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Theory of attosecond delays in molecular photoionization

Denitsa Baykusheva and Hans Jakob Wörner∗

Laboratorium für Physikalische Chemie, ETH Zürich,

Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland

(Dated: October 28, 2016)

Abstract

We present a theoretical formalism for the calculation of attosecond delays in molecular photoion-

ization. It is shown how delays relevant to one-photon ionization, also known as Eisenbud-Wigner-

Smith delays, can be obtained from the complex dipole-matrix elements provided by molecular

quantum scattering theory. These results are used to derive formulae for the delays measured

by two-photon attosecond interferometry based on an attosecond pulse train and a dressing fem-

tosecond infrared pulse. These effective delays are first expressed in the molecular frame where

maximal information about the molecular photoionization dynamics is available. The effects of

averaging over the emission direction of the electron and the molecular orientation are introduced

analytically. We illustrate this general formalism for the case of two polyatomic molecules. N2O

serves as an example of a polar linear molecule characterized by complex photoionization dynamics

resulting from the presence of molecular shape resonances. H2O illustrates the case of a non-linear

molecule with comparably simple photoionization dynamics resulting from a flat continuum. Our

theory establishes the foundation for interpreting measurements of the photoionization dynamics

of all molecules by attosecond metrology.
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I. INTRODUCTION

In recent years, the techniques of attosecond spectroscopy have led to observation and

control of electron dynamics in atoms, molecules and solids. One important branch of

attosecond spectroscopy was initiated by the study of the real-time dynamics of photoion-

ization, starting with photoemission from solids [1–3] and single-photon ionization of atoms

[4, 5]. These measurements have explored the natural attosecond time scale on which pho-

toelectrons leave the parent species [6–9] with a recent emphasis on the role of atomic

resonances [10, 11]. In the case of atoms, the accepted interpretation of these measurements

relies on the Eisenbud-Wigner-Smith time delay that can be defined for most scattering

processes and more or less universal delays caused by the measurement [12–15]. Photoemis-

sion from solids is a much more complicated process in which the atomic contributions to

the delay should also be important [2, 16, 17]. The field of photoemission delays has been

comprehensively reviewed in Ref. [18].

Attosecond photoionization delays from molecules have received surprisingly little atten-

tion so far, presumably because of the associated experimental and theoretical complexity.

Very recently, we have reported measurements of photoionization delays of N2O and H2O

molecules [28, 29] together with a brief summary of a theory that is fully outlined and de-

veloped in this article. Previously reported theoretical approaches to time-resolved molec-

ular photoionization comprise calculations based on the solution of the full time-dependent

Schrödinger equation for relatively simple prototypical systems such as H+
2 ([19–24]), or

restricted one-dimensional single-active-electron models of diatomic molecules ([25, 26]).

Delays for one-photon ionization of N2 and CO calculated using a Schwinger variational

procedure were reported in [27]. In Section II of this article, we argue that the definition of

the photoionization delays given in Ref. [27] is incorrect. More importantly, we show that

there is no simple additive relation between one-photon-ionization delays of molecules and

those measured by attosecond interferometry. This difference between atoms and molecules

arises from the fact that (i) molecules lack spherical symmetry such that multiple partial

waves are required in the description of the initial bound state and (ii) the photoionization

matrix elements depend on the orientation of the molecule relative to the ionizing radiation,

such that delays measured in partially to randomly aligned molecules differ from those mea-

sured in the molecular frame in a non-trivial manner. Despite its inherent complexity, the
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understanding of molecular photoionization delays will however offer an attractive bridge

between the complex world of the condensed phase and the transparent case of atoms. It

also constitutes an essential step in extending attosecond metrology to molecular forms of

matter, comprising clusters, liquids and solids.

We now discuss the novelty of the information that can be obtained from attosecond time-

resolved measurements of photoionization delays, as compared to more traditional variants

of photoelectron spectroscopy. A complete description of photoionization within the dipole

approximation requires the knowledge of the amplitude and phase of the transition dipole

matrix elements from the bound initial state to the final continuum states. Photoelectron

spectroscopy is frequently used to measure energy- and final-state resolved partial cross sec-

tions. These cross sections can be expressed as a sum of squared magnitudes of partial-wave

matrix elements and are therefore not sensitive to the phase of these matrix elements. Pho-

toelectron angular distributions, in contrast, are defined by interference between different

partial waves and are therefore sensitive to the phase shifts between degenerate continua

[30]. However, time-independent measurements can only determine phase differences be-

tween photoelectron continua belonging to the same ionization threshold. Phase relations

between ionization continua corresponding to different ionization energies cannot, in princi-

ple, be measured because the corresponding photoelectrons have a different kinetic energy.

The techniques of time-domain spectroscopy do enable such measurements, provided that

the bandwidth covered by the ionizing radiation exceeds the energetic separation of the

considered ionization thresholds. Measurements of photoionization delays in molecules do

therefore provide qualitatively new information on the dynamics of photoionization which

is not accessible to frequency-domain methods. For this reason, comparisons of such mea-

surements with theory are particularly interesting because they test a previously unexplored

aspect of scattering calculations.

This article is structured as follows. Section II defines time delays in molecular photoion-

ization. Starting from the (Eisenbud-Wigner-Smith) delays associated with single-photon

ionization, defined in the molecular frame, we show how the delays measured by attosec-

ond interferometry are obtained, first in the molecular frame and then in the laboratory

frame. Section III illustrates these results for the case of two recently experimentally in-

vestigated molecules N2O and H2O [29] which illustrate the complementary cases of linear

and non-linear molecules, and additionally reveal the role of shape resonances on molecular
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photoionization delays. Section IV contains the conclusions of this article.

II. TIME DELAYS IN MOLECULAR PHOTOIONIZATION

The concept of time delay was introduced by Wigner [31] and Eisenbud [32] from a time-

dependent perspective in the context of the scattering of wavepackets composed of spherical

waves. By defining the concept of a “dwell time”, Smith [33] arrived at an expression

connecting the time delay with the properties of stationary eigenstates, in particular the

S-matrix. While these concepts were restricted initially to the special case of short-range

potential scattering, the concept of time-delay was shown after appropriate modifications to

be transferable to systems subject to Coulomb interaction [34, 35], a situation relevant for

the case of photoionization. In the next section, we apply this concept to the case of molecu-

lar photoionization and outline the calculation of molecular time delays form state-of-the-art

molecular quantum scattering theory currently employed in the theories of photoionization

and photoelectron spectroscopies. The treatment of molecular targets involves several con-

ceptual difficulties that have to be accommodated in the time-delay formalism introduced

by Smith. These include, in addition to the presence of multiple channels, the angular de-

pendence introduced by the directional dependence of the photoelectron on the one hand

and the orientation of the molecule with respect to the laboratory-frame axes on the other

hand. We first consider the case of single-photon ionization, whereby we first employ the

“angular time delay” concept as introduced by Froissart, Goldberger and Watson [36] to

treat the angular dependence of molecular photoionization and discuss the procedure for

averaging over the photoemission angle and the molecular orientation. Considering the fact

that current experimental schemes targeting photoionization time delays involve the interac-

tion with a second laser pulse, displaced in time relative to the ionizing extreme-ultraviolet

(XUV) radiation, we next consider the case of two-photon ionization by one high-frequency

(typically XUV) photon and one low-frequency (typically infrared, IR) photon. This case is

relevant for experiments relying on interferometry with attosecond pulse trains (APT), also

used in the reconstruction of attosecond beating by interference of two-photon transitions

(RABBIT) scheme [37]. The effects of spatial averaging over the photoelectron emission

angle and the molecular orientation are also discussed.
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A. One-photon-ionization delays

Throughout this text, we use the method of single-center partial-wave expansion around

the center of mass to study the photoionization of molecular targets. The actual scatter-

ing calculation is performed numerically using ePolyScat [38, 39], which is based on the

Schwinger variational principle [40]. The formalism employed in the current section closely

follows the notation employed in [41]. For brevity, the notation is restricted to the single-

channel case, but generalization to the multi-channel case is straightforward. As discussed in

[42], the scattering operator in terms of which Smith’s time delay definition is constructed,

can be related to the photoionization matrix element. The photoionization dipole matrix

elements expressed in the length gauge are of the general form:

Ii,f = 〈Ψi|~r · n̂ |Ψf,~k
(−)〉 , (1)

where |Ψi〉 is the initial state, ~r is the position operator and n̂ denotes the polarization

(propagation) direction for linearly (circularly) polarized light. Here and in what follows,

atomic units are used, unless otherwise stated. The final (residual ion + photoelectron)

wavefunction is expanded into partial waves:

Ψf,~k
(−) =

√
2

π

∑
lm

ilΨf,lm
(−)(~r)Y ∗lm(k̂), (2)

where k̂ ≡ (θk, φk) denotes the emission direction of the photoelectron with the asymptotic

momentum k in the molecular frame of reference. The partial-wave states Ψf,lm
(−)(~r) are

solutions of the Lippmann-Schwinger equation defined in [40]. The dipole moment operator

~r · n̂ can be written explicitly in spherical tensor form ξ̂mp ≡ ~r · n̂ = rY1mp(r̂′) where

mp = 0 for linearly and ±1 for circularly polarized light and r̂′ denotes the position operator

defined with respect to the laboratory frame (LF). In our treatment, the photon polarization

(propagation direction) is chosen to define the Z-axis of the LF in the case of linear (circular)

polarization. The relation between this frame and the molecule-fixed frame (MF) employed

in eq. (1) can be expressed in terms of the Euler angles (R̂γ ≡ (α, β, γ)) defined in fig. 1 that

rotate the laboratory frame into coincidence with the molecular frame. In the molecular

frame, the dipole-transition operator reads:

ξ̂mp =

√
4π

3
(1− 2δ1mp)r

1∑
µ=−1

D(1)
µmp

(R̂γ)Y1µ(r̂), (3)
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where D(j)
mk(R̂γ) denotes the Wigner matrix element. Therefore one can expand the dipole

moment Ii,f defined in (1) as:

Ii,f =
∑
lmµ

IlmµYlm(k̂)D(1)
µmp

(R̂γ). (4)

FIG. 1. Definition of the coordinate systems (molecular frame, MF, and laboratory frame, LF),

the set of Euler angles R̂γ = (α, β, γ) transforming the MF into the LF and the angles (θκ, φκ)

defining photoemission.

Following the reasoning of Froissart, Goldberger and Watson [36], we can define the

“angular time delay” in the context of molecular photoionization as:

τ1hν(E, k̂, R̂γ) = ~
∂

∂E
arg {Ii,f} = ~

∂

∂E
arg

{∑
lmµ

IlmµY
∗
lm(k̂)D(1)

µmp
(R̂γ)

}
. (5)

Equation (5) defines a delay associated with single-photon ionization for photoemission

along the direction k̂ in the molecular frame for a particular orientation (R̂γ) of the molecule

with respect to the ionizing radiation. In the following, we refer to such quantities as

emission-angle (or short angle-) and target-orientation (or short orientation-) resolved delays.

We note that Eq. (5) differs from the definition given in Eq. (4) of Ref. [27], which we

consider to be incorrect. Equation (5) indeed represents the energy derivative of the complex

photoionization amplitude, which represents the group delay of the outgoing photoelectron

wave packet, in line with the historical work in Refs. [32, 43–45] and the recent review
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article [18]. In contrast, Eq. (4) of Ref. [27] associates the photoionization delays with

the derivative of the wave function of the continuum electron, which is not an adequate

definition.

The formula given in eq. (5) cannot be directly applied to describe an experimental

situation sampling the time delay only as a function of one of the solid angles k̂ or R̂γ while

the resolution with respect to the other is absent. The correct procedure for performing

spatial averaging over τ(E, k̂, R̂γ) must take into account the contribution of a particular

emission direction to the total photoionization cross section. The method to achieve this

consists in weighting the delay associated with a particular set of angles k̂ and R̂γ with the

corresponding cross section:

τ1hν(E) = ~
∫

dR̂γ

∫
dk̂
|
∑

lmµ IlmµY
∗
lm(k̂)D(1)

µmp(R̂γ)|2∑
lmµ |Ilmµ|2

∂

∂E
arg

{∑
lmµ

IlmµY
∗
lm(k̂)D(1)

µmp
(R̂γ)

}
.

(6)

This expression defines the one-photon-ionization delay averaged over both emission angles

and target orientation, i.e. the result of a non-angle-resolved measurement on a randomly-

oriented molecular sample. A formula similar to expression (6) for the case of scattering on

a short-range potential has been derived and discussed by Nussenzveig [45] [46].

B. Two-photon delays in molecular photoionization

1. Angle- and orientation-resolved delays

In the following we derive the two-photon matrix elements describing photoionization

delays measured by a combination of XUV and IR laser pulses, typical of attosecond inter-

ferometry. In doing so, we make the following assumptions. First, the XUV photon energy Ω

is assumed to be much larger than the relevant ionization potential (Ip) of the molecule. This

allows one to ignore bound-state contributions to the two-photon matrix elements. Second,

ionization pathways in which the XUV photon is absorbed after the IR photon of energy ω

are neglected. The two-photon ionization matrix element for a fixed-in-space target in the

molecular frame (MF) is then given by:

M(~k; εi + Ω) =
1

i
EXUVEIR lim

ε→0+

∫ 〈Ψf,~k
(−)(~r)| ξ̂IRm′

p
|ν〉 〈ν| ξ̂XUV

mp
|Ψi〉

εi + Ω− εν + iε
, (7)
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where Ψf,~k
(−)(~r) and Ψi are the final and initial states defined in the preceding section, while

|ν〉 denotes an intermediate continuum state with energy εν . We choose a Hartree-Fock wave

function description for the initial state |i〉, as implemented in ePolyScat. Generalization

to configuration-interaction wave functions is straightforward. We now perform a single-

center partial-wave decomposition of the initial-state Ψi =
∑

lmRn,lYlm(r̂) and intermediate-

state wave functions |ν〉 =
∑

λµRνλ(r)Yλµ(r̂). Since we restrict our analysis to the case

where the energy of the XUV pulse exceeds the ionization potential of the system, the

integral over the intermediate states labelled ν in eq. (7) effectively involves only partial-

wave components of the accessible intermediate continuum states. In analogy to eq. (2),

Rκλ is also chosen such that the incoming-wave boundary conditions are satisfied. We treat

the final-state wavefunction Ψf,~k
(−)(~r) within the frozen-core Hartree-Fock approximation,

assuming a single-determinant representation of the final state in which the ionic orbitals

are identical to the ones used for the description of the ground state. The photoelectron

orbital corresponds to the solution of the one-electron Schrödinger equation with a potential

defined by the static-exchange interaction with the molecular ion, a short-range potential

term and the Coulomb interaction [47]. Generalization to configuration-interaction wave

functions and inclusion of orbital relaxation is conceptually straightforward.

We separate the final state given by eq. (2) explicitly in terms of radial and angular-

dependent parts:

Ψf,~k
(−)(~r) =

√
2

π

∑
LM

iLe−iηL(k̂)Y ∗LM(k̂)YLM(r̂)RkL(r), (8)

where the radial solution RkL, corresponding to continuum momentum k, satisfies the proper

incoming-wave boundary conditions, k̂ captures the angular dependence of the ejected elec-

tron and ηL(k̂) = δL(k̂) +σL(k̂) is the partial-wave phase shift that consists of a short-range

(δL(k̂)) and Coulomb (σL(k̂)) part. The general expression in eq. (7) defines the two-photon-

ionization amplitude for a fixed-in-space target in the molecular frame. Thus, the transition

operators ξ̂XUV/IR are tied to the MF. The polarizations of the XUV/IR fields, however, are

defined with respect to the LF and correspondingly, ξ̂XUV/ξ̂IR have to be transformed to

the MF according to eq. (3). From now on, the dependence of M(~k; εi + Ω) on the target

orientation will be denoted explicitly: M(~k; εi + Ω) → M(~k; εi + Ω; R̂γ). In addition, we

8



adopt the following convention for the indices for the polarizations of the XUV/IR fields:

ρ′,m1 → XUV (9)

ρ,m2 → IR. (10)

After inserting all partial-wave expansions into (7) and evaluating the angle-dependent in-

tegrals, we obtain:

M(~k; εi + Ω; R̂γ)=
1

i

1

16π2
EXUVEIR

√
2

π
(1− 2δ1m1)(1− 2δ1m2)∑

LM
ρρ′

lm

(−i)LeiηL(k)(−1)ρ+ρ
′√

2l + 1
√

2L+ 1(2λ+ 1)

〈1ρ′λµ |lm〉 〈10λ0 |l0〉 〈1− ρLM |λµ〉 〈10L0 |λ0〉

TLλl(k; εκ)D(1)
ρ′m1

(R̂γ)D(1)
ρm2

(R̂γ)YLM(k̂), (11)

where 〈. . . |. . .〉 denotes the Clebsch-Gordan coefficient and TLλl(k; εκ) is the radial part of

the two-photon transition matrix element:

TLλl(k; εκ) =
∑
ν,εν<0

〈RkL| r |Rνλ〉 〈Rνλ| r |Rnl〉
εi + Ω− εν

+ lim
ε→0+

∫ ∞
0

dεκ′
〈RkL| r |Rκ′λ〉 〈Rκ′λ| r |Rnl〉

εi + Ω− εκ′ + iε
.

(12)

As in [14], TLλl(k; εκ) can be evaluated using the Dalgarno-Lewis approach. In the asymp-

totic region, we can write TLλl(k; εκ) as:

TLλl(k; εκ) ≈
1

|κ− k|2
exp

[
−πZ

2

(
1

κ
− 1

k

)]
iL−λ−1ei(ηλ(κ̂)−ηL(k̂))

(2κ)iZ/κ

(2k)iZ/k
Γ [2 + iZ(κ−1 − k−1)]

(κ− k)(1/κ−1/k)
〈Rκλ| r |Rnl〉 . (13)

Setting

Aκk =
1

|κ− k|2
exp

[
−πZ

2

(
1

κ
− 1

k

)]
(2κ)iZ/κ

(2k)iZ/k
Γ [2 + iZ(κ−1 − k−1)]

(κ− k)1/κ−1/k
(14)

results in:

M(~k; εi + Ω; R̂γ)=
1

16π2
EXUVEIR

√
2

π
(1− 2δ1m1)(1− 2δ1m2)Aκk∑

LM
ρρ′

lm

(−i)λeiηλ(κ)(−1)ρ+ρ
′√

2l + 1
√

2L+ 1(2λ+ 1)

〈1ρ′λµ |lm〉 〈10λ0 |l0〉 〈1− ρLM |λµ〉 〈10L0 |λ0〉

〈Rκλ| r |Rnl〉D(1)
ρ′m1

(R̂γ)D(1)
ρm2

(R̂γ)YLM(k̂). (15)
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The quantity Aκk can be identified as an IR-induced, “continuum-continuum” part of the

two-photon amplitude as it does not depend on the target structure within the asymp-

totic approximation used here. One can also identify the photoionization matrix element

corresponding solely to the XUV-absorption step:

Iλµρ′ :=

√
2

π
(−i)λeiηλ(κ)(2λ+ 1)(−1)ρ

′∑
lm

√
2l + 1〈1ρ′λµ |lm〉 〈0λ0 |l0〉 〈Rκλ| r |Rnl〉 . (16)

We note that eq. (16) corresponds to the complex-conjugate of the PI-matrix element defined

in [41]. With these auxiliary definitions, the matrix element

M(~k; εi + Ω; R̂γ) =
1

16π2
EXUVEIRAκk(1− 2δ1m1)(1− 2δ1m2)∑

LM
ρρ′

λµ

√
2L+ 1(−1)ρ〈1− ρLM |λµ〉 〈10L0 |λ0〉

Iλµρ′D(1)
ρ′m1

(R̂γ)D(1)
ρm2

(R̂γ)YLM(k̂) (17)

can be cast in a concise form:

M(~k; εi + Ω; R̂γ) =
1

16π2
EXUVEIRAκk

∑
LM

bm1,m2

LM (R̂γ)YLM(k̂), (18)

where the orientation-dependent coefficients bm1,m2

LM (R̂γ) are defined as:

bm1,m2

LM (R̂γ) =
∑
ρρ′

bm1,m2;ρρ′

LM D(1)
ρ′m1

(R̂γ)D(1)
ρm2

(R̂γ)

= (1− 2δ1m1)(1− 2δ1m2)
∑
ρρ′

λµ

√
2L+ 1(−1)ρ

〈1− ρLM |λµ〉 〈10L0 |λ0〉 Iλµρ′D(1)
ρ′m1

(R̂γ)D(1)
ρm2

(R̂γ). (19)

In the following, we discuss the two-photon delays accessible in a RABBIT measurement.

Up to this point, our equations are valid for both linearly and circularly polarized radiation

and arbitrary relative polarizations of XUV and IR. For simplicity, we now restrict the

polarizations of XUV and IR fields to be linear and parallel to each other, i.e. m1 = m2 = 0

and the superscripts in the bm1,m2

LM -coefficients will be omitted for brevity. The angle-resolved

intensity of a photoelectron sideband corresponding to energy 2qω (q ∈ N ) created in an

attosecond interferometry experiment is given by:

d2P2q

dk̂ dR̂γ

∝ |M (2q−1) +M (2q+1)|2 = |M (2q−1)|2 + |M (2q+1)|2

+ 2|M (2q−1)||M (2q+1)| cos
[
arg
{
M (2q−1)∗M (2q+1)

}]
, (20)
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where k2

2
= 2qω − Ip and κ2

2
= (2q ± 1)ω − Ip.

The angle- and orientation-resolved delay in the finite-difference approximation [14] reads:

τ(2q, k̂, R̂γ) =
1

2ω
arg
(
M (2q−1)∗M (2q+1)

)
, (21)

where

M (2q−1)∗M (2q+1) = A
(2q−1)∗
κk A

(2q+1)
κk

∑
LM
L′M ′

b∗L′M ′;(2q−1)(R̂γ)bLM ;(2q+1)(R̂γ)Y
∗
L′M ′(k̂)YLM(k̂). (22)

This quantity contains the maximal available information about the attosecond photoion-

ization dynamics and can be written as a sum of two terms:

τ(2q, k̂, R̂γ) = τcc(2q) + τmol(2q, k̂, R̂γ). (23)

The structure of eq. (23) shows that measurements of molecular photoionization delays in

the MF by attosecond interferometry, just as their atomic counterparts, can be interpreted

in terms of a continuum-continuum contribution (or measurement-induced delay) [5, 14],

τcc(2q) =
1

2ω
arg
[
A

(2q−1)∗
κk A

(2q+1)
κk

]
, (24)

which only depends on the involved photon energies. However, the angular momentum

addition describing the interaction with the IR photon leads to a non-trivial modification

of the angle dependence of the two-photon-ionization delays compated to their one-photon

counterpart that we factorize into a molecule-specific contribution [29]:

τmol(2q, k̂, R̂γ) =
1

2ω
arg

∑
LM
L′M ′

Y ∗L′M ′(k̂)YLM(k̂)b∗L′M ′;(2q−1)(R̂γ)bLM ;(2q+1)(R̂γ)

 . (25)

Although molecular photoionization delays can, in principle, be measured with angular

resolution for fixed-in-space molecules, such experiments have not been reported to date. We

therefore now subsequently discuss the effect of angular and target-orientation averaging.

2. Effect of averaging over emission angle and target orientation

In the following, we describe the application of these results to several possible configu-

rations of experimental interest. We first introduce the effect of averaging over the emission
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angle k̂ of the photoelectron. A product of the form of eq. (22) is easily uniformly averaged

over k̂ by exploiting the orthonormality of the spherical harmonics, leading to:

τ(2q, R̂γ) = τcc(2q) +
1

2ω
arg

[∑
LM

b∗LM ;(2q−1)(R̂γ)bLM ;(2q+1)(R̂γ)

]
. (26)

This quantity represents the delay measured from perfectly oriented molecules by averaging

over the emission angle of the photoelectron.

Measurements of molecular photoionization delays have so far only been reported for un-

aligned samples [29]. This situation is described by additionally averaging over all molecular

orientations, leading to

τ(2q) = τcc(2q) +
1

2ω
arg

[∑
LM

∫
dR̂γb

∗
LM ;(2q−1)(R̂γ)bLM ;(2q+1)(R̂γ)

]
. (27)

Molecular photoionization delays could also be measured by aligning and orienting

molecules in space using non-resonant laser pulses [48–51] or by post-selection in coinci-

dence/covariance experiments for cases where dissociative photoionization pathways can be

cleanly separated and the axial-recoil approximation is valid. In all such cases, averaging

must be performed over a characteristic axis distribution A(R̂γ) and the corresponding

delays are given by

τ(2q) = τcc(2q) +
1

2ω
arg

[∑
LM

∫
dR̂γA(R̂γ)b

∗
LM ;(2q−1)(R̂γ)bLM ;(2q+1)(R̂γ)

]
. (28)

Finally, a measurement of angle-resolved delays could be performed for a randomly aligned

molecular sample. This situation is described by uniformly averaging over R̂γ only, but not

over k̂:

τ(2q, k̂) = τcc(2q) +
1

2ω
arg

∑
LM
L′M ′

Y ∗L′M ′(k̂)YLM(k̂)

∫
dR̂γb

∗
L′M ′;(2q−1)(R̂γ)bLM ;(2q+1)(R̂γ)

 .
(29)

C. Comparison to the atomic case

At this point, it is pertinent to outline the differences between the molecular case discussed

so far and the result for an atomic system. Specifically, we compare Eq. (15) from this article

with Eq. (24) of Ref. [14].
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The first difference arises from the lack of spherical symmetry of molecules and applies

both in the molecular and in the laboratory frames. The absence of spherical symmetry

requires the summation over `, the angular-momentum quantum number of the partial

waves involved in the expansion of the initial bound state. In contrast, the initial bound

state of atoms can be described by a single value of `. Additionally, exploiting the Fano

propensity rule [52], which states that the transition `→ `+ 1 strongly dominates over the

transition `→ `− 1, the phase of the two-photon matrix elements for atoms can be reduced

to a sum containing the scattering phase η`+1(κ) and the cc-phase (the argument of Eq.

(14) in this article), as done in Ref. [5]. Consequently, the two-photon delay accessible in

angle-integrated RABBIT measurements of atoms can be written as

τ(2q) = τcc(2q) + τ1hν(2q), (30)

i.e. as a sum of a one-photon-ionization delay (the Wigner delay) and a continuum-

continuum delay. In the case of molecules, this separability does not exist in the same

form, because the initial state cannot be represented by a single partial wave. Multiple

partial waves are required to represent the initial state, therefore multiple partial waves are

also required to represent the intermediate (one-photon-ionized) state, which leads to inter-

ference phenomena, e.g. between the pathways `→ `+ 1 and `+ 2→ `+ 1 etc. Additional

interferences occur at the level of the two-photon transitions, e.g. between ` → ` + 1 → `

and `+ 2→ `+ 1→ `.

For these reasons, the two-photon delays in molecular photoionization cannot be written

as a sum of a one-photon-ionization delay and a universal continuum-continuum contribu-

tion. In other words, there is no simple additive relation between τ(2q, R̂γ) and τ1hν(2q, R̂γ)

in the molecular case. However, owing to the independence of τcc on the values of the angular-

momentum quantum numbers, one can still isolate a ”continuum-continuum contribution”

(see Eq. (23)), but the residual τmol(2q) has no simple relation to τ1hν(2q). Consequently,

the effect of the probing IR field on the delays measured in the molecular case cannot be

represented by a simple, universal quantity. Instead, one has to first evaluate Eq. (19),

followed by Eqs. (25) to (29), depending on the case of experimental interest.

The second difference to the atomic case is the dependence of all matrix elements on the

orientation of the target molecule, i.e. the dependence on the Euler angles R̂γ, which is

explicitly given in the preceding equations. The dependence of the delays on R̂γ is very pro-

13



nounced, as we show below, and it plays a crucial role in averaging over the axis distribution,

which is relevant for all experiments. The non-trivial aspect of the orientational-averaging

arises from the fact that Eqs. (27) to (29) represent coherent integrals over complex quan-

tities. This fact can completely change the energy-dependence of τmol(2q), as we illustrate

in Section III.C below. We show that the coherent averaging over molecular orientations

can shift the position of the maximal delay caused by a shape resonance by ∼ 7 eV when

comparing the one-photon-ionization delays τ1hν with the molecular part of the two-photon

delays τmol.

III. APPLICATIONS

We apply the expressions derived in the preceding section to the case of two polyatomic

molecules that have recently been investigated experimentally using attosecond interfer-

ometry, i.e. N2O and H2O [29]. The initial-state single-determinant wavefunction Ψi was

obtained from a Hartree-Fock quantum chemistry calculation using the 3-21G basis set and

bond lengths of R(N-N)=1.207 Å and R(N-O)=1.237 Å in the case of N2O. In the case

of H2O, the cc-pVTZ basis set was used with bond lengths of R(O-H)=0.9578 Å and a

bond angle of θ(HOH)=104.5 ◦. The choice of a rather small basis in the case of N2O is

justified by the fact that the scattering calculations correctly reproduce the experimentally

observed behaviour of the photoionization cross sections and the asymmetry parameters

(cp. supplemental material of [29]), in particular the position of the shape resonances in

the 7σ(HOMO-1)→ kσ and 7σ → kπ channels, that we discuss below). In both cases, we

employ the frozen nuclei approximation and perform the scattering calculation keeping fixed

bond distances and angles.

A. Delays in one-photon ionization

We first illustrate the angle- and orientation-resolved delays in one-photon ionization, as

defined by eq. (5). These delays for ionization from the X̃ 1Σ+ electronic ground state of N2O

to the first electronically-excited state Ã+ 2Σ+ of N2O
+ are shown in fig. 2 for a molecule

aligned parallel ((α = 0, β = 0, γ = 0), panel a)) or perpendicular ((α = 0, β = π/2, γ = 0),

panel b)) to the polarization of the ionizing radiation. These choices of the Euler angles
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FIG. 2. Delays in the one-photon ionization of N2O to the Ã+ 2Σ+ state of N2O
+, given in

the molecular frame. a) XUV polarization parallel to the molecular axis, b) XUV polarization

perpendicular to the molecular axis.

enable us to isolate the parallel transition to the σ continuum from the perpendicular one,

associated with the continuum of π-symmetry. The cylindrical symmetry of the N2O system

lifts the dependence of the angle-resolved time delay on the azimuthal photoemission angle φ.

Figure 2 shows the delays as a function of the photoemission direction in the MF, quantified

by the polar angle θ measured from the internuclear axis.

15



FIG. 3. Delays in the one-photon ionization of H2O to the Ã+ 2A1 state of H2O
+, given in

the molecular frame. a) XUV polarization parallel to the principal axis, b) XUV polarization

perpendicular to the principal axis.

The same quantities are illustrated in fig. 3 for the case of one-photon ionization from the

X̃ 1A1 electronic ground state of H2O to the Ã+ 2A1 electronically excited state of H2O
+.

The accessible continua have a1 and b1 symmetries in this case. The azimuthal angle φ has

been set to 0 in this case. Note the use of different color scales in figs. 2 and 3 motivated

by the fact that the delays are much smaller in magnitude in the case of H2O than in N2O.
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At low photon energies, the angle-resolved delay maps of both N2O and H2O are dom-

inated by large positive delays due to the attractive nature of the Coulomb potential, the

regions around 2.5−3 rad in N2O and the narrow region centered around 1 rad in H2O being

exceptions to this trend. The most striking feature that becomes apparent when comparing

these results is the richness of the angular structures in the angle-resolved photoionization

time delays of N2O and the contrasting simplicity of the same quantities in H2O.

The rich angular structure in the case of N2O is the signature of shape resonances em-

bedded in the photoionization continua of this molecule. Previous work [53–60] in the

realm of photoelectron spectroscopy has revealed a weak shape resonance associated with

the 7σ → kσ channel in N2O located in the region around photon energies of ∼33 eV [61].

Notably, the single-photon angle-resolved time delay of the parallel transition in N2O (panel

a) of fig. 2) is characterized by large values (in terms of absolute amplitude) and rapid vari-

ations as a function of the photoemission direction θ in this particular region (30− 35 eV).

These delays are first strongly positive for small angles (0.5− 0.8 rad), then change rapidly

in the region from 1 to 2.4 rad and finally reach large negative values as evident from the

“ridge” located at θ > 2.5 rad. With increasing energies, the angular dependence of the

delays becomes smoother, the sole exception being a narrow feature (θ ≈ 0.5−0.6 rad) asso-

ciated with strongly negative values of the delays. The transition to the π-continuum shown

in fig. 2b contains a very broad and weak shape resonance centered at around 38 eV [61].

It is presumably the broadness of this resonance that leads to smearing out of the angular

features in this region. Regions of large positive, abruptly followed by large negative delays

are observed at θ ≈ 1rad and around 35 eV, this feature becoming progressively less negative

and moving towards higher angles with increasing energy.

In contrast to the non-uniform behaviour of the time delays in both channels of the

Ã+ 2Σ+-continuum of N2O, the angular maps for the corresponding photoionization transi-

tions in H2O are essentially monotonic. The predominantly negative delays and the relatively

subtle angular dependencies (at least in Fig. 3b) reflect the dominant effect of the attractive

Coulomb potential on the photoionization delays. The main exception to this trend is the

narrow negative ridge centered at θ ≈ 1 rad extending through the entire energy range in

Fig. 3a. This structure has an intuitive interpretation. Since the Ã+ 2A1 state of H2O
+

is well described by an electron being removed from the 3a1 orbital of dominant atomic

p-character (see inset in Fig. 3a), the continuum is dominated by s- and d-waves. Since
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s-waves are spherically symmetric, whereas the d-waves accessible by symmetry change sign

at the magic angle (θ ≈ 54.7◦ ≈ 1.05 rad), the total photoionization matrix elements to the

continuum of a1 symmetry display a rapid variation of their amplitude and phase around 1

rad, which manifests itself as a local extremum in the photoionization delays. Photoioniza-

tion by radiation polarized perpendicular to the C2 symmetry axis leads to the continuum

of b1 symmetry (Fig. 3b), dominated by d-waves of dxz symmetry (where z is the direction

of the C2 axis and x the polarization direction of the ionizing radiation). Since we have

restricted our analysis to the value φ = 0 for the emission direction, the contribution from

the b2 continuum accessible via a transition polarized along the molecule-fixed y-axis can be

neglected as the dominant dyz waves have a nodal surface at this value of the azimuthal an-

gle. The photoionization delays in the b1 channel therefore display a rapid variation around

θ ≈ 90◦ ≈ π/2 rad, where the matrix elements to the dxz continuum change sign, but not

around θ ≈ 1 rad, where the matrix elements vary smoothly with θ and energy, leading to

very small angle-dependent delays.

Having outlined the relationship between the angle-resolved molecular delays and the

structure of the corresponding continuum for one particular target orientation, we now turn

to the effect of angular averaging over the photoemission and/or orientation directions.

Figure 4 shows the delays for N2O (after coherently adding the contributions of the parallel

and perpendicular transitions) as a function of the emission angle k̂ ≡ θ after averaging over

the Euler angles (panel a)), or, alternatively, as a function of the Euler angle β (the polar

angle between the molecular and lab frames) after averaging over all emission directions

(panel b)). In general, the integration with respect to either direction leads to a decrease

in the absolute magnitude of the time delays, which motivates the use of a new color scale

in fig. 4. The averaging over the direction of photoemission leads to an overall smearing

and smoothing of the previously discussed features. However, the 7σ → kσ-shape-resonance

region remains identifiable as a region (around 33 eV) of locally increased photoionization

delays for the entire range of β. Interestingly, the orientation-averaged, photoemission-angle-

resolved delays displayed in panel b) still feature a region with remarkably large positive

values (localized at angles θ between 0.2 and 0.6 rad and 2.4 − 2.8 rad) close to the above

discussed shape resonance and extending towards the region near 40 eV. The comparison of

Figs. 2 and 4 shows that the orientational averaging preserves a substantial amount of the

time-delay structure observed in the molecular frame. However, the quantity represented in
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FIG. 4. a) Photoemission-angle-resolved one-photon photoionization delays of N2O to the A+ 2Σ+-

state of N2O
+, averaged over the molecular orientations according to eq. (6). b) Orientation-

resolved one-photon-ionization delays for the same system, averaged over the photoemission direc-

tion and reported as a function of the Euler angle β.

Fig. 4 is not related to the experimentally measured delays in a simple way, as discussed in

Section II C.
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B. Delays in two-photon ionization

Attosecond interferometry relies on the use of synchronized XUV and IR pulses and

consists in measuring the phase of the intensity oscillations of sidebands created by 1+1′

two-color photoionization. The effective photoionization delays obtained in such mea-

surements are defined by eq. (21). These effective photoionization delays, just like the

one-photon-ionization delays, have a non-trivial dependence on the angles k̂ and R̂γ. Since

these delays can however be written as a sum of an angle-independent term (eq. (24)) and

an angle-dependent part (τmol(2q, k̂, R̂γ), eq. (25)), we now illustrate the latter quantity for

values of R̂γ selected by symmetry. In the following, the IR photon energy is chosen to be

1.55 eV, corresponding to the most-frequently-used central wavelength of 800 nm, and the

XUV photon energy is treated as a continuous variable.

In analogy to the preceding section, we show in figs. 5 and 6 the emission-angle-resolved

two-photon delays for the transitions X̃ 1Σ+ N2O → Ã+ 2Σ+ N2O
+ and X̃+ 1A1 H2O →

Ã+ 2A1 H2O
+ for β = 0 and β = π/2, respectively. The general features of the one-photon

angle-dependent delay maps are preserved in the maps for the two-photon transitions. Both

the sign and the magnitudes of the delays are comparable, but a detailed inspection of the

results reveals many differences. For example, a wide area of negative delays appears in

Fig. 5a between θ = 1.6 and 2 rad below energies of ∼ 29 eV, where the delays in Fig. 2a

are positive. Similarly, a region of negative delays also appears between θ = 0.8 and 1 rad

between photon energies of 22 to 28 eV. Additionally, the angular variation of the one- and

two-photon-ionization delays is also quite different, as illustrated by the comparison of the

central regions of positive delay in Fig. 2a and 5a. Turning to Fig. 5b, we find more subtle

changes as compared to Fig. 2b. However, a new region of positive delays appears below

θ = 0.2 rad, and the overall range of the delays is significantly reduced in Fig. 5b compared

to Fig. 2b. A similar trend is also observed when comparing Figs. 3 and 6. The main

features are qualitatively very similar. However, the sharp ridge of negative delays for θ ≈

1 rad in Fig. 3a is replaced by a line of weakly positive delays in Fig. 6a. The results shown

in Figs. 3b and 6b are even more similar, except for the appearance of an additional ridge

of small positive delays around θ ≈ 0.2 rad in Fig. 6b.
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FIG. 5. Two-photon-ionization delays (τmol, as defined by eq. (25)) of N2O to the A+ 2Σ+ state

of N2O
+, given in the molecular frame. a) XUV and IR polarizations are both parallel to the

molecular axis, b) XUV and IR polarizations are both perpendicular to the molecular axis.
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FIG. 6. Two-photon-ionization delays (τmol, as defined by eq. (25)) of H2O to the Ã+ 2A1 state

of H2O
+, given in the molecular frame. a) XUV and IR polarizations are both parallel to the

molecular axis, b) XUV and IR polarizations are both perpendicular to the molecular axis.
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C. Comparison of angle-averaged delays in one- and two-photon ionization

The preceding sections have illustrated the angle and orientation dependencies of the one-

and two-photon-ionization delays. This comparison has shown that the angle-dependent

features of the one-photon-ionization delays are qualitatively retained in the two-photon-

ionization delays, but that the two types of delays differ on a quantitative level. This

insight will be useful and important in future angle-resolved measurements of molecular

photoionization delays. We now compare the effects of angular or orientational averaging

on the one- and two-photon-ionization delays on a more quantitative level.

FIG. 7. Comparison of one- (a) and two-photon-ionization delays (b) for selected molecular orien-

tations (β given in the legend) for the case of X̃ 1Σ+ N2O → Ã+ 2Σ+ N2O
+ after averaging over

the photoemission direction.

We first compare in Fig. 7 the one- and two-photon-ionization delays for selected orien-

tations (β values) of N2O after averaging over the direction of photoemission (θ). All delays

display a local maximum which shifts from 32.8 eV at β = 0 rad to 34.5 eV at β = π/2 rad in

panel (a) and from 32.5 eV to 33.0 eV in panel (b). The location of this maximum coincides

well with the position of the shape resonance discussed above. Although the positions of the

maxima are similar, we note that the magnitude of the delays and their energy dependencies

differ substantially between the one- and two-photon-ionization delays. This is a consequence

of the non-universal effect of the probe photon on molecular two-photon-ionization delays.

In a second step, we now investigate the even more significant impact of the additional

averaging over the target orientation. Figure 8 shows the corresponding one- and two-
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FIG. 8. Comparison of one- (solid lines) and two-photon-ionization (dashed lines) delays for the

two investigated systems ((a) X̃ 1Σ+ N2O→ Ã+ 2Σ+ N2O
+, and (b) X̃ 1A1 H2O→ Ã+ 2A1 H2O

+)

after averaging over both photoemission direction and molecular orientation.

photon-ionization delays for the cases of N2O and H2O discussed in this article. The solid

blue curve represents the one-photon-ionization delay of N2O following complete angular

averaging. It displays a pronounced local maximum at a photon energy of 33 eV, i.e.

again in the region of the shape resonance. The angle-and-orientation-averaged one-photon-

ionization delays are however much smaller in magnitude than their only-angle-averaged

counterpart in Fig. 7a. The effect of orientational averaging on one-photon-ionization

delays in this case therefore mainly consists in reducing their magnitude. In contrast to

this, orientational averaging has a much more dramatic effect on the two-photon-ionization

delays. Comparing the red curve in Fig. 8a with the red curves in Fig. 7b, we find that the

maximum in the orientation-averaged two-photon-ionization delays is shifted downwards by

∼ 7 eV to a photon energy of ∼26 eV.

The seemingly surprising difference in the effects of orientational averaging on the one-

and two-photon-ionization delays can be understood by inspection of Eqs. (6) and (19).

Whereas the orientation dependence of the one-photon-ionization delays arises from the

presence of a single Wigner rotation-matrix element, the orientation dependence of the two-

photon matrix element involves a sum over products of two Wigner rotation-matrix elements.

This more complex dependence enables much richer interference phenomena to take place in

the coherent-averaging process. In the present case, we find that the orientational average
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can shift the position of the maxima in the two-photon-ionization delays by a substantial

amount. The generality of this result will be investigated in future work.

In the case of the water molecule, illustrated in Fig. 8b, the differences between angle-

averaged one- and two-photon delays are much less pronounced, which is most likely a con-

sequence of the lack of structure in the photoionization continuum of H2O considered here.

Both the one- and the two-photon-ionization delays monotonically decrease as a function of

energy but the two-photon delays are slightly lower in magnitude than for the one-photon

case. Finally, we point out that the theoretical results described in this article are supported

by the experimental results reported in Ref. [29].

IV. CONCLUSIONS

In this article we have developed a theory for calculating one- and two-photon ionization

delays of arbitrary molecules using ab-initio quantum scattering calculations. Starting with

an expression connecting the single-photon-ionization matrix elements and the concept of

“time delay” as employed in the context of the analysis of scattering phenomena, the time

delays encountered in molecular photoionization phenomena were found to be subject to

pronounced variations as a function of energy, photoemission direction and target orienta-

tion. The highly anisotropic nature of the scattering potential experienced by the outgoing

wavepacket gives rise to pronounced angular dependences of the photoionization time delay

as revealed by both emission- and orientation-direction-resolved angular maps. By compar-

ing the location of these features with results of energy-resolved measurements, in particular

photoelectron spectroscopy, and results from molecular photoionization calculations, we were

able to relate the angular structures to the presence of shape resonances in the continuum.

This fact is clarified by comparing the one-photon-ionization delays in the two molecules

N2O and H2O for photoionization initiating from the electronic ground states of the neutral

species and terminating in the first excited electronic states of the cation. We find that

the energy positions associated with the presence of shape resonances in the 7σ → kσ and

7σ → kπ-channels lead to rapid variations of the time delay as a function of angle in the

case of N2O, a situation that contrasts with the rather monotonic angular dependence of

the time delays in the water molecule. These features were found to be very sensitive to

averaging effects, both with respect to the photoemission and target-orientation directions.
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We then provided a formalism for calculating the two-photon matrix elements that bear rele-

vance in interferometric measurements where the delays associated with the XUV-mediated

photoionization step are entangled with the contributions of IR-induced transitions coupling

different continua. Photoemission- and orientation-direction averaging can have significant

effects on the observed total delays, leading even to an energy shift of the local maximum

of the delay, associated with the position of a shape resonance, as demonstrated in the case

of N2O. In principle, the formalism presented in this article can easily be applied to other

molecular targets, including more complex systems such as large polyatomic molecules or

clusters, provided that the scattering matrix elements as defined by eq. (1) are available.

Our work thus establishes the foundation for the calculation and theoretical analysis of the

photoionization of molecules on attosecond time scales. Interesting applications and refine-

ments of this work will include the analysis of electron correlation phenomena in molecular

photoionization.
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