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Fast Trajectory Optimization for Legged Robots
using Vertex-based ZMP Constraints

Alexander W. Winkler, Farbod Farshidian, Diego Pardo, Michael Neunert, Jonas Buchli

Abstract— This paper combines the fast Zero-Moment-Point
(ZMP) approaches that work well in practice with the broader
range of capabilities of a Trajectory Optimization formulation,
by optimizing over body motion, footholds and Center of
Pressure simultaneously. We introduce a vertex-based represen-
tation of the support-area constraint, which can treat arbitrarily
oriented point-, line-, and area-contacts uniformly. This general-
ization allows us to create motions such as quadrupedal walk-
ing, trotting, bounding, pacing, combinations and transitions
between these, limping, bipedal walking and push-recovery
all with the same approach. This formulation constitutes a
minimal representation of the physical laws (unilateral contact
forces) and kinematic restrictions (range of motion) in legged
locomotion, which allows us to generate diverse motions in less
than a second. We demonstrate the feasibility of the generated
motions on a real quadruped robot1.

I. INTRODUCTION

Planning and executing motions for legged systems is a
complex task. A central difficulty is that legs cannot pull on
the ground, e.g. the forces acting on the feet can only push
upwards. Since the motion of the body is mostly generated
by these constrained (=unilateral) contact forces, this motion
is also restricted. When leaning forward past the tip of your
tows, you will fall, since your feet cannot pull down to
generate a momentum that counteracts the gravity acting on
your Center of Mass (CoM). Finding motions that respect
these physical laws can be done by various approaches
described in the following.

A successful approach to tackle this problem is through
full-body Trajectory Optimization (TO), in which an op-
timal body- and endeffector-motion plus the appropriate
inputs are discovered to achieve a high-level goal. This was
demonstrated by [1]–[8] resulting in an impressive range
of motions for legged systems. These TO approaches have
shown great performance, but are often time consuming to
calculate and not straight-forward to apply on a real robot. In
[9] the authors generate an wide range of quadruped gaits,
transitions and jumps based on a parameterized controller
and periodic motions. While the resulting motions are similar
to ours, the methods are very different: While our approach
is based on TO with physical constraints, [9] optimizes
controller parameters based mainly on motion capture data.

Previous research has shown that to generate feasible
motions to execute on legged systems, non-TO approaches
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1Video of generated motions: https://youtu.be/5WLeQMBuv30.

also work well, although the motions cannot cover the range
of the approaches above. One way is to model the robot
as a Linear Inverted Pendulum (LIP) and keep the Zero-
Moment-Point (ZMP) [10] inside the convex hull of the feet
in stance. This approach has been successfully applied to
generate motions for biped and quadruped walking [11]–
[16]. However, these hierarchical approaches use predefined
footholds, usually provided by a higher-level planner be-
forehand that takes terrain information (height, slope) into
account. Although this decoupling of foothold planning and
body motion generation reduces complexity, it is unnatural,
as the main intention of the footholds is to assist the body to
achieve a desired motion. By providing fixed foot-trajectories
that the body motion planner cannot modify, constraints
such as stability or kinematic reachability become purely
the responsibility of the lower-level body motion planner,
artificially constraining the solution. A somewhat reverse
view of the above are Capture Point (CP) [17] approaches,
which have been successfully used to generate dynamic
trotting and push recovery motions for quadruped robots
[18], [19]. A desired body motion (usually a reference CoM
velocity) is given by a high-level planner or heuristic, and a
foothold/Center of Pressure (CoP) trajectory must be found
that generates it.

Because of the dependency between footholds and body
motion, approaches that optimize over both these quanti-
ties simultaneously, while still using a simplified dynamics
model, have been developed [20]–[25]. This reduces heuris-
tics while increasing the range of achievable motions, but
still keeps computation time short compared to full body
TO approaches. These approaches are most closely related
to the work presented in this paper.

The approaches [21]–[24] demonstrate impressive perfor-
mance on biped robots. One common difficulty in these
approaches however is the nonlinearity of the CoP constraint
with respect to the orientation of the feet. In [22], [23] the
orientation is either fixed or solved with a separate optimizer
beforehand. In [24] the nonlinearity of this constraint is
accepted and the resulting nonlinear optimization problem
solved. However, although the orientation of the individual
feet can be optimized over in these approaches, a combined
support-area with multiple feet in contact is often avoided, by
not sampling the constraint during the multi-support phase.
For biped robots neglecting the constraint in the double-
support phase is not so critical, as these take up little time
during normal walking. For quadruped robots however, there
are almost always two or more feet in contact at a given time,
so the correct representation of the dynamic constraint in this
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phase is essential.
We therefore extend the capabilities of the approaches

above by using a vertex-based representation of the CoP
constraint, instead of hyperplanes. In [26] this idea is briefly
touched, however the connection between the corners of
the foot geometry and the convexity variables is not made
and thereby the restriction of not sampling in the multi-
support phase remains. Through our proposed formulation,
single- and multi-stance support areas can be represented for
arbitrary foot geometry, including point-feet. Additionally,
it allows to represent arbitrarily oriented 1D-support lines,
which wasn’t possible with the above approaches. Although
not essential for biped walk on non-point feet, it is a core
necessity for dynamic quadruped motions (trot, pace, bound).
This is a reason why ZMP-based approaches have so far only
been used for quadrupedal walking, where 2D-support areas
are present.

The approach presented in this paper combines the LIP-
based ZMP approaches that are fast and work well in practice
with the broader range of capabilities of a TO formulation.
A summary of the explicit contributions with respect to the
papers above are:

• We reformulate the traditional ZMP-based legged lo-
comotion problem [11] into a standard TO formulation
with the CoP as input, clearly identifying state, dynamic
model and path- and boundary-constraints, which per-
mits easier comparison with existing methods in the TO
domain. Push recovery behavior also naturally emerges
from this formulation.

• We introduce a vertex-based representation of the CoP
constraint, instead of hyperplanes. which allows us to
treat arbitrarily oriented point-, line-, and area-contacts
uniformly. This enables us to generate motions that
are difficult for other ZMP-based approaches, such as
bipedal walk with double-support phases, point-feet
locomotion, various gaits as well as arbitrary combi-
nations and transitions between these.

• Instead of the heuristic shrinking of support areas, we
introduce a cost term for uncertainties that improve the
robustness of the planned motions.

We demonstrate that the problem can be solved for multiple
steps in less than a second to generate walking, trotting,
bounding, pacing, combinations and transitions between
these, limping, biped walking and push-recovery motions for
a quadruped robot. Additionally, we verify the physically
feasibility of the optimized motions through demonstration
of walking and trotting on a real 80 kg hydraulic quadruped.

II. METHOD

A. Physical Model

We model the legged robot as a Linear Inverted Pendulum
(LIP), with its CoM c=(cx, cy) located at a constant height
h. The touchdown position of the pendulum with the ground
(also known as ZMP or CoP) is given by u=(ux, uy) as
seen in Fig. 1. The CoM acceleration c̈ is predefined by the

Fig. 1. Modeling of a quadruped robot by a LIP with the right-front pRF
and left-hind pLH legs in contact. Through joint torques the robot can
control the center of pressure u and thereby the motion of the CoM c̈.
However, u can only lie inside the convex hull (green line) of the contact
points.

physics of a tipping pendulum[
ċ
c̈

]
= f(x,u) =

[
ċ

(c− u)gh−1

]
. (1)

The second-order dynamics are influenced by the CoM
position c, the CoP u and gravity g. This model can be
used to describe a legged robot, since the robot can control
the torques in the joints, thereby the contact forces and
through these the position of the CoP. Looking only at the
x-direction (left image in Fig. 1), if the robot decides to
lift the hind leg, the model describing the system dynamics
is a pendulum in contact with the ground at the front foot
pRF , so u=pRF =(px, py). Since this pendulum is nearly
upright, the CoM will barely accelerate in x; the robot is
balancing on the front leg. However, lifting the front leg can
be modeled as placing the pendulum at u = pLH , which
is strongly leaning and thereby must accelerate forward in
x. By distributing the load between the legs, the robot can
generate motions corresponding to a pendulum anchored
anywhere between the contact points, e.g. u ∈ P (see Fig. 1).
Therefore, the CoP u is considered the input to the system
and an abstraction of the joint torques and contact forces.

B. Trajectory Optimization Problem

We want to obtain the inputs u(t) that generate a motion
x(t) from an initial state x0 to a desired goal state xT
in time T for a robot described by the system dynamics
f(x,u), while respecting some constraints h(x,u) ≤ 0 and
optimizing a performance criteria J . This can be formulated
as a continuous-time TO problem

find x(t),u(t), for t ∈ [0, T ] (2a)
subject to x(0)− x0 = 0 (given initial state) (2b)

ẋ(t)− f(x(t),u(t)) = 0 (dynamic model) (2c)
h(x(t),u(t)) ≤ 0 (path constraints) (2d)
x(T )− xT = 0 (desired final state) (2e)
x(t),u(t) = arg min J(x,u). (2f)

The dynamics are modeled as those of a LIP (1), whereas
the state and input for the legged system model are given by

x(t) =
[
c ċ p1, α1, . . . ,pnf , αnf

]T
(3)

u(t) = u, (4)



which includes the CoM position and velocity and the
position and orientation of the nf feet. The input u(t) to
move the system is the generated CoP, abstracting the usually
used contact forces or joint torques.

C. Specific Case: Capture Point

We briefly show that this general TO formulation, using
the LIP model, also encompasses Capture Point methods to
generate walking motions. Consider the problem of finding
the position to step with a point-foot robot to recover from a
push. With the initial position c0 and the initial velocity ċ0
generated by the force of the push we have x0 =(c0, ċ0).
The robot should come to, and remain, at a stop at the
end of the motion, irrespective of where and when, so we
have ċT→∞=0. We parametrize the input by the constant
parameter u(t)=u0, as we only allow one step with a point-
foot. We allow the CoP to be placed anywhere, e.g. no path
constraints (2d) and do not have a preference as to how the
robot achieves this task, e.g. J(x,u)=0.

Such a simple TO problem can be solved analytically,
without resorting to a mathematical optimization solver (see
Appendix A). The point on the ground to generate and hold
the CoP in order to achieve a final steady-state maintaining
zero CoM velocity becomes

u(t) = u0 = c0 +
√
hg−1ċ0. (5)

This is the one-step Capture Point (CP), originally derived
by [17] and the solution of our general TO formulation (2)
for a very specific case (e.g one step/control input, zero final
velocity).

D. General Case: Legged Locomotion Formulation

Compared to the above example, our proposed formulation
adds the capabilities to represent motions of multiple steps,
time-varying CoP, physical restrictions as to where the CoP
can be generated and preferences which of the feasible
motions to choose. This TO formulation is explained on a
high-level in the following, corresponding to Fig. 2, whereas
more specific details of the implementation are postponed to
the next section.

1) Unilateral Forces: We clearly differentiate between the
CoP u and the feet positions pf , which only coincide for
a point-foot robot with one leg in contact. Generally, the
footholds affect the input bounds of u. We use u to control
the body, but must at the same time choose appropriate
footholds to respect the unilateral forces constraint. Tradi-
tional ZMP approaches fix the footholds pf in advance, as
the combination of both the CoP u and the footholds make
this constraint nonlinear. We accept this nonlinearity and the
higher numerical complexity associated with it. This gives
us a much larger range of inputs u, as we can “customize”
our bounds P by modifying the footholds according to the
desired task. Therefore, the first path constraint of our TO
problem is given by

h1(x(t),u(t)) ≤ 0 ⇔ u ∈ P(pf , αf , cf ), (6)

Fig. 2. Overview of the TO problem: A point-foot quadruped robot
trotting forward in x-direction, first swinging right-front and left-hind legs
f ∈ {RF,LH}, then left-front and right-hind f ∈ {LF,RH}. The CoM
motion cx (black line) is generated by shifting the CoP ux(t) (red dots).
However, ux can only lie in the convex hull P (green area) of the legs in
contact at that time t. Additionally, the position of each leg pf must always
be inside its range of motion R (gray areas for front and hind legs) relative
to the CoM. The optimization problem consist of varying the position of
the footholds pfs ∈ R, to allow inputs ux ∈ P that drive the robot from
an initial position cx,0 to a desired goal position cx,T in time T .

where P represents the convex hull of the feet in contact as
seen in Fig. 2 and cf ∈ {0, 1} ∈ Z is the indicator if foot f
is in contact.

We implement this convex hull constraint by weighing
the vertices/corners of each foot in contact. This extends
the capabilities of traditional representations by line seg-
ments/hyperplanes to also model point- and line-contacts of
arbitrary orientation. We use predefined contact sequences
and timings cf (t), to only optimize over real-valued decision
variables w ∈ R and not turn the problem into a mixed-
integer Nonlinear Programming Problem (NLP). Simply by
adapting this contact schedule cf (t), the optimizer generates
various gaits as well as combinations and transitions between
these, for which previously separate frameworks were nec-
essary.

2) Kinematic Reachability: When modifying the
footholds to enclose the CoP, we must additionally ensure
that these stay inside the kinematic range R of the legs
(Reachability). This constraint that depends on both the
CoM c and foothold positions pf is formulated for every
leg f as

h2(x(t)) ≤ 0 ⇔ pf ∈ R(c). (7)

Allowing the modification of both these quantities simulta-
neously characterizes the legged locomotion problem more
accurately and reduces heuristics used in hierarchical ap-
proaches.

3) Robust Motions: With the above constraints the motion
will comply to physics and the kinematics of the system. This
feasible motion is assuming a simplified model, a perfect
tracking controller and an accurate initial state. To make
solutions robust to real world discrepancies where these
assumptions are violated, it is best to avoid the borders of
feasible solutions, where the inequality constraints are tight
(h=0). This can be achieved by artificially shrinking the
solutions space by a stability margin (e.g. h≤m). For legged
locomotion this is often done by shrinking the support area



to avoid solutions were the CoP is placed at the marginally-
stable border [13].

We do not restrict the solution space, but choose the more
conservative of the feasible motions through a performance
criteria Jλ. This soft constraint expresses “avoid boundaries
when possible, but permit if necessary”. The robot is allowed
to be at marginally stable states, but since there are many
uncertainties in our model and assumptions, it is safer to
avoid them. This cost does not require a hand-tuned stability
margin and the solution can still be at the boundaries
when necessary. However, especially for slow motions (e.g.
walking) where small inaccuracies can accumulate and cause
the robot to fall, this cost term is essential to generate robust
motions for real systems.

III. IMPLEMENTATION

There exist different methods to solve Optimal Control
problems (2), namely Dynamic Programming (Bellman Op-
timality Equation), indirect (Maximum Principle) and direct
methods [27]. In direct methods the continuous time TO
problem is represented by a finite number of decision vari-
ables and constraints and solved by a nonlinear programming
solver. If the decision variables w fully describe the input
u(t) and state x(t) over time, the method is further classified
as a simultaneous direct method, with flavors Direct Tran-
scription and Multiple Shooting. In our approach we chose
a Direct Transcription formulation, e.g. optimizing state and
controls together. This has the advantage of not requiring
an ODE solver, constraints on the state can be directly
formulated and the sparse structure of the Jacobian often
improves convergence. The resulting discrete formulation to
solve the continuous problem in (2) is given by

find w = (wc,wp,wu)

subject to (2b), (given initial state)
(10), (12), (15), (19) (dyn./path constraints)
(2e), (desired final state)
w = arg min(21), (robustness cost)

where wc are the parameters describing the CoM motion, wp

the feet motion (swing and stance) and wu the position of
the CoP. This section describes in detail how we parametrize
the state (wc,wp) and input wu, formulate the constraints
and defined the cost (21).

A. Center-of-Mass Motion

This section explains how the continuous motion of the
CoM can be described by a finite number of variables
to optimize over, while ensuring compliance with the LIP
dynamics.

1) CoM Parametrization: The CoM motion is described
by a spline, strung together by n quartic-polynomials as

x(t) =

[
c(t)
ċ(t)

]
=

4∑
i=1

[
(t−tk)
i

]
ak,i(t−tk)i−1 +

[
ak,0
0

]
(8)

wc =
[
a1,0, . . . ,a1,4, . . . ,an,0, . . . ,an,4

]
, (9)

with coefficients ak,i ∈ R2 and tk describing the global time
at the start of polynomial k.

We ensure continuity of the spline by imposing equal
position and velocity at each of the n−1 junctions between
polynomial k and k + 1, so x[t−k+1] = x[t+k+1]. Using
Tk = tk+1−tk we enforce

4∑
i=1

[
Tk
i

]
ak,iT

i−1
k +

[
ak,0
0

]
=

[
ak+1,0

ak+1,1

]
. (10)

2) Dynamic Constraint: In order to ensure consistency
between the parametrized motion and the dynamics of the
system (1), the integration of our approximate solution c̈(t)
must resemble that of the actual system dynamics, so∫ tk+1

tk

c̈(t) dt ≈
∫ tk+1

tk

f2(x(t),u(t)) dt. (11)

Simpson’s rule states that if c̈(t) is chosen as a 2nd-order
polynomial (which is why c(t) is chosen as 4th-order) that
matches the system dynamics f2 at the beginning, the center
and at the end, then (11) is bounded by an error proportional
to (tk+1 − tk)4. Therefore we add the following constraints
for each polynomial

c̈[t] = f2(x[t],u[t]), ∀t ∈
{
tk,

tk+1−tk
2 , tk+1

}
(12)

(see Appendix B for a more detailed formulation). By
keeping the duration of each polynomial short (∼50 ms), the
error of Simpson’s integration stays small and the 4th-order
polynomial solution c(t) is close to an actual solution of the
Ordinar Differential Equation (ODE) in (1).

This formulation is similar to the ”collocation” constraint
[28]. Collocation implicitly enforces the constraints (12) at
the boundaries through a specific parametrization of the poly-
nomial, while the above formulation achieves this through
explicit constraints in the NLP. Reversely, collocation en-
forces that ∂c(t)∂t = ċ(t) through the explicit constraint, while
our formulation does this through parametrization in (8).

B. Feet Motion
1) Feet Parametrization: We impose a constant position

pfs ∈ R2 and orientation αfs ∈ R if leg f is in stance. We
use a cubic polynomial in the ground plane to move the feet
between two consecutive contacts[

pf (t)
αf (t)

]
=

3∑
i=0

[
afs,i
bfs,i

]
(t− ts)i, (13)

where (t− ts) is the elapsed time since the beginning of
the swing motion. The vertical swingleg motion does not
affect the NLP and is therefore not modeled. The coefficients
as,i ∈ R2 and bs,i ∈ R are fully determined by the prede-
fined swing duration and the position and orientation of the
enclosing contacts

{
pfs , α

f
s

}
and

{
pfs+1, α

f
s+1

}
. Therefore

the continuous motion of all nf feet can be parametrized by
the NLP decision variables

wp =
[
w1
p, . . . ,w

nf
p

]
,

where wf
p =

[
pf1 , α

f
1 , . . . ,p

f
ns
, αfns

] (14)

are the parameters to fully describe the motion of a single
leg f taking ns steps.



RoM Right Foot(R)

RoM Left Foot (L)

Fig. 3. Top down view of a biped for both feet in contact at pR,pL ∈ R
inside the range of motion R (gray), which moves with the CoM position.
For square feet with corners vv , rotated by α, the support area is shown by
P (light green area). This is the area to which the CoP u is constrained. If
the biped controls its CoP to lie on the tip of the right foot, the corresponding
corner carries all the load (λR1 = 1.0), while the other seven lambdas are
zero. In case of point-feet the support area is simply a straight line between
pR and pL.

2) Range-of-Motion Constraint: To ensure a feasible
kinematic motion, we must enforce pf ∈ R(c), which is
the gray area in Fig. 3. We approximate the area reachable
by each foot through a rectangle [−rx,y, rx,y], representing
the allowed distance that a foot can move from its nominal
position pfnom (center of gray area). The foothold position
for each foot f is therefore constrained by

−rx,y < pf [t]− c[t]− pfnom < rx,y. (15)

Contrary to hierarchical approaches, this constraint allows
the optimizer to either move the body to respect kinematic
limits or place the feet at different positions. A constraint on
the foot orientation can be formulated equivalently.

C. Center of Pressure Motion

To represent the continuous CoP trajectory, we parame-
terize it through the load carried by each endeffector. This
parametrization is used to formulate a novel convexity con-
straint based on vertices instead of hyperplanes. Finally this
section introduces a cost that keeps the CoP from marginally
stable regions and improves robustness of the motion.

1) CoP Parametrization: The CoP u(t) is not
parametrized by polynomial coefficients or discrete
points, but by the relative load each corner of each foot is
carrying. This load is given by

λ(t) =
[
λ1(t), . . . ,λnf (t)

]T
,

where λf (t) =
[
λf1 (t), . . . , λfnv

(t)
]
∈ [0, 1]

nv .
(16)

nv represents the number of vertices/corners of foot f . For
the square foot in Fig. 3, four lambda values represent one
foot and distribute the load amongst the corners. These
multipliers represent the percentage of vertical force that
each foot is carrying, e.g. ||λf (t)||1 = 0.9 implies that leg f
is carrying 90% of the weight of the robot at time t. Using
these values, the CoP is parameterized by

u(t) =

nf∑
f=1

nv∑
v=1

λfv (t)(pf (t) + R(αf (t))vv), (17)

where R(αf ) ∈ R2×2 represents the rotation matrix cor-
responding to the optimized rotation αf of foot f (13).
vv represents the fixed position (depending on the foot
geometry) of corner v of the foot expressed in the foot
frame. For a point-foot robot with vv=0, (17) simplifies
to u =

∑nf

f=1 λ
fpf .

We represent λ(t) for the duration of the motion by
piecewise-constant values λi = λ(ti) discretized every
20 ms, resulting in nu nodes. Therefore the CoP u can be
fully parameterized by wp and the additional NLP decision
variables

wu =
[
λ1, . . . ,λnu

]
. (18)

2) Unilateral Forces Constraint: We represent the essen-
tial input constraint (6), which ensures that only physically
feasible forces inside the convex hull of the contacts are
generated, for i = 1, . . . , nu as

‖λi‖1 = 1, (19a)

0 ≤ λfv [ti] ≤ cf [ti], (19b)

where cf ∈{0, 1}∈Z is the indicator if foot f is in
contact. The constraints (17) and (19a) allow u to be located
anywhere inside the convex hull of the vertices of the current
foot positions, independent of whether they are in contact.
However, since only feet in contact can actually carry load,
(19b) enforces that a leg that is swinging (cf =0) must have
all the corners of its foot unloaded. These constraints together
ensure that the CoP lies inside the green area shown in Fig. 3.

3) Robust Walking Cost: To keep the CoP away from the
edges of the support-area we could constrain λfv of each leg
in stance to be greater than a threshold, causing these legs in
contact to never be unloaded. This conceptually corresponds
to previous approaches that heuristically shrink support areas
and thereby reduce the solution-space for all situations. We
propose a cost that has similar effect, but still permits the
solver to use the limits of the space if necessary.

The most robust state to be in, is when the weight of the
robot is equally distributed amongst all the corners in contact,
so

λf∗v (t) =
cf (t)

nv(t)
, (20)

where nv(t) = nv
∑nf

f=1 c
f (t) is the total number of vertices

in contact at time t, predefined by the contact sequence c(t).
This results in the CoP to be located in the center of the
support areas. The deviation of the input values from the
optimal values λ∗ over the entire discretized trajectory (18)
is then given by

Jλ(wu) =

nu∑
i=1

‖λi − λ∗i ‖
2
2 . (21)

For a support triangle (λf∗v = 1
3 ) this cost tries to keep the

CoP in the center and for a line (λf∗v = 1
2 ) in the middle.

For quadruped walking motions this formulation generates a
smooth transition of the CoP between diagonally opposite
swing-legs, while still staying away from the edges of
support-areas whenever possible.
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Fig. 4. The controller that generates the required torques to execute a
planned motion. Given the current state of the system x0 and a user defined
goal state xT , the optimizer generates a reference motion. We augment this
reference through a body feedback acceleration based on how much the body
deviates from the desired motion. Inverse dynamics is used to generate the
torques to achieve the reference base and joint accelerations.

IV. TRACKING THE MOTION

The motion optimization part of our approach is largely
robot independent. The only robot specific information
needed to run the framework are the robot height, the
number of feet, their geometry and their kinematic range. For
execution however, the optimized motion must be translated
into joint torques τ using a fully-body dynamics model. This
section discusses this generation summarized by Fig. 4.

A. Generating full-body reference accelerations

The 6–Degrees of Freedom (DoF) base pose is recon-
structed using zero desired orientation (in Euler angles x,y,z),
the optimized CoM motion c (assuming the geometric center
of the base coincides with the CoM), and the constant base
height h as

qb,ref (t) =
[
0 0 0 cx(t) cy(t) h

]T
.

In order to cope with uncertainties it is essential to incor-
porate feedback into the control loop. We do this by adding
an operational space PD-controller on the base that creates
desired 6D base accelerations according to

q̈b,ref = q̈b,ff +Kp(qb − qb,ref ) +Kd(q̇b − q̇b,ref ).

The derivate of the pose, the base twist q̇b ∈ R6 represents
the base angular and linear velocities and q̈b,ff is the
optimized CoM acceleration from the NLP. This controller
modifies the planned body motion if the current state devi-
ation from the reference state.

In order to obtain the desired joint accelerations that
correspond to the planned Cartesian motion of the feet we
can use the relationship p̈(t) = Jq̈ + J̇q̇, where q̇, q̈ ∈
R6+n represent the full body state (base + joints) and
J =

[
Jb Jj

]
∈ R3nf×(6+n) the Jacobian that maps full-

body velocities to linear foot velocities in world frame.
Rearranging this equation, and using the Moore–Penrose
pseudoinverse J+

j , gives us the reference joint acceleration

q̈j,ref = J+
j

(
p̈− J̇q̇− Jbq̈b,ref

)
. (22)

B. Inverse Dynamics

The inverse dynamics controller is responsible for gen-
erating required joint torques τ to track the reference ac-
celeration q̈ref , which is physically feasible based on the
LIP model. This is done based on the rigid body dynamics

model of the system, which depends on the joint torques,
but also the unknown contact forces. To eliminate the contact
forces from the equation, we project it into the space of joint
torques by P = I−J+

c Jc, where JTc is the contact Jacobian
that maps Cartesian contact forces to joint torques [29], [30].
This allows us to solve for the required joint torques through

τ = (PST )+ P(Mq̈ref + C), (23)

where M is the joint space inertia matrix, C the effect
of Coriolis forces on the joint torques and S the selection
matrix which prohibits from actuating the floating base state
directly. We found it beneficial to also add a low-gain PD-
controller on the joint position and velocities. This can
mitigate the effects of dynamic modeling errors and force
tracking imperfections.

V. RESULTS

We demonstrate the performance of this approach on the
hydraulically actuated quadruped robot HyQ [31]. The robot
weighs approximately 80 kg, moves at a height of about
0.6 m and is torque controlled. Base estimation [32] is per-
formed on-board, fusing Inertial Measurement Unit (IMU)
and joint encoder values. Torque tracking is performed at
1000 Hz, while the reference position, velocity and torque
set-points are provided at 250 Hz. The C++ dynamics model
is generated by [33].

A. Discussion of generated motions

This section analyses the different motions generated by
changing the sequence and timings of contacts c(t). There
is no high-level footstep planner; the footholds are chosen
by the optimizer to enable the body to reach a user de-
fined goal state xT . The results where obtained using C++
code interfaced with Interior Point Method (Ipopt [34]) or
Sequential Quadratic Programming (Snopt [35]) solvers on
an Intel Core i7/2.8 GHz Quadcore laptop. The Jacobians
of the constraint and the gradient of the cost function are
provided to the solver analytically, which is important for
performance. We initialize the decision variables w with the
quadruped standing in default stance for a given duration.
The shown motions correspond to the first columns (e.g. 16
steps) in Table I. The reader is encouraged to view the video2,
as it very intuitively demonstrates the performance of this
approach. Apart from the basic gaits, the video shows the
capability of the framework to generate gradual transitions
between them, bipedal walking, limping and push-recovery.

1) Walk: Fig. 5(a) shows a walk of multiple steps, with
the two support areas highlighted for swinging RF→LH. The
effect of the cost term Jλ is clearly visible, as the CoP is
accumulated away from the support area borders by left-
right swaying of the body. Only when switching diagonally
opposite legs the CoP lies briefly at the marginally stable
border, but then immediately shifts to a more conservative
location. Without the cost term, the CoM motion is a straight
line between x0 and xT , causing the real system to fail.

2Video of generated motions: https://youtu.be/5WLeQMBuv30.

https://youtu.be/5WLeQMBuv30


(a) Quadruped Walk: swinging one leg at a time.

(b) Quadruped Trot: swinging diagonally opposite legs.

(c) Quadruped Pace: swinging left, then right legs.

(d) Quadruped Bound: swinging front, then hind legs.

Fig. 5. Top down view of the generated motions for a quadruped robot
moving from left to right, swinging the legs f left-hind (blue), left-front
(purple), right-hind (brown), right-front (green) in the sequence shown. The
initial stance is shown by the squares, the optimized steps by the circles. The
CoM motion pf (t) is shown by the solid line, where the color corresponds
to the swingleg(s) at that moment. If all legs are in contact during, the
motion and corresponding CoP is shown in gray. The support area for each
phase is shown by the transparent areas. The optimized CoP positions u(t)
that drive the system are shown in red and always lie inside the support
area.

2) Trot: Fig. 5(b) shows a completely different pattern
of support areas and CoP distribution. During trotting only
line-contacts exist, so the possible places to generate the
CoP is extremely restricted compared to walking. Notice
how the CoP lies close to the CoM trajectory during the
middle of the motion, but deviates quite large back/forward
during the start/end of the motion (e.g. the robot pushing
off from the right-front (green) leg in the second to last
step). This is because the distance between the CoP and the
CoM generates the acceleration necessary for starting and
stopping, whereas in the middle the robot is moving with
nearly constant velocity.

3) Pace/Bound/Biped Walk: Specifying legs on the same
side to be in contact, with a short four-leg transition period
between them produces the motion shown in Fig. 5(c). This
can also be viewed as biped walking with line-feet (e.g. skis),
with the constraint enforced also during the double-stance
phase. The first observation is the sideways swaying motion

TABLE I
SPECS OF THE NLP FOR 16- AND 4-STEP MOTIONS

(16 steps, 1m) | (4 steps, 0.2m)

Walk Trot Pace Bound

Horizon T [s] 6.4 | 1.6 2.4 | 0.6 3.2 | 0.8 3.2 | 0.8
Variables [-] 646 | 202 387 | 162 1868 | 728 1868 | 728
Constraints [-] 850 | 270 548 | 255 2331 | 939 2331 | 939
tk+1 − tk [s] 0.1 0.05 0.02 0.02
Cost term Jλ - - -

Time Ipopt [s] 0.25 | 0.06 0.02 | 0.01 0.21 | 0.12 0.17 | 0.04
Time Snopt [s] 0.35 | 0.04 0.04 | 0.01 0.54 | 0.18 0.42 | 0.29

of the CoM. This is necessary because the support areas do
not intersect (as in the trot) the CoM trajectory. Since the
CoP always lies inside these left and right support areas,
they will accelerate the body away from that side until the
next step, which then reverses the motion. We found that
the LIP model with fixed zero body orientation does not
describe such a motion very well, as the inherent rotation
(rolling) of the body is not taken into account. In order to
also demonstrate these motions on hardware, the LIP model
must be extended by the angular body motion. Specifying the
front and hind legs to alternate between contact generates a
bound Fig. 5(d). The lateral shifting motion of the pace is
now transformed to a forward backward motion of the CoM
due to support areas. In case of an omni directional robot a
bounding gait can simply be considered a side-ways pace.

VI. CONCLUSION

This paper presented a TO formulation using vertex-based
support-area constraints, which enables the generation of a
variety of motions for which previously separate methods
were necessary. In the future, more decision variables (e.g.
contact schedule, body orientation, foothold height for un-
even terrain), constraints (e.g. friction cone, obstacles) and
more sophisticated dynamic models can be incorporated into
this formulation. Additionally, we plan to utilize the speed
of the optimization for Model Predictive Control (MPC).

APPENDIX

A. Derivation of Capture Point

Consider the differential equation describing a LIP (linear,
constant coefficients, second order) in x-direction

c̈(t)− g

h
c(t) = − g

h
u (24)

The general solution to the homogeneous part of the equation
can be construct by the Ansatz c(t) = eαt which leads to
the characteristic equation α2eαt − g

he
αt = 0, resulting in

α = ±
√

g
h . Assuming constant input u0 leads to the partial

solution cp(t) = u0, and the space of solutions for the entire
ODE is given by

c(t) = β1e
αt + β2e

−αt + u0 (25)

where β1, β2 ∈ R are the free parameters describing the
motion. Imposing the initial position c(0) = β1 +β2 +u0

!
=



c0 and velocity ċ(0) = αβ1 − αβ2
!
= ċ0 we obtain

β1,2 =
1

2
(c0 ±

ċ0
α
− u0). (26)

As t → ∞ we require the velocity ċ(t) to remain
at zero (pendulum at rest). With α 6= 0 follows that
limt→∞ e−αt = 0, so we must only ensure

lim
t→∞

ċ(t) = αβ1 lim
t→∞

eαt
!
= 0 ⇔ β1 = 0 (27)

(26)⇒ u0 = c0 + α−1ċ0, (28)

which is known as the one-step Capture Point originally
derived in [17].

B. Dynamic Constraint

The system dynamics constraint (11) enforced through
c̈[t] = f2(x[t],u[t]), with the local polynomial time

¯
t=(t− tk), are formulated as

c̈[t] =

4∑
i=2

i(i− 1)ak,i
¯
ti−2 =

g

h
(c(t)− u(t))

⇔
4∑
i=2

ak,i
¯
ti−2

(
i(i− 1)− g

h¯
t2
)

=
g

h
(ak,0 + ak,1

¯
t− u(t)).
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