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Instead of fearing wrong predictions, we look eagerly for them;
it is only when predictions based on our present knowledge fail
that probability theory leads us to fundamental new knowledge.

� Edwin T. Jaynes

Men fear thought as they fear nothing else on earth � more
than ruin, more even than death. Thought is subversive and
revolutionary, destructive and terrible, thought is merciless
to privilege, established institutions, and comfortable habits;
thought is anarchic and lawless, indi�erent to authority, care-
less of the well-tried wisdom of the ages. Thought looks into
the pit of hell and is not afraid. . .Thought is great and swift
and free, the light of the world, and the chief glory of man.

� Bertrand Russell
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Abstract

Data assimilation consists in estimating the state of a system, for exam-
ple the atmosphere in numerical weather prediction (NWP), by combining
information coming from the dynamical laws of the system with a stream
of observations. Because of the presence of observational noise and uncer-
tainty in the initial conditions, a probabilistic instead of a deterministic
approach is to be preferred. The goal is thus to estimate the time evo-
lution of the distribution of the system state conditioned on all the past
observations. Ensemble data assimilation methods, such as the ensemble
Kalman �lter (EnKF), solve this problem by representing the distribution
of the state with a �nite sample of particles which follow the dynamical
laws of the system.

What makes data assimilation for geophysical applications particularly
challenging is that the dimension of the state to estimate is extremely
high (order of 108), while the ensemble size is limited to less than 100 due
to heavy computational costs. At the same time, the increasing resolution
of the physical models makes Gaussian assumptions, on which the EnKF
relies, less and less valid. In the present thesis we propose extensions to
the ensemble Kalman particle �lter (EnKPF), a hybrid algorithm which
relaxes some of the Gaussian assumptions by combining the EnKF with
the particle �lter (PF). The goal of these extensions is to make the EnKPF
suitable for very high-dimensional applications.

The �rst contribution consists in proposing two localized versions of the al-
gorithm: the naive-LEnKPF and the block-LEnKPF. The naive-LEnKPF,
similar to the local EnKF (LEnKF), works by assimilating data in local
windows and then patching the results together. It has the advantage to
be simple and e�cient, but it does not address the issue of discontinuities
introduced by the PF part of the algorithm. The block-LEnKPF, on the
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other hand, assimilates the observations by blocks and limits their in�u-
ence to a local area while smoothing out the introduced discontinuities.
Both local EnKPFs are applied to an arti�cial model of cumulus convec-
tion of medium dimensionality. The results of the numerical experiments
show that the new algorithms perform at a similar level to the LEnKF,
and bring some noticeable improvements for non-Gaussian variables such
as the precipitation �eld.

The second main contribution of this thesis is to propose a new algorithm,
the ensemble transform Kalman particle �lter (ETKPF). It is based on a
reformulation of the EnKPF in ensemble space, which allows it to be easily
and e�ciently implemented in an existing full-scale NWP data assimila-
tion framework. Furthermore, the ETKPF replaces the stochastic part of
the algorithm with a deterministic scheme, such that it has exact second
moment instead of only on expectation. The algorithm was tested on a
challenging high-dimensional application at convective scale with COSMO,
in a setup similar to the one used operationally at MeteoSwiss. The results
of the experiments show the feasibility of the new algorithm in real-world
applications and encourage further developments in the direction of local-
ized hybrid particle �lters for high-dimensional data assimilation.



Résumé

L'assimilation de données consiste à estimer l'état d'un système, tel que
l'atmosphère dans le cas des prédictions météorologiques, en combinant
les connaissances des lois qui gouvernent la dynamique du système avec
les observations. En général une approche probabilistique plutôt que dé-
terministe est préférée, pour prendre en compte l'incertitude associée aux
observations et aux conditions initiales. L'assimilation de données consiste
donc à estimer l'évolution temporelle de la distribution de l'état du système
d'intérêt, étant données toutes les observations obtenues jusqu'alors. Les
methodes d'assimilation d'ensemble, comme par example le ensemble Kal-
man �lter (EnKF), accomplissent cette tâche en utilisant un échantillon
de di�érentes realisations possibles du processus étudié pour representer
ces distributions.

Ce qui rend ce genre d'applications particulièrement di�cile c'est que le
nombre de dimensions du système d'intérêt est extremement élevé (de
l'ordre de 108), alors que la taille des échantillons que l'on peut se per-
mettre est de moins que 100, en raison des larges coûts de calcul associés
avec les modèles numériques de l'atmosphère. De plus, les phénomènes non
linéaires qui apparaissent dans les modèles à hautes résolution, comme par
example la convection, posent de sérieux problèmes aux méthodes qui pré-
supposent des distribution normales, comme le EnKF. Ce travail de thèse
propose des modi�cations du ensemble Kalman particle �lter (EnKPF),
un algorithme hybride entre le EnKF et le particle �lter (PF), qui dépend
moins fortement de la normalité des distributions. La tâche principale de
ces modi�cations est de rendre le EnKPF adapté à des applications à très
haute dimensionalité comme on en rencontre en prédictions météorolo-
giques.

La première contribution de cette thèse est de proposer deux versions loca-
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lisées de l'algorithme en question : le naive-LEnKPF et le block-LEnKPF.
Le naive-LEnKPF fonctionne de manière similaire au EnKF local (LEnKF) :
il assimile les données dans des régions restreintes et les combine ensuite en-
semble pour former l'estimation totale. Il a l'avantage d'être relativement
simple à formuler et e�cace à calculer, mais il ne prend pas en compte
le problème des cassures introduites par la partie PF de l'algorithme. Le
block-LEnKPF adresse ce problème en assimilant les données par blocs,
dont il limite l'in�uence à un rayon local, et dans un deuxième temps en
adoucissant les cassures introduites. Les deux algorithmes sont ensuite tes-
tés sur un modèle arti�ciel convection de dimension moyenne. Les résultats
des expériences numériques démontrent que les nouveaux algorithmes ont
en général des performances similaires au LEnKF. De plus, ils apportent
des améliorations notables pour la prédiction de quantités particulièrement
non Gaussiennes, comme le champs de précipitations.

La seconde contribution principale de ce travail de thèse est un nouvel
algorithme, le ensemble transform Kalman particle �lter (ETKPF), qui
exploite une reformulation géometrique de l'EnKPF et conduit à une im-
plémentation de l'algorithme particulièrement e�cace d'un point de vue
computationelle dans le modèle numérique de prédictions météorologiques
existant. De plus, l'ETKPF remplace une partie aléatoire de l'EnKPF par
un procédé déterministe qui guarantie que l'ensemble a un second mo-
ment exacte et non pas seulement en moyenne. Des expériences avec une
application di�cile en présence de convection ont été e�ectuées dans un
context similaire à celui employé à MeteoSuisse de façon opérationelle. Les
résultats obtenus démontrent que le nouvel algorithme peut être appliqué
à des situations réalistes, et nous encouragent à continuer le dévelopement
de nouvelles méthodes hybrides basées sur le PF pour l'assimilation de
données dans les problèmes à haute dimensionalité.



Chapter 1

Introduction

Numerical weather prediction (NWP) is the product of a large enterprise
which has been very successful in the past 40 years (Bauer et al., 2015).
This success depends on multiple actors � academia, governments and the
private sector � and on multiple factors � increase in computing power,
data collection and sharing, etc. One key development was the realization
that deterministic forecasts are of limited power because of the chaotic na-
ture of the dynamical laws governing the atmosphere (Lorenz, 1963). To
address this limitation, ensemble methods have thus been developed and
are used operationally at weather centers since the 1990s (Lewis, 2005).
Instead of one very accurate prediction, an ensemble of 50 to 100 di�er-
ent realizations of the forecast is generated, from which one can draw a
probabilistic instead of a deterministic forecast. Working with such prob-
abilistic forecasts is not only a necessity due to the chaotic nature of the
atmosphere, but it is also very useful for many applications of interest,
such as evaluating weather-related risks (e.g. �oods and hurricanes) or
managing renewable energy production (e.g. solar panels and wind farms).

In general, to be able to produce a probabilistic forecast one needs to in-
corporate all the di�erent sources of uncertainty into the model. This is an
extremely challenging task, as there are many of them: There are errors
associated with the discretization of the 3-dimensional �elds representing
the atmosphere, errors associated with the numerical integration schemes
of the dynamical laws governing the evolution of the system, errors due to
the parameterization of phenomena happening at unresolved scales (e.g.
turbulence or cloud formation), unknown parameters, errors in the obser-
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vations and so on. Producing probabilistic forecasts is therefore a complex
task with many components (Gneiting and Raftery, 2005): representation
of model errors, bias correction, post-processing of ensembles, etc.

In the present work we focus on one of those components, called data
assimilation, which is the determination of the initial conditions of the
ensemble from which to start the forecast. Ideally, the initial ensemble
should incorporate all the information coming from the past observations,
taking into account their associated uncertainty. To do so in a sequential
manner one alternates between a prediction step, where the ensemble is
propagated through the dynamical laws of the system, and an analysis
step, where the new observations are incorporated in the ensemble by
using Bayes' theorem.

Due to the high computational cost associated with the integration of
the dynamical model, the size of ensembles run at operational centers is
very small (less than 100) compared to the dimension of the state of in-
terest (around 108 for full-scale NWP) and the number of observations
assimilated at each step (around 106). In practice, therefore, one looks
for approximate but e�cient methods rather than aim for the best theo-
retical solution. The state-of-the-art ensemble data assimilation method
is the Ensemble Kalman Filter (EnKF) (Evensen, 1994, 2003), which is
essentially a Monte Carlo approximation of the Kalman �lter (Kalman,
1960; Kalman and Bucy, 1961). One limitation of the EnKF, however, is
that it is consistent only in the case where the distribution of the ensem-
ble is Gaussian. This assumption is acceptable with coarse model grids
and �classical� observations, but with high-resolution models and obser-
vations such as radar data, non-Gaussianity becomes the norm. Indeed,
with high-resolution models (horizontal resolution of the order of 1 km),
non-linear phenomena such as convection are represented, which lead to
strong non-Gaussianity in the ensemble, for example a bimodal distribu-
tion where one mode has a cloud somewhere and one has none. Therefore,
there is an urgent need for new data assimilation methods able to han-
dle non-Gaussian distributions while remaining computationally feasible
(Bauer et al., 2015). The main goal of this work is to contribute towards
a solution to this challenging task.

It should be noted that the methods discussed and developed here are
not limited to data assimilation for NWP, but can be equally well used
for other large-scale geophysical applications such as reservoir modeling
in oil industry, underground water resources estimation, ocean circulation,
climate models and many more. We limit ourselves to weather prediction
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as it is a task complex enough to require all of our attention.

In Sections 1.1 and 1.2 we present in more detail the type of problems
that we are addressing, and in Section 1.3 the existing algorithms to tackle
them. In Section 1.4 we discuss the particular di�culties associated with
the application of data assimilation algorithms to high-dimensional sys-
tems, while in Section 1.5 we present localization, the typical technique
used to address those di�culties. In Section 1.6 we discuss the ensem-
ble space formulation of the analysis. In Section 1.7 we brie�y mention
the various models on which we have tested our algorithms. Finally, in
Section 1.8 we give an outline of the remainder of this thesis.

1.1 State space models

The problem of studying a dynamical system through partial and noisy
observations �ts nicely into the framework of general state space models
(see for example Künsch (2001)). In such a framework the system of
interest is characterized by the state, x ∈ Rq, a Markov process which
describes the time evolution of the state, and an observation process which
describes the relation between the state and the observations y ∈ Rd. More
precisely we can write the model as:

xt = ft(xt−1, ψt), (1.1)

yt = ht(xt, ξt), (1.2)

where (ψt) and (ξt) are independent noise processes. In geophysical appli-
cations, the state xt is typically a discretized multivariate 3-dimensional
�eld describing the system of interest, for example the atmosphere. The
dynamical process in Eq. (1.1) describes the time evolution of the state,
typically given by the numerical integration of stochastic or deterministic
partial di�erential equations. The process in Eq. (1.2) describes where
and with what measurement errors the system is observed. A graphical
representation of such a model is given in Fig. 1.1.

The state space model described in Eqs. (1.1) and (1.2) is completely gen-
eral, but one is often interested in more speci�c cases. Instead of arbitrary
in�uence of the noise processes, one often considers additive noise only:

xt = ft(xt−1) + ψt, (1.3)

yt = ht(xt) + ξt, (1.4)
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. . .

. . . yt−1 yt yt+1

xt−1 xt xt+1 . . .

. . .

Figure 1.1: Graphical representation of a general state-space model.

where (ψt) and (ξt) are independent noise processes, as above. Constrain-
ing the model even further, one can restrict ft(·) and ht(·) to be linear,
leading to so-called linear dynamical models:

xt = Ftxt−1 + ψt, (1.5)

yt = Htxt + ξt, (1.6)

where Ft and Ht are matrices, potentially varying in time.

Concerning the distribution of the noise processes various assumptions
can be made as well. A typical choice is to assume that both ψt and
ξt are Normal, say ψt ∼ N (0, Qt) and ξt ∼ N (0, Rt). Such linear and
Gaussian systems are attractive because they are tractable, as we will see
below. However, many applications do not �t in this framework. In the
geophysical systems that interest us, such as in NWP, we typically consider
models of the following type:

xt = ft(xt−1), (1.7)

yt = ht(xt) + ξt, ξt ∼ N (0, Rt). (1.8)

The dynamical process (xt) is non-linear and deterministic, as it corre-
sponds to the solution of partial di�erential equations embodying physical
laws. However, even if the system is deterministic, it might be of interest
to add a stochastic component to account for errors in the model. This
stochastic component can enter either additively as Gaussian noise, or
more indirectly through stochastic parametrization in the numerical inte-
gration of the state (see for example Arnold et al. (2013)). In the present
work we will focus on the deterministic case and consider the function ft(·)
to be essentially a black box.

The observation operator ht(·) is often non-linear. For example in NWP
applications, it can be the interpolation of gridded quantities such as tem-
perature or wind speed at speci�c locations, or the expected quantity of
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rainfall computed from the whole column of atmosphere. One often makes
the assumption that ht(·) is non-linear but can be linearized in a neighbor-
hood of xt, thus making some derivations analytically tractable. In most
of the applications that interest us, we assume the observation noise ξt to
be Gaussian for convenience.

1.2 Bayesian �ltering

There are essentially two types of questions that one can ask about a
state space model: either the system is not perfectly known and one is
interested in learning it, for example by estimating parameters, as the
matrices Ft in Eq. (1.5) and the observation covariance Rt; or the system
is assumed to be known and one is interested in recovering the sequence
x1:t = {x1, . . . , xt} of unobserved state, from a sequence of noisy obser-
vations y1:t = {y1, . . . , yt}. In the present work we are interested in the
latter task, which is called �ltering in the signal processing literature, and
data assimilation in geophysical applications. Henceforth we will use both
terms interchangeably according to convenience. Using π(·) to denote a
distribution or its corresponding density depending on the context, we are
interested in the following distributions:

� πt(x1:t|y1:t), the joint distribution of the sequence x1:t given the
whole history of observations,

� πat (xt|y1:t), the marginal distribution of the above at xt, also called
the �ltering or analysis distribution, and

� πbt (xt|y1:t−1), the predictive or background distribution of xt given
the sequence of observations up to the previous time point.

Another related distribution of interest is πsk|t(xk|y1:t), where k < t, the
smoothing distribution, but we will not discuss it here as it is outside
the scope of this work. If we could somehow obtain πt(x1:t|y1:t) then ev-
erything else would be straightforward. However the dimension of this
distribution can be very large and keeps growing as time goes on. The
smoothing distribution is used for reanalysis, but the �ltering distribu-
tion is su�cient to determine initial conditions for prediction. Therefore,
for practical reasons people have been interested in recursive solutions of
the �ltering distribution which can make use of an incoming stream of
observations.
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The missing ingredient to establish this recursion is the distribution of the
observation yt given xt, which is referred to as the likelihood when consid-
ered as a function of xt, and which we write as `t(xt|yt). For example in
the Gaussian system of Eq. (1.8), this likelihood is the normal density with
mean ht(xt) and covariance Rt evaluated at yt, written as φ(yt;ht(xt), Rt).
Using Bayes' formula we can relate the analysis distribution to the back-
ground distribution using the likelihood as:

πat (xt|y1:t) ∝ πbt (xt|y1:t−1) · `t(xt|yt), (1.9)

where we use the fact that yt given xt is independent of y1:t−1 and where
the sign ∝ means proportional up to a normalizing constant. In the
Bayesian terminology, the background distribution is the prior, while the
analysis distribution is the posterior. From this equation the following
recursive algorithm emerges naturally:

1. Start with an initial prior distribution π0(x0).

2. For t = 1, . . . , T :

(a) Forecast : πbt (xt|y1:t−1) =
∫
πft (xt|xt−1)·πat−1(xt−1|y1:t−1)dxt−1,

(b) Analysis: πat (xt|y1:t) ∝ πbt (xt|y1:t−1) · `t(xt|yt),
where by convention πa0 (x0|y1:0) = π0(x0), and πf (xt|xt−1) can be directly
obtained from the model speci�cation in Eq. (1.1); for example in the case
of the deterministic dynamical system of Eq. (1.7), πf (xt|xt−1) is simply
the Dirac function at the values ft(xt−1), which essentially forecasts xt
from xt−1. It should be noted that in the �ltering literature the forecast
step is typically called the propagation and the analysis step the update.

It is one thing to be able to write the recursive solution like this, but it is
another one to actually carry it through. Analytical solutions are typically
not available and one has to rely on Monte Carlo approximations, which
we discuss later. Before doing so, we quickly review one special case where
there is a tractable solution as it is relevant to later developments.

The Kalman �lter

In the case of a Gaussian linear system as described in Eqs. (1.5) and (1.6)
it is possible to carry out the �ltering recursion analytically resulting in the
well-known Kalman �lter, or Kalman-Bucy �lter (Kalman, 1960; Kalman
and Bucy, 1961). The �lter was originally derived as a sequential least-
squares algorithm without making any Gaussian assumptions, but here we
show the Bayesian probabilistic derivation.
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If one begins with an initial Gaussian distribution π0, then by properties
of the Gaussian distribution the background and analysis distributions
remain Gaussian and the �ltering recursion consists in updating means
and covariance matrices only. Let us assume that we start at time t − 1
with the following analysis distribution πat−1(xt−1|y1:t−1) = N (µat−1, P

a
t−1),

where the subscript a stands for analysis.

The forecast step consists in propagating this distribution through the
system with Eq. (1.5). Because Gaussian distributions remain Gaussian
under linear transformations, we can derive the background distribution
πbt (xt|y1:t−1) to be N (µbt , P

b
t ), with moments de�ned as

µbt = Ft µ
a
t−1, (1.10)

P bt = Ft P
b
t F
′
t +Qt. (1.11)

The analysis step consists in applying Bayes' formula to this prior dis-
tribution using the Gaussian likelihood of the observations. Because the
Gaussian distribution is conjugate to itself, the posterior πat is again Gaus-
sian N (µat , P

a
t ) with new, updated moments

µat = µbt +Kt(yt −Ht µ
b
t), (1.12)

P at = (I −Kt(P
b
t )Ht)P

b
t , (1.13)

where Kt(P ) is the Kalman gain computed with covariance matrix P as:

Kt(P ) = PH ′t(HtPH
′
t +Rt)

−1. (1.14)

Kalman �ltering consists then simply in updating the moments of the �lter-
ing distribution by alternating between the forecast step using Eqs. (1.10)
and (1.11), and the analysis step using Eqs. (1.12) and (1.13). See for
example Wikle and Berliner (2007) or Bishop and Welch (2001) for more
detail on the derivation of the �lter.

1.3 Ensemble �ltering methods

Ensemble, or Monte Carlo, �ltering methods represent the background
and analysis distributions as �nite samples of k particles, {xb,i} and {xa,i}
respectively. The forecast step consists then simply in applying the dy-
namical equation of the system to each particle individually, e.g. xb,it =
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f(xb,it−1, ψ
i
t) in the case of Eq. (1.1). The Monte Carlo version of the anal-

ysis, on the other hand, is less straightforward to implement and depends
on the assumptions that are made about πbt and `t, and on the sampling
algorithm used. In the remainder of this section we present three di�er-
ent ensemble �ltering methods which vary in the way they implement the
analysis. For better legibility we drop the time subscript. Material from
this section was published in Section 2 of Robert and Künsch (2017b).

1.3.1 The particle �lter

Particle Filters (PFs) directly implement Bayes' formula in the analysis
without relying on any additional assumptions about πb (Gordon et al.,
1993; Pitt and Shephard, 1999; Doucet et al., 2001). In its simplest version,
the PF represents distributions by weighted samples of particles. The
analysis consists then in updating these weights by a factor proportional
to the likelihood. More precisely, if πb is represented by the weighted
sample of size k {xb,i, αb,i}, then πa is represented by the weighted sample
{xa,i, αa,i}, where

xa,i = xb,i, αa,i =
αb,i · `(xb,i|y)∑k
j=1 α

b,j · `(xb,j |y)
. (1.15)

The problem with this approach is that, when iterated, the weights tend
to be more and more concentrated on a few particles, leading to sample
degeneracy. In the worst case the whole distribution could be represented
with only one particle, which is clearly not desirable. To avoid this e�ect,
a resampling step is introduced: instead of keeping the weighted particles,
we produce a non-weighted sample by resampling them with probabilities
proportional to their weights. This means that the analysis sample con-
tains xb,i Ni times, where E(Ni) = kαa,i and

∑
Ni = k. By this process,

the particles which �t the data well are replicated, while the others are
eliminated. Thus, the PF adaptively explores the �ltering distribution by
putting more mass in regions of high probability. It should be noted that
in the case of a deterministic dynamical system resampling does not help
and one has to add some arti�cial noise to the particles (see for example
Liu and West (2001)).

It is useful for future comparison to think of the PF in the following way.
The background distribution πb is taken to be the empirical distribution



1.3 Ensemble �ltering methods 9

of {xb,i}, which can be written as a mixture of point masses

πbPF (x) ∝
k∑
i=1

1(x=xb,i),

where 1 is the indicator function. Applying Bayes' theorem to this πb we
�nd the analysis distribution to be another mixture of point masses

πaPF (x) ∝
k∑
i=1

αi · 1(x=xb,i),

where the weights αi are proportional to `(xb,i|y). The PF algorithm
described above consists then simply in sampling from this mixture distri-
bution. Using a vector of resampled indices I, such that P (I(i) = j) ∝ αj
and |{I(i) = j; i = 1, . . . , k}| = Nj for all j, we can write the algorithm
succinctly as

1. Compute the weights αj ∝ l(xb,j |y).

2. Choose the vector of resampled indices I, such that P (I(i) = j) ∝ αj .
3. For i = 1, . . . , k, set xa,i = xb,I(i).

How we choose the vector of resampled indices I plays a signi�cant role.
Indeed, one could simply choose each I(i) by sampling with replacement
from the set of indices with probabilities {αi}, but this would lead to un-
necessary Monte Carlo error. Instead, we prefer to use balanced sampling
schemes, which guarantee that |Ni − kαi| < 1 (see Section 4.2.1 for more
detail).

1.3.2 The ensemble Kalman �lter

The EnKF is a Monte Carlo approximation of the Kalman �lter, in which
the background distribution is assumed to be normal and the observations
to be linear and Gaussian (Evensen, 1994, 2009). In the stochastic version
of the EnKF, the analysis particles are produced as

xa,i = xb,i +K(P b)(y −Hxb,i + εi), (1.16)

where
εi ∼ N (0, R),

and P b is an estimate of the background covariance. Essentially, it consists
in applying the Kalman update of Eq. (1.12) to each particle individually,
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and adding stochastic perturbations εi to the observations. Why does this
heuristic algorithm make sense?

Assuming that the background ensemble is normally distributed � i.e.
xb,i ∼ N (x̄b, P b), where x̄b is the background ensemble mean, and P b an
estimate of the background covariance � the analysis distribution is again
Gaussian with moments µa and P a derived as in Eqs. (1.12) and (1.13).
One can easily check that x̄a, the mean of the analysis ensemble de�ned in
Eq. (1.16), is equal to µa. To show that Cov(xa,i), the covariance of the
analysis ensemble, is also equal to P a, one needs to notice that Eq. (1.13)
can be rewritten as:

P a = (I −K(P b)H)P b(I −K(P b)H)′ +K(P b)RK(P b)′.

Therefore, the EnKF can be seen as a computationally e�cient algorithm
to sample from N (µa, P a), the analysis distribution when assuming that
πb = N (x̄b, P b).

The stochastic perturbations εi are necessary to ensure that the analysis
ensemble has the correct covariance: Cov(xa,i) = P a. One could argue,
however, that this adds unnecessary Monte Carlo error, especially when
working with small ensemble sizes. Deterministic sampling schemes have
thus been developed, leading to so-called square-root �lters (Whitaker and
Hamill, 2002; Tippett et al., 2003; Ott et al., 2004). In these versions of
the EnKF, one de�nes the analysis mean as x̄a = x̄b + K(P b)(y −Hx̄b).
Then the deviations of each particle from the mean, xa,i − x̄a, are chosen
jointly such that the empirical covariance of {xa,i} is exactly equal to P a,
whereas for the stochastic EnKF this relation holds only on expectation
over the εi. Producing such a sample is not uniquely de�ned, and there are
various implementations of such square-root �lters. In the present work we
will be interested in one such square-root �lter, the Ensemble Transform
Kalman Filter (ETKF) of Bishop et al. (2001).

1.3.3 The ensemble Kalman particle �lter

The Ensemble Kalman Particle Filter (EnKPF) of Frei and Künsch (2013)
is a hybrid algorithm that combines the EnKF and the PF with a single
parameter γ ∈ [0, 1] controlling the balance between both. Its core idea is
to split the analysis into two stages as πa(x) ∝ πb(x) · `(x|y)γ · `(x|y)1−γ ,
following the progressive correction principle of Musso et al. (2001). In a
nutshell, the algorithm consists in �pulling� the ensemble members towards
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the observations with a partial EnKF analysis using the dampened likeli-
hood `(x|y)γ , and then in applying a partial PF with the remaining part
of the likelihood, `(x|y)1−γ . In this way the algorithm can capture non-
Gaussian features of the distribution (by resampling), while maintaining
sample diversity.

Assuming linear and Gaussian observations, dampening the likelihood with
the exponent γ is equivalent to in�ating the error covariance R by the
factor γ−1. It is easily seen that this is also equivalent to using the Kalman
gain with the original error covariance R and a dampened background
covariance γP b.

A key idea for the EnKPF is that the analysis ensemble of the stochastic
EnKF produced by Eq. (1.16) can be seen as a balanced sample of size k
from the Gaussian mixture

πaEnKF =

k∑
i=1

1

k
N
(
xb,i +K(P b)(y −Hxb,i),K(P b)RK(P b)′

)
, (1.17)

where balanced sample means that each component of the mixture is se-
lected exactly once. Applying this representation to the EnKPF, we can
see that the partial analysis distribution after the EnKF step, πγ(x) ∝
πb(x) · `(x|y)γ , is the following Gaussian mixture:

πγ =

k∑
i=1

1

k
N (νa,i, Q), (1.18)

where

νa,i = xb,i +K(γP b)(y −Hxb,i) and (1.19)

Q =
1

γ
K(γP b)RK(γP b)′. (1.20)

A naive implementation of the EnKPF would be to sample from this dis-
tribution with a usual stochastic EnKF, i.e. by setting xγ,i = νa,i + εγ,i,
where εγ,i ∼ N (0, Q), and then to apply a PF update to this ensemble,
using as likelihood `(xγ,i|y)1−γ . However, this approach would not be
optimal as it could lead to ties, or exactly identical particles, in the anal-
ysis ensemble. Instead, one can conduct the second step of the analysis,
πa(x) ∝ πγ(x)`(x|y)1−γ , analytically. Indeed, as shown in Alspach and
Sorenson (1972), applying Bayes' formula to a Gaussian mixture with a
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linear and Gaussian likelihood results in a new Gaussian mixture with com-
ponent means µa,i, component covariance P a,γ , and component weights
αγ,i:

πaEnKPF =

k∑
i=1

αγ,iN (µa,i, P a,γ), (1.21)

where

µa,i = νa,i +K((1− γ)Q)(y −Hνa,i), (1.22)

P a,γ =
(
I −K((1− γ)Q)H

)
Q and (1.23)

αγ,i ∝ φ{y;Hνa,i, HQH ′ +R/(1− γ)}. (1.24)

It is useful to rewrite the equation for the µa,i components directly from
the background ensemble as:

µa,i = xb,i + Lγ(y −Hxb,i), where (1.25)

Lγ = K(γP b) +K((1− γ)Q)
(
I −HK(γP b)

)
,

where Lγ is a sort of composite Kalman gain, resulting from the successive
application of the EnKF and PF. However, it should be noted that to the
best of our knowledge there is no estimate of P b such that Lγ = K(P b).

The �nal analysis ensemble is obtained as a sample from the Gaussian
mixture of Eq. (1.21). A schematic illustration of the EnKPF can be seen
in Fig. 1.2. A short description of the algorithm is given as follows:

1. Compute all the µa,j .

2. Compute all the weights αj .

3. Choose the resampled indices I such that P (I(i) = j) ∝ αj .
4. For i = 1, . . . , k:

(a) Generate εa,i ∼ N (0, P a,γ).

(b) Set xa,i = µa,I(i) + εa,i.

The step (4a) can be done e�ciently, without computing P a,γ explicitly.
To do so, generate independently ε1,i ∼ N (0, 1

γR) and ε2,i ∼ N (0, 1
1−γR)

and de�ne

εa,i = K((1− γ)Q)
(
I −HK(γP b)

)
ε1,i +K((1− γ)Q) ε2,i.

In the extreme case of γ = 0, the EnKPF is equivalent to a pure PF,
whereas for γ = 1 it is equivalent to the stochastic EnKF. γ is therefore
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Figure 1.2: Schematic illustration of the EnKPF. Upper left: Background ensemble
(full blue dots) and observation (empty red dot). Upper right: Intermediate analysis
distribution πγ(x) of Eq. (1.18). Each ellipse covers 50% of one component in the
mixture. Lower right: Final analysis distribution Eq. (1.21). Ellipses again represent
50% of each component, and the color intensity represents the weights αi. Lower left:
Analysis sample obtained by drawing from Eq. (1.21). The mixture component closest
to the observation has been resampled 3 times, while the two components farthest away
have been discarded.

a tuning parameter which determines the proportion of EnKF and PF
update to use. In Frei and Künsch (2013) it is proposed to choose γ
adaptively such that the Equivalent Sample Size (ESS) (Liu, 1996) of the
analysis distribution, de�ned as 1/(k

∑
(αγ,i)2) (where the division by the

ensemble size k ensures that the ESS is between 0 and 1), is within a given
bound, for example between 50% and 80%. In Section 7.3 we discuss in
more detail the optimal choice of γ in practical applications.

1.4 High-dimensional �ltering problems

Filtering in geophysical applications such as reservoir modeling and NWP
is particularly challenging because of the extreme high-dimensionality of
the problem. Typically, the state x comes from the discretization of con-
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tinuous �elds on a 3-dimensional grid � for example the temperature or
the relative humidity in the atmosphere. With a horizontal grid of 1000
by 1000 elements and 30 vertical levels, which is common in large-scale
weather forecast, one obtains a 107-dimensional state. Multiply this by 12
prognostic variables (in NWP those are typically temperature, pressure,
three wind speed components, turbulent kinetic energy, and speci�c con-
tent of water vapor, cloud water, cloud ice, rain, snow and graupel) and
the dimension of the state is of the order of 108. Furthermore, for large-
scale NWP the number of observations assimilated at one time step is of
the order of 106. The tragedy, however, is that due to the high computa-
tional cost of running the forecast model, the ensemble size that one can
a�ord at operational centers is usually less than one hundred. Any sane
theoretician would run away from such a problem, but practitioners have
tried, and often, surprisingly, succeeded.

1.4.1 Breakdown of the PF in high dimensions

Snyder et al. (2008) explore the limitation of PFs in high-dimensional
applications. Their analysis is based on results of Bengtsson et al. (2008);
Bickel et al. (2008) that the size of an ensemble should, in some sense,
grow exponentially with the dimensionality of the problem. More precisely,
they show that, asymptotically, in the case of i.i.d. observations, when the
ensemble size k and the number of observations d are large, then the largest
weight of the PF (the largest αi in Eq. (1.15)) behaves as

α(k) ≈ 1

1 + τ−1
√

2 log k
,

where τ2 is the variance of the observation log-likelihood at the background
ensemble, which depends on d (typically τ = O(

√
d)). One can see that

α(k) → 1, and thus that the ensemble collapses, unless k is exponentially
large compared to τ2.

Somehow contrary to intuition, the ensemble size requirement does not
depend directly on the state space dimension, but rather on the quantity
τ2, which is related in an indirect manner to dimensionality. One can think
about τ2 as an e�ective dimension, to which it is equivalent in the case
of a Gaussian prior with identity covariance matrix, identity observation
operator H and identity observation covariance R.

One way to reduce the variance of the weights of the PF is to use a proposal
distribution di�erent from πf (xt|xt−1), as in the auxiliary PF (Pitt and
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Shephard, 1999), or in geosciences van Leeuwen (2010). Ignoring other
issues concerning the applicability of such types of algorithm to NWP,
Snyder et al. (2015) show that with a PF using an optimal proposal dis-
tribution � meaning that the proposal is the distribution of xt conditioned
on xt−1 and yt � collapse of the weights still occurs if the ensemble size
does not grow exponentially. Therefore the only hope to apply PFs to
high-dimensional �ltering is to reduce the dimensionality of the system,
which we will discuss later in Section 1.5.

1.4.2 Spurious correlations with the EnKF

The EnKF does not have a resampling step and thus does not su�er directly
from sample depletion or ensemble collapse as the PF does. However, the
EnKF analysis depends entirely on the estimated background covariance
P b, and it is well-known that the sample covariance matrix is not a good
estimator when the number of observations is smaller than the number of
variables, in our case when the ensemble size is smaller than the system
dimension (Bickel and Levina, 2008). With a poor estimator of P b, the
Kalman gain is also poorly estimated, and with it the EnKF analysis.

This problem manifests itself in practice with the appearance of spuri-
ous correlations: non-zero estimated correlations between components of
x that should be intuitively uncorrelated. In particular, one observes long-
range correlations between locations, which results in the observations hav-
ing an in�uence far away, reminiscent of spooky action at distance. While
it might be possible that there are such so-called teleconnections in geo-
physical systems, they are di�cult to estimate and with a small ensemble
size there will be mostly false positives. This problem has been recognized
early on in applications, and in practice regularized estimators of the co-
variance matrix are used (Hamill et al., 2001), which are an example of
localization techniques, as discussed in the next section.

1.5 Localization

The extremely large dimensionality of the state space in geophysical appli-
cations is in some sense arti�cial, because it comes from the discretization
of 3-dimensional continuous �elds. As one increases the resolution of the
grid, the number of dimensions increases, but the dimensionality of the
attractor of the dynamical system stays the same. To make an analogy
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with statistics, the components of x are strongly correlated and thus the
actual number of degrees of freedom is much smaller than the number
of dimensions of x. Ideally, one would �nd a low-dimensional basis for
the system and thus overcome the problem of high-dimensional �ltering
discussed above. However, in geophysical applications such a basis is not
available and we have to work with the discretization of the 3-dimensional
�elds.

A natural assumption to make about a state space with a spatial ordering
is that components of x that are far apart are independent. In data as-
similation applications such assumptions about the system translate into
assumptions about the background distribution πb. Localization is a set
of techniques that try to take advantage of these assumptions to overcome
the problem of high-dimensionality in �ltering.

1.5.1 Localizing the EnKF

If πb is assumed to be Gaussian, as in the EnKF, the assumption that far
away locations are independent is equivalent to saying that elements of the
covariance matrix P b corresponding to far away locations are zero. One
way to impose such sparsity on the covariance matrix is to use tapering
(Furrer et al., 2006). A tapered estimate of P b is of the form

P bC = C ◦ P b,

where C is a valid correlation matrix and ◦ denotes the Shur product
(element-wise multiplication). Expressing knowledge about independence
through the tapering matrix C is an art in itself. Typically one uses a
correlation function decreasing with the Euclidean distance between sites
and parametrized in a convenient way, as described in Gaspari and Cohn
(1999).

Using such regularized estimators of P b with the EnKF is common in prac-
tice (Hamill et al., 2001; Houtekamer and Mitchell, 2005). The advantages
of this technique are twofold: �rst it eliminates spurious correlations at
distances, and second it makes the computation more e�cient by exploit-
ing the sparsity of the covariance matrix. However, it should be noted
that imposing sparsity on the covariance P b does not imply sparsity of the
Kalman gain � because of the inverse in Eq. (1.14) � and observations can
have a long-range in�uence on the analysis.

Another approach to localization is to compute the analysis separately at
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each site using only nearby observations (for example in Ott et al. (2004)
or Hunt et al. (2007)). The global analysis is then constructed by gluing
together the local analyses. Such a local update scheme guarantees that
the observations cannot have a long-range in�uence, and means actually
that sparsity is imposed on the Kalman gain. The gluing together of local
analyses works only if the observations assimilated at nearby locations are
similar. A basic step to ful�ll this requirement is to tune the localization
radius such that the intersection of the sets of observations assimilated in
nearby windows is large. To further enforce smooth transitions, one can
give decreasing weights to observations as they are further and further
away. Such an e�ect is achieved by tapering the inverse of R, the ob-
servation covariance matrix, with a correlation function dependent on the
distance of the observation from the site at which the local assimilation is
conducted.

Local update schemes are attractive in practice, as they can be imple-
mented in parallel and thus are very e�cient. However, they are not well
founded from a theoretical point of view and it is di�cult to justify their
use except for practical reasons. Sakov and Bertino (2011) explore in more
detail the di�erences between local update schemes and covariance taper-
ing, and show that they are generally not equivalent. However, in practice
the di�erences are small and the computational gains of the local update
scheme are such that they outweigh its conceptual de�ciencies.

1.5.2 Localizing the PF

Given the success of localization for EnKF algorithms, it is tempting to try
the same approach with the PF. However, there are some complications
due to the resampling in the analysis, which is discrete by nature. First
let us consider a simple case where localizing the PF would work. Imagine
that x is normally distributed with identity covariance matrix and that
observations are of each component of x with a diagonal error covariance
matrix. This example is the one discussed in Snyder et al. (2008) to illus-
trate the collapse of the PF in high dimensions. In this case localizing the
PF is trivial: the background distribution factorizes as a product

πb(x1, x2, . . . ) = πb(x1) · πb(x2) . . . ,

where xi is the ith component of x. The likelihood factorizes as well,
because the observations yi are independent and depend on one location
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only, xi, and thus the analysis distribution factorizes too:

πa(x1, x2, . . . ) ∝ `(x1|y1)πb(x1) · `(x2|y2)πb(x2) · · · = πa(x1) · πa(x2) . . .

To produce a sample from this analysis distribution one can thus sample
each component xi from its local analysis distribution πa(xi|yi), leading to
a fully local PF. Rebeschini and Handel (2015) discuss the theory of such
a local PF generalized to the case of blocks of independent locations, and
show that it could overcome the curse of dimensionality. However, there
are some constraints when trying to apply this idea in practice.

Why can we not we generalize the assumption of a sparse covariance matrix
made in the local EnKF to independence relations between far away loca-
tions? We can in fact do it, but the problem is that while it makes sense
to assume that two remote locations, say x1 and x3, are independent, it
does not make sense to assume that they are independent given x2, which
lies between them. In the EnKF case, the same phenomenon explains that
using a sparse covariance does not result in a sparse Kalman gain. How-
ever, with PFs it is not clear how to overcome this problem. Indeed, if one
ignores this issue, it leads to the creation of arti�cial discontinuities in the
global analysis. Imagine that to produce the analysis particle 1, xa,1, at
location 1 particle xb,j1 was selected for resampling, and that at location 2

particle xb,i2 was selected, where i 6= j. When gluing together both local

analyses to create the global analysis xa,1 = (xa,11 , xa,12 )′ = (xb,j1 , xb,i2 )′,
we are combining two di�erent particles. There is no guarantee that this
xa,1 represents a physically possible particle, as its components were not
sampled jointly from the background πb.

On the one hand, localizing the PF seems to be the only viable solution
to avoid the curse of dimensionality (Snyder et al., 2015; Rebeschini and
Handel, 2015), but on the other hand, there are some fundamental di�cul-
ties due to the resampling nature of the algorithm. There are at least two
possible approaches to this conundrum: either one tries to avoid resam-
pling altogether, or one tries to smooth out the discontinuities introduced
by the local resampling of particles. For example, the moment-matching
�lter of Lei and Bickel (2011) depends on the mean and covariance of the
background distribution only and can thus avoid resampling. Another pos-
sibility is to use deterministic transport maps instead of resampling, as for
example in Reich (2013b). In this case, one samples from the posterior by
�nding a transport map from the background πb to the analysis πa such
that the particles have to be moved as little as possible. Such transport
maps computed locally vary smoothly in space, and thus the resulting local



1.6 Ensemble space algorithms 19

analyses can be glued together without leading to strong discontinuities.
An example of an algorithm which tries to smooth out the discontinuities
between locally resampled particles is the LLEnsF of (Bengtsson et al.,
2003). Another attempt at localizing the PF is the local PF of Poterjoy
(2016), where resampling is applied locally, but then the particles are pro-
gressively merged with prior particles followed by a higher-order correction
using a deterministic probability mapping.

Localizing hybrid algorithms such as the EnKPF is a bit easier than localiz-
ing the pure PF, but the fundamental di�culty due to the local resampling
of particles remains to be addressed. In Chapter 2, we present two local-
ized algorithms based on the EnKPF: the naive-LEnKPF, which is a direct
implementation of local update to the EnKPF, and the block-LEnKPF,
which takes the approach of smoothing out the introduced discontinuities
by relying on Gaussian assumptions when unavoidable. In Chapter 3, we
investigate in detail the trade-o�s involved in localizing PF algorithms. In
Section 4.2, we discuss some additional ideas to localize the PF, introduc-
ing dependencies between sites during the resampling step.

1.6 Ensemble space algorithms

Depending on the relative value of k, the ensemble size, d, the number
of observations, and q, the state dimension, di�erent schemes to compute
the analysis are preferable (Tippett et al., 2003). Here we focus on the
case where k � min(d, q), which is typical for geophysical applications. It
should be noted that when localizing the update, though, the number of
observations can be greatly reduced, but the computations we describe here
are still valid, if not optimal. In the case of k � min(d, q), our ensemble
is of very low rank, and instead of looking at it as k points in a d− or
q−dimensional space, one can instead work directly in the basis formed by
the ensemble. Applying this idea to the EnKF leads to interesting views
on the inner working of the algorithm and to e�cient implementations of
the computation (see in particular the ETKF in (Bishop et al., 2001; Hunt
et al., 2007))

Let us call the ensemble space the (k − 1)-hyperplane spanned by the back-
ground ensemble in the q-dimensional state space, where k � q. Requiring
that the analysis stays in this subspace brings great advantages in terms
of computation and stability of the assimilation scheme. No new direction
of perturbations can be added to the ensemble, which is both a blessing
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and a curse: on the one hand, it avoids that completely unphysical arte-
facts are introduced in the analysis, but, on the other hand, it requires
that the main directions of uncertainty are represented by the background
ensemble.

Let us write the background and analysis ensembles as q × k matrices
xb and xa respectively, with each column being a particle. Additionally,
we de�ne the matrix of ensemble perturbations Xb = xb − x̄b1′, where 1
denotes the vector of length k with all elements equal to 1. Requiring that
the analysis lies in ensemble space means that

xa = x̄b1′ +XbW, (1.26)

where W is a k×k matrix. Writing an assimilation algorithm in ensemble
space means �nding the W matrix of analysis weights. In Chapter 5 we
will show that the EnKPF can be formulated in ensemble space under the
condition that one estimates P b with the sample covariance. The resulting
algorithm can be implemented e�ciently and is thus adapted to large-scale
applications. Analogous to the ETKF of Bishop et al. (2001), we also
derive a square-root version of the EnKPF: the ETKPF, which requires to
solve a so-called continuous algebraic Riccati equation (CARE).

1.7 Models where methods were applied

As mentioned at the beginning of this chapter, the target application of
the methods discussed here is data assimilation for NWP. However, work-
ing with a full-scale weather model is a complex task: �rst, it involves
implementing all the algorithms e�ciently and making them interact with
the other components of the weather prediction system, mainly written
in fortran90; second, any experiment needs a lot of time due to the high
computational cost of the dynamical models.

Therefore, the typical approach to develop new data assimilation algo-
rithms is to work with simple low-dimensional dynamical systems. The
hope is that performances obtained on these toy models will be represen-
tative of the performances on the target application.

In the present work we go through a hierarchy of model complexity. The
feasibility of the EnKPF was shown in Frei and Künsch (2013) with the
40-dimensional Lorenz96 model (Lorenz and Emanuel, 1998). In Chap-
ter 2 we test our new localized algorithms on a 900-dimensional toy model
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of cumulus convection based on a modi�ed SWEQ (Würsch and Craig,
2014). Finally, in Chapter 6 we apply the new Local Ensemble Trans-
form Kalman Particle Filter (LETKPF) to COSMO, a full-scale weather
prediction system.

1.8 Outline of the remaining chapters

The �rst part of the remainder of this thesis revolves around the local-
ization of the EnKPF. In Chapter 2, which was published as Robert and
Künsch (2017b), we present two new local EnKPFs, the naive-local EnKPF
(naive-LEnKPF) and the block-local EnKPF (block-LEnKPF). We apply
them to the modi�ed shallow water equation (SWEQ) model of Würsch
and Craig (2014) and show that they have performance comparable to the
Local Ensemble Kalman Filter (LEnKF). In particular, the new methods
are well suited to deal with the rain �eld, which is highly non-Gaussian.

In Chapter 3, published as Robert and Künsch (2017a), we investigate
more closely the power of localization to beat the curse of dimensional-
ity. To do so, we extend an example of Snyder et al. (2008) and conduct
a simulation study to compare various global and local algorithms. We
also show that the conclusions hold for the Lorenz96 model (Lorenz and
Emanuel, 1998).

In Chapter 4, we include some unpublished results related to the local-
ization of the EnKPF. First, we explore a simple 3-dimensional example,
which provides a good illustration for the local EnKPFs, and which we
use to discuss some variations and generalization of the block-LEnKPF.
Second, we include an exploration of alternative ideas to localize the re-
sampling step of the PF directly, in particular we present a local balanced
sampling scheme.

The second part of the thesis concerns the formulation of the EnKPF in
ensemble space and the derivation of the Ensemble Transform Kalman Par-
ticle Filter (ETKPF). In Chapter 5, submitted as the �rst part of Robert
et al. (2017), we present the theory associated with the new algorithm.
In Chapter 6, published as the second part of Robert et al. (2017), we
show the results obtained with the LETKPF applied to COSMO in an
experimental setup similar to the one used operationally at MeteoSwiss.

In Chapter 7 we present additional unpublished results related to the
ETKPF. First, we present an intuition for the geometric derivation of
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the algorithms in ensemble space. Then we use a visualization technique
to illustrate the ETKPF and compare it to the EnKF and ETKF. After
that, we discuss more thoroughly the problem of selecting γ adaptively,
propose some alternative criteria to the ones in Chapter 5 and conduct
a simulation study. The details of the implementation in the COSMO
assimilation framework are discussed in the last section.

Finally, Chapter 8 concludes with a summary and general perspectives on
possible future developments.



Part I

Localization





Chapter 2

Localizing the Ensemble

Kalman Particle Filter

The content of this chapter has been published in Robert and Künsch
(2017b). Sections 2.1 and 2.2 repeat some things that have been discussed
in the �rst chapter of this thesis, but have been kept for completeness.
In Section 2.3 the two local EnKPFs, the block-LEnKPF and the naive-
LEnKPF, are introduced before being tested on an arti�cial model of cu-
mulus convection in Sections 2.4 and 2.5. Details on the derivation of the
block-LEnKPF can be found in the Appendix 2.A. Additional unpublished
experimental results are discussed in the Appendix 2.B.

The code associated with this chapter is available as an R package on
github: https://github.com/robertsy/assimilr. The modi�ed SWEQ
model of arti�cal cumulus convection is implemented in fortran90 from the
Python code of Michael Würsch (personal communication). Information
about the functions and usage is available as built-in documentation.

2.1 Introduction

In many large-scale environmental applications, estimating the evolution
of a geophysical system, such as the atmosphere, is of utmost interest.
Data assimilation solves this problem iteratively by alternating between a
forecasting step and an updating step. In the former, information about

https://github.com/robertsy/assimilr
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the dynamic of the system is incorporated, while in the latter, also called
analysis, partial and noisy observations are used to correct the current es-
timate. The optimal combination of the information from these two steps
requires an estimate of their associated uncertainty. In statistics, one rep-
resents the uncertainty about the state of a system after the forecasting
step with a prior distribution, and the uncertainty due to the observations
errors with a likelihood. The analysis consists then in deriving the pos-
terior distribution of the current state of the system, combining the prior
distribution and the new observations, which can be done with Bayes' rule.

In geophysical applications, such as NWP, the dimension of the system is
extremely large and the forecasting step computationally heavy, therefore
the focus is on developing e�cient methods with reasonable approxima-
tions. Even in the simplest case of a linear system with linear Gaussian
observations, the optimal method, namely the Kalman �lter (Kalman,
1960; Kalman and Bucy, 1961), is di�cult to use because of the size of the
matrices involved.

Ensemble, or Monte-Carlo, methods, are elegant techniques to deal with
non-linear dynamical systems. They use �nite samples, or ensembles of
particles, to represent the uncertainty about the state of the system as-
sociated with the prior and posterior distributions. The forecasting step
consists then simply in integrating each particle according to the law of
the system. Ensemble methods were introduced in the geosciences by the
EnKF of Evensen (1994, 2009) as a Monte-Carlo approximation of the
Kalman �lter and have shown great success in practice. However, the
analysis step of all EnKF methods implicitly relies on the assumption that
the prior uncertainty about the state of the system is Gaussian, which is
an acceptable approximation in some cases, but is unlikely to hold with
highly non-linear dynamics.

PFs (Gordon et al., 1993; Pitt and Shephard, 1999; Doucet et al., 2001)
are a more general class of ensemble methods which di�er from the EnKF
in the way the analysis step is implemented. They can handle fully non-
linear and non-Gaussian systems and are therefore very attractive. Unfor-
tunately, it has been shown that the number of particles needed to avoid
sample degeneracy and collapse of the �lter increases exponentially with
the size of the problem, in a sense made precise in Snyder et al. (2008).
Adapting PFs for large-scale environmental applications is an active �eld of
research and there are many propositions of algorithms (see van Leeuwen
(2009) for a review, and van Leeuwen (2010); Papadakis et al. (2010); Ades
and van Leeuwen (2013); Nakano (2014) for more recent developments).
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Here we focus on the EnKPF, introduced in Frei and Künsch (2013), which
consists in a combination of the PF with the EnKF. Compared to other
similar algorithms, the EnKPF has the distinct advantage of being depen-
dent on a single tuning parameter which de�nes a continuous interpolation
between the EnKF and the PF. Moreover, no approximation of the prior
distribution or the transition probability is required.

Recently, there has been a tendency towards using physical models with
higher and higher resolution. For example in NWP, regional models are
starting to be run with a grid length of the order of 1 kilometer, which
allows to resolve explicitly highly non-linear phenomena such as cumulus
convection. In general, with non-linear dynamical systems, the uncertainty
after the forecasting step can become highly non-Gaussian. Therefore there
is a growing need for data assimilation methods which can handle non-
linear and non-Gaussian systems while being computationally e�cient to
be applied to large-scale problems (Bauer et al., 2015). The EnKF implic-
itly assumes Gaussian uncertainty while the PF requires an exponentially
large number of particles. The EnKPF is a compromise between both, but
it still requires too many particles for practical applications. The main
goal of this article is to contribute towards a full solution to the non-linear
and non-Gaussian large-scale data assimilation problem.

The methods proposed in this article expand on the EnKPF by introduc-
ing localization. The idea of localizing the analysis was �rst proposed by
Houtekamer and Mitchell (1998) as a device to reduce dimensions and thus
to allow for smaller ensemble sizes. While localization has been widely used
within the EnKF family of algorithms, e.g. the Local Ensemble Transform
Kalman Filter (LETKF) of Hunt et al. (2007), applications to the PF
are much rarer. The reason for this is that PF methods introduce a dis-
crete component in the analysis by resampling particles, which breaks the
necessary smoothness of the �elds to be estimated.

In the literature, the main approaches to this problem have been either to
avoid resampling altogether, or to correct the introduced discontinuities.
The moment-matching �lter of Lei and Bickel (2011) avoids resampling and
can be localized straightforwardly as it depends on the �rst two moments
of the distribution only. Attempts to replace resampling by deterministic
transport maps from prior to posterior distributions are a promising way
to reformulate PFs such that they can be easily localized (Reich, 2013a).
An early example of algorithm which keeps resampling while localizing the
analysis is the local-local EnsF (LLEnsF) of Bengtsson et al. (2003), with
which our new algorithm share many similarities. In the recent local PF
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of Poterjoy (2016) resampling is applied locally by progressively merging
resampled particles with prior particles, followed by a higher-order correc-
tion using a deterministic probability mapping.

In this article, we propose two new localized algorithms based on the
EnKPF: the naive-LEnKPF and the block-LEnKPF. In the naive-LEnKPF,
assimilation is done independently at each location, ignoring potential
problems associated with discontinuities; in the block-LEnKPF, data are
assimilated by blocks, whose in�uence is limited to a neighborhood, and
discontinuities are smoothed out in a transition area by conditional resam-
pling. The �rst method is easier to implement as it mirrors the behavior
of the LETKF, but the second one deals better with the speci�c prob-
lems associated with localized PFs. The localization of the EnKPF or
any PF method is highly non-trivial, but it can potentially bring remark-
able improvement in terms of their applicability to large-scale applications
(Snyder et al., 2015).

The original EnKPF has been shown in Frei and Künsch (2013) to perform
well on the Lorenz 96 model (Lorenz and Emanuel, 1998) and other rather
simple setups. The extensions that we propose in the present paper should
allow the algorithm to work on more complex and larger models. Here,
we test the feasibility of our methods with some numerical experiments
on an arti�cial model of cumulus convection based on a modi�ed SWEQ
(Würsch and Craig, 2014) and show that we obtain similar or better results
than the EnKF.

In Section 2.2 we brie�y review ensemble data assimilation and the EnKF,
the PF and the EnKPF. Then we discuss localization and explain the
two new localized EnKPFs algorithms in Section 2.3. The numerical ex-
periments and the results are discussed in Section 2.4. Conclusions are
presented in Section 2.6

2.2 Ensemble data assimilation

Consider the problem of estimating the state of a system at time t, xt,
given a sequence of partial and noisy observations y1:t = (y1, . . . , yt). The
underlying process (xt) is unobserved and represents the evolution of the
system, described typically by partial di�erential equations. The observa-
tions are assumed to be conditionally independent given the states and are
characterized by the likelihood l(xt|yt). This problem �ts in the frame-
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work of general state space models and is generally known as �ltering in
the statistics and engineering community, and as data assimilation in the
geosciences.

Mathematically, the goal is to compute the conditional distributions of xt
given y1:t, called the �ltering or analysis distribution πat . There exists a
recursive algorithm which alternates between computing the analysis dis-
tributions and the conditional distributions of xt given y1:t−1, called the
predictive or background distribution πbt . In the forecast step, the back-
ground distribution at time t is derived from the analysis distribution at
time t−1, using the dynamical laws of the system. In the analysis or update
step, the analysis distribution at time t is derived from the background dis-
tribution at the same time t, using Bayes' theorem: πat (x) ∝ πbt (x) · l(x|yt).
However, there is no analytically tractable solution to this recursion except
in the case of a discrete state space or a linear and Gaussian system. In
the latter case, the solution is known as the Kalman �lter.

One of the problems that arise when trying to apply this theoretical frame-
work to large-scale systems such as in NWP is that the forecast step is not
given by an explicit equation but comes from the numerical integration of
the state vector according to the dynamical laws of the system. Ensemble
or Monte Carlo methods address this problem by representing the distri-
butions πbt and π

a
t by �nite samples or ensembles of particles: xb,it ∼ πbt and

xa,it ∼ πat for i = 1, . . . , k, where k is the size of the ensemble. The forecast

step produces the background ensemble members xb,it by propagating the
analysis ensemble members xa,it−1 according to the dynamics of the system.
The analysis step, that is the transformation of the background ensemble
(xb,it ) into the analysis ensemble, is however more challenging for ensemble
methods. There are various solutions to this problem, depending on the
assumptions about the distribution πb and the observation process and the
heuristic approximations that are used.

Henceforth we drop the time index t and consider the analysis step only.
We also assume that the observations are Gaussian and linear with mean
Hx and covariance R, where H is the observation operator applied on a
state vector x and R is a valid covariance matrix. We now review the EnKF
and the PF in this context and describe the EnKPF, before discussing in
more detail the problem of localization and introducing new algorithms.
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2.2.1 The EnKF

If one assumes that the background distribution πb is Gaussian and that
the observations are linear and Gaussian, then the analysis distribution
πa is again Gaussian with a new mean and covariance given by simple
formulae. All EnKF methods are based on this result and apply it by
ignoring non-Gaussian features of πb. They use the background ensemble
to estimate the mean and covariance of πb and draw the analysis sample
to match the mean and covariance of πa under Gaussian assumptions.
Square-root �lters such as the LETKF transform the background ensemble
so that the �rst and second moments match exactly those of the estimated
analysis distribution, whereas the stochastic EnKF applies a Kalman �lter
update with some stochastically perturbed observations to each ensemble
member. More precisely, in the stochastic EnKF an ensemble member
from the analysis distribution is produced as follows:

xa,i = xb,i +K(P b)(y −Hxb,i + εi), (2.1)

where P b is an estimate of the background covariance matrix and εi ∼
N (0, R) is a vector of observation perturbations. K(P ) denotes the Kalman
gain computed using the covariance matrix P and is equal to PH ′(HPH ′+
R)−1. Conditional on the background ensemble (xb,i), xa,i is thus normal
with mean xb,i+K(P b)(y−Hxb,i) and covariance K(P b)RK(P b)′. A key
idea for the EnKPF is that, conditional on the background ensemble, the
analysis ensemble is a balanced sample of size k from the Gaussian mixture

k∑
i=1

1

k
N
(
xb,i +K(P b)(y −Hxb,i),K(P b)RK(P b)′

)
, (2.2)

where balanced sample means that each component of the mixture is se-
lected exactly once.

2.2.2 The PF

The PF does not make any assumption about πb, but applies Bayes' for-
mula to the empirical distribution provided by the background ensemble.
In its simplest version it represents the background and analysis distribu-
tions by weighted samples of particles, whose weights are updated at each
time step by a factor proportional to the likelihood of the observations.
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That is, if πb is represented by the weighted sample (xb,i, αb,i), then πa is
represented by the weighted sample (xa,i, αa,i), where

xa,i = xb,i, αa,i =
αb,i · l(xb,i|y)∑k
j=1 α

b,j · l(xb,j |y)
.

In the forecast step, weights remain unchanged. However, when iterated
this leads to sample degeneracy, that is the weights are e�ectively concen-
trated on fewer and fewer ensemble members. To avoid this, a resampling
step is introduced, where the particles are resampled with probability pro-
portional to their weight. This means that the analysis sample contains
xb,i Ni times where E(Ni) = kαa,i and

∑
Ni = k. In this way particles

which �t the data well are replicated and the others eliminated, thus allow-
ing to explore adaptively the �ltering distribution by putting more mass
in regions of high probability.

There are balanced sampling schemes, where |Ni−kαa,i| < 1, which reduce
the error due to resampling as much as possible (discussion of balanced
sampling can be found in Carpenter et al. (1999); Crisan (2001) or Künsch
(2005)). But resampling also has problems with sample depletion if the
likelihood values l(xb,i|y) are very unbalanced or the dynamical system is
deterministic. In that case one has to add some kind of perturbations to
the analysis particles, but it is not clear how to choose the covariance of
this noise.

Using a vector of resampled indices I, such that P (I(i) = j) ∝ αj and
#{I(i) = j, i = 1, . . . , k} = Nj for all j, we can write the PF algorithm
succinctly as follows:

1. Compute the weights αj ∝ l(xb,j |y).

2. Choose the vector of resampled indices I, such that P (I(i) = j) ∝ αj
and |Nj − kαj | < 1.

3. For i = 1, . . . , k, set xa,i = xb,I(i).

2.2.3 The EnKPF

The EnKPF (Frei and Künsch, 2013) is a hybrid algorithm that combines
the EnKF and the PF with a single parameter γ ∈ [0, 1] controlling the
balance between both. Its core idea is to split the analysis in two stages,
following the progressive correction principle of Musso et al. (2001). In
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a nutshell, the algorithm consists in �pulling" the ensemble members to-
wards the observations with a partial EnKF analysis using the dampened
likelihood l(x|y)γ , and then applying a partial PF with the remaining part
of the likelihood, l(x|y)1−γ . In this way the algorithm can capture some
non-Gaussian features of the distribution (by resampling), while maintain-
ing sample diversity. For any �xed γ > 0, it does not converge to the true
posterior distribution as the number of particles tends to in�nity, unless
the background distribution is Gaussian. The justi�cation of the EnKPF
is rather that, for non-Gaussian background distributions, it reduces the
variance of the PF at the expense of a small bias.

We now review the derivation of the algorithm brie�y but refer to Frei
and Künsch (2013) for more detail. Assuming linear and Gaussian ob-
servations, dampening the likelihood with the exponent γ is equivalent to
in�ating the error covariance R by the factor γ−1, and it is easily seen
that this is also equivalent to using the Kalman gain with the original
error covariance R and a dampened background covariance γP b. From
the Gaussian mixture representation of the EnKF analysis described in
Eq. (2.2), we can see that the �rst step of the algorithm produces the
partial analysis distribution

πγ =

k∑
i=1

1

k
N (νa,i, Q), (2.3)

where

νa,i = xb,i +K(γP b)(y −Hxb,i), (2.4)

Q =
1

γ
K(γP b)RK(γP b)′. (2.5)

For the second step, we have to apply Bayes' formula using πγ as the prior
and l(x|y)1−γ as the likelihood. This has a closed form solution (Alspach
and Sorenson, 1972), namely a Gaussian mixture with new centroids µa,i,
covariance P a,γ , and unequal weights αi:

πaEnKPF =

k∑
i=1

αiN (µa,i, P a,γ), (2.6)
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where

µa,i = νa,i +K((1− γ)Q)(y −Hνa,i), (2.7)

P a,γ =
(
I −K((1− γ)Q)H

)
Q, (2.8)

αi ∝ φ{y;Hνa,i, HQH ′ +R/(1− γ)}, (2.9)

and φ{y;µ,Σ} denotes the density of a Gaussian with mean µ and covari-
ance matrix Σ evaluated at y. One can rewrite the equation for the µa,i

components directly from the background ensemble as:

µa,i = xb,i + Lγ(y −Hxb,i), where (2.10)

Lγ = K(γP b) +K((1− γ)Q)
(
I −HK(γP b)

)
.

The �nal analysis sample is obtained as a sample from the Gaussian mix-
ture (2.6), which can be done at a computational cost comparable to the
EnKF. A short description of the algorithm is given as follows:

1. Compute all the µa,j as in Eq. (2.7).

2. Compute all the weights αj .

3. Choose the vector of resampled indices I, such that P (I(i) = j) ∝ αj
and |Nj − kαj | < 1.

4. For i = 1, . . . , k:

(a) Generate εa,i ∼ N (0, P a,γ).

(b) Set xa,i = µa,I(i) + εa,i.

The step Item 4a can be done e�ciently, without computing P a,γ explicitly,
as described in Frei and Künsch (2013). A schematic illustration of the
algorithm can be seen in Fig. 2.1.

In the extreme case of γ = 0, the EnKPF is equivalent to a pure PF,
whereas for γ = 1 it is equivalent to the stochastic EnKF. γ is therefore
a tuning parameter which determines the proportion of EnKF and PF
update to use. In practice it is chosen adaptively such that the ensemble is
as close as possible to the PF solution while conserving enough diversity.
Diversity of the mixture weights αj can be quanti�ed by the ESS (Liu,
1996).

The EnKPF has been shown to work well with the Lorenz 96 models and
with other simple examples (Frei and Künsch, 2013). However, because
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Background EnKF mixture

PF mixtureAnalysis

enkf
γ

pf(1− γ)

Resample

xt−1 → xt

xt → xt+1

Figure 2.1: Schematic illustration of the EnKPF. Upper left: Background ensemble
(blue dots) and observation (red dot). Upper right: Intermediate analysis distribution
πγ (2.3). Each ellipse covers 50% of one component in the mixture. Lower right: Final
analysis distribution Eq. (2.6). Ellipses again represent 50% of each component, and
the color intensity represents the weights αi. Lower left: Analysis sample obtained by
drawing from Eq. (2.6). The mixture component closest to the observation has been
resampled 3 times, while the two components farthest away have been discarded.

it has a PF component, it cannot be directly applied to large-scale sys-
tems without su�ering from sample degeneracy. In the following section
we discuss the technique of localization and introduce two new localized
algorithms based on the EnKPF.

2.3 Local algorithms

One of the key element for the success of the EnKF in practice is localiza-
tion, either by background covariance tapering as in Hamill et al. (2001), or
by doing the analysis independently at each grid point, using only nearby
observations, as in Ott et al. (2004). Localization suppresses spurious cor-
relations at long distances and generally increases the statistical accuracy
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of the estimates by reducing the size of the problem to solve. Its drawback,
however, is that it can easily introduce non-physical features in the global
analysis �elds. For the LEnKF such problems are reduced by ensuring
with some means that the analysis varies smoothly in space. It should be
noted that physical properties of the global �elds cannot be guaranteed in
a strong sense without incorporating some explicit constraints.

Without Gaussian assumptions localization becomes even more crucial but
also more di�cult, as the analysis does not anymore depend on the back-
ground mean and covariance only. The collapse of the PF with small
ensemble sizes could be avoided by using a very strong localization. How-
ever, a pure local PF would probably not be practical as it would introduce
arbitrarily large discontinuities in the analysis since di�erent particles can
be resampled at neighboring grid points and need to be glued together.

Localizing the EnKPF is easier than for a pure PF but it still requires
some care due to the resampling step. We propose two di�erent localized
algorithms based on the EnKPF: the �rst one is based on the same princi-
ple as the LEnKF of Ott et al. (2004), while the second one is closer to the
idea of covariance tapering of Hamill et al. (2001) and serial assimilation
of Houtekamer and Mitchell (2001), but adapted to the PF context.

2.3.1 The naive-LEnKPF

In the naive-LEnKPF, we apply the exact same approach as in the LEnKF
of Ott et al. (2004) and do an independent analysis at each grid point. We
call the resulting algorithm naive because it ignores dependencies between
grid points. More precisely, the analysis at a given site is produced by
sampling from a local analysis distribution which has the same form as
Eq. (2.6), but which is computed only using observations close to this
site. As in the LEnKF, some level of smoothness is ensured by using the
same perturbed observations at every grid point and by choosing a local
window large enough such that the observations assimilated do not change
too abruptly between neighboring grid points.

In order to mitigate the problem of discontinuities further, we introduce
some basic dependency by using a balanced sampling scheme with the same
random component for every grid point and by reordering the resampling
indices such that the occurrence of such breaks is minimized. This does
not remove all discontinuities, but essentially limits them to regions where
the resampling weights of the particles change quickly.
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In conclusion, the naive-LEnKPF has the advantage to be straightforward
to implement, following closely the model of the LEnKF, but it is not com-
pletely satisfactory as it introduces potential discontinuities in the global
analysis �elds. We now consider a second algorithm which is a bit more
complicated but avoids this problem.

2.3.2 The block-LEnKPF

In the naive-LEnKPF, localization consists in doing a separate analysis
at each grid point, using the observations at nearby locations. We now
consider another approach to localization, in which the in�uence of each
observation is limited to state values at nearby locations. This seemingly
innocuous change of perspective leads to the development of a new algo-
rithm, the block-LEnKPF. Assuming that R is diagonal or block-diagonal,
the observations y can be partitioned into disjoint blocks y1, . . . , yB and
then assimilated sequentially, as for example in the EnKF of Houtekamer
and Mitchell (2001). The way that localization is implemented for the
block-LEnKPF is similar in spirit to the global-to-local adjustment of the
LLEnsF of Bengtsson et al. (2003), but the derivation and the resulting
algorithms are not identical.

In the case of the EnKF, the in�uence of one block of observations can
be limited to a local area by using a tapered background covariance ma-
trix (Hamill et al., 2001). However, only in the Gaussian case, setting
correlations to zero implies independence, but for general πb this is not
true. The PF and EnKPF maintain higher-order dependencies by resam-
pling particles globally, but with a local algorithm some dependencies will
necessarily be broken. The block-LEnKPF maintains these dependencies
when it is possible, but falls back on a conditional EnKF and implicitly
relies on Gaussian assumptions to bridge discontinuities when they are un-
avoidable. We now describe in more detail how to derive the algorithm for
one block of observations and then discuss the general method and parallel
assimilation.

Assimilation of one block of observations:

Let us say we partitioned the observations into B blocks and want to
assimilate y1. If we assume that the observation operator is local, then
only a few elements of the state vector in�uence the block y1 directly (i.e.
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have non-zero entry in H for a linear operator). We denote their indices
by u with corresponding state vector xu. Hereafter we use subscripts to
denote subvectors or submatrices.

Let us assume also that we use a valid tapering matrix C, for example the
one induced by the correlation function given in Gaspari and Cohn (1999).
We denote by xv the subvector of elements that do not in�uence y1, but
are correlated with some elements of xu (i.e. correspond to non-zero entries
in the tapering matrix C). Additionally, we de�ne as xw the subvector of
all remaining elements.

The principle of the algorithm is to �rst update xu with the EnKPF while
keeping xw unchanged. In a second step, xv is updated conditionally on
xu and xw, such that potential discontinuities are smoothed out. If xu
and xw are not only uncorrelated, but also independent, the background
distribution can be factored as:

πb(xu, xv, xw) = πb(xu)πb(xv|xu, xw)πb(xw). (2.11)

By construction, only xu in�uences y1 so that one can write l(y1|xu, xv, xw) =
l(y1|xu). Applying Bayes' rule, the analysis distribution is

πa(xu, xv, xw|y1) ∝ πa(xu|y1)πb(xv|xu, xw)πb(xw).

A natural way to sample from this distribution goes as follows: (i) sample
xa,iu from the analysis distribution πa(xu|y1), (ii) keep xa,iw = xb,iw un-
changed and (iii) sample xa,iv from πb(xv|xu, xw), conditionally on xa,iu
and xa,iw . Steps (i) and (iii) are clear, but (ii) requires more discussion.

One could assume normality and sample xa,iv as a random draw from a
normal distribution with the conditional mean and covariance computed
from the background sample moments. However this would add unneces-
sary randomness and it is more judicious to sample xa,iv as a correction to
the background ensemble member xb,iv , as is done in the EnKF. Using this
sampling scheme, we can show that the analysis of xb,iv conditioned on xa,iu
and xa,iw is given by the following simple expression:

xa,iv = xb,iv + P bvu(P buu)−1(xa,iu − xb,iu ), (2.12)

where the matrix inverse is well de�ned if a tapered estimate of P b is used,
and should be understood as a generalized inverse otherwise.

At �rst sight it is puzzling that xa,iw does not appear in the formula, but
the correlation between xv and xw is present in the background sample xb,iv
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and thus does not need to be explicitly taken into account in the analysis.

Note that xa,iu depends on x
b,I(i)
u .

In cases where I(i) = i, the entire particle xa,i is therefore obtained as
a correction of the entire particle xb,i, according to the original EnKPF
algorithm. In cases where I(i) 6= i, xa,iv will depend on two background

particles x
b,I(i)
u and xb,iu and the analysis relies on additional Gaussian

assumptions of the background sample. Formula (2.12) then makes sure
that the correlation between xa,iu and xa,iv is nevertheless correct. In order
to stay as close as possible to the EnKPF, we permute the resampling
indices I(i) such that the number of cases with I(i) = i is maximal. More
details about the derivation of the algorithm are provided in Section 2.A.

Putting everything together, the assimilation of one block of observations
in the block-LEnKPF algorithm can be summarized as follows:

1. Compute all the µa,ju .

2. Compute all the weights αj .

3. Choose the vector of resampled indices I, such that P (I(i) = j) ∝ αj
and |Nj − kαj | < 1.

4. Permute I such that #{j, I(j) = j} is maximal.

5. For i = 1, . . . , k:

(a) Generate εa,i ∼ N (0, P a,γuu ).

(b) Set xa,iu = µ
a,I(i)
u + εa,i.

(c) Set xa,iv = xb,iv + P bvu(P buu)−1(xa,iu − xb,iu ).

(d) Set xa,iw = xb,iw .

The algorithm is illustrated in Fig. 2.2.

Parallel assimilation of observations:

In the previous paragraph we described how one block of observations is
assimilated in the block-LEnKPF. Now let us consider the case of two
blocks of observations to be assimilated, say y1 and y2. De�ning the cor-
responding state vector indices as above and using an additional subscript
for the block, we can see that if (u1, v1) ∩ (u2, v2) = ∅, then in principle
parallel instead of serial assimilation of y1 and y2 is possible. In the case
where v1 and v2 are contiguous, one might worry about discontinuities at
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Figure 2.2: Illustration of the assimilation of one observation (red cross in panel a)) with
the block-LEnKPF. Each particle is shown in a di�erent color, the dotted lines being
the background and the solid lines the analysis. In panel b) xu is updated while xw is
unchanged. In panel c) we see how the update in xv makes a transition between xu and
xw. For the orange and green particles, which are not resampled in xu, the analysis
has to bridge between two di�erent particles by relying on Gaussian assumptions as
described in Section 2.A.
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the boundary between v1 and v2. However, the tapering matrix C en-
sures that the correlations between sites near this boundary and sites in
u1 and u2 is small and thus the parallel assimilation of y1 and y2 through
Eq. (2.12) makes only small changes near this boundary. The procedure
could however introduce some discontinuities in higher-order dependence
between xa,iv1 and xa,iv2 . To avoid this, one could require an additional bu�er
area between v1 and v2, but it would slow down the algorithm and most
likely not bring much improvement.

We can therefore assimilate all blocks of observations where the corre-
sponding sets u are well separated in parallel. However, blocks where the
corresponding sets u are close have to be assimilated serially. In theory,
each assimilation of one block increases the correlation length because the
analysis covariance becomes the new background covariance, but we ne-
glect this increase and continue using the same taper matrix C until all
observations have been assimilated. This additional approximation is nec-
essary to keep the �lter local and it is also used in the serial LEnKF of
Houtekamer and Mitchell (2001). The resulting algorithm can be described
more precisely as follows:

1. Partition the observations in B blocks y1, . . . , yB and determine the
sets uj and vj (j = 1, . . . , B).

2. Choose a block i which has not been assimilated so far or exit if none
is left.

3. Assimilate in parallel yi and all yj such that (uj , vj) ∩ (ui, vi) = ∅.
4. Go to step 2

The number of times that the algorithm has to loop between successive
updates depends on the speci�c geometry of the problem and on the parti-
tioning of observations in y1, . . . , yB . In general one should try to partition
the observations such that as many blocks as possible can be assimilated
in parallel, but it is not necessary to �nd the global optimum to this com-
binatorial problem.

To recapitulate, the block-LEnKPF consists in assimilating data by blocks
and in limiting their in�uence to a local area. The analysis at sites that do
not directly in�uence the observations in the current block but are corre-
lated with xu is done by drawing from the conditional background distri-
bution. For cases where resampling does not occur, doing so is equivalent
to applying EnKPF in the local window, whereas for cases where it does
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occur, the algorithm avoids to introduce harmful discontinuities and pro-
duces a smoothed analysis. The block-LEnKPF satis�es all our desiderata
for a successful localized algorithm based on the EnKPF. Its disadvantage,
however, is that it requires more overhead for the partitioning of observa-
tions and its implementation in an operational setting is more complicated.

Now that we introduced two new localized algorithms based on the EnKPF,
we will proceed to numerical experiments in order to better understand
their properties and test their validity by comparing their performance to
the LEnKF.

2.4 Numerical experiments

The algorithms introduced in the present paper can be applied to any task
of data assimilation for large-scale systems. However we expect that relax-
ation of Gaussian assumptions will be most bene�cial when the dynamical
system is strongly non-linear. Such an application is data assimilation for
NWP at convective scale. Würsch and Craig (2014) introduced a simple
model of cloud convection which allows one to quickly test and develop
new algorithms for data assimilation at convective scale (as for example
in Haslehner et al. (2016)). We �rst brie�y introduce the model and the
mechanism to generate arti�cial observations. Then we present results of
two cycled data assimilation experiments.

2.4.1 The modi�ed shallow water equation model

The model is based on a modi�ed SWEQ on a one-dimensional domain to
generate patterns that are similar to the creation of convective precipita-
tions in the hot months of summer. The convective cells are triggered by
plumes of ascending hot air generated at random times and locations. The
SWEQ is modi�ed in such a way that if h, the height of the �uid, in the
present case humid air, reaches a given threshold (hc) the convection is
reinforced and leads to the creation of a cloud. The convection mechanism
is maintained until the �uid reaches a new threshold (hr), above which the
cloud starts to produce rain at a given rate and then slowly disappears.
The state of the system can thus be described by three variables: the �uid
height h, the rain content r and the horizontal wind speed u. We do not
use any units as the scales are arbitrary.
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The parameters (�uid height thresholds, precipitation rate, etc.) are the
same as for the model run described in (Würsch (2014), Chap. 5) except for
the cloud formation threshold set to Hc = 90.02 as in (Würsch and Craig,
2014). They have been tuned so that the system exhibits characteristics
similar to real convection (fraction of clouds, life-time of precipitation, etc).
The random perturbations are introduced at a rate of 8·10−5 m−1 min−1.
We use a domain size of 150 km with periodic boundary conditions and a
resolution of 500 m.

From this system we generate arti�cial observations that imitate radar
measurements. In order to make the experiment realistic, we use a non-
linear and non-Gaussian mechanism for generating the observations, but
consider them as linear and Gaussian during the assimilation. The rain
�eld is observed at every grid point, but set to zero if below a threshold
(rc), and with some skewed error whose scatter increases with the average
amount of rain otherwise. Our observation mechanism is di�erent from the
one of (Würsch and Craig, 2014), where simple truncated Gaussian errors
were used, and is intended to be more realistic and challenging than the
latter. In more detail, the rain observations yr are generated as follows:

yr =

{
0 if r ≤ rc or 1

2ε ≤ −
√
r − rc

(
√
r − rc + 1

2ε)
2 otherwise

,

where ε ∼ N (0, σ2
r), independently at every grid point. Such a skewed

error distribution for rain observations is a common choice (see for example
Sigrist et al. (2012); Stidd (1973)). It consists in applying a Box-Cox
transform (with parameter λ = 0.5), adding some white noise and then
transforming back to the original scale. Besides rain, wind speed is also
observed with some additive Gaussian noise (with variance σ2

u), but only
at grid points where the observed rain is positive (yr ≥ rc). For the present
experiment σ2

r = 0.12 and σ2
u = 0.00252.

Such arti�cial observations make data assimilation realistic and challenging
due to the non-linearity and sparsity of the observation operator and the
non-Gaussian errors. One could consider transforming the observations to
obtain a more normal distribution, but we want to test if our algorithms
can handle such di�cult situations.

A typical example of a �eld produced with the model and some arti�cial
observations is displayed in Fig. 2.3. The bumps in �uid height represent
clouds which start to appear if the �rst threshold is reached (lower dashed
line) and are associated with precipitation if they reach the second thresh-
old (upper dashed line), after which they start to decay. Rain can remain
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Figure 2.3: Typical example of the modi�ed SWEQ model with arti�cial radar obser-
vations (red dots) and critical values (hc, hr and rc) as dashed lines.

for some time after a cloud has reached its peak. The sharp perturbations
in the wind �eld are the random triggering plumes.

2.4.2 Assimilation setup

An initial ensemble of 50 members is generated by letting the model evolve
without assimilating any observations and taking each member at 200 days
interval from each other such that they are not correlated. We consider
only perfect model experiments and do not take into account model error;
in particular we do not use any form of covariance in�ation. All the obser-
vations are assumed to be Gaussian, with a diagonal covariance matrix R
with non-zero elements Rr or Ru, depending on which type of observations
it corresponds to. For wind observations the error is the same as for the
true generating process, that is we set Ru = σ2

u. Rain and no-rain observa-
tions are both assimilated and assumed to have the same error. The true
rain distribution is non-Gaussian, so Rr is not straightforward to choose,
especially because it depends on the rain level. We set Rr = 0.0252 during
the assimilation, which is equivalent to the error observed for a rain level
of 0.06125 (relatively big, but in the range of observed values). In general
more could be done to treat rain observations properly, but it is beyond
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the scope of the present study.

We use one localization parameter l set to 5 km. Every method uses a taper
of the covariance matrix as de�ned in Gaspari and Cohn (1999) with half
correlation length l. For LEnKF and naive-LEnKPF, the size of the local
window is set to l in each direction, for a total of approximately 10 km
or 21 grid points. Similarly, the observation blocks for the block-LEnKPF
are de�ned from segments of 10 km in the domain (one block contains all
the rain observations falling in a speci�c 10 km segment and the associated
wind observations, if any).

The EnKPF has one free parameter, γ, which controls the balance between
EnKF and PF. We choose it adaptively such that the ESS at the resampling
step is between 50 and 80% of the ensemble size. A di�erent γ can be
selected for each site in the case of the naive-LEnKPF, or for each block of
observations for the block-LEnKPF, which allows the method to be closer
to the PF in regions where non-Gaussian features are present and to fall
back closer to the EnKF when it is necessary. In general the criterion for
adaptive γ could be re�ned and tuned more closely, but it is beyond the
scope of the present paper.

The two new local algorithms are compared against the LEnKF of Ott et al.
(2004) and not the LETKF of Hunt et al. (2007), because both the EnKPF
and the LEnKF are based on the stochastic EnKF and thus are more
comparable. Furthermore our results cannot be directly compared to the
ones in Haslehner et al. (2016) as our experimental setup is substantially
di�erent from theirs.

2.5 Results

In order to highlight some key properties of the new proposed algorithms,
we start with an example where high-frequency observations are assimi-
lated and study the resulting analysis ensembles visually. In a second step,
repeating this experiment many times, we can evaluate the performance of
the algorithms and their di�erences. In a third step we discuss longer as-
similation periods with lower frequency observations. We show the results
as �gures only as we believe that they are only indicative of some possible
advantages but should not be taken too literally as the system under study
is very arti�cial and the results can vary with di�erent choice of parame-
ters. The quality of assimilation is assessed with the Continuous Ranked
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Probability Score (CRPS) (Gneiting and Raftery, 2007) commonly de�ned
as:

CRPS(F, x) =

∫
(F (x′)− 1(x′≥x)dx

′),

where F (·) is the predictive cumulative probability function, in our case
given by the empirical distribution of the ensemble. Because we have a
perfect model scenario we can directly evaluate the CRPS of the one-
step ahead forecast ensemble compared to the underlying true state of the
system. The CRPS is a strictly proper scoring rule, which implies that
using such a score allows one to control calibration and sharpness at the
same time, contrary to the more commonly used rmse (see Gneiting and
Katzfuss (2014) for a general discussion of probabilistic forecasting).

2.5.1 High-frequency observations

In this �rst scenario we are interested in seeing if it is possible to use high-
frequency radar data, especially for short term prediction. To do so we run
a cycled experiment where data are assimilated every 5 min for a total of
1 hour. Starting from an initial ensemble which has no information about
the current meteorological situation, the goal of the �lter is to quickly
capture areas of rain from the observations.

The analysis ensembles of the di�erent algorithms for the rain �eld show
that the local EnKPFs are better able to identify dry areas. In Fig. 2.4
we can see the analysis ensembles after one hour of assimilation in the
same typical situation as in Fig. 2.3. All methods recover the zones of
heavy precipitation relatively well, with some minor di�erences in terms
of maximum intensity. One should not conclude too much from an isolated
case, but there is one interesting trait which is not peculiar to this example
and illustrates how the local EnKPF algorithms are able to model non-
Gaussian features: the LEnKF maintains some medium level of rain at
almost all sites, while both naive-LEnKPF and block-LEnKPF are better
at using the no-rain observations to suppress spurious precipitation.

Going beyond this particular example, we now consider a simulation study
where we repeated the above experiment 1000 times and computed the
average CRPS of each algorithm for every assimilation cycle. To make the
results more understandable and to remove some natural variability, we
always compute the performance relative to a free forecast run. The latter
is based on the same initial ensemble used by all algorithms, but does
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Figure 2.4: Typical example of analysis ensembles for the rain �eld after 1 hour of
high-frequency observations assimilation. Each of the red line is one ensemble member.
On top is the LEnKF, followed by the naive-LEnKPF and the block-LEnKPF.

not assimilate any observation, and is thus equivalent to a climatological
forecast.

Both new algorithms achieve good performances compared to the LEnKF
for the �rst hour of assimilation, as can be seen in Fig. 2.5. The gains are
in terms of rain content, probably because it is the �eld with the most non-
Gaussian features. The block-LEnKPF seems to have a slight advantage
over the naive-LEnKPF for the �uid height and the other way round for
the rain �eld, but otherwise their performance is very similar.

Interestingly, if one looks at the evolution of the CRPS for an assimilation
period of six hours instead of only one hour in Fig. 2.6, some issues start
to become apparent. After an initial drop, the CRPS for the �uid height
�eld increases again and gets worse than the free forecast reference, which
means that observations actually hamper the algorithms. The e�ect is
greatest for the �uid height but also slightly visible for the rain for the
naive-LEnKPF. Physically, the problem comes from the fact that there
is a delay between the formation of a cloud and the appearance of rain.
Having assimilated many no-rain observations the algorithm can become
overcon�dent that an area is dry and cannot adapt when new rain starts to
appear. The LEnKF is a bit less susceptible to this problem, for the simple
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Figure 2.5: Evolution of the CRPS in the �rst hour with high-frequency observations.
The value is given as a percentage relative to a free forecast run. Notice the truncated
y-axis.

reason that it is less good at identifying dry areas and thus maintains more
spread in the ensemble while the local EnKPFs are too sure that no rain is
present. Such an e�ect can be understood as a form of sample degeneracy
coming from the fact that a large number of observations are assimilated,
which will be con�rmed in the next experimental setup.

To assess the calibration of the algorithms we also look at the rank his-
tograms of all �elds in the �rst hour of assimilation for the block-LEnKPF
in Fig. 2.7. The one-step ahead forecast is more or less calibrated, ex-
cept for a non-negligible fraction of cases where the truth lies outside the
range of the ensemble. These problems can be attributed to the inherent
di�culty coming from the fundamentally random nature of the system.
Indeed, attempts at improving the calibration with covariance in�ation
and tuning of the R matrix have not been successful. The histograms for
the �uid level and the rain content reveal that some newly appeared clouds
are missed, while some spurious clouds are sometimes created. The his-
togram for the absolute wind speed is generally uniform except for a slight
underestimation, which comes from the random perturbations of the wind
�eld. Conclusions are similar for other algorithms and no clear di�erences
can be identi�ed. Therefore the improvements in CRPS can be interpreted
mainly as better sharpness while keeping calibration the same.

2.5.2 Low-frequency observations

In a second scenario we consider the assimilation of lower frequency obser-
vations (every 30 min) but for a longer period (three days). It would be in
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Figure 2.6: Evolution of the CRPS (relative to a free forecast run) for the �uid height
and rain �elds in the �rst 6 hours with high-frequency observations. It becomes obvious
that after the �rst initial improvement, all algorithms deteriorate in term of their ability
to capture the underlying �uid height. Notice the truncated y-axis.
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Figure 2.7: Rank histograms computed at one-step ahead forecast for the block-
LEnKPF in the high-frequency observations experiment. Only every 10 grid points
and every 30 minutes are used to increase independence between observations.
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principle possible to run one long cycled experiment and to compute the
average performance of the algorithms, but we decided to run 100 repeti-
tions of a three days assimilation period instead, because it can be done
in parallel and it is more fault tolerant.

In this scenario the U-shape pattern highlighted in Fig. 2.6 is not present
anymore, as more diversity is introduced between each assimilation cycle
and the ensemble does not become overcon�dent. In term of calibration,
the results are similar to the high-frequency scenario, but with less ten-
dency to create spurious clouds and rain but a slight bias towards too
small clouds. The boxplots of Fig. 2.8 show that block-LEnKPF outper-
forms the other methods for the rain �eld, while the naive-LEnKPF shows
most di�culties, especially for the �uid height where it gets sometimes
worse than the free forecast. One can notice that the �uid height and the
wind �elds are the most di�cult to capture, which comes as no surprise as
they are not observed. Furthermore, it should be noted that there is a lot
of variability from experiment to experiment, and the CRPS gets regularly
worse than the free forecast.

The relatively less good performance of the naive-LEnKPF compared to
the block-LEnKPF in this scenario might come from the added disconti-
nuities in the analysis. In the high-frequency scenario the problem was
not apparent as the system only evolved for a short time before new obser-
vations were assimilated. With low-frequency observations, however, the
discontinuities introduced by the naive-LEnKPF have more time to pro-
duce a detrimental e�ect on the dynamical evolution of the system, which
results in a poorer performance.

2.6 Summary and discussion

We introduced two new localized algorithms based on the EnKPF in order
to address the problem of non-linear and non-Gaussian data assimilation,
which is becoming increasingly relevant in large-scale applications with
higher resolution. The algorithms that we propose combine the EnKF
with the PF in a way that avoids sample degeneracy. We took particular
care to localize the analysis without introducing harmful discontinuities,
which is an inherent problem of local PFs.

The results of the numerical experiments with a modi�ed SWEQ model
con�rm that the proposed algorithms are promising candidates for appli-
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Figure 2.8: Low-frequency observations assimilated for a period of 3 days. Boxplot
of the CRPS for the di�erent algorithms and �elds considered. The values are given
relative to a free forecast. Notice the truncated y-axis.

cation to convective scale data assimilation problems and have some dis-
tinct advantages compared to the LEnKF. The two local EnKPFs provide
better estimates of the rain �eld, which has non-Gaussian characteristics
and thus bene�ts greatly from the PF component of the algorithms. This
advantage is the strongest either in the high-frequency scenario for short
assimilation periods, or in the low-frequency scenario on longer time scales
for the block-LEnKPF. Calibration is not perfect as can be seen from the
rank histograms, but the improvements in CRPS indicate that the new
algorithms are better in terms of sharpness while keeping calibration the
same. In general the naive-LEnKPF performs a little worse than the block-
LEnKPF, but it is more straightforward to implement and might thus be
suitable for large scale applications.

Assimilating high-frequency observations over long periods of time seems
to be problematic for all algorithms, as they grow overcon�dent and are
not able to adapt when new clouds appear in the �eld. Indeed, if one
does not assimilate other types of observations the �lter is not able to
correctly capture the unobserved �uid height �eld before it produces rain
and performances deteriorate quickly after an initial improvement. It is
not certain if such a behavior is particular to the present SWEQ model
or if it is an inherent characteristic of convective scale assimilation, but
it indicates some potential limits of such scenarios. One possible path to
tackle this issue would be to properly account for model error. Indeed, the
present case study is not a perfect model experiment, as we assume that
the observations are linear and Gaussians where in fact they are not. The



2.6 Summary and discussion 51

typical approach to account for model error is to in�ate the covariance,
but there is a lot of research to do to understand how to apply such ideas
in the context of PF like algorithms.

In many applications, the use of a square-root �lter such as the LETKF has
been shown to be of great bene�t. Therefore, we are currently investigat-
ing possibilities to reformulate the EnKPF in this framework. In order to
study the impact of localization on the quality of the analysis, we applied
the two new localized EnKPFs to some simpler setups than in the present
paper, where it is possible to analyze more closely the problem of discon-
tinuities (Robert and Künsch, 2017a). Given the promising results of the
localized EnKPFs, we are collaborating with Meteoswiss and Deutscher
Wetterdienst on adapting our algorithms to cosmo, a convective scale,
non-hydrostatic NWP model.
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Appendix 2.A Derivation of the block-LEnKPF

Using the factorization (2.11) and l(y1|xu, xv, xw) = l(y1|xu), Bayes' rule
gives the following factorization of the analysis distribution

πa(xu, xv, xw|y1) =
l(y1|xu)πb(xu)πb(xw)πb(xv|xu, xw)

πb(y1)
(2.13)

where

πb(y1) =

∫
l(y1|x)πb(x)dx =

∫
l(y1|xu)πb(xu)dxu.

By integrating out xv, we obtain

πa(xu, xw|y1) =

∫
πa(xu, xv, xw|y1)dxv

=
l(y1|xu)πb(xu)

πb(y1)
πb(xw) · 1

= πa(xu|y1)πb(xw). (2.14)

The last step can be easily checked by integrating out xw and xu respec-
tively. The posterior of xw is nothing else than the prior, which comes as
no surprise because xw is independent from xu and thus is not in�uenced
by y1. Also, independence between xu and xw continues to hold.

Finally, the conditional posterior of xv can be derived from the de�nition
of conditional probability

πa(xv|xu, xw, y1) =
πa(xu, xv, xw|y1)

πa(xu, xw|y1)

=
l(y1|xu)πb(xu)πb(xw)πb(xv|xu, xw)

l(y1|xu)πb(xu)πb(xw)

= πb(xv|xu, xw), (2.15)

where we see that all the terms involving y1 cancel out. Therefore the
conditional posterior of xv is nothing else than the conditional prior dis-
tribution.

Assuming additionally that πb is normal, the conditional distribution of
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xv is again normal with the following mean and covariance:

µbv|uw = µbv +Mvu(xu − µbu) +Mvw(xw − µw), (2.16)

P bv|uw = P bvv −MvuP
b
uv −MvwP

b
wv, (2.17)

where

Mvu = P bvu(P buu)−1 andMvw = P bvw(P bww)−1. (2.18)

However, instead of making a new random draw from this conditional
normal distribution, one can instead devise a method which reuses the
background samples. Again under the Gaussian assumption, the residual

rb,iv = xb,iv −
(
µbv +Mvu(xb,iu − µbu) +Mvw(xb,iw − µbw)

)
(2.19)

is independent of xb,iu and xb,iw and normally distributed with mean 0 and
covariance P bv|uw. Hence we can use this residual for sampling from the

conditional distribution πa(xv|xa,iu , xa,iw , y1) = πb(xv|xa,iu , xa,iw ):

xa,iv = µbv +Mvu(xa,iu − µbu) +Mvw(xa,iw − µbw) + rb,iv

= xb,iv +Mvu(xa,iu − xb,iu ) (2.20)

because xa,iw = xb,iw . Plugging in the de�nition of Mvu we obtain the
analysis of Eq. (2.12).

In order to understand better how the block-LEnKPF works, let us com-
pare it to the EnKPF analysis of the entire state x = (xu, xv, xw) using
the block y1 and not assuming the factorization Eq. (2.11). Applying the
de�nitions Eq. (2.10) and Eq. (2.8) in the case where P b and H have the
block structure

P b =

 P buu P buv 0
P bvu P bvv P bvw
0 P bwv P bww

 (2.21)

and
H = (Hu 0 0) (2.22)

it can be easily veri�ed that

Lγ = (Lγu
′ (MvuL

γ
u)′ 0)′ (2.23)

and

P a,γ =

 P a,γuu P a,γuu M
′
vu 0

MvuP
a,γ
uu MvuP

aγ
uuM

′
vu 0

0 0 0

 . (2.24)
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Therefore

µa,iv = xb,iv +MvuL
γ
u(y −Hux

b,i
u ) (2.25)

= xb,iv +Mvu(µa,iu − xb,iu ) (2.26)

and
εiv = Mvuε

i
u. (2.27)

Moreover µa,iw = xb,iw and εiw = 0. Combining these results with Eq. (2.6),
we obtain the following for the analysis of xa,iv with a full EnKPF:

xa,iv = xb,I(i)v +Mvu(xa,iu − xb,I(i)u ), xa,iw = xb,I(i)w . (2.28)

Therefore the block-LEnKPF update given by Eq. (2.12) is the same as
the EnKPF update given by Eq. (2.28) for those indices where I(i) =
i. However, for indices i with I(i) 6= i, the EnKPF analysis applies a

correction to x
b,I(i)
v and not to xb,iv and the size of the correction depends on

xa,iu −xb,I(i)u and not on xa,iu −xb,iu . Moreover xb,iw is replaced by x
b,I(i)
w which

is in con�ict with the requirement of a local analysis. Applying a correction

to x
b,I(i)
v while setting xa,iw = xb,iw would introduce a discontinuity between

xa,iv and xa,iw . Therefore if I(i) 6= i, we do not apply an EnKPF analysis
to xb,iv , but use instead Eq. (2.12), ensuring a smooth transition between
xa,iu and xb,iw . If xb,iu and xb,iw are only uncorrelated, but not independent,
we ignore some higher order dependence between these values by pairing
xa,iu with xb,iw in cases where I(i) 6= i, but this seems unavoidable.

Appendix 2.B Additional experimental results

2.B.1 Alternative parameters

As mentioned in Section 2.5, the results obtained with the modi�ed SWEQ
model should be taken with a grain of salt as they are sensitive to the choice
of parameters. In this section we explore an alternative set of parameters,
referred to in the right column of Table 5.1 in Würsch (2014). Our earlier
experiments were based on the parameters in the left column of this same
table, except for Hc which was as in Würsch and Craig (2014). We did
not consider di�erent parameters for the model run and assimilation as we
focused on the perfect model scenario.

In Fig. 2.9 we can see a typical realization of the model with this alternative
set of parameters. Contrasting this �gure with Fig. 2.3, which is the same
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except for the parameters, one can see that in the alternative scenario the
patterns of precipitations are sensibly di�erent: there is more rain in the
domain and more contiguous small rain events. The wind �eld, however,
is qualitatively similar. The �uid height �eld also displays more clouds,
which explains the presence of more abundant rain.

The qualitative conclusions concerning the ability of the local EnKPFs to
better capture dry and wet areas in the domain, as illustrated in Fig. 2.4,
are not changed with the alternative set of parameters. However, in
Fig. 2.10 the evolution of the CRPS during 6 hours of high-frequency
observations assimilation show di�erent results from the one in Figs. 2.5
and 2.6. In particular, the LEnKF is now clearly better at estimating
the rain �eld, but on the other hand it su�ers more acutely in terms of
�uid height, where the U-pattern discussed earlier is very visible. The
same phenomenon happens for the the low-frequency setup: the boxplots
in Fig. 2.11 are sensibly di�erent from the ones in Fig. 2.8.

The fact that the conclusions drawn from the experiments with the modi-
�ed SWEQ model are sensitive to the choice of parameters indicates some
inherent problems with this model as a tool to test data assimilation algo-
rithms. Indeed, there is no right choice of parameters which to agree on,
and one can adapt them according to its need (Würsch and Craig, 2014;
Würsch, 2014). The experience gained with this model is still valuable,
but in the future I would not advise someone to use it because of this
reason.
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Figure 2.9: Example of the modi�ed SWEQ model as in Fig. 2.3, except with an
alternative set of parameters. Arti�cial radar observations are the red dots, and critical
values (hc, hr and rc) are shown as dashed lines.
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Figure 2.10: Evolution of the CRPS in the �rst 6 hours with high-frequency observations
and the alternative parameters. The value is given as a percentage relative to a free
forecast run. Notice the truncated y-axis.
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Figure 2.11: Low-frequency observations assimilated for a period of 3 days with the
alternative parameters. Boxplot of the CRPS for the di�erent algorithms and �elds
considered. The values are given relative to a free forecast. Notice the truncated y-axis.
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2.B.2 Filter divergence with high-frequency observa-

tions

One feature of the numerical experiments that we found particularly in-
triguing was the in�uence of the assimilation frequency on the results, and
in particular the appearance of the U-pattern in the case of high-frequency
observations. This phenomenon is interesting as it highlights some issue
with the EnKPF and EnKF that would need to be �xed. Even though
in practice we are still far from assimilating data at frequencies higher
than hourly, it might become feasible in the future with radar data. Also,
the U-pattern could appear for lower-frequency observations too, if the
observation error is su�ciently small.

To study the phenomenon in more detail we conducted the same experi-
ment as in Section 2.4, but with a richer set of frequencies. In Fig. 2.12
we show the evolution of the CRPS as a function of lead time for in-
creasing frequency of observations. A frequency of 5 min corresponds to
the high-frequency scenario of Section 2.5.1, while a frequency of 30 min
corresponds to the low-frequency scenario of Section 2.5.2.

The U-pattern for the �uid height �eld is clearly visible and becomes more
and more acute as the frequency is increased. It is interesting to see that
it also appears for the wind �eld at frequency faster than 5 min, which
we had not noticed before. For the rain �eld it seems that only the local
EnKPFs are subject to this problem, where a U-pattern appears clearly
for high-frequency, but was not very visible at a frequency of 5 min. It is
not clear why the LEnKF does not seem to su�er from the same issue.

To test if this phenomenon is particular to the modi�ed SWEQ model, we
ran similar experiments with the Lorenz96 model (Lorenz and Emanuel,
1998). The setup used is the same as in Frei and Künsch (2013), except
that we vary the frequency of observations and use a smaller assimilation
window. The results are averaged over a 100 simulations. As for the
modi�ed SWEQ, we show all the results relative to the performance of a
free-forecast run for easier comparison. Here we look at the Root Mean
Squared Error (RMSE) but similar conclusions apply to the CRPS. We
also included the global EnKF and EnKPF without tapering as reference.

In Fig. 2.13 we can see the evolution of the relative RMSE as a function
of lead time for various frequencies of observations. In the case of a fre-
quency of 0.4, which is the same used in Frei and Künsch (2013), all local
algorithms perform relatively well, with the LEnKF and naive-LEnKPF
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Figure 2.12: Evolution of CRPS as a function of lead time for the di�erent �elds and
di�erent frequency of observations with the modi�ed SWEQ model. Referring to Sec-
tion 2.5, the case with a frequency of 5 min corresponds to the high-frequency ex-
periment, while the case with frequency of 30 min corresponds to the low-frequency
experiment.
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having an advantage over the block-LEnKPF. The global algorithms, how-
ever, perform rather poorly, which is to be expected without the use of any
localization and a relatively small ensemble size. What is interesting is that
the U-pattern also appears with this model. The block-LEnKPF su�ers
from it the earliest, already at 0.2 frequency. Then at a frequency of 0.1
the LEnKF shows some issue, while the naive-LEnKPF is the only method
still stable. At a frequency of 0.05 all methods display a strong U-pattern.

The reasons for the appearance of the U-pattern are still poorly under-
stood, but the two examples discussed here show that it is not a phe-
nomenon particular to our modi�ed SWEQ model setup. A possible intu-
ition to explain what is going on is that as the frequency is increased, the
e�ective number of observations assimilated increases. On the other hand,
some variability is introduced in the ensemble between two assimilation
times, but less and less as the frequency gets higher. In the limit of in-
�nitely fast assimilation cycles, the situation is equivalent to assimilating
all the observations together (assuming that serial and batch assimilation
of observations are equivalent, which is not strictly the case for ensemble
methods). In terms of Bayesian update of the distribution, it means that
we have a very peaked likelihood, which leads to a poorly de�ned posterior.
For the EnKPFs it is clear that with a very peaked likelihood the variance
of the weights αγ,i is large and ultimately might lead to sample degener-
acy. In other words, the more observations are assimilated, the larger the
ensemble size should be, or the smaller the localization radius should be
used. This comes as no surprise from the discussion on the behavior of
PFs in high-dimension as discussed in Section 1.4. What is maybe more
surprising is that the EnKF is also subject to this e�ect, but it makes sense
in the light of the intuition given here of a very peaked likelihood.

The phenomenon described here is not without connection to the catas-
trophic �lter divergence discussed in Gottwald and Majda (2013). They
work with a 5-dimensional Lorenz96 model and show that catastrophic �l-
ter divergence (where the error goes to machine in�nity) occurs for sparse
observation networks with su�ciently small observation error variance and
small ensemble size. We could not compute the same statistics that they
used as our setup is higher dimensional and it would take too much time.
However, it seems that the U-pattern that we observe is in�uenced by
similar factors, in particular we also identify an increase in divergence for
higher assimilation frequency. Furthermore, the problem becomes more
acute when the observation variance is reduced (not shown here), indicat-
ing that it is a case of what is called catastrophic divergence in Gottwald
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Figure 2.13: In�uence of frequency on the evolution of RMSE as a function of lead time
for the Lorenz96 model. A frequency of 0.4 is the same as used in (Frei and Künsch,
2013).

and Majda (2013). What we have not observed is a reduction of error for
very high frequency, but we have probably not pushed it far enough. In
Gottwald and Majda (2013) they write that localization and covariance
in�ation can e�ciently control the problem of divergence. From Fig. 2.13
we can see that indeed the LEnKF always has an error smaller than the
free forecast and thus does not diverge, even if it displays the U-pattern.
However it seems that for the EnKPF localization is not enough to control
the problem. Further research should be conducted to better understand
the factors at play and to �nd potential remedies.





Chapter 3

Beating the curse of

dimensionality: a case

study

Most of the content of this chapter has been published in Robert and Kün-
sch (2017a). A paragraph with a �gure in Section 3.4.1 was not included
in the original publication. Sections 3.1 to 3.3 are essentially repetition,
while Section 3.4 presents new numerical experiments with a conjugate
normal setup and with the Lorenz96 model.

3.1 Introduction

Monte Carlo methods are becoming increasingly popular for �ltering in
large-scale geophysical applications, such as reservoir modeling and nu-
merical weather prediction, where they are often called ensemble methods
for data assimilation. The challenging (and interesting) peculiarity of this
type of applications is that the state space is extremely high dimensional
(the number of dimensions of the state x is typically of the order of 108 and
the dimension of the observation y of the order of 106), while the computa-
tional cost of the time integration step limits the sample size to less than a
hundred. Because of those particularly severe constraints, the emphasis is
on developing approximate but highly e�cient methods, typically relying
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on strong assumptions and exploiting parallel architectures.

The PF provides a fully general Bayesian solution to �ltering (Gordon
et al., 1993; Pitt and Shephard, 1999; Doucet et al., 2001), but it is well-
known that it su�ers from sample degeneracy and cannot be applied to
high-dimensional settings (Snyder et al., 2008). The most popular alter-
native to the PF in large-scale applications is the EnKF (Evensen, 1994,
2003), a successful but heuristic method, which implicitly assumes that
the predictive distribution is Gaussian.

Three main routes for adapting the PF to high-dimensional settings can be
identi�ed. The �rst one is to use an adaptive PF with a carefully chosen
proposal distribution (Pitt and Shephard, 1999; van Leeuwen, 2010). A
second approach is to build hybrid methods between the EnKF and the
PF, as for example the EnKPF (Frei and Künsch, 2013). A third route is
localization, as it is a key element of the success of the EnKF in practice
and could avoid the curse of dimensionality (Snyder et al., 2008; Rebeschini
and Handel, 2015).

The �rst approach requires an explicit model for the transition probabili-
ties, which is typically not available in practical applications. Furthermore
Snyder et al. (2015) showed that even with the optimal proposal distribu-
tion the PF su�ers from the curse of dimensionality. Therefore in the
present paper we focus on the second and third approaches and explore
some possible localized algorithms based on the PF and the EnKPF. In a
simulation study, we extend an example of Snyder et al. (2008) to illustrate
how localization seemingly overcomes the curse of dimensionality, but at
the same time introduces some harmful discontinuities in the estimated
state. In a second experiment we show how local algorithms can be ap-
plied e�ectively to a �ltering problem with the Lorenz96 model (Lorenz
and Emanuel, 1998). The results from these numerical experiments high-
light key di�erences between the algorithms and demonstrate that local
EnKPFs are promising candidates for large-scale �ltering applications.

3.2 Ensemble �ltering algorithms

Consider a state space model with state process (xt) and observations
(yt), where the state process evolves according to some deterministic or
stochastic dynamics and the observations are assumed to be independent
given the state process, with likelihood p(xt|yt). The goal is to estimate the
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conditional distribution of xt given y1:t = (y1, . . . , yt), called the �ltering

distribution and which we denote by πft . In general it is possible to solve
this problem recursively by alternating between a prediction step where
the �ltering distribution at time (t − 1) is propagated into the predictive
distribution πpt at time t, and an update step, also called assimilation,
where the predictive distribution is updated with the current observation
to compute πft . The update step is done by applying Bayes' rule as π

f
t (x) ∝

πpt (x)·p(x|yt), where the predictive distribution is the prior and the �ltering
distribution the posterior to be estimated.

Sequential Monte Carlo methods approximate the predictive and �ltering
distributions by �nite samples, or ensembles of particles, denoted by (xp,it )

and (xf,it ) respectively, for i = 1, . . . , k (Doucet et al., 2001). The update
step consists in transforming the predictive ensemble (xp,it ) into an approx-

imate sample from the �ltering distribution πft . We brie�y present the PF
and EnKF in this context and give an overview of the EnKPF. Henceforth
we consider the update step only and drop the time index t. Additionally
for the EnKF and EnKPF we assume that the observations are linear and
Gaussian, i.e. p(x|y) = φ(y; Hx,R), the Gaussian density with mean Hx
and covariance R evaluated at y.

The Particle Filter approximates the �ltering distribution as a mixture
of point masses at the predictive particles, reweighed by their likelihood.
More precisely:

π̂fPF (x) =

k∑
i=1

wi δxp,i(x), wi ∝ φ(y; Hxp,i, R). (3.1)

A non-weighted sample from this distribution can be obtained by resam-
pling, for example with a balanced sampling scheme (Künsch, 2005). The
PF is asymptotically correct (also for non-Gaussian likelihoods), but to
avoid sample degeneracy it needs a sample size which increases exponen-
tially with the size of the problem (for more detail see Snyder et al. (2008)).

The Ensemble Kalman Filter is a heuristic method which applies a
Kalman �lter update to each particle with stochastically perturbed obser-
vations. More precisely it constructs (xf,i) as a balanced sample from the
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following Gaussian mixture:

π̂fEnKF (x) =

k∑
i=1

1

k
φ(x; xp,i + K̂(y −Hxp,i), K̂RK̂ ′), (3.2)

where K̂ is the Kalman gain estimated with Σ̂p, the sample covariance
of (xp,i). The stochastic perturbations of the observations are added to
ensure that the �lter ensemble has the correct posterior covariance on
expectation.

The Ensemble Kalman Particle Filter combines the EnKF and the
PF by decomposing the update step into two stages as πf (x) ∝ πp(x) ·
p(x|y)γ ·p(x|y)1−γ , following the progressive correction idea of Musso et al.
(2001). The �rst stage, going from πp(x) to πγ(x) ∝ πp(x) ·p(x|y)γ is done
with an EnKF. The second stage is done with a PF and goes from πγ(x)
to πf (x) ∝ πγ(x) · p(x|y)1−γ . The resulting posterior distribution can be
derived analytically as the following weighted Gaussian mixture:

π̂fEnKPF (x) =

k∑
i=1

αγ,i φ(x; µγ,i,Σγ), (3.3)

where the expressions for the parameters of this distribution and more de-
tails on the algorithm can be found in Frei and Künsch (2013). To produce
the �ltering ensemble (xf,i), one �rst samples the mixture components with
probability proportional to the weights αγ,i, using for example a balanced
sampling scheme, and then adds an individual noise term with covariance
Σγ to each particle. The parameter γ de�nes a continuous interpolation
between the PF (γ = 0) and the EnKF (γ = 1). In the present study the
value of γ is either �xed, for the sake of comparison, or chosen adaptively.
In the later case γ is chosen such that the equivalent sample size of the
�ltering ensemble is within some acceptable range. Alternative schemes
for choosing γ such as minimizing an objective cost function are currently
being investigated but are beyond the scope of this work.

3.3 Local algorithms

Localization consists essentially in updating the state vector by ignoring
long range dependencies. This is a sensible thing to do in geophysical ap-
plications where the state represents discretized spatially correlated �elds
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of physical quantities. By localizing the update step and using local ob-
servations only, one introduces a bias, but achieves a considerable gain in
terms of variance reduction for �nite sample sizes. For local algorithms
the error is asymptotically bigger than for a global algorithm, but it is
not dependent on the system dimension anymore and therefore avoids the
curse of dimensionality. Furthermore, local algorithms can be e�ciently
implemented in parallel and thus take advantage of modern computing
architectures.

The LEnKF consists in applying a separate EnKF at each site, but limiting
the in�uence of the observations to sites that are spatially close (there are
di�erent ways to accomplish this in practice, see for example Houtekamer
and Mitchell (2001); Ott et al. (2004); Hunt et al. (2007)). Analogously,
we de�ne the Local Particle Filter (LPF) as a localized version of the PF,
where the update is done at each location independently, considering only
observations in a ball of radius `. In order to avoid arbitrary �scrambling�
of the particles indices, we use a balanced sampling scheme (Künsch, 2005),
and some basic ad-hoc methods to reduce the number of discontinuities,
but we do not solve this problem optimally as it would greatly hinder the
e�ciency of the algorithm.

For the EnKPF we de�ne two di�erent local algorithms: the naive-LEnKPF,
in which localization is done exactly as for the LEnKF, and the block-
LEnKPF, in which the observations are assimilated sequentially but their
in�uence is restricted to a local area. The naive-LEnKPF does not take
particular care of the introduced discontinuities beyond what is done for
the PF, but it is straightforward to implement. The block-LEnKPF, on the
other hand, uses conditional resampling in a transition area surrounding
the local assimilation window, which ensures that there are no sharp dis-
continuities, but it involves more overhead computation. For more detail
about the local EnKPF algorithms see Robert and Künsch (2017b).

3.4 Simulation studies

We conducted two simulation studies: �rst a one-step conjugate normal
setup where the e�ect of localization can be closely studied, and second a
cycled experiment with the Lorenz96 model, a non-linear dynamical system
displaying interesting non-Gaussian features.
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3.4.1 Conjugate normal setup

We consider a simple setup similar to the one in Snyder et al. (2008), with
a predictive distribution πp assumed to be a N -dimensional normal with
mean zero and covariance Σp. To imitate the kind of smooth �elds that we
encounter in geophysical applications, we construct the covariance matrix
as Σpii = 1 and Σpij = KGC(d(i, j)/r), where KGC is the Gaspari-Cohn
kernel (Gaspari and Cohn, 1999), d(i, j) the distance between sites i and j
on a one-dimensional domain with periodic boundary conditions, and the
radius r in the denominator is chosen such that the covariance has a �nite
support of 20 grid points. From this process we generate observations of
every component of x and standard Gaussian noise:

x ∼ N (0,Σp), y|x ∼ N (x, I). (3.4)

In order to study the �nite sample properties of the di�erent algorithms,
we compute the Mean Squared Error (MSE) of the ensemble mean in esti-
mating the value x at each location, which we denote by mse(x). Because
the prior is conjugate to the likelihood, we can compute the mse(x) of
the posterior mean analytically for known Σp as the trace of the poste-
rior covariance matrix and use this as a reference. For the simulation we
use a sample size of k = 100 and average the results over 1000 runs. It
should be noted that because the predictive distribution is normal, this
setup is favorable to the EnKF and LEnKF, but the EnKPFs should still
perform adequately. For the local algorithms the localization radius ` was
set to 5, resulting in a local window of 11 grid points, which is smaller
than the correlation length used to generate the data. Later on we study
the e�ect of ` on the performance of the algorithms. For the EnKPF algo-
rithms the parameter γ was �xed to 0.25, which means a quarter of EnKF
and three-quarter of PF. In practice one would rather choose the value of
γ adaptively, but the exact value does not in�uence the qualitative con-
clusions drawn from the experiments and �xing it in this way makes the
comparison easier.

An example of a sample from the �ltering distribution produced by di�er-
ent local algorithms is shown in Fig. 3.1, with each particle represented as
a light blue line, the true state in dark and the observations in red. For
more clarity the ensemble size is set to 10 and the system dimension to 40.
While all algorithms manage to recover more or less the underlying state,
it is clear that they vary in terms of quality. The LPF in particular suf-
fers from sample depletion, even when applied locally, and displays strong
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Figure 3.1: Example of analysis ensemble with di�erent local algorithms. Each particle
is a light blue line, the true state in dark and the observations in red. The ensemble
size is restricted to 10 and the domain size to 40 for better legibility.

discontinuities. If one looks closely at the naive-LEnKPF ensemble, dis-
continuities can also be identi�ed. The block-LEnKPF and the LEnKF,
on the other hand, produce smoother posterior particles. This example
is useful to highlight the behavior of the di�erent local algorithms qual-
itatively, but we now proceed to a more quantitative assessment with a
repeated simulations experiment.

Beating the curse of dimensionality

In the �rst row of Fig. 3.2, the mse(x) is plotted as a function of the
system dimension N , for the global algorithms on the left and the local
algorithms on the right. The values are normalized by the optimal mse(x)
to make them more interpretable. The PF degenerates rapidly, with an
mse(x) worse than using the prior mean (upper dashed line). The EnKF
and the EnKPF su�er as well from the curse of dimensionality, although
to a lesser extent. The local algorithms, on the other hand, are immune to
the increase of dimensions N and their mse(x) is constant and very close
the optimum, which con�rms that localization is working as expected. The
LEnKF, naive-LEnKPF and block-LEnKPF make an error of less than 5%
while the LPF is 20% worse than the optimum.
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Figure 3.2: Illustration of the relationship between the system dimensionN and di�erent
quantities. In the �rst row is the mse(x) for the global algorithms on the left and the
local algorithms on the right. In the second row the same but for the mse(∆x). All the
values are given relative to the optimal one obtained with the true posterior distribution
(dashed line at 1). The relative MSE of using the prior without using any observation
is given by the second dashed line. Notice the log-scale on the y-axis.

The cost of localization

As the old statistical adage goes, there is no free lunch: localization comes
at a cost, particularly for PF algorithms. When doing the update locally
with the EnKF, the �ltering samples are relatively smooth �elds, because
the update applies spatially smoothly varying corrections to the predictive
ensemble. However, for the LPF, when di�erent particles are resampled at
neighboring sites, arbitrarily large discontinuities can be created. While
this might be discarded as harmless, it is not the case when the �elds of
interest are spatial �elds of physical quantities used in numerical solvers
of partial di�erential equations. One way to measure the impact of dis-
continuities is to look at the MSE in estimating the lag one increments
∆x, which we denote as mse(∆x). While the mse(x) is computed for
the posterior mean, the mse(∆x) is computed for each particle separately
and then averaged. We again compute the expected mse(∆x) under the
conjugate posterior distribution and use it as reference.

The plots in the second row of Fig. 3.2 show this quantity for the di�erent
algorithms averaged over 1000 simulation runs. The mse(∆x) of the local
algorithms is still constant as a function of N , as expected, but in the cases
of the naive-LEnKPF and the LPF its value is worse than for the respective
global algorithms. On the other hand, the LEnKF and the block-LEnKPF
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Figure 3.3: Trade-o� of localization: in�uence of ` on mse(x) and mse(∆x) for the local
algorithms. The ensemble size k was �xed to 100 and the system dimension N to 200.
Notice the log-scale on the y-axis.

improve on their global counterparts and have an error relatively close to
the optimum.

Localization trade-o�

In the previous experiment we �xed `, the localization radius, to 5, and
looked at what happens in terms of prediction accuracy with the mse(x),
and in terms of discontinuities with the mse(∆x). In Fig. 3.3 we now
look at MSE as a function of `, �xing N to 200 and k to 100. For large
values of ` the mse(∆x) is smallest as discontinuities are avoided, but the
mse(x) is not optimal, particularly for the LPF. As ` is reduced the mse(x)
decreases for all methods, while mse(∆x) is kept constant for a wide range
of ` values. At some point, di�erent for each algorithm, the localization
is too strong and becomes detrimental, with both mse(x) and mse(∆x)
sharply increasing. This behavior illustrates the trade-o� at hand when
choosing the localization radius: picking a too small value introduces a
bias by neglecting useful information and creates too much discontinuities,
while choosing a too large value does not improve mse(∆x) but leads to
poorer performance in terms of mse(x).

In Fig. 3.4 this trade-o� is illustrated most clearly. Both mse(x) and
mse(∆x) are displayed in a same plot, with each curve showing their evo-
lution as a function of `, encoded by color. One can see that initially
increasing ` leads to both a sharp decrease in mse(x) and mse(∆x). How-
ever after some point increasing ` continues to reduce the mse(∆x) but
leads to an increase in mse(x). Each method is displayed in a di�erent
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Figure 3.4: Trade-o� of localization: interplay between mse(x) and mse(∆x) as a func-
tion of ` (notice the di�erent scale). Each algorithm is represented as a parametric curve
with mse(x) on the x-axis and mse(∆x) on the y-axis and with the color representing
`. The ensemble size k was �xed to 100 and the domain size N to 200.

panel with a di�erent scale, but the general functional shape of the rela-
tionship is the same for all of them and highlights the trade-o� involved
when choosing the strength of localization.

3.4.2 Filtering with the Lorenz96 model

The Lorenz96 model (Lorenz and Emanuel, 1998) is a 40-dimensional non-
linear dynamical system which displays a rich behavior and is often used
as a benchmark for �ltering algorithms. In Frei and Künsch (2013) it was
shown that the EnKPF outperforms the LEnKF in some setups of the
Lorenz96 model, but the sample size required was of 400. In the present
experiment we use the same setup as in Frei and Künsch (2013) but with
much smaller and realistic ensemble sizes. The data are assimilated at
time intervals of 0.4, which leads to strong non-linearities and thus high-
lights better the relative advantages of the EnKPF. Each experiment is
run for 1000 cycles and repeated 20 times, which provides us with stable
estimates of the average performance of each algorithm. As in Frei and
Künsch (2013), the parameter γ of the EnKPFs is chosen adaptively such
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that the equivalent sample size is between 25 and 50% of the ensemble
size. It should be noted that for local algorithms, a di�erent γ is chosen
at each location, which provides added �exibility and allows to adapt to
locally non-Gaussian features of the distribution. We consider mse(x) only
and denote it simply by MSE. It also takes errors in the estimation of in-
crements into account through integration in time during the propagation
steps.

In the left panel of Fig. 3.5 the MSE of the global algorithms is plotted
against ensemble size. The PF is not represented as it diverges for such
small values. The MSE is computed relative to the performance of the
prior, which is simply taken as the MSE of an ensemble of the same size
evolving according to the dynamical system equations but not assimilating
any observations. With ensemble sizes smaller than 50, the �ltering algo-
rithms are not able to do better than the prior, which means that trying
to use the observations actually makes them worse than not using them
at all. Only for ensemble sizes of 100 and more do the global algorithms
start to become e�ective. In practice we are interested in situations where
the ensemble size is smaller than the system dimension (here 40), and thus
the global methods are clearly not applicable.

On the right panel of Fig. 3.5 we show the same plot but for the local
algorithms. For sample sizes as small as 20 or 30 the performances are
already quite good. The LPF, however, does not work at all, probably be-
cause it still su�ers from sample depletion and because the discontinuities
it introduces have a detrimental impact during the prediction step of the
algorithm. The block-LEnKPF clearly outperforms the other algorithms,
particularly for smaller sample sizes. This indicates that it can localize
e�ciently the update without harming the prediction step by introducing
discontinuities in the �elds.

In order to better highlight the trade-o� of localization, we plot similar
curves but as a function of the localization radius ` in Fig. 3.6. One can
see that for small k (left panel), the error is increasing with `, which shows
that localization is absolutely necessary for the algorithm to work. For
k = 40 (right panel), the MSE �rst decreases and then increases, with an
optimal `. Experiments with larger values display curves that get �atter
and �atter as k increases, showing that as the ensemble size is larger, the
localization strength needed is smaller, as expected.
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3.5 Conclusion

Localization is an e�ective tool to address some of the di�culties associ-
ated with high-dimensional �ltering in large-scale geophysical applications.
Methods such as the EnKF can be localized easily and successfully as they
vary smoothly in space. At �rst sight, the LPF does seem to overcome
the curse of dimensionality; however, looking more carefully, one notices
that it introduces harmful discontinuities in the updated �elds. The two
localized EnKPFs both overcome the curse of dimensionality and handle
better the problem of discontinuities.

The simple conjugate example studied in this paper highlighted the poten-
tial improvements coming from localization, as well as the pitfalls when
applied blindly to the PF. The trade-o� between the bias coming from
localization and the gain coming from the reduced variance was illustrated
by exploring the behavior of the algorithms as a function of the localiza-
tion radius `. Experiments with the Lorenz96 model showed that local
algorithms can be successfully applied with ensemble sizes as small as 20
or 30, and highlighted the localization trade-o�. In particular, the block-
LEnKPF fared remarkably well, outperforming both the naive-LEnKPF
and the LEnKF in this challenging setup. This con�rms other results
that we obtained with more complex dynamical models mimicking cumu-
lus convection (Robert and Künsch, 2017b) and encourages us to pursue
further research with localized EnKPFs in a large-scale application in col-
laboration with Meteoswiss.





Chapter 4

Other topics related to

localization

In this chapter we present unpublished material related to the localization
of the EnKPF. In Section 4.1 we illustrate the local EnKPFs through a
3-dimensional example and discuss possible variations and extensions of
the block-LEnKPF. In Section 4.2 we present an algorithm to resample
particles locally with a balanced scheme while ensuring that the number
of discontinuities between neighboring sites is kept to a minimum.

4.1 Local EnKPFs: a 3D example

To explore in more detail the behavior of the localized EnKPF algorithms
we study a simple 3-dimensional example with a multimodal prior. The
e�ect of localization is particularly well illustrated and the di�erence be-
tween the block-LEnKPF and the naive-LEnKPF put in a new light. The
example is somehow extreme and is meant to test the limitations of the
algorithms when the assumptions are not ful�lled. Furthermore we use
the example to discuss variations of the block-LEnKPF, in particular we
compare the results of using a direct sample instead of using residuals in
Section 4.1.4, and we consider a non-linear generalization of the block-
LEnKPF in Section 4.1.5.



78 Chapter 4: Other topics related to localization

4.1.1 Model for the prior and the observation

As prior we de�ne the following mixture of three Gaussians:

πb(x) =
1

4
N(µ1,Σ) +

1

4
N(µ2,Σ) +

1

2
N(µ3,Σ) (4.1)

where

µ1 =

 1
−0.5
−1

, µ2 =

−1
−1
−1

 , µ3 =

0
1
1

 and (4.2)

Σ = σ2 ·

1 ρ 0
ρ 1 ρ
0 ρ 1

 (4.3)

where ρ = 0.5, and σ = 1/5. Now let us assume that we observe the �rst
dimension only:

y = 1, H =
(
1 0 0

)
, R = σ2

y, (4.4)

where the observation standard deviation is σy = 0.5.

The purpose of this prior is to have no correlation between the �rst and
the third variable, but a strong non-linear dependency nonetheless. To
verify that we can compute the covariance matrix of x, P b, as:

P b = Σ +

3∑
j=1

αj(µj − µ̄)(µj − µ̄)′ =

0.540 0.145000 0
0.145 0.836875 0.895

0 0.895 1.040

 ,

where we denoted as αj the weights of each component in Eq. (4.1) and µ̄ is
the weighted mean of the µj . Following the notation for the block-LEnKPF
in Section 2.3.2, the �rst dimension corresponds to xu, the second to xv
and the third to xw. Indeed xu is correlated with xv, xv with xw, but xu
is orthogonal to xw. However, the factorization of the prior in Eq. (2.11)
does not hold because xu and xw are clearly not independent. We will
investigate further to see how much of an e�ect it has on the results.

4.1.2 Global assimilation

We generate a background ensemble of size 40 from the above prior dis-
tribution, with a balanced scheme for the mixture indicators. Using this
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Figure 4.1: Background and analysis ensembles with various non-local assimilation
algorithms for the 3D example. The color indicates the mixture components, blue is
the �rst one, orange the second, and green the third. In the analysis the color indicates
the component from which the resampled particles was taken.

ensemble we assimilate the observation y with the EnKF, the PF, and the
EnKPF with parameter γ set to 0.05. We chose such a small γ to ensure
that the analysis is far from the EnKF to make the illustration clearer. The
true posterior can be computed analytically as a new Gaussian mixture,
where the mean of the �rst component is unchanged, while the other two
are moved towards the observations and the mixture weights are updated
(a sample from the posterior is shown in the upper-right panel of Fig. 4.1).

The background and analysis ensembles are shown in Fig. 4.1, with the
color indicating the mixture components. The observation y corresponds
to a vertical plane going through u = 1, and is compatible with both the
�rst and third mixture components (blue and green), but not with the
second one (orange). The EnKF moves each particle towards the obser-
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Figure 4.2: Analysis ensembles with various local assimilation algorithms for the 3D ex-
ample. The color indicates the mixture components from which the resampled particles
was taken: blue is the �rst one, orange the second, and green the third.

vations, resulting in elongated shapes quite far from the high-mass region
of the prior. The PF works quite well in this low-dimensional example, in
the sense that it is close to the sample from the true posterior and does
not su�er too much from sample depletion. The EnKPF analysis is close
to the PF but the in�uence of the EnKF is visible from the same elongated
shapes of the mixture components.

4.1.3 Local assimilation

The same observation is now assimilated by four di�erent local algorithms:
the LEnKF, the naive-LEnKPF, the block-LEnKPF, and the LPF. To
ensure that the covariance between xu and xw is really null we use a
tapering matrix with ones on the diagonal, 0.5 on the sub- and super-
diagonals, and 0 otherwise. For the LPF we simply apply a PF to xu
and xv, and match with the particles xw. For all algorithms xw is kept
unchanged.

The resulting analysis ensembles are shown in Fig. 4.2. The LEnKF is
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Figure 4.3: u and v marginals of analysis ensembles with various local assimilation
algorithms for the 3D example. The color indicates the mixture components from
which the resampled particles was taken: blue is the �rst one, orange the second, and
green the third. The empty circles show the background ensemble members.

relatively close to the EnKF, except that it exerts a stronger pull on the
third components (in orange) towards the observations, resulting in the
two modes overlapping more than for the EnKF where they follow each
other in the dimension u. The block-LEnKPF is more or less similar to the
EnKPF, except for a group of particles coming from the �rst component
(in blue) being put close to the third component (in green). This same
group of blue particles is put in another region of space by both the naive-
LEnKPF and the LPF. This artefact comes essentially from the patching
of locally resampled particles, which we will now investigate in more detail.

For better illustration, in Fig. 4.3 we show the same as in Fig. 4.2 but
projected onto the u and v axes. The two modes produced by the LEnKF
in the bottom right component are clearly visible and come from the shift-
ing of the particles from the second component (in orange) towards the
observation on the right. By looking carefully it is possible to notice that
the update in xu is the same for the naive-LEnKPF and block-LEnKPF,
as is expected. The particles coming from the �rst component (in blue)
but put close to the third component (in green) by the block-LEnKPF
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Figure 4.4: v and w marginals of analysis ensembles with various local assimilation
algorithms for the 3D example. The color indicates the mixture components from
which the resampled particles was taken: blue is the �rst one, orange the second, and
green the third. The empty circles show the background ensemble members.

are well visible: they were resampled in xu and then their analysis xv was
computed using Eq. (2.12). For the naive-LEnKPF however the analysis
of xv is the usual EnKPF analysis and there is no shift of the resampled
particles toward the other component.

In Fig. 4.4 we can see the v and w marginals of Fig. 4.2. The creation of an
arti�cial mode (in the bottom right) in the distribution by the LPF, and
to a lesser extent by the naive-LEnKPF, is now evident. The xu and xv of
these particles were sampled locally from the �rst component (in blue) but
then they were matched with particles from the third component (in green)
for xw. This example illustrates well the nature of local resampling, which
can be seen both as an advantage and a disadvantage: on the one hand it
allows the ensemble to explore new regions of the state space which were
not populated by the background ensemble, maybe too small to sample
them; on the other hand it might create artefacts and put particles in
region of state space that are physically not possible.
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4.1.4 Sampling scheme for the block-LEnKPF

The block-LEnKPF did not create the arti�cal mode in the analysis en-
semble that the naive-LEnKPF and LPF have in Fig. 4.4. The reason
for this is that it does not apply an EnKPF analysis to xv but rather a
correction which implicitly takes into account the correlation between xv
and xw through resampling of residuals. In the top-left panel of Fig. 4.5
we show the same marginals as in Fig. 4.4 but add the regression line
corresponding to the conditional mean µbv|uw de�ned in Eq. (2.16). The

vertical bars are the residuals rb,iv de�ned in Eq. (2.19) which were taken
from the background sample and added to µbv|uw evaluated at the analyses

xa,iu .

On the top-right panel of Fig. 4.5 is the analysis ensemble of what we
call the kriging-local EnKPF (kriging-LEnKPF): it is the same as the
block-LEnKPF except that instead of using the residuals to sample from
πb(xv|xu, xw) it relies more strongly on Gaussian assumptions and for the
cases where a particle in xu has to be matched with a di�erent particle in
xw it generates xv as:

xa,iv = µbv|uw(xa,iv , xb,iv ) + ξb,iv , and ξb,iv ∼ N (0, P bv|uw), (4.5)

where we used µbv|uw as a function of xu and xw, and where P bv|uw was

de�ned in Eq. (2.17). In fact because xu and xw are uncorrelated the
µbv|uw is independent of w and corresponds simply to the linear regression
of xv onto xu, which is shown on the �rst row of Fig. 4.5 together with
the 2.5% and 97.5% quantiles.

The di�erence between the block-LEnKPF and the kriging-LEnKPF is
illustrated in Fig. 4.5. The �rst row shows that the ξb,iv sampled as in
Eq. (4.5) (gray bars in right column) have a di�erent structure than the
residuals used by the block-LEnKPF (gray bars in left column): they
do not have two modes but rather span the whole interval between the
two modes. In the second row we show these residuals rb,iv and the ξb,iv
respectively versus the variable xw. From this we can clearly see that
the rb,iv are strongly correlated with xw: positive residuals are associated
with xw = 1 and negative residuals with xw = −1. This dependency comes
from the fact that some residuals were sampled from the second component
(leftmost background particles in the upper panels), while others from the
third component (topmost in the upper panels). In the last row we can
see how this dependency ensures that the correlation between xw and xv
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is maintained for the block-LEnKPF, while it is destroyed by the kriging-
LEnKPF, which smears the separation between the modes. Relating this
to Fig. 4.4 it becomes clear why the block-LEnKPF does not create the
artefact at xw = 1 and xv = −1 present in the naive-LEnKPF and LPF.

4.1.5 Generalization of the block-LEnKPF

A natural idea that comes to mind to generalize the block-LEnKPF is to
model the conditional distribution πb(xv|xu, xw) in a more �exible man-
ner. One feature that we would like to keep is that the conditional mean
should depend on xu only, or potentially on xu and a small neighborhood of
xw, otherwise the algorithm is not local anymore. Another feature that we
can easily keep is the idea of using the residuals instead of sampling, which
spares us the trouble of estimating their distribution. One possible propo-
sition of algorithm is to model the conditional mean µbv|uw with a General-

ized Additive Model (GAM) (Hastie and Tibshirani, 1990), but any other
�exible regression could be used. The resulting algorithm which we call
GAM-local EnKPF (GAM-LEnKPF) is identical to the block-LEnKPF
except that it sample xv as follows for the cases where a particle in xu has
to be matched with a di�erent particle in xw:

xa,iv = β0 +

Nu∑
j=1

sj(x
a,i
u (j)) + rb,iv , (4.6)

where β0 is an intercept, sj(·) are univariate smoothers, typically splines,
and the residuals are with respect to the predicted value with the above
GAM: rb,iv = xb,iv − β0 −

∑
sj(x

b,i
u (j)); Nu is the number of dimension of

xu while xu(j) select the jth component of xu.

In our 3D example the GAM prediction is simply a univariate smoothing
spline which predicts xv as a function of xu. The resulting analysis is
shown in Fig. 4.6, where we see clearly how the conditional mean captures
the non-linearity in the background distribution. However the second and
third panel, constructed as the second and third row of Fig. 4.5, show
that the GAM creates similar artefacts than the naive-LEnKPF and LPF,
as its residuals are not correlated with xw as they were for the block-
LEnKPF. As discussed earlier, however, it is not clear if such a behavior
is an advantage or a disadvantage in general, and one should not draw
conclusions from this very particular example.
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Figure 4.5: Illustration of the di�erence between the block-LEnKPF and the kriging-
LEnKPF. In the top row we see the u and v marginals with the mean and 2.5% and
97.5% quantiles of the conditional normal distribution πb(xu|xv , xw). In the second
row the residuals of the �rst rows are plotted against the variable xw. The third row
shows xv versus xw.
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Figure 4.6: Illustration of the GAM-LEnKPF. In the left panel we see the u and v
marginals with the estimated GAM regression curve s(xu). In the second panel are the
residuals plotted against the variable xw. The third row shows xv versus xw.
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4.2 Local balanced sampling

In this section we discuss ways to produce locally balanced samples to use
with localized PF type of algorithms. First we review univariate balanced
sampling as is discussed for example in Carpenter et al. (1999); Crisan
(2001) or Künsch (2005). Then we develop our intuition with the case of
bivariate balanced sampling and discuss the trick of using a unique uniform
at all sites. After that we formalize the problem and present a heuristic
local balanced sampling algorithm.

4.2.1 Balanced sampling

In the context of PF one is interested in (re)sampling N analysis par-
ticles from an ensemble of N background particles, where each of them
has a di�erent probability of being chosen. The �rst idea that comes to
mind is to sample the particles independently with replacement, like from
a multinomial distribution. However, such a sampling scheme leads to ad-
ditional Monte Carlo error due to variability between samples. Especially
in applications where the number of particles is limited, making sure that
the resampled particles represent well the target distribution is of great
importance.

A balanced sampling scheme produces a random sample from the target
distribution, while ensuring that the discrepancy between the expected and
actual number of particles from each component is at most 1. Let us say
we have N particles with probabilities of being resampled (α1, α2, . . . , αN ).
We call Ni the number of time that particle i is resampled: its multiplicity.
Then balanced sampling is a sampling scheme such that:

1.
∑N
i=1Ni = N

2. E(Ni) = Nαi, i = 1, . . . , N

3. |Ni −Nαi| < 1, i = 1, . . . , N

There are various ways to produce such a balanced sample but we describe
here one simple solution. The �rst step is to set for sure each Ni to
the integer part of Nαi, which we denote by [Nαi]. Then we add 1 to
it with the remaining probability, which is the remaining fractional part
ri = Nαi − [Nαi]. In this way Ni can be written as:

Ni = [Nαi] + Zi, (4.7)

where Zi is a Bernoulli random variable with P (Zi) = ri.
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However this has to be done jointly for all particles in order to ensure
condition 1. Given a uniform random number U , such a sample can be
produced by choosing multiplicities as:

Nj =
∣∣∣[N j−1∑

i=1

αi + U,N

j∑
i=1

αi + U) ∩ {i, 2, . . . , N}
∣∣∣ (4.8)

Even though this expression can seem a bit confusing at �rst, it is actually
not so complicated. A simple way to understand how it works is to think
of the target distribution as a mixture of dirac measures at the particles
with state xi = i, whose cumulative distribution is

F (x) = P (X ≤ x) =

N∑
i=1

αi1(x≤i).

A typical way to generate a random variable x from this distribution is to
use a uniform U and set x = F−1(U). Applying this sampling N times
independently produces an independent sample with replacement. Instead
of using N uniforms Ui, one could instead spread them evenly between 0
and 1. The scheme in Eq. (4.8) does exactly this, but adds a random shift
U to the evenly spread uniforms to guarantee condition 2.

An illustration of the method is shown in the left panel of Fig. 4.7. Like in
the wheel of fortune, the sampling is done by spinning the outer wheel. The
length of the segments on the outer wheel are proportional to Nαi. When
the wheel stops the sample is determined by the ticks on the inner wheel:
the segment toward which the ticks point indicates which particles are
resampled. On the �gure for example, particles 1, 3, 4 and 6 are sampled
twice, while particles 2, 5, 7 and 8 are skipped. A di�erent realization of
the sampling can be produced by spinning the wheel again. With the help
of this illustration it is easy to see that particle i will be sampled at least
[Nαi] times. Sometimes one more tick will fall on the segment, sometimes
not, depending on the size of the remaining fractional part ri.

4.2.2 Localization

In large-scale environmental applications such as data assimilation for
weather forecast, one possibility to reduce the size of the problem is to
restrict the dependencies between dimensions to some local neighborhood.
If one tries to apply a particle �lter like method in a localized way, this
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Figure 4.7: Illustration of balanced sampling at one site on the left, and at two sites on
the right. In the outer wheels the length of each segment is equal to Nαj . The ticks
on the inner wheel determine which particles are resampled. The use of a uniform shift
U is equivalent to spinning the wheel. On the right, using the same uniform for both
sites means that their �rst weights are aligned.

means resampling independently particles in di�erent locations, or sites.
When di�erent particles are sampled at neighboring sites, this create sharp
discontinuities, which are very detrimental to the quality of the analysis.
Therefore it is highly desirable to introduce some dependency between
neighboring sites to limit the number of such discontinuities to a mini-
mum.

4.2.3 Unique uniform trick

Balanced sampling at one site requires the use of one uniform U . An
initial attempt to reduce discontinuities was made by simply using the
same uniform at all sites. This solution reduces some discontinuities, but
it does not optimally solve the problem. Indeed if one pictures the weights
αi at two sites stacked together side by side, one can see that if the weights
sequence is more or less similar (as it should be expected for sites which are
neighbors in model space) then the use of the same uniform will ensure
that some of the resampled particles are the same, but di�erences will
accumulate and at the end errors will be made.

This problem is best illustrated by the same wheel of fortune example. We
take two neighboring sites and put them on the same wheel, the �rst one in
blue like before, and the second one in red. The situation is depicted on the
right panel of Fig. 4.7. The weights are aligned for the �rst particle, but
then discrepancies between the weight sequences accumulate and lead to
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bigger and bigger di�erences. Using the same uniform at both sites, which
is equivalent to using only one central wheel and aligning the �rst weights,
makes the beginning of the sample similar, but not toward the end. In this
particular case the sample at site 1 (blue) would be (1, 1, 3, 3, 4, 4, 6, 6),
whereas at site 2 (red) it would be (1, 1, 3, 3, 4, 5, 6, 7). Here we have only
8 particles, but it is easy to see that the problem would be magni�ed with
a bigger sample size.

Using the same uniform everywhere is therefore rather a trick than a solu-
tion to the problem. Although it is not optimal, it has the non-negligible
advantage to be extremely simple and can be implemented at virtually no
cost in a real-world application.

4.2.4 Formalization of the problem

We now formalize the problem and characterize the desired solution. The
setup is as above, but everything is indexed by site s. In particular the
probability of resampling particle i at site s is denoted as αsi , and its chosen
multiplicity as Ns

i . In addition, we de�ne a neighborhood relation ∼ on
the domain S such that s ∼ s′ means that s and s′ are neighboring sites.
Therefore, the goal of minimizing the number of discontinuities can be
formalized as minimizing the following for all pairs of neighboring sites in
the domain S and all particles i = 1, . . . , N :

E
(
|Ns

i −Ns′

i |
)
. (4.9)

We want to minimize the number of jumps while keeping the marginal dis-
tribution at each site correct (respecting the three conditions for balanced
sampling above). Our goal is then to �nd a joint structure which minimizes
the number of discontinuities while maintaining the correct marginals.

We de�ne as s
i∼ s′ two sites which are neighbors and satisfy additionally

[Nαsi ] = [Nαs
′

i ]. Minimizing Eq. (4.9) while satisfying conditions 2 and 3
above is then equivalent to the following additional condition:

4. αsi ≤ αs
′

i ⇒ Ns
i ≤ Ns′

i , ∀s, s′ such that s
i∼ s′.

Explanation

By symmetry we can consider the case where αsi ≥ αs
′

i . Then using the de-
composition in Eq. (4.7), the absolute di�erence between the multiplicities
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for particle i at both sites can be splitted in two cases as follows:

|Ns
i −Ns′

i | =
{
|Zsi − Zs

′

i | if [Nαsi ] = [Nαs
′

i ]

[Nαsi ]− [Nαs
′

i ] + Zsi − Zs
′

i otherwise

In the latter case, the �rst di�erence is at least one by assumption, and
the second part coming from the random resampling of the Z can only be
-1, 0 or +1, that is Ns

i ≤ Ns′

i always holds. Let us compute the expected
value of this expression:

E
(
|Ns

i −Ns′

i |
)

=

{
P (Zsi 6= Zs

′

i ) if [Nαsi ] = [Nαs
′

i ]

[Nαsi ]− [Nαs
′

i ] + P (Zsi )− P (Zs
′

i ) otherwise

In the �rst case the expected value depends on the joint probability of
Zsi and Zs

′

i . If they are the same, a discontinuity is avoided, whereas if
they are di�erent, a jump will be created between the two sites: therefore,
the expected number of discontinuities can be minimized by minimizing
P (Zsi 6= Zs

′

i ). In the second case, however, the expected value depends

on the marginal distribution of P (Zsi , Z
s′

i ) only. In other words, without
modifying the marginal distributions, which would contradict condition
2), it is possible to minimize the number of discontinuities in the �rst case,
but not in the second.

Therefore, minimizing the expected number of discontinuities happens

when for all pairs of sites and particle indices such that s
i∼ s′, the mul-

tiplicity of the site with the bigger αi must be bigger or equal than the
one with the smaller αi; or vice and versa, as in condition 4. To see that
more clearly, we consider the problem of coupling two Bernoulli random
variables in the next paragraph.

Coupling of two Bernoulli random variables

We describe quickly how to maximize the coupling of two Bernoulli ran-
dom variables, in our case Zsi and Zs

′

i , while respecting their marginal

distributions, αsi and α
s′

i . We assume that αsi ≤ αs
′

i . One can �nd that

the probability that Zsi = 1 and Zs
′

i = 1 should equal min(αis, α
i
s′) = αsi ,

and similarly that the probability that Zsi = 0 and Zs
′

i = 0 should equal

1− αs′i . The probabilities P (Zsi = 1, Zs
′

i = 0) and P (Zsi = 0, Zs
′

i = 1) can
then be found easily from the conditions on the marginals.
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Zsi
0 1 Sum

Zs
′

i

0 1− αs′i 0 1− αs′i
1 αs

′

i − αsi αsi αs
′

i

Sum 1− αsi αsi 1

Table 4.1: Joint probability distribution of Zsi and Zs
′
i with maximal coupling where

αsi ≤ αs
′
i and s

i∼ s′.

We summarize this joint distribution with maximal coupling in Table 4.1.
From this table one can see that the probability to get Zsi = 1 and Zs

′

i = 0
is zero. This ensures the ful�llment of condition 4, that the multiplicity
of the site with the smaller probability (here site s by assumption) cannot
be bigger than the multiplicity at the other site. A simple way to sample
from this distribution is to generate one uniform U , and set Zsi to 1 if

U <= αsi , and Zs
′

i to 1 if U <= αs
′

i . In other word, for two Bernoulli
random variables the unique uniform trick gives the optimal coupling.

4.2.5 Local balanced sampling algorithm

So far we described the conditions that an optimal local balanced sampling
schemes should ful�ll, and gave some explanations and justi�cations for
them. However, until now we did not consider how one would obtain such
a sample. The goal is to sample N particles, at all sites in the domain S,
such that the samples are balanced at each site (conditions 1 to 3), and that
the number of discrepancies between the multiplicities of neighboring sites
is minimized (condition 4). Finding the global optimum to this problem
is not feasible, so we consider an approximate sequential scheme.

First let us de�ne a i-chain as a subset of S that contains at least two points

and forms a connected component w.r.t. s
i∼ s′. We can then sample all

the Zsi of the i-chain at once by using the same uniform everywhere, which
guarantees that condition 4 is ful�lled.

In the global balanced sampling scheme, all the particles are sampled at
once using a unique uniform, which guarantees conditions 1 to 3. In the
local scheme, however, we sample one particle in many sites at the same
time, such that condition 4 is satis�ed. If we would do that independently
for each particle, there would be no guarantee that the other conditions
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for balanced sampling are also satis�ed. Therefore, we need to update the
probabilities at each step accordingly. We will discuss how to do so next,
but we �rst summarize the sequential update scheme:

1. Find all i-chains.

2. Select the largest i-chain in the domain S.

3. Generate U ∼ Unif .
4. Set Ns

i = [Nαsi ] + 1[U<rsi ] at all sites of the i-chain.

5. Update the remaining probabilities at all sites.

6. Find all i-chains using the new updated probabilities.

7. Go to 2

If �nding all i-chains is too expensive to perform, a simpli�ed version of
the algorithm could instead pick the �rst i-chain it �nds, for example by
starting at a random location and particle, and search adaptively among
neighbors for the connected component. The solution would probably be
suboptimal, but the computational gain might well compensate for it.

On the other hand, if computational cost is not an issue, we could replace
step 2 by the following: instead of selecting the largest i-chain, select the i-
chain that maximizes the gain of coupling over independent sampling. The
expected number of discrepancies in a i-chain is given by

∑
P (Zsi 6= Zs

′

i )
for all sites in the chain. In the case of independent sampling this is equal
to
∑
rsi (1− rs

′

i ) + (1− rsi )rs
′

i , while in the case of coupling with the same

uniform this is equal to
∑ |rsi − rs′i |. Therefore one can select the i-chain

that maximize the di�erence between this two terms.

We now discuss step 5, how to update the probabilities ri after sampling
an i-chain.

4.2.6 Update of probabilities

In the previous section we described how one could produce a balanced
sample which minimizes discontinuities between neighboring sites. How-
ever this requires to produce the sample sequentially and thus to update
the probabilities at each step when sampling occurs at a site. To describe
more clearly how to do so, we �rst restate what we have at our disposal,
and introduce and few more elements. We consider the update at one site
at a time and thus we can skip the superscript s for ease of notation.
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Remember from Eq. (4.7) that we have the remainders ri which determine
the probabilities to add 1 to the multiplicity of particle i, or in other word
P (Zi = 1) = ri. Depending on N and the probabilities αi, the total
number of particles which need to be chosen in this way might vary. We
denote this number as d =

∑N
i=1 ri =

∑N
i=1 Zi.

Let us assume that the multiplicity for the �rst particle has been chosen,
and thus that Z1 is set to 0 or 1. We can then de�ne the desired updated
probabilities as:

ri+ = P (Zi = 1|Z1 = 1), (4.10)

ri− = P (Zi = 1|Z1 = 0). (4.11)

If Zi and Z1 could be considered independent, then ri+ = ri− = ri. How-
ever, because of condition 1, the Zi have to be dependent, and the con-
ditionals above have to be di�erent from the marginals. In particular, we
see that to ensure that the total number of particles N stay correct, these
probabilities must satisfy:

N∑
i=2

ri+ = E
( N∑
i=2

Zi

∣∣∣Z1 = 1
)

= d− 1, (4.12)

N∑
i=2

ri− = E
( N∑
i=2

Zi

∣∣∣Z1 = 0
)

= d. (4.13)

We thus have some freedom in the way we set ri+ and ri−, as long as we
satisfy the above conditions, and of course that we have valid probabilities
such that 0 ≤ ri+, ri− ≤ 1. To ful�ll the conditions above one need to
renormalize the probabilities such that they sum to the correct amount.
From

∑N
i=2 ri = d− r1, we can �nd the following simple solution:

ri+ = ri ·
d− 1

d− r1
and ri− = ri ·

d

d− r1
. (4.14)
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Ensemble space





Chapter 5

The local ensemble

transform Kalman particle

�lter

The content of this chapter has been submitted as the �rst part of Robert
et al. (2017). Sections 5.1 and 5.2 repeat some things that have been
discussed in the �rst chapter of this thesis, but have been reproduced
here for completeness. In Section 5.3 the new LETKPF is presented, with
some more detail about the derivations in the Appendixes 5.A and 5.B. In
Chapter 6 we will discuss numerical experiments with the COSMO model.

5.1 Introduction

Probabilistic weather forecasts are superior to deterministic ones for a wide
range of applications, such as evaluating weather-related risks or manag-
ing renewable energy production. A key element of probabilistic weather
forecasting is the use of ensembles methods: instead of running one highly
accurate prediction, we can produce an ensemble of typically 5 to 100 fore-
casts, which provides information not only on the most probable evolution
of the atmosphere, but also on the associated uncertainties. Producing
such probabilistic forecasts from ensembles is a complex endeavor involving
quanti�cation of initial conditions' uncertainties, representation of model
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errors, post-processing of ensembles, bias corrections, etc (Gneiting and
Raftery, 2005). In the present paper, we focus on the production of ini-
tial conditions with ensemble data assimilation methods, which combine
information coming from the previous weather forecast with the stream of
incoming observations.

Bene�ting from increasing computational resources, regional weather fore-
cast models nowadays run with a very high spatial resolution (1 to 5 kilo-
meters), which allows them to resolve small-scales dynamical e�ects, for
example convection (Harnisch and Keil, 2015). On the one hand this is
an advantage, as it provides forecasts of high-impact weather events such
as heavy storms, but on the other hand it makes the task of data assim-
ilation much harder due to the intrinsic non-linearity of the phenomena
resolved at those scales (Bauer et al., 2015). Indeed, strong non-linearities
lead to non-Gaussian uncertainties in the initial conditions, which current
methods are poorly equipped to deal with. Therefore, there is a growing
need for computationally e�cient ensemble data assimilation algorithms
able to handle non-linearities and non-Gaussian distributions.

Ensemble data assimilation methods are sequential algorithms which alter-
nate between two steps. First, during the forecast step, they propagate the
ensemble of particles from the previous iteration through the dynamical
system, which produces a so-called background ensemble. Then, during
the update step, or analysis, they use the newly available observations
to modify the ensemble of particles and produce a so-called analysis en-
semble. The various assimilation methods typically di�er in the way they
implement the analysis. The current state-of-the-art ensemble methods
are based on the ensemble Kalman �lter (EnKF) (Evensen, 1994, 2009),
which conducts the analysis by moving the particles towards the obser-
vations in a way that relies implicitly on Gaussian assumptions. Particle
�lters (PFs), on the other hand, directly implement Bayes' formula for
the analysis without relying on any Gaussian assumptions (Gordon et al.,
1993; Pitt and Shephard, 1999; Doucet et al., 2001). However, this �ex-
ibility comes at a cost, and while EnKFs are highly e�cient and used in
practice, PFs are prohibitively expensive to implement, as they need a very
large number of particles to work in high-dimensional systems such as in
numerical weather prediction (see Snyder et al. (2008) for more details on
the limits of PFs in high-dimensions).

Adapting the PF to high-dimensional applications is an active �eld of re-
search and there have been many propositions of new algorithms, which
can be broadly categorized in three di�erent approaches. The �rst one is
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to use variants of the PF with di�erent proposal distributions (Pitt and
Shephard, 1999; van Leeuwen, 2010; Ades and van Leeuwen, 2013). The
second is to to create hybrid methods which somehow combine the PF with
the EnKF (Frei and Künsch, 2013; Reich, 2013b). The last approach is to
localize the PF, which is di�cult but might be the only viable solution for
very high-dimensional systems (Poterjoy, 2016; Robert and Künsch, 2017a;
Snyder et al., 2015; Rebeschini and Handel, 2015). In the present paper we
focus on methods which combine the hybrid algorithm approach with lo-
calization (see for example Robert and Künsch (2017b) or Chustagulprom
et al. (2016)).

Promising results with PFs have been reported on various small- to medium
-scale toy models, but so far the only application to full-scale weather pre-
diction system that we are aware of is Poterjoy and Anderson (2016). Here
we describe a newly developed localized hybrid algorithm based on the en-
semble Kalman particle �lter (EnKPF) of Frei and Künsch (2013). We
implemented it in the assimilation framework of the COSMO (Consor-
tium for Small-scale Modeling) model (Baldauf et al., 2011), and we ran
successful experiments within the operational data assimilation system
of MeteoSwiss. The implementation of our algorithm was made possible
thanks to a collaboration with the Deutscher Wetter Dienst, which is also
working on PFs for data assimilation.

A key development of the new algorithm, called the local ensemble trans-
form Kalman particle �lter (LETKPF), consisted in formulating the EnKPF
in ensemble space, from which we could derive a computationally e�cient
implementation and a deterministic, or transform, analysis scheme. While
other localization methods might be theoretically better (Robert and Kün-
sch, 2017b), we used the scheme of the local ensemble transform Kalman
�lter (LETKF) (Hunt et al., 2007) for ease of implementation, as it is
the assimilation algorithm used by COSMO. A critical aspect of hybrid
methods is to choose the balance between the EnKF and the PF, which is
represented by the parameter γ in the EnKPF. We proposed and explored
a new objective criterion to choose this parameter γ adaptively in space
and time and compared it to the standard approach.

We conducted numerical experiments with a convective-scale regional model
for a period of 12 days in June 2015, with a setup similar to the one used
operationally at MeteoSwiss. The new algorithm is shown to perform at a
similar level to the LETKF, with some noticeable improvements for non-
Gaussian variables such as wind and hourly precipitation. These results
are very promising for the future of localized hybrid algorithms in chal-
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lenging real-world applications and we hope that they will spark further
interest in our algorithm.

In Section 5.2 we review ensemble data assimilation EnKPF. In Section 5.3
we derive the new LETKPF algorithm in ensemble space, describe how to
compute it e�ciently, and discuss how to localize the analysis and choose
the parameter γ adaptively. In Chapter 6 we present experimental results
with the COSMO model.

5.2 Background

The uncertainty about the q-dimensional state xt of a dynamical system
based on a stream of observations is best described by probability dis-
tributions: The background or forecast distribution πbt (xt) is based on
observations before time t whereas the analysis distribution πat (xt) in-
cludes in addition the current observation yt according to Bayes' formula:
πat (xt) ∝ πbt (xt) · `t(xt|yt) where `t(xt|yt) is the likelihood of xt if yt has
been observed.

Ensemble methods represent these distributions with �nite samples of k
particles, {xb,it } and {xa,it }. These particles are propagated and updated
sequentially: Propagating {xa,it−1} according to the dynamics of the system

produces {xb,it }, updating {xb,it } by a sampling version of Bayes' theorem
produces {xa,it }. Di�erent analysis algorithms vary in the assumptions
they make about πbt (xt) and `t(xt|yt), and in the sampling version of Bayes'
theorem.

In the present paper we focus on a single analysis step and thus omit the
time index t. We also assume that the observations are linear and Gaussian
with mean Hx and covariance R. We next review the EnKPF algorithm
in this context and present the EnKF and the PF as special cases.

The EnKPF introduced in Frei and Künsch (2013) decomposes the analysis
into two stages as πa(x) ∝ πb(x) · `(x|y)γ · `(x|y)1−γ , where 0 ≤ γ ≤ 1.
The core idea of the algorithm is to conduct the �rst part of the analysis
with an EnKF using the dampened likelihood `(x|y)γ , and then to apply
a pure PF to the remaining likelihood `(x|y)1−γ .

The �rst part of the analysis implicitly relies on Gaussianity of the back-
ground distribution, but the second part does not make any assumption.
The EnKPF can thus adapt to some non-Gaussian features of the back-
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ground distribution without su�ering from sample degeneracy like the pure
PF. The parameter γ allows one to choose how much of the analysis should
be done with the EnKF and how much with the PF, depending on the par-
ticular situation at hand.

Using the Gaussian mixture representation of the analysis distribution
after the EnKF step, it is possible to derive the �nal analysis distribution
as the following Gaussian mixture:

πaEnKPF (x) =

k∑
i=1

αγ,iN (µγ,i, P a,γ), (5.1)

whose component means µγ,i, mixing weights αγ,i and component covari-
ance P a,γ are de�ned as:

µγ,i = νγ,i +K((1− γ)Q)(y −Hνγ,i),
P a,γ =

(
I −K((1− γ)Q)H

)
Q,

αγ,i ∝ φ{y; Hνγ,i, HQH ′ +R/(1− γ)},

where νγ,i and Q are intermediary quantities from the EnKF step derived
from the background particles xb,i and background covariance matrix P b

as

νγ,i = xb,i +K(γP b)(y −Hxb,i) and

Q =
1

γ
K(γP b)RK(γP b)′.

K(P ) denotes the Kalman gain computed using the covariance matrix P
and is equal to PH ′(HPH ′+R)−1, while φ{y;µ, P} denotes the density of
a Gaussian distribution with mean µ and covariance matrix P evaluated
at y. More details about the derivation of the EnKPF algorithm can be
found in Frei and Künsch (2013) and Robert and Künsch (2017b).

It is convenient for later derivations to rewrite the expression for the µγ,i

components directly from the background ensemble as:

µγ,i = xb,i + Lγ(y −Hxb,i), where (5.2)

Lγ = K(γP b) +K((1− γ)Q)
(
I −HK(γP b)

)
. (5.3)

Lγ is the composite Kalman gain resulting from the successive application
of the EnKF and PF. It plays a similar role to the Kalman gain, but it
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should be noted that there is no estimate of the background covariance P b

such that a pure EnKF would have this gain.

Sampling from Eq. (5.1) can be done by �rst sampling the indicators I(i)
of the mixture components according to P (I(i) = j) = αγ,j and then
adding an arti�cial noise εi ∼ N (0, P a,γ) to µγ,I(i):

xa,i = µγ,I(i) + εi. (5.4)

Instead of sampling with replacement from the set of indices, one can gen-
erate the indicators I(i) by a balanced sampling scheme which guarantees
that N j , the multiplicity or number of times a particle j is selected, is
less than one unit away from its expected value, i.e. |N j − kαγ,j | < 1 (for
more details on balanced sampling see for example Carpenter et al. (1999),
Crisan (2001) or Künsch (2005)).

The EnKF and the PF can be seen as special cases of the EnKPF. Setting
γ to 1 we �nd

α1,i ∝ 1,

µ1,i = xb,i +K(P b)(y −Hxb,i),
P a,1 = K(P b)RK(P b)′.

A balanced sampling scheme, therefore, selects each index exactly once,
and thus we recover the stochastic version of the EnKF. At the other end
of the spectrum, setting γ to 0 we �nd

α0,i ∝ φ(y; Hxb,i, R),

µ0,i = xb,i,

P a,0 = 0.

The analysis ensemble is thus a resample of the background ensemble with
weights proportional to the likelihood, and we recover the PF. For γ > 0,
the arti�cial noise εi is not zero and thus no two analysis particles are
exactly the same, which is one of the drawbacks of the PF.

5.3 Derivation of the LETKPF

When the number of particles k is much smaller than the dimension q of
the system, it is desirable that the analysis ensemble belongs to the en-
semble space, i.e. the (k−1)-dimensional hyperplane in Rq spanned by the
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background ensemble. This has advantages both for e�cient implementa-
tion and for stability of the assimilation scheme, since the ensemble space
usually contains the main directions of instability.

In the following we represent the background and analysis ensembles as
q× k matrices xb and xa such that each column is one ensemble member.
The analysis ensemble belongs to the ensemble space if

xa,i =

k∑
j=1

xb,jWji, with
∑
j

Wji = 1.

Equivalently, if and only if the analysis belongs to the ensemble space, it
can be expressed as:

xa = x̄b1′ +XbW, (5.5)

where 1 denotes the vector of length k with all elements equal to 1, Xb =
xb − x̄b1′ the q × k matrix of deviations from the background mean, and
W is a k × k weight matrix. Because Xb does not have full rank, we do
not need to impose the condition

∑
jWji = 1.

In order to implement the EnKPF we have to estimate the background
covariance P b. Using the sample covariance matrix

P b =
1

k − 1
Xb(Xb)′,

the resulting analysis is in ensemble space and can be expressed in the form
of Eq. (5.5). To prove this and to derive the corresponding W matrix, we
�rst pull out a factor Xb from the matrix Lγ de�ned in Eq. (5.3)

Lγ = XbL̃γ .

From Eq. (5.2) it then follows that the ensemble of component means µγ,i

of Eq. (5.1) is automatically in ensemble space:

µγ = x̄b1′ +XbWµ, Wµ = I + L̃γ(y1′ −Hxb).

Resampling of the component means can be described by multiplying µγ

from the right with the matrixWα, which has exactly one 1 in each column,
indicating which particle is resampled, or more precisely

Wα
ij =

{
1 if I(j) = i,
0 otherwise.
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Therefore, the analysis ensemble from Eq. (5.4) lies in ensemble space if
the matrix of perturbations ε from Eq. (5.4) can be expressed as XbW ε:

xa = x̄b1′ +Xb(WµWα +W ε). (5.6)

If we estimate the background covariance by the sample covariance, we
can pull out a factor Xb on both sides of P a,γ :

P a,γ = XbP̃ a,γ(Xb)′.

Hence in a stochastic version of the �lter, we could generate W ε as follows

W ε =
(
P̃ a,γ

)1/2
E, (5.7)

where E is a k×k matrix of centered i.i.d. samples from a standard normal
and (·)1/2 is any matrix square-root. Then ε = XbW ε has exactly mean
zero and covariance P a,γ .

Instead of using a random draw for the added perturbations we would like
to use a deterministic scheme for producing ε. The �rst idea that comes to
mind is to rede�ne W ε in Eq. (5.7) as the symmetric matrix square-root
of (k − 1) P̃ a,γ , because then ε has exactly covariance P a,γ . However,
using such a scheme results in an analysis ensemble with the wrong covari-
ance, because the W ε generated in this way is strongly correlated with the
Wµ matrix and their e�ects tend to cancel each other. For the stochastic
version of the �lter this problem is not present because the samples E in
Eq. (5.7) are independent of the background ensemble. However, for a de-
terministic �lter we need to take these correlations explicitly into account
and match the �rst and second moments of the analysis ensemble with
their expected values.

The analysis mean, x̄a, should be equal to the mean of the resampled
component means

µ̄γ =

k∑
i=1

N i

k
µγ,i. (5.8)

Noticing that x̄b+1/k ·XbWµWα1 = µ̄γ , it is clear that for x̄a to equal µ̄γ ,
W ε1 must equal 0. In other words, the added perturbations should have
mean zero. For the stochastic W ε de�ned in Eq. (5.7) this holds because
the matrix E is centered such that E1 = 0.

The covariance of xa should be equal to the covariance of the resampled
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component means plus the component covariance:

P γ =

k∑
i=1

N i

k − 1
(µγ,i − µ̄γ)(µγ,i − µ̄γ)′ + P a,γ . (5.9)

Computing everything in ensemble space, we can �nd that for the covari-
ance of xa to equal P γ , the matrix W ε must satisfy the equation

A(W ε)′ +W εA′ +W ε(W ε)′ = (k − 1)P̃ a,γ , (5.10)

where A is the centered matrix

A = WµWα − 1

k
WµWα11′.

This is a special form of a continuous algebraic Riccati equation, or CARE.
In general, it has in�nitely many solutions. In our experience, requiringW ε

to be symmetric and positive de�nite leads to good properties of the anal-
ysis. Such a solution exists and it can be found e�ciently using Newton's
method. Moreover, because of special properties of the matrices involved,
it can be shown that this solution of Eq. (5.10) guarantees a correct �rst
moment with W ε1 = 0. Details about the algorithm to solve W ε and the
latter property are given in the Section 5.A. A related algorithm which
solves a CARE to obtain an analysis ensemble with correct covariance is
described in de Wiljes et al. (2016).

We have thus found a deterministic version of the EnKPF in ensemble
space, which we call the ETKPF by analogy with the ETKF, which it is
equivalent to when γ = 1. It should be noted that when γ is not equal
to 1 the solution found by the ETKPF is not the same as simply taking
the symmetric square-root of the Gaussian mixture covariance. Indeed, the
square-root scheme is only used as a correction term to the analysis ensem-
ble, similarly to the random perturbations added in the stochastic EnKF.
In particular the resampling step ensures that interesting non-Gaussian
properties of the analysis distribution are represented in the ensemble.

5.3.1 E�cient computation

In principle there are di�erent ways to computeW e�ciently, but we chose
to follow the procedure of the ETKF as closely as possible for easy im-
plementation in the COSMO data assimilation framework. The starting
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point is to compute the spectral decomposition of S, the weighted covari-
ance matrix of the deviations of the model equivalents HXb in ensemble
space, or more precisely:

S = (HXb)′R−1(HXb) = Uδ(λ)U ′, (5.11)

where U is the matrix of eigenvectors and δ(λ) denotes the diagonal matrix
constructed with the vector of eigenvalues λ. Because Xb is centered, 0 is
an eigenvalue of S with eigenvector 1. If the number of observations d is
larger than k, S typically has (k − 1) non-zero eigenvalues.

The in�uence of the observations enters through the following vector:

c = (HXb)′R−1(y −Hx̄b). (5.12)

Using Woodbury's formula multiple times and working out the algebra,
it is possible to compute W from these elements. For Wµ we obtain the
following expression:

Wµ = Uδ(fµ(λ))U ′ + Uδ(f µ̄(λ)))U ′c1′, (5.13)

where fµ and f µ̄ are rational functions and f(λ) denotes the vector with
components f(λi). More details about the derivation of this and the fol-
lowing expressions and explicit formulas can be found in Section 5.B.

The matrixWα does not have to be constructed explicitly, only the weights
αγ,i and the vector of resampled indices I are needed. Going through the
algebra, one can �nd that the weights are proportional to the following
expression:

exp

(
− 1

2

(
Uδ(λfα(λ))U ′

)
ii

+
(
Uδ(fα(λ))U ′c

)
i

)
,

where fα is also a rational function.

Both the stochastic EnKPF and the ETKPF need the ensemble space
covariance P̃ a,γ to be computed. Similarly to the calculation of Wµ one
can �nd that

P̃ a,γ = Uδ(fγ(λ))U ′,

where fγ is another rational function. For the stochastic EnKPF, the
symmetric matrix square root can thus be computed easily as:(

(k − 1) P̃ a,γ
)1/2

=
√
k − 1 · Uδ(

√
fγ(λ))U ′.



5.3 Derivation of the LETKPF 107

For the ETKPF one still needs to solve the CARE of Eq. (5.10), which is
described in Section 5.A, but all its elements can be computed e�ciently
from the above expressions. From these equations we can recover the
special cases of the ETKF and the PF in the limit γ → 1 and γ → 0.
Details are given in Section 5.B.

5.3.2 Localization

If the ensemble size is much smaller than the system dimension, all methods
described so far perform poorly. The EnKF su�ers from spurious long
range correlations that result from low rank background covariances. With
PFs the problem is even more pronounced, as the ensemble collapses if
the number of particles does not grow exponentially with the problem
size (see Snyder et al. (2008) for more detail). These problems can be
overcome by localization, which essentially consists in doing a separate
analysis at each site and then gluing them together. For the EnKF this is
well established, leading to the LETKF and similar methods, However it
is not straightforward to use localization for PFs because of discontinuities
introduced by resampling di�erent particles at neighboring sites. We now
discuss how we address these issues with the EnKPF, which leads to the
LETKPF.

The basic idea of localization is to compute di�erent W matrices at every
site. For the EnKPF, the Wµ matrices associated with the component
means of the analysis cause no problem as they vary smoothly between
adjacent sites, provided that the localization radius is su�ciently large. In
practice, one further enforces smooth transitions by tapering the inverse
of the observation covariance matrix R−1 as a function of distance. For
the EnKPF, however, the biggest issue comes from the resampling matrix
Wα and the perturbation matrix W ε. The problems with the latter are
relatively easy to be dealt with, but the ones with the former can only be
partially addressed.

In the case of the stochastic EnKPF one simply uses the same noise matrix
E to constructW ε in Eq. (5.7) at every site. Because the covariance matrix
P̃ a,γ varies smoothly in space, theW ε matrix constructed in this way does
not introduce additional discontinuities. For the ETKPF there is nothing
special to do as the algorithm to �nd W ε is deterministic and its solution
varies smoothly between sites.

The main problem comes from the resampling matrix Wα, which re�ects
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the PF part of the algorithm. The weights αγ,i vary smoothly in space,
but the resampling of particles is discrete in nature and can thus vary
abruptly from one location to another. We now consider three steps to
limit the number of discontinuities introduced in this way.

The �rst step is to reduce the noise added during the choice of the resam-
pled indices vector I from the weights αγ,i. Clearly, using independent
sampling with replacement would be a very poor choice, as even if two
adjacent sites had the exact same weights it would result in very di�er-
ent I vectors. The balanced sampling scheme that we use for choosing I
is much better as it ensures that the multiplicities of each particle is at
most one unit away from their expected value. A simple way to further
reduce the added randomness is to use the same random seed at every site.
This solution is still suboptimal, but we cannot do better without global
communication between sites, which is prohibitive for high-dimensional
applications.

The second step to limit the number of discontinuities is to permute the
vector of resampled indices I. Indeed, the indexing of particles is arbi-
trary and can thus be changed without any in�uence on the local analysis.
Unfortunately, �nding the optimal permutation of every local I such that
the number of discontinuities is minimal is an optimal assignment problem
which cannot be solved without using global communication between sites.
However, putting as many 1 as possible on the diagonal of the Wα matrix,
and then �lling in the remaining cases in a determined order, is simple and
reduces discontinuities by a large extent.

The third step to limit the number of discontinuities is to compute the
local analysis on a coarse grid and then to interpolate the matrix W to
a �ner grid. This is routinely done with the LETKF in practice, but for
di�erent reasons. In the case of the LETKF the main goal is to reduce the
computational cost of the analysis, whereas in our case we want to smooth
out discontinuities. Let us say we need to match particle i at one coarse
grid point with particle j at the next coarse grid point. By interpolating
the weights on the �ner grid in between, we obtain particles which mix
particles i and j progressively, and thus create a smooth transition between
both.

It is worthwhile to mention that not all discontinuities are necessarily
bad, and it is easy to imagine cases where they are actually positive. In
particular if the physical �eld of interest is not continuous, such as a cloud
�eld, it makes sense to match together di�erent particles at di�erent sites.
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The problems arise when the estimated derivatives in the propagation
step become large, which can result in gravity waves or other spurious
dynamical e�ects. The extent to which such harmful discontinuities are
avoided with our algorithms needs to be studied in practice.

5.3.3 Adaptive choice of γ

The parameter γ determines the proportion of the analysis done with the
EnKF and with the PF. There is no reason to �x it a priori and we would
like a criterion to select its value adaptively. Frei and Künsch (2013)
proposed to choose the smallest γ such that the equivalent sample size
(ESS) (Liu, 1996), computed from the mixture proportions as 1/

∑
(αγ,i)2,

is within a given bound, for example no less than 50% of the original
ensemble size. This idea is reasonable and particularly cheap to implement,
but the problem of choosing γ is transfered to the problem of choosing the
desired reduction in equivalent sample size, and it does not provide us with
a clear criterion for the latter. In Chapter 6 we use this criterion with a
targeted ESS of 50% as a reference to which we compare the alternative
solution proposed below.

Another approach that seems attractive at �rst sight is to make γ a func-
tion of the �non-Gaussianity� of the distribution. The motivation is that
if the background ensemble is truly Gaussian, one should choose γ = 1
and recover the EnKF, while the more non-Gaussian the distribution, the
more PF should be used. However, there are at least two reasons why this
idea is not applicable in practice. First, the concept of non-Gaussianity is
not well de�ned, as there are in�nitely many ways for a distribution to be
non-Gaussian, especially in higher dimensions; but even with a measure
of non-Gaussianity, one would still have to map its value to a choice of γ
between 0 and 1, for which we would still have no guidance. Second, there
are cases where the background distribution is clearly non-Gaussian but it
might be preferable to choose a γ close to 1. Indeed, if the observation y
is situated outside of the convex hull formed by the ensemble, the weights
αγ,i will be very skewed and thus lead to sample depletion. In such a
case we would be better o� choosing a large γ even if the background is
non-Gaussian.

To address the various points above we propose to base the choice of γ on
the mean squared error (MSE) of the predictive mean of y. From Eq. (5.1)
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it follows that the predictive distribution of y is the following mixture:

πa(y) =

k∑
i=1

αγ,iN (Hµγ,i, HP a,γH ′ +R). (5.14)

In order to take into account the error coming from the resampling step,
we condition on the multiplicities N i (the number of times component i is
resampled), and consider the following predictive distribution:

πa(y|{N i}) =

k∑
i=1

N i

k
N (Hµγ,i, HP a,γH ′ +R), (5.15)

whose mean is Hµ̄γ given in Eq. (5.8).

We then choose γ such that the MSE of the predictive mean, Hµ̄γ , is
minimal. Because the observations do not all have the same variance, it is
necessary to scale the MSE with R−1, or more precisely:

MSE(Hµ̄γ , y) = (y −Hµ̄γ)′R−1(y −Hµ̄γ), (5.16)

where the predictive mean Hµ̄γ depends on γ. Writing µ̄γ as x̄b +Xbmγ ,
where mγ is the weight vector de�ned by 1

kW
µWα1, the MSE above can

be written as:

MSEγ(Hµ̄γ , y) = MSE(Hx̄b, y) + (mγ)′Smγ − 2(mγ)′c (5.17)

where S and c are de�ned in Eq. (5.11) and Eq. (5.12). Since the �rst term
is independent of γ, we can choose γ adaptively by minimizing (mγ)′Smγ−
2(mγ)′c, for example with a grid search.

The scheme for choosing γ proposed above is objective and does not need
any additional tuning parameter. On the other hand, it might lead to over-
�tting as it uses the observations y twice: once for computing the analysis
given γ and once for computing the MSE. Practical experiments are needed
to evaluate if this is a non-negligible e�ect. One potential remedy to
mitigate the problem is to use the jackknife, a bias reduction technique,
to estimate the expected MSE. A more radically di�erent approach would
be to use a cross-validation scheme with surrogate data created from the
background ensemble. The latter approach is attractive from a theoretical
point of view, but it is computationally expensive and implicitly relies on
the assumption that the ensemble and the truth are exchangeable, which
might be violated in case of systematic model biases.
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Instead of the MSE of the analysis mean, we could also use the energy score
(ES), a strictly proper multivariate generalization of the continuous ranked
probability score (CRPS) (Gneiting and Raftery, 2007). We developed an
algorithm to approximate the ES in ensemble space but the resulting choice
of γ was not signi�cantly di�erent from using the MSE criterion above, and
we thus prefer the latter method for its simplicity. Optimal selection of
the parameter γ depends on many di�erent variables such as the number
of observations compared to k, the distribution of the background and the
assimilation strength, and should be the object of further research.
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Appendix 5.A Riccati equation for the trans-

form �lter

First let us write Eq. (5.10) replacing W ε with X and (k− 1)P̃ a,γ with C
for more clarity:

AX ′ +XA′ +XX ′ − C = 0, (5.18)

where we transposed the �rst X, which we can do as we seek a symmet-
ric solution. Using Newton's method to solve this equation we �nd the
candidate Xn+1 recursively by solving

(A+Xn)X ′n+1 +Xn+1(A′ +X ′n) = XnX
′
n + C. (5.19)

Theorems 9.1.1 and 9.1.2 in Lancaster and Rodman (1995) show that if
the starting value X0 is symmetric and large enough, then Eq. (5.19) has a
unique positive de�nite solution for all n, and the sequence (Xn) converges
quadratically to the largest positive de�nite solution of Eq. (5.18).

At each step of the algorithm we solve Eq. (5.19) using the O(k3) algorithm
of Bartels and Stewart (1972), until a desired level of accuracy is reached,
which in our application typically occurs after less than 10 steps. There
are other algorithms besides Newton's method which are more e�cient
when a high degree of accuracy is desired, but for the present case we are
satis�ed with this method as it is straightforward to understand and to
implement, and it converges in a few steps to a solution accurate enough
for our purpose.

To verify that the solution W ε is such that W ε1 = 0, �rst notice that we
can pull out a factor (Xb)′ from L̃γ and thus 1′L̃γ = 0′ and 1′Wµ = 1′.
Wα has only one 1 per column and thus 1′Wα = 1′. Therefore 1′A = 0′

and A1 = 0. Because we can pull out a factor (Xb)′ on the left and a factor
Xb on the right of P̃ a we can also see that 1′P̃ a,γ1 = 0. Multiplying
Eq. (5.18) by 1′ from the left and by 1 from the right, it follows that
X ′1 = 0 and by symmetry, also X1 = 0.

Appendix 5.B E�cient computation of weight

matrices

The derivation of the algorithm in ensemble space starts by applying
Woodbury's formula to compute the inverse in the Kalman gain K̃(γP b)
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and results in the following expression after some further simpli�cations:

K̃(γP b) = γ
(

(k − 1)I + γS
)−1

(HXb)′R−1.

Using the de�nition of Q we can then write

Q̃ = γS
(

(k − 1)I + γS
)−2

,

which is correct because the matrices on the right commute. To compute
K̃((1−γ)Q) we substitute the expression for Q̃ in the de�nition and apply
again Woodbury's formula. After some further simpli�cations we can �nd
that:

K̃((1− γ)Q) = (1− γ)
(
I + (1− γ)Q̃S

)−1

Q̃(HXb)′R−1.

Splitting the ensemble into mean and deviations one can rewrite the Wµ

matrix in Section 5.3 as

Wµ = I − L̃γHXb + L̃γ(y −Hx̄b)1′,

where the �rst part will be computed using the S matrix and the last part
using the S matrix and the c vector. Using the expressions for K̃(γP b)
and K̃((1− γ)Q) to compute L̃γ and some further simpli�cations, we can
derive the �rst part as

I − L̃γHXb =
(
I + (1− γ)Q̃S

)−1

(k − 1)
(

(k − 1)I + γS
)−1

.

Finally, using the spectral decomposition of S and basic rules of algebra
we can �nd the rational function

fµ(λ) =
(k − 1)γλ+ (k − 1)2

γλ2 + 2(k − 1)γλ+ (k − 1)2
. (5.20)

The second part of the matrix Wµ can be derived similarly as:

L̃γ(y −Hx̄b) =(
I + (1− γ)Q̃S

)−1(
(1− γ)Q̃+ γ

(
(k − 1)I + γS

)−1)
c,
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from which we can �nd the function f µ̄ after plugging in the spectral
decomposition of S:

f µ̄(λ) =
1

(k − 1) + γλ
·
(
γ +

(k − 1)γ(1− γ)λ

γλ2 + 2(k − 1)γλ+ (k − 1)2

)
. (5.21)

Using the expression for K̃((1− γ)Q) and Q̃ we can similarly �nd that

P̃ a,γ =
(
I + (1− γ)Q̃S

)−1

γS
(

(k − 1)I + γS
)−2

,

from which fγ can easily be found as

fγ(λ) =
γλ

γλ2 + 2(k − 1)γλ+ (k − 1)2
. (5.22)

For the weights αγ,i the derivation is similar and we �nd that they are
proportional to

exp

(
− 1

2

(
(k − 1)2(1− γ)

(
(k − 1)I + γS

)−2

·

(
I + (1− γ)Q̃S

)−1

(S − c1′)
)
ii

)
.

The �nal expression can be found by developing the last product in the
exponential and by substituting the spectral decomposition of S, which
results in the following:

fα(λ) =
(k − 1)2(1− γ)

γλ2 + 2(k − 1)γλ+ (k − 1)2
. (5.23)

One can easily see what happens in the limiting cases of γ = 0 and γ = 1.
Setting γ = 0 gives fµ(λ) = fα(λ) = 1 and f µ̄(λ) = fγ(λ) = 0. Hence
Wµ = UU ′ = I, W ε = 0 and αi ∝ exp(− 1

2Uii + ci) ∝ `(xi|y). Hence the
resulting analysis is equivalent to the PF.

In the case where γ = 1, fα(λ) = 0 and thus αγ,i = 1
k and Wα =

I. Furthermore, fµ(λ) simpli�es to (k − 1)/((k − 1) + λ), and fγ(λ) to
λ/((k−1)+λ)2. The CARE in Eq. (5.10) has thus the positive semide�nite
solution W ε = Uδ(f ε(λ))U ′ where

2f ε(λ)fµ(λ) + f ε(λ)2 = (k − 1)fγ(λ)
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or

f ε(λ) =

√
(k − 1)((k − 1) + λ)− (k − 1)

((k − 1) + λ)
(5.24)

The sum Wµ +W ε is thus given by

Uδ
(√ (k − 1)

(k − 1) + λ

)
U ′,

which is the formula for the transformation matrix in the ETKF.





Chapter 6

Application of the LETKPF

to COSMO

The content of this chapter has been submitted as the second part of
Robert et al. (2017). Numerical experiments with a setup similar to the
one used operationally at MeteoSwiss were conducted with the LETKPF
introduced in Chapter 5. We �rst describe the experimental setup in Sec-
tion 6.1 and then discuss the main results in Section 6.2. In Section 6.3 we
conclude with a summary of Chapters 5 and 6 and give some perspectives.
In Appendix 6.A we present additional unpublished experimental results.

6.1 Experimental setup

In this section we brie�y introduce the KENDA system used at MeteoSwiss
before describing the test period and the experiments.

6.1.1 The KENDA system

The numerical experiments in this study were carried out using the KENDA
(Kilometer-Scale Ensemble Data Assimilation) system as described in Schra�
et al. (2016). It is based on the COSMO model (Baldauf et al., 2011) with
a setup similar to the operational implementation at MeteoSwiss.
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Aircraft Windprofiler Surface/Ship Radiosonde

Figure 6.1: COSMO model domain and geographical distribution of the observations
actively assimilated at least once during the 12-day test period.

The COSMO model is a convective-scale, non-hydrostatic NWP model
developed within the COSMO consortium (http://cosmo-model.org) and
operated at many national weather services worldwide. The atmospheric
prognostic variables are the three-dimensional wind, temperature, pres-
sure, turbulent kinetic energy and speci�c contents of water vapor, cloud
water, cloud ice, rain, snow and graupel. The equations for the dy-
namic variables are solved using a Runge-Kutta time-splitting scheme.
Deep convection is explicitly computed, whereas shallow convection is
parametrized. A one-moment Lin-type cloud microphysics scheme is re-
sponsible for the conversions among all cloud and hydrometeor types. The
turbulence parameterization is based on the prognostic Turbulent Kinetic
Energy (TKE) equation and radiative e�ects are parametrized using a δ-
two-stream scheme. A multi-layer soil model provides the lower boundary
condition at the ground. For more details of the COSMO model we refer
to Baldauf et al. (2011).

The MeteoSwiss COSMO implementation covers a geographical domain of
central Europe (see Fig. 6.1) with a horizontal mesh-size of 2.2km and 60
terrain-following vertical levels up to a model top at roughly 22km.

The reference analysis algorithm is the LETKF based on Hunt et al. (2007)
with a con�guration similar to that described in Schra� et al. (2016). This
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algorithm is operationally used at MeteoSwiss and serves as a reference for
comparisons of the new LETKPF methods. For all algorithms, localization
is done in observation space using a constant vertical and horizontal lo-
calization radius resulting in a varying e�ective number of observations
being assimilated throughout the analyses. A multiplicative, adaptive
covariance in�ation scheme is used to account for unrepresented model
error. In the operational MeteoSwiss implementation, additional additive
covariance in�ation in form of the relaxation to prior perturbation (RTPP)
(Zhang et al., 2004) method is applied. As RTPP cannot be transferred
immediately to the LETKPF we did not use it in this study for comparison
reasons.

The KENDA system produces hourly ensemble analyses with 40 members.
Lateral boundary conditions are taken from the �rst 40 global ECMWF
EPS forecast members interpolated to the COSMO model grid. Ensem-
ble perturbations are then calculated by subtracting the ensemble mean
from each member. These perturbations are then added to the latest in-
terpolated ECMWF HRES forecast valid at the same time to build a new
ensemble. In order to get a reasonable spread-error relationship at the lat-
eral boundaries, members from an older global ensemble forecast with lead
times from +30h to +42h and thus a larger spread are used. The initial en-
semble at the start of the test period are obtained from the pre-operational
MeteoSwiss KENDA cycle.

The observations used for the experiments are similar to that used oper-
ationally at MeteoSwiss: radiosonde (TEMP) temperature, wind and hu-
midity data, wind pro�ler wind data, surface (SYNOP) and ship surface
pressure data and aircraft temperature and wind data. The geographical
locations of all observations that were actively assimilated at least once
during the 12-day test period are shown in Fig. 6.1.

The observation error covariance R is assumed to be diagonal with values
estimated from innovation statistics following Desroziers et al. (2005) and
Li et al. (2009) and are listed in Table 6.1.

6.1.2 Test period

The 12-day test period for the experiments from 4 to 16 June 2015 was
chosen to include both convective and stratiform precipitation events over
the domain of interest. From 4 to 9 June the weather in central Europe
was dominated by high pressure systems over northern Europe leading to
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Level [hPa] Wind [m/s] Temperature [K] Rel. Humidity [%]
300 2.1 / 1.9 / 1.6 0.6 / 0.6 13.8
400 1.8 / 1.6 / 1.4 0.5 / 0.5 13.1
500 1.6 / 1.4 / 1.2 0.6 / 0.6 12.9
700 1.6 / 1.4 / 1.2 0.7 / 0.7 12.2
850 1.7 / 1.5 / 1.3 1.0 / 0.8 12.8
1000 1.7 / 1.5 / - 1.1 / 1.1 9.3

Table 6.1: Observation errors
√
σ2
0 for wind, temperature and relative humidity at

di�erent heights in the atmosphere. The �rst value is for radiosonde, the second value
for aircraft and the third value for wind pro�ler observations.

high surface temperatures and a diurnal cycle of convection over the Alpine
Ridge. From 9 to 16 June, a cut-o� low west of France and its associated
fronts caused several bands of both stratiform and embedded convective
precipitation sweeping over the Alps.

6.1.3 Assimilation methods

In all our experiments we compare four assimilation algorithms. The
LETKF is close to the operational setup and serves as a reference. For the
LETKPF we test two variants of the algorithm with the di�erent adaptive
γ schemes described in Section 5.3, which we refer to as LETKPF-ess50
for the scheme targeting a ESS of 50%, and as LETKPF-minMSE for the
scheme minimizing the MSE of the analysis mean. The fourth algorithm
is the local PF (LPF), de�ned as our LETKPF with γ set to zero.

6.2 Results

First we show how the LETKPF works and how it di�ers from the LETKF
in a particular one-step analysis case study. Then we present results on
the veri�cation of radiosonde observations during the cycling assimilation
phase. Finally we look at the 24-hour forecasts and contrast the perfor-
mance of the di�erent algorithms.
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Figure 6.2: Maps of x̄b for total precipitation in [mm] during the last hour before the
analysis in the case study.

6.2.1 One-step analysis

We now look in more detail at a one-step analysis on the 14th of June at
1700 UTC. The meteorological situation at analysis time is summarized in
Fig. 6.2 with the total precipitation of the background mean x̄b in [mm]. A
large storm is going through the domain with strong convection happening
in many di�erent areas.

To illustrate how the LETKPF di�ers from the LETKF we look at maps
of the analysis weight matrix W (to be precise, we look at the values of
W = W̃µWα+W ε, where W̃µ is the left side of Eq. (5.13) only, to remove
the e�ect on the mean and focus on the particle deviations). For simplicity,
we choose to focus on the contribution of the �rst two particles to form the
analysis particle xa,1. These contributions are summarized in the �rst two
elements of the �rst column of the W matrix, W11 and W21. Because the
analysis is done locally, these values change at every grid point. Averaging
over the lower atmosphere (pressure larger than 700 hPa) we can show the
results for di�erent algorithms as maps in Fig. 6.3. The particle xa,1 is
mainly composed of itself � xb,1 � when the value mapped is close to 1,
while it is recomposed from other particles when it is close to 0. When
this is the case, other particles are resampled instead and glued together
to form the analysis.

In the �rst row of Fig. 6.3 we can see what happens in the case of the
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Figure 6.3: Maps of Wi1, the contribution of particles i = 1, 2 to the analysis particle
1 in the lower atmosphere during the case study, when using LETKF in the �rst row
and LETKPF-minMSE in the second.

LETKF: xa,1 is mainly composed of xb,1, with the other particles only
marginally in�uencing the analysis through their covariance with xb,1. In
the second row, however, the same maps for the LETKPF-minMSE shows
a more interesting behavior: particle xa,1 is composed of itself in some
areas, for example in North-East France and Switzerland, but in some
places xa,1 is composed in a large part of xb,2 as in Austria and the North-
East of Italy, or of other particles not shown here as in the North-West of
Italy. These maps illustrate well how the LETKPF produces an analysis
by combining di�erent particles locally, resampling particles where they �t
the data well and discarding them where other candidates �t better.

Not only the weights W , but also the value of γ vary locally. In Fig. 6.4,
the γ chosen in the lower atmosphere with di�erent adaptive criteria is
displayed together with the ESS. The value of γ shows where the algo-
rithm prefers to stay closer to the LETKF (where γ is large) and where
it chooses an update much closer to the PF (where γ is small). The func-
tional relationship between γ and ESS is non-linear and depends locally
on the background ensemble distribution and the observations. If the ESS
is close to 1, little resampling occurs and most particles are reused, while
if it is close to 0, a few particles are resampled many times.

The maps in Fig. 6.4 are quite di�erent for the two algorithms: the γ chosen
by the ESS criterion varies less in space, while the γ chosen by LETKPF-
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Figure 6.4: Adaptive choice of γ (left panel) and corresponding ESS (right panel) in
the lower atmosphere during the case study, with LETKPF-ess50 in the �rst row and
LETKPF-minMSE in the second.

minMSE has a rougher pattern. Both methods agree in some regions of
the domain, but in others they make opposite choices, as for example
in the region around Paris. Unfortunately, there is no ground truth to
compare the chosen γ with, and one has to rely on the overall performance
of a particular algorithm to see if it fared well. We attempted to �nd
correlations between the choice of γ and the meteorological situation, for
example by looking at measures of non-Gaussianity, but arrived at no clear
result. Furthermore, with the current operational setup the number of
observations varies quite a lot in the domain (from 0 to 100), which seems
to have a strong in�uence on the choice of γ (see for example in the the
region of high-density observations around Paris). Further research will
be necessary to understand the interplay between the di�erent parameters
and the optimal choice of γ.

Looking closely at the patterns of ESS in Fig. 6.4 and comparing them to
those of Wi1 in Fig. 6.3 we can notice interesting patterns. One puzzling
fact is that there are regions where ESS is high, but W11 is low (for exam-
ple in Austria), which seems contradictory as there should not be much
resampling occurring. In Fig. 6.6 we show the diagonal of W , the contri-
bution of each particle to its own analysis, for the 40 ensemble members.
We can now see that W11 being low in Austria was rather an exception
than the rule, and a large proportion of particles are resampled, thus ex-
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Figure 6.5: Maps of Wi1, the contribution of particles i = 1, . . . , 4 to the analysis
particle 1 in the lower atmosphere during the case study.

plaining the corresponding high value of ESS which can be seen in Fig. 6.4.
Conversely, there are regions with a particularly low ESS, as for example
in the Piedmont (Italy). Observing the maps in Fig. 6.6 we can see that
indeed most particles are not resampled in this area, except a few. We
cannot show the whole 40 �gures of 40 maps which would be necessary to
verify it, but it makes sense that these few particles are probably resam-
pled instead of the one that are not selected in this area. In Fig. 6.5 we
show the same as in Fig. 6.3 but for more particles. There we can see that
indeed particle 4, which was resampled in Piedmont (high value of W44 in
Fig. 6.6) is used to form the analysis of particle 1 in this area.
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Figure 6.6: Maps of Wii, the contribution of particles i to its own analysis in the lower
atmosphere during the case study.
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6.2.2 Cycled experiment

In order to assess the quality of the analysis during the assimilation, we
verify the one-hour-ahead forecast produced by di�erent algorithms against
all radiosonde observations. As error metrics we use the bias of the forecast
mean and the CRPS, a strictly proper scoring rule which takes into account
both the sharpness and the calibration of the ensemble (Gneiting and
Raftery, 2007). More scores will be considered for the forecast experiment
described below, but for the analysis they are su�cient to evaluate the
overall performances of the algorithms.

The error metrics are aggregated over the whole period and over di�erent
pressure levels. In Fig. 6.7, the di�erence of the bias and CRPS of the
new algorithms with the bias and CRPS of the LETKF are displayed
as vertical pro�les. For the bias, the di�erence of the absolute value is
displayed, such that for both the bias and the CRPS a negative value
indicates an improvement over the LETKF. In each panel there is a smaller
plot included to show the pro�le of the LETKF error.

For the relative humidity (RH), the pressure level and the type of method
have a strong in�uence on the CRPS. It seems that the LETKPFs are worse
than the LETKF for the lower atmosphere, but they are sometimes better
for the middle and upper atmospheres. There is no clear ranking between
the variants of LETKPFs, with LETKPF-minMSE performing best around
700 [hPa] while LETKPF-ess50 seems better around 400 [hPa]. In terms
of bias, we can also see some large gains for the LETKPFs in the middle
and upper atmospheres.

The LETKF predicts temperature (T) better for almost all pressure levels
both in terms of CRPS and bias. This comes as no surprise as temperature
is the most Gaussian of all the variables. LPF is clearly worse than the
other algorithms in terms of CRPS, while it is fares relatively well in terms
of bias, particularly at 1000 [hPa].

The LETKPFs improve over the LETKF for predicting the wind speed
(WIND) at middle to lower atmosphere, as can be seen from the CRPS and
bias pro�les. The LETKPF-minMSE seems to have the most consistent
advantage, if not always the largest. The LPF, on the other hand, has
trouble with WIND observations and is the worst method in terms of
CRPS while its performance in terms of bias is erratic.

In Fig. 6.8 we compare the root mean squared error (RMSE) to the spread
of the background ensemble, which should be equal if the ensemble is well



6.2 Results 127

WIND

T

RH

-0.10 -0.05 0.00 0.05 0.10

-0.10 -0.05 0.00 0.05 0.10

-0.01 0.00 0.01

300

400

500

600

700

850

925
1000

300

400

500

600

700

850

925
1000

300

400

500

600

700

850

925
1000

CRPS change

P
re

s
s
u

re
 le

v
e

l [
h

P
A

]

WIND

T

RH

-0.4 -0.2 0.0 0.2 0.4

-0.4 -0.2 0.0 0.2 0.4

-0.04 -0.02 0.00 0.02 0.04

BIAS change

LETKPF-ess50 LETKPF-minMSE LPF LETKF

0
.0

0
0

0
.0

2
5

0
.0

5
0

0
.0

7
5

0
.1

0
0

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

0
.0

0
.5

1
.0

1
.5

-0
.0

5
0

-0
.0

2
5

0
.0

0
0

0
.0

2
5

0
.0

5
0

-0
.5

0

-0
.2

5

0
.0

0

0
.2

5

0
.5

0

-0
.5

0

-0
.2

5

0
.0

0

0
.2

5

0
.5

0

Figure 6.7: Change in CRPS and bias relative to LETKF analyses during the cycled
experiment. More precisely CRPS(LETKPF) - CRPS(LETKF) and |bias(LETKPF)|
- |bias(LETKF)|. A negative change indicates a reduction of CRPS or of bias, respec-
tively. Note the di�erent scales on the x-axis. In the small plot is the CRPS and bias
of the reference LETKF.
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Figure 6.8: Ratio of RMSE over the spread of the background predictive distribution
during the cycling experiment. A ratio larger than one indicates that the ensemble is
too concentrated.

calibrated (see for example Fortin et al. (2014)). To take into account the
observation error, we actually compare the observed RMSE to the spread
of the predictive distribution πb(y). In the case of a diagonal R, we can
compute this spread squared separately for each observation by adding the
variance of the forecast ensemble to the corresponding diagonal element
of R. We then aggregate by averaging over all observations, and take the
square root before comparing to the RMSE. The pro�les in Fig. 6.8 show
that overall the ensembles are well calibrated. In terms of relative humidity
it seems that the ensembles lack spread in the middle atmosphere, while
they are too dispersed in the upper atmosphere in terms of temperature
and wind. In general the LETKPFs have a larger ratio than the LETKF,
due mainly to a reduction in spread because of resampling. Better cali-
bration could be achieved in the future by �ne tuning of the R matrix and
by using re�ned covariance in�ation schemes.

6.2.3 Forecast experiment

Twice a day, at 0000 and 1200 UTC, a 24-hour forecast was launched
from the current analysis ensemble. In Fig. 6.9 we look at the CRPS and
bias of predicting radiosonde observations averaged over the whole domain
and the whole forecast horizon (i.e. the scores of all forecast lead times
were aggregated to one single score), similar to the cycled experiments in
Fig. 6.7. The absolute CRPS is usually larger in the forecast than in the
cycled experiment, with the strongest growth in the upper atmosphere for
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the temperature and wind variables. However, the di�erences between the
methods are much less pronounced than during the analysis and disappear
almost completely at the end of the 24-hour forecast. The LPF is clearly
worse than the other algorithms, particularly in terms of relative humidity
and wind. For the relative humidity and temperature the LETKF is gen-
erally slightly better, while among the LETKPFs the LETKPF-minMSE
is the best performer and even beats the LETKF for the wind variables at
most levels.

More relevant for the forecast users, we now look at the hourly precipita-
tion recorded at 121 stations over the Swiss domain (SYNOP data). In
Fig. 6.10 we can see the evolution of the ensemble forecast means (the
�rst 12 lead time hours of all forecasts are chunked together to build a
continuous time series) over the whole period as compared to the actual
observations (dots). It is interesting to notice how the di�erent algorithms
coincide most of the time but di�er substantially for some events. For
example, around the 8 June a large precipitation event is best predicted
by LETKPF-minMSE forecasts, while the LPF forecasts overestimate it,
and the other method underestimate it. At other times, all methods seem
to miss or produce spurious events.

The evolution of the skills of the ensemble to predict hourly precipitation
larger than 0.1 [mm] as a function of lead time is illustrated in Fig. 6.11,
where we see the equitable threat score (ETS, see Eq. 7.18 in Wilks (2006)),
the frequency bias index (FBI, see Jolli�e and Stephenson (2003)) and
the Brier skill score (BSS, see Eq. 7.35 in Wilks (2006)) of the forecast
ensembles. In terms of ETS, the LETKPFs and the LETKF are more
or less equivalent, with some lead time where one or another is better.
The LPF on the other hand is clearly worse during the �rst 12 hours of
forecast but then stabilizes. The FBI plot shows that all methods tend
to overforecast the event, while the LETKPF-ess50 has the best overall
performance. For the BSS, the Brier score normalized by the climatology
forecast score (as computed from the test period), the LETKPF-ess50 is
again the best performer, while the LPF has no skill in the �rst half of the
forecast but reaches similar level to the others in the second half.

The calibration of the methods is shown in the reliability diagrams of
Fig. 6.12. One can see that all algorithms have some skill except maybe the
LPF during the �rst 12 hours of forecast. The LETKPF-ess50 is once again
the best performer and the LETKF is generally less well calibrated than
the LETKPFs, but the di�erences are small and depend on the forecast
probabilities. The rank histograms indicate an overall positive bias, but
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Figure 6.9: Change in forecast CRPS and bias relative to LETKF-driven forecasts,
similar to Fig. 6.7. The scores of all forecast lead times were aggregated. A negative
change indicates a reduction of CRPS or of bias, respectively. Note the di�erent scales
on the x-axis. In the small plot is the CRPS and bias of the reference LETKF.
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Figure 6.10: Time evolution of the ensemble mean (various lines) compared to the
observations (dots) of hourly precipitations from 121 Swiss SYNOP stations.

no particular di�erences between the methods (not shown).

6.2.4 Discussion

The results of the cycled and forecast experiments show that the LETKPFs
perform similarly to the LETKF. The new algorithms bring some improve-
ments for some variables at some pressure levels � for example for wind
in the middle and upper atmosphere � but they also perform worse in
other cases. As expected, these improvements over the LETKF occur for
the most non-Gaussian variables, while for Gaussian variables like tem-
perature the LETKF is usually better. During the forecast in particular,
the LETKPFs show some bene�t in predicting hourly precipitation, which
is a highly non-Gaussian variable. The better ability of the EnKPF to
deal with rain �elds con�rms previous results with a toy model of cumulus
convection (Robert and Künsch, 2017b).

The LPF is surprisingly not as bad as one could expect given its simplicity,
which shows that localizing the PF is a viable strategy, but the ability to
combine it with the LETKF seems to bring clear advantages. However,
the question of which criterion to use for choosing the proportion of PF
and of LETKF in the analysis is still not clear from the empirical results.
The LETKPF-minMSE seems to be slightly better for the model vari-
ables (temperature, relative humidity and wind), but the LETKPF-ess50
typically performs better for forecasting hourly precipitation.

These results are promising and indicate that the LETKPF can be used in
practice. However, further experiments should be conducted with longer
periods and during di�erent meteorological situations.
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cipitation from 121 Swiss SYNOP stations. For ETS and BSS the higher the better
(maximum 1), and for FBI the closer to 1 the better. Because of system constraints,
the BSS is aggregated every 12 hours, whereas the other scores are aggregated hourly.
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Figure 6.12: Reliability diagram for predicting more than 0.1 [mm] of hourly precipita-
tion in the �rst 12 hours (left panel) and the second 12 hours (right panel). The solid
black line indicates no skill while the diagonal is for perfect reliability.

6.3 Summary and conclusions

High-dimensional non-Gaussian �ltering problems, such as encountered in
convective scale data assimilation, call for the development of new algo-
rithms. In the present paper we proposed the LETKPF, which builds
on the EnKPF to make it more e�cient and applicable in practice. In
particular, we reformulated the whole algorithm in ensemble space and
derived a deterministic scheme such that it now has the ETKF instead of
the stochastic EnKF as a limiting case. The same approach as that of the
LETKF was taken for localizing the algorithm, with a few additional steps
to deal with the PF nature of the analysis. While this may not be the
optimal localization strategy, it is widely used in practice and made the
implementation in the existing framework feasible. Furthermore, a new
criterion for choosing the proportion of analysis to be done with the PF
and the ETKF was proposed based on the idea of minimizing the predictive
MSE.

The new algorithm was implemented in the COSMO data assimilation
framework and tested on a 12-day period of hourly assimilation in a re-
gion surrounding Switzerland. These experiments showed that the newly
proposed algorithm is applicable in practice and can perform similarly to
the LETKF, which is the algorithm used operationally at MeteoSwiss. In
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particular, the LETKPF brings some remarkable improvements for non-
Gaussian variables such as wind and hourly precipitation. These results
are promising and we hope that they will stimulate further experiments
and research with the LETKPF and other types of localized hybrid algo-
rithms.

In the present study, we have relied on the setup used for the LETKF, but
some questions concerning the particularity of the LETKPF � or more
generally any hybrid algorithm � need to be further investigated. The
optimal choice of γ is still poorly understood and the experimental results
were not conclusive, showing that both proposed methods work better
in some situations. The alternatives discussed in Section 5.3.3 might be
promising and could be tested in practice if e�cient implementations are
found. In general, it would be of great interest to better understand the
interplay between the optimal choice of γ and the non-Gaussianity of the
distribution, the number of observations assimilated, the model error, etc.
As we have seen in the experiments, the choice of γ should certainly vary
for every grid point, as di�erent situations call for di�erent decisions. One
could push this idea further and choose a di�erent γ for di�erent types of
observations or even for di�erent model variables. For example, one could
imagine using a γ close to 1 for temperature while using a small γ for wind
or relative humidity.

Another aspect that should be explored further is how to control the en-
semble spread for the LETKPF. Among other means, to do so the LETKF
relies on covariance in�ation (multiplicative and additive) and RTPP. How-
ever, both of these methods derive their rationale from the idea that the
analysis consists in moving a little bit each particle such that the new
ensemble has a correct mean and covariance. RTPP controls the loss of
spread by recombining each analysis particle with its corresponding back-
ground particle, while covariance in�ation somehow increases the analysis
ensemble covariance. Because the LETKPF analysis consists partly in re-
sampling particles, one cannot just transfer these techniques blindly. One
obvious solution to this issue would be to work with the mixture represen-
tation of the analysis and control the spread by adding more covariance
to the mixture components. Similarly, for RTPP one could use the idea
of combining the analysis particle with the background ensemble, but by
taking into account the resampling step of the analysis.
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Appendix 6.A Additional results

In this section we present a few additional results from the COSMO exper-
iments. In Section 6.A.1 we show the e�ect of the analysis by comparing
ensembles against radiosondes observations in two di�erent situations. In
Section 6.A.2 we investigate in more detail the error growth of model vari-
ables during the forecast. In Section 6.A.3 we compare the performance
of the stochastic EnKPF with the ETKPF on the cycled experiment.

6.A.1 Ensemble versus radiosonde observations

As another illustration of the di�erent assimilation methods we can look at
the ensemble in observation space for a particular set of observations. In
this case we select the radiosonde of Payerne on the 15 June at 0000 UTC.
In Fig. 6.13 we display the background and analysis ensemble together with
the observation as a red line. However, because the �ltering is done in 4D,
as explained in Hunt et al. (2007), the observations and the analysis do not
occur at the same time. Thus part of the shift between the background and
analysis ensembles comes from the natural evolution of the system during
the interval and not from the analysis itself. Furthermore, one should keep
in mind that other observations are assimilated at the same time, which
have an in�uence on the analysis seen here but are not displayed.

The illustration of Fig. 6.13 contrasts well the algorithms. In particular
the resampling nature of the LPF is clearly highlighted, with the analysis
ensemble showing a strong sample depletion problem. Considering this
�gure it is somehow surprising that the LPF manages relatively well over-
all. The most striking di�erence between the LETKPFs and the LETKF is
maybe that they have more non-Gaussian features in their background dis-
tribution. For example in the upper atmosphere, the LETKPF-ess50 has a
rather skewed distribution, almost bimodal, while the LETKPF-minMSE
background ensemble is also generally more skewed than the LETKF one.

Another interesting feature of these plot is that while the background par-
ticles always have relative humidity smaller or equal to 1, the analysis of
the LETKF and to a lesser extent of the LETKPF-minMSE, are sometime
larger than 1. While it is technically not unfeasible, as there are phenom-
ena of supersaturation, in the given case it seems to be an arti�cial feature
introduced during the analysis that is most likely undesirable.

To disentangle the in�uence of the background ensemble from that of the
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Figure 6.13: E�ect of the analysis veri�ed against the radiosonde measurements of
Payerne on the 15 June at 0000 UTC. The blue lines are for the background ensem-
ble members, while the orange lines show the analysis. The red line represents the
observations.

assimilation algorithm we run another example where we always use the
same background ensemble (produced by the LETKF cycling experiment).
In Fig. 6.14 we can see the resulting plot of the background and analysis
ensembles, this time for the radiosonde of Kümmersbruck in Bavaria on the
14 June at 1700 UTC (the same time as in the case study of Section 6.2.1).
We did not choose the same example as above as we did not have the
background ensemble available then. In this case the di�erences between
the algorithms are much less visible, except for the LPF. Therefore, we
can conclude that it is important to look at cycled experiments to really
see the di�erence between the algorithms taking shape.
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Figure 6.14: E�ect of the analysis veri�ed against the radiosonde measurements of
Kümmersbruck on the 14 June at 1700 UTC. The blue lines are for the background
ensemble members, while the orange lines show the analysis. The red line represents
the observations.
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6.A.2 Error growth with lead time

In Section 6.2, we only looked at the radiosonde observations aggregated
over the whole period, space and forecast lead time. For the surface data
of 121 swiss stations we investigated in more detail the evolution of the
error as a function of lead time. We now do the same for other sources of
data.

In Fig. 6.15 we can see the CRPS error growth during the forecast for
all SYNOP stations (not only Switzerland but the whole domain). In
Fig. 6.16 the same is plotted but for PILOT observations (for the di�erent
types of observations see WMO (2015)), aggregated at three di�erent at-
mospheric levels (lower atmosphere means pressure larger than 700 [hPa],
upper means less than 500 [hPa], and middle is in between). One could
certainly draw more conclusions from these plots but we restrict ourselves
to three points. First, all the algorithms perform comparatively well, ex-
cept the LPF which is notably worse. Second, the di�erence between the
algorithms disappear after 24 hours, but persist for quite some time, for ex-
ample for the pressure variable. Third, the error growth at the beginning
of the forecast is seemingly faster for the PF algorithms. In particular,
looking at the error growth for surface pressure we can see that the LPF
actually starts better than all other algorithms, but quickly deteriorates.
This is symptomatic of imbalances introduced during the analysis that are
dissipated in the forecast, but can actually be detrimental as it seems to be
the case for the LPF. More work would need to be done to actually study
the �elds produced by the analysis and monitor their evolution during the
forecast, but it would require more knowledge of the COSMO numerical
model and falls out of the scope of this thesis. However, investigating the
problems related to the balance of the analysis �elds is extremely impor-
tant and should de�nitely been pursued further in the future (Zeng and
Janji¢, 2016).
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Figure 6.15: CRPS error growth of surface pressure and wind speed against SYNOP
observations aggregated over the whole period and domain.
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Figure 6.16: CRPS error growth of wind speed at di�erent atmospheric levels against
PILOT observations aggregated over the whole period and domain.
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6.A.3 Stochastic versus transform �lter

One aspect that we have not looked at in detail is the impact of the trans-
form scheme of the LETKPF on the analysis quality. No systematic exper-
iments have been ran because the goal was not to enter the open debate
between stochastic and square-root �lters but only to show that a trans-
form EnKPF was possible and could work. As a reference we nonetheless
ran the LEnKPF with the ESS set to 50% as a criterion and compare it
to the LETKPF-ess50.

In Fig. 6.17 we show the same plot as in Fig. 6.7 but with the LEnKPF-
ess50 replacing the LPF. Probably one should not look into it too much,
but there seems to be some di�erences. In terms of relative humidity in
the upper atmosphere the stochastic scheme is worse, while it is better in
the middle and lower atmosphere. For temperature and wind it seems to
be slightly better in the lower and upper atmosphere, but a bit worse in
the middle. These di�erences are not particularly strong and should not
be interpreted too much. However, from these plots one could conclude
that the transform version of the �lter is not worth the extra computational
cost and that a stochastic EnKPF would be �ne. A more systematic study
should be conducted in the future to con�rm or disprove this conclusion.

An additional remark concerning the stochastic EnKPF in ensemble space
is that we do not use the same observation perturbations at every location,
but the same ensemble perturbations. To be more precise, we generate
W ε in Eq. (5.7) using the same E matrix at all sites. Therefore if the
observations assimilated are not the same at two neighboring sites, the
perturbations corresponding to them will not be the same. To use the
same perturbations everywhere one would have to generate two indepen-
dent vectors ε1, ε2 ∼ N (0, R) globally. Then, for each local analysis we
would select the subvectors of ε1 and ε2 corresponding the observations
assimilated locally, and compute a local W ε from these subvectors using
the same procedure as in Frei and Künsch (2013). It is a more expensive
computation if 2d is larger than k, which is typically the case, but there
might be gains in terms of smoothness of the global analysis particles. We
have not implemented this alternative, but it could easily be done in the
future.
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Figure 6.17: Change in CRPS and bias relative to LETKF analyses during the cycled
experiment, similar to Fig. 6.7 except that it shows Local Ensemble Kalman Particle
Filter (LEnKPF)-ess50 instead of LPF. A negative change indicates a reduction of
CRPS or of bias, respectively. Note the di�erent scales on the x-axis. In the small plot
is the CRPS and bias of the reference LETKF.





Chapter 7

Other topics related to the

LETKPF

In this chapter we present four topics related to the LETKPF which were
not published elsewhere. In Section 7.1 we present a geometric intuition for
the derivation of the EnKF and ETKF in ensemble space. In Section 7.2
we discuss a visualization technique which highlights interesting di�erences
between various algorithms in ensemble space. In Section 7.3 we explore in
depth the possibility to choose γ adaptively based on objective scores, as
mentioned in Section 5.3.3. Finally, in Section 7.4 we brie�y present how
the algorithms were implemented in the COSMO assimilation framework
and link to the available code.

7.1 Geometric derivations of the EnKF

Deriving an algorithm in ensemble space means �nding the matrixW such
that the analysis can be written as in Eq. (1.26), which we repeat here:

xa = x̄b1′ +XbW, (7.1)

In Chapter 5 we derived the EnKPF � and the EnKF as a special case � in
ensemble space by using basic algebra. In this section we discuss in more
detail the geometric intuition behind the EnKF and ETKF along the lines
of Hunt et al. (2007). The discussion below is not meant as a rigorous
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derivation but rather as an alternative perspective on the ensemble space
formulation of the EnKF and ETKF.

We start by projecting y onto the ensemble space. Because the observa-
tions can have di�erent variance and can even be correlated, we use the
orthogonal projection with respect to the scalar product scaled by R−1.
To compare the ensemble to the observations we need the operator H. For
ease of notation we de�ne Y b = HXb and ȳb = Hx̄b, but using Xb or Y b

does not change anything to the argument. When we refer to the ensemble
space we refer to the space spanned by xb or by Hxb depending on the
context. Let us write

y = ȳb + ŷ + r, (7.2)

where ŷ is the projection of y onto the ensemble space and r the residual
such that r′R−1ŷ = 0. The projection ŷ can be found as

ŷ = Y bS−1c =: Y bβ,

where S = (Y b)′R−1Y b and c = (Y b)′R−1(y − ȳb). The k-dimensional
vector β contains the coordinates of ŷ in the ensemble space, using Y b as
basis. It is possible to use a (k − 1)-dimensional orthogonal basis instead,
but it is more convenient for the derivation to work directly with Y b, even
if the columns of Y b are colinear. Because we work in a (k−1)-dimensional
space with a k-dimensional basis, S−1 should be understood as a Moore-
Penrose pseudoinverse.

Now let us consider the problem from the point of view of the projection
in ensemble space using Y b as a (non-orthogonal) basis. In the end we will
show that the resulting algorithm is equivalent to the full-space EnKF.
The data to assimilate in this problem is β, while the background ensem-
ble is nothing other than the k × k identity matrix I. The background
covariance in ensemble space is thus simply 1

k−1I and the observation op-
erator H is the identity. To �nd the equivalent of R in ensemble space,
we derive the covariance of the projection onto this subspace of a random
vector with covariance R. To do so consider ε ∼ N (0, R) and project it
onto the ensemble space as for y in Eq. (7.2). Then the covariance of
ε̂ = Y bS−1(Y b)′R−1ε is Y bS−1(Y b)′. Therefore, the observation error co-
variance matrix associated with βε, the coordinates of ε̂ in ensemble space,
is S−1.

UsingWoodbury's formula it is possible to rewrite the Kalman gainK(P ) =
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PH ′(HPH ′ +R)−1 in the more convenient form

K(P ) =
(
P−1 +H ′R−1H

)−1
H ′R−1.

Substituting the ensemble space elements P = 1
k−1I, H = I and R = S−1

we �nd our Kalman gain to be:

K̃ =
(
(k − 1)I + S

)−1
S. (7.3)

The analysis ensemble of the EnKF is produced as

xa = xb +K(P )(y1′ +R1/2E −Hxb),

where E is a matrix with i.i.d. columns ε ∼ N (0, I). In our ensemble
space assimilation problem, this simpli�es to

xa = I + K̃(β1′ + S−1/2E − I). (7.4)

Substituting the de�nition of β and K̃ and using the spectral decomposi-
tion S = Uδ(λ)U ′, as we did for the e�cient computation of the ETKPF
in Section 5.B, we can rewrite Eq. (7.4) as:

Uδ(
(k − 1)

(k − 1) + λ
)U ′ + Uδ(

1

(k − 1) + λ
)U ′c1′ + Uδ(

√
λ

(k − 1) + λ
)U ′E

(7.5)

This expression is the analysis ensemble resulting from assimilating the
coordinates of the projection of y onto the ensemble space in the basis
formed by the background ensemble Y b. Looking at Eq. (7.5) we recognize
that this is nothing else than the W matrix from the stochastic EnKF
analysis. Indeed, the eigenvalues in the �rst element of Eq. (7.5) are the
same as fµ(λ) in Eq. (5.20) when setting γ = 1, the eigenvalues in the
second elements are the same as f µ̄(λ) in Eq. (5.21) when γ = 1, and
the value in the last elements are the same as

√
fγ(λ) in Eq. (5.22) when

γ = 1. Therefore, the computation of the analysis in ensemble space of
Chapter 5 can be reinterpreted geometrically from this perspective.

In Hunt et al. (2007) this geometrical approach is adopted to derive the
ETKF analysis. As discussed in Chapter 5, square-root �lters separate
the analysis into a mean, x̄a, and a matrix of perturbations, Xa = xa −
x̄a1′ analogous to the background perturbations Xb. The ensemble space
analysis of Eq. (7.1) can be split into two parts as

xa = x̄b1′ +XbWETKF = x̄b1′ +Xbm1′ +XbW a,
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where x̄a = x̄b +Xbm and Xa = XbW a. Then Hunt et al. (2007) use the
same geometric approach as above to derive the ETKF directly. Remem-
bering that ȳb is 0 in ensemble space and that the Kalman gain is given
by Eq. (7.3), we �nd that

m = 0 + K̃(β − 0) =
(
(k − 1)I + S

)−1
c.

Using the spectral decomposition of S again, it is clear that this is the same
as the second term in Eq. (7.5). Therefore, we see that the mean part of
both the EnKF and ETKF are the same. In a square-root �lter Xa is
de�ned such that 1

k−1X
a(Xa)′ = P a, where P a is the analysis covariance.

Let us rewrite Eq. (1.13) in the more convenient form

P a =
(
(P b)−1 +H ′R−1H

)−1
.

Replacing the elements with the ensemble space equivalents we �nd

P̃ a =
(
(k − 1)I + S

)−1
.

The ETKF de�nes the perturbations Xa as the symmetric matrix square-
root of (k − 1)P a, such that 1

k−1X
a(Xa)′ = P a. Therefore, using the

equivalents in ensemble space and the spectral decomposition of S, W a is
computed as

W a = Uδ
( (k − 1)

(k − 1) + λ

)1/2

U ′. (7.6)

For more detailed arguments about the derivation of the ETKF see Hunt
et al. (2007). We only show this to give an additional geometrical intuition
to the interested reader, but do not claim to make this derivation rigorous.

7.2 Ensemble space visualization

There is an interesting possibility to visualize the analysis from the ensem-
ble space formulation of the algorithms (suggested by Andreas Rhodin,
DWD), which sheds a new light on the interpretation of the ETKF and
illustrates the di�erence between square-root and stochastic �lters. Con-
sider the singular value decomposition (SVD) of the scaled background
ensemble perturbations Ỹ b = R−1/2Y b = V δ(

√
λ)U ′, where the scaling

by R−1/2 ensures that the di�erent observations are comparable. V is the
d× k matrix of left singular vectors (SVs), while U is the k × k matrix of



7.2 Ensemble space visualization 147

right SVs, and
√
λ is the vector of the singular values. Note that U and λ

are the same as for the spectral decomposition of S = Uδ(λ)U ′. The SVD
can be used as a dimensionality reduction technique, similar to the use of
empirical orthogonal functions in meteorology (Wilks, 2006). For visual-
ization purpose we decide to use the �rst two SVs to explain the data, so
that Ỹ b ≈ V (1,2)δ(

√
λ(1,2))(U (1,2))′, where the (1, 2) superscript indicate

that we take the �rst 2 column (or elements). The reconstruction is not
perfect if more than two singular values are non-zero, but it is optimal
in the sense that it preserves as much of the variance of the data as it is
possible with this type of decomposition (see for example Wilks (2006)).

Using this low-dimensional projection, we can represent the background
ensemble as a cloud of points in a 2-dimensional space. For the purpose of
visualization we can use scaled axes to account for the scaling by

√
λi. If

one is interested more precisely in comparing multiple directions of projec-
tions, however, it is then better to �x the scale of the axis (for example in
Fig. 7.2). The coordinates of the background particles in this projections

are therefore βb,j = (Uj1, Uj2)′, such that Ỹ b,j ≈ V (1,2)δ(
√
λ(1,2))βb,j ,

where the subscript ji means the row j and column i. The percentage
of variance explained by each component is computed as λi/

∑
λj and is

shown to give an idea of the approximation involved in the low-dimensional
projection.

Now for the analysis, we note the decomposition ya = yb+Y bm1′+Y bW a,
where W a depends on the algorithm used. m is the mean shift, such that
x̄a = x̄b+Xbm; it is the same for the EnKF and ETKF, but di�ers for the
EnKPF where it depends on resampling too. For the present visualization
we ignore it and look atW a only. The coordinates of the analysis ensemble
in this projection are given by βa,j = (((W a)′U)j1, ((W

a)′U)j2)′. For

better legibility, we can rewrite the �rst coordinate as βa,j1 =
∑k
i=1W

a
ijUi1.

For the ETKF this leads to a nice interpretation: plugging in the de�nition
of W a of Eq. (7.6) and remembering that UU ′ = I, we rewrite

βa,j1 =
( (k − 1)

(k − 1) + λ1

)1/2

· Uj1,

and βa,j2 analogously. Therefore, one can interpret the function of λ in
Eq. (7.6) as the constant value by which the analysis scales the back-
ground ensemble perturbations to obtain the analysis deviations, in the
basis formed by the SVs of Ỹ b.

For the stochastic EnKF the interpretation is a bit more complicated. The
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W a of the EnKF corresponds to the �rst and last elements in Eq. (7.5).
Substituting those in the expression for βa,j , we obtain the following for
the �rst coordinates:

βa,j1 =
(k − 1)

(k − 1) + λ1
· Uj1 +

√
λ1

(k − 1) + λ1
·
k∑
i=1

Ui1Eij . (7.7)

The �rst part is similar as for the ETKF, except that there is no square-
root and thus it scales the coordinates by a smaller factor. The second part
is a random combination of the βb,i1 coordinates of the whole background
ensemble, rescaled by a constant factor. The distribution of this random

coordinate is normal with mean 0 and standard deviation
√
λ1

(k−1)+λ1
.

It should be noted that for the ETKF the SVs of the analysis ensemble
are the same as the SVs of the background ensemble, but this is not true
of other assimilation algorithms. Therefore while the visualization shows
the direction of greatest explained variance for the ETKF, for other algo-
rithms there are other possible projections in which the analysis ensemble
has larger variance. This should be kept in mind when interpreting the vi-
sualization, in particular when considering the reduction of spread during
the analysis.

In Fig. 7.1 we illustrate with an example the visualization technique and
the di�erences between the stochastic EnKF and the ETKF. The back-
ground ensemble of 20 members and the truth were drawn from a 50-
dimensional Gaussian with a Gaspari-Cohn covariance structure (Gaspari
and Cohn, 1999). The �gure shows how both methods do the same thing
overall, namely contracting the ensemble towards its mean. This visualiza-
tion highlights the di�erence between the stochasticity of the EnKF and
the deterministic nature of the ETKF. The ETKF simply scales the coor-
dinates by a constant factor, while the EnKF adds random perturbations
to the coordinates.

The total variance in the background ensemble explained by the �rst two
components is 42%. However, only in the case of the ETKF the �rst singu-
lar vector corresponds to the direction of maximal variance in the analysis
ensemble. This explains why the analysis ensemble of the EnKF seems
less spread compared to that of the ETKF. Depending on the particular
random realization of the analysis, however, this e�ect might not be so
clearly visible. In Fig. 7.2 we show the same visualization but for more
projections and with �xed axes. By doing so we can now notice that as
we consider projections with smaller and smaller singular values the back-
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Figure 7.1: Comparison of the stochastic EnKF (left) and the ETKF (right) using
the visualization technique described in Section 7.2, where the x-axis is the projection
on the �rst SV, and the y-axis on the second SV. The percentage in the axes labels
indicate the percentage of variance explained by each SV. The blue points in the outer
rim are the background particles, βb,j , the purple points towards the center the analysis
particles, βa,j , and the arrows show the transformation from one to another.

ground ensemble is indeed less and less spread and the shrinkage e�ect of
the analysis gets less strong.

For the ETKPF the interpretation is a bit more complex. The part that
produces the mean components µa,j is equivalent to the deterministic part
of the EnKF coordinates in Eq. (7.7) and is given by fµ(λ1))Uj1. The
value of the function fµ(λ1) is the same as for the EnKF in the case
where γ = 1 and is equal to 1 for γ = 0, while in between it varies from
one to another monotonously. The resampling step is straightforward and
consists in resampling the deterministic part of the coordinates. For the
W ε component, its e�ect depends on γ in a non-linear way. If the stochastic
version of the EnKPF is used we would get a result similar to the left of
Fig. 7.1, but here we focus on the deterministic version of the �lter.

In Fig. 7.3 we can see the resulting analysis for four di�erent values of
γ, including the extreme case of γ = 1. In the right column we show a
heatmap representation of theW matrix while in the left column we use the
visualization technique described above, with the additional feature that
we color the individual particles according to which background particle
was resampled. For γ = 0 we can clearly see how the ensemble collapses
and only one particle is selected (in pink on the left). For γ = 0.1 there is a
mix of resampling and pulling: some particles are resampled many times,
but corrections coming from W ε adds some mass on the diagonal, which
brings more diversity in the ensemble. Interestingly the particle selected
in the case of γ = 0 is now only selected twice, while other particles (green
and blue) are more reused. This comes from the fact that the particles
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Figure 7.2: Comparison of the stochastic EnKF (left) and the ETKF (right) using �xed
scales and more projections, but otherwise the same as Fig. 7.1.
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are �rst pulled before being reweighted, which can change their relative �t
to the observation. When γ = 0.25 the analysis is already very close to
what would be obtained with the ETKF, but there is still some resampling
going on as is visible in the few o�-diagonal elements on the right �gure.
The �nal row shows the analysis of the ETKF for comparison, where we
see that the weight is more concentrated on the diagonal. It is interesting
to notice that the ETKF seems to push the analysis particles away from
the center, maintaining thus a greater spread.

So far we have ignored the e�ect of the observation on the analysis, but let
us now look at what happens for di�erent random realization of y. From
the decomposition of the analysis as ya = yb + Y bm1′ + Y bW a we can
�nd the coordinates of the projection of ȳa onto the �rst SV of S as β̄a,1 =
(m′U)′1, and similarly for the other components. In Fig. 7.4 we show the
analysis ensemble together with an arrow showing the e�ect of the analysis
on the mean with this technique. As expected, y in�uences the analysis of
the ETKF only through the mean, while the deviation of the particles from
their mean is unchanged for di�erent realization of y (compare di�erent
columns in Fig. 7.4). The ETKPF, however, is in�uenced by y both for
the mean shift and for the shape of the analysis, because of the resampling
step (the analysis ensemble is di�erent in each column of Fig. 7.4). One
last thing to mention is that the mean shift of the ETKPF is not identical
to the one of the ETKF but has a similar orientation for a given realization
of y.



152 Chapter 7: Other topics related to the LETKPF

γ = 0 γ = 0

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

γ = 0.1 γ = 0.1

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

γ = 0.5 γ = 0.5

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

γ = 1 γ = 1

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 7.3: Visualization of the ETKPF analysis for di�erent γ in each row. The
left column uses the same visualization technique with an additional coloring of the
particles. Each background particle has a color, and the analysis particles and arrows
take the color of their �parent� during resampling. The right column pictures W with
a color scale.
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Figure 7.4: Visualization of the in�uence of di�erent realization of y (each column) on
the analysis for the ETKPF (upper row) and the ETKF (lower row). The ETKPF uses
γ = 0.1.
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7.3 Optimal choice of γ

The parameter γ determines how much of the analysis should be done
with the EnKF, and how much with the PF. However, it is not clear how
one should select its value in practice, or even what should be a criterion
for its optimal choice in theoretical situations. In the asymptotic case of
an in�nite ensemble size, the analysis tends to to true posterior only if
γ = 0 or if the background distribution is Gaussian. However, this is of
poor guidance to choose γ in the �nite sample case, where γ is more of a
bias-variance trade-o� parameter.

The original proposition for selecting γ in Frei and Künsch (2013) was to
target a bracket for the ESS, ensuring that the ensemble does not collapse
while trying to stay as close as possible to the PF. However, this criterion
is not entirely satisfactory as it leaves open the question of choosing the
targeted ESS. In Section 5.3.3 we discussed the issue and proposed as
a solution to �nd the γ such that the MSE of the analysis predictive
distribution is minimized. We now review this idea and expand it further
by proposing di�erent error measures and alternative estimators. There are
three main aspects to take into consideration: �rst, which error measure or
scoring rule we use as objective to minimize; second, how do we compute
such a score e�ciently in ensemble space, if possible at all; and third, what
do we condition on and what do we integrate out to make our estimator
more robust and less likely to over-�t the data. We now address each of
these points successively in Sections 7.3.1 to 7.3.3, before conducting a
simulation study on a simple toy example in Section 7.3.4.

7.3.1 Scoring rule

For more clarity, henceforth we refer to the actual observations as yo in-
stead of the usual y. Basically we want an objective criterion to evaluate
how good our prediction is for a given γ. If we condition on the resampling
step (setting the multiplicities N i), the analysis predictive distribution of
the EnKPF is given by

πa(y|γ) =

k∑
i=1

N i

k
N (Hµγ,i, HP a,γH ′ +R), (7.8)

reproduced from Eq. (5.15), but here we removed the conditioning on
{N i} for better legibility and made the dependence on γ explicit. Now,
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assuming a loss function L, our error in predicting yo with Eq. (7.8) is the
functional L(yo, πa(y|γ)). For example, in the case of minimizing the MSE
of the ensemble mean that we discussed in Section 5.3.3, this functional is

MSE(yo, πa(y|γ)) = ||yo − Eπa(y|γ)(y)||2R, (7.9)

where our loss is ||y||2R = y′R−1y, the squared Euclidean norm scaled by
R−1, which takes care of properly averaging the observations in y. This
criterion was selected for convenience and because the MSE of the ensemble
mean is often used as a diagnostic in forecast veri�cation. However, this
choice might not be the best and other possibilities could be considered.

First, taking the same loss function, an alternative suggested by the for-
malism exposed here would be to take the MSE (EMSE) over the predictive
distribution instead:

EMSE(yo, πa(y|γ)) =

∫ ∞
−∞
||yo − y||2R · πa(y|γ)dy, (7.10)

One can decompose this expected score into a squared bias component,
equal to the score of Eq. (7.9), and a variance term. Some special care has
to be taken though, because of the norm scaled by R. More precisely:

EMSE(yo, πa(y|γ)) = ||yo−Eπa(y|γ)(y)||2R+Eπa(y|γ)

(
||y−Eπa(y|γ)(y)||2R

)
.

Instead of considering the MSE, which is not a strictly proper scoring rule
(Gneiting and Raftery, 2007), one could instead use the CRPS. However,
we have a vector of observations y and it would not be correct to compute
the CRPS component-wise and then to aggregate with something like the
Euclidean norm scaled by R−1, as we did for the MSE. Instead, to take into
account the joint prediction of all the components of y we should use the
Energy Score (ES), a multivariate generalization of the CRPS (Gneiting
et al., 2008). In our case it can be written as

ES(yo, πa(y|γ)) =

∫
||yo − y||R · πa(y|γ)dy−

1

2

∫ ∫
||y′ − y||R · πa(y|γ)πa(y′|γ)dydy′,

Remembering that we can write the CRPS as

CRPS(yo, πa(y|γ)) =

∫
|yo − y| · πa(y|γ)dy−

1

2

∫ ∫
|y′ − y| · πa(y|γ)πa(y′|γ)dydy′,
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makes the connection between ES and CRPS clear. If y is 1-dimensional,
the Euclidean norm is the same as the absolute value, the scaling by R−1

does not play a role, and thus both are equivalent. One could pick other
error measures to use as scoring rule, but we do not consider any other
option in the present work.

7.3.2 Scoring rule in ensemble space

It is one thing to choose an error measure to minimize, such as the MSE
or the ES, but it is yet another thing to be able to compute it using only
information provided by the data assimilation scheme. In Eq. (5.17) of
Section 5.3.3 we showed how one can minimize the MSE of the ensemble
mean fully in ensemble space, thus making the criterion cheap to evaluate.
For the EMSE in Eq. (7.10) the score can be computed in ensemble space
in the same way as Eq. (5.17), but adding an extra term 1

k tr((W
a)′SW a),

whereW a isWµWα− 1
k ·WµWα11′+W ε; this term is an estimator of the

variance of the predictive distribution scaled by R but in ensemble space.

However, computing the ES in ensemble space is most likely not possible
without relying on some approximation. The �rst reason for this limitation
is that to the best of our knowledge there is no analytical formula available
for mixture of Gaussians predictive distribution. The second reason is
that we do not have a de�nitive argument to show that considering the
projection of y onto the ensemble space leads to the same relative score
as in the full space (as is the case for the MSE). Therefore, we propose to
use the following CRPS-based score, for which we then proceed to give a
justi�cation:

ÊS(yo, πa(y|γ)) =

l∑
j=1

CRPS(

k∑
i=1

N i

k
N (βµ,ij , λjf

γ(λj) + 1), βoj ), (7.11)

where βµ,i = δ(
√
λ+)U ′+W

µei, ei is the vector of all 0 except at position i

where it is 1, βo = δ(λ
−1/2
+ )U ′+c, the columns of U+ are the eigenvectors of

S corresponding to the l strictly positive eigenvalues λ+, and the subscripts
j indicate the vector components.

The general idea to construct the score in Eq. (7.11) is to express every-
thing in terms of coordinates in ensemble space using an orthonormal basis.
We �rst project y onto this space and then compare its projected value
to the predictive distribution. The advantage of using an orthonormal ba-
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sis is that we can then neglect covariance terms between components and
compute an average of the marginal CRPS.

We want to compare y to the model equivalents Hxb,i, which we denote by
yb,i and the matrix of their deviations to their mean by Y b. Let us de�ne
a basis for the ensemble space spanned by Y b as

Zb = Y bU+δ(λ
−1/2
+ ), (7.12)

The columns of Zb are orthonormal with respect to the scalar product
scaled by R−1. The number of columns of Zb is l, which is typically equal
to k − 1 if k < d and the background ensemble has rank k. If d < k then
l = d− 1, but the arguments below stay the same.

Now we can rewrite the model equivalents yb,i in terms of their coordinates
in the basis Zb as:

yb,i = ȳb + Y bei = ȳb + Zbβb,i, (7.13)

where βb,i = δ(λ
1/2
+ )U ′+e

i are the coordinates of the yb,i in this basis. This
is correct because U+U

′
+ = I − U−U ′− and Y bU− = 0, where U− are the

eigenvectors of S corresponding to zero eigenvalues of S = (Y b)′R−1Y b

and are thus orthogonal to Y b. Using a similar argument, we can rewrite
the component means Hµγ,i in the predictive distribution Eq. (7.8) as

Hµγ,i = ȳb + Y bWµei = ȳb + Zbβµ,i, (7.14)

where βµ,i = δ(λ
1/2
+ )U ′+W

µei are the coordinates of Hµγ,i in the basis Zb.

The �rst part of the covariance in Eq. (7.8) can be written as

HP a,γH ′ = Zbδ(λ+f
γ(λ+))(Zb)′, (7.15)

where fγ(·) was de�ned in Eq. (5.22). The second part of the covariance,
R, has rank larger than the ensemble space if d > k. However because we
restrict our analysis to the ensemble space we can ignore the remaining
part and consider only the covariance of a projection of ξ ∼ N (0, R) onto
that space, which is nothing other than the identity matrix (see Section 7.1
for detailed reasoning).

The observation yo can be similarly decomposed into a part which lies in
ensemble space, ȳb +Zbβo, and a part which is orthogonal to it, ro. More
precisely, we can write:

y = ȳb + (y − ȳb) = ȳb + Zbβo + ro, (7.16)
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where βo = δ(λ
−1/2
+ )U ′+c are the coordinates of the projection of yo onto

Zb, and c = (Y b)′R−1(y − ȳb). Showing this relies on the simple fact that
S = U+δ(λ+)U ′+.

Expressing everything in terms of coordinates in our new basis, the predic-
tive distribution Eq. (7.8) has the following equivalent in ensemble space

π̃a(β|γ) =

k∑
i=1

N i

k
N
(
βµ,i, δ(λ+f

γ(λ+) + 1)
)
. (7.17)

The covariances involved are all diagonal, but some dependencies between
dimensions remain due to the resampling of mixture components. As an
approximation of a fully multivariate score, we ignore these additional de-
pendencies and compute the sum of the marginal CRPS in this coordinate
system Zb, which results in the score of Eq. (7.11). Furthermore, to com-
pute the CRPS in the case of a Gaussian mixture predictive distribution
we can use the analytical formula mentioned in Eq. (5) of Grimit et al.
(2006).

7.3.3 Cross-validation and jackknife

The scoring rules that we have proposed so far can be criticized on multiple
grounds, the most serious of them being that they are dependent on the
observation yo and might thus lead to over-�tting. This criticism comes
from the fact that we are using the observations twice: once for minimizing
the score when selecting γ, and once for computing the analysis given the
chosen γ.

A �rst attempt to remedy to this problem is to use a technique akin to the
jackknife. More precisely, we hold out each ensemble member one after
the other, compute the score based on this truncated ensemble, and then
average out. The idea is that by doing so we get rid of some variability
due to the conditioning on the ensemble and avoid the situation where we
could over-�t the observation with one particular particle being close to yo.
However, recomputing the estimated predictive distribution for each held-
out xb,i is costly and ine�cient. In the case of the MSE for the ensemble
mean of Eq. (7.9), one cheap way to approximate the jackknife estimator
would be to take P b from the whole ensemble and then estimate the MSE
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as

ˆMSE(yo, πa(y|γ)) =
1

k

k∑
j=1

||yo −Hx̄a(−j)||2R,

where x̄a(−j) is the estimate of the analysis mean when taking out particle
j but using the full covariance P b. In a sense, what we do here is taking
the expectation of the MSE of Eq. (7.9) with respect to the empirical
distribution of the background. It it is not clear if this is really the thing
that we should do, but it can for sure help to remove some of the variability
in the estimate of the MSE as a function of γ.

The jackknife procedure gets rid of some of the problems mentioned above
but it still depends heavily on the observation yo and can lead to over-
�tting. A common statistical procedure to avoid this issue is cross-validation
(CV). However, it cannot be applied directly in our case as we essentially
have only one observation yo. To circumvent this issue, we propose to
create surrogate observations

yj = Hxb,j + ηj , ηj ∼ N (0, R), (7.18)

on which we can then apply a cross-validation scheme. By doing so we
implicitly assume that the true state that we are trying to estimate and
our predictive ensemble are exchangeable. Using this idea, we successively
take out each particle j from the ensemble, generate a surrogate data yj ,
assimilate it and then compare our prediction to the surrogate value. Let
us call πa(−j)(y|γ) the analysis predictive distribution computed without
particle j. Then, we can describe the procedure as follows:

1. For j = 1, . . . , k

(a) Generate yj = Hxb,j + ηj .

(b) Take xb,j out of the ensemble.

(c) Assimilate yj and compute the analysis πa(−j)(y|γ).

(d) Compute the score L(yj , πa(−j)(y|γ)).

2. Average the scores.

We now describe in more detail how one can conduct the computation of
the various steps above.
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CV computation

The starting point of the CV procedure is to create the surrogate data
yj . To do so we need to generate ηj , which is a d-dimensional vector in
observation space. However, we only care about its projection onto the
ensemble space. Let us de�ne the following matrix

Π = Y bS−1(Y b)′R−1.

Here S−1 is the Moore-Penrose inverse Uδ(λ−1)U ′ where one sets 0−1 = 0.
We could also take the same approach as in Section 7.3.2 and restrict our
analysis to the directions associated with strictly positive eigenvalues, but
we do it this way for simplicity. The matrix Π projects any vector in
observation space onto the subspace spanned by the columns of Y b. Then,
one can decompose ηj as

ηj = Πηj + (I −Π)ηj =: η̂j + rj .

Because we can pull out from the right of K(γP b) a factor (Y b)′R−1,
K(γP b)rj = 0. By the same argument, Lγrj = 0, and therefore using
ηj or η̂j gives the same analysis. Moreover, because ηj is Gaussian with
mean 0 and covariance R, η̂j is also Gaussian with mean 0 and covariance

ΠRΠ′ = Y bS−1SS−1(Y b)′ = Y bS−1(Y b)′.

Therefore we can generate η̂j as follows:

1. draw εj ∼ Nk(0, I).

2. Set ξj = S−1/2εj .

3. Set η̂j = Y bξj .

Once we have yj we need to take out xb,j from the ensemble and compute
πa(−j)(y|γ). This is actually the most problematic part, because comput-
ing the whole analysis at every step is computationally heavy. One could
try to keep the P b estimated from the whole ensemble, as we proposed for
the jackknife, in which case we can compute πa(−j)(y|γ) relatively cheaply.
However, this approach does not work for CV as there is too much infor-
mation about xb,j contained in P b, which the EnKF part of the algorithm
is able to exploit; it thus leads to large γ values appearing unfairly advan-
tageous.

Therefore, the only possibility is to recompute the analysis at each time
step. One way to do so is to de�ne the (k − 1) × k matrix A(−j) such
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that Y b(−j) = Y bA(−j). Basically A(−j) takes o� the column j in Y b

and readjust the centering around the ensemble mean without particle j,
ȳb(−j). Then we can compute the equivalent of S when j is taken as

S(−j) = A(−j)′SA(−j).

To do the same for c we need to see that

ȳb(−j) = ȳb − 1

k − 1
Y bej .

Then we can write

(yj − ȳb(−j)) =
k

k − 1
Y bej + ηj ,

from which we obtain

c(−j) = A(−j)′S (
k

k − 1
ej + ξj),

where ξj was de�ned above in the algorithm to generate ηj .

Therefore, to compute the analysis distribution πa(−j)(y|γ), one proceeds
as follows:

1. generate ξj = S−1/2εj , εj ∼ N (0, I).

2. compute S(−j) and c(−j).

3. compute the spectral decomposition of S(−j).

4. compute the elements Wµ(−j), αγ(−j), etc.

5. compute the score based on these elements.

Depending on which score is used, di�erent elements need to be computed
from πa(−j)(y|γ). For example, for the MSE of the ensemble mean, we
only need the vector m = 1

kW
µWα1.

The CV scheme described here is interesting from a conceptual point of
view, but it is too expensive to compute in practice, particularly because
of the high cost necessary to take the spectral decomposition of S(−j) for
each j. One way to make it cheaper would be to use B-fold CV instead
of leave-one-out CV. Another approach would be to develop some kind of
approximation to the CV in the spirit of generalized CV, but it is not clear
how one could do so. Finally, there might be some algorithmic shortcut
to compute the spectral decomposition of S(−j) from the decomposition of
S, but we have not explored this further.
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7.3.4 Simulation study

To investigate the abilities of the di�erent schemes proposed above we
now conduct a simulation study. Unfortunately, the simulations are not
conclusive, but they help us understand some of the limitations of our
approach. We consider the following simple example with a q-dimensional
bimodal background distribution:

xb ∼ 0.5 · N (0, I) + 0.5 · N (3, I), (7.19)

H = (e1, e2)′, R = σ2I, σ2 = 3, (7.20)

where 0 and 3 are vectors of all 0 and 3 respectively, and ei is the ith unit
vector of 1 in the ith entry and 0 otherwise. As �truth� we set xo = 0 and
�x the observations to yo = Hxo.

The theoretical posterior is a new Gaussian mixture with new component
means, covariances and weights which can be computed easily. The sce-
nario is such that the component at 0 should be preferred, but the observa-
tions are not incompatible with the second mode either and the posterior
is bimodal (the component weight of the �rst mode is approximately 0.75).

We set the ensemble size to k = 50 and the state dimension to q = 100,
and generate a background ensemble from this model. A two-dimensional
plot using only the �rst two coordinates is shown in Fig. 7.5. Additionally,
in the left panel we see an ensemble from the theoretical posterior, while
in the right panel is the analysis ensemble obtained with the EnKF. It is
interesting to notice how the EnKF seems to smear the two modes while
the true posterior is more clearly concentrated on the �rst mode.

For testing our di�erent criteria to choose γ we replicate the following
simulation twenty times:

1. Generate a random xb.

2. For a set of γ on a grid:

(a) Assimilate the observation with parameter γ.

(b) Compute the error criterion on xo, yo and βo.

Because we are in a perfect model scenario we can actually compute the
error on the truth, xo, but in practice we are obviously restricted to yo

(or βo if we want to do everything in ensemble space). As error criterion
we will test the MSE, EMSE and ES. We also check empirically that our
ensemble space computations in Section 7.3.2 are correct. Furthermore,
we consider what happens to the CV and jackknife estimators proposed in
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Figure 7.5: Plot of the �rst two coordinates of a draw from the toy model described
in Section 7.3.4. The solid blue dots form the background ensemble, while the empty
purple circles are sampled from the theoretical posterior distribution (left panel) or the
EnKF analysis distribution (right panel). The red cross marks the observation yo.

Section 7.3.3. For the ES computed on yo and xo we use a Monte Carlo
approximation as described in Gneiting et al. (2008) (with one hundred
Monte Carlo samples) and adapted to the Gaussian mixture case as in
Grimit et al. (2006).

In Fig. 7.6 the three scores evaluated on xo (top row), on yo (middle row),
and in ensemble space (bottom row), are plotted as a function of γ. Each
line is one of the 20 di�erent realizations of the process while the bold blue
line is a smoother. It should be noted that in order to compare all the
simulations draws in one plot we had to standardize the di�erent curves
such that they each have mean 0 and variance 1.

The �rst thing that we can see from this �gure is that all curves have a
strong minimum at 0 and then plateau at about γ = 0.25, whatever the
scoring rule used or the underlying component on which it is computed.
The second interesting conclusion from this plot is that the ensemble space
version of the scores seems to be quite accurate (the score evaluated on
yo or on βo are very similar), which con�rms empirically the correctness
of our derivations. The third conclusion is that the MSE and ES produce
very similar curves, while the EMSE is slightly di�erent in the sense that
it has a tendency to become lower again between γ = 0.25 and 1. The
fact that MSE and ES produce almost the same result when used as score
is con�rmed in Fig. 7.7 where we see the same �gure as in Fig. 6.4 but
comparing LETKPF-minES to LETKPF-minMSE. Di�erences are barely
noticeable to the untrained eye.

In Fig. 7.8 we compare the MSE estimated on yo with the CV and jackknife
(JK) estimators (other scores are not shown but the same conclusions can
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Figure 7.6: Standardized scores as a function of γ for 20 di�erent realizations. In the
top row the scores are evaluated on xo, in the middle row on yo, and in the bottom row
on yo in ensemble space (βo).

Figure 7.7: Adaptive choice of γ (left panel) and corresponding ESS (right panel) in
the lower atmosphere during the case study (as in Fig. 6.4), with LETKPF-minES in
the �rst row and LETKPF-minMSE in the second.
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Figure 7.8: CV and jackknife (JK) estimates of MSE compared to the MSE on yo

directly, as a function of γ for 20 di�erent realization. The curves have been standardized
to have mean 0 and variance 1.

be drawn from them). The jackknife does not seem to have a strong e�ect
except reducing a little bit the variability of the curves, but the CV leads
to a qualitatively di�erent curve with a minimum score achieved slightly
away from 0. This might be an indication that indeed minimizing the score
directly leads to over�tting, while CV is more conservative and would select
a larger γ. On the other hand, it might also be due to the fact that the
optimal γ is ultimately dependent on y and that because CV averages out
the distribution of y it makes a compromise by choosing a γ of 0.25.

In Fig. 7.9 we compare the scores obtained in the bimodal example here
with a reference scenario where we have only one mode at 0, everything
else being the same. It is interesting to see that in the unimodal case the
curve appears much �atter with a tendency towards selecting a γ value of 1,
which makes intuitive sense as in this case a pure EnKF should in principle
fare well. However in this case the individual curves (not the smoother)
are quite noisy and do not follow this pattern as clearly. Furthermore, the
curve for the CV error in the unimodal case has a strange bump close to
γ = 1 that should be investigated further.

To conclude, the question of the optimal choice of γ is far from being
answered. The score-based approach proposed here is interesting from a
theoretical point of view but not completely satisfactory in practice. The
underlying di�culty to test our algorithms is that we do not know what
the optimal γ should be, even in simple situations. In the present case our
score seem to indicate that a γ of 0 would yield the best results, which
might be because the example is very clearly non-Gaussian or might be an
indication of over�tting. It would be interesting to replicate this simulation
for a spectrum of cases from very non-Gaussian to purely Gaussian to check
the sensitivity of the di�erent scores. Furthermore, it would be necessary
to investigate further if the CV scheme should be preferred and in which
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Figure 7.9: Standardized scores as a function of γ for the bimodal case (upper row) and
the unimodal case (bottom row).

case if it can be made more e�cient for practical applications. In the
present section we started to study the optimal choice of γ but much more
research needs to be done to understand what the critical parameters that
in�uence γ are, and to develop algorithms to choose its value adaptively
in applications.
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7.4 Computation and implementation

The implementation of the code in the COSMO assimilation framework
was an integral part of this work and played a signi�cant role in the design
of the algorithms by setting external constraints. We now give a rough
account of the implementation details and development strategy.

The assimilation framework of COSMO is a complex software written in
fortran90 for legacy reason. It is actively maintained and developed by
the data assimilation team of DWD, in particular Andreas Rhodin, and
by other COSMO users around the globe. Describing the full code would
be out of the scope of this work and beyond the author's competence, but
here are a few elements necessary to understand the context in which our
algorithms had to be inserted:

1. Preprocessing of observations based on quality control criteria.

2. Computation of Hxb,j for each particle. Actually a non-linear op-
erator h(·) is applied if available. Furthermore, it is computed at
observation time, not at the analysis time, thus making the algo-
rithm 4-dimensional (Hunt et al., 2007).

3. Accept or reject observations according to criteria relying on statis-
tics of y −Hxb,j .

4. For each grid point on a coarse grid:

(a) Compute S = (Y b)′R−1Y b and c = (Y b)′R−1(y − ȳb). At this
stage tapering is applied, with a taper function decreasing with
distance of the observation to the grid point under considera-
tion.

(b) Compute m and W such that xa = x̄b1′ +Xbm1′ +XbW .

(c) Covariance in�ation: multiply W by the square-root of ρ.

5. For each grid point on the original �ne grid:

(a) Interpolate m and W from the coarse grid using Akima's inter-
polation algorithm (Akima, 1970).

(b) Compute the local analysis xa = x̄b1′ +Xbm1′ +XbW .

6. Construct the global analysis by gluing everything together.

Implementing a speci�c assimilation algorithm such as the ETKPF consists
thus in writing the code for the step 4b. As input we have the eigenvectors
and eigenvalues of S as well as the vector c, while as output we need to
provide the vector m and the matrix W . The separation of the analysis



168 Chapter 7: Other topics related to the LETKPF

between mean and perturbations is necessary for the multiplicative covari-
ance in�ation scheme in step 4c. More precisely, by multiplying W by

√
ρ,

the analysis covariance P a will be in�ated by a factor ρ. The choice of ρ
is done adaptively in space and time according to some criterion which we
have not considered.

The �rst stage of the ETKPF computation is to select the parameter γ. As
discussed in Section 7.3, to do so we use a grid search to �nd the γ that �ts
a given criterion (either a target ESS or a minimal score). For each value
of γ tested we typically need to compute αγ,i, the resampling indices and
Wµ. All these quantities can be computed e�ciently with the formulae
derived in Section 5.B. Then, given a selected γ we compute W ε, either
by solving the CARE for the transform �lter, or with a random draw for
the stochastic EnKPF as in Eq. (5.7). The bottlenecks of the algorithm
are the choice of γ (especially if one wants to use cross-validation) and the
CARE solver.

In Table 7.1 we compare the computation times of di�erent algorithms.
The two variants of the LETKPF are slower than the reference LETKF.
On the other hand, the LPF and the two LEnKPF are about twice faster
than the LETKF. This highlights that the main computational cost comes
from the computation of the square-root part of the �lter. The ESS cri-
terion for choosing γ is faster than the minimization of the MSE, because
it is implemented as a bisection search (which cannot be done for the
MSE minimization as the MSE is not monotonically changing with γ).
The computation times for the CV schemes are not included as they are
prohibitively expensive in this setup (more than 2 hours).

Therefore, if one was to use these algorithms in practice two options could
be considered. First, one could give up the transform version of the �lter
and use the stochastic LEnKPF-minMSE or LEnKPF-ess50, which are
both faster than the LETKF. With the remaining available resources one
could choose a �ner grid for γ resulting in a more precise estimate or even
use a more expensive method such as CV (if improved from the current
stage). Second, one could use the LETKPF and accept the higher cost (or
improve the CARE solver for the transform �lter by using a direct method
instead of Newton's algorithm). We have not tried it but it should be
easily feasible.

To write the code and build con�dence in it, I used the following strategy.
First, write the code in R, where it is easy to write tests and simple ex-
amples. Second, implement each separate function in fortran and create
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Method CPU time Percentage relative to LETKF
LETKF 589 100%
LETKPF-ess50 688 117%
LETKPF-minMSE 766 130%
LEnKPF-ess50 259 44%
LEnKPF-minMSE 273 46%
LPF 258 44%

Table 7.1: CPU wall time in seconds and relative to the LETKF for the analysis on 14
June at 1700 UTC with 72 processors.

a R-wrapper to call it from R. Third, for each function create a test to
check that the R version and the fortran version return the same result.
Using this strategy, it is possible to quickly try new ideas in R and trans-
fer them later in fortran, while at the same time making sure that none of
the previous functionalities are broken. Obviously it works all the better
if the code is well modularized. In the present case I implemented sepa-
rate functions to compute the analysis elements (αγ,i,Wµ,W ε, etc.) and
one master function to call everything in order. The code is available on
github: https://github.com/robertsy/ETKPF.

The implementation of the algorithm would not have been possible without
the assistance of Andreas Rhodin from DWD, who modularized the origi-
nal code such that the core of the assimilation algorithm is well separated
from the rest. In this way it is possible to focus on the assimilation algo-
rithm without having to worry about the pre- and post-processing steps.
Such a standardization should make it possible to implement alternative
algorithms and compare them in a common framework.

https://github.com/robertsy/ETKPF




Chapter 8

Summary and outlook

The goal of this work was to contribute towards a full solution to the
non-Gaussian data assimilation problem in high-dimensional applications.
We did so by considering possible extensions to the EnKPF of Frei and
Künsch (2013) and by testing the newly proposed algorithms on a hierarchy
of models, culminating with a full-scale application to a quasi-operational
NWP system.

High-dimensional �ltering problems encountered in data assimilation for
weather forecast are remarkably challenging. In practice, heuristic but
feasible solutions such as the EnKF are typically favored. The PF, on the
other hand, is a well-known algorithm which can be in principle applied to
any non-Gaussian �ltering problem, but which fails utterly in applications
with limited ensemble sizes and large state spaces. Hybrid algorithms like
the EnKPF try to alleviate some of the issues with the PF by combining
it with the EnKF; however, they do not solve the fundamental issue with
PFs in high-dimensions.

To address this problem, we proposed two new localized algorithms based
on the EnKPF: the naive-LEnKPF and the block-LEnKPF. The �rst one
conducts the analysis locally without taking particular care of the disconti-
nuities introduced by resampling. The block-LEnKPF, on the other hand,
assimilates the data by blocks while limiting their in�uence to local regions
and smoothing out the introduced discontinuities. We showed in a simple
conjugate normal example how localization can indeed beat the curse of
dimensionality, at least super�cially. At a deeper level, though, localizing
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the update involves a bias-variance trade-o� and there is no magical way
out of the problem.

To show the feasibility of our algorithms we applied them to a toy model
of cumulus convection based on a modi�ed SWEQ. The idea was to have
a model of intermediate complexity between the Lorenz96 and a full-scale
weather system. The newly proposed algorithms fared well on this setup,
with performance similar to the reference LEnKF. The largest improve-
ments were observed for non-Gaussian variables such as rain. In partic-
ular, the localized EnKPFs were able to identify dry and wet areas with
better accuracy. However, the results obtained with this model have limi-
tations. As we have seen, the behavior of the di�erent algorithms can vary
depending on which set of parameters is used for the dynamical model,
which reduces the universality of the conclusions reached through the ex-
periments. Furthermore, the example highlighted the appearance of what
we called the U-pattern when assimilating high-frequency observations.
We showed that this phenomenon was not limited to the modi�ed SWEQ
model and that the EnKF was also susceptible to it, even though to a
lesser extent. How much this problem can play a role in practice is un-
clear, but it should be kept in mind and further studied if the possibility
of assimilating high-frequency data were to become a reality.

Besides localizing the EnKPF, the second main contribution of this work
was to reformulate the algorithm in ensemble space and derive a new trans-
form update scheme. The goal was to emulate the success of the LETKF
in practice and to be able to implement our algorithm in the same frame-
work. We showed that the EnKPF could be fully derived in ensemble
space if we restrict ourselves to using the empirical covariance as estimate
of P b, which is the same constraint as for the ETKF. The derivation led
thus to an e�cient way to compute the analysis, which could be easily im-
plemented in the existing data assimilation module of the COSMO model.
Developing a deterministic version of the algorithm such that it has the
ETKF and not the stochastic EnKF as a limiting case proved harder than
expected, but was possible with the use of a continuous algebraic Riccati
equation.

The newly proposed LETKPF algorithm was derived and implemented in
the COSMO data assimilation framework. We then conducted numerical
experiments during a 12-day period of intense convection in June 2015.
The algorithm was shown to perform as well as the LETKF, and to be
noticeably better for predicting non-Gaussian variables such as wind and
hourly precipitation. The results were not completely black or white, but
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rather grayish. In practice, which method is better seems to depend greatly
on the variable considered, on the pressure level, and on the exact situation
at hand. It should be noted that there are many parameters of the analysis
that were tuned beforehand to the LETKF, such as the observation co-
variance matrix, the localization radius, etc. Therefore, in the future one
might obtain larger improvements by tuning these various components to
the LETKPF. However, before doing so there are some open issues to be
dealt with and problems to be better understood.

One of the main questions about the EnKPF that we tried to answer is
the question of the optimal choice of γ. Whereas in its original formula-
tion a criterion based on targeting a range of ESS was proposed, we were
not satis�ed with it and seek a more objective criterion. We investigated
the option to minimize a cost function, leading to a score-based criterion.
We considered di�erent score functions and various ways to estimate it
such that over-�tting of the observations is avoided. The simplest form
of our score-based criterion, which consisted in minimizing the MSE of
the analysis mean compared to the observations, in ensemble space, was
implemented and tested with the COSMO experiments. The results, how-
ever, were not clearly for or against it. We investigated in more depth
the use of di�erent criteria in a simulation study, but no clear conclusion
was reached either. It seems to us that pursuing the question further is of
great importance for applying the LETKPF in practice, as the choice of γ
clearly has a strong impact on the algorithm performance. In the future,
one could imagine choosing γ adaptively not only in space and time, but
also for di�erent variables or observations.

Ensemble data assimilation for geophysical applications is an extremely
vast topic and we have only scratched the surface of a few problems in
this work. For example, throughout this thesis we have assumed that the
model that we use is the true model. Obviously, there are many sources
of model error and this assumption is far from being correct. In princi-
ple one should take into account this model error during the assimilation.
The various techniques to increase the spread of the ensemble such as
covariance in�ation, or RTPP, are one way to tackle this problem. An in-
teresting solution which is easily combined with PFs and our LETKPF is
to introduce stochasticity in the parametrization of the dynamical system
(Arnold et al., 2013). However, the question of the validity itself of apply-
ing �ltering methods in the presence of model error can be asked (Smith,
2001). In fact some might argue that a new framework should be used
and that model error a�ects data assimilation in some fundamental ways:
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for example the optimal analysis ensemble might be di�erent for di�erent
forecast horizons (Smith, 2001). It would be interesting to study this type
of questions further, but it was clearly out of the scope of this thesis.

Of more direct implication, a second aspect that we have neglected is the
treatment of non-Gaussian observations. The EnKPF somehow alleviates
the dependency on Gaussian assumptions for the background distribution,
but we always assumed linear and Gaussian observations. One of the key
advantages of the PF is that it can be easily applied to any observation
distribution. There are some options to adapt the EnKPF to deal with
non-Gaussian observations (Frei and Künsch, 2013), but we have not ex-
plored them in practice. It would be interesting to try these ideas, as it
might be then that the PF would show its full advantage (Poterjoy and
Anderson, 2016). A related issue, however, is that often the distribution of
the observations is not known, and complicated forward operators linking
the model variables to the observations have to be built from �rst princi-
ples. This limits greatly the use of non-conventional observations that are
collected through new technologies, such as radars, webcams, smartphone
sensors, etc. An interesting approach to use such data would be to learn
the relationship between the model and the observations. Essentially we
need to model the conditional distribution of y given x, which �ts natu-
rally into a regression framework. One could try to learn this relationship
from past observations y and use as x the best estimate available from all
other sources of classical observations. It is not clear at all if this approach
would work in practice, but it would be an interesting path to pursue.

One of the fundamental di�culties when applying PFs to geophysical data
assimilation problems is that we are trying to model a complex high-
dimensional distribution with a small ensemble. In the usual PF we do
not make any additional assumption about this distribution and model it
completely non-parametrically, considering it as a mixture of point masses
at our background ensemble. At the other end of the spectrum, the EnKF
roughly assumes that the prior distribution is Gaussian and uses the en-
semble to estimate its mean and covariance. The PF approach is appealing,
as it ensures that the analysis ensemble consists of physically possible par-
ticles only. The EnKF, on the other hand, might well pull the ensemble
members in non-physical regions of the state space. Ultimately, the qual-
ity of our sample from the posterior distribution depends on the quality of
our estimate of the prior distribution. If we have a large sample compared
to the dimensionality of the problem, we can a�ord to model the prior
non-parametrically and the PF works well. In our applications, however,
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we cannot a�ord large ensembles. One interesting alternative approach
to improve, or design, assimilation algorithms would be to improve our
estimator of the prior distribution.

A natural approach to do so would be to somehow attempt to use informa-
tion coming from the climatology, or long-term distribution of the system.
Weather forecast centers have typically spent a lot of time trying to model
the so-called B matrix, which is the climatological background covariance
matrix. There might be some ways to use this information to improve
our estimate of the distribution at a given time. In the Gaussian case it
would make sense to simply use the B matrix as some kind of regulator to
estimate the background covariance P b, either in a fully Bayesian frame-
work or more empirically by combining somehow the empirical covariance
of the background ensemble with B (Hamill and Snyder, 2000). In the
non-parametric setting, a similar idea could be to use not the climatologi-
cal covariance, but previous realizations of the systems, similar to the idea
of analogues (Lorenz, 1969, 1982). These analogues could be used to form
a kind of prior distribution for the prior, in other words a hyperprior. In
principle one could thus estimate the prior at analysis time by combining
this hyperprior with the current background ensemble, and then update it
with the new observations. For the background ensemble to play this role
of data one would need to have some kind of way to connect the prior to
the hyperprior, which is far from obvious. However, this line of research
may prove interesting and suggest some new algorithms for non-Gaussian
data assimilation.

Another approach to improve our estimate of the prior distribution would
be to make some additional assumptions about it. To do so one could
draw some ideas from what people do in forecast veri�cation, where one
has to construct a probabilistic forecast from an ensemble by using post-
processing techniques (Gneiting and Katzfuss, 2014; Weigel, 2011; Gneiting
and Raftery, 2005). For example, to estimate the probability distribution
of precipitation at a site one can use the distribution at this site and its
neighbors. This is to account for the fact that sometimes the ensemble pre-
dicts the correct precipitation cells but misplaces them. One could imagine
using a similar idea to construct an estimate of the marginal distribution
at each site, by pooling the information coming from neighbors. Doing so
would in e�ect increase the ensemble size available locally. Of course the
samples would not be independent and it is not clear at all how one should
take this into account properly, let alone the problem of modeling the joint
distribution at di�erent sites. However, the idea is somehow appealing and
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might lead to some new algorithms if developed to maturity.

To conclude, developing algorithms for non-Gaussian high-dimensional
data assimilation is fantastically exciting and interesting, but also ex-
tremely challenging. In this work, we presented a few contributions to-
wards a full solution to this problem, but the way ahead is long and
promises to be rigged with di�culties. Hopefully some of the ideas and
experiments conducted during the course of this work will be helpful and
valuable to other researchers in this long-term journey.
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