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Abstract

We introduce a two-stage, multiple-round voting procedure where the thresholds needed
for approval require a qualified majority and vary with the proposal on the table. We
apply such a procedure to instances of public-good provision where the citizens’ valuations
can take two values and are private. We show that the procedure elicits and aggregates
the information about the valuations and implements the utilitarian optimal public good
level. This level is chosen after all potential socially optimal policies have been considered.
We also develop a compound procedure to ensure utilitarian optimality when there are
arbitrarily finitely many types of citizen.
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1 Introduction

It is well known that in general voting procedures based on fixed majority thresholds, and on

the majority rule in particular, are unable to implement the decision that is utilitarian optimal

for the citizenry. Although such voting schemes present numerous advantages—Black (1948),

May (1952), Maskin et al. (1995), and Moulin (2014) are some of the canonical references—,

they are not without their drawbacks—see e.g. Arrow (1950), Plott (1967), Gibbard (1973),

Satterthwaite (1975), and McKelvey (1976). For one thing, fixed majority rules typically cannot

elicit the intensity of preferences, especially without the help of redistribution schemes. This

generally renders the utilitarian optimum unattainable via such voting procedures.1

To combine voting and utilitarian welfare maximization, one approach is to use flexible majority

rules, which allow approval thresholds to depend on the proposal on the table. Such schemes are

sometimes applied in practice and have been recently surveyed in Gersbach (2017). In Nebraska,

for instance, increases of the property tax above 5% cannot by decided by the legislature directly

but have to be approved in a referendum (Mullins and Cox, 1995).2 In a public-good provision

framework, Gersbach (2017) shows, in particular, that a sequential (or successive) procedure

based on appropriately designed flexible majority rules implements the welfare-optimal level

of the public good.3 Instead of voting on the final level of the public good immediately, a

series of votes on small increments are taken starting from the status quo, and voting goes on

until a higher threshold cannot be met.4 Also recently, Gershkov et al. (2016) have provided a

mechanism design foundation of successive voting procedures by showing that every unanimous

and anonymous dominant-strategy incentive-compatible mechanism is outcome-equivalent to

a successive procedure with decreasing thresholds, and vice versa. Among such procedures,

Gershkov et al. (2016) have further singled out those that are ex-ante utilitarian optimal.

Sometimes, the above procedures mean that the policy eventually adopted (i) is approved

only by a minority of the citizenry and (ii) is not pitted against all potential socially optimal

1More recent papers that offer foundations for the majority rule are Aşan and Sanver (2002), Woeginger
(2003), and Miroiu (2004). The Median Voter Theorem is the subject of an extensive body of literature, see e.g.
Barberà et al. (1993), Sprumont (1991), Ching (1997), and Chatterji and Sen (2011).

2This example and others can be found in Gershkov et al. (2016). More generally, the principle that larger
changes require larger majorities, ad maiore ad minus, is embedded in the constitutions of many countries. This
is, for instance, the case in Spain (see http://www.constitutionnet.org/files/constitutional_amendment_
procedures.pdf, retrieved 18 January 2017).

3Other procedures considered in the literature that aim to resolve the tension between mean and median voter
(Rosar, 2015) and to discern the intensity of preferences include (Casella, 2005; Fahrenberger and Gersbach, 2010;
Hortalà-Vallvé, 2010). Sequential procedures with fixed majority rules are broadly used in European parliaments
(Rasch, 2000).

4Incremental voting dates back to Bowen (1943).
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alternatives. The first property is in conflict with the majoritarian logic of collective decisions

and may prompt cycling in policy-making if the procedure is applied repeatedly. What is

more, by requiring majorities as large as possible for policy implementation, consensus within

the society can be fostered more efficiently. The second property is desirable if the extent to

which each citizen feels included in the decision process increases when the set of alternatives

considered along the voting process includes all alternatives that are welfare-optimal for a certain

distribution of the citizens’ valuations.

The main object of this paper is to show that it is possible to find a democratic procedure

that reconciles the implementation of the policy that is optimal from a utilitarian perspective

with two requirements that are remedies to the problems we have just mentioned. First, the

final policy decision has to be approved by at least half of the citizens—this requirement is

called consensus. Second, the status quo as a default option is adopted only after all potential

socially optimal alternatives have been considered—this requirement is called inclusiveness. We

impose the first condition in the design of the procedure, while the second feature obtains in

equilibrium.

To elaborate, we consider a (continuous) public-good provision problem where citizens are of

two types (low and high) regarding their valuation of the public-good level. For such a setting,

we introduce a two-stage, multiple-round voting procedure, which builds on the natural order

within the finite set of potential socially optimal public-good levels: higher public-good levels

are labeled with higher indices. The procedure is based on so-called semi-flexible majority rules

and consists of two stages of successive voting rounds with varying thresholds, the outcome of

the first stage being taken as the status quo in the second stage. In the first stage, the decision

on which policy should be set as the status quo for the second stage may be taken by more or

by less than half of the citizens, depending on the alternative being considered, and works as

follows: Starting from a zero public-good level, moving to positive public-good levels requires

the support of a small share of citizens. Moving to larger levels, however, requires the support of

a much bigger share of citizens until it reaches the entire society. In the latter case, the highest

possible public good level serves as the status quo for the second stage.

In the second stage, by contrast, the approval of any alternative requires an alternative-specific

qualified majority, which is never lower than half plus one of the citizens—hence the term

semi-flexible majority rule as opposed to flexible majority rules (Gersbach, 2017). Since it is

the purpose of the second to select the alternative that will be eventually adopted, the entire

procedure is in line with the first of our democratic requirements, viz. consensus. That is, the
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final decision will be always taken by a (simple or qualified) majority of citizens. Only when all

alternatives have been discarded against the status quo chosen in the first round will the latter

be adopted. While the first stage considers policies from low public-good levels to higher ones,

the second reverses the order.

The main result of the paper (see Theorem 1) shows that if citizens iteratively eliminate weakly

dominated strategies—and this fact is common knowledge—, any perfect Bayesian equilibrium

outcome of the game describing the procedure outlined will maximize ex-post utilitarian wel-

fare.5 Moreover, in equilibrium, the policy that is eventually adopted will always be chosen after

consideration of all potential socially optimal alternatives. As a consequence, our procedure also

meets the second of our democratic requirements, viz. inclusiveness.

Overall, our paper contributes to the literature on the implementation of social choice functions

by providing a new procedure (or mechanism) that implements the utilitarian social choice

function. However, since we consider a procedure with additional restrictions based on demo-

cratic considerations, our model departs from the standard mechanism design literature. Yet,

the procedure that we suggest is anonymous, unanimous, and non-manipulable (in strategies

that are not iteratively weakly dominated). We also investigate how to extend our procedure

to accommodate the case where citizens are of more than two types. This we do in the second

result of the paper, Theorem 2, where it is shown that these more general cases can be handled

by repeating a variation of our two-stage procedure a certain number of times in order to match

the total number of citizen types.

Two features of our analysis connect our contribution to other strands of the literature. First, in

a context of local public goods with deadweight costs of redistribution, Gersbach et al. (2016)

show that it is beneficial for society to always give the initiative in making proposals to the

minority, leaving the majority the opportunity of counter-proposing and voting together with

the minority on the two alternatives. Our main finding complements this result. In contrast to

making the first proposal, our setting enables a minority of the citizenry to set the status quo

that will be used in the final voting stage. Second, when citizens are of two types, the problem

which decision to adopt can be seen as a bargaining problem between both sets of agents. There

is an extensive body of literature on dynamic bargaining models where the outcome of one round

is taken as a disagreement point in the next round—see e.g. Fershtman (1990), John and Raith

(2001), or Diskin et al. (2011). Our paper adds to this strand of the literature by studying

a democratic procedure that fulfills the consensus and inclusiveness requirements, where both

5In Section 3 we discuss the extent of player rationality that ensures the optimality of our procedure.
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sets of agents jointly set the status quo (or disagreement point) for the second stage.

The paper is organized as follows: In Section 2 we set out the model and introduce our two-stage

voting procedure. In Section 3 we prove the main result of the paper. In Section 4 we discuss

how the procedure needs to be adapted if there are three or more types of citizen. Section 5

concludes. The proofs are given in the Appendix.

2 Model

2.1 Set-up

We consider a society with n individuals who decide about the level x of a public good. We let

n > 2 and for ease of presentation assume that n is odd. Individuals are indexed by i or j, with

i, j ∈ {1, . . . , n}. Investment levels are denoted by x or y, with x, y ∈ [0,∞). The aggregate

marginal cost of any unit of investment in the public good is c > 0. Costs are distributed equally

among individuals. There are two types of individual, drawn from the type space T = {tL, tH},
with 0 < tL < tH . The type of individual i is denoted by ti, with ti ∈ T . If an investment x is

made, individual i derives utility from the public good that is equal to

v(x, ti) = ti · f(x)− c

n
· x, (1)

with f(·) being a real-valued, twice-differentiable function satisfying the Inada conditions, i.e.,

f(0) = 0, f ′(x) > 0 and f ′′(x) < 0 for x > 0, limx→0+ f
′(x) = +∞, and limx→∞ f ′(x) = 0.

Hence, individuals of type tH benefit more from the implementation of any level of the public

good than individuals of type tL. An immediate consequence of Equation (1) is that preferences

of individual i are single-peaked in x, with peak xi > 0 defined by

f ′(xi) =
c

n · ti
.

The type of individual i is private information, and all citizen types are drawn from a joint

distribution, with the property that the number of low-type (high-type) citizens has full support

in {0, . . . , n}. We do not specify the joint distribution since the properties of the procedure will

not depend on it.6

Finally, we determine the level of investment that maximizes utilitarian welfare. The utilitarian

6The validity of Theorem 1 does not hinge on the assumption that the prior type distribution has full support.
Nevertheless, the voting procedure we consider in Section 2.2 consists of several rounds, some of which may not
be needed if the prior type distribution does not have full support. We discuss this issue further in Section 3.
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level of investment is denoted by xsoc and can be computed from Equation (1) as follows:

f ′(xsoc) =
c∑n
i=1 ti

. (2)

It will be opportune to introduce the notation tsoc = 1
n

∑n
i=1 ti. The value tsoc can be interpreted

as the socially optimal (virtual) type.

2.2 A voting procedure

To decide about the public-good level x to be carried out, we develop a two-stage, multiple-

round voting procedure. The object of the first stage is to set a status quo, denoted by x̄, for

the second stage, where the final outcome will be chosen. For all j ∈ {0, . . . , n}, let yj be the

investment level defined by

f ′(yj) =
c

(n− j) · tL + j · tH .

That is, yj is the preferred level of investment for a society consisting of imaginary citizens of

type n−j
n
· tL + j

n
· tH . The voting procedure will choose one outcome out of the following discrete

set of alternatives:

Y := {y0, . . . , yn}.

The set Y consists of all the public-good investment levels that are utilitarian optimal for

different combinations of individual types. Sometimes we will refer to the elements of Y as

feasible alternatives. The (maximum) number of rounds in each of the two stages will directly

depend on the cardinality of Y and hence indirectly on n. Citizens cannot abstain in any voting

round.

We are now in a position to introduce the voting procedure, which, as already mentioned, will

be based on so-called semi-flexible majority rules. The sequence of events is as follows:

Stage 1

Round 1.1: A vote is held between moving to the next round and setting x̄ = y0. At

least one vote is required to move to Round 1.2. Otherwise the procedure jumps to

Stage 2 with x̄ = y0.

...

Round 1.(n − 1): A vote is held between moving to the next round and setting

x̄ = yn−2 and jumping to Stage 2. At least n − 1 votes are required to move to

Round 1.n.
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Round 1.n: A vote is held between setting x̄ = yn−1 and setting x̄ = yn. Unanimity is

required to set x̄ = yn and move to Stage 2 with such a status-quo policy. Otherwise

Stage 2 starts with x̄ = yn−1.

Stage 2 (Let x̄ = yk, with k ∈ {0, . . . , n}, be the outcome of Stage 1.)

Round 2.1: A vote is held between moving to the next round and choosing yn as the

final outcome. Unanimity is required to choose yn, in which case the procedure ends.

...

Round 2.(n− r + 1) (with r ≥ k): A vote is held between moving to the next round

and choosing yr as the final outcome. At least max
{
r, n+1

2

}
votes are required to

choose yr, in which case the procedure ends. Otherwise the procedure moves to

Round 2.(n− r + 2).7

Round 2.(n− r + 1) (with r < k): A vote is held between moving to the next round

and choosing yr as the final outcome. Unanimity is required to choose yr, in which

case the procedure ends. Otherwise the procedure moves to Round 2.(n− r + 2).

...

Round 2.(n+ 2): If this round is reached, x̄ is chosen as the final outcome.

Several remarks are in order. First, while we assume that voting is simultaneous in every round

of the procedure, we do not make any assumption about the extent to which the results of

each voting round are disclosed. As a matter of fact, for our results to hold, it will not be

necessary for the voting outcome to always become public knowledge before the next round

starts. It will suffice if all citizens understand that either they have moved to the next voting

round (because the previous one was not successful) or that they have reached the end of the

procedure.8 Second, all public-good levels in Y can be the outcome of the suggested voting

scheme for certain voter behaviors. Third, in Stage 1, increasing thresholds have to be met

to set higher levels of the public good as the status quo for Stage 2. This conveys the idea

that higher levels of the public good as the status quo for subsequent voting necessarily call for

stronger support from the citizens. This property is illustrated by Figure 1.

7If we set h = n + 1 − r, the majority threshold considered in Round h, with h ∈ {1, . . . , n + 1 − k},
is fk(h) := max {n + 1− h, (n + 1)/2}. It turns out that for Theorem 1 to hold—see Section 3—, it will
suffice to consider that {fk(·)}nk=0 is a collection of non-increasing, onto functions fk : {1, . . . , n + 1 − k} →
{max{(n + 1)/2, k}, . . . , n} such that fk+1(·) ≤ fk(·). This is discussed in the Appendix.

8Gershkov et al. (2016) share with our model the property that the results hold independently of the disclosure
policy about the results of successive voting rounds.
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y

z

1

...

...

k

n

y0 . . .
yk

. . . yn−1

Figure 1: Stage 1—Number of votes (z) required to move from one project level to the next
one. The procedure starts with y0.

Fourth, in every voting round of Stage 2, a particular qualified majority of votes is compulsory

to adopt any alternative from the set Y as the final decision. The required threshold is minimal

in the case of the status quo set out in Stage 1 (viz., x̄ = yk for some k ∈ {0, . . . , n}), and

becomes higher as the level of the public good deviates from x̄. For levels that are lower than

the status quo, in particular, unanimity is required. The specific evolution of the vote thresholds

along the different rounds is shown in Figure 2.

y

z

1

...

...

k

n

yn . . .
yk yk−1 . . . y0

(a) Case k ≥ n+1
2 .

y

z

yk̂

1

...

...

n+1
2

n

yn . . . . . .
ykyk−1 . . . y0

(b) Case k < n+1
2 (with k̂ = n+1

2 ).

Figure 2: Stage 2—Number of votes (z) required to approve a policy, with x̄ = yk the status
quo set out in Stage 1. The procedure starts with yn.
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Fifth and last, only if no majority threshold is met in all the voting rounds of Stage 2 will the

status quo chosen in Stage 1 be adopted by default.

3 Equilibrium Results

In this section we present and discuss the main result of the paper. We apply the concept of

perfect Bayesian equilibrium and assume that citizens eliminate weakly dominated strategies

iteratively by moving backwards in the two-stage voting procedure. This fact is considered to

be common knowledge.9 We obtain

Theorem 1

The outcome of the two-stage voting procedure is xsoc.

Several comments are helpful in fully grasping the relevance and implications of the theorem.10

First, as already mentioned, the procedure we have suggested requires qualified majorities in

Stage 2 for changes to the outcome of Stage 1 and unanimity, in particular, for public levels

lower than the one specified in the status quo chosen therein. For a range of rounds, however,

a whole family of qualified majority thresholds ensures utilitarian optimality, which includes

the thresholds set out in Section 2. This is shown in the Appendix—see also Footnote 7. More

specifically, it will suffice for the majority thresholds of Round 2.1 to Round 2.(n+1−k) (where

the proposal on the table is the status quo chosen in Stage 1) to be non-increasing, ranging from

unanimity to a certain qualified majority (never lower than half plus one of the votes). This

guarantees that high-type citizens will not be able to impose a public-good level that is higher

than the socially optimal one. By contrast, the unanimity rule required in any voting round

after Round 2.(n+ 1− k) grants any individual the veto power to impose the status quo as the

final outcome, which is essential for optimality in the general case.

The voting thresholds of Stage 2 can nonetheless be lowered in specific cases where the possible

number of high- or low-type individuals is further bounded, and in particular when individual

types are not drawn independently from each other. For instance, suppose the number of

high-type individuals has support {0, n, n + 1, . . . , n} for some n with 1 < n < n. Then the

unanimity thresholds that apply to public-good levels lower than the status quo can be lowered

to max{n−n+1, n+1
2
}. The reason is that situations where only a few high-type individuals are

9Within any individual voting round we look for a sequence of elimination of weakly dominated strategies.
It turns out that any such sequence will yield the same outcome.

10We note that while there is not a unique equilibrium, beliefs along the equilibrium path are the same for
all perfect Bayesian equilibria (even under the most strict disclosure policy regarding voting outcomes).
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present cannot occur. In these circumstances, each high-type individual will enjoy a de facto

veto power enabling him to block the approval of any alternative that requires more than the

support of n− n citizens of the low type. Knowing this, low-type citizens will also always vote

to proceed to the next round, since their vote will only make a difference where there are no

citizens of the high type at all.

Another example is a situation where the number of low-type individuals has support {n −
1, n, . . . , n} for some n with 1 < n < n. In this case, the second-stage thresholds for the

approval of public-good levels that are higher than the one prescribed by the outcome of Stage

1 can be lowered to max{n − n + 1, n+1
2
}. The reason is that there will never be n − n + 1 or

more individuals of the high type, and voting in favor of any alternative that proposes a public

level yr, with r ≥ n−n, will be weakly dominated for low-type individuals by voting to proceed

to the next round. When either n = 1 or n = 1, the same logic explains the main mechanisms

behind Theorem 1.

Second, to achieve utilitarian optimality, a number of proposals equal to the number of voters

plus one would have to be considered in general. This is not always necessary. On the one

hand, if the joint distribution of types has rather small support—e.g. because the preferences of

different individuals are highly correlated—all those rounds can be skipped that cannot qualify

for a potential socially optimal alternative. On the other hand, an approximate socially optimal

solution may suffice when the number of citizens is considerable. If n is large and the citizens’

types are i.i.d., in particular, the Central Limit Theorem guarantees that the socially optimal

type will be distributed normally, with a mean µ and a variance σ that could be estimated.

Then one could add a criterion to our procedure in order to exclude the tails of the distribution

and hence the most extreme policies. For instance, for a given α ≥ 0, the set of feasible policies
{
y : f ′(y) =

c

n · t , t =
n− j
n
· tL +

j

n
· tH , µ− α · σ ≤ n− j

n
· tL +

j

n
· tH ≤ µ+ α · σ

}

could be considered. The procedure would then be run over them instead of the entire set Y .

Parameter α determines the loss of efficiency that such a procedure would induce. The larger

α, the lower the loss.

Third, the procedure we have analyzed in Theorem 1 is by construction dependent on the

citizens’ utility function.11 However, if types are constant (though private) but only the function

f changes from problem to problem, the procedure can be adapted to hinge on types rather

than on policies, thereby expanding its applicability to a wider range of problems. This follows

11This feature is common to Bowen (1943), Gershkov et al. (2016), and Gersbach (2017). In our setting, in
particular, it follows from the dependence of the elements of Y on f .
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from the trivial fact that a one-to-one correspondence exists between the set of potential socially

optimal types and the set of feasible alternatives (see also the discussion in the next section).

Of course, for such a procedure to be implementable, it should be possible, i.e. legal, to base

a democratic procedure for public-good provision on types such as income, for example, rather

than on the policies themselves.

Fourth, our notion of equilibrium is demanding in terms of players’ rationality, since it requires

it be common knowledge that all citizens iteratively eliminate weakly dominated strategies.

However, there is only one particular range of voting rounds where this elimination process is

crucial. Let us consider the voting rounds of Stage 2, where the proposal on the table speci-

fies a public-good level lower than, or equal to, the status quo set in Stage 1. The unanimity

requirement grants any high-type citizen the veto power to impose the adoption of the status

quo, a power which he will use by voting to proceed to the next round independently of other

individuals. By contrast, for low-type individuals is essential that (i) they do not take a voting

decision in any round that is weakly dominated, and that (ii) they are able to eliminate iter-

atively by moving backwards in the procedure any weakly dominated voting decision of their

own. Common knowledge about these two features guarantee that, in all voting rounds of Stage

2, low-type citizens will also vote to proceed to the next round (if there is one). The reason is

that their decision will only be relevant when all citizens are low-type.

Finally, it is important to note that the same equilibria could also be obtained by using cut-

off strategies in Stage 2, according to which an individual can only change his vote (proceed

or stop) once at most along the different voting rounds of the stage. Iterative elimination of

weakly dominated strategies can accordingly be seen as a foundation for such cut-off (behavioral)

rules.12

4 Multiple Types

In our analysis thus far, we have assumed that individuals are of two types, low and high.

Theorem 1 then demonstrates that the suggested two-stage, multiple-round procedure is able

to elicit the information about how many citizens are of either type. This is possible because,

as discussed in the previous section, there is a one-to-one correspondence between the number

12Monotone (or cut-off) strategies have been used by Gershkov et al. (2016), which have also been justified by
an iterative process of elimination of weakly dominated strategies. The subtleties, however, are different here.
One reason is that the last step of the procedure considered by Gershkov et al. (2016) consists of a vote between
the last two alternatives, while our procedure consists of a vote between the status quo of Stage 1, x̄ = yk, and
the ex-ante status quo, y0.
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of individuals of the high (low) type and the alternative eventually chosen from the set Y . One

ensuing question is whether a democratic procedure also exists for the case where citizens can

be of more than two types and is able to elicit information about how many individuals of each

type there are. If this information can be elicited, the procedure can implement the utilitarian

optimal public-good level. This will be addressed next.

Suppose now that there are T > 2 possible types and that the type of individual i is denoted

by ti, where ti ∈ T = {t1, . . . , tT} and 0 < t1 < . . . < tT . The utilitarian optimum outcome

is still given by Equation (2). This means that any procedure intending to implement such an

outcome should account for a set of potential (or feasible) alternatives that contains the set Y ,

where now

Y :=

{
y : f ′(y) =

c

t
, t =

T∑

v=1

nv · tv, n1, . . . , nT ≥ 0,
T∑

v=1

nv = n

}
.

We next introduce the set

I =

{
(n1, . . . , nT ) : n1, . . . , nT ≥ 0,

T∑

v=1

nv = n

}
.

Trivially, there exists a one-to-one correspondence between sets Y and I. Hence, for any par-

ticular problem we can imagine a decision about set Y as a decision about set I. For all

v ∈ {1, . . . , T − 1} and j ∈ {0, . . . , n}, it will be useful to define the level of public good yjv by

f ′(yjv) =
c

(n− j) · tv + j · tv+1
,

as well as the set

Yv = {y0
v , . . . , y

n
v }.

We note that yjv is the optimal public good level when n − j individuals are of type tv and j

individuals are of type tv+1. By construction,

T⋃

v=1

Yv ( Y .

Next, consider the following procedure, which we call the T -compound procedure:

Step 1: Apply our two-stage procedure to set Y1. The outcome of this step is denoted by

yn−N
1

1 , with N1 ∈ {0, . . . , n}.
...

Step T − 1: Apply our two-stage procedure to set YT−1. The outcome of this step is

denoted by yn−N
T−1

T−1 , with NT−1 ∈ {0, . . . , n}.
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Step T : The final outcome is the allocation y ∈ Y such that

f ′(y) =
c∑T

v=1 nv · tv
,

where NT = n and 



n1 = N1

. . .

n1 + . . .+ nT−1 = NT−1

n1 + . . .+ nT−1 + nT = NT .

(3)

Note that for v ∈ {1, . . . , T−1}, the decision about N v is taken according to the same procedure

as for two types only, the case examined in the previous section. Hence it is subject to the same

democratic concerns.13 Moreover, it can be easily verified that the system of linear equalities

in (3) has a unique solution, which is denoted by (n∗1, . . . , n
∗
T ) and given by

n∗v = N v −N v−1 (v ∈ {1, . . . , T − 1}),

with N0 = 0.

We next examine the preference relation of citizen i of type ti = tj ∈ T with regard to any

pair of elements (n1, . . . , nT ), (n′1, . . . , n
′
T ) ∈ I ∼= Y , which we denote by �i. Although these

preferences are not fully specified, for v, v′ ∈ {1, . . . , T} such that nv = n′v′ > nv′ = n′v and

nv′′ = n′v′′ with v′′ 6= v, v′, we must have

[j ≥ v > v′ or v′ < v ≤ j]⇒ (n1, . . . , nT ) �i (n′1, . . . , n
′
T ). (4)

That is, ceteris paribus, individual i will prefer the number of individuals of type tj that the

procedure takes as input to be higher for types tv close to ti than it is for those types that are

farther away, the measure of distance being |ti − tv|.

Consider now Step 1 of the T -compound procedure: Clearly, citizens of type t1 and t2 will

behave exactly as they do in the case with two types examined in Section 3. The reason is that

according to the preference property given by (4), the utility of citizens of type t1 is increasing

in N1 and decreasing in N2, with these statements reversed for individuals of type t2. But,

what about individuals of type t3 and higher? Again, because of the preference property given

by (4) they will all behave in Step 1 as if they were of type t2. The same logic can now be

applied to all steps, obtaining the following result:

13In the compound procedure, inclusiveness has to be considered with the following caveat: While the set of
policies that can arise as outcome is the entire set Y, not all the elements of this set will be considered along
the different rounds of the procedure for a given realization of preferences. This contrasts with the case T = 2
analyzed in Section 3.
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Theorem 2

The outcome of the T -compound voting procedure is xsoc.

Finally, it is instructive to explore the outcomes that could be achieved with limited use of the

T -compound voting procedure. In particular, using the logic behind the above theorem, the

following can be easily deduced: Suppose the two-stage procedure of Section 2 is applied to the

multiple-type case by only considering, say, the set of alternatives Yj, with j ∈ {1, . . . , T − 1}.
Then the final outcome would maximize the utility of an imaginary citizen of type mj · tj + (n−
mj) · tj+1, where mj is the number of individuals with types in the set {t1, . . . , tj−1, tj}.14 This

means that the compound procedure can be used to produce outcomes in which some types

receive a particular weight in the collective decision—and, more particularly, only some of those

types matter. For instance, this could occur when a group of citizens whose type belongs to a

certain class (of types) form parties or factions and a representative individual, say the median

member of the coalition, casts the votes for this group.

5 Conclusions

We have presented a new procedure implementing the utilitarian optimum in a standard problem

of public-good provision. Unlike other procedures described in the literature that use multiple-

round voting with varying thresholds, we have imposed the property that such thresholds require

more than half of the votes for the policy finally approved. This is a plausible restriction that

reflects the majoritarian logic of democracy. Our procedure also displays the property that,

in equilibrium, all potential socially optimal proposals will be considered at some point in

time. Both properties, which we have called consensus and inclusiveness respectively, may be

desirable in the real world. Voting schemes based on our procedure could thus be introduced on

an experimental basis in democracy. Like other voting procedures based on varying thresholds,

however, the procedure that we have suggested is not universally applicable (unlike the majority

rule) and has to be tailored to particular collective-choice decisions.

A variety of extensions of our model and further applications of our procedure could be consid-

ered for future research. For example, we could consider collective decisions in which citizens

are ambiguous about the underlying distribution of types and then develop robust semi-flexible

majority rules. Then again, the suggested scheme could be used in committee decisions about

14Suppose, by contrast, that the procedure of Section 2 were run on the (erroneous) assumption that all
citizens are of types t1 and tT . In this case, besides the exact number of citizens of each actual type, the
outcome would also depend on the values between t1 and tT .
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any issue that can be translated into a numerical scale. In particular, the voting scheme could

also be applied to the selection of a candidate from a pool of aspirants, provided that the dif-

ferences among all candidates can be ordered along one dimension such as, say, the candidates’

degree of conservatism in a procedure for choosing the head of a central bank.

Finally, our model and results are also relevant from a purely positive perspective. It has been

stressed that reference points may have a crucial impact on the outcome of voting procedures.

We have shown in particular that the utilitarian optimal outcome can be attained when the

reference point (i.e., the status quo) together with the majority requirements for changing this

reference point are chosen appropriately.
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Appendix

As discussed in Section 2—see Footnote 7—, the result of Theorem 1 holds not only for the

procedure described in Section 2, but also for a broader family of procedures containing the

former as an instance. Each procedure of this family is contingent on the choice of certain

non-increasing sequences of majority thresholds to be applied to the first rounds of Stage 2,

more specifically, to the rounds involving policies yn, yn−1,..., and yk = x̄ (the status quo chosen

in Stage 1). Formally, for each k ∈ {0, . . . , n} let

Ak := {1, 2, . . . , n+ 1− k}

and

Bk :=

{
max

{
n+ 1

2
, k

}
,max

{
n+ 1

2
, k

}
+ 1, . . . , n

}
.

While we will interpret Ak as round indices, the elements of Bk will be majority thresholds—see

below. Note in particular that Bk = {k, . . . , n} if k ≥ n+1
2

. Then for each k ∈ {0, . . . , n}, with

x̄ = yk being the status quo chosen in Stage 1, let

fk : Ak −→ Bk

h −→ fk(h).
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The only difference with regard to the description of the two-stage voting procedure defined in

Section 2 is that now, for Round 2.h, with h = 1, . . . , n+ 1− k, the majority threshold required

to adopt the proposal on the table will be fk(h). Hence, each choice of
{
fk(·)

}n
k=1

defines

a (democratic) procedure. We assume that fk(·) is non-increasing and onto.15 It follows, in

particular, that fk(1) = n and

fk(n+ 1− k) = max

{
n+ 1

2
, k

}
. (5)

Moreover, we assume that

fk(h) ≥ fk+1(h), for all h ∈ {1, . . . , n+ 1− k}. (6)

For each k ∈ {0, . . . , n}, we let Fk be the set of all such functions. It follows directly that if

k ≥ n+1
2

, there is only one possible element of Fk, namely

fk(h) = n+ 1− h.

Finally, let

fk(h) := max

{
n+ 1− h, n+ 1

2

}
,

and

f
k
(h) = min

{
n,

3(n+ 1)

2
− k − h

}
.

It is easy to verify that both functions belong to Fk. Note, in particular, that fk(·) is the

threshold function considered in the main body of the paper. It is also straightforward to check

that for each fk(·) ∈ Fk and h ∈ Ak,

fk(h) ≤ fk(h) ≤ f
k
(h). (7)

The shape of the possible functions fk(·) ∈ Fk is illustrated in Figure 3 for the case where

k < n+1
2

. There it is shown that Fk is the convex hull of fk(·) and f
k
(·), which are the

supremum and the infimum of the set of functions, respectively.

For each status-quo proposal y = xk chosen in Stage 1, Fk has been defined as the set of

possible majority thresholds for voting rounds in Stage 2 where the proposal on the table

specifies a public-good level higher than, or equal to, the one specified by the status quo chosen

in Stage 1. This set is reminiscent of the class of decreasing thresholds considered by Gershkov

et al. (2016). Indeed, when x̄ coincides with the ex-ante status-quo, namely y0, our class

of thresholds coincides with the subclass of thresholds considered by Gershkov et al. (2016)

15A mapping f : A→ B is onto if for all y ∈ B there is x ∈ A such that y = f(x).
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y

z

yk̂

1

...

...

n+1
2

n

fk(·)
f
k
(·)

yn . . . . . .... . . .
ykyk−1 . . . y0yk̄

Figure 3: Generalized Stage 2 of the two-stage procedure—Number of votes (z) required to
approve a policy, with x̄ = yk the status quo set out in Stage 1. Case k < n+1

2
(with k̂ = n+1

2

and k̄ = n+1
2

+ k). The procedure starts with yn. Functions fk(·) and f
k
(·) are depicted by

dotted lines.

satisfying the additional property that no threshold can be below half plus one of the number of

citizens. Such a class of thresholds can be rationalized from a mechanism-design viewpoint when

the majority requirement is imposed beyond standard properties such as anonymity, unanimity,

and incentive compatibility.

In the remaining part of this appendix we solve the game induced by the procedure described

above, and, in particular, the procedure considered in the main body of the paper. We analyze

it backwards, taking into account whenever necessary the beliefs about the presence of high-

and low-type citizens. We thus start with the analysis of Stage 2.

Proof of Theorem 1

Analysis of Stage 2

Let x̄ = yk be the outcome of Stage 1, with k ∈ {0, . . . , n}. Next we consider Round 2.h of

Stage 2, with h = n+ 1, . . . , 1. We distinguish three cases.

Case I: h = n+ 1

The decision in Round 2.(n + 1) consists in choosing either y0 or x̄ as the final outcome. If

k = 0, there is no real choice, and x̄ = y0 will be adopted regardless of the citizens’ vote. Hence,

let k > 0 and thus y0 < x̄. In this case, unanimity is required for approval of y0. Then it is in
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any citizen’s best interest to vote truthfully for the alternative that yields higher utility, either

y0 or x̄, because doing so will make a positive difference when the vote is pivotal (i.e., when all

other citizens vote for x̄) and will make no difference otherwise. In other words, voting for the

proposal on the table is weakly dominated for high-type citizens by voting to proceed to Round

2.(n+2), while the weak-domination relation is reversed for low-type citizens. Hence, if citizens

play no strategies that are weakly dominated, low-type citizens will vote for y0 and high-type

citizens will vote to proceed to the last round, where x̄ is automatically adopted.

Case II: n− k + 1 < h < n+ 1

The decision in Round 2.h, with n− k + 1 < h < n+ 1, consists in choosing between yn−h+1 as

the final outcome and proceeding to Round 2.(h + 1). Unanimity is required for yn−h+1 to be

adopted. This implies that any individual has the (veto) power to ensure that the procedure

continues to the next round and ultimately to Round 2.(n + 2), a round in which x̄ will be

adopted—if such a citizen votes in favor of this possibility in all these rounds.

Let us first consider an individual of type tH . Such an individual will vote to proceed to the

next round until Round 2.(n + 2) is eventually reached. The reason is that he prefers x̄ = yk

over yn−h+1 (recall that n− k + 1 < h) and he anticipates that weakly undominated strategies

(in particular, his own strategies) will be eliminated in future rounds. Indeed, if at least one

other citizen votes to proceed to the next round, his vote will make no difference. However, if

all other citizens vote in favor of the proposal on the table, his vote will be pivotal, in which

case he benefits from moving to the next voting round. Since this property holds for all rounds

until Round 2.(n+ 1) is reached—due to the unanimity rule necessary to adopt the proposal on

the table—, voting to proceed to the next round weakly dominates, for any high-type citizen,

voting in favor of the proposal on the table in all rounds h = n− k+ 2, . . . , n.16 This will result

in adoption of x̄ regardless of the vote of the remaining citizens whenever there is at least one

individual of the high type.

We now consider an individual of type tL. In Round 2.h, he faces a subtle choice. If he votes in

favor of the alternative on the table, yn−h+1, his vote may theoretically help to guarantee that

such a policy will be chosen. If, by contrast, he votes for the procedure to continue to the next

round, the risk he takes is that the status quo x̄ will be eventually chosen if all alternatives

yn−h, . . . , y0 are subsequently rejected. Because he prefers yn−h+1 to x̄ = yk (recall again that

n− k + 1 < h), the choice is not immediately obvious. Nevertheless, we next show that for an

16Note that high-type individuals do not need to assume anything in particular about the behavior of other
citizens.
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individual of type tL, it will be a best response to always vote to proceed to the next voting

round, provided that citizens play no weakly dominated strategies in subsequent rounds and

that this is common knowledge.

We distinguish two cases. First, suppose a low-type individual believes that at least one high-

type individual is present. Then this low-type individual expects that no unanimity will be

reached in all subsequent rounds h + 1, · · · , n, which, in turn, would implement a public-good

level different from the status quo x̄. In particular, he expects that his vote will not change

anything and that x̄ will be eventually adopted. Now suppose the low-type individual, say

citizen i, believes that no other citizen is of the high type. In this case, individual i expects

that his vote to proceed to the next round will eventually lead to Stage n + 1 whenever such

a vote is pivotal. In Stage n + 1, citizen i believes that all citizens will vote for y0, which is

i’s preferred alternative. Thus, regardless of the beliefs that he holds at the node representing

Round 2.h, a low-type citizen will vote to proceed to the next round.

Case III: 1 ≤ h ≤ n− k + 1

Again, the decision in Round 2.h, now with 1 ≤ h ≤ n − k + 1, consists in choosing yn−h+1 as

the final outcome or proceeding to the next stage (note that r = n+ 1− h is the index used in

Section 2 to describe policy yr). This time, however, a majority of fk(h) of votes is required for

yn−h+1 to be adopted.17 If such a majority does not materialize, the procedure will continue,

yielding some outcome y ∈ Y satisfying the property that y ≤ yn−h+1, with yn−h+1 ≥ x̄ = yk

(recall that n − k + 1 ≥ h). This means that if the procedure does not stop at Round 2.h

the outcome will leave high-type individuals worse off and low-type individuals better off (if

h < n − k + 1), or will leave high-type individuals weakly worse off and low-type individuals

weakly better off (if h = n− k+ 1). We distinguish two cases. First, assume that h < n− k+ 1.

Then, due to the fact that a vote can be pivotal for certain voting decision profiles, all citizens

will vote truthfully: high-type individuals will vote in favor of yh and low-type individuals will

vote to proceed to the next round. The reason is that, for any high-type citizen, voting in favor

of the proposal on the table weakly dominates voting to proceed to the next round. Similarly,

for any low-type citizen, voting to proceed to the next round weakly dominates voting in favor

of the proposal on the table. Note that these two properties hold independently of the majority

required in the voting round, viz. fk(h).

Next, let us examine the case h = n − k + 1. Consider first a citizen of type tH . If he votes

for the proposal on the table, i.e. for yk, he may contribute to the adoption of such a proposal

17We stress that in the main body of the paper we have considered fk(h) = max
{

n+1
2 , n + 1− h

}
.
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if his vote is pivotal. If, on the other hand, he votes for the procedure to continue to the next

round, he knows that he will be able to ensure that x̄ = yk will also be adopted in subsequent

voting rounds thanks to his veto power. Hence, any high-type citizen will be indifferent between

either possibility—and we can assume arbitrary voting behavior in this round. Consider now a

citizen of type tL. Voting to proceed to the next round will produce an outcome y ≤ yk = x̄,

which in the case where y < yk (an outcome that is attainable for certain voting behavior) is

strictly preferred over yk. That is, for a low-type citizen, voting to proceed to the next round

weakly dominates voting for the proposal on the table, yk. Again, this holds independently of

the majority required in the voting round, viz. fk(n + 1 − k) = max{n+1
2
, k}. Note that in

Stage 2, low-type citizens will accordingly always vote to proceed to the next voting round,

with the exception of the last voting round, namely Round 2.(n + 1), where they will vote for

the proposal on the table.

Having established the citizens’ behavior in all voting rounds of Stage 2, we now let k (with

x̄ = yk) vary from 0 to n and obtain the outcome of Stage 2 for different distributions of citizen

types. We do so by building on the insights provided in Cases I–III above. Recall that the

socially optimal level of public good is denoted by tsoc = n−j
n
· tL + j

n
· tH , with j ∈ {0, . . . , n}.

That is, tsoc denotes the utilitarian solution when the society is made up of j citizens of type

tH and n− j citizens of type tL.

First, if j = 0, all citizens (who are of the low type) will always vote to proceed to the next

voting round, until Round 2.(n + 1) is eventually reached, where all of them will vote in favor

of the proposal on the table, y0. Second, if 0 < j ≤ n−1
2

, all low-type citizens, who constitute a

majority of the electorate, will block the approval of any proposal of Rounds 2.1 to 2.(n+1−k).

The reason is that a (qualified) majority is needed in all these rounds for the approval of the

proposal on the table. However, since there is at least one citizen of the high type, any such

individual will be able to guarantee that the status quo x̄ will eventually be chosen. Third, if

n+1
2
≤ j ≤ n, a majority of the electorate is made up of citizens of the high type. If j = n,

in particular, all citizens, who are of type tH , will vote for yn, and the procedure will end just

after Round 2.1.

Accordingly, we are left with the constellation

n+ 1

2
≤ j < n. (8)

Note that because there is always one citizen who is of type tH , the procedure will yield some

proposal y with the property that y ≥ yk = x̄. We distinguish two cases, depending on the

status quo chosen in Stage 1, viz. x̄.
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Case A: n+1
2
≤ k ≤ n

In this case, for h = 1, . . . , n+1−k, we have fk(h) = n+1−h as the majority threshold required

for the approval of the proposal on the table of Round 2.h, namely yn+1−h. The reason is that

for k ≥ (n+ 1)/2, the only non-increasing, onto function belonging to Fk is fk(h) = n+ 1− h.

Because in each of these rounds all individuals of the high type will vote in favor of the proposal

on the table and all individuals of the low type will vote to proceed to the next voting round,

the outcome of the procedure will be max{yj, x̄}, where x̄ = yk is the status quo and j is the

number of citizens of type tH . In particular, if x̄ = yj, the outcome will be the status quo

proposal chosen in Stage 1.

Case B: 0 ≤ k ≤ n−1
2

For h = 1, . . . , n+1−k, we again have fk(h) as the majority threshold required for the approval

of the proposal on the table of Round 2.h, namely yn+1−h. As in Case A, in each of these rounds

all individuals of the high type will vote in favor of the proposal on the table and all individuals

of the low type will vote to proceed to the next voting round. Accordingly, the final outcome

of the procedure will be max{yr∗(k,j), x̄}, where x̄ = yk is the status quo, j is the number of

citizens of type tH , and18

r∗(k, j) = max{r : fk(n+ 1− r) ≤ j},

That is, yr
∗(k,j) is the highest level of the public good that the j citizens of the high type can

guarantee as an outcome throughout Rounds 2.1 to 2.(n + 1 − k), given x̄ = yk, which is the

status quo chosen in Stage 1. Using Equations (5) and (8), we obtain

j ≥ n+ 1

2
= max

{
n+ 1

2
, k

}
= fk(n+ 1− k).

It then follows that r∗(k, j) is well-defined and that r∗(k, j) ≥ k. What is more, r∗(k, l) is

non-decreasing in k, due to Equation (6), and non-decreasing in j, by construction. We further

note that also due to Equations (5) and (8), we have

f (n−1)/2

(
n+ 1− n− 1

2

)
= max

{
n+ 1

2
,
n− 1

2

}
=
n+ 1

2
≤ j.

This implies

r∗ := r∗ ((n− 1)/2, j) ≥ n− 1

2
. (9)

Trivially, Equation (8) also implies that

j ≥ n− 1

2
. (10)

18For notational convenience, we have suppressed the dependence of r∗(k, j) on the function fk(·).
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We next claim that

r∗ ≤ j. (11)

Since f (n−1)/2(·) is non-increasing and since Equations (9) and (10) guarantee that n + 1 − r∗

and n+ 1− j belong to the domain of function f (n−1)/2(·), Equation (11) can be rewritten as

f (n−1)/2(n+ 1− j) ≥ f (n−1)/2(n+ 1− r∗).

Finally, it remains to note that

f (n−1)/2(n+ 1− j) ≥ f (n−1)/2(n+ 1− j) = max

{
n+ 1

2
, j

}
= j ≥ f (n−1)/2(n+ 1− r∗).

The above chain of inequalities can be explained as follows: The first inequality is due to

Equation (7) (note that Equation (10) guarantees that n + 1 − j belongs to the domain of

f (n−1)/2(·) and f (n−1)/2(·)). The first equality is a direct consequence of the definition of f(·).
The second equality holds because j ≥ n+1

2
(see Equation (8)). Finally, the second inequality

holds by definition of r∗ = r∗ ((n− 1)/2, j).

To sum up, building on all our previous analysis we can arrange the outcome of Stage 2 for

different status-quo choices in Stage 1 in the following table:

HHHHHHx̄
tsoc

tL n−1
n
tL + 1

n
tH ... n+1

2n
tL + n−1

2n
tH n−1

2n
tL + n+1

2n
tH ... 1

n
tL + n−1

n
tH tH

yn y0 yn ... yn yn ... yn yn

yn−1 y0 yn−1 ... yn−1 yn−1 ... yn−1 yn

...
...

... ...
...

... ...
...

...

y
n+1
2 y0 y

n+1
2 ... y

n+1
2 y

n+1
2 ... yn−1 yn

y
n−1
2 y0 y

n−1
2 ... y

n−1
2 yr

∗((n−1)/2,(n+1)/2) ... yr
∗((n−1)/2,n−1) yn

...
...

... ...
...

... ...
...

...

y1 y0 y1 ... y1 yr
∗(1,(n+1)/2) ... yr

∗(1,n−1) yn

y0 y0 y0 ... y0 yr
∗(0,(n+1)/2) ... yr

∗(0,n−1) yn

Table 1: Outcome of Stage 2 as a function of the status quo x̄ = yk (rows) and the optimal
utilitarian type tsoc = (n− j) · tL + j · tH (columns).

That is, as we are considering a larger value of x̄, the final outcome cannot be worse (or better)

for high-type (low-type) citizens, whatever the type composition of the electorate. Note that

together with the fact that fk(·) is non-increasing and onto Equation (11) is crucial for Table

1. Moreover, the outcome is strictly better (worse) in some cases.
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Analysis of Stage 1

Next we consider Round 1.h of Stage 1, with h = n, . . . , 1. Let us focus on high-type citizens

first. From Table 1, it immediately follows that in Round 1.n, voting for yn (as status quo) yields

higher expected utility than voting for yn−1, regardless of the beliefs held by such individuals

at this node of the game.19 At any prior round of Stage 1, by contrast, voting to proceed to

the next round yields higher utility than voting to stick with the current status quo policy. For

low-type individuals, the optimal decisions need to be reversed.

It then follows that the elements of the off-diagonal of Table 1 will be chosen in Stage 1. Thus

we obtain the following table:

tsoc tL n−1
n
tL + 1

n
tH . . . n+1

2n
tL + n−1

2n
tH n−1

2n
tL + n+1

2n
tH . . . 1

n
tL + n−1

n
tH tH

y y0 y1 . . . y
n−1
2 y

n+1
2 . . . yn−1 yn

Table 2: Outcome y of Stage 2 as a function of the optimal utilitarian type tsoc.

Hence the utilitarian optimum is always implemented.

�

19If the prior type distribution has full support, any beliefs (for high-type citizens) obtained from Bayesian
updating cannot distinguish between the cases where all citizens are of high type or all but one of them are.
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