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Abstract

Due to the integration of intermittent resources of power generation such as

wind and solar, the amount of supplied electricity will exhibit unprecedented

fluctuations. Electricity retailers can partially meet the challenge of match-

ing demand and volatile supply by shifting power demand according to the

fluctuating supply side. The necessary technology infrastructure such as Ad-

vanced Metering Infrastructures for this so-called Demand Response (DR) has

advanced. However, little is known about the economic dimension and fur-

ther effort is strongly needed to realistically quantify the financial impact. To

succeed in this goal, we derive an optimization problem that minimizes pro-

curement costs of an electricity retailer in order to control Demand Response

usage. The evaluation with historic data shows that cost volatility can be re-

duced by 7.74 %; peak costs drop by 14.35 %; and expenditures of retailers can

be significantly decreased by 3.52 %.
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1. Introduction

The integration of intermittent sources of electricity generation, such as

wind and solar power, comes at the cost of unprecedented fluctuations in elec-

tricity supply. Although their intermittent nature poses a challenge from the

grid operation perspective, many states aim at increasing the share of renew-

able energies extensively. For example, the European Union strives to have

renewable sources make up 20% of the energy consumption by the year 2020.

Germany, the largest member state, even passed a law in 2011 mandating 35%

of renewables by 2020 and 80% by 2050. Since renewable electricity sources

are volatile in nature – in contrast to the so-called baseload power sources such

as coal or nuclear, which are independent of weather conditions – the integra-

tion of 20% and more of renewables into the electricity markets will lead to

considerable discrepancies between power supply and demand.

One possible path to match power supply and demand is given by the con-

cept of Demand Response. Demand Response (DR) is defined by the U.S. De-

partment of Energy and the FERC (2009) as: “Changes in electric usage by end-

use customers from their normal consumption patterns in response to changes in

the price of electricity over time, or to incentive payments designed to induce lower

electricity use at times of high wholesale market prices or when system reliability

is jeopardized.” Even though Demand Response implies shifting load to when

supply exceeds demand, the general idea of managing the demand-side of elec-

tricity markets is referred to as Demand Side Management. This umbrella term

thus refers not only to Demand Response, but also to similar approaches such

as the general increase of energy efficiency and time-based electricity pricing
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for end-consumers (Sui et al., 2011).

In many studies related to Demand Response (cf. EU-DEEP, 2009; SEDC,

2011; Faruqui et al., 2010a, and EU funded project ADDRESS), it is frequently

assumed that Demand Response will be driven by electricity retailers. Con-

sequently, we focus on a setup where Demand Response activities are being

integrated on the distribution network level. In this way (cp. Mohagheghi

et al., 2010), we implicitly incorporate requirements imposed by the power

grid structure (e. g. congestion and node voltage limitations) into the proposed

model.

Hence, this paper focuses on a retailer level to derive optimal Demand Re-

sponse decisions. Based on these decisions, we can estimate and quantify the

economic effects of Demand Response.

The remainder of this paper is organized as follows. Section 2 gives a lit-

erature overview how consumers react to price changes. In Section 3, publi-

cations related to the financial benefits from Demand Response are reviewed.

Afterwards, Section 4 identifies parameters that govern decisions in Demand

Response programs to pioneer a mathematical problem such that Demand Re-

sponse decisions of retailers are optimized. Finally, Section 5 evaluates the

decisions derived by the model in a simulation based on historic data and an-

alyzes their financial benefits.

2. Pricing Effects

The integration of Demand Response is closely linked with the reaction of

consumers to price changes. In this section, we review related work on price

elasticities (Section 2.1) as this gives evidence how price changes control de-
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mand. Understanding price elasticities is the key to designing suitable pricing

strategies (Section 2.2).

2.1. Price Elasticities

Several studies estimate price elasticities in the residential sector (Faruqui

and Sergici, 2010; Filippini, 1995; Hirst, 1994; Hunt et al., 2003; Torriti, 2012).

For example, Filippini (1995) calculates and compares the short-run as well as

long-run own-price elasticities in the Swiss residential electricity market. The

author finds long-run values to be higher and his results also show a high re-

sponsiveness of electricity consumption to changes in price. Furthermore, pos-

itive values of cross-price elasticities indicate that peak and off-peak electricity

demand are substitutes. Altogether, these affirmative results suggest that pric-

ing policies can be an effective instrument for achieving electricity conserva-

tion. Gyamfi et al. (2013) provide a detailed survey on references estimating

the elasticity of demand as a result of time-of-use (TOU) pricing. According

to the authors, own-price elasticities range from −0.29 to −0.79 (−0.049 to

−0.79 with dynamic pricing), while elasticities of substitution range from 0.04

to 0.21 with significant differences across seasons. Finally, Espey and Espey

(2004) perform a meta-analysis to determine factors that affect estimated elas-

ticities systematically.

Masiello et al. (2013) argue that it might not be sufficient in the future for

balancing authorities to simply calculate the volume of load shifting. Effec-

tively, it may become important to also estimate the reaction to prices.
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2.2. Time-Based Pricing

Price-based programs that control the demand side are alternatives to flat

tariffs. Examples include critical peak pricing, extreme day pricing, real-time

pricing and time-of-use (TOU) tariffs (Albadi and El-Saadany, 2008). Un-

derstanding how consumers react to various pricing strategies is crucial to

control electricity demand effectively. Several studies investigate the rela-

tionship between time-of-use tariffs and energy consumption (Bernard et al.,

2011; Garcia-Cerrutti, 2000; Kamerschen and Porter, 2004; Olmos et al., 2011;

Walawalkar et al., 2010). Pilot studies have reported significant demand re-

ductions in the industrial and commercial sectors for some time-based pricing

experiments (Barbose et al., 2004).

Furthermore, other publications deal with the effects of time-based pricing.

Time-based pricing is an instrument enabling Demand Response that has re-

cently drawn significant attention. For example, Cappers et al. (2010) provide

empirical evidence on price-based Demand Response in the U. S. electricity

markets. A positive price responsiveness has been reported for some programs

that have been implemented recently, while the majority of them remained in

pilot phase (Faruqui and Sergici, 2010). Torriti (2012) assesses the impacts of

time-of-use tariffs from residential users in Northern Italy. Apparently, a sig-

nificant level of load shifting occurs during morning peaks, while there is only

a marginal effect during evening peaks.

Finally, Gyamfi et al. (2013) present an economic model in the Demand

Response context that links price elasticities and pricing strategies with human

behavior. The authors recommend incorporating social psychology in order to

realize changes in electricity consumption.
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3. Financial Benefits from Demand Response

To understand the financial dimension of Demand Response, we look at

previous publications that estimate financial savings at household level (Sec-

tion 3.1) and at an aggregate level (Section 3.2).

3.1. Household Level

To simulate and evaluate the economic effects of Demand Response at

household level, related research studies how Demand Response can be con-

trolled by real-time pricing. More precisely, Gottwalt et al. (2011) propose an

optimization procedure for load shifting based on real-time pricing. They also

analyze the effect at household level, but neglect the financial benefits. Simi-

larly, Lujano-Rojas et al. (2012) present an optimal load management strategy

that considers predicted electricity prices, electricity demand and renewable

power production. In their fictitious scenario, users can reduce electricity bills

by 8 % to 22% during a typical summer day.

Other authors pursue approaches that optimize the deployment of each

household appliance individually. As a result, a household may save up to

€ 18 per months in winter and up to€ 26 per month in summer (Vasirani and

Ossowski, 2012, 2013). Gudi et al. (2012) show that their heuristic optimiza-

tion leads to cost savings of up to 21%. However, both findings rely upon a

fictitious setting without being calibrated by real data.

Prüggler (2013) analyzes the economic potential of Demand Response us-

ing different standardized load profiles. Additionally, the author compares

break-even investment costs across various lifetimes of infrastructure. Accord-

ing to the study, annual cost savings reach around € 6.5. However, this result
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relies on the assumption that load shifting accounts for 15 % during 12hours

per day.

While the literature gives insights into Demand Response programs, none

of them are based on real data and, to sum up, the conclusions drawn are just

estimates.

3.2. Aggregate Level

Various references (e. g. Ridder et al., 2009) suggest that, due to the usage

of Demand Response, profits of electricity retailers will increase. Demand Re-

sponse activities do not actually decrease the amount of electricity consumed,

but merely shift it to when it is more convenient from the grid operation per-

spective (Shaw et al., 2009; Strbac, 2008; Denholm and Margolis, 2007). Re-

cent references such as (Dena, 2010; Faruqui et al., 2010b; van Horn, 2012;

Austria, 2010; NERA Economic Consulting, 2008) provide an overview of the

economic costs and benefits of Demand Response through Advanced Metering

Infrastructures.

Demand Response can reduce both peak load as well as the marginal costs

at peak time. In general, Demand Response programs reduce electricity costs

significantly, but raise electricity prices slightly (Hirst, 1992). Simultaneously,

Demand Response can reduce electrical distribution losses (Shaw et al., 2009).

According to Bergaentzlé and Clastres (2013), Germany can achieve a 4.57%

reduction in peak demand by managing active demand. However, the au-

thors define a static peak time at 19 p. m. (where marginal costs are roughly

41e/MWh), while we follow a dynamic approach. Aalami et al. (2010) carry

out a study to simulate and compare the effects of Demand Response programs.

However, the authors lack real-world data on the available load shifting poten-
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tial and, consequently, the results are susceptible to missing external validity.

Dave et al. (2013) perform an agent-based simulation. As a result, the authors

find that (when assuming that 30 % of the U. K. population participates) it is

possible to guarantee a 20% peak load reduction. Furthermore, an average

household in the U. K. contributes savings of £1800 over a 20 year period by

avoiding peak generation costs. Hirst (1994) quantifies the incremental bene-

fits and costs of Demand Response programs in the context of external uncer-

tainties (namely, economic growth, fuel prices, costs of building power plants

and costs to operate Demand Response programs). Here, Demand Response

reduces the net present value of revenue requirements by $490million plus an

additional $30 million (i. e. additional 6 %) from the reduced uncertainties.

Demand Response potential can also be used for operating reserves. Paulus

and Borggrefe (2011) perform a cost-benefit-study for electricity-intensive in-

dustries in Germany that sell their load shifting potential at an exchange for

spinning reserve, but the authors do not consider additional financial savings

from more beneficial electricity purchases.

In summary, little is known about the economic potential of Demand Re-

sponse in liberalized markets (Aghaei and Alizadeh, 2013). All listed publica-

tions lack both (1) a simulation of the shifted loads and its financial savings

and (2) coherent real-world data on the available load shifting potential. Con-

sequently, quantifying the economic benefits still seems to be an open research

question.
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4. Mathematical Model

This section identifies parameters that impact decisions in Demand Re-

sponse programs. We derive – based on earlier work (Feuerriegel et al., 2012,

2013) – a mathematical problem to optimize revenues for electricity retailers.

4.1. Parameters

How the retailer controls and operates Demand Response is affected by

several parameters. These parameters are presented in Figure 1 where we

group them into supply and demand side factors. Factors governing the supply

side are as follows:

• The Demand Response potential varies across both industries and time

of day. Furthermore, each individual DR-capable device (e. g. washing

machine, A/C) or industry is subject to the extent its electricity consump-

tion can be moved in time and, thus, the Demand Response potential is

specified by a set of time-dependent variables.

• The monetary expenditures are largely influenced by electricity prices. In

today’s electricity markets, retailers can participate in trading future op-

tions and in hourly spot auctions (Stoft, 2001). The former, so-called

future options, can be traded to guarantee – ahead of time – electric-

ity delivery for long-term periods. Frequent examples comprise futures

options that (contractually) fix delivery durations ranging from years to

single days. In order to reduce the complexity of our model, we aggre-

gate all future options into a single derivative. Let pF denote the future

option’s price per watt-hour. In addition to future derivatives, a spot mar-

ket provides electricity at price pA(t) per watt-hour for a specific time t
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of the day. Most notably, these derivatives are sold at day-ahead auc-

tions. As a third option, an intraday market can satisfy short-term needs

of electricity, but can be neglected due to insufficient market liquidity

(EPEX, 2012; Weber, 2010).

According to Figure 1, the demand side is affected by the following parameters:

• The amount of electricity that a retailer has to purchase is determined

by the electricity load. It consists of the overall electricity demand minus

the electricity that is produced by the retailer.

• When an adequate financial incentive is offered, some industries can re-

duce their electricity demand for short periods. This is named peak clip-

ping. In practice, peak clipping is controlled by an activation decision.

Supply Demand

Future Derivatives

Day-Ahead Market

Maximum
Shift Duration

Shiftable
Power Amount

Demand Response
Potential

Electricity Prices

Demand
Response
Decisions

Electricity
Load

Peak Clipping Activation
Decision

Electricity
Demand

Electricity
Production

Figure 1: Parameters affecting Demand Response decisions to optimize load shifting.
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4.2. Benchmark Model without Demand Response

With a few simplifying assumptions, the problem of optimally-harnessing

Demand Response can be formulated as a linear optimization problem (Feuer-

riegel et al., 2012, 2013). However, we embark on the simpler problem where

only the retailer’s expenditure is minimized and continue to support Demand

Response in the optimization problem at a later point. The resulting optimiza-

tion problem is solved once for every day to derive optimal decisions for each

of the N = 24 time slots per day.

Accumulating the retailer’s spending across electricity derivatives, this yields

the aggregated expenditures which constitute the target function. Accordingly,

the retailer aims to reduce the estimated total expenditures as our target func-

tion cΣ (during an optimization horizon of N time steps) denoted by

min
qF ,qA(1),...,qA(N)

cΣ = min
qF ,qA(1),...,qA(N)

N pFqF +
N
∑

t=1

pA(t)qA(t). (1)

The first summand N pFqF denotes the expenditures on future derivatives, while

the second sums costs from on day-ahead auctions. The (time-dependent) pa-

rameters qA(t) and qF indicate the demanded quantities in the day-ahead mar-

ket and the future options respectively.

As a simplification, the electricity retailer is assumed to be only a purchaser

of electricity at the energy exchange, but not a vendor selling to other market

participants. As most German retailers do not produce electricity (Umweltbun-

desamt, 2013), this assumption is valid. Thus, the linear problem is bounded

and a unique solution is assured to exist. Thus, we yield the following inequal-

ity constraints for our optimization problem,

qA(t)≥ 0 and qF ≥ 0 for t = 1, . . . , N . (2)
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Let D(t) denote for a given time t the amount of demanded electricity. As

a further constraint, the purchased electricity must match the retailer’s power

demand at time t. This is stated by the following equality constraints,

qA(t) + qF = D(t) for t = 1, . . . , N , (3)

where the left-hand side (accounts for the total energy purchased) is supposed

to equal the right-hand side which accounting for the electricity demand.

Combining the target function and the above restrictions, we yield the com-

plete optimization problem for a retailer given by

min
qF ,qA(1),...,qA(N)

N pFqF +
N
∑

t=1

pA(t)qA(t), (4)

subject to qA(t) + qF = D(t), (5)

qA(t)≥ 0 and qF ≥ 0 for t = 1, . . . , N . (6)

(7)

4.3. Demand Response Model with Load Optimization

In Figure 2, we classify Demand Response according to two types: When the

total electricity demand remains inconstant and a financial incentive reduces

peak load, this is named peak clipping. Contrarily, load shifting features a fixed

total demand, but where demand can be shifted forward or backward in time

to off-peak hours. In this section, the above optimization problem is extended

to support decision-making for both types of Demand Response mechanisms.
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Figure 2: Comparing peak clipping versus load shifting.

4.3.1. Extension: Integrating Peak Clipping

By offering an adequate financial incentive, energy-intensive companies

(e. g. in the chemical or metal-working industry) are encouraged to perform

peak load reduction. This leads to a reduction of electricity demand of indus-

trial processes for a short period of time. Depending on the actual industrial

processes (Klobasa, 2007), the frequency of activating peak clipping can vary

significantly1, between daily activation or only up to a few days per year. This

limited availability exerts pressure on the Demand Response model to use the

offered number of activations wisely. Thus, we identify suitable occasions for

peak load reduction with the following approach in order to maximize profits.

Our approach can be briefly sketched as follows. We control the usage of

peak clipping by introducing a threshold. Then, peak clipping is activated only

when the expected earnings exceed this threshold. Later, we determine ex post

an appropriate value for this threshold from historic data.

1The actual frequency is limited by several factors, for example, quality reasons, mainte-

nance, produced goods, underlying chemical process.
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Let us define the threshold by θ and the expected hourly profit by θc. For

the moment, we assume w. l. o. g. that the threshold θ is fixed and given. The

model recognizes appropriate time slots for activation, which is the expected

profit θc originating from peak clipping exceeds the threshold θ . Mathemat-

ically speaking, this occurs when the inequality θc > θ holds. Let M denote

the maximum duration of peak load reduction. Then, we derive the expected

hourly profit θc via

θc = max
t∈{1,...,N−M}

1
M

t+M−1
∑

τ=t

pA(τ), (8)

where we choose the arrangement out of all constellations of peak load reduc-

tion that maximizes the financial spendings on electricity. Having estimated

the hourly profit θc, we need to derive the time step θt within the day when

peak clipping is activated. The according optimization problem resolves to2

θt = argmax
t∈{1,...,N−M}

1
M

t+M−1
∑

τ=t

pA(τ). (9)

Altogether, the electricity demand D′(t) after peak clipping is given by

D′(t) =







D(t)− ∂ , t ∈ {θt , . . . ,θt +M − 1} and θc > θ ,

D(t), otherwise,
(10)

where, depending on the activation of peak clipping, the previous demand

D(t) is reduced by a certain load ∂ . This load reductions is performed every

day when potential for load reduction is available. To sum up, peak clipping

is activated in a first come, first served principle, i. e. it is possible that the

2Here, argmax stands for the argument of the maximum, i. e. f (xmax) = max f (x) ⇔
xmax = arg max f (x).
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peak clipping potential is depleted during the simulation. Finally, we point out

that knowledge from experts might further improve profits. Irregular events of

extreme weathers and possible errors in the forecasting methodology can only

be treated by human expertise.

Having assumed that the threshold to be given, we are now in the posi-

tion to deduce a threshold for activating peak clipping. Based on our dataset

(see Section 5.1 and Table 2), we are informed that all relevant industrial pro-

cesses can perform peak clipping up to 40 times a year. Thus, we need to

calculate the 40 highest savings from peak clipping in each year (i. e. the 40

highest values of θc) and use the lowest ex post value as our threshold. Fig-

ure 3 shows the highest hourly savings from peak clipping per day sorted in

descending order. We see that hourly savings range from 14.51e/MWh to as

high as 166.95e/MWh. An additional vertical line shows the cut off value for

the 40 highest values. This vertical line represents the optimal threshold in

each year. Thus, peak clipping should be activated whenever expected savings

exceed this threshold. The corresponding savings at the vertical cut off line

are 76.27e/MWh in 2009, 70.87e/MWh in 2010, 72.86e/MWh in 2011 and

67.78e/MWh in 2012. Evidently, the optimal thresholds in the years 2009 till

2012 show almost no variance. We set the final threshold for activating peak

clipping to the average of the optimal thresholds from the previous two years.

Then, we get θ = 73.57e/MWh in 2011 and θ = 71.87e/MWh in 2012.
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Figure 3: The hourly savings θc from peak clipping in each year sorted in descending order. As

peak clipping can be activated up to 40 times a year, the cut off values to identify 40 highest

savings are given by the vertical line.

4.3.2. Extension: Integrating Load Shifting

Let us assume that we are granted a certain Demand Response potential

for each time interval (Feuerriegel et al., 2012, 2013). This potential can

now be shifted forward or backward in time. However, each type of load can

only be moved up to a certain maximum duration j (e. g. 1h, 2h, etc.). For

each of these shifts j, the variables ∆ j(t) denote the available potential. Let

DRj(t, t ′− t) specify the shifted load between hours t and t ′ where j indicates

the maximum possible length of the shift. The value of DRj(t, t ′ − t) denotes

the amount of power that is less consumed at time step t, but that is addition-

ally required at time step t ′. For instance, DR2(t,−1) accounts for load shifting

potential (with maximum shift of two hours) that is moved from time step t

by one hour to the previous interval t − 1.

Figure 4 shows schematically how Demand Response changes the load by
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shifting it to off-peak hours. The total demand at time t is increased by the sum

of DR1(t+1,−1), DR1(t−1,+1), DR2(t+2,−2), DR2(t+1,−1), DR2(t−1,+1),

DR1(t−2,+2), etc. However, the demand at time t is simultaneously decreased

by DR1(t, 0), DR2(t, 0), etc. In order to guarantee that demand matches the

purchased electricity, we derive the following constraint,

qA(t) + qF = D(t)−DR1(t, 0)−DR2(t, 0) + . . . (11)

+DR1(t + 1,−1) +DR1(t − 1,+1) (12)

+DR2(t + 2,−2) +DR2(t + 1,−1) (13)

+DR2(t − 1,+1) +DR2(t − 2,+2) (14)

+ . . . for t = 1, . . . , N . (15)

This constraint is only fulfilled when the purchased quantities on the left-hand

side equal the right-hand side which itself consists of the demand and possible

alterations due to Demand Response. Whenever t < 1 or t > N , we define

DRj(t, i)
def
= 0.

t − 2 t − 1 t t + 1 t + 2

DR1(t,−1) DR1(t, 0) DR1(t,+1)

DR2(t,−2) DR2(t,−1) DR2(t, 0) DR2(t,+1) DR2(t,+2)

Figure 4: Potential of Demand Response at time t.

Next, we derive additional constraints for the potential of Demand Re-

sponse. Recall that the variables ∆1(t), ∆2(t), ∆3(t), etc. limit the maximum
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amount of energy that can be displaced. Thus, we deduce

DR1(t, 0)≤∆1(t),DR2(t, 0)≤∆2(t), . . . (16)

Additionally, we need constraints that limit the flow direction (i. e. that de-

mand is moved solely away from time interval t). When we shift electricity

demand from time interval t by j hours in either direction, this value must not

be negative,

DRj(t + i,−i),DRj(t − i,+i)≥ 0 for all j and i = 1, . . . , j. (17)

Furthermore, we need to guarantee the energy conservation of used load

shifting potential, i. e. all reductions in demand finally added at some other

interval, thus
+ j
∑

i=− j

DRj(t + i,−i) = 0 for all j. (18)

Both, the number of equality constraints and the number of lower bounds

grow linearly. For example, with N = 24 and Demand Response potentials

j ∈ {1, 2,3, 4,12, 16,24}, we get 2125 unknown parameters, a total of 192

linear equality constraints, whilst the number of lower bounds accounts for a

total of 2125.

5. Evaluation

In this section, we test our mathematical model in a simulation using his-

toric data. Before presenting the results, we provide an overview on the ap-

plied parameters and datasets. Ultimately, we evaluate the financial benefits

of Demand Response.
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5.1. Datasets

In the following scenario, we assume a German retailer delivering electric-

ity to both residents and industries. The retailer’s overall annual energy de-

mand accounts for 2000 GWh, out of which 1500 GWh are delivered to indus-

tries while 500GWh are delivered to a total of 300 000 residents (E-Control,

2012; E.ON, 2011; Werlen, 2007). Here, the electricity demand is given by

load profiles of a real electricity retailer (NGS, 2013).

All prices for electricity derivatives and spot auctions are based on the

hourly data from the years 2011 and 2012 of the European Power Exchange,

EPEX for short (EPEX, 2012). The price for future options qF originates from

the Phelix Day Base index.

5.2. Demand Response Potential

The capabilities of Demand Response vary strongly among both industry

and households. Later, our scenario studies the economic effects of Demand

Response in Germany and, accordingly, we need data that quantifies the De-

mand Response potential. Various publications such as (Dena, 2010; Klobasa,

2007; Paulus and Borggrefe, 2011; Styczynski, 2011; Werlen, 2007) aim at

quantifying the magnitude of load shifting potential in Germany. A comparison

of these references is given in Table 1. Even though Table 1 reveals differences

across sectors, the magnitude of the overall Demand Response potential seems

rather similar and robust. Among these references, Klobasa (2007) provides

estimates with the highest granularity as the author also gives the duration that

each appliance can be moved in time. Thus, we will use the Demand Response

potential quantified by Klobasa (2007) in our analysis.
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Source Industries Service Sector Households Nationwide

Dena (2010)
pos: 2143 MW

neg: 485 MW

pos: 2420MW

neg: 14.28GW

pos: 6732MW

neg: 35.28 MW

pos: 6732MW

neg: 35.28MW

Paulus and Borggrefe (2011) 2610 MW

Styczynski (2011) 4800MW 24.5GW 29.9GW

Werlen (2007) 2 GW to 16GW

Klobasa (2007) 2800 MW 938 MW 20.59 GW

Table 1: Demand Response potential at peak in Germany (in italics: own calculations that

aggregate values).

Klobasa (2007) derives the nationwide Demand Response potential for

both German industries and residents. We must scale these values to comply

with our scenario, i. e. to fit a retailer supplying electricity to both industries

(1500 GWh) and 300 000 residents (500GWh). Thus, we multiply Demand Re-

sponse potentials from (Klobasa, 2007) by the ratio of 300 000 residents and

the German population of 83 million. Accordingly, the maximum possible shift

of the retailer can reach up to 41.8 MW. Table 2 shows the retailer’s potential

of Demand Response through peak clipping. Table 3 contains aggregated re-

sults specifying the maximum displacement in time and the average possible

amount available for load shifting. While average power demand of the retailer

accounts for 228.31 MW, the average power shift accounts for 32.14 MW. More

precisely, the proportion of shiftable power totals approximately 14.08 %.

Sector Initiations in Days/Year Max. Duration/h Average Power Reduction/kW

Chemistry & Metal Processing 40 4 5892

Nonmetallic Mineral Processing 365 3 651

Others 365 2 3578

Table 2: Retailer’s potential of Demand Response through peak clipping (own scaling; based

on (Klobasa, 2007)).
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Application Max. Shift Duration/h Average Power Shift/kW

Cooling 1 1012

2 3199

Air Conditioning 1 1577

Ventilation 1 3253

Heating 12 1681

16 1854

Laundry∗ 24 517

Drying∗ 24 374

Washer∗ 24 416

Thermal Energy Storage∗ 1 2658

2 2440

12 12 675

Table 3: Retailer’s Potential of Demand Response through Load Shifting (own scaling; based

on (Klobasa, 2007)). Marked items (∗) are time-dependent and scaled according to Figure 5.

The Demand Response potential in households varies strongly throughout

the day, and, hence, the household values in Table 3 must be weighted accord-

ingly. Figure 5 depicts the used normalization coefficients derived by Groiß

(2008); Groiß and Brauner (2009). One can clearly notice a higher Demand

Response potential in the afternoon compared to a significantly lower potential

at night time.
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Figure 5: Normalization coefficients used to express time-dependency of Demand Response

potential (Groiß, 2008; Groiß and Brauner, 2009).

5.3. Results

In this section, we evaluate our scenario using the above datasets for the

years 2011 as well as 2012. The computational analysis requires solving more

than 1450 single optimization problems. In order to demonstrate and quantify

the efficiency of our rather simple Demand Response model, we will use the

notation cH(t), defined by cH(t) = pFqF + pA(t)qA(t), to denote the retailer’s

hourly expenditures. We can state three striking results (see Table 4 for de-

tails).

• Finding 1. In general, electricity demand is almost inelastic; though, De-

mand Response shows that the retailer’s expenditures for electricity can

be reduced. This decrease in expenditures will be attained by both shift-

ing the load from peak to off-peak periods and activating peak clipping.

In our scenario, the retailer’s expenditures plummet by 3.18 % in 2011

and 3.93 % in 2012 respectively. The fact of decreasing expenditures is
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not novel in itself; however, our study allows the financial benefits to be

quantified.

• Finding 2. Active Demand Response shows a possible path to flatten

peaks in expenditures. Peak load reduction as an inherent feature of

Demand Response is well known (cf. Aghaei and Alizadeh, 2013), but

by facilitating the Demand Response model, we are able to estimate the

magnitude of peak clipping. In fact, peak clipping reduces the maximum

hourly expenditures given by max cH(t) in the year 2011 by 14.63 %,

while the cut in 2012 accounts for 14.17 %.

• Finding 3. Utilizing our Demand Response reduces fluctuations in ex-

penditures significantly. We measure the magnitude of these fluctuations

by Var(cH(t)), which represents the variance of hourly expenditures. In

the year 2011, this variance indicates the uncertainty of expenditures is

reduced by 10.12 %. The variance in 2012 is cut by 5.88%.

Year 2011 Year 2012 Annual Average

Financial return Using DR € 103.4× 106 € 87.3× 106 € 95.3× 106

Without DR € 106.8× 106 € 90.9× 106 € 98.8× 106

Absolute benefit € 3.39× 106 € 3.57× 106 € 3.48× 106

Relative change −3.18 % −3.93 % −3.52 %

Hourly peak costs Using DR € 31.4× 103 € 48.6× 103 € 40.0× 103

Without DR € 36.8× 103 € 56.6× 103 € 46.7× 103

Absolute benefit € 5.38× 103 € 8.03× 103 € 6.70× 103

Relative change −14.63% −14.17% −14.35%

Variance of hourly costs Using DR 20.1× 106 27.0× 106 23.6× 106

Without DR 22.4× 106 28.7× 106 25.5× 106

Absolute benefit 2.26× 106 1.69× 106 1.98× 106

Relative change −10.12% −5.88 % −7.74 %

Table 4: Benefits from the Demand Response (DR).
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Although the model is limited to measuring the financial costs of electricity

retailers, the above results reveal several interesting implications:

• Employing the Demand Response model for decision-making, Figure 6

visualizes the average achieved financial benefits arising from load shift-

ing. The length of the possible time shift strongly affects the monetary

return. With longer forward and backward shifts (e. g. 16 and 24 hours),

the optimization problem benefits from higher differences in electric-

ity price and can relocate demand to hours with the highest financial

gain. By employing load shifting, the retailer gains an average return

of 12.3e/MWh as a financial advantage. Although activations of peak

clipping are rare, Figure 7 shows that peak clipping yields higher finan-

cial returns – financial benefits above 60e/MWh. Electricity retailers are

advised to facilitate peak clipping before load shifting to maximize their

financial advantage.

• Even though peak clipping features a higher marginal utility, load shifting

is responsible for the majority of savings. The ratio of benefits due to load

shifting out of all savings from Demand Response account for 91.8 % in

2011 and 92.8 % in 2012. In other words, most savings originate from

load shifting.

• Although the electricity retailer gains an immense financial advantage

by implementing Demand Response, the average savings per person are

relatively small (e. g. Gottwalt et al., 2011; Vasirani and Ossowski, 2012,

2013) and account for only € 11.6 per annum. However, as electricity

prices are likely to rise in the future, revenues due to Demand Response
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will also increase.

• In order to investigate which time frames are affected by load shifting,

we calculated the load shifts between different time slots across each day.

The changes in electricity consumption outline the following pattern as

shown in Figure 8. The more the load is exchanged between time slots,

the darker is the corresponding rectangle. Similar to the findings by

Gottwalt et al. (2011), a large proportion of the savings arise at night

time. In fact, most load is shifted to the time interval from 1 a. m. to

6 a. m.. The reason is that electricity is significantly cheaper at night. A

second time interval that gains load reaches from 2 p. m. to 6 p. m.. In

addition to that, the load that can only be shifted by 1 h is visualized by

the gray diagonal pattern.

• There is a subtle difference in returns between summer and winter. While

the average return due to load shifting accounts for 10.3e/MWh from

April to September 2011 (i. e. summer), this return rises to 12.2e/MWh

in the winter period of 2011. In contrast to that, the difference in earn-

ings between weekdays and weekends is negligible.

• Europe faced an extreme winter from February 1, 2012 to February 14,

2012 with temperatures as cold −45 ◦C and resulting peaks in electricity

prices. During that period, the average return from peak clipping al-

most doubles from an average 64.4e/MWh to 110.1e/MWh. Similarly,

the return from load shifting jumped from an average 11.9e/MWh to

19.8e/MWh. This immense increase shows how the implementation of

Demand Response can account for significant financial benefits.
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• Out of 80 days available for peak clipping, more than half (43 days) were

used in the month November, followed by February (12 days) and May

(6 days). The overall picture indicates that peak clipping has the highest

potential in spring and fall.
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Figure 6: Box plot of financial benefits from load shifting in 2011 across varying maximum

shift durations (values denote the median).
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Figure 7: Box plot financial benefit from peak clipping in 2011 across varying maximum time

shifts (values denote median).
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Figure 8: Load (in MWh) shifted throughout 2011 due to Demand Response activities (simu-

lation results from the above model).
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5.4. Sensitivity Analysis

This section analyzes how results change when parameters of the models

are varied (see Table 5).

Benchmark. Changing the overall electricity demand of the retailer affects

the absolute financial benefits, but this has no effect on the results from

Table 4 given as relative benefits. In fact, when changing the overall

demand, costs continue to drop by 3.52 %. Likewise, the reductions in

volatility (7.74 %) and peak costs (14.35%) remain constant.

Standardized Load Profiles. Switching from real to standardized load pro-

files affects outcomes only slightly. When using standardized3 load pro-

files instead, the evaluation based on historic data from 2011–2012 yields

that cost volatility can be reduced by 12.22 %; peak costs drop by 12.14 %;

and expenditures of retailers can be significantly decreased by 3.42%.

Altogether, values remain at a similar magnitude.

Selling Electricity Produced by the Retailer. In addition, we examine a model

where the retailer produces and sells electricity. Let P(t) denote the re-

tailer’s electricity production. We assume a constant electricity produc-

tion of P(t) = 3000kW. Then, the new model affects the constraints in

3We aggregate the demand curves for households and industries in Germany from the years

2011 and 2012 (E.ON, 2012) with ratio 25 % to 75% (Styczynski, 2011) to derive the hourly

electricity demand. To achieve an annual demand accounting for 2000 GWh in total, the de-

manded electricity is normalized accordingly.
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Equations (2) and (3) which are replaced by

qA(t)≥ −P(t) and qF ≥ max
τ∈{1,...,N}

−P(τ) for t = 1, . . . , N , (19)

qA(t) + qF = D(t)− P(t) for t = 1, . . . , N . (20)

In Equation (19), we change the upper bound such that the retailer can

sell electricity; whereas Equation (20) enforces that demand equals pro-

cured electricity minus a new term denoting the production. The aver-

age results from 2011–2012 show that expenditures drop by 3.57%, cost

volatility by 7.73 % and peak costs by 14.41%. Overall, the financial ef-

fect of Demand Response seems to be robust even when the retailer acts

as a producer of electricity.

Time-Invariant Potential. The above simulation relies on normalization coef-

ficients used to express the time-dependency of Demand Response coeffi-

cients (i. e. there is a larger Demand Response potential available during

afternoons than during nights). We investigate the sensitivity of time-

varying factors by studying a model without time-dependency. Thus, we

set all normalization coefficients to 1. As a result, cost volatility is cut

by 7.74 %; peak costs drop by 14.35%; and expenditures decrease by

3.52 %. Once again, only marginal changes can be observed.

Overall, the sensitivity analysis (see Table 5) reveals that varying model pa-

rameters hardly changes the outcome.
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Scenario Expenditures Without DR Using DR Change Cost Volatility Peak Costs

Benchmark € 98.8× 106 € 95.3× 106 −3.52% −7.74% −14.35 %

Standardized Load Profiles € 101.9× 106 € 98.5× 106 −3.42% −12.22% −12.14 %

Selling (Produced) Electricity € 97.6× 106 € 94.1× 106 −3.57% −7.73% −14.41 %

Time-Invariant Potential € 98.8× 106 € 95.3× 106 −3.52% −7.74 % −14.35 %

Table 5: Sensitivity analysis comparing proportional reductions in total expenditures, cost

volatility and peak costs from Demand Response (DR) usage in years 2011–2012 across dif-

ferent scenarios.

5.5. Policy Implications

In the future, financial benefits from Demand Response activities are likely

to increase due to two reasons. First, rising electricity prices and increasing

price volatility (Bierbrauer et al., 2007; Valenzuela et al., 2012) will encour-

age electricity retailers to implement and extend their Demand Response ac-

tivities. The underlying reason is, as the literature on renewables suggests,

that an increase in intermittent wind and solar generation comes at the cost

of an increase in the spot-price variance (Chao, 2011; Green and Vasilakos,

2010; Jacobsen and Zvingilaite, 2010; Milstein and Tishler, 2011; Woo et al.,

2011). Second, the penetration of Demand Response programs will also in-

crease due to regulatory settings. As governments consider policy adjustments,

the propagation of DR-capable devices and the DR-related profits can be aug-

mented. Torriti et al. (2010) expect that large numbers of end-users (i. e.

commercial customers and households) could be involved in future Demand

Response programs. Several countries such as the member states of the Eu-

ropean Union have already agreed to trigger the introduction of Demand Re-

sponse programs. In fact, policy issues are broadly discussed by governments

throughout the world (Cappers et al., 2010; Walawalkar et al., 2010; Ming
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et al., 2013). Greening (2010), for example, suggests that state regulators will

need to regulate through the development of incentive mechanisms. Possi-

ble incentives consist of fiscal, tax and price policies according to Ming et al.

(2013). However, governments must be careful when designing market struc-

tures and incentives for Demand Response in order to come up with effective

market instruments (Grünewald and Torriti, 2013). Torriti et al. (2010) no-

tice that governments put an emphasis on Demand Response activities in an

industrial environment which agrees with our results that peak clipping, i. e.

industrial Demand Response, yields the highest revenues. Overall, policy ad-

justments will give future activities in Demand Response a major boost and

this paper helps to gauge the size of possible incentives.

6. Conclusion

Due to the integration of intermittent resources of power generation, the

amount of supplied electricity will show unprecedented fluctuations. Electric-

ity retailers can address this challenge by using Demand Response for shifting

power demand according to the fluctuating supply side. As a contribution, this

paper gives realistic insights into the financial impacts by Demand Response

usage. More specifically, a full exploitation of Demand Response potential de-

creases cost volatility in our scenario by 7.74%, whereas the overall expendi-

tures can be reduced by 3.52 %. Consequently, electricity retailers that utilize

Demand Response can gain considerable financial benefits.

However, we did not distinguish between different forms of shifting de-

mand such as dynamic and real-time pricing or direct load control. Accord-

ingly, we did not consider differences in cost and effectiveness of these in-
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struments. Future research should take into account these costs and also the

different price elasticities of residential, commercial and industrial customers.

In the future, a detailed survey is necessary that compares both the financial

benefits and related costs of Demand Response across different usages such as

tendering control reserve and applications on a household level. In addition

to that, financial impacts for a whole nation are also unknown. As changes in

demand result in changes in price, further effort is required to calculate the

cost-benefit ratio of Demand Response for an economy as a whole.
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