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Abstract
In this paper we present a method for modelling uncertainty of train delays based on a
Markov stochastic process. The dynamics of a train delay over time and space is presented
as a stochastic process that describes the evolution of the time-dependent random variable.
Probability distribution of an arrival delay in a station changes over time in discrete steps
as more information becomes available. We consider and compare the results and com-
putational requirements of two discrete state space formulations. Moreover, we test the
applicability of modelling train delays as a non-stationary Markov chain, meaning that the
probability of a state change depends on the moment of transition. The model is applied on
a set of historical traffic realisation data from the part of the high-speed corridor between
Beijing and Shanghai. We analyse the accuracy of predictions as well as the evolution of
probability distributions of all events over time. The presented method is important for mak-
ing better predictions for train traffic, that are not only based on static, offline collected data,
but are able to positively include the dynamic characteristics of the ever-changing delays,
thus increasing the reliability of prediction by 71%.
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Prediction, Railway traffic, Stochastic processes, Train delay evolution

1 Introduction

Accurate prediction of train delays is an important requirement for proactive and antici-
pative real-time control of railway traffic and transport. Traffic controllers need to predict
the arrival times of the trains within (or heading towards) their area in order to control the
feasibility of timetable realisation. Similarly, the transport controllers on behalf of train
operating companies may use the predictions to estimate the feasibility of planned passen-
ger transfers, as well as rolling-stock and crew circulation plans. Valid estimates of arrival
and departure times are therefore important for preventing or reducing delay propagation,
managing connections, and providing reliable passenger information. The difficulty for pre-
dicting train event times comes from the uncertainty and unpredictability of process times
in railway traffic. The models for real-time traffic and transport control have so far mostly
focused on overcoming the great combinatorial complexity of train rescheduling [6, 23],
delay management [11] and rolling-stock and crew rescheduling [25, 27]. The developed

1



approaches are able to solve complex instances in real-time, however they typically assume
perfect deterministic knowledge of the input traffic state and subsequent traffic evolution.

In recent years, the uncertainty of train event times has been recognised as one of the
major obstacles for computing feasible and implementable solutions for rescheduling prob-
lems in railway traffic [7]. The uncertainty of an event is usually represented by the proba-
bility distribution of its realisation. However, most of the existing approaches assume fixed
probability distributions for the estimation of process times and do not consider the effect
that real-time information on train positions and delays may have on (the parameters of)
the corresponding distributions. In order to create realistic online tools for real-time traffic
management, the dynamics of uncertainty of delays needs to be considered. When new in-
formation about train positions and delays becomes available, the uncertainty for predicting
subsequent events is typically reduced. The main objective of this paper is to examine the
effect that the prediction horizon and incoming information about a running train may have
on the predictability of subsequent arrival and departure times of that train. In other words,
we try to give an answer to the question: how does the probability distribution of delay of an
event change over time? The concept of the problem is illustrated in Figure 1. With every
update of train delay (arrivals to station A and B) probability distributions of arrival times
to subsequent stations (C and D) are computed.

Station A Station B Station C Station D

Expected arrival time Expected arrival time Expected arrival time

Station A Station B Station C Station D

Realised arrival time Expected arrival time Expected arrival timeRealised arrival time

Realised arrival time

Figure 1: Dynamic evolution of probability density in time

Earlier approaches in delay prediction strongly depend on the availability of an under-
lying traffic model. Real-time train delay prediction typically relies on the deterministic
estimates either (i) computed offline using theoretical values [10] or (ii) dynamically with
respect to the actual traffic conditions using train motion equation [9] or historical traffic
data [18]. The model-based real-time prediction tools require frequent (almost continuous)
updates of train positions and delays that are further propagated through the model. This
may be a problem for many railway networks since train delays are in current practice in
Europe typically measured and registered only roughly at the main signals in a station, cor-
rected with a fixed term and rounded to full minutes [17]. Moreover, the applicability of
these models is conditioned on the availability of data that is needed to model the train
dynamics or historical traffic data. The stochastic delay propagation models [3, 21] were
mostly used for offline analyses of timetables. An approach that considers the dynamics of
uncertainty of train delays was presented by Bauer & Schöbel [1]. The authors developed
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a ‘delay generator’ for the purpose of integrating uncertainty in online traffic management.
A uniformly distributed delay value is assigned in real-time to a set of randomly chosen
events. However, their approach represents a rather theoretical concept that mimics the evo-
lution of train delays in time in order to create realistic instances for validation of an online
delay management tool.

In this paper we present a method for modelling the uncertainty of train delays based on
a Markov stochastic process. The dynamics of a train delay over time and space is presented
as a stochastic process that describes the evolution of delay as a time-dependent random
variable [26]. Probability distribution of an arrival delay in a station changes over time in
discrete steps as more information becomes available. A train run is represented as a Markov
chain with state transitions in discrete moments that represent arrival and departure events
from a scheduled stop. After every registered departure or arrival event, the conditional
probability distributions of the downstream events are updated with respect to the essential
assumption for Markov processes that given the present, future events do not depend on the
past. We consider and compare the results and computational requirements of two discrete
state space formulations. Moreover, we test the applicability of modelling train delays as a
non-stationary Markov chain, meaning that the probability of a state change depends on the
moment of transition. The model is applied on a set of historical traffic realisation data from
the part of the high-speed corridor between Beijing and Shanghai in China. We analyse the
accuracy of predictions and the evolution of probability distributions of all events over time.

The remainder of this paper is structured as follows. The next section presents the
review of state-of-the-art in real time predictions of railway traffic. Sections 3 describes the
methodological framework, followed by the description of the case study and data set in
Section 4. Sections 5 and 6 present the computational experiments and results. Finally the
main findings are summarised and the directions for future research given in Section 7.

2 Problem description and relevant approaches

The role of real-time prediction systems in a traffic control environment is twofold. The first
requirement is the prediction of train trajectories until the next controllable point. In other
words, train running times to the next station or point in the network where a dispatching
action can be performed or where a passenger or logistic connection is planned. That way
the accuracy of the input to the corresponding rescheduling models can be improved. The
second role is connected to the procedure of finding a new feasible schedule as a result of
the rescheduling process. During the optimisation stage, rescheduling systems evaluate dif-
ferent solutions in the search for the optimum. Traffic evolution according to each observed
potential solution is predicted and summarised in the corresponding value of the objective
function. By improving the predictions in this stage, the rescheduling models that assume
the full knowledge of future traffic state can be significantly improved.

Real-time prediction models presented in this review can be classified, according to how
they tackle uncertainty, to deterministic and stochastic. Deterministic models assume full
knowledge of the future traffic evolution. On the other hand, stochastic models attribute
each event with a probability distribution in order to model the uncertainty of its realisation.
Moreover, we classify the presented approaches based on how they use the real-time infor-
mation to update their predictions to static and dynamic. Whereas static prediction models
are based on the offline computed estimates and parameters, dynamic models are updated
in real-time as new information becomes available.
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The deterministic prediction tools mostly model train traffic as a discrete event dynamic
system represented by a directed acyclic graph. Considered events comprise only station
events (arrivals, departures, through runs) or also signal passing events depending on the
level of modelling. Process times are in the majority of approaches computed offline using
theoretical estimates. Running time estimates are typically computed using train motion
equation that considers the dynamic properties of rolling-stock and infrastructure. They are
assumed to be fixed and do not change depending on the real-time information obtained
from the monitoring system. Dwell times are predicted with fixed estimates. An example
of such deterministic static prediction model has been implemented in the Swiss traffic
control system RCS [10]. After each train position update, a critical path algorithm derives
predictions of all event times in the graph.

Another example is presented by Fukami et al. [13] who described a prediction sys-
tem for high-speed network in Japan. Given the information from the monitoring system,
the train trajectory to the next station is simulated in real-time. The delay for the suc-
ceeding stations is then simply extrapolated. D’Ariano et al. [8] presented a graph-based
model designed for real-time rescheduling. Accurate prediction of future train positions was
an important requirement in order to estimate the effect of proposed rescheduling actions.
Temporal decomposition was used to apply the model for predictions over several hours. In
an improved approach, the running time estimates for trains hindered in route conflicts are
updated online to model braking and re-acceleration [9].

The availability of historical traffic realisation data motivated another direction for the
deterministic prediction models. Statistical analysis and data mining techniques can be
applied to estimate the dependence of process times on factors such as delay and peak hours
[17]. Process times are estimated online depending on the information received by the
monitoring system. This method has been used by Hansen et al. [16] who presented a way
to predict the realisation time of a station event by computing the critical path from the last
realised event. Kecman and Goverde [18] extended this approach by modelling train traffic
on the level of block sections. The online character of the approach is further improved by
an adaptive component that monitors the accuracy of predictions in real-time and adapts the
prediction of future events accordingly.

The deterministic approaches are focused on explaining the uncertainty of process times
in railway traffic. Even though the more advanced data-driven models are able to explain
a large percentage of process time variability using the values of explanatory variables, a
certain degree of variability, especially for dwell times, still remains unresolved. Another
important aspect for application of the presented models for real time prediction is that
their accuracy depends to a great extent on the level of modelling and spatial and temporal
resolution of updates obtained from the monitoring systems. Therefore, in order to obtain
accurate predictions, a detailed model of railway traffic is required with frequent updates on
train positions on the network.

Stochastic models in the relevant literature were mainly developed with a purpose to
analyse timetable robustness, stability and resilience [15]. Büker and Seybold [3] mod-
elled delays as random variables, described with suitable distribution functions, and applied
analytical methods to compute delay propagation in a mesoscopic graph-based model. A
stochastic delay propagation approach based on processed train event recorders data was
presented by Medeossi et al. [21]. Delay propagation is computed by means of stochas-
tic blocking times. The method relies on asynchronous simulation of individual train runs
based on probability distributions of train motion parameters [20]. Meester and Muns [22]
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formalised the model presented by Carrey [5] as a stochastic event graph. The distributions
of free running times are given and the process dependencies are computed as a mixture
of the corresponding distributions. A set of performance measures is derived as a linear
combination of delay distributions. Yuan and Hansen [30] described a detailed analytical
stochastic delay propagation model for complex station areas. First, analytical formulas are
given for deriving secondary delays of departing and arriving trains separately. Conditional
distributions of arrival and departure times are computed using convolutions for computing
the distribution of the sum of random variables.

The described stochastic approaches approaches are inherently static. They do not con-
sider the effect that the real-time information obtained from the monitoring system may have
on reducing the uncertainty of the future events. The first stochastic approach that to some
extent exploits the current traffic conditions to reduce uncertainty is presented by Berger et
al. [2]. They created a stochastic graph-based model for delay prediction. The approach is
suitable for online applications where updates about train positions are frequent. Running
times are modelled as random variables. The authors proposed several theoretical proba-
bility distributions of running times, depending on departure time for each train type. Even
though this way a real-time information on train departure time can be used to adapt the
estimate of the subsequent running times, the proposed approach does not provide explicit
conditional probability of running times depending on departure delays.

In this paper we present a way to overcome the limitations of the presented approaches.
A stochastic dynamic model is described where a train delay is represented as a time-
dependent random variable. The probability distribution of a delay thus changes over time
as more information about the train run becomes available. The main advantage of our ap-
proach is that it models the dynamics of uncertainty over time thus providing up to date
probability distributions of train event times in real time. The approach does not depend
on the detailed information about infrastructure, train orders routes and frequent updates of
train movements that are often difficult to obtain. Moreover, this method for delay predic-
tion is suitable even for the low granularity of historical traffic data that provides only arrival
and departure times of each train. This approach enables a direct use of imprecise data to
predict the evolution of train delays over time.

3 Methodological framework

3.1 General description

This section presents the methodology of modelling train delays as stochastic processes.
Each train run is presented as an independent stochastic process. Such approach neglects
the fact that multiple train runs are often interdependent because they use the same infras-
tructure or have scheduled passenger transfers or rolling-stock or crew connections. How-
ever, modelling those interdependencies requires a detailed knowledge of the train routes
and departure orders which are often not available in the data. In fact, most often the data
about train traffic include only station event times measured with a low level of precision,
i.e., rounded to full minutes. Therefore, not enough information is available to build the
detailed models that were dominant in previous approaches for delay prediction [18]. This
justifies the stochastic approach that models the uncertainty of train event times instead of a
deterministic approach.

A train run can be presented as a discrete event dynamic sequence of arrival and de-
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parture events (Figure 7). The events are connected by the corresponding running and
dwell processes. The number of events corresponds to the number of scheduled arrivals
and departures. A through event can be separated into the arrival and departure events that
occur simultaneously. The events occur in a fixed sequence j → k, where k = j + 1,
j = 1, 2, . . . , n − 1, and n is the total number of events in the train run. This way a train
run can be modelled by knowing only the events scheduled by the timetable. The variable
of the system is train delay that may change at every event. We assume that no intermediate
information about train delays is available, i.e., the system is event-driven and transitions in
only at events that are predefined by the timetable. We therefore define the number of an
event i = 1, 2, . . . , n in each sequence as the parameter of the system and in the remainder
of this paper refer to it as time.

dep arr dep deparr

Station 1 Station 2 Station 3

arr

Station N

Figure 2: Representation of a train run as a discrete sequence of events

3.2 Train delay evolution as a Markov process

Train delay evolution over a sequence of events can be represented as a stochastic process
by augmenting each event with a probability distribution of delay [3]. Such probability
distributions are typically determined from historical traffic data. We extend this approach in
order to make it compatible with the real-time environment where messages on train delays
are received as each event gets realised. The idea is to model how the real-time information
affects the uncertainty of the evolution of train delay by means of Markov property. We
assume that the delay of a certain event in the future can be fully predicted based on the
currently known delay. Therefore, a train delay in the future depends only on the current
delay and not on the delay of events that preceded it [26]. This assumption limits the model
to a “memoryless” approach where the past delays and delay jumps of a train cannot be
used to predict the future. However, it is reasonable to assume that the propagation of
any continuous deviation cause to the subsequent processes would be prevented by a traffic
control action. Consequently, the assumption of Markov character of the process does not
reduce the validity of the model.

Stochastic process of train delay evolution can be represented as a sequence of random
variables X1, X2, . . . , Xn. Each random variable represents a delay of event i, where i =
1, 2, . . . , n. The Markov property is formally given in equation (1) where xi ∈ S the value
of the corresponding random variable and S is the state space.

P{Xi+1 | Xi = xi, Xi−1 = xi−1, Xi−2 = xi−2, . . . } = P{Xi+1 | Xi = xi}. (1)

Probability of transition form state xi to state xi+1 in the time interval i, i+1, ∀i ∈ 1, . . . n−
1 is given by:

P{Xi+1 = xi+1 | Xi = xi; i, i + 1} = P(i,i+1)[xi, xi+1]. (2)
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In case that the distributions are independent on the time instant i of the transition, the re-
sulting process is called a stationary or time-homogeneous Markov process for which a vast
mathematical theory exists in terms of modelling the long term behaviour [12]. However,
the application of stationary Markov process represents a limitation in modelling train de-
lay evolution. A train delay increase or a decrease during a process execution (delay jump)
typically depends on the observed process. Delay jumps may have a different probability
distributions for running and dwell processes. Moreover, some processes are scheduled with
more time reserves which may have a significant impact on the corresponding delay jump.
For that reason, in this paper we examine the performance and computational requirements
for modelling train delay evolution as a non-stationary Markov process.

Depending on the number of possible states that the observed random variable can take,
a state space S can be discrete or continuous. In this paper we consider two discrete discrete
state space definitions:

1. S1 = {s1 = [a1, a2], s2 = (a2, a3], s3 = (a4, a5]}

2. S2 = {a1, . . . ,−2,−1, 0, 1, 2, . . . , a2}

In the first case, the state space S1 is separated into three subsets that represent: (i) early
or punctual events, (ii) events with a small delay and (iii) events with a large delay. The
limits of the subsets are determined by clustering the historical data. The second state space
definition is a bounded set of integers. More details on state space definitions for a particular
data set are given in Section 5.

The probabilities for the transition of a random variable in time, Xi → Xi+1, are given
by the stochastic matrix P of size |S| × |S|. Each row of this matrix P[j, ·] sums to one
and gives the conditional probability distribution of P [Xi+1 | Xi = j]. Thus each field
P(j, k) represents the conditional probability given in Equation (2) where xi = j and
xi+1 = k. Note that due to a time-inhomogeneous property of the process each transition
Xi → Xi+1, i = 1 . . . n − 1 is modelled by a separate stochastic matrix Pi,i+1. The
sequence of stochastic matrices fully defines the time-inhomogeneous stochastic process
for modelling train delay evolution.

3.3 Prediction using simulation of Markov process

Given the initial value of the first random variable in the sequence the remaining variables in
the sequence can be computed recursively [26]. The probability distribution for each state
is obtained using:

P [Xi+1 | Xi = j] = xi ·Pi,i+1 (3)

where xi is a size |S| vector representation of the one-point distribution where jth element
is equal to one and the remaining elements are zero. Given the conditional probability dis-
tribution, the value of the random variable Xi+1 can simply be computed using the inverse
transform sampling [19].

4 Case study

The methodology described in the previous section is used to model delay evolution of trains
running over the high-speed line between Beijing and Shanghai in China. The Beijing–
Shanghai High-Speed Railway is a 1318 km long double track line that connects two major
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economic zones in the People’s Republic of China. There are 24 stations in total along the
route but only the data from the northern part of the line between the terminal in Beijing and
Dezhou East were made available for this study (Figure 3). There are in total 58 G trains
with maximum speed 300 km/h and 12 D trains with maximum speed 250 km/h daily per
direction.

BeijingE(kmE0.00)

LangfangE(kmE59.5)

TijanjinEWestE

ChangzhouEWestE(kmE219.27)

DezhouEEastE(kmE327.98)

TijanjinESouthE(kmE131.4)E

Figure 3: Railway line used in the case study

More than three months of historical traffic realisation data were used (between the 1st

of December, 2013 and the 4th of March 2014). For each train run in the given period,
the planned and realised time for each departure, arrival and through events are given in full
minutes. No track occupation or signal passing information is given. The data set considered
in this study contains 6803 train runs of south bound G trains. A test set containing 20%
of randomly selected train runs is excluded from the analysis and is only used to test the
accuracy of the models that are trained with the remaining data.

There are several peculiarities of the traffic on the high-speed that need to be considered:

• Not all trains that belong to the same train line have the same stopping pattern. In that
sense, series types G and D indicate the rolling-stock used rather than the train line as
it is commonly understood

• Trains are allowed to depart up to 5 minutes before their scheduled departure time.

Figures 4 and 5 depict the histograms of arrival and departure delays contained in data
set. The vast majority of considered events occur before their scheduled time. This will to
a great extent affect the results and analyses described in the following sections.

Data contains no information about the train routes, that is required in order to inves-
tigate the interdependence between trains that use the same infrastructure. This prevents
building of the detailed traffic models that are required for deterministic prediction of train
delays, such as those developed by Dolder et al. [10] or Kecman and Goverde [18]. The
methodology presented in the previous section, which models the uncertainty of delays in
real-time is therefore used to build the prediction models.

8



Arrival delay [min]

F
re

qu
en

cy

−10 0 10 20 30

0
50

0
10

00
15

00
20

00
25

00

Figure 4: Histogram of arrival delays at all stations for southbound G trains
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Figure 5: Histogram of departure delays at all stations for southbound G trains
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5 Experimental setup

The methodology used for building dynamic stochastic prediction models is given in Section
3. The properties of the data set described in the previous section require some processing
steps before building Markov chains from the training set. We examine the application of
two state space definitions.

5.1 Clustering trains based on their stopping pattern

The first step in the analysis was to isolate the trains with the same stopping pattern. Each
stopping pattern is treated as one train line. Seven different patterns were distinguished
among the southbound G trains. This step is important in order to divide the data set into
clusters of comparable train runs. Delay evolution of trains within a line is comparable
because the updates of train positions in space and time are given at the same station events.

5.2 Construction of Markov chains

We consider two discrete state space definitions. In the first case, delay values are converted
into sets of early (punctual) events, small delays and large delays in the following way:

• if delay ≤ 0→ delay = ‘early’ (89% of data)

• if 0 < delay ≤ 5→ delay = ‘small’ (6%)

• if delay > 5→ delay = ‘large’ (5%)

The bounds for state definition reflect the line specific factors such as the fact that the
trains are allowed to depart five minutes before their scheduled departure time. Moreover,
for performance analysis, trains are considered to be delayed if they arrive more than five
minutes after their scheduled arrival times. Figure 6 shows the distribution of train delays in
the first state space representation for one stopping pattern with scheduled stops in Tianjin
South and Chanzhou West.

The second state space definition represents the bounded set of integers. Such Markov
chain is simulated by sequentially generating the increments ∆i,i+1 for each event transition
i→ i+1 and using the recursion Xi+1 = Xi +∆i,i+1 to compute the delays of succeeding
events. We consider the increment ∆i,i+1 to be distributed dependent on the time i and state
Xi. This formulation is therefore equivalent to the Markov chain formulation presented in
Section 3.

The analysis of the data set revealed that 95% of the data are in the interval [-5,5] min-
utes. The distribution of the data points for the integer state space can be seen in histograms
given in Figures 4 and 5. No delays lower than -5 were registered. The number of data
points for each delay value exceeding 5 minutes observed separately is too small to make
reliable transition probability estimates. For that reason, all delays larger than 5 minutes are
clustered and treated as a single state that represents large delays.
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Figure 6: Overview of the number of data points used to derive transition probabilities

5.3 Computation of one-step transition matrices

The next step was to compute the one-step transition matrices of going from one state to
another between two successive events. The matrices are computed as conditional proba-
bilities from the data. Data are first converted to fit the above described state space formu-
lations for each train line (stopping pattern) separately. Finally, the conditional probability
transition matrix is computed for each process empirically from the data. This procedure
is, for the sake of clarity, described for the smaller state space containing only three states:
‘early’, ‘small’ and ‘large’. The run of G south bound trains that had a scheduled stop in
Tianjin South and Cangzhou West (Figure 3) is represented in Figure 7. It is visible from
the figure that there are four possible transitions.

dep arr dep deparr

Beijing Tianjin Cangzhou

Figure 7: Representation of the example train run as a discrete sequence of events

The matrices computed from the data set are the following:
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Departure Bejing - Arrival Tianjin =


early small large

early 0.97 0.02 0.01
small 0.45 0.45 0.10
large 0.00 0.14 0.86



Arrival Tianjin - Departure Tianjin =


early small large

early 0.99 0.00 0.01
small 0.67 0.28 0.05
large 0 0.11 0.89



Departure Tianjin - Arrival Cangzhou =


early small large

early 0.85 0.15 0.00
small 0.00 0.50 0.50
large 0.00 0.00 1.00



Arrival Cangzhou - Departure Cangzhou =


early small large

early 0.99 0.00 0.01
small 0.52 0.46 0.02
large 0.00 0.12 0.88


Closer analysis of the matrices reveals that the diagonal probabilities, i.e., the proba-

bilities of keeping the current states are particularly high. For the early trains this implies
that the extra time is not used for energy efficient driving. By running at lower speeds, such
trains could consume less energy while still maintaining their schedule. On the other hand,
for the delayed trains, this fact indicates that the time reserves implemented in the timetable
may not be sufficiently large to make up or decrease their departure delays by running at the
maximum speed.

An important aspect that needs to be considered for verifying the correctness of such
matrices is the number of data points used to derive each probability, in other words, how
many data points were used to compute each row in the matrices. Figure 6 gives this infor-
mation. The plots in the figure can be interpreted in the following way. For example the
lower left plot in the figure gives the overview of departure delays from Tianjin. The graph
reveals that the first row of the matrix Departure Tianjin - Arrival Cangzhou was computed
based on 454 observations, while the second row was computed based on only 8 observa-
tions. From all graphs it seems that only the first row in each matrix (transition from early
events) is computed based on the sufficient amount of observations. This implies that a
larger data set is required to maintain the validity of the approach and avoid the aggregation
of data which may be a major source of imprecision.
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6 Results

A non-stationary Markov chain is fully defined with a transition matrix for each process in
the sequence. The test data set was used to verify the accuracy of the described approach.
Each train run from the test set was simulated separately. When information about an event
is received, its delay is known with certainty and can thus be represented with a one-point
distribution. The probability distributions of the remaining events in the sequence is up-
dated recursively by sampling from the distributions in the corresponding rows of transition
matrices. An example of dynamic updates of probability distributions in real time is given
in Figure 8. Time is given on the x axis of the figure. The planned sequence of events is
represented on the y axis. The realisation times of four events are captured. When an event
occurrence is registered, the probability distribution of each future event in the sequence
(given above the realised event) is updated. Therefore, each row in the graph gives the
evolution of the probability distribution that is updated in discrete moments in time. As it
was expected after analysing the data set, the occurrence of early events is very probable.
However, after an arrival to Chengzhou with a small delay, probability distribution of the
subsequent departure delay is significantly changed.

The accuracy of the dynamic stochastic prediction method is tested on a test set com-
prising 20% of train runs. Figure 9 shows the average accuracy of stochastic predictions for
the first definition of the state space that classifies predicted delays in to three categories:
early, small delay and large delay. The horizontal axis represents the prediction horizon
which tells how far in advance was prediction performed. The vertical axis gives the pre-
diction error. Since the state space definition implies classification of predicted delays into
one of three classes, a coding system has been implemented in order to quantify the clas-
sification error. The three sets are coded with values 0,1 and 2 for early, small and large
delay, respectively. A classification error is then computed as an absolute value of error.
The figure shows the beneficial effect of implementing the dynamic algorithm that uses the
real-time information to modify the probability distributions of future events. Static pre-
diction is performed by using the fixed probability distributions computed offline based on
the training data set. The advantage of dynamic predictions is visible for all considered
prediction horizons.

Figure 10 shows the prediction accuracy of stochastic dynamic predictions for state
space S2 that considers integer delay values in full minutes. Dynamic predictions outper-
form the static case in terms of accuracy for every considered prediction horizon. Moreover,
the accuracy of predictions decreases monotonically with the length of the prediction hori-
zon. Prediction errors smaller than two minutes on average are achieved even for the longest
prediction horizon of two hours. The prediction error is decreasing with a higher rate for
shorter prediction horizons, thus indicating the increase in importance of the real-time in-
formation that is received close to the actual event realisation. This accuracy is still lower
than the accuracy of predictions obtained using the deterministic prediction performed with
frequent updates of train positions [18]. However, the low granularity of historical data used
in this study prevented the application of a detailed model.
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Figure 8: Evolution of probability distributions over time
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7 Summary of the main findings

This paper presented an analysis of stochastic dynamics phenomena performed in order to
characterize the effect that the prediction horizon and incoming information about a running
train may have on the future traffic evolution. The presented method is important for making
better predictions for train traffic, that are not only based on static, offline collected data, but
are able to positively include the dynamic characteristics of the ever-changing delays, thus
increasing the reliability of prediction by 71%.

Having a better estimate of train delays could be greatly beneficial for validation and
evaluation purposes of the state-of-the-art online traffic models. In particular, this approach
enables the estimation of delay dynamics for the closed-loop [29, 4], online rescheduling
[14, 1] and simulation [24, 28] tools. Moreover, the practical application of this method
could increase the amount of information delivered to passengers, in the form of up-to-date
probability for on-time arrival. It is shown by many policy studies that an informed passen-
ger is way more likely to accept this delay, and giving probability margins will be an extra
feature of projected travel time planners. Being able to characterize, analyse and predict the
unavoidable dynamic uncertainty of process times can also result in better railway traffic
planning and control.

As for the future works, modelling the dynamic interrelation of delays in a closed form
would have the positive effect to allow for direct inclusion in planning and rules-of-thumb
formulas, as well as allow generalization over different patterns of networks, train traffic,
congestion. Furthermore, having available large amount of data would allow finer estima-
tions of the parameters, and for instance being able to distinguish between off-peak dynam-
ics, on-peak dynamics. This distinction can be further extended to within-day characteris-
tics, for instance related to the passenger load, and within-year characteristics, for instance
taking into account seasonal effect, bad weather, leaves on tracks.

Finally, the approach proposed is basically data driven and thus directly applicable to
other networks, operated by trains, or sharing key operational characteristics. Thus a similar
approach can be certainly of interest in transport networks, where delays are unavoidable,
and spread easily over time and space, such as air traffic, maritime traffic, supply chains and
freight flows.

Acknowledgments
This study has been carried out as a part of EU funded Capacity4Rail project with the sup-
port from the Knut and Alice Wallenberg Foundation, State Key Laboratory of Rail Traffic
Control and Safety (RCS2013ZZ001), National Natural Science Foundation of China under
Contract (No. 71201009) and Beijing Higher Education Young Elite Teacher Project (No.
YETP0581).

References

[1] Bauer, R. and Schöbel, A. Rules of thumb: practical online-strategies for delay man-
agement. Public Transport, 6(1–2):85–105, 2014.

[2] Berger, A., Gebhardt, A., Müller-Hannemann, M., and Ostrowski, M. Stochastic De-
lay Prediction in Large Train Networks. In Caprara, A. and Kontogiannis, S. (eds.),

16



11th Workshop on Algorithmic Approaches for Transportation Modelling, Optimiza-
tion, and Systems, pp. 100–111, Dagstuhl, 2011.
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trol approach for discrete-time rescheduling in complex central railway station areas.
Computers & Operations Research, 39(11):2578–2593, 2012.
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agement including capacities of stations. Transportation Science, 2014. to appear.

[12] Ethier, S. N. and Kurtz, T. G. Markov processes: characterization and convergence.
John Wiley & Sons, Hoboken, NJ, 2009.

[13] Fukami, K. and Yamamoto, H. A new diagram forecasting system for the Tokaido-
Sanyo Shinkansen. In Proceedings of the World Congress on Railway Research, pp.
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