where significant effects are re-

ported the more often an intervention was triggered. Our results further confirm560

the importance of measuring personality traits when researching interventions

with DSSs. Personality traits have long been recognized as a strong predic-

tor of human decision-making outcomes [52]. However, research on real-time

feedback interventions have only recently considered the impact of personality

as a key factor in human behaviour [58]. Additionally, the results emphasize565

the importance of field research. The large effects that are often reported from

very controlled settings have to be verified under real-world conditions to en-

sure generalizability. For practitioners, the main implication of our results is

that accident hotspot warnings can improve driver and traffic safety over time.

Policy makers should seriously consider promoting in-vehicle DSSs, since such570

systems are lightweight, low cost and highly scalable [6]. Hence, they could

efficiently complement traditionally more complex and expensive approaches
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to improve traffic safety, such as changing hazardous road infrastructure. For

vehicle manufacturers and mobility solution providers the presented accident

hotspot warning could extend their portfolio of safety features and connected575

car services, both of which are increasingly important for car buyers’ purchase

decisions [62]. On a more general note, the interaction of Agreeableness and

the learning effect that we see in the results imply a call for action towards the

personalization of DSSs, as the effectiveness of DSS-based interventions vary ac-

cording to an individual’s characteristics [58]. However, measuring personality580

traits is inconvenient and often perceived as intrusive by the user [59]. As such,

one can either seek to identify the user’s personality unobtrusively, or rely on

the stable effect of the warnings over time and on the consumers’ self-selection.

The results of this study should be seen in the light of its limitations. The

system makes use of historical accident data from a national dataset, limiting585

the adaptation of this approach to regions with similar sources of information.

However, there is increasing work in identifying accident hotspots from near-miss

events detected through connected vehicles, thus removing the need for historical

data. Another key weakness is the homogeneity of the researched sample. The

participants who evaluated the system were all male and professional drivers.590

Their profession means that they are overall expected to be more experienced

and safer drivers, thus this sample may not be easily generalizable to regular

drivers. The proficiency of our sample of drivers, however, implies that we

are likely to have underestimated the effect of our solution, as there is more

potential to improve driving behaviour for more regular, less proficient drivers.595

Furthermore, this research is geared towards the development and validation of

an innovative artefact. In accordance with this goal and in conformance with

latest discussions in the scientific community [61], the paper does not focus on

theory. Future research should cover theoretical models of human behaviour to

further increase generalizability of the findings. Finally, the sample size of the600

study was fairly small, further studies should make use of a larger and more

diverse sample of drivers for more reliable and generalizable results.
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6. Conclusions

In-vehicle DSSs can encourage drivers to adapt their driving behaviour when

necessary, and have therefore been the focus of various research endeavours.605

Latest studies provide promising evidence that these systems can indeed have

significant positive effects on driving behaviour and collision avoidance. Going

beyond existing research, a complete in-vehicle DSS was designed and imple-

mented, which provides accident hotspot warnings to drivers based on location

analytics applied to a national historical accident dataset. The system was610

tested with 57 drivers in a field test covering over 170,000km. As such, the pa-

per at hand is among the first to bring research on in-vehicle DSSs and warnings

for drivers into the field in a realistic experimental setting.

Ultimately, we find that in-vehicle warnings of accident hotspots have a sig-

nificant improvement on driver behaviour over time. Thereby, we demonstrate615

that DSSs and design research can play a fruitful role in the field of connected

vehicles, a domain which has traditionally not been a core focus of DSSs and

information systems research. In addition, we find that positive intervention

effects are bound to drivers’ Agreeableness, i.e. drivers have to be willing to

“listen” to the in-vehicle DSS. Hence, future research should carefully reflect620

the role and impact of subjects’ Agreeableness. Moreover, we see a potential for

design science research to develop and validate effective strategies that help to

overcome technology adoption challenges, which are based on a lack of Agree-

ableness.

This research is highly relevant to both policy makers and industry play-625

ers, such as vehicle manufactures and insurances. Numerous hardware-based

vehicle safety systems have become mandatory in various countries through-

out the last decades, for example, air-bags and electronic stability programs.

Similarly, policy makers should now consider promoting data-driven in-vehicle

DSSs. Eventually, in-vehicle DSSs that have proven to prevent accidents could630

also be enforced by corresponding regulation. The automotive industry should

recognize that data-driven prevention services might be an effective means to
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address the distinct safety needs of consumers and form a basis for sustainable

competitive differentiation.

Finally, in contrast to existing lab experiments with very promising results,635

we were not able to confirm an immediate effect of warnings on driver behaviour.

This demonstrates the importance of building innovative artefacts and conduct-

ing experimental research in a realistic field setting. Thus, we see a strong need

for further field experiments with high resolution car data to confirm that in-

vehicle DSSs can deliver in diverse field situations.640
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[54] Szénási, S., & Jankó, D. (2016). A method to identify black spot candidates

in built-up areas. Journal of Transportation Safety & Security , (pp. 1–25).810

[55] Taubman-Ben-Ari, O., & Yehiel, D. (2012). Driving styles and their asso-

ciations with personality and motivation. Accident Analysis & Prevention,

45 , 416–422.

[56] Tey, L. S., Ferreira, L., & Wallace, A. (2011). Measuring driver responses at

railway level crossings. Accident Analysis and Prevention, 43 , 2134–2141.815

[57] Tey, L. S., Zhu, S., Ferreira, L., & Wallis, G. (2014). Microsimulation mod-

elling of driver behaviour towards alternative warning devices at railway

level crossings. Accident Analysis and Prevention, 71 , 177–182.

[58] Tiefenbeck, V., Goette, L., Degen, K., Tasic, V., Fleisch, E., Lalive, R.,

& Staake, T. (2016). Overcoming salience bias: How real-time feedback820

fosters resource conservation. Management Science, (p. mnsc.2016.2646).

33



[59] Tourangeau, R., & Yan, T. (2007). Sensitive questions in surveys. Psycho-

logical bulletin, 133 , 859.
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