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We present a decomposition of the temporal growth rate w; which characterises the
evolution of wave-like disturbances in linear stability theory for compressible flows. The
decomposition is based on the disturbance energy balance by Chu [Acta Mechanica, vol. 1,
1965, pp. 215-234] and provides terms for production, dissipation and flux of energy
as components of w;. The inclusion of flux terms makes our formulation applicable to
unconfined flows and flows with permeable or vibrating boundaries. The decomposition
sheds light on the fundamental mechanisms determining temporal growth or decay of
disturbances. The additional insights gained by the proposed approach are demonstrated
by an investigation of two model flows, namely compressible Couette flow and a plane,
compressible jet.

1. Introduction

Linear stability theory predicts the evolution of small disturbances superposed on a
laminar base flow. For many flow scenarios, the underlying linear growth mechanism de-
termines the initial path in the complex transition process from laminar to turbulent flow
and has therefore been subject of interest over a long period (Criminale, Jackson & Joslin
2003; Schmid & Henningson 2001). Even though the linear approach ceases to be applica-
ble in the later non-linear stages of the transition process, for many flows the initial linear
mechanism orchestrates the subsequent cascade that creates harmonics and subharmonics
of some fundamental disturbance and eventually leads to a fully turbulent state. Tradi-
tionally, the linearised disturbance equations, derived from the governing Navier—Stokes
equations, are transformed by introducing a normal mode ansatz, i.e. assuming wave-like
disturbances of the form exp [i(ax — wt)], which reduces the initial-value problem to an
eigenvalue problem. For incompressible, viscous flow and the assumption of a stationary,
parallel base flow, this eigenvalue problem is governed by the famous Orr-Sommerfeld
equation (see e.g. Drazin & Reid (2004); Schmid & Henningson (2001)). The analogue to
the Orr—Sommerfeld equation for compressible flow is given by Malik (1990) and Crimi-
nale et al. (2003) as a coupled set of ordinary differential equations. Together with proper
boundary conditions, one can pose the temporal stability problem, where a real wave num-
ber «, is given and one solves for the complex angular frequency w = w, + iw;. Here, w,
denotes the real angular frequency which relates to the phase speed by ¢ = w,/ay, and
w; is the temporal disturbance growth rate that determines disturbance growth (w; > 0)
or decay (w; < 0).

Solving the linear eigenvalue problem directly yields the eigenvalues w, however, with-
out revealing additional information on the underlying principles that lead to a specific
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solution. In particular, for the temporal growth rate w; an understanding of the mecha-
nisms that induce temporal growth or decay is of great interest because it would clarify
which factors determine the linear stability of a given flow. For incompressible, viscous
flow the individual components that, when summed up, yield the temporal growth rate
can be derived from the well-known Reynolds—Orr equation by introducing the normal
mode ansatz and solving for w; (Schmid & Henningson 2001).

Recently, Malik et al. (2006, 2008) presented a study about the transient energy growth
in the context of linear stability theory for plane compressible Couette flow. They de-
composed the time evolution of the perturbation energy into four contributions, namely
the energy transfer rate from the base flow, the viscous dissipation rate, the thermal
diffusion rate and the shear-work rate. However, their formulation is only applicable to
confined flows without energy flux across a domain boundary. We removed this restriction
by including the flux terms at the domain boundaries. Additionally, Malik et al. (2006,
2008) do not provide a direct relation between w; and the components that determine
the temporal energy evolution. Tritarelli (2011) has derived a detailed formulation for
the energy evolution in a spatial linear stability framework and applied it to hypersonic
boundary layers.

The temporal growth or decay characteristics of a disturbance contained in an arbi-
trary volume are obviously dependent on the details of the balance between production,
dissipation and the flux of disturbance energy across the boundaries of the considered
volume. In this paper, we present a novel decomposition of the temporal growth rate for
bounded as well as unbounded compressible, viscous flow. Our analysis is based on the
disturbance energy balance by Chu (1965), the analogue to the Reynolds—Orr equation
for compressible flow, and offers a decomposition of w; into production, dissipation, and
flux terms (§ 2). This allows to identify the major contributing terms and to uncover their
corresponding growth mechanisms. A detailed classification of the individual contribu-
tions helps to analyse the change of instability properties for varying flow conditions, as
we will show in § 3 for two well-studied base flows, namely plane Couette flow and plane
jet flow. The example of supersonic jet flow highlights the importance of including the
flux terms in the growth-rate decomposition.

2. Method
2.1. Governing equations

Two-dimensional, compressible gas flow is governed by the Navier—Stokes equations, i.e.
the conservation equations of mass, momentum, and energy

Do+ 0(0u+ Oyv) = 0, (2.1a)

0Dyt + Opp — OpToz — OyTay = 0, (2.10)

0Dv + Oyp — OpTay — OyTyy =0, (2.1¢)

0Cy DT + p(Opu + Oyv) + Opqy + Oyqy — ® =0, (2.1d)

with the material derivative operator Dy = 0, +u 0, +v 0. We use non-dimensional vari-
ables where the spatial coordinates (z,y) are normalised by some characteristic reference
length L°, the velocity components (u,v) by some reference velocity g, the time ¢ by the
characteristic time L°/a§ and the thermodynamic pressure p by the dynamic pressure
o5us?. Here, (+)° denotes a dimensional quantity and (-)§ the dimensional base-flow value
at a reference point (g, y§). Mass density ¢ and absolute temperature T" are normalised

by their base-flow value (7)§. All dimensional reference quantities are combined to the
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dimensionless groups
Re = goagLe /i, M =g/ag, Pr=fisc)/ks, (2.2)
known as the Reynolds number, Mach number, and Prandtl number, respectively. In the
definition of the Mach number, the speed of sound at the reference point is given as
ag = \/YR°TS with R° being the specific gas constant.
We consider a calorically perfect gas with constant specific heats for constant pressure

¢p = [(v = 1)M?]7! and constant volume ¢, = [y(y — 1)M?]71, respectively, that obeys
the equation of state

p = oT/(vM?). (2.3)
The ratio of specific heats is defined as v = ¢, /co. We assume a Newtonian fluid, i.e. a
linear deformation law for the shear stress components

Tay = 1/ Re (Oyu + 0,0), (2.4D)
Tyy = (210 + A)/Re Oyv + A/ Re Oy u. (2.4c¢)

The first and second coefficients of viscosity p(7") and A(T") are assumed to be functions
of temperature only. Further, we consider Fourier’s law for heat transfer by conduction
so that the heat-flux components are given by

qw = —k/[(y — 1)RePrM?)9,T, q,= —k/[(y—1)RePrM?)9,T, (2.5a,b)

where k(T') indicates the temperature-dependent coefficient of thermal conductivity. Fi-
nally, the dissipation function in the equation of energy is defined as

D = Tpg Optt + Toy (Oyu + 0,0) + Tyy Oyv. (2.6)

Together with appropriate boundary conditions, equations (2.1)—(2.6) describe the
motion of fluid flow under the stated assumptions. If (2.3) is substituted into (2.1), the
pressure variable p can be eliminated so that the unknowns are reduced to the primitive
variables ¢ = q(z,y,t) = (0,u,v,T)" and the Navier-Stokes equations (2.1) can be
abbreviated in symbolic form as

NS{q} =0. (2.7)
Here, NS{-} is the non-linear Navier-Stokes operator that operates on the primitive

variable vector q. This notation is used in the following derivations to prevent exhausting
writing of the full equations.

2.2. Linear disturbance equations

We assume a stationary, parallel base flow indicated by (-) that depends on the y-
coordinate only, i.e. § = q(y) with 4 = @(y) and v = 0, satisfying NS{q} = 0. The
perturbed base flow is expanded as q(z,y,t) = q(y) + €q(z,y,t) + O(?) with (7) de-
noting first-order disturbance variables. We focus on small disturbances and therefore
linearise the governing equations (2.7) around the base-flow solution g(y) by NS(q) ¢ =
[0-NS{q +eq + O(c?) }]c=o. Here, NS(-) is the linear disturbance operator that de-
pends on the base flow g and operates on first order disturbances . The evolution
equations for small disturbances q are then given as

NS(q) G =0, (2.8)

with the elements of the disturbance operator NS (@) provided in the appendix.
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2.3. Disturbance energy balance

In order to derive a balance equation for the disturbance energy we follow Chu (1965) and
multiply the continuity equation (2.8); by a2g/(v@) with a?> = T/M?, the momentum
equation in x-direction (2.8)s by @, the momentum equation in y-direction (2.8)3 by
, and the energy equation (2.8); by T/T and integrate its sum over an arbitrary, but
time-independent domain 2 C R x R. The resulting scalar equation can symbolically be
written as

/Q 5" N5 ()] av =0, (2.9)

where the multiplication factors are collected in the vector p = (a2g/(va), 4,9, T/T)T
and dV' = dx dy denotes an infinitesimal area element. According to Chu (1965) all terms
in (2.9) with time derivatives are collected and the disturbance energy is consequently
defined as

- 1 1a? 1 pc,T?
E:/ [g(a2+@)+a9 + - ar (2.10)
o |2 2 T

By considering (2.10) and with the aid of Gauss’ divergence theorem (integration by parts
in space) we can rearrange (2.9) to the balance equation for the disturbance energy

dE _ /@M;—dv /@@g—dVJr/ %de (2.11a—c)

dt

T
_ / [on Ol + Ty (Byi + Do) + 7y Dy 3] AV + / 300 +3,0,] 2 AV (2.11d¢)
Q Q

- / plung + on,|dS + / [Toalng + Toy(Uny + 0ng) + TyyOny,] dS (2.11f,9)
o0

oQ
T. . N

oo T

1 dix du 1 di du .

— [ Oy |uT dv + 0y | 0T dv 2.114,
+R6/Q {u de] Re/Q [U de] (2.114,5)

1.0 1 ap T* 1

- = . 2.11

/Q&; [2up_2+27 1T2+2ug(u + o) | dV. (2.11k)

Contrary to Chu (1965) we take non-vanishing disturbances at the domain boundary
0 into account which yields the additional terms (2.11f-h). The outward unit vector
to 9 is denoted as (ng,n,)" and the infinitesimal line element on 9Q as dS. The
disturbance shear stress components are defined as

. 2+ A Ao B~ = 20+ A
- HR Ouiict £-0,, Twy:%(ayujuacu), Fy = 2

the disturbance heat-flux components as

_ k S k .
Qe = —marTa Oy =—""—p Wl (2.13)
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and the specific disturbance heat source as

Q— i 20 — dMT @ @4_@ + L E@@
T Re \*M T AT dy \ 0y oz (v —1)RePrM2T dy 9y
1 -~da (du ? 1 d (~dkdT
—T — ——— ([ T—— ). 2.14
R (dy) * (v —1)RePrM? 0y ( dT dy) (2.14)

The specific disturbance entropy introduced in (2.11b) is given as § = [(y — 1)~ 'T/T —
0/0]/(vM?), where the relation s — sg = ¢, In(T/Tp) +R1n(go/0) for a calorically perfect
gas with the specific gas constant R = 1/(yM?) was used (Moran & Shapiro 2000).

2.4. Decomposition of temporal growth rate w;

We are interested in the temporal evolution of the disturbance energy for normal modes,
i.e. disturbances with wave-like shape. Thus, we introduce the normal mode ansatz

i(z.9,t) = Re |qlary,w) @] ge{ouvTs}, (2.15)

where ¢(ay,y,w) denotes the complex first order disturbance amplitude, o, € R the
streamwise wave number and w = (w, + iw;) € C the complex angular frequency. The
wave-like disturbances are spatially periodic in the z-direction and restricted to a finite
domain in the y-direction, ¥y~ < y < yT. Hence it is sufficient to consider the fluid domain
Q' =10,27/cy) X [y, yT"], where 27 /c, denotes the disturbance wave length.

We evaluate the integrals in (2.10) and (2.11) over the domain Q' for normal modes
and use the relation

27 /oy T R
/O fade = Tt (f g) (2.16)

Qr

for products of disturbance quantities, e.g., fg € R with f,g € {@,ﬂ,f),T, 5}. The inner
product is given by (f,§) = Q(f*g + f§*) where (-)* stands for the complex conju-
gate. Terms (2.11j, k) as well as the boundary integrals faQt n, dS in (2.11f-h) van-
ish because of disturbance periodicity in the z-direction and from (2.16) it follows that
dE/dt = 2w E. We can therefore rewrite equation (2.11) for normal modes in the domain
Q' as the decomposition

B 3 P 2 D, 4 P,
wi_22E+22E+z_:ﬁ’ 217)

where

E= %/y [g((ﬁ,ﬂ) + (,0)) + (2.0 SACAES dy (2.18)
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denotes the disturbance energy amplitude and

. y* du . v’ dT - v* <T Q>
Pl :/ —§<ﬁ,’f}> 7dya P2 = / _@<ﬁ7§> T dy’ P3 = / = dy’ (2'1961'76)
- dy y- dy Y T
A y+
D = / — [(Fow, 10 @) 4 (Fay, Dytl) + (Foy, i D) + (Fyy, Dy0)] dy, (2.19d)
-
) v Gy iaeT) + (G, D, T
D, :/ (G, icy, >": <an Yy ) dy, (2.19¢)
v T
. yt . y* vt
Fl = - <ﬁ7{)> U_a F2 - <7ﬁmy7u> + <7ﬁuy7f)> y_7 (219fag)
+
R (T,q,) " - 1 [, . dada]? .
F. = — - Fy = — T — — 2.19h
3 T y*’ 4 Re <ua >dT dy - ( 7Z)

define amplitudes of production Pi, of dissipation Dj, and of flux Fk, respectively, with
D, =d/dy.

The production term P; describes the interaction of Reynolds stress —g(i, v) with the
base-flow velocity gradient da/dy and is the key component for inviscid flow. Interaction
between entropy flux density —a(9, 3) and base-flow temperature gradient d7/dy char-
acterises the production term P,. The third term P; includes production of disturbance
energy due to change of transport properties p and k with temperature. Production terms
P, can be positive and negative and therefore enhance disturbance growth or decay. Pure
dissipative effects are incorporated in the dissipation terms Dl and 152, which describe
viscous and thermal dissipation, respectively. Disturbance energy convected across the
domain boundary < is represented by the flux terms Fj,. Terms Fy and F, describe the
net flux of mechanical energy and Fj the net flux of thermal disturbance energy across
the domain boundary. The last flux term F‘4 arises due to the temperature-dependence
of the viscosity.

3. Results

In the following, we briefly present the application of the theory by two examples,
namely compressible Couette flow and plane jet flow. We would like to stress that the goal
of this section is not a comprehensive study of the linear stability of these flows, since this
has been carried out before (see e.g. Duck et al. (1994), Hu & Zhong (1998) and Parras
& Le Dizes (2010)), but rather to exemplify the more profound physical understanding
for instability mechanisms that can be gained from the proposed decomposition of the
temporal growth rate w;.

The spectra of both examples are obtained from a linear stability solver, where the
disturbance equations for the temporal problem were discretised using the Chebyshev
collocation method (Malik 1990; Peyret 2002) and the resulting generalised eigenvalue
problem was solved by the QZ algorithm. The integrals in (2.18)-(2.19) are evaluated
numerically by applying the Chebyshev-Gauss quadrature of the second kind on the
computed discrete eigenfunctions (Abramowitz & Stegun 1972).

3.1. Plane Couette flow

The compressible plane Couette flow is the solution of (2.1) subject to the boundary
conditions u(y~) = 0, u(y™) = 1, T(y~) = Tw, T(y") = 1 with the fluid domain
[y~,y"] = [0,1] and the recovery temperature T, = 1+ (v — 1)PrM?. The linear
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Figure 1: Disturbance amplitudes of mode-II instability for plane compressible Couette
flow at Re = 2.5 x 105, M = 5, o, = 2.4. (a,d) z-component of disturbance velocity 1,
(b,e) y-component of disturbance velocity 9, (¢,f) temperature disturbance T. (a)—(c) are
magnified sections of (d)—(f) near the top boundary layer at y* = 1. Magnitude (solid
lines), real part (dashed lines), imaginary part (dash-dotted lines).

stability of this flow was extensively studied by Duck et al. (1994) and Hu & Zhong
(1998). Here, we provide further insight into the growth mechanisms of compressible
Couette flow by exemplarily applying the decomposition proposed in § 2 for the so-
called mode-II instability (Hu & Zhong 1998). Disturbance amplitudes for mode IT at
Re = 2.5 x 10°, M = 5, ay, = 2.4 are plotted in figure 1. The z-component of the
disturbance velocity and the temperature disturbance show large gradients near the top
boundary which obeys the Dirichlet boundary condition.

The temporal growth rate w; and its decomposition into production and dissipation
terms for M = 5, o, = 2.4 and various values of Re are shown in figure 2. The flux terms
are all zero because of the vanishing velocity, temperature and heat-flux fluctuations at
the boundary. The production terms P,/2E and P;/2E and the dissipation term Dy /2FE
are small and roughly cancel each other. Therefore, the production term P / 2F and the
dissipation term D2/2E are the major components of wi. In the low- Re regime (Re < 10%),
the growth rate is dominated by the strongly negative dissipation term Dy / 2F, which is
related to thermal dissipation, whereas viscous dissipation plays a minor role. With rising
Re, the influence of the thermal dissipation is reduced while the production term P / 2F
rises to its maximum resulting in a positive temporal growth rate w;. For even higher Re,
the production term P / 2F , which quantifies the interaction between Reynolds stress and
base-flow velocity gradient, decreases and hence the growth rate also becomes smaller.

For a deeper level of understanding we further analyse the major terms of the decom-
position for the given flow, namely production P (2.19a) and dissipation D, (2.194d).
Both terms are defined as integrals over the domain [y, y™]. The respective integrands
are plotted in figure 3 for the same flow parameters as in figure 1. The integrand of
production P;, which measures the interaction of Reynolds stress with base-flow velocity
gradient, is nearly constant except for the spike at the top boundary y* and the gradual
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(x10—3)

10
(x10°)

Figure 2: Decomposition of temporal growth rate w; according to (2.17) of mode-II in-
stability (Hu & Zhong 1998) for plane compressible Couette flow at various Re; M = 5,
o = 2.4.

@ 1 b) 1 —
= 0.99 0.99
0.98 0.98
-5 0 5 10 ~-15  —10 -5 0 5
(x1079) (x1073)
() 1 @@ 1
0.8 0.8
0.6 0.6
=
0.4 0.4
0.2 0.2
0 0
-5 0 5 10 -15  —10 -5 0 5 ,
_ —5 ~ ~ —
—@(ﬂ {)>d_u (><10 ) <qAx7i04rT>+<‘jyaDyT> (><10 )
" dz T

Figure 3: Integrands of (a,c) production term P; and (b,d) dissipation term Dy for mode-
IT instability of plane compressible Couette flow at Re = 2.5 x 10°, M = 5, o, = 2.4.
(a)—(b) are magnified sections of (c)—(d) near the top boundary layer at y™ = 1.

decrease at the bottom boundary y~. On the other hand, the integrand of the thermal
dissipation D, is zero except in the very thin boundary layer near y* = 1, where the
integrand sharply drops to a negative value due to large fluctuations in the heat-flux
component ¢,. This analysis on the integrands reveals that the disturbance production is
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Figure 4: Temporally unstable modes for plane jet flow at M = 2.5 and Re = 10°. The
base flow is chosen according to (3.1) and (3.2).

nearly homogeneously distributed over the domain [y, y™], whereas the major thermal
dissipation is limited to a small region near the top boundary.

3.2. Plane jet flow

The local temporal linear stability of supersonic round jet flow has been studied recently

by Parras & Le Dizes (2010). In the following, we consider a plane supersonic jet. We will

show that under certain conditions the flux terms can be used to quantify a stabilizing

mechanism due to radiation which is observed for certain supersonic jet instability modes.
As base-flow velocity we choose the profile proposed by Michalke (1984)

(y) = % {1 + tanh (419 (I; - |y|>)] , (3.1)

where we set the momentum thickness # = 0.1. According to this definition, the velocity
shear layers are located at y = +1. The temperature profile T(y) is computed accord-
ing to the Crocco-Busemann relation (Busemann 1935), which for a temperature ratio
T(00)/T(0) = 1 and a vanishing ambient velocity #(oc) = 0 simplifies to

T(y) =1+ M*(v—1) (u(y) — @*(y)) . (32)

We set the physical domain to [y~,y"] = [-20,+20] and apply the coordinate map-
ping proposed by Bayliss & Turkel (1992) to accumulate the collocation points near the
shear layers. At the domain boundaries y*, we use the far-field boundary condition by
Thompson (1987).

Figure 4 shows different types of temporally unstable modes for the given base flow
at M = 2.5 and Re = 10°. Here, these modes are called modes I to IIT and they exhibit
partially overlapping ranges of unstable streamwise wave numbers. Mode II reaches max-
imum temporal growth for o &~ 0.55. In the following, we demonstrate the importance
of flux terms by comparing results of mode I and mode II. The decomposition of the
temporal growth rates and representative eigenfunctions 4(z) of both modes are shown
in figure 5. Mode II is of classical Kelvin—Helmholtz type, which is characterised by large
disturbance amplitudes in the base-flow shear layer and small amplitudes elsewhere (fig-
ure 5d). Its decomposition (figure 5b) reveals only contributions of P;/2E (interaction
of Reynolds stress with base-flow velocity gradient) and P, / 2F (interaction of entropy

Sl
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Figure 5: (a,b) Decomposition of temporal growth rate w; according to (2.17) of (a) mode-
I and (b) mode-II instability for plane jet flow at various a. (¢,d) Streamwise velocity
component ¢ of (¢) mode I and (d) mode II for o = 0.5. Magnitude || (solid lines), real
part Re 4 (dashed lines), imaginary part Im @ (dash-dotted lines).

flux density with base-flow temperature gradient). The remaining components of (2.17)
are negligibly small due to the large Reynolds number and the vanishing disturbance
amplitudes in the far field. Compared to mode II, we recognise the additional negative
flux term Fy /2F in the decomposition of mode I (figure 5a). This flux term quantifies the
net flux of mechanical disturbance energy across the domain boundary and is caused by
the radiating Mach-wave character of mode I (Tam & Hu 1989). This mode features non-
vanishing eigenfunctions in the far field (figure 5c¢) and therefore exhibits an additional
stabilizing mechanism due to sound radiation.

4. Discussion

In this paper, a detailed formulation for the decomposition of the temporal growth rate
of linear instability modes has been derived for two-dimensional, parallel, compressible,
viscous gas flow. The contributing terms can be classified as production, dissipation and
flux terms. The analysis identifies the relevant underlying mechanisms that determine
the linear stability of a given flow and quantifies the relative influence of different base-
flow properties such as velocity shear, temperature gradients, compressibility or viscous
effects, to name but a few.

The usefulness of this formulation to gain a deeper understanding of linear instability
in compressible flows and the capability to quantify the sensitivity of eigenmodes with
respect to changes in the parameter space have been demonstrated for plane Couette
flow (figure 2) and plane jet flow (figure 5) at supersonic Mach numbers. These examples
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highlight the distinct physical mechanisms that are responsible for disturbance growth
under certain flow conditions. Furthermore, inclusion of flux terms allows the quantifica-
tion of damping effects which can be present in unconfined flows, e.g. due to Mach-wave
radiation in supersonic open shear flows.

Appendix A. Linear disturbance equations

The linear disturbance equations for plane compressible flow were derived in § 2.2
under the assumption of a calorically perfect gas and a stationary, parallel base flow
(@ = q(y), v =0). Here we provide the full disturbance equations by listing the non-zero

elements of the linear disturbance operator NS (@), i.e.

Véll ﬁlg ﬁng 0

Non Nopz Nows U 0
Ao/ =\ ~ NSQl NSQQ NSQg ./\/824 U
@4 NS31 @32 @33 M§34 v (A1)
0 NSpp NSiz NSu | LT
with the coefficients for the equation of continuity
NS =0, +1d,
NS12 = 20, , (A20)
dz
NSlg = — + Qa
dy
the coefficients for the equation of momentum in the z-direction
—= T
NSo1 = maw
— 1 di dT
NSo = 00, + 100, — — (A +20) 9% + =0, + 502
Re dT dy (A 20)
NS d—“—i dp dT + (A + 1) 9,0, 7
B0y dT dy g
o V(i Pndner’ apda,
T M2 T Re\dT dy? T dT2dy dy | dT dy "
the coefficients for the equation of momentum in the y-direction
— 1 /dT
= 4T
NS31 17\ dy + T 9,
— 1 /dxdT <
NS30 = —— | —=— 0z + (A + [1) 0,0,
Re \ dT dy & 1 (A2c)
N - o 1 [ i J
S33 =00 Oy — — | 10> — 0y 2 8
NS33 = 00; +uo Re{u +(dT+ dT)d + (A +2p)
e 1 do 1 dpdu
NSs1 = M2~ (dy i 8y> Re dT dy %
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and the coefficients for the equation of energy

= oT 241 du
NS42 - M2'Y T Re dy Y
— 0 1 dT - 20 du
NS43= Q2 <d+T8y>—'udu8x
M2y \v—1dy Redy &= - ., (A2d)
7\/’\3 — L g(a + 0. ) 1 %dQl + ink d7T
" T M2y —1) v 49 T Repr c12T dy?  dT2\ dy
dk dT . 1 didu
2— — k(02 2 -
dT dy Oy + k(% + ay)] } Re dT dy
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