
Free Surface Water Flows –

Modeling, Simulation and Control

Adolf Hermann Glattfelder
Prof. emer. Dr. sc. techn.

Automatic Control Lab,
ETH Zurich1

August 21, 2017

1 Report (open source), download from https://www.research-collection.ethz.ch/handle/20.500.11850/175527

2

Abstract

Upstream and downstream channels are the key subsystems for the design of level/flow control loops in
run-of-river hydropower plants. Their dynamic response is notoriously complex, exhibiting low frequency
resonance with weak damping, travelling waves, both sub- and supercritical flow, hydraulic jumps, etc.

Part one of this report provides mathematical models derived from the basic physical conservation laws
of mass and momentum (Reynolds averaged Navier Stokes partial differential equations (‘pde’)) for water
flow and depth, using the ‘method of lines’/‘compartment’ approach (leading to models in discrete space,
‘continuous’ time), first for long channels with constant or weakly changing cross section, then for wide
channels with lateral extensions and finally for short channels such as spillways etc. where change of
surface level is no longer small compared to water depth.
All models are implemented in established industrial simulation packages, suitable for the engineering
phases of preliminary control system design up to factory acceptance testing. Simulations are documented
in detail and results for typical transients are discussed.

Part two of the report develops the design of model-based level control for the linearized pde-model,
basically using a notion from discrete control systems which leads to the impedance matching concept.
Then this design approach is applied to a linearized state space model with floating coefficients, and
finally to the nonlinear time domain models of Part one with large but slow dynamic variation of flow
regime and including ‘controller gain scheduling’.
Finally the model-based design method is verified on two typical application cases.

This report is meant mainly for control engineers charged with design projects for control of hydrological
and hydropower systems. The math needed is kept to the master/diploma level of university engineering
graduates.

To facilitate the access to small enterprises an ‘open source’ system (see www.scilab.org) has been used.
For further use the source code(s) for all cases are given in the connected ‘zip-container’ 1.

And all models are given as well in Matlab/Simulink source (using release ‘R2016b’) in a second connected
‘zip-container’2.

keywords:

- Partial Differential Equations for open channel flow
(Navier Stokes, Shallow Water equations, de Saint Venant)

- Integration by Method of Lines,

- Solution by Laplace Transformation,

- Model based design of Boundary level control ,

- Model based Gain-Scheduling,

- Scilab/Xcos v.5.4.1, and Matlab/Simulink R2016b.

1LevelDynamics Scilab/Xcos v541 sources.7z (Research Data Model) at
https://www.research-collection.ethz.ch/handle/20.500.11850/175543

2LevelDynamics Matlab/Simulink R2016b sources.7z (Research Data Model) at
https://www.research-collection.ethz.ch/handle/20.500.11850/175549

Contents

1 Introduction 2

1.1 Basic equations . 2

1.2 Solving the PDE’s . 3

1.3 Typical channel layouts . 4

1.3.1 Storage pool dynamics . 5

1.3.2 Long channel dynamics, subcritical flow . 5

1.3.3 Long channel dynamics, supercritical flow . 5

1.3.4 Wide channel dynamics . 6

1.3.5 Short channel dynamics . 6

1.4 Contents Overview . 7

2 The Longitudinal Basic Element 10

2.1 Modeling . 10

2.2 Dynamic Properties . 13

2.2.1 Linearized state space form . 13

2.2.2 Stability properties . 15

2.2.3 Analysis of the model coefficients . 16

2.2.4 Extensions to the basic model . 17

2.3 Adding friction on bottom and side walls . 17

2.4 Pressure forces on non-zero bottom slope and constant width 19

2.5 Pressure forces on conical side walls and non-zero bottom slope 21

2.5.1 cross section surfaces . 21

2.5.2 side wall surfaces . 21

2.5.3 bottom surfaces . 23

2.6 Modeling Operating Conditions . 24

2.6.1 River Section . 24

2.6.2 Channel section . 25

2.6.3 Boundary Conditions . 25

At the Inflow Cross Section, index in . 25

Friction Slope, index f . 26

i

At the Outflow Cross Section, index ot . 26

2.6.4 Initial Conditions . 27

2.7 Implementation in ‘scilab/xcos’ . 27

2.7.1 Naming of the plant layout cases . 27

2.7.2 The ‘Triplet Files’ for each layout case . 27

2.7.3 Handling a simulation run . 28

2.8 Simulation results . 29

2.8.1 case s c2 03 01 river bed, constant width, low/high flow 29

2.8.2 case s c2 03 02 river bed, constant width, reference flow,
but different Froude numbers . 34

2.8.3 case s c2 03 03 river bed, conical cross section . 38

2.8.4 case s c2 03 04 power station inlet channel,
outflow variation, inflow fixed . 41

2.9 Discussion . 45

Case s c2 03 01 river bed, constant cross section, low/high flow 45

Case s c2 03 02 river bed, constant cross section, low/high Froude Number 45

Case s c2 03 03 river bed, reference flow, conical cross section 45

Case s c2 03 04 turbine inlet channel, low/reference flow 45

3 The Long River/Channel Model 46

3.1 Overview . 46

3.2 Implementation in scilab/xcos 5.4.1 . 47

3.2.1 Basic Structure . 47

3.2.2 Handling a simulation run . 47

3.2.3 Color coding for simulation run results . 48

3.3 The Basic Case s c3 41 00 . 49

3.4 Case 41 00 N : The space-discretizing parameter N . 59

3.5 Case s c3 41 01 : Low and High Flow Conditions . 65

3.6 Case s c3 41 02 : Set of Froude numbers . 73

3.7 Case s c3 41 03 : Conical Cross Sections . 79

3.7.1 Sub-case s c3 41 03 1 : ‘Confusor’ Geometry . 79

3.7.2 Sub-case s c3 41 03 2 : ‘Diffusor’ Geometry . 86

3.7.3 Sub-case s c3 41 03 3: Bottom Slope Geometry 91

3.8 case s c3 41 04 power station inlet channel . 96

3.9 Case Study ‘Birsfelden’ . 110

3.9.1 Data assembly . 110

3.9.2 Modelling . 111

3.9.3 Implementation in scilab . 112

3.9.4 Simulation Results . 116

3.9.5 Discussion . 120

ii

4 The Wide Channel Model 124

4.1 Introduction . 124

4.1.1 System Geometries . 124

4.2 Modelling . 126

Step 1 . 126

Step 2 . 126

Step 3 . 128

Step 4 . 130

Step 5 . 131

Step 6 . 132

4.3 Implementation . 133

Data . 133

4.4 Case A: The Channel and Floodplain case . 134

4.4.1 Overview . 134

4.4.2 Operating Points . 134

Case Specific Data . 134

Comments . 135

4.4.3 Extensions to the Model . 136

Inflow Area . 136

Main Area . 136

Outflow Area . 136

4.4.4 Implementation . 137

.zcos-Diagrams and -Superblocks . 137

.sce-Listings . 143

4.4.5 Transients . 145

Flow pattern at Q tot = 40, 360, 640m3/s . 149

4.4.6 Discussion . 149

5 The Short Channel Model 150

5.1 Introduction . 150

5.2 Modelling . 152

Step 1 . 152

Step 2 . 153

Step 3 . 154

Step 4 . 155

Step 5 . 155

Step 6 Discussion: . 156

Step 7 Preparing the Implementation . 157

Step 8 Implementation of the Basic Element for k, k + 1 157

iii

5.3 spillway cases: common material . 159

5.3.1 The ‘basic result’ . 159

5.3.2 Common Data Sets . 160

Basic geometry and flows . 160

Compartment length L . 160

confusor geometry contour . 160

Filtered derivative, ome . 161

Designing the Level Controller gains gQ i and T Q i 161

5.4 Case 1: Spillway with slowly lowered outflow flap . 164

5.4.1 Modeling and Data set . 164

Inflow . 164

Outflow . 164

5.4.2 Implementation of Case 1 . 164

5.4.3 Simulation overview for Case 1 . 168

5.4.4 Case 1: Simulation results for the reference parameter set 169

5.4.5 Testing for different compartment lengths L = 1.25, 1.00, 0.80, 0.64 m :
Assembly of longitudinal profiles of H and F at time 290 s 174

5.4.6 Variation of outflow level HE = 3.60, 2.50, 1.60 m
and corresponding flow Q = 216, 125, 64 m3/s . 176

Assemblies with scaling factors applied . 179

5.4.7 Discussion for Case 1 . 180

Transients for the nominal parameter set . 180

Longitudinal profiles for the nominal parameter set 180

Longitudinal profiles for different compartment lengths L at nominal conditions . . 180

Longitudinal profiles for different levels D E = H 0, absolute axes 181

Longitudinal profiles for different levels D E = H 0, scaled axes 181

5.5 Case 2: Spillway with slowly rising forebay level H in(t) 182

5.5.1 Modeling and Data . 182

inflow boundary . 182

outflow boundary . 182

5.5.2 Implementation of Case 2 . 183

5.5.3 Overview of simulations for Case 2 . 185

5.5.4 Simulation results for Case 2 . 186

5.5.5 Discussion for Case 2 . 193

Transients for the nominal parameter set . 193

Longitudinal profiles for the nominal parameter set at full flow 193

Longitudinal profiles for different compartment lengths L at low flow conditions,
Q = 12 m3/s . 193

5.6 Case 3: ‘Dam Break’ . 194

5.6.1 Motivation . 194

iv

5.6.2 Modeling and Data . 194

5.6.3 Implementation . 194

5.6.4 Simulation results . 196

Subcase A, L = 25 m . 196

Subcase B, L = 1.0 m . 199

5.6.5 Discussion for Case 3 . 204

subcase A, L = 25 m . 204

Subcase B, L = 1.0 m . 204

5.7 Case 4: Surge waves . 205

5.7.1 Introduction . 205

5.7.2 Implementation . 205

5.7.3 Simulation Results . 208

5.7.4 Discussion for Case 4 . 213

5.8 Case 5: Hydraulic Jump after a Weir . 214

5.8.1 Modeling and Data set . 214

Another ‘Basic Result’ . 214

Experiment setup . 214

Data set . 215

5.8.2 Implementation . 215

5.8.3 Discussion for Case 5 . 217

5.8.4 Simulation Results . 218

5.9 Case 6: Hydraulic Jump after a Dam . 223

5.9.1 Modeling and Data Set . 223

5.9.2 Implementation . 223

5.9.3 Simulation Results . 226

Transients for L = 1.0 m . 226

Some longitudinal Profiles at L = 1.0 m . 229

Selection of Profiles for different compartment lengths 231

Profiles for higher friction (GMS-coefficient ks := 40) at different compartment
lengths . 232

5.9.4 Discussion for Case 6 . 233

Transients . 233

Profiles . 233

Effect of selecting L on Profiles, with nominal friction 233

Effect of increased friction ks := 40 . 233

6 Level Control Design 234

6.1 Overview . 234

6.2 The one compartment model . 235

v

6.2.1 Limitations . 235

6.2.2 Modelling . 235

6.2.3 Controller Design . 236

6.2.4 Closed Loop Bandwidth Limitation . 237

6.3 The infinite number of compartments model, ‘sys inf’ 238

6.3.1 Motivation and overview . 238

6.3.2 Modelling . 238

Overview . 238

Deriving the pde . 238

Solving the PDE’s, with open ends . 240

Introducing the boundary conditions at the upper and lower channel end 243

Illustrating the results by simulation . 244

Transfer functions and frequency responses for the plant without controllers 246

6.3.3 Control Design, Overview . 250

6.3.4 Case [A]: Designing a basic P-controller . 250

Transfer function analysis of the P-control loop for case [A] 251

Frequency responses . 252

Simulation results . 255

6.3.5 Case [A]: Augmenting the P-control to PI-control 258

The control structure . 258

Transfer functions . 259

Design procedure for the controller parameters . 259

Frequency responses . 262

Simulation results . 264

6.3.6 Case [B]: Designing the PcI-controller . 266

Transfer function analysis . 266

Simulation results . 268

6.3.7 Case [C]: Designing the PcI-controller . 270

Transfer function analysis . 270

Simulation results . 271

6.4 Control Design for the linearized state space model, ‘sys ss’ 273

6.4.1 Motivation . 273

6.4.2 Modelling . 273

6.4.3 Implementation in Scilab/SciNotes . 275

6.4.4 Control layout Case [A] . 278

6.4.5 Control layout Case [B] . 281

6.4.6 Control layout Case [C] . 284

6.5 Control Design for the nonlinear time domain model . 287

6.5.1 Motivation . 287

vi

6.5.2 Modelling . 287

6.5.3 Open loop responses . 288

6.5.4 Case [A] . 291

6.5.5 Case [B] . 296

6.5.6 Case [C] . 300

7 Application Studies 304

7.1 Control Design Verification for case study “Birsfelden” 304

7.1.1 Modelling . 304

The upstream basin model . 304

Design of the experiment sequence . 304

Level controller design . 305

7.1.2 Implementation . 306

7.1.3 Simulation results . 308

7.2 Control Design for case study “Neue Welt” . 310

7.2.1 Data Assembly and Modelling . 310

The Basin Geometry . 310

Flow Distribution . 310

Overfall flow calculation . 310

Design of the Experiment Sequence . 311

Level Controller Design . 312

7.2.2 Implementation . 313

7.2.3 Simulation results . 315

Longitudinal profiles . 315

Overviews of Transients . 316

Details along the reach for test a . 317

8 Scilab/Xcos ‘s cX ’ and Matlab/Simulink ‘m cX ’ 318

0

1

Chapter 1

Introduction

The subject of this report is the dynamic response of level and flow in typical free surface channels, as
they are present in typical low-head hydropower plants, or similar natural river beds.
Note that this already implies a number of practical assumptions:

’free surface’ means that disturbances will propagate at Froude’s velocity vF =
√
g.D,

in contrast to closed pipe flow, where they propagate with the speed of sound vS =
√
ρ.κ.1

The ’channel’ cross section is to be predominantly rectangular
and not strongly trapezoidal or even triangular,

and ’typical’ flow is to be turbulent, and not laminar, and without large-scale vortices.
In other words flow velocity is essentially the same over the cross section (resulting in ’piston’ flow).

1.1 Basic equations

Fluid flow systems are basically described by partial differential equations (PDE), with independent
variables x, y, z, for longitudinal, transversal and vertical space coordinates and time t and dependent
variables level H and flow velocities u, v, w in directions x, y, z.
One approach ([1], and references therein) is to use are the 3-D Reynolds Averaged Navier-Stokes Equa-
tions (NSE):

∂u

∂t
+
∂(uu)

∂x
+
∂(uv)

∂y
+
∂(uw)

∂z
= −1

ρ

∂p

∂x
+ ...

∂v

∂t
+
∂(uv)

∂x
+
∂(vv)

∂y
+
∂(vw)

∂z
= −1

ρ

∂p

∂y
+ ...

∂w

∂t
+
∂(uw)

∂x
+
∂(wv)

∂y
+
∂(ww)

∂z
= −1

ρ

∂p

∂y
+ ...− g

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0

where the first to third equations are the momentum balances, and the fourth equation is the volume
balance, where p is the local pressure, fluid density is ρ and . . . indicate the eddy viscosity terms.

There is an additional kinematic condition for the free fluid surface η(x, y, t) with η measured from the
undisturbed water elevation and us, vs, ws velocity components at the surface

∂η

∂t
+ us

∂η

∂x
+ vs

∂η

∂y
= ws

1g gravity constant, D local water depth, ρ fluid density, κ fluid elasticity plus pipe wall elasticity

2

and similarly for the bottom contour, where h is the water depth from the undisturbed water level and
ub, vb, wb are the velocity components at the bottom

ub
∂h

∂x
+ vb

∂h

∂y
+ wb = 0.

An alternative which is often used for such channel geometries are the equations of de Saint Venant
(SVE). They can be obtained from the above equations by integration over y, whereby the channel width
B comes in, and z from the bottom z = −h to the free surface z = +η, that is the total local water depth
D, and with A as the cross section surface A = B ·D, and U as the mean velocity for this cross section
[1]

∂(A · U)

∂t
+
∂(A · U · U + g · I1)

∂x
= g ·A · (Sb − Sf) + g · I2 + ...

∂A

∂t
+
∂(A · U)

∂x
= 0

where Sb := −∂h/∂x is the bottom slope, Sf is the friction slope, I1 is linked to the normalized pressure
force over the cross section

I1(x,H) =

∫ η

−h
(H − z) ·B(z)dz

and I2 represents the integral of a reaction force from hydrostatic pressure acting on the boundary, such
that

∂

∂x
(g · I1) = g ·A(x) · ∂H

∂x
+ (g · I2)

This is a set of two first order PDE’s for conservation of momentum and volume for independent variables
x (longitudinal, in direction of mean flow) and time t. Dependent variables are water depth H and cross
section mean longitudinal velocity U .

A third approach (‘shallow water equations’) uses the same independent variables, both for the general
three-dimensional spacial case, and also their two- and one-dimensional reductions, but replaces h, η
by water depth D and velocities u, v, w by corresponding volume flows Qx, Qy, Qz. For instance in the
SVE-form above, note that Q(x) := A(x) · U(x), and thus

∂(B ·D)

∂t
+
∂(Q)

∂x
= 0

∂Q

∂t
+
∂(Q2/B ·D + g · I1)

∂x
= g ·B ·D · (Sb − Sf) + g · I2 + ...

This is said to allow considering some cases better, where level and velocities change strongly over a short
distance, such as in ‘hydraulic jumps’. It is also closer to Q which most hydropower engineers are more
familiar with than U . Also D is not directly observable / measurable in real installations. Therefore it
is often more convenient to split D into H (water level above a given geodetic horizon) and S (bottom
contour position above this geodetic horizon). Then D(x) = H(x)−S(x). – This third approach shall be
used further on in this report.

1.2 Solving the PDE’s

For practical purposes, specific transients of dependent variables over time or steady state profiles of those
dependent variables over space coordinates are needed. In other words the PDE’s must be ‘integrated’.

The usual way (see [1], [2], and references therein) to proceed from here for all three approaches is to
move to both spacial and temporal finite differences with a fixed grid, suitable for numerical integration
with off-the-shelf and well proven methods.

3

Instead a different approach shall be used here:

It consists of using finite intervals (typically of equal length L) spanning up ‘compartments’ along the
space axes, and using the center values of these intervals as the dependent variables for level/depth and
velocity/volumeflow. The time t is still continuous. This produces a set of coupled ordinary first order
differential equations (ODE’s), one for each compartment, if distinct compartments are used for dynamic
conservation of each dependent variable separately, specifically in the context of this report for mass /
volume and momentum.
In other words this produces a typical state space system description so well known in Automatic Control,
where a huge amount of tools for analysis, design and simulation is available. Further this form links
directly to the well known transfer function / frequency domain techniques. Finally this form of model
integrates directly with the other elements of standard level/flow control loops. And it neatly fits into
the experience, the knowhow, and the intuition of industrial control engineers.
These strong links to engineering knowhow are the main motivation for using this particular approach
here.

This finite cell size approach is known in computational mathematics as the ‘method of lines’, MOL for
short, [6], [5], and references therein. The key step is to replace the partial derivatives by finite differences

∂u

∂x

∣∣∣
i
→ ui − ui−1

∆xi
(this is a simple ‘upwind’-approximation)

In electrical and mechanical engineering the same approach is known as the ‘lumped parameter
method’, because PDE’s are also known as system descriptions with ‘distributed parameters’. A typical
example is the well known “Pi” (Π) model of a High Voltage AC line, where each constitutive element
consists of two adjacent sections of capacitance to ground and an inductance section connecting them.

And in pharmacokinetics, which describes the dynamic distribution of drugs in an organism, and more
generally in process engineering this approach is also known as the ‘compartment method’. In each
such compartment, ideal mixing of the drug to its fluid content is assumed such that the concentration
at the center is representative for the whole compartment.

These are just different names for the same thing. They go back at least to the 1960’ies. Their emergence is
strongly tied to the classical frequency response approach to control system design, to the advent of analog
computers, and subsequent simulation packages for control analysis and design on digital computers.

The drawback of this method is (of course) the reduced spacial resolution. Note that improving this
resolution along any one spacial axis will increase linearly the size of the ODE-system, and thus the
programming complexity and the computational effort. So there will be a practical (‘soft’) limit for the
number of such compartments.

Applying the transfer function or frequency response approach to a given ODE system, this corresponds
to a given bandwidth of the model (see for instance [7] [8], and references therein), and higher frequency
modes will be ‘lost’. – However this opens a way of neatly balancing the model bandwidth (and thus the
model size) to the closed loop bandwidth specifications given for a specific project. This requires selecting
the compartment length L appropriately with respect to the overall channel length.

1.3 Typical channel layouts

Five typical situations shall be considered here for their dynamic characteristics

- a fairly small but deep storage pool;

- a typical fairly long but shallow channel with subcritical flow, and with supercritical flow due to a
steeper bottom slope;

- a long channel with a lateral shoulder for absorbing high flow or with a lateral pool widening;

- a short channel, where water surface level gradients are no longer negligible.

4

1.3.1 Storage pool dynamics

Consider the following data:

depth D := 10m, length L := 200m, width B := 50m; and flow Q := 50m3/s

From D follows for Froude’s velocity uF = 10 m/s, with uF =
√
g.D

and thus for the echo travelling time TE = 2L/uF = 40 s.

The filling time TQ = (L.B.D)/Q of the storage pool is TQ = 2′000 s. Also the mean flow velocity along
the pool is uQ = Q/(B.D) = 0.10 m/s, and its Froude Number value is F = uQ/uF = 0.010.

The echo traveling time is 50 times shorter than the filling time of the pool. Or the propagation effects
are much faster than the overall filling effect. In other words the level may be considered as being the
same all over the pool.
Note that the data used in the numerical example above indicate a comparatively small pool. Inflow
basins tend to be much larger and deeper for typical storage hydro plants.
Thus the (low bandwidth) dynamic response of the overall pool level to variations of the inflow and
outflow may be considered to be given by the dynamic volume balance only. And sloshing effects need
not be present in such a model (as they are so much faster).

1.3.2 Long channel dynamics, subcritical flow

The length L and flow Q shall be the same, but the depth is reduced to D := 2.5 m and the width to
B := 10 m.
Then the Froude velocity is reduced to uF = 5m/s and the echo travelling time increases to TE = 80 s.
The Froude Number value is F = 0.40, which is still subcritical: water is still ‘flowing’, not ‘shooting’.
And the overall filling time is reduced to TQ = (L.B.D)/Q = 100 s.

Now the sloshing dynamics as given by TE are on the same time scale as the overall filling dynamics TQ,
and may no longer be neglected. They must be incorporated in the model. - The key element is that the
horizontal acceleration of the water column within the compartments must be included in the model.
This augments the first order dynamics of the storage pool into at least a third order one (see chapter 2).

Note that usually the channel length is much longer. Then evidently such basic elements need to be
chained up to get a better spacial resolution and a higher bandwidth model, (see chapter 3).
This case covers most upstream / downstream reservoir dynamics in river flow hydro power plants. — A
typical case is ‘Birsfelden’ on the Rhine near Basel, see sect.3.9 .

1.3.3 Long channel dynamics, supercritical flow

Consider now the same data, but with depth reduced to D := 0.90m, and thus Froude’s velocity to
uF = 3.0m/s. The mean flow velocity is uQ = (Q/(B.D)) = 5.55m/s. Such a flow will result for a
channel bottom being steeper than usual. 2

Thus the Froude Number value increases to F = uQ/uF = 1.852, which is supercritical. Water is now
‘shooting’, and no longer ‘flowing’. As the water flows downstream faster than disturbances can travel
back upstream, the echo travelling time goes to infinity, and sloshing is no longer present. Also any
excessive forced outflow will not propagate upstream as with subcritical flow, but will simply lead to
drying out of the outflow compartment.

The transition of dynamic response from subcritical to supercritical flow and back must be handled
correctly by any dynamic model.

2Typical bottom slopes would be & 10−2 here, whereas . 10−3 for subcritical flow.

5

1.3.4 Wide channel dynamics

So far the compartments extend laterally over the full width of the channel. Thus the model yields the
mean flow velocity uniformly over the whole cross section. This may be a reasonable approximation as
long as the channel geometry does not deviate too far from a uniform rectangular cross section. An
intuitive upper bound (to avoid vortex detaching) would be a conical shape with slopes of ±0.10 or ±60

per each wall and the bottom.
This upper bound fits well to a recent specific project (‘NeueWelt’, Birs, 2011, see section 7.2, (WGS 84
location: 47.525863 7.621635)).

Otherwise the compartment structure must be laterally extended to model the additional dynamics.

Two typical layouts may be considered:

- a long channel where a shallow pool at least ten times wider than the channel width is inserted over
a partial length (say one fifth) of the total channel length.

- a long channel where shoulders are added laterally over the total channel length in order to absorb
very high flows by flooding those shoulder forelands. The shoulders should be about three times
wider and about three times shallower than the channel.

The first item is motivated by a recent specific project (‘Hänggelgiesse’, Linth-Kanal, 2012, WGS 84
location 41.16889 9.00915).

1.3.5 Short channel dynamics

Here water level changes in the channel shall not be small and slow (as has been assumed implicitly
above), but large compared to depth and fast compared to flow travel time. Such cases are:

- outflows from large pools through a short channel with a lowered flap at its end,

- or similarly overflow through an open-ended spillway,

- a sudden large opening in a dam and subsequent emptying of the upstream reservoir (‘dam break’
study),

- or a ‘surge wave’ produced by a sudden large increase in flow (for instance downstream of a ‘dam
break’)

- ‘hydraulic jumps’ in a channel, where a supercritical flow transits to a subcritical flow while essen-
tially conserving both volume and momentum flows.

These transitions have in common, that from experiments the surface level difference may be at least
50 % of final water depth over typically a length of five times the final water depth. This motivates the
designation ‘short channel dynamics’.

6

1.4 Contents Overview

The aim of the following is to clarify the structure of the investigation and of this report.

In Chapter 2 the basic longitudinal element is investigated in detail. It consists of two longitudinally
adjacent volume compartments and a connecting longitudinal momentum compartment. It shows the
basic ‘filling mode’ (or ‘open integrator mode’) and the first (lowest frequency) ‘sloshing mode’ (or
‘oscillatory mode’) of the channel.
The first step is to obtain a ‘first principles’ model by writing down the basic equations of (dynamic)
conservation of mass or volume and of momentum, where several ways of spacial discretisation shall be
used. Also different upstream and downstream border conditions are looked into.
Then the basic dynamic properties (stability, etc.) are investigated.
The effects of numerical integration (as a time sampled loop) are a distinct problem in the mainstream
‘space- and time-discretized’ approach, see e.g. [1]. However this is not a problem here, as the integration
routines in simulation environments for such systems of ODE’s do handle this internally well enough.
Next the model equations are implemented in the ‘Scilab’-environment, and its standard handling for
simulation runs is given. And finally the transient response of the model is documented for a few typical
operating cases, with discussion.

In Chapter 3 a higher order system is covered by connecting a number of such basic elements in series.
The individual element will be shorter in length and thus have a higher sloshing frequency. And the series
connection will produce a series of higher natural frequencies above the basic oscillatory mode. It will also
produce locally steeper slopes in the spacial surface dynamics. – Here a single case of 20 such elements
is investigated. This leads to 20 momentum equations plus 20 + 1 volume compartments, that is to a
system of 41 first order ordinary differential equations. And this delivers 21 points for surface level values
and 20 points for flow values along the channel. Extensive simulation work has shown that this spacial
granularity is required to produce reasonably realistic surface wave shapes. And the simulation runtime
is still reasonable. Thus the ‘20 elements’ assumption shall be considered sufficient for practical purposes
here. – However if only slow transient behavior is specified in a given project, then a lower order model
(for say 4 or 8 elements) may well be sufficient.
This chapter will focus on the implementation of the model equations in ‘Scilab’, with an ordered list of
operating cases, and the corresponding simulation results, with discussion.
A typical case (“Birsfelden”) is used to illustrate the application and to compare the results to actual
measurements.

In Chapter 4 the basic element from chapter 2 is extended in the lateral direction, but still neglecting the
vertical acceleration from chapter 5. This is inserted into the series connection of chapter 3. One typical
situation is investigated here.

Finally Chapter 5 addresses situations in short channels where the water surface level gradient variations
are no longer small with respect to time and space. Then the vertical acceleration of the mass content in
the volume compartment may no longer be neglected. Therefore the basic longitudinal model from chapter
2 is extended to include the vertical acceleration force. This will move the pressure at the bottom surface
away from its hydrostatic value. And this modifies the pressure difference applied on the momentum
compartment in the longitudinal direction...
The implementation in ‘Scilab’ is given.
Then the extended basic element is inserted into the series connection of those 20 elements of chapter 3,
proceeding as above up to simulation results for six typical operating cases, with discussion.

7

In Chapter 6 three typical configurations of level control systems are investigated on three types of models.

First the shallow water equations (PDE) are solved using Laplace Transforms and applying some notions
from sampled date control systems. A model based control design strategy is developed, which is known
as ‘impedance matching’ in electrical engineering. It also yields a simple gain-scheduling rule for the
controller gains.

Next a linear state space model with ‘floating coefficients’ is derived. It allows to study the effect of
varying N (number of momentum compartments) and Froude number F (of the operating point) both in
the frequency and time domains in a more compact manner than with the nonlinear time domain model
from the previous chapters. The controller design from the previous section is tested here as a first step.

Then the controller design with gain-scheduling included is tested on the nonlinear time domain model
for a typical variation of inflow to a typical turbine inflow channel.

Finally in Chapter 7 the design is applied to two application cases from specific past projects to check if
typical specifications on level control performance are met.

All simulations are fully documented by their Scilab/Xcos file triplets
(diagram szcos, s ... context.sce, s ... crunplot.sce)

in the text to allow easy inspection of all details on structure and coefficients.

These file triplets are appended in a ‘zip-container’ to the ‘report’ in executable form for easy reproduction
and further development (as ‘open source’):

LevelDynamics Scilab/Xcos v541 sources.7z (Research Data Model) at
https://www.research-collection.ethz.ch/handle/20.500.11850/175543

Note that these files need to be run with Scilab version 5.4.1 3. Newer versions 5.5 and 6.0 are available
but seem not to be stable enough at this time of publication.

A second ‘zip-container’ (also as ‘open source’)
LevelDynamics Matlab/Simulink R2016b sources.7z (Research Data Model) at
https://www.research-collection.ethz.ch/handle/20.500.11850/175549

carries the corresponding Matlab/Simulink pairs using the release ‘R2016b’
(m ... s .slx, mm).

3Download from www.scilab.org,→ Download, and use link to ‘Previous versions’ at the page bottom,→ scroll for 5.4.1

8

9

Chapter 2

The Longitudinal Basic Element

2.1 Modeling

The modeling will be done with the compartment method.
The momentum equation shall be addressed first, see Fig. 2.1

x x+ 0.5dx x xxi-1 i i+1
Li

i i

x

x- 0.5dx i

Figure 2.1: Longitudinal discretization: From the infinitesimal around xi to the finite length compartment
centered at xi from xi−1 to xi+1

.

For both the infinitesimal and the finite length cases, the center of mass of the compartment content is
concentrated at its center of gravity at xi. Assume further:

horizontal bottom, slope Sb = 0;

no friction, slope Sf = 0;

and constant channel width Bi = Bi−1 = Bi+1

So the remaining ‘forces’ changing the momentum content are

pressure forces Pi−1 and Pi+1 (from the difference of hydrostatic pressure at the cross sections at
xi−1 and xi+1;

reaction forces (from the momentum inflow
∗
Ii−1 and momentum outflow

∗
Ii+1 associated with the

mass flows across both cross sections).

And the longitudinal momentum content Ii is (with mass Mi and depth Di and volume flow Qi):

Ii = Mi · Ui = ρ · (Li ·Bi ·Di) · Ui = ρ · Li · (Bi ·Di · Ui) = ρ · Li ·Qi

10

This produces the (dynamic) momentum balance, see Fig.2.2.

ρ · Li
d

dt
Qi = Pi−1 − Pi+1 +

∗
Ii−1 −

∗
Ii+1

For the pressure forces and the reaction forces

Pi−1 = Bi ·Di−1 · ρ · g ·Di−1 ·
1

2
=

1

2
ρ g Bi D

2
i−1

Pi+1 =
1

2
ρ g Bi D

2
i+1

∗
Ii−1 = ρ ·Bi ·Di−1 · Ui−1 · Ui−1 = ρ ·Qi−1 · Ui−1 = ρ ·

Q2
i−1

Bi ·Di−1

∗
Ii+1 = ρ ·

Q2
i+1

Bi ·Di+1

That is for the momentum balance

Li
d

dt
Qi =

1

2
g Bi

(
D2
i−1 −D2

i+1

)
+

1

Bi

(
Q2
i−1

Di−1
−
Q2
i+1

Di+1

)

where ρ has been taken off from both sides.

Now the dynamic mass balances are addressed. This uses the concept of ‘staggered’ or ‘interleaved’
compartments (see also [1]): The upstream mass compartment is shifted one half length of Li upstream
to be centered on xi−1, and correspondingly the downstream mass compartment is centered on xi+1, see
Fig.2.3:

Li ·Bi
d

dt
Di−1 = (Qi−2 − Qi)

and

Li ·Bi
d

dt
Di+1 = (Qi − Qi+2)

where ρ has been taken off from both sides again.
The reason for this interleaving is that the right hand (‘input’) side uses the volume flow Qi from the
left hand (‘result’) side of the momentum balance, and yields the depths Di−1, Di+1 on the ‘result’ side
which are needed for the pressure forces Pi−1, Pi+1 on the input side of the momentum equation.

I
*
i-1

Pi-1

x xxi-1 i i+1
Li

D
i-1

D
i

D
i+1

I
*
i I

*
i+1

Pi+1

Figure 2.2: Pressure and reaction forces around xi
.

11

Q
i-1

x xxi-1 i i+1

L

D
i-1

D
i

D
i+1

Q
i Q

i+1

x i-2 x i+2
Lii

Figure 2.3: Mass or volume flow balances around xi−1 and xi+1

But:

Note that the ‘reaction’ forces
∗
Ii−1,

∗
Ii+1 would need Qi−1, Qi+1 which are not available as ‘results’ !

A first idea to resolve this would be to replace both reaction forces
∗
Ii−1,

∗
Ii+1 by arithmetic means:

∗
Ii−1=

1

2

(∗
Ii−2 +

∗
Ii

)
and

∗
Ii+1=

1

2

(∗
Ii +

∗
Ii+2

)
But then in the momentum equation

∗
Ii−1 −

∗
Ii+1=

1

2

(∗
Ii−2 +

∗
Ii −

∗
Ii −

∗
Ii+2

)
=

1

2

(∗
Ii−2 −

∗
Ii+2

)
Thus the local momentum flow

∗
Ii is no longer present in the local momentum balance, which makes the

response oscillate around its steady state (as remarked by C.Beffa, [3]).

A second idea is to shift the reaction forces difference upstream by one half compartment length,1 that is

∗
Ii−1 −

∗
Ii+1 →

∗
Ii−2 −

∗
Ii

In other words the momentum outflow
∗
Ii+1 from the compartment is now replaced by the momentum

flow at its center (approx. its center of mass)
∗
Ii

Then for evaluating e.g.
∗
Ii:

∗
Ii=

Q2
i

Di

1This means that the ‘Finite Element’(FE)-approach used up to now is replaced by the ‘Finite Volume’(FV)-approach,
(see [3])

12

Qi now is available from the ‘result’ side of the momentum equation, but Di is still not available directly
from the volume balance equations. Essentially there are three alternatives,

1 use the downstream shifted value D′i := Di+1

This covers the FE-approach from Fig.2.2

2 compute and use the arithmetic mean D′i := 0.5 · (Di−1 +Di+1)
and this implements the FiniteVolume-approach from above.

3 or use the upstream shifted value D′i := Di−1 .
This non-intuitive idea of taking the ‘upwind’ approximation is well established in the computational
fluid dynamics (CFD)-field (see e.g. [4], [1]). The motivation for this strange notion will become
clear in the next section.

The three alternatives can be covered by one sliding parameter κ = 0.0, 0.5, 1.0 for cases 1, 2 and 3
respectively:

D′i := κDi−1 + (1− κ)Di+1

D′i−2 := κDi−3 + (1− κ)Di−1

All are approximations, and are the better the shorter the compartments are

2.2 Dynamic Properties

The system under investigation is of third order:

LiBi
d
dtDi−1 = −Qi +Qi−2

Li
d
dtQi = + 1

2gBiD
2
i−1 − 1

Bi

Q2
i

D′i
− 1

2gBiD
2
i+1 + 1

Bi

Q2
i−2

D′i−2

LiBi
d
dtDi+1 = +Qi −Qi+2

It is ordered in typical state-space form, with time derivatives of the state variables Di−1, Qi, Di+1 on
the left side. The first three columns on the right side contain the state variables and the second three
are for the external inputs Qi−2, D

′
i−2, Qi+2.

2.2.1 Linearized state space form

The next step is writing the state variables and external inputs as deviations δQ, δD from a given steady
state operating point at Q,D, for instance

Qi(t) → Q

(
1 +

δQi(t)

Q

)
D2
i−1 → D

2
(

1 + 2
δDi−1(t)

D
+ 0

)
Q2
i

D′i
→ Q

2

D

(
1 + 2

δQi(t)

Q
− δD′i(t)

D
+ 0

)
=

Q
2

D

(
1 + 2

δQi(t)

Q
− κ

δDi−1(t)

D
− (1− κ)

δDi+1(t)

D
+ 0

)

13

and further using the abbreviations

δDi−1(t)

D
→ x1

δQi(t)

Q
→ x2

δDi+1(t)

D
→ x3

δQi−2(t)

Q
→ u1

δDi−2(t)

D
→ u2

δQi+2(t)

Q
→ u3

And for the coefficients in the system

time constant for filling compartment i− 1
LiBi−1D

Q
= T1

time constant for accelerating compartment i
LiQ

gD
2
B

= T2

time constant for filling compartment i+ 1
LiBi+1D

Q
= T3

coefficient for momentum flows in compartment i
Q

2

gB
2
D

3 =
B

2
D

2
U

2

gB
2
D

3 =
U

2

gD
= F

2
:= φ

Equations for x1 and x3 are straightforward, but equation for x2 needs some further steps

T2
d

dt
x2 = +1x1 − 1x3 + φ [2u1 − κu2 − (1− κ)x1]− φ [2x2 − κx1 − (1− κ)x3]

= (1− φ+ 2κφ)x1 − 2φx2 − (1− φ+ κφ)x3 + 2φu1 − κφu2

The equation for x2 shall be rewritten in condensed form by using the abbreviations

a = (1− (1− 2κ)φ)

b = (1− (1− κ)φ)

c = (κφ)

p = (2φ) = (2F
2
)

Then

T1
d
dtx1 = −1 · x2 +1 · u1

T2
d
dtx2 = a · x1 −p · x2 −b · x3 +p · u1 −c · u2

T3
d
dtx3 = +1 · x2 −1 · u3

14

2.2.2 Stability properties

The standard way to check the stability of this continuous linear system is by analyzing the characteristic
equation 2.

0 =

∣∣∣∣∣∣
sT1 +1 0
−a sT2 + p +b
0 −1 sT3

∣∣∣∣∣∣
= s2T1T3(sT2 + p) + asT1 + bsT3 + 0 + 0

Let T3 := T1. Then:

0 = s3 · (T 2
1 T2) + s2 · (T 2

1 · p) + s1 · (2T1) · (a+ b) + s0 · (0)

with a+ b = (1− φ+ 2κφ) + (1− φ+ κφ) = 2 · (1− (1− 3

2
κ)φ)

For the three values of κ from above and a fourth value of κ := 2/3

κ = 1.0 : 0 = s(2T1) ·
[
s2T1T2

2
+ s(φ · T1) + (1 +

φ

2
)

]

κ = 0.5 : 0 = s(2T1) ·
[
s2T1T2

2
+ s(φ · T1) + (1− φ

4
)

]

κ = 0.0 : 0 = s(2T1) ·
[
s2T1T2

2
+ s(φ · T1) + (1− φ)

]

κ =
2

3
: 0 = s(2T1) ·

[
s2T1T2

2
+ s(φ · T1) + (1− 0 · φ)

]

which exhibits a single zero at the origin (yielding an open integrator response corresponding to the
overall filling behaviour with time constant 2T1), which is independent of κ
and a pair of zeros (yielding the oscillatory mode of the sloshing), which depend on κ and φ = F 2.
The response of the sloshing subsystem is asymptotically stable (shortened to ‘a.s’) as long as all coef-
ficients in the square brackets [...] are positive. Thus only the last term needs to be considered here if
F 6= 0

- For κ = 0.0, the last term increases with φ = F 2, that is the sloshing subsystem response will be
a.s. only for all Froude number values 0 < F < 1.0, that is only for subcritical flow regimes.

- For κ = 0.5, the a.s.-region extends somewhat into the supercritical domain, 0 < Fr ≤ 2.0,

- and for κ ≥ 2/3, the model response will be stable on the whole domain of Froude numbers F > 0.

Remarks:
It is not evident from the beginning of simulating transients for a given situation that the flow regime
over time will always remain within the stability bounds for F . Therefore it is strongly recommended to
use only κ ≥ 2/3 for the simulation model.
Note that setting κ = 1.0 means that only Di−1 may enter into the calculation of the momentum outflow
at i. This finding also neatly confirms the assumption in [1] that “always the upstream grid point on
water depth should be used while discretizing the momentum equation”.
Note that this rule holds for the classic discretisation of the partial differential equation, where a finite
but short compartment length Li is used, and where only grid point values of the dependent variables are
used. In our case however, we use much longer compartment lengths. And it is intuitively preferable to
use a value of D′i which is as close as possible to Di in order to minimize the discretisation error incurred
by using Di−1 in the momentum equation. – κ = 1.0 is used in the simulations...

2Note that the stability analysis is straightforward in the ‘compartment’ approach, whereas in the ‘time- and space-
discretization’ approach ([2],[1]) it is less so...

15

2.2.3 Analysis of the model coefficients

For the volume compartment filling times T1, T3:

T1 = T3 =
L ·B ·D

Q
=
L ·B ·D
B ·D · U

=
L

U

and for the momentum compartment acceleration time T2

T2 =
LQ

gD
2
B

=
L ·B ·D · U

gD
2
B

=
L · U
gD

=
L

U
· U

2

gD
=
L

U
· F 2

that is, while using for the Froude ground wave propagating velocity UF =
√
g ·D

T1 · T2 =
L

U
· L · U
g ·D

=
L2

g ·D
=

(
L

UF

)2

that is the coefficient on s2 is independent of Fr.

And further the coefficient on s:

T1 · φ =
L

U
·

(
U

2

g ·D

)
=
L

U
· U

2

UF
2 =

L

UF
· F

increases linearly with the Froude number Fr.

Consider now the case of Fr > 0 with κ = 2/3. The part in sqare brackets [...] yields a second order
oscillator with resonance frequency ΩF and damping ratio 2DF :

0 = s · (2T1)

[
s2 ·

(
T1T2

2

)
+ s · (T1φ) + 1.0

]
!
= s · (2T1)

[(
s

ΩF

)2

+ (2D)F

(
s

ΩF

)
+ 1.0

]

with ΩF =

√
2

T1T2
= ωE

and 2DF = ΩF · φ · T1 =

√
2

T1T2
· T1φ =

√
2

√
T1

T2
· φ =

√
2
√
φ · φ =

√
2 F

that is if F := 1.0, then 2DF =
√

2, and if F =
√

2 then 2DF = 2.0

And for the time constant TF of the open integrator part

TF = 2 T1

For φ := 0 the response generated by the part in brackets [...] is no longer asymptotically stable, but still
stable. It is an undamped periodic oscillation with ωF and associated period TF :

TF =
2π

ωF
=

2π√
2
· L
UF

= 4.443 · L
UF

Compare this to the echo traveling time Techo = 4.0L/UF , which is about 11% less than TF . This
deviation is considered acceptable within this framework. – Note that this also holds if both κ = 1.0 and
F = 0.

16

2.2.4 Extensions to the basic model

The following extensions are considered in the next sections

- adding friction losses

- admitting nonzero channel bottom slope but equal channel width

- and admitting both conical side walls and non-zero bottom slope

- considering other inflow and outflow conditions

2.3 Adding friction on bottom and side walls

The usual GMS-law 3 shall be used here, which is well established with engineers in this area. Note that
it assumes steady state flow both in time and in spacial directions, that is no acceleration of flow. So it
will be not more than an approximation for friction losses in the dynamic context considered here. At
least in steady state conditions on typical channels with more or less constant cross section, it should be
valid for modeling. But its validity for transients remains doubtful, and no error margins are available.

The standard formula for the GSM-law is:

U = ks R
2/3 I1/2 or U

2
= k2

s R
4/3 I

where

- U is the mean longitudinal flow velocity, U = Q/(B ·D).

- ks is the Strickler-coefficient, which depends essentially on the bottom roughness (see Table 2.1)

- R is the ‘hydraulic radius’ defined by R := (B · D) / (B + 2 · D) for a rectangular cross section
B ×D.

- I is the longitudinal level slope I := ∆Hi/Li, with Hi as the water level deviation from a given
geodesic horizon.

The bottom deviation from the said horizon is denoted as Si. Then the bottom slope ∆Si/Li is implied
in the GMS-law to be equal to the water level slope Ii, such that water depth Di := Hi − Si is constant
along xi. Also both slopes are assumed constant along xi.

Table 2.1: Strickler coefficients

surface ks, ≈
steel, smooth concrete 100
bitumen 70
brickwork 50
gravel 40
natural river bed 30
mountain river bed 20

Next R shall be addressed. To make the discussion more transparent and simpler, the following approxi-
mations can be made:

Ri =
Bi ·Di

Bi + 2Di
=

Di

1 + 2Di

Bi

, and for Bi � Di set (approx.) Ri := Di

3Gaukler-Manning-Strickler

17

and also by setting (approx.)

R
4/3
i := Di

The friction force Ffi for the momentum balance is calculated next. With Ii = ∆Hif /Li the GMS-law is:

U2
i ≈ k2

s ·Di ·
(

∆Hif

Li

)
f

or Di ·∆Hif =
Li
k2
s

· U2
i

where Di ·∆Hif ≈ 1

2
(Di−1 +Di+1)(Di−1 −Di+1)f =

1

2

[
D2
i−1 −D2

i+1

]
f

Compare to the pressure force difference

(Pi−1 − Pi+1) =
1

2
ρgBi

[
D2
i−1 −D2

i+1

]
p

and thus Ffi =
1

2
ρgBi

[
D2
i−1 −D2

i+1

]
f

= ρgBi
Li · U2

i

k2
s

and further Ffi =
g

k2
s

· Li
Di
· ρ · Q2

i

(BiDi)
finally Ffi =

[
g

k2
s

· Li
Di

]
·
∗
Ii = ψ·

∗
Ii

with the relative weight ψ of the friction force to the momentum reaction force.
Consider some quantitative cases:

- with L = 10m, D = 2.5m and ks = 70, then ψ ≈ 100/(2.5 ∗ 5000) = 0.008,

- and for L = 200m this increases to ψ = 0.16.

- But for L = 150m, D = 1.2m, and with ks = 25 (aka ‘NeueWelt’, natural river zone) then ψ = 2.0,

- and for L = 4′000m, D = 8m, and with ks = 32.5 (aka ‘Birsfelden’) then ψ = 4.73 !

So the friction contribution to damping can be either significantly smaller or greater than the reaction
force contribution...!

It was assumed that the surface level and the bottom level are parallel. In other words the depth D is
constant along x. Thus the bottom needs to be inclined accordingly

(Si−1 − Si+1)f = ∆Sif
!
= ∆Hif = (Hi−1 −Hi+1)f

where Si+k is the geodetic height of the bottom at xi+k for k = −1, 0+1 with respect to the ‘horizon’, and
is taken positive for the upward direction. And for the surface level difference ∆Hif from the GMS-law:

∆Hif :=
Ui

2 · Li
k2
s ·R

4/3
with Ui =

Qi

Bi ·Di

and with R =
BiDi

Bi + 2Di

Usually the ‘reference’ or ‘design’ operating point or condition of the channel is given by Uref , Dref or
Qref , Bref , Dref . then ∆HFrref can be evaluated directly, and thus the ‘reference’ bottom slope ∆Sref .

To get an idea how a different Q 6= Qref will affect both D and U , let again R4/3 ≈ D.
For steady state conditions, again ∆Hf := ∆Sref ,and with B := Bref , k

2
s := k2

sref

∆S =
U2 · L
k2
sD

=
L

k2
s

· Q2

B2D3

∆Sref =
U2
ref · L
k2
sDref

=
L

k2
s

·
Q2
ref

B2D3
ref

→ ∆S

∆Sref
= 1.0 =

(
Q

Qref

)2

·
(
Dref

D

)3

that is
D

Dref
=

[(
Q

Qref

)](2/3)

and
U

Uref
=

[(
Q

Qref

)](1/3)

Note that avoiding the approximation on R(4/3) from above leads to an implicit equation for D, which
will have to be solved iteratively (see subsection 2.6.3).

18

2.4 Pressure forces on non-zero bottom slope and constant
width

Consider the situation shown in Fig.2.4 (lateral or side view).

Pi-1

x x

Li

D
i-1

D
i

D
i+1

Pi+1

Pb i

H

S

i+1

i+1

H

S

i

i

H
i-1

S
i-1

horizon

x
i-1 i i+1

Figure 2.4: Pressure forces around xi for a non-zero bottom slope
.

Let

Bi−1 = Bi = Bi+1

but Si−1 6= Si 6= Si+1; where Si
!
=

1

2
· (Si−1 + Si+1)

that is the bottom slope is constant over xi−1 to xi+1 (‘linear interpolation’).
The bottom slope (Si−1 − Si+1)/L shall be small, such that the cosine of the angle with the horizontal
still is ≈ 1.0

For the pressure force balance, three elements must be considered, on the left (Pi−1) and on the right
hand (Pi+1) cross sections, and the horizontal component (Pi) of the pressure force on the bottom.

Pi−1 =
1

2
ρgBiD

2
i−1

Pi+1 =
1

2
ρgBiD

2
i+1

p(x)hor = ρgD(x)
(Si−1 − Si+1)

Li

and integrated over x

Pihor
= BiLiρg

(Si−1 − Si+1)

Li

∫ Li

0

D(x)dx

= BiLiρg
(Si−1 − Si+1)

Li

∫ Li

0

[Di−1 − (Di−1 −Di+1)x] dx

= BiLiρg
(Si−1 − Si+1)

Li

[
Di−1 (Li − 0)− (Di−1 −Di+1)

1

2
(Li − 0)

]

19

Pihor
= BiLiρg(Si−1 − Si+1)

[
Di−1 − (Di−1 −Di+1)

1

2

]
= BiLiρg(Si−1 − Si+1)

1

2
[Di−1 +Di+1]

= ρgBiDi[Si−1 − Si+1]

- The last equation implies that the water surface has constant slope from xi−1 to xi+1 (‘linear
interpolation’, no curvature).

- If (Si−1 < Si+1) (as shown in Fig.2.4), and the depth S(x) is taken as negative from the horizon
downwards (as in Fig.2.4), then Pihor

is automatically < 0

Then the pressure force balance is

∆Pihor
= Pi−1 − Pi+1 + Pihoriz

= ρgBi
1

2

[
D2
i−1 −D2

i+1

]
+ ρgBiDi[Si−1 − Si+1]

= ρgBi

{
1

2
(Di−1 +Di+1) · (Di−1 −Di+1) +Di[Si−1 − Si+1]

}
with

1

2
(Di−1 +Di+1) = Di

= ρgBiDi {(Di−1 −Di+1) + (Si−1 − Si+1)} where Di+k = Hi+k − Si+k for k = −1, 0,+1

= ρgBiDi {(Hi−1 − Si−1)− (Hi+1 − Si+1) + (Si−1 − Si+1)}

∆Pihor
= ρgBiDi {Hi−1 −Hi+1} = ρgBi Di ∆Hi

- Note that Hi+k is taken positive if for values upwards of the horizon, see Fig.2.4,

- and if the content is not moving at all, then Hi−1 −Hi+1
!
= 0 (see the green contour in Fig.2.4)

and thus ∆Pihor
= 0, and the content stays at rest, q.e.d.

Remark
A second approach to compute the pressure force balance for non-zero bottom slope is to consider a mass
point on an inclined plane, with the cross section pressure forces acting on it.
The weight force of the content is

FGi
= gρV = gρLiBiDi

and its component parallel to the inclined bottom plane is

FGincl
= FGi

Si−1 − Si+1

Li
= ρgBiDi(Si−1 − Si+1)

and due to the small inclination angle assumed above, this is also approx. equal to its horizontal component
FGhor

.
This is the same result as for Pihor

from above. Using the (horizontal) pressure forces on the cross sections
from above, the force balance will be the same, and finally also

∆Pi = ρgBi Di ∆Hi

20

2.5 Pressure forces on conical side walls and non-zero bottom
slope

Consider the geometry of the element in Fig.2.5

x xxi-1 i i+1

D
i-1

D
i

D
i+1

Li

x

p (x)

p (x)_long

0.5*B_i-1

0.5*B_i+1

D
i-1

D
i+1

D
i

H
i-1

S
i-1

H
i+1

S
i+1S

i

H
i

p (x)

p (x)_long

y

y

Figure 2.5: Pressure forces for conical side walls and zero bottom slope,
top: side view, bottom left: top view, bottom right: longitudinal view, in direction of flow

2.5.1 cross section surfaces

Pressure forces on the cross sections are:

Pi−1 = Di−1 ·Bi−1 ·
1

2
ρgDi−1 and Pi+1 = Di+1 ·Bi+1 ·

1

2
ρgDi+1

2.5.2 side wall surfaces

On one side wall (shaded green in Fig.2.5, the local mean pressure orthogonal to the wall surface is at
position y

porth(y) = ρg
1

2
D2(y)

and the longitudinal component is

plong(y) =
0.5(Bi−1 −Bi+1)

Li
· porth(y)

21

Then the longitudinal pressure force at position y with strip width d` is

dPlong(y) = plong(y) · d` =
0.5(Bi−1 −Bi+1)

Li
· porth(y) · d` =

0.5(Bi−1 −Bi+1)

Li
· ρg 1

2
D2(y) · d`

here d` must be replaced by dy for integration, where

d` =
Li

0.5(Bi−1 −Bi+1)
· dy

that is

dPlong(y) =
0.5(Bi−1 −Bi+1)

Li
· ρg 1

2
D2(y) · Li

0.5(Bi−1 −Bi+1)
· dy = ρg

1

2
D2(y)dy

Next D(y) is a linear function of dy, to be inserted

D(y) = Di−1 − (Di−1 −Di+1) · y

0.5(Bi−1 −Bi+1)
= Di−1 − δiη

where for y = ystart := 0 is D(y) = Di−1 and η = 0
and for y = yend := 0.5(Bi−1 −Bi+1) is D(y) = Di+1 and η = 1.0

Integrating over the lateral wall surface is:

Plong = ρg
1

2

∫ 0.5(Bi−1−Bi+1)

0

D2(y)dy = ρg
1

2
[0.5(Bi−1 −Bi+1)]

∫ 1

0

D2(η)dη

= α

∫ 1

0

D2(η)dη which defines abbreviation α

= α ·
∫ 1

0

(Di−1 − δi · η)2 · dη = α ·
[
D2
i−1

∫ 1

0

1 · dη − 2Di−1δi

∫ 1

0

η · dη + δ2
i

∫ 1

0

η2 · dη
]

= α ·
[
D2
i−1 [1− 0] − 2Di−1δi

1

2
[1− 0] + δ2

i

1

3
[1− 0]

]
= α

[
D2
i−1 − Di−1δi + δ2

i

1

3

]

= α

[
D2
i−1 − Di−1 (Di−1 −Di+1) +

1

3

(
D2
i−1 − 2Di−1Di+1 +D2

i+1

)]
Plong = α

1

3

[
D2
i−1 +Di−1Di+1 +D2

i+1

]
A short check: Let Di−1 := Di+1 := Di then Plong = α 1

3

[
D2
i +D2

i +D2
i

]
= αD2

i q.e.d.

The next step is to replace Di−1, Di+1 by variables Di,∆i:

Di =
1

2
(Di−1 + Di+1)

∆i =
1

2
(Di−1 − Di+1)

Inserting this in the last result above yields after a short bit of algebra:

Plong = α
1

3

[
3 ·D2

i − 0 ·Di∆i + 1 ·∆2
]

= αD2
i

[
1 +

1

3

(
∆i

Di

)2
]

And finally the longitudinal pressure force on both side walls is twice this value, due to assumed geometrical
symmetry.

Pwlong
= ρg (Bi−1 −Bi+1) ·D2

i

[
1 +

1

3

(
∆i

Di

)2
]

A numerical example: Let |∆i/Di| ≤ 0.20, then the deviation would be ≤ 1.33%, if the simplified
relation Pwlong

:= ρg (Bi−1 −Bi+1) ·D2
i valid for the constant cross section would be used instead.

In other words the effect of moderately conical side walls is weak, and the constant cross section around
xi is a reasonable approximation.

22

2.5.3 bottom surfaces

Consider again Fig.2.5. The bottom surface is split into a rectangular part (shaded blue) and two trian-
gular parts (shaded red). This is to simplify the integration.

The rectangular part has been investigated in the previous section, with the result for the longitudinal
pressure force, adated to the current geometry:

Piblue
= ρgBi+1 (Si−1 − Si+1)Di

For one triangular part let

∆Bi :=
1

2
(Bi−1 −Bi+1) and ∆Si :=

1

2
(Si−1 − Si+1)

Then

pi(η) = ρgD(η) = ρg [Di+1 + (Di−1 −Di+1)ηi]

`i(η) = ∆Bi · η
d` = ∆Si · dη

and for the surface at η dAi(η) = `i(η)d` = ∆Bi ·∆Si · ηdη
dPi(η) = ρg∆Bi ·∆Si [Di+1 + (Di−1 −Di+1)ηi] · ηidη

= ρg∆Bi ·∆Si
[
Di+1 · ηi + (Di−1 −Di+1)η2

i

]
dη

and integrating

Pired = ρg∆Bi ·∆Si
[
Di+1

∫ 1

0

ηidη + (Di−1 −Di+1)

∫ 1

0

η2
i dη

]
= ρg∆Bi ·∆Si

[
Di+1

1

2
+ (Di−1 −Di+1)

1

3

]
= ρg∆Bi ·∆Si

[
1

3
Di−1 +

1

6
Di+1

]
Again using Di,∆i instead of Di−1, Di+1, that is[

1

3
Di−1 +

1

6
Di+1

]
=

1

3

[
Di−1 +

1

2
Di+1

]
=

1

3

[
(Di + ∆i) +

1

2
(Di −∆i)

]
=

1

3

[
3

2
Di +

1

2
∆i

]
=

1

2

[
Di +

1

3
∆i

]

and for both red triangles

2 · Pired = ρg∆Bi ·∆Si ·Di

[
1 +

1

3

∆i

Di

]
Finally for the total bottom surface:

Pibottom = ρg ·∆Si ·Di

[
Bi+1 + ∆Bi

[
1 +

1

3

∆i

Di

]]
with

Bi+1 + ∆Bi = Bi+1 +
1

2
(Bi−1 −Bi+1) =

1

2
(Bi−1 +Bi+1) = Bi

and thus

Pibottom = ρg ·∆Si ·Di ·Bi
[
1 +

∆Bi
Bi
· 1

3
· ∆i

Di

]

23

A numerical example: Let ∆Bi

Bi
:= 0.20 and ∆i

Di
:= 0.20. Then a deviation of 1.333% results, if the

simplified relation Pi := ρg ·∆Si ·Di ·Bi valid for the constant cross section would be used instead.
Again the effect of a moderate bottom slope is weak, and the constant cross section element around xi is
a reasonable approximation.

2.6 Modeling Operating Conditions

The aim here is to check whether the model derived so far behaves as expected from experience on a
selection of test cases.

Two typical ‘plant’ layouts are considered

- a section of a river with both constant and varying cross rectangular section (note that this is meant
as a rough approximation of the natural trapezoidal shape) with GMS-friction due to a natural river
bed (ks = 40.0). The operating point is given as for low flow and very high flow conditions.

- a built channel (typical inflow to a hydropower station) with constant cross section and with smooth
bottom and sides (ks = 70.7). The outflow fits the typical operating range of low head hydro
turbines.

The reference ‘plant’ data are set to

Qr 50 m3/s
Lr 20 m
Br 10 m
Sr −1.0 m
Hr 1.5 m

Dr 2.5 m
Ur 2.0 m/s
ksr 40.0 -
or 70.7

UFr 5.0 m/s
Fr 0.40

QFr 125 m3/s

and the model reference parameters to

T1 = T3 = T0 10 s
T2 1.6 s

ωe

√
2/4 rad/s

Te

√
2π4 = 17.80 s

TE 4Lr/UFrr = 16 s

Ltot 40 m
Tfill Ltot/Ur = 20 s

The ‘reference’ values vr (or v r in the .sce-scripts) are what the plant is designed for. They are often
called ‘nominal’ or ‘design’ values. The ‘operating’ values at the actual steady state operating conditions
of the plant are indicated by v 0, and are given proportionally to the ‘reference’ values.

2.6.1 River Section

The following three cases are investigated4

• flow operating points at Q 0 = Qr ∗ [0.25, 1.0, 4.0, 16.0], where jointly B 0 = Br ∗ [1.0, 1.0, 2.0, 4.0]
to model additional lateral overflow areas for high flow conditions;

• Froude number operating points F 0 = Fr ∗ [0.5, 1.0, 2.0, 4.0] = [0.2, 0.4, 0.8, 1.6], where Q 0 = Qr
and ks 0 = ksr are both fixed. This will lead to different D 0 and different bottom slopes;

• conical cross sections with Q 0 = Qr and ks 0 = ksr both fixed. And at the reference cross section is
set at location i = 2, that is B 2 := Br and S 2 := Sr. Also the adjacent section downstream is set to
continued cross section, that is Bi+2 := Bi+1+0.5·(Bi+1−Bi−1) and Si+2 := Si+1+0.5·(Si+1−Si−1)
where i = 2.

– Side walls convergent from Bi−1 = 1.2 ∗ Br to Bi+1 = 0.8 ∗ Br and side walls divergent from
Bi−1 = 0.8 ∗ Br to Bi+1 = 1.2 ∗ Br. This results in an opening angle of the diffusor wall
of 0.1rad that is 6o. It also fits the results of the previous section on allowable conicity, as
∆Bi/Bi = 0.5 ∗ 4.0m/10m = 0.20

4Note that not all parameter sets will be documented by plots but only a selection to conserve space. However the
parameter sets are made available in the context.sce-files for ‘de-commenting’

24

– Bottom sloping up from Si−1 = 1.5 ∗ Sr = −1.5m to Si+1 = 0.5 ∗ Sr = −0.5m and sloping
down from Si−1 = 0.5 ∗ Sr = −0.5m to Si+1 = 1.5 ∗ Sr = −1.5m. . Concerning allowable
conicity this is ∆Si/Dr = 0.5 ∗ 1.0m/2.5m = 0.20. And this will produce a slope of ±1m by
20m, that is ±0.05rad or ±3o

The second case will produce a strongly accelerated flow, and transition to supercritical flow
will occur (and thus will require κ := 1.0).

– and by combining the convergent & upslope case (to the ‘confusor’ case) and the divergent &
downslope case (to the ‘diffusor’ case).

For all three cases the disturbance shall be a rectangular variation ±∆Q(t) around Q 0 with long enough
period to show at least four periods of the sloshing oscillation.

2.6.2 Channel section

The operating point on flow is set to Q 0 = Qr ∗ [0.30, 1.00, 1.25]. The following variables are ‘frozen’

- D 0 := Dr; and thus F 0 varying with Q 0,

- ks = 70.7,

- B 0 := Br;S 0 := Sr, and thus constant cross section at reference size.

To model a typical turbine inflow channel to a power station, a small rectangular outflow variation ±∆Q
on Q 0 is applied with inflow fixed at Q 0;
Remark: A large flow disturbance such as produced by a turbine trip or a startup and quick loading
would generate strong level excursions. Then a flow bypass such as a broad overfall or a fast moving weir
is required to keep the water level within its usual operating constraints.

2.6.3 Boundary Conditions

At the Inflow Cross Section, index in

case A:
If the upstream inflow is given by the GMS-law, then for the river layout:
Given: ksr , Qin, Bin := Br, Sin := Sr.
Find: Din (and Uin)
where the bottom slope is determined from the reference operating point and is kept fixed for the other
operating points, and where Din must be calculated from the GMS-law by iteration:

// s_c2_03_00_iter.sce
// iteration for D_I; Glf 24.3.14
// reference slope

k_s = 40.;
Q_r = 50.0; B_r = 10.0; D_r = 2.5; U_r = 2.0;
R_r = (B_r*D_r)/(B_r + 2*D_r);
I_r = (U_r/(k_s*(R_r)^(2/3)))^2;

// flow set; choose by ’comment’
//Q_0 = 800.0; B_0 = 40.0;
//Q_0 = 200.0; B_0 = 20.0;
//Q_0 = 50.0; B_0 = 10.0;

Q_0 = 12.5; B_0 = 10.0;

// initialzing ’iteration loop’
D_I = D_r; gainQ = 0.01*(D_I/Q_0);

Q = k_s*(B_0)*(D_I)*(D_I)^(2/3)*(I_r)^(1/2);
n = 1; // loop counter
eQ = -Q_0 + Q;
// iteration loop
while (eQ<-0.001)|(eQ>0.001) then

R_I = (B_0*D_I)/(B_0 + 2*D_I);
Q = (k_s*(I_r)^(1/2)*B_0)*D_I*(R_I)^(2/3);
eQ = -Q_0 + Q;
D_I = D_I - gainQ*eQ;
n = n + 1;

end
// results
//Q_0 = 800.; B_0 = 40; -> D_I = 5.371; n = 1901;
//Q_0 = 200.; B_0 = 20; -> D_I = 3.649; n = 1126;
//Q_0 = 50.; B_0 = 10; -> D_I = 2.500; n = 2;
//Q_0 = 12.5; B_0 = 10; -> D_I = 0.995; n = 253;

resulting in Din, and from there Uin = Qin/(Br ·Din)

25

case B:
If the main flow parameter F (Froude number) is given, then for both the river and the channel layout:
Given: Fin, Qin, Bin := Br, Sin := Sr,.
Find: Din (and Uin)

Uin = Fin ·
√
g ·Din =

Qin
Bin ·Din

Qin = D
3/2
in ·Bin · Fin ·

√
g

→ Din =

[
Qin

Bin · Fin ·
√
g

]2/3

and Uin = [Fin ·
√
g]

2/3 ·
[
Qin
Bin

]1/3

Friction Slope, index f

For both the river flow and the channel flow along L at all i, here for i = 2
Given: Qi := Qin, Bi := Bin, Di := Din.
Find: ∆Sfi

From Ui = ks ·R2/3
i ·

[
∆Sfi
Lr

]1/2

with Ri =
Bi ·Di

Bi + 2Di

→ ∆Sfi =
Lr
k2
s

·
[
Qi
Bi
·Di ·R2/3

i

]2

and for all i the bottom profile is constructed step-by-step:

Sfi = Sfi−1 + 0.5 ·∆Sfi
Sfi+1 = Sfi + 0.5 ·∆Sfi

and for i = 2 starting with Sfi−1 = 0

Si−1|total = Si−1|nofriction − 0

Si|total = Si|nofriction − Sfi
Si+1|total = Si+1|nofriction − Sfi+1

where Si|nofriction is the ‘presumed geometry’ input for the bottom (without adding the additional slope
necessary to compensate the friction loss).

At the Outflow Cross Section, index ot

For the river model, the outflow Qot(t)
5 from the last volume balance compartment at i+1 is determined

by its context variable Dot(t) := Di+1 and the GMS-law of the next downstream river section at i+2.
Given: Dot(t), Bot
Find: Qot(t)

Qot(t) = Bot ·Dot(t) · Uot(t) with Uot(t) = ks ·R2/3
ot ·

[
∆Sot
Lr

]1/2

= ks · (Bot ·Dot(t)) ·
[
Bot ·Dot(t)

Bot + 2Dot(t)

]2/3

·
[

∆Sot
Lr

]1/2

5In the .sce-files the ot is replaced by o

26

And the ‘extended’ slope of the river bed into the next downstream river element i+2 is

∆Sfi+2
:= ∆Sfot ≈ ∆Sfi+1

Sfi+2
:= Sfot ≈ Sfi+1

− 0.5 ·∆Sfi+1

Si+2|total := Si+2|nofriction − Sfot

For the channel model, the outflow from the last volume compartment is ‘forced’ to the rectangular
sequence around Qin, and the inflow Qin = Q 0 is constant.

2.6.4 Initial Conditions

Volume balances: for all i let D 0i := Din.

Note that this is correct if and only if the bottom slope and the level slope are
parallel. Otherwise this simple assignment will not be equivalent to steady-state
initial conditions. It will lead to an initial transient response, which must settle
before the subsequent experiments of flow disturbance may be performed.

Momentum balances: for all i let Q 0i := Qin

2.7 Implementation in ‘scilab/xcos’

WARNING: Using Scilab v. 5.4.1. throughout is strongly recommended.
Newer versions (such as 5.5.2 or 6.0.0) produce crashes due to unresolved incompatibilities.

The aim of this section is to give an overview on

- how the plant layouts and associated operating conditions are implemented,

- how the signal flow diagrams are supplied with parameters and the results are plotted,

- and how the simulation runs are handled.

2.7.1 Naming of the plant layout cases

As this chapter covers the basic system models with essentially three ordinary differential equations, the
names of all software elements within this context start with 03

Then each of the plant layouts given in the last section is named as follows

s c2 03 01 river bed, constant cross section, low and very high flow levels, inflow variation
s c2 03 02 river bed, constant cross section, low and high Froude number levels, inflow variation
s c2 03 03 river bed, conical cross sections, inflow variation

s c2 03 04 channel flow, constant depth and width, fixed inflow levels, small outflow variations

2.7.2 The ‘Triplet Files’ for each layout case

Each layout case is covered by a triplet of files, the original .zcos, and two .sce-scripts:

• The s c2 03 0k.xcos diagram (k = 1 . . . 4) results from the ‘click and drag’ build-up using the
Xcos ‘palettes’. It contains the signal flow graph around the integrators, thus implementing the

27

differential equations. Several Xcos blocks ‘mathematical expressions’ make the signal flow graph
more compact. The blocks To workspace put the simulation run data into the scilab-workspace
for post-processing, i.e. plotting. The actual parameter values for the diagram are passed to the
graph through the ‘context’-feature.

• The s c2 03 0k.zcos diagram is its ‘zipped’ companion, which is called by the batch-simulation
function scicos simulate(...), see below.

• A first scilab-script named s c2 03 0k context.sce defines and evaluates all parameters for the
s c2 03 0k.zcos file which are needed for the simulation at the specified operating point. Specific
operating point variable values v 0 are selected by ‘comment’-ing/‘de-comment’-ing (starting lines
with twin backlashes). At the end of the texttt context-script, the data transfer into the scilab-
workspace is set up.

• The second scilab-script named s c2 03 0k crunplot.sce lets the simulation run in batch-mode
by calling scicos simulate(...) and plots using standard scilab-plot routines.

2.7.3 Handling a simulation run

The group of the above triplet files must be placed adjacent in the same Explorer folder.

After having started scilab, the scilab console window opens. Navigate in the file browser (can be
found under ‘applications’ on the console menu bar of the scilab-Console window to the appropriate
(sub-)directory. Then

1. From the file browser within the scilab-console window open all files of your target case triplet by
double clicks.
Both .sce scripts will open in the sce-editor-window. The .zcos-graph will open in the
.zcos-window (‘loading...’ may take several seconds).

2. Edit the data in the context.sce-file to fit the specific operating point (using the ‘comment’-ing
technique), and (if required) also in the crunplot.sce-file. Note that appropriate scaling on the
plots for the specific operating point may be necessary and ‘save’ both the context.sce-file and
the crunplot.sce-file by way of the menu bar of the sce-editor.

3. Go to the .zcos-window (the zipped ‘diagram’), and edit the structure (if required). Then ‘save’
the diagram by the zcos menu bar, with the appendix .zcos. Note that this may take 10 to 30
seconds for larger diagrams.
This zipped form is called from the batch simulation function.
If the diagram is NOT changed, and only new parameter values are inserted, then this ‘save’ and
its subsequent ‘save as’ are not required. This saves turnaround-time !

4. go back to the sce-editor-window and to the crunplot.sce-file: ‘save and execute’ this file from
within the sce-editor menu bar. In batch-mode (that is without further user interaction) this

- executes the context.sce-file to generate the parameter values for the diagram,

- loads the parameter values into the .zcos-diagram,

- runs the simulation using the library routine scicos simulate 6,

- extracts the data to be plotted from the data arrays written by the ‘to workspace’ blocks and

- plots the results using standard scilab-plot routines. Again this may take several tens of seconds
for large diagrams...

Hints: Storing the resulting plot files as .pdf’s and not as .png’s yields better resolution on both screen
and print outputs for a report in LATEX. – If the report is prepared in MS Word, then only .png’s can be
inserted (as ‘picture from file’).
The best way to include the ‘diagrams’ in both LATEXand MS-Word is to ‘export’ them from the .zcos-
window within Xcos to .png’s.

6The alternative xcos simulate which will not be supported in newer releases of scilab

28

2.8 Simulation results

2.8.1 case s c2 03 01 river bed, constant width, low/high flow

Figure 2.6: s c2 03 01, zcos-Diagram

29

.sce-files

// s_c2_03_01_context
// Glf 24.03.2014
// Low/High Flow

g = 10.;
L = 20.;

// flow set; choose by ’comment’
Q_0 = 800.0; B_0 = 40.0; S_0 = 1*(-1.0);

// Q_0 = 50.0; B_0 = 10.0; S_0 = 1*(-1.0);
// Q_0 = 12.5; B_0 = 10.0; S_0 = 1*(-1.0);

// reference bottom slope
// friction coeff
//k_s = 31.6;

k_s = 40.0;
Q_r = 50.0; B_r = 10.0;
D_r = 2.5; S_r = 1*(-1.0);
U_r = 2.0;
R_r = (B_r*D_r)/(B_r + 2*D_r);
I_r = (U_r/(k_s*(R_r)^(2/3)))^2;

// initialzing ’iteration loop’
D_0 = D_r;
gainQ = 0.01*(D_0/Q_0);
Q = k_s*(B_0)*(D_0)*(D_0)^(2/3)*(I_r)^(1/2);
eQ = -Q_0 + Q;

// iteration loop
while (eQ<-0.001)|(eQ>0.001) then

R_0 = (B_0*D_0)/(B_0 + 2*D_0);
Q = (k_s*(I_r)^(1/2)*B_0)*D_0*(R_0)^(2/3);
eQ = -Q_0 + Q;
D_0 = D_0 - gainQ*eQ;

end

kap = 1.00;

// channel shape:
B_1 = 1*B_0;
B_3 = 1*B_0;
B_2 = 0.5*(B_1 + B_3);
B_4 = B_3;

S_1 = 1.0*S_0;
S_3 = 1.0*S_0;
S_2 = 0.5*(S_1 + S_3);
S_4 = S_3;

//Bottom shape at _r conditions
delSf = + L*I_r;

S_f_1 = 0;
S_f_2 = S_f_1 + 0.5*delSf;
S_f_3 = S_f_2 + 0.5*delSf;
S_f_4 = S_f_3 + 0.5*delSf;

S_1 = S_1 - S_f_1 ;
S_2 = S_2 - S_f_2 ;
S_3 = S_3 - S_f_3 ;
S_4 = S_4 - S_f_4 ;

// outflow following GMS
g_4 = k_s*((I_r)^(1/2));

// initial conditions
D_10 = D_0; D_30 = D_0;
Q_20 = Q_0;

// inflow sequence
t_st_1 = 50.0; r_1_0 = Q_0; r_1_1 = (1.5)*Q_0;
t_st_2 = 200.0; r_2_0 = 0.; r_2_1 = -1.00*Q_0;
t_st_3 = 350.0; r_3_0 = 0.; r_3_1 = +0.50*Q_0;

T_fin = 500.;

g_st = 100.0; u_up_st = +10.0; u_dn_st = -10.0;
tau_st = 1.0*(Q_r/Q_0); Q_st_0 = Q_0;

// Datatransfer to Plots
CCQ = 4; // number of channels Q + 1 for time
CCD = 5; // number for D,H
CCF = 4; // number for F
CN = 1000; // number of clockticks until Tfin
delT = T_fin/CN; // read-interval for clock ticks
AsizeQ = 1.1*CCQ*CN; // size of Dataarrays for Q
AsizeD = 1.1*CCD*CN;
AsizeF = 1.1*CCF*CN;

// s_c2_03_01_crunplot
// Glf, 18.03.14 26.10.2015
// Low/High Flow

stacksize(’max’); exec(’s_c2_03_01_context.sce’, -1);
importXcosDiagram(’s_c2_03_01.zcos’);
typeof(scs_m); scs_m.props.context;
Info=list(); Info=scicos_simulate(scs_m,Info);
//**********************************

vcolorQ = [1, 2, 5];
vcolorD = [1, 2, 5, 13];
vcolorF = [1, 2, 13];

f1 = scf(1); clf();
f1.auto_resize = "on";
f1.figure_size = [626.,420.];

plot2d(Q.time,Q.values,vcolorQ,rect=[0,0,500,1400]);
// plot2d(Q.time,Q.values,vcolorQ,rect=[0,0.,500,80.]);

// plot2d(Q.time,Q.values,vcolorQ,rect=[0,0.,500,20.]);

xtitle("Q_in, Q_out, Q_2");
xgrid(1); h1 = legend([’Q_in’;’Q_out’;’Q_2’],4);

f2 = scf(2); clf();
f2.auto_resize = "on";
f2.figure_size = [626.,420.];

plot2d(D.time,D.values,vcolorD,rect=[0,-3.0,500,8]);
// plot2d(D.time,D.values,vcolorD,rect=[0,-3.0,500,4]);
// plot2d(D.time,D.values,vcolorD,rect=[0,-3.0,500,2]);
xtitle("D_1 and D_3, H_1 and H_3");
xgrid(1);h1 = legend([’D_1’;’D_3’;’H_1’;’H_3’],4);

f3 = scf(3); clf();
f3.auto_resize = "on";
f3.figure_size = [626.,420.];
plot2d(F.time,F.values,vcolorF,rect=[0.,0.,500,1.0]);
xtitle("F_1, F_2, F_3");
xgrid(1);h1 = legend([’F_1’;’F_2’; ’F_3’],4);

30

Figure 2.7: s c2 03 01 for reference flow Q 0 = 1.0 ·Q r

31

Figure 2.8: s c2 03 01 for very low flow Q 0 = 0.25 ·Q r

32

Figure 2.9: s c2 03 01 for very high flow, Q 0 = 16.0 ·Q r with B 0 = 4 ·B r

33

2.8.2 case s c2 03 02 river bed, constant width, reference flow,
but different Froude numbers

.sce-files

// s_c2_03_02_context
// Glf 18.03.2014, 26.10.2015

g = 10.;
L = 20.;
Q_r = 50.0;
D_r = 2.5;
S_r = 1*(-1.0);
B_r = 10.;
U_r = 2.0;

// Operating point, by Froude-number
//F_0 = 0.2;
//F_0 = 0.8;

F_0 = 1.6;

Q_0 = Q_r; B_0 = B_r;

// friction coeff
//k_s = 100.;
//k_s = 70.7;

k_s = 40.0;
//k_s = 31.6;

kap = 1.0;

// channel shape:
B_1 = 1*B_r;
B_3 = 1*B_r;
B_2 = 0.5*(B_1 + B_3);
B_4 = B_3;

S_1 = 1.0*S_r;
S_3 = 1.0*S_r;
S_2 = 0.5*(S_1 + S_3);
S_4 = S_3;

// inflow boundary conditions
// Given: Q_0 and F_0; determine D_0:

D_0 = ((1/g)*((Q_0/(B_0*F_0))^2))^(1/3);

// friction slope
Rtilda_0 = ((B_0*D_0)/(B_0+2*D_0))^(2/3);
I_0 = (Q_0/(B_0*D_0*k_s*Rtilda_0))^2;

delSf = + L*I_0;

S_f_1 = 0;
S_f_2 = S_f_1 + 0.5*delSf;
S_f_3 = S_f_2 + 0.5*delSf;
S_f_4 = S_f_3 + 0.5*delSf;

S_1 = S_1 - S_f_1 ;
S_2 = S_2 - S_f_2 ;
S_3 = S_3 - S_f_3 ;
S_4 = S_4 - S_f_4 ;

// outflow following GMS
g_4 = k_s*((I_0)^(1/2));

// initial conditions
D_10 = D_0;
D_30 = D_0;
Q_20 = Q_0;

// inflow sequence
t_st_1 = 50.0; r_1_0 = Q_0; r_1_1 = (1.0+0.5)*Q_0;
t_st_2 = 200.0; r_2_0 = 0.; r_2_1 = -1.0*Q_0;
t_st_3 = 450.0; r_3_0 = 0.; r_3_1 = +0.50*Q_0;

T_fin = 600.;

g_st = 100.0; u_up_st = +10.0; u_dn_st = -10.0;
tau_st = 1.0; Q_st_0 = Q_0;

// Datatransfer to Plots
CCQ = 4; // number of channels Q + 1 for time
CCD = 5; // number for D,H
CCF = 4; // number for FroudeZ
CN = 1200; // number of clockticks until Tfin
delT = T_fin/CN; // read-interval for clock ticks
AsizeQ = 1.1*CCQ*CN; // size of Dataarrays for Q
AsizeD = 1.1*CCD*CN;
AsizeF = 1.1*CCF*CN;

// s_c2_03_02_crunplot
// Glf 18.03.14 26.10.2015

stacksize(’max’); exec(’s_c2_03_02_context.sce’, -1);
importXcosDiagram(’s_c2_03_02.zcos’);
typeof(scs_m); scs_m.props.context;
Info=list(); Info=scicos_simulate(scs_m,Info);
//**********************************

vcolorQ = [1, 2, 5];
vcolorD = [1, 2, 5, 13];
vcolorF = [1, 2, 13];

f1 = scf(1); clf();
f1.auto_resize = "on";
f1.figure_size = [626.,420.];
plot2d(Q.time,Q.values,vcolorQ,rect=[0.,0.,600,100.]);
xtitle("Q_in, Q_out, Q_2");

xgrid(1); h1 = legend([’Q_in’;’Q_out’;’Q_2’],4);

f2 = scf(2); clf();
f2.auto_resize = "on";
f2.figure_size = [626.,420.];
plot2d(D.time,D.values,vcolorD,rect=[0.,-3.0,600,8.0]);
xtitle("D_1 and D_3, H_1 and H_3");
xgrid(1);h1 = legend([’D_1’;’D_3’;’H_1’;’H_3’],4);

f3 = scf(3); clf();
f3.auto_resize = "on";
f3.figure_size = [626.,420.];
// plot2d(F.time,F.values,vcolorF,rect=[0.,0.,600,0.4]);
// plot2d(F.time,F.values,vcolorF,rect=[0.,0.,600,1.2]);

plot2d(F.time,F.values,vcolorF,rect=[0.,0.,600,2.5]);
xtitle("F_1, F_2, F_3");
xgrid(1);h1 = legend([’F_1’;’F_2’; ’F_3’],4);

34

Figure 2.10: s c2 03 02 for low Froude number F = 0.20

35

Figure 2.11: s c2 03 02 for high, but subcritical Froude number F = 0.80

36

Figure 2.12: s c2 03 02 for supercritical Froude number, F = 1.60

37

2.8.3 case s c2 03 03 river bed, conical cross section

.sce-files

// s_c2_03_03_context
// Glf 18.03.2014 26.10.2015

g = 10.;
L = 20.;
Q_r = 50.0;
D_r = 2.5;
S_r = 1*(-1.0);
B_r = 10.;
U_r = 2.0;

// Operating point, by Froude-number
//F_r = 0.2;

F_r = 0.4;
//F_r = 0.8;
//F_r = 1.6;
//F_r = 2.4;

// friction coeff
// k_s = 100.;
// k_s = 70.7;

k_s = 40.;
// k_s = 31.6;

kap = 1.0;

// channel shape:
// confusor:
// B_1=1.2*B_r; B_3=0.8*B_r; S_1=1.5*S_r; S_3=0.5*S_r;

//diffusor:
B_1= 0.8*B_r; B_3=1.2*B_r; S_1=0.5*S_r; S_3=1.5*S_r;

B_2 = 0.5*(B_1 + B_3);
B_4 = B_3 + 0.5*(B_3 - B_1);
S_2 = 0.5*(S_1 + S_3);
S_4 = S_3 + 0.5*(S_3 - S_1);

// reference depth
// Given: Q_r and Fr_r; determine D_r:

D_r = ((1/g)*((Q_r/(B_r*F_r))^2))^(1/3);

// bottom shape for _r conditions
Rtilda_r = ((B_r*D_r)/(B_r+2*D_r))^(2/3);
I_r = (Q_r/(B_r*D_r*k_s*Rtilda_r))^2;
delSf = + L*I_r;

S_f_1 = 0;
S_f_2 = S_f_1 + 0.5*delSf;
S_f_3 = S_f_2 + 0.5*delSf;
S_f_4 = S_f_3 + 0.5*delSf;

S_1 = S_1 - S_f_1 ;
S_2 = S_2 - S_f_2 ;
S_3 = S_3 - S_f_3 ;
S_4 = S_4 - S_f_4 ;

// outflow following GMS
g_4 = k_s*((I_r)^(1/2));

// initial conditions
D_0 = D_r; D_10 = D_0; D_30 = D_0;
Q_0 = Q_r; Q_20 = Q_0;

// inflow sequence
t_st_1 = 150.0; r_1_0 = Q_0; r_1_1 = (1.0+0.5)*Q_0;
t_st_2 = 300.0; r_2_0 = 0.; r_2_1 = -1.00*Q_0;
t_st_3 = 450.0; r_3_0 = 0.; r_3_1 = +0.50*Q_0;

T_fin = 600.;

g_st = 100.0; u_up_st = +10.0; u_dn_st = -10.0;
tau_st = 1.0; Q_st_0 = Q_0;

// Datatransfer to Plots
// =====================
CCQ = 4; // number of channels Q + 1 for time
CCD = 5; // number for D,H
CCF = 4; // number for FroudeZ
CN = 1200; // number of clockticks until Tfin
delT = T_fin/CN; // read-interval for clock ticks
AsizeQ = 1.1*CCQ*CN; // size of Dataarrays for Q
AsizeD = 1.1*CCD*CN;
AsizeF = 1.1*CCF*CN;

// s_c2_03_03_crunplot
// Glf 24.03.14 26.10.2015

stacksize(’max’); exec(’s_c2_03_03_context.sce’, -1);
importXcosDiagram(’s_c2_03_03.zcos’);
typeof(scs_m); scs_m.props.context;
Info=list(); Info=scicos_simulate(scs_m,Info);
//**********************************

vcolorQ = [1, 2, 5];
vcolorD = [1, 2, 5, 13];
vcolorF = [1, 2, 13];

T0 = 100.;//suppress initial condition response from plot
T1 = T_fin;

f1 = scf(1); clf();
f1.auto_resize = "on";
f1.figure_size = [626.,420.];

plot2d(Q.time, Q.values, vcolorQ, rect=[T0,0.,T1,100.]);
xtitle("Q_in, Q_out, Q_2");
xgrid(1); h1 = legend([’Q_in’;’Q_out’;’Q_2’],4);

f2 = scf(2); clf();
f2.auto_resize = "on";
f2.figure_size = [626.,420.];
plot2d(D.time, D.values, vcolorD, rect=[T0,-3.0,T1,8.0]);
xtitle("D_1 and D_3, H_1 and H_3");
xgrid(1);h1 = legend([’D_1’;’D_3’;’H_1’;’H_3’],4);

f3 = scf(3); clf();
f3.auto_resize = "on";
f3.figure_size = [626.,420.];
// plot2d(F.time,F.values,vcolorF,rect=[T0,0.,T1,0.5]);

plot2d(F.time,F.values,vcolorF,rect=[T0,0.,T1,5.0]);
xtitle("F_1, F_2, F_3");
xgrid(1);h1 = legend([’F_1’;’F_2’; ’F_3’],4);

38

Figure 2.13: s c2 03 03 for ‘confusor’ cross section

39

Figure 2.14: s c2 03 02 for ‘diffusor’ cross section

40

2.8.4 case s c2 03 04 power station inlet channel,
outflow variation, inflow fixed

s c2 03 04.zcos

41

.sce-files

// s_c2_03_04_context
// Glf 25.03.2014 26.10.2015

g = 10.;
L = 20.;

D_r = 2.5;
S_r = 1*(-1.0);
B_r = 10.;
U_r = 2.0;
Q_r = 50.0;

// flow operating point: select one
Q_0 = Q_r*0.30;

// Q_0 = Q_r*1.00;
// Q_0 = Q_r*1.20;

// option: higher U, lower D, -> higher Fr
// D_r = 1.667;
// U_r = 3.0;

// Operating point, by Froude-number
F_r = 0.2;

//F_0 = 0.4;
//F_r = 0.5;

// friction coeff
k_s = 70.7;

// k_s = 40.0;
// k_s = 31.6;

kap = 1.0;

// channel shape:
B_1 = 1*B_r;
B_3 = 1*B_r;

B_2 = 0.5*(B_1 + B_3);
B_4 = B_3;

S_1 = 1.0*S_r;
S_3 = 1.0*S_r;

S_2 = 0.5*(S_1 + S_3);
S_4 = S_3;

// reference depth
D_0 = D_r;

// bottom shape for _r conditions

Rtilda_r = ((B_r*D_r)/(B_r+2*D_r))^(2/3);
I_r = (Q_r/(B_r*D_r*k_s*Rtilda_r))^2;
delSf = + L*I_r;

S_f_1 = 0;
S_f_2 = S_f_1 + 0.5*delSf;
S_f_3 = S_f_2 + 0.5*delSf;
S_f_4 = S_f_3 + 0.5*delSf;

S_1 = S_1 - S_f_1 ;
S_2 = S_2 - S_f_2 ;
S_3 = S_3 - S_f_3 ;
S_4 = S_4 - S_f_4 ;

// initial conditions
D_10 = D_0; D_30 = D_0;
Q_20 = Q_0;

// outflow sequence
t_st_1 = 150.0; r_1_0 = Q_0; r_1_1 = (1.0-0.04)*Q_0;
t_st_2 = 300.0; r_2_0 = 0.; r_2_1 = +0.08*Q_0;
t_st_3 = 450.0; r_3_0 = 0.; r_3_1 = -0.04*Q_0;

T_fin = 600.;

// outflow flow ramper
g_st = 100.0; u_up_st = +10.0; u_dn_st = -10.0;
tau_st = 1.0; Q_st_0 = Q_0;

// inflow ’sequence’
Q_in = Q_0;

// Datatransfer to Plots
// =====================
CCQ = 4; // number of channels Q + 1 for time
CCD = 5; // number for D,H
CCF = 4; // number for FroudeZ
CN = 1200; // number of clockticks until Tfin
delT = T_fin/CN; // read-interval for clock ticks
AsizeQ = 1.1*CCQ*CN; // size of Dataarrays for Q
AsizeD = 1.1*CCD*CN;
AsizeF = 1.1*CCF*CN;

// s_c2_03_04_crunplot
// Glf 25.03.14 26.10.2015

stacksize(’max’); exec(’s_c2_03_04_context.sce’, -1);
importXcosDiagram(’s_c2_03_04.zcos’);
typeof(scs_m); scs_m.props.context;
Info=list(); Info=scicos_simulate(scs_m,Info);
//**********************************

vcolorQ = [1, 2, 5];
vcolorD = [1, 2, 5, 13];
vcolorF = [1, 2, 13];

T0 = 100.;//suppress initial condition response from plot
T1 = T_fin;

f1 = scf(1); clf();
f1.auto_resize = "on";
f1.figure_size = [626.,420.];

plot2d(Q.time,Q.values,vcolorQ,rect=[T0,13.5,T1,16.5]);

// plot2d(Q.time,Q.values,vcolorQ,rect=[T0,47.,T1,53.]);
// plot2d(Q.time,Q.values,vcolorQ,rect=[T0,57.,T1,63.]);
xtitle("Q_in, Q_out, Q_2");
xgrid(1); h1 = legend([’Q_in’;’Q_out’;’Q_2’],4);

f2 = scf(2); clf();
f2.auto_resize = "on";
f2.figure_size = [626.,420.];

plot2d(D.time,D.values,vcolorD,rect=[T0,0.0,T1,4.0]);
xtitle("D_1 and D_3, H_1 and H_3");
xgrid(1);h1 = legend([’D_1’;’D_3’;’H_1’;’H_3’],4);

f3 = scf(3); clf();
f3.auto_resize = "on";
f3.figure_size = [626.,420.];

plot2d(F.time,F.values,vcolorF,rect=[T0,0.,T1,0.2]);
// plot2d(F.time,F.values,vcolorF,rect=[T0,0.,T1,0.5]);
// plot2d(F.time,F.values,vcolorF,rect=[T0,0.,T1,0.6]);
xtitle("F_1, F_2, F_3");
xgrid(1);h1 = legend([’F_1’;’F_2’; ’F_3’],4);

42

Figure 2.15: s c2 03 04 for inflow variations at Q 0 = 0.30 ·Q r

43

Figure 2.16: s c2 03 04 for inflow variations at Q 0 = 1.00 ·Q r

44

2.9 Discussion

Case s c2 03 01 river bed, constant cross section, low/high flow

Fig. 2.7 There is a strong oscillation on Q2, but not on Qin, Qout: This is the typical ‘sloshing’ phenomenon.
The oscillation period TF := (2 · π/

√
2) · (L/UF) is computed to 17.8 s, and observed at ≈ 18 s.

The oscillation amplitudes on H, D are much reduced by the filter effect of the first order volume
balances.
Fin has a strong initial peak due to Qin increasing rapidly whereas Din is moving much slower.
And Fout does not change significantly as Qout is given by Dout from the GMS-law.

Fig. 2.8 At low flow (Q = 12.5 m3/s) the damping ratio is approx. the same, as the Froude number is
approx the same. The oscillation period changes, as Din ≈ 1.0 m → UF ≈ 3.16 m/s, to 28.1 s,
and observed ≈ 30 s

Fig. 2.9 At very high flow (Q = 800 m3/s,B = 40 m) the damping ratio increases, as the Froude number
increases to F ≈ 0.52. The oscillation period changes, as Din ≈ 5.3 m → UF ≈ 7.3 m/s, to
12.2 s, and observed ≈ 11 s

Case s c2 03 02 river bed, constant cross section, low/high Froude Number

Fig. 2.10 With F = 0.20 the damping is significantly weaker, whereas the sloshing period is approx. the same.

Fig. 2.11 With F = 0.80 the damping is significantly stronger, and the sloshing nearly disappears.

Fig. 2.12 with F = 1.60 that is supercritical flow, the sloshing oscillation fully disappears, and the damping
is ‘supercritical’ (meaning two distinct real poles of the transfer function)

Case s c2 03 03 river bed, reference flow, conical cross section

Fig. 2.13 For the ‘confusor’ case, Fin ≈ 0.11, F2 ≈ 0.15, Fout ≈ 0.32, the damping is slightly reduced, and
the sloshing period as well, due to the larger depth D2 and increased U2F

: TF is observed at ≈ 15 s

Fig. 2.14 For the ‘diffusor’ case, the flow is highly supercritical: Fin ≈ 2.8, F2 ≈ 1.7, Fout ≈ 0.46. Q2 rises
nearly as fast as Qin, but then there is a well damped equilibration between Q2 and Qout.

Case s c2 03 04 turbine inlet channel, low/reference flow

Fig. 2.15 For low flow Q = 15 m3/s; ∆Q = ±0.60 m3/s at F = 0.12 the damping is very low. 8 (!) sloshing
periods are visible, with observed period ≈ 18 s. This is due to the change of the outflow impedance,
from GMS-outflow (depending on Dout) to fixed outflow (not dependent of Dout).
The peak level excursion is ∆H ≈ 0.24 m.

Fig. 2.16 For nominal flow, Q = 50 m3/s; ∆Q = ±2.0 m3/s and F = 0.40, the peak level excursion is
∆H ≈ 0.80 m. The damping is higher now, but still 3 sloshing periods are visible, in contrast to
1.5 visible periods with the GMS-outflow. The observed period is also ≈ 18 s.

To summarize, all the findings conform well with the expected behaviour and trends, and the observed
sloshing period values agree well enough with the precalculated ones.

45

Chapter 3

The Long River/Channel Model

3.1 Overview

The aim of this chapter is to extend the model with three compartments discussed in the previous chapter
in order to provide a better spacial resolution and to display higher oscillation modes, which is needed
for long and comparatively narrow river beds or channels.
This will be achieved by connecting in series (‘chaining up’) a number N of basic elements, consisting
each of one volume balance compartment and one momentum balance compartment. A single volume
balance compartment will be placed at the outflow end of this chain. Its outflow is generated by a non-
dynamic function, which is selected according to the downstream boundary condition, similar as with the
three-compartment-model from above. Thus there will be N+1 volume compartments and N momentum
interleaved compartments along the longitudinal axis.
In order to keep complexity at a reasonable level the total channel length L tot for all compartments
shall be the same, that is the compartment length L of the modelled system will be L = L tot /(N + 1).
Further the number of basic elements N is set to

N := 20

This has turned out to be a reasonable compromise between sufficient spacial resolution (≈ 5% of L tot)
and non-excessive simulation runtime per case (≤ 60sec). Overall there will be 40 + 1 interleaved com-
partments. The selection of N will be discussed in more detail in the next section.

Next the implementation framework in scilab 5.4.1 will be documented in more detail, and how the
simulations are to be run.

The test cases for the ‘numerical experiments’ / ‘simulations’ will mirror the typical operating conditions
of the modelled system. They will be similar to what has been used in the previous chapter. More details
will be given in the corresponding sections below.

Finally an application to ‘Birsfelden’ will be presented, where measured responses are available for
comparison.

Remarks.
The dynamic models in this chapter are valid only for systems with dominant longitudinal geometry

D � B � Ltot

with D as nominal water depth and B as nominal channel width.
They are also only valid for relatively small and slow variations of water level H, such that the vertical
dynamics (that is the momentum balances in the vertical direction) may be neglected.
And finally they shall cover sub-/ trans-/ super-critical flow regimes. To insure this the spacial discreti-
sation parameter κ (see section 2.2.2) is set to κ := 1.0 to ‘stay on the safe side’ concerning dynamic
stability.

46

3.2 Implementation in scilab/xcos 5.4.1

3.2.1 Basic Structure

As mentioned in section. 2.7, each operating case (x = 0 . . . 5) is covered by a triplet of files, the
s c3 41 0x.zcos-diagram and two s c3 41 0x.sce-scripts:

• The s c3 41 0x.zcos diagram (Fig.3.1) contains the signal flow graph around the main superblock
Blockk01tk39, which encapsulates the N = 20 basic elements with two compartments each. And
there is also the separate outflow volume balance integrator Blockk41.
Tinted in violet are blocks on the upper and lower border of the graph, which generate the inflow
and outflow specific to the layout, that is the appropriate boundary conditions.
The blocks To workspace on the right border collect the simulation run data and put them into
the scilab-workspace for post-processing, essentially plotting.
The actual parameters for the simulation are transmitted to the graph through the ‘context’-
feature.

The main superblock is structured in three levels of sub-superblocks.
The first level down (Fig.3.2) contains five further superblocks identified by SuBlok01to07,
SuBlok08to15, SuBlok16to23, SuBlok24to31, SuBlok32to39.
On the second level down (Fig.3.3) each of them contains four sub-sub-superblocks, for instance for
SuBlok01to07 the sub-sub-superblocks k01,k03,k05,k071.
And on the third level down (Fig.3.4), for instance the sub-sub-superblock k01 contains the signal
flow graph for the basic element, consisting of

- the volume balance integrator for water depth D(k)

- and the momentum balance integrator for Q(k + 1)

And in its own context window the index k is set to k = 01.
The parameter entries in the .zcos-blocks in the signal flow diagram are given as (for instance)
vB(k) for the channel width at location k and vB(k + 1) at location k + 1.
And the next sub-sub-superblock k03 will have k = 03 in its context window.

This allows all parameter values for the lowest level sub-sub-superblocks to be entered on the top
level, in the context.sce-file in an array of appropriate length: 1 . . . 2 ∗N + 12.
All integrator blocks have lower saturations at +0.0001, which will suppress numerical difficulties
at zero depth and/or reverse flow. Several blocks for mathematical expressions3 are used to keep
the signal flow graph more compact.

• A first scilab-script named s c3 41 0x context.sce sets and evaluates all parameter values for
the s c3 41 0x.zcos file which are needed for the simulation at the specific operating point.
Specific operating point variable values are selected manually in this script by ‘comment’-ing and
‘uncomment’-ing.
At the lower end of the script, the data transfer into the scilab-workspace is set up.

• The second scilab-script named s c3 41 0x crunplot.sce lets the simulation run in batch-mode,
and plots the simulation results using standard scilab-plot routines. Note that appropriate scaling
on the plots for the specific operating point may be necessary, again using the ‘commenting’ /
‘de-commenting’ technique.

3.2.2 Handling a simulation run

This is done in the same way as given in section 2.7.3 (see there).

1Note that these two levels only have been introduced to produce manageable figure sizes for on-screen display and
documentation

2. . .+ 1 allows to include the parameter values for the single outflow integrator Blockk41
3use ‘expression’ block from the ‘user defined functions’ palette

47

3.2.3 Color coding for simulation run results

Figure 3.1: s c3 41 0x. color codes for transients

48

3.3 The Basic Case s c3 41 00

This case represents the segment of the river/channel flow of length Ltot = 400 m at reference conditions
constant width Br = 10 m, constant depth Dr = 2.5 m, and reference flow Qr = 50 m3/s. This results
in the flow velocity Ur = 2 m/s and the Froude number Fr = 0.40.
The bottom is nominally horizontal vS(k) = 1.0∀k. But in fact it is inclined to be parallel to the water
surface slope which is required by the GMS-friction model in steady state flow conditions at nominal
Ur, Dr, Br and at a given Strickler coefficient ks := 50. In other words, vD(k)→ Dr∀k.
Then a sequence of step flow variations dQ = ±0.40 · Qr = ±20 m3/s is applied, with ramp limits at
±0.1 m3/s/s, that is over 200s for the specified stroke. This is much slower than the typical filling time
constant Tf = 10 s of one volume element.

.zcos Diagrams

Figure 3.2: s c3 41 00. xcos-Diagram, top level

49

Figure 3.3: s c3 41 00. xcos-Diagram, first level down

50

Figure 3.4: s c3 41 00. xcos-Diagram, second level down

51

Figure 3.5: s c3 41 00. xcos-Diagram, third level down

52

.sce file for ‘context’

// s_c3_41_01_context
// Glf 26.10.15
// with 20 Segments, in 5 SuBlo4’s
// no vertical dynamics

g = 10.;L = 20.;
kap = 1.0;

N= 20; // no Volume and Momentum-segments

// flow set; choose by ’comment’
Q_I = 50.0; B_I = 10.0; S_I = 1*(-1.0);

// GMS-friction coefficient
// k_s = 70.7;

k_s = 50.0;
// k_s = 31.6;

// reference bottom slope
Q_r = 50.0; B_r = 10.0;
D_r = 2.5; S_r = 1*(-1.0);
U_r = 2.0;
R_r = (B_r*D_r)/(B_r + 2*D_r);
I_r = (U_r/(k_s*(R_r)^(2/3)))^2;

// initialzing ’iteration loop’
D_I = D_r;
gainQ = 0.01*(D_I/Q_I);
Q = k_s*(B_I)*(D_I)*(D_I)^(2/3)*(I_r)^(1/2);
eQ = -Q_I + Q;

// iteration loop
while (eQ<-0.001)|(eQ>0.001) then

R_I = (B_I*D_I)/(B_I + 2*D_I);
Q = (k_s*(I_r)^(1/2)*B_I)*D_I*(R_I)^(2/3);
eQ = -Q_I + Q;
D_I = D_I - gainQ*eQ;

end

D_min = +0.001; D_max = 40*D_r;
Q_min = +0.001; Q_max = 40*Q_r;

// channel geometry
//*****************
// Basic layout: constant width
vb = 1.0*[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0];

//****************
vB = B_I*vb;
//******************

// basic layout: bottom ’horizontal’
vs = -1*[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,1.0];

//*****************
vS0 = (-S_I)*vs;
//**************************

vd0 = ones(1,(2*N+1));
vD0 = D_I*vd0;

vq0 = ones(1,(2*N+1));
vQ0 = Q_I*vq0;

// Inflow data
B_in = vB(1);
S_in = vS0(1);
D_in = vD0(1);
Q_in = vQ0(1);

// friction slope of the bottom vS
vi0 = ones(1,(2*N+1));
vdelSf = zeros(1,(2*N+1));
vSf = zeros(1,(2*N+1));

for kk=2:2:(2*N),
vI0(kk) = I_r*vi0(kk);
vdelSf(kk) = - L*vI0(kk);
vSf(kk) = vSf(kk-1) + 0.5*vdelSf(kk);
vSf(kk+1) = vSf(kk) + 0.5*vdelSf(kk);

end
for k4= 1:1:(2*N+1),

vS(k4) = vS0(k4) + vSf(k4);
end

// outflow data
B_o = vB(kk+1);
S_o = vS(kk+1);
D_o = vD0(kk+1);
Q_o = vQ0(kk+1);

// inflow generation
dQ = 0.40;
t_st_1 = 1000.0; r_1_0 = Q_I; r_1_1=(1.0+1.*dQ)*Q_I;
t_st_2 = 2500.0; r_2_0 = 0.; r_2_1 = -2.*dQ*Q_I;
t_st_3 = 4000.0; r_3_0 = 0.; r_3_1 = +1.*dQ*Q_I;
T_fin = 6000.;
// inflow slew rate
g_st = 10.0; u_up_st = +1.0; u_dn_st = -1.0;
tau_st = 10.0; Q_st_0 = Q_I;

// outflow fixed:
//Q_o = Q_0;

// outflow by GMS
g_o = k_s*((I_r)^(1/2));

// Data transfer to Plots
CC = 21; // no of channels 20 + 1 for time
CN = 2000; // no of clockticks up to Tfin
delT = T_fin/CN; // intervall for clock ticks
Asize = 1.01*CC*CN; // size of Data arrays

53

.sce file for ‘run’ and ‘plot’

// s_c3_41_00_crunplot
// Glf 2017-03-06
// no vertical dynamics

stacksize(’max’); exec(’s_c3_41_00_context.sce’, -1);
importXcosDiagram(’s_c3_41_00.zcos’);
typeof(scs_m); scs_m.props.context;
Info=list(); Info=scicos_simulate(scs_m,Info);
//**********************************

for kfig = 1:1:8, clf(kfig); end

vcolor = [5, 2, 3, 4, 1, 6, 9,11,13,15,...
17,19,21,22,25,27,29,32, 2, 5];

f1 = scf(1);
f1.auto_resize = "off";
plot2d(Q.time,Q.values,vcolor,rect=[0.,0.0,6000,80.]);
xtitle("Q_2 to Q_40"); xgrid(1);

f2 = scf(2);
f2.auto_resize = "off";
plot2d(D.time,D.values,vcolor,rect=[0.,1.0,6000,4.0]);
xtitle("D_1 to D_39"); xgrid(1);

f3 = scf(3);
plot2d(H.time,H.values,vcolor,rect=[0.,0.0,6000,3.0]);
xtitle("H_1 to H_39"); xgrid(1);

f4 = scf(4);
plot2d(F.time,F.values,vcolor,rect=[0.,0.1,6000,0.6]);
xtitle("F_2 to F_40"); xgrid(1);

f5 = scf(5);
plot2d(Q.time,Q.values,vcolor,rect=[900.,40.0,2000,80.]);
xtitle("Q_2 to Q_40, zoomed"); xgrid(1);

f6 = scf(6);
plot2d(D.time,D.values,vcolor,rect=[900.,2.4,2000,3.6]);
xtitle("D_1 to D_39, zoomed"); xgrid(1);

f7 = scf(7);
plot2d(H.time,H.values,vcolor,rect=[900.,0.0,2000,3.0]);
xtitle("H_1 to H_39,zoomed"); xgrid(1);

f8 = scf(8);
plot2d(F.time,F.values,vcolor,rect=[900.,0.1,2000,0.6]);
xtitle("F_2 to F_40, zoomed"); xgrid(1);

Case s c3 41 00: Discussion

- Two sets of output plots are shown: Fig.3.6 gives the overall view of the whole responses from 0 to
6000 s whereas Fig.3.7 zooms in on the first flow ramp-up to show more details.

- Note that the traces for vD(k, t) are very close together (nearly identical), as to be expected from
the experiment layout, whereas the traces for vH(k, t) show the level inclination due to the GMS-
friction model.

- The time delay for the Froude wavefront between the locations of vQ(2) to vQ(40) over the distance
of 360 m with UFr

+Ur = 5.0 + 2.0 = 7.0 m/s. would be ≈ 52 s, which fits well with the time delay
from the simulation result of ≈ 54 s

- Essentially no strong sinusoidal (sloshing) oscillations on depth vD(t) and vH(t) are visible. This
is to be expected, as the Froude wave will travel downstream through the ‘open end’ outflow, and
will not be significantly reflected backward.

- In vQ(t)zoomed a neat wave front is visible, starting at t = 1200 s and moving downstream, until
t = 1255 s when it reaches the last vQ(40). Its shape is due to the Froude wave travelling downstream
(taking about 2.7 s per compartment) and the filling time of 10 s per compartment.

- However on vQ(t) there is also a much weaker wave front visible which travels upflow from the
outflow end. This indicates that the impedance at the outflow end is not perfectly matched.

- Further simulation runs (not shown here) have shown:
- For faster flow ramps, such as 1 m3/s /s, the wave reflection is much stronger
- and then the compartment length must be increased to L ≈ 160 m in order to
reduce the wave reflection to what is seen here.

54

Figure 3.6: s c3 41 00 for flow variations at reference flow Q = 1.00 ∗Q r

55

56

Figure 3.7: 41 01 at Q = 1.0 ∗Q r, zoom-in on first step up

57

58

3.4 Case 41 00 N : The space-discretizing parameter N

The aim of this section is to illustrate the effect of parameter N and to document the final choice. Four
cases are shown and discussed

N = 4, 8, 16, 32
all with nominal flow (Q = 50 m3/s), nominal depth (D = 2.5 m), nominal Froude number (F = 0.40),
nominal channel dimensions (B = 10 m, L tot = 500 m) and with a sharper inflow ramp (2.5 m3/s per
s) for more details of the ‘sloshing’.

- The focus is on the zoomed-in responses of flow Q and level H along the longitudinal axis. The
variables D and F are not shown for brevity.

- Consider the lower end case N = 1 from Chap.2 as well for comparison.

- Note that the oscillatory mode seen in Chap.2 at N = 1 disappears for increasing N and the Froude
waves become dominant.

- Besides the increasing number of lines there is not much difference in the general shape of the
Q,H responses between N = 16 and N = 32. – But the size of the output data arrays and the
implementation effort increase substantially.

- For N = 4, 8, 16, 32 the simulation run-time was measured as ≈ 8 s, 17 s, 35 s, 90 s. Thus the
tradeoff between quality and effort is no longer favorable for N � 16.

- This motivates the choice of N = 204.
The responses for this case are documented at the end of the section. The simulation run-time was
measured at ≈ 45 s.

Figure 3.8: N = 4: Q, H for flow ramp-up at reference flow Q = 1.00 ∗Q r

4a possible alternative would be N = 24, leading to a compartment length of L = Ltot/25

59

Figure 3.9: N = 8: Q, H for flow ramp-up at reference flow Q = 1.00 ∗Q r

60

Figure 3.10: N = 16: Q, H for flow ramp-up at reference flow Q = 1.00 ∗Q r

61

Figure 3.11: N = 32: Q, H for flow ramp-up at reference flow Q = 1.00 ∗Q r

62

Figure 3.12: N = 20: Q, H for faster flow ramp-up at reference flow Q = 1.00 ∗Q r

63

Figure 3.13: N = 20: D, F for faster flow ramp-up at reference flow Q = 1.00 ∗Q r

64

3.5 Case s c3 41 01 : Low and High Flow Conditions

This is the case 41 00 taken for low flow 0.25 ·Qr = 12.5 m3/s and B(k) = Br ∀ k, Fig.3.8 and 3.9, and
high flow 8.0 ·Qr = 400. m3/s, and where B(k) = 4.0 ·Br ∀ k to model the flooding of lateral forelands,
Fig.3.10 and 3.11. For both subcases however the bottom slope is not adjusted to the actual flow, but
is carried over from the reference case, as it would be in the real world. Therefore the initial level slope
needs to be adjusted to the actual flow which is performed in the ‘ context’ file in the ‘iteration loop’
part.

.sce-files

// s_c3_41_01_context
// Glf 06.05.14
// with 20 Segments, in 5 SuBlo4’s
// no vertical dynamics

g = 10.;
L = 20.; kap = 1.0;

N= 20; // no Volume and Momentum-segments

// flow set; choose by ’comment’
Q_I = 400.0; B_I = 40.0; S_I = 1*(-1.0); tau_st = 4.0;

// Q_I = 12.5; B_I = 10.0; S_I = 1*(-1.0); tau_st = 80.0;

// GMS-friction coefficient
// k_s = 70.7;

k_s = 50.0;
// k_s = 31.6;

// reference bottom slope
Q_r = 50.0; B_r = 10.0;
D_r = 2.5; S_r = 1*(-1.0);
U_r = 2.0;
R_r = (B_r*D_r)/(B_r + 2*D_r);
I_r = (U_r/(k_s*(R_r)^(2/3)))^2;

// initialzing ’iteration loop’
D_I = D_r;
gainQ = 0.01*(D_I/Q_I);
Q = k_s*(B_I)*(D_I)*(D_I)^(2/3)*(I_r)^(1/2);
eQ = -Q_I + Q;

// iteration loop
while (eQ<-0.001)|(eQ>0.001) then

R_I = (B_I*D_I)/(B_I + 2*D_I);
Q = (k_s*(I_r)^(1/2)*B_I)*D_I*(R_I)^(2/3);
eQ = -Q_I + Q;
D_I = D_I - gainQ*eQ;

end

D_min = +0.001; D_max = 40*D_r;
Q_min = +0.001; Q_max = 40*Q_r;

// channel geometry
//*****************
// Basic element: constant (nominal) width
vb = 1.0*[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0];

//****************
vB = B_I*vb;
//******************

// basic layout: horizontal bottom
vs = -1*[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,1.0];

//*****************
vS0 = (-S_I)*vs;
//**************************

vd0 = ones(1,(2*N+1));
vD0 = D_I*vd0;

vq0 = ones(1,(2*N+1));
vQ0 = Q_I*vq0;

// Inflow data
B_in = vB(1);
S_in = vS0(1);
D_in = vD0(1);
Q_in = vQ0(1);

// friction slope of the bottom vS
vi0 = ones(1,(2*N+1));
vdelSf = zeros(1,(2*N+1));
vSf = zeros(1,(2*N+1));

for kk=2:2:(2*N),
vI0(kk) = I_r*vi0(kk);
vdelSf(kk) = - L*vI0(kk);
vSf(kk) = vSf(kk-1) + 0.5*vdelSf(kk);
vSf(kk+1) = vSf(kk) + 0.5*vdelSf(kk);

end
for k4= 1:1:(2*N+1),

vS(k4) = vS0(k4) + vSf(k4);
end

// outflow data
B_o = vB(kk+1);
S_o = vS(kk+1);
D_o = vD0(kk+1);
Q_o = vQ0(kk+1);

// inflow generation
dQ = 0.40;
t_st_1 = 1000.0; r_1_0 = Q_I; r_1_1=(1.0+1.*dQ)*Q_I;
t_st_2 = 2500.0; r_2_0 = 0.; r_2_1 = -2.*dQ*Q_I;
t_st_3 = 4000.0; r_3_0 = 0.; r_3_1 = +1.*dQ*Q_I;
T_fin = 6000.;
// inflow slew rate
g_st = 10.0; u_up_st = +1.0; u_dn_st = -1.0;
Q_st_0 = Q_I;

// outflow fixed:
//Q_o = Q_0;

// outflow by GMS
g_o = k_s*((I_r)^(1/2));

// Data transfer to Plots
CC = 21; // no of channels 20 + 1 for time
CN = 2000; // no of clockticks up to Tfin
delT = T_fin/CN; // intervall for clock ticks
Asize = 1.01*CC*CN; // size of Data arrays

65

// s_c3_41_01_crunplot
// Glf 26.10.2015
// no vertical dynamics

stacksize(’max’); exec(’s_c3_41_01_context.sce’, -1);
importXcosDiagram(’s_c3_41_01.zcos’);
typeof(scs_m); scs_m.props.context;
Info=list(); Info=scicos_simulate(scs_m,Info);
//**********************************

for kfig = 1:1:8, clf(kfig); end

vcolor = [5, 2, 3, 4, 1, 6, 9,11,13,15,...
17,19,21,22,25,27,29,32, 2, 5];

f1 = scf(1);
plot2d(Q.time,Q.values,vcolor,rect=[0,0,6000,600.]);

// plot2d(Q.time,Q.values,vcolor,rect=[0,0,6000,20.]);
xtitle("Q_2 to Q_40");
xgrid(1);

f2 = scf(2);
plot2d(D.time,D.values,vcolor,rect=[0,1,6000,5.0]);

// plot2d(D.time,D.values,vcolor,rect=[0,0,6000,2.0]);
xtitle("D_1 to D_39");
xgrid(1);

f3 = scf(3);
plot2d(H.time,H.values,vcolor,rect=[0,0,6000,4.0]);

// plot2d(H.time,H.values,vcolor,rect=[0,-1,6000,3.0]);

xtitle("H_1 to H_39");
xgrid(1);

f4 = scf(4);
plot2d(F.time,F.values,vcolor,rect=[0,0.2,6000,0.6]);

xtitle("F_2 to F_40");
xgrid(1);

f5 = scf(5);
plot2d(Q.time,Q.values,vcolor,rect=[900,300,2000,700.]);

// plot2d(Q.time,Q.values,vcolor,rect=[900,12,2000,18.]);
xtitle("Q_2 to Q_40, zoomed");
xgrid(1);

f6 = scf(6);
plot2d(D.time,D.values,vcolor,rect=[900.,3.0,2000,4.5]);

// plot2d(D.time,D.values,vcolor,rect=[900.,0.9,2000,1.3]);
xtitle("D_1 to D_39, zoomed");
xgrid(1);

f7 = scf(7);
plot2d(H.time,H.values,vcolor,rect=[900.,1.5,2000,3.5]);

// plot2d(H.time,H.values,vcolor,rect=[900.,-1.0,2000,1.0]);
xtitle("H_1 to H_39, zoomed");
xgrid(1);

f8 = scf(8);
plot2d(F.time,F.values,vcolor,rect=[900.,0.2,2000,0.6]);

xtitle("F_2 to F_40, zoomed");
xgrid(1);

Case s c3 41 01: Discussion

- For both sub-cases the transients are shown in full and as zoom-in of the first ramp-up, but reduced
to vQ(k) and vD(k) only.

- The time delay from vQ(2) to vQ(40)
for low flow with D ≈ 1.0 m, that is U ≈ 1.25 m/s, and UF ≈ 3.2 m/s, that is F ≈ 0.39, is
calculated at ≈ 85 s, whereas from the simulation ≈ 82 s;
and for high flow with D ≈ 3.5 m, that is U ≈ 2.9 m/s, and UF ≈ 5.9 m/s, that is F ≈ 0.49, is
calculated at ≈ 43 s, whereas from the simulation ≈ 41 s.

- The flow ramps are set as follows:
for low flow, with dQ = ±0.4 ·Q = 5.0 m3/s at ±0.0125 m3/s /s, that is 400 s for full stroke
for high flow, with dQ = ±0.40 ·Q = 160 m3/s at ±0.25 m3/s /s, that is 640 s for full stroke.
Then for both sub-cases the reflected wave is weak.

- Again for faster flow ramps (not shown here), the reflected wave gets much more pronounced.

66

Low flow conditions, Q = 0.25 ∗Q r and B = 1 ∗Br

67

Figure 3.14: s ce 41 01 for flow variations at LOW flow, Q = 0.25 ∗Q r

68

Figure 3.15: s c3 41 01 at Q = 0.25 ∗Q r, zoom-in on first step up

69

High flow conditions, Q = 8.00 ∗Q r and B = 4.0 ∗Br

70

Figure 3.16: s c3 41 01 for flow variations at HIGH flow Q = 8.00 ∗Q r and B = 4 ∗Br

71

Figure 3.17: 41 01 for flow variations at HIGH flow Q = 8.00 ∗Q r and B = 4 ∗Br, zoom-in

72

3.6 Case s c3 41 02 : Set of Froude numbers

In the basic case 41 00 the Froude number follows from the reference condition set as Fr = 0.40 which
is a common value in river and channel flows. Here the Froude number F := F0 will be a given, 6= 0.40,
while width B = Br = 10 m and flow Q = Qr = 50 m3/s are kept at their reference values. Therefore
water depth D := D0 and velocity U := U0 are now a function of F , and have to be computed in the
‘ context’-file first, see below.
In order to keep flow vQ(k + 1) and depth vD(k) at steady state conditions along k as in the previous
cases, while the Strickler coefficient is kept at its realistic value ks = 50., then the bottom slope must be
inclined according to the actual flow velocity U , and thus is to be computed in the ‘ context’-file as well.

.sce-files

// s_c3_41_02_context
// Glf 6.5.14
// with 20 Segments, in 5 SuBlo4’s
// no vertical dynamics

g = 10.;

// reference op-point
Q_r = 50.0; H_r = 1.5; S_r = 1.0*(-1.0);
D_r = H_r - S_r; B_r = 10.; U_r = 2.0; F_r = 0.40;

lambda = 8.00; L = lambda*D_r; kap = 1.0;

N= 20; // no Volume+momentum-segments

// Operating point, by Froude-number
//F_0 = 0.1;

F_0 = 1.6;

// select actual flow op-point
Q_0 = 1.00*Q_r;

D_0 = ((1/g)*((Q_0/(B_r*F_0))^2))^(1/3);
//***************************************
H_0 = H_r; S_0 = S_r; B_0 = B_r; U_0 = U_r;

D_min = +0.001; D_max = 40*D_r;
Q_min = +0.001; Q_max = 40*Q_r;

// channel geometry
//*****************
// Basic element: constant (nominal) width
vb = 1.0*[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0];

//****************
vB = B_0*vb;
//******************

// basic layout: horizontal bottom
vs = -1.0*[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,1.0];

//*****************
vS0 = 1.0*vs;
//**************************

vd0 = ones(1,(2*N+1)); vD0 = D_0*vd0;
vq0 = ones(1,(2*N+1)); vQ0 = Q_0*vq0;

// Inflow data
B_in = vB(1); S_in = vS0(1); D_in = vD0(1); Q_in = vQ0(1);

// GMS-coefficient
// k_s = 100.;
// k_s = 70.7;

k_s = 50.0;
// k_s = 31.6;

// friction slope of the bottom vS and of the surface vH
vdelSf = zeros(1,(2*N+1));
vSf = zeros(1,(2*N+1));

for kk=2:2:(2*N),
vRtilda(kk)=((vB(kk)*vD0(kk))/(vB(kk)+2*vD0(kk)))^(2/3);
vI0(kk) = (vQ0(kk)/(vB(kk)*vD0(kk)*k_s*vRtilda(kk)))^2;
vdelSf(kk) = - L*vI0(kk);
vSf(kk) = vSf(kk-1) + 0.5*vdelSf(kk);
vSf(kk+1) = vSf(kk) + 0.5*vdelSf(kk);

end
for k4= 1:1:(2*N+1),

vS(k4) = vS0(k4) + vSf(k4);
end

// outflow data
B_o=vB(kk+1); S_o=vS(kk+1); D_o=vD0(kk+1); Q_o=vQ0(kk+1);

// inflow generation
dQ = 0.40;
t_st_1 = 1000.0; r_1_0 = Q_0; r_1_1=(1.0+1.*dQ)*Q_0;
t_st_2 = 2500.0; r_2_0 = 0.; r_2_1 = -2.*dQ*Q_0;
t_st_3 = 4000.0; r_3_0 = 0.; r_3_1 = +1.*dQ*Q_0;
T_fin = 6000.;
// inflow slew rate
g_st = 2.0; u_up_st = +1.0; u_dn_st = -1.0;
tau_st = 20.0; Q_st_0 = Q_0;

// outflow fixed:
//Q_o = Q_0;

// outflow by GMS
g_o = k_s*(vI0(40))^(1/2);

// Data transfer to Plots
CC = 21; // no of channels 20 + 1 for time
CN = 2000; // no of clockticks up to Tfin
delT = T_fin/CN; // intervall for clock ticks
Asize = 1.01*CC*CN; // size of Data arrays

73

// s_c3_41_02_crunplot
// Glf 06.05.14 26.10.2015
// no vertical dynamics

stacksize(’max’); exec(’s_c3_41_02_context.sce’, -1);
importXcosDiagram(’s_c3_41_02.zcos’);
typeof(scs_m); scs_m.props.context;
Info=list(); Info=scicos_simulate(scs_m,Info);
//**********************************

for kfig = 1:1:8, clf(kfig); end

vcolor = [5, 2, 3, 4, 1, 6, 9,11,13,15,...
17,19,21,22,25,27,29,32, 2, 5];

f1 = scf(1);
plot2d(Q.time,Q.values,vcolor,rect=[0,0,6000,80.]);

xtitle("Q_2 to Q_40"); xgrid(1);

f2 = scf(2);
// plot2d(D.time,D.values,vcolor,rect=[0,3,6000,10.00]);

plot2d(D.time,D.values,vcolor,rect=[0,0,6000,7.00]);
xtitle("D_1 to D_39"); xgrid(1);

f3 = scf(3);
// plot2d(H.time, H.values,vcolor,rect=[0.,2.0,6000,9.0]);

plot2d(H.time, H.values,vcolor,rect=[0.,-6.0,6000,1.0]);

xtitle("H_1 to H_39"); xgrid(1);

f4 = scf(4);
// plot2d(F.time, F.values,vcolor,rect=[0.,0.,6000,0.2]);

plot2d(F.time, F.values,vcolor,rect=[0.,0.,6000,2.0]);
xtitle("F_2 to F_40"); xgrid(1);

f5 = scf(5);
// plot2d(Q.time,Q.values,vcolor,rect=[900,30,2400,80.]);

plot2d(Q.time,Q.values,vcolor,rect=[900,30,2400,80.]);
xtitle("Q_2 to Q_40"); xgrid(1);

f6 = scf(6);
// plot2d(D.time,D.values,vcolor,rect=[900,6,2400,9.0]);

plot2d(D.time,D.values,vcolor,rect=[900,0.8,2400,1.4]);
xtitle("D_1 to D_39"); xgrid(1);

f7 = scf(7);
// plot2d(H.time,H.values,vcolor,rect=[900.,5.0,2400,8]);

plot2d(H.time,H.values,vcolor,rect=[900,-6.0,2400,1]);
xtitle("H_1 to H_39"); xgrid(1);

f8 = scf(8);
// plot2d(F.time,F.values,vcolor,rect=[900,0.0,2400,0.2]);

plot2d(F.time,F.values,vcolor,rect=[900,1.3,2400,1.8]);
xtitle("F_2 to F_40"); xgrid(1);

Case s c3 41 02: Discussion

- In the context file D 0 is calculated

F 02 =
U 02

gD 0
→ D =

U 02

g F 02
=

1

gF 02
·
(

Q 0

B 0 ·D 0

)2

→ D 03 =
1

g
·
(

Q 0

B 0 · F 0

)2

- For both sub-cases the transients are shown only as zoom-in’s of the first ramp-up, for vQ(k),
vD(k), vH(k) and vF (k).

- The time delay from vQ(2) to vQ(40)
for the low Froude number F = 0.10 with D ≈ 6.3 m, that is U ≈ 0.8 m/s and UF ≈ 7.9 m/s, that
is F ≈ 0.10, is calculated at ≈ 44 s, whereas from the simulation ≈ 41 s;
and for the high Froude number F = 1.6 (supercritical flow) with D ≈ 1.0 m, that is U ≈ 5.0 m/s
and UF ≈ 3.15 m/s, that is F ≈ 1.6, is calculated at ≈ 47 s, whereas from the simulation ≈ 44 s.
Again this fits nicely.

- The flow ramp is set to (with dQ = ±0.4 ·Q = 20.0 m3/s) at ±0.050 m3/s per s, that is 400 s for
full stroke
Then for both sub-cases the wave reflection is weak.

- For the low Froude number sub-case, weakly damped reflected wave oscillations are visible both
after t = 1000 s and after t = 1400 s
They disappear for the high Froude number sub-case. – This is to be expected as the waves can no
longer travel upstream on a supercritical flow.

- Again for faster flow ramps (simulations not shown) the reflected waves are much more pronounced.

74

Figure 3.18: s c3 41 02 for flow variation at Q = 1.00 ∗Q r
and LOW Froude number F = 0.10, zoom-in

75

76

Figure 3.19: s c3 41 02 for flow variation at Q = 1.00 ∗Q r
and HIGH Froude number F = 1.60, zoom-in

77

78

3.7 Case s c3 41 03 : Conical Cross Sections

3.7.1 Sub-case s c3 41 03 1 : ‘Confusor’ Geometry

The layout with the GMS-outflow boundary is modified to a ‘confusor’ geometry, where the first ≈ 10 %
of length are at vB(k) = 5.0 Br and vS(k) = −3.5 Sr (that is the initial depth is ≈ 5.0 m). Then both
vB(k) and vS(k) are reduced linearly down to their reference values at ≈ 60 % of length. From there the
final part has constant cross section at reference values.

.sce-files

// s_c3_41_03_1_context
// Glf 26.10.2015
// no vertical dynamics
// confusor

g = 10.;
// reference op-point
Q_r = 50.0; H_r = 1.5; S_r = 1.0*(-1.0);
D_r = H_r - S_r; B_r = 10.; U_r = 2.0; F_r = 0.40;

lambda = 8.00; L = lambda*D_r;

kap = 1.0;

N= 20; // number of volume+momentum-segments
F_0 = 0.40;

// select actual op-point
Q_0 = 1.00*Q_r;

H_0=H_r; S_0=S_r; B_0=B_r; U_0=U_r; D_0=D_r;

D_min = +0.001; D_max = 40*D_r;
Q_min = +0.001; Q_max = 40*Q_r;

// channel geometry
//*****************
// confusor

vb=[5.0, 5.0, 5.0, 5.0, 5.0, 4.8, 4.6, 4.4,...
4.2, 4.0, 3.8, 3.6, 3.4, 3.2, 3.0, 2.8,...
2.6, 2.4, 2.2, 2.0, 1.8, 1.6, 1.4, 1.2,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0];

vB = B_0*vb;
//******************
//confusor
vs=-1.0*[3.5, 3.5, 3.5, 3.5, 3.5, 3.3, 3.1, 2.9, ...

2.7, 2.5, 2.4, 2.3, 2.2, 2.1, 2.0, 1.9,...
1.8, 1.7, 1.6, 1.5, 1.4, 1.3, 1.2, 1.1,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,1.0];

vS0 = 1.0*vs;
//**************************

// initial conditions on integrators
vh0 = ones(1,(2*N+1)); vH0 = H_0*vh0; vD0 = vH0 - vS0;
vq0 = ones(1,(2*N+1)); vQ0 = Q_0*vq0;

// Inflow data
B_in=vB(1); S_in=vS0(1); D_in=vD0(1); Q_in=vQ0(1);

// GMS-coefficient
k_s = 50.0;

// friction slope of the bottom vS and of the surface vH
vdelSf = zeros(1,(2*N+1));
vSf = zeros(1,(2*N+1));
vDr = 1*vD0;
vQr = Q_r*vq0;
vdelHf = zeros(1,(2*N+1));
vHf = zeros(1,(2*N+1));
for kk=2:2:(2*N),
vRtilda(kk)=((vB(kk)*vDr(kk))/(vB(kk)+2*vDr(kk)))^(2/3);

vIr(kk) = (vQr(kk)/(vB(kk)*vDr(kk)*k_s*vRtilda(kk)))^2;
vIH(kk) = (vQ0(kk)/(vB(kk)*vDr(kk)*k_s*vRtilda(kk)))^2;

vdelSf(kk) = - L*vIr(kk);
vdelHf(kk) = - L*vIH(kk);

vSf(kk) = vSf(kk-1) + 0.5*vdelSf(kk);
vSf(kk+1) = vSf(kk) + 0.5*vdelSf(kk);

vHf(kk) = vHf(kk-1) + 0.5*vdelHf(kk);
vHf(kk+1) = vHf(kk) + 0.5*vdelHf(kk);

end
for k4= 1:1:(2*N+1),

vS(k4) = vS0(k4) + vSf(k4);
vH(k4) = vH0(k4) + vHf(k4);
vH0(k4) = vH(k4) ;

vD0(k4) = vH0(k4) - vS(k4);
end

// outflow data
B_o=vB(kk+1); S_o=vS(kk+1); D_o=vD0(kk+1); H_o=vH0(kk+1);

Q_o = vQ0(kk+1);

// inflow generation
dQ = 0.40;
t_st_1 = 1200.0; r_1_0 = Q_0; r_1_1=(1.0+1.*dQ)*Q_0;
t_st_2 = 2700.0; r_2_0 = 0.; r_2_1 = -2.*dQ*Q_0;
t_st_3 = 4200.0; r_3_0 = 0.; r_3_1 = +1.*dQ*Q_0;
T_fin = 6000.;
// inflow slew rate
g_st = 1.0; u_up_st = +5.0; u_dn_st = -5.0;
tau_st = 10.0; Q_st_0 = Q_0;

// outflow by GMS
dS_40 = vS0(39) - vS0(41);
if dS_40 >= 0...

then g_o = 1.00*k_s*((1*vIr(40) + 0.5*(dS_40/L))^(1/2));
else g_o = 1.00*k_s*((vIr(40) - (dS_40/L))^(1/2));

end;

// Data transfer to Plots
CC = 21; // no of channels 20 + 1 for time
CN = 3000; // no of clockticks up to Tfin
delT = T_fin/CN; // intervall for clock ticks
Asize = 1.01*CC*CN; // size of Data arrays

79

// s_c3_41_03_1_crunplot
// Glf 11.4.14, 26.10.2015
// no vertical dynamics
// confusor

stacksize(’max’);exec(’s_c3_41_03_1_context.sce’, -1);
importXcosDiagram(’s_c3_41_03_1.zcos’);
typeof(scs_m); scs_m.props.context;
Info=list(); Info=scicos_simulate(scs_m,Info);
//**********************************

for kfig = 1:1:10, clf(kfig); end

vcolor = [5, 2, 3, 4, 1, 6, 9,11,13,15,...
17,19,21,22,25,27,29,32, 2, 5];

f1 = scf(1);
plot2d(Q.time,Q.values,vcolor,rect=[1000.,20.0,6000,80.]);
xtitle("Q_2 to Q_40"); xgrid(1);

f2 = scf(2);
plot2d(D.time,D.values,vcolor,rect=[1000.,1.0,6000,7.0]);
xtitle("D_1 to D_39"); xgrid(1);

f3 = scf(3);
plot2d(H.time,H.values,vcolor,rect=[1000.,0.0,6000,3.0]);
xtitle("H_1 to H_39"); xgrid(1);

f4 = scf(4);
plot2d(F.time,F.values,vcolor,rect=[1000.,0.,6000,0.6]);
xtitle("F_2 to F_40"); xgrid(1);

//***
f5 = scf(5);
plot2d(Q.time,Q.values,vcolor,rect=[1000.,20.0,2500,80.]);
xtitle("Q_2 to Q_40, zoom-in"); xgrid(1);

f6 = scf(6);
plot2d(D.time,D.values,vcolor,rect=[1000.,1.0,2500,7.0]);
xtitle("D_1 to D_39, zoom-in"); xgrid(1);

f7 = scf(7);
plot2d(H.time,H.values,vcolor,rect=[1000.,0.0,2500,3.0]);
xtitle("H_1 to H_39, zoom-in"); xgrid(1);

f8 = scf(8);
plot2d(F.time,F.values,vcolor,rect=[1000.,0.,2500,0.6]);
xtitle("F_2 to F_40, zoom-in"); xgrid(1);
//***
eX = L*(1:1:N); eXend = 21*L;

f9 = scf(9); yD =D.values; yH = H.values;
oD = yD(2950,:); oH = yH(2950,:);
vcolor=[2,5];
plot2d(eX’,[oD’,oH’],vcolor,rect=[0.,0.5,eXend,+5.5]);
xtitle("Longitudinal D (blue) and H (red) at 5900 s ");
xgrid(1);

f10 = scf(10); yF =F.values; oF = yF(2950,:);
plot2d(eX’, [oF’], rect=[0.,0.0,eXend,+0.6]);
xtitle("Longitudinal Froude Number at 5900 s ");
xgrid(1);

Case s c3 41 03 1: Discussion

- Figure 3.20 shows the full transients, Fig.3.21 zooms in on the first flow ramp-up, and Fig.3.22
shows the longitudinal profiles of vD(k), vH(k) and vF (k) at t = 5900 s.

- Note that Q(t) near the inflow position rises rapidly, but quite slowly near the exit. This is due to
the large surface generated by vB(k), which has to be filled to the steady state level.

- Oscillations on flow and level are clearly visible. The largest amplitudes appear at k = 9 . . . 15, and
decrease in both the upflow and downflow directions.

- From the longitudinal profile on vH(k) a steady state level difference ∆Hm = vH(1) − vH(27) ≈
0.25 m is measured. - Calculating the dynamic pressure loss due to the acceleration is

∆Hc ≈
U2
r

2 g
≈ 4

20
= 0.20 m

The difference can be explained by the friction loss which is not included in ∆Hc.

- The Froude number at the inflow is measured at vF (2)m ≈ 0.026. - The calculation yields from
vD(1) ≈ 5.2 m and vB(1) = 50 m a velocity vU(2) ≈ 0.0192 m/s, and with vUF (2) =

√
52 =

7.21 m/s and thus vF (2)c ≈ 0.027. // The Froude number at the outflow reaches 0.40, as expected.

80

Figure 3.20: s c3 41 03 1 confusor geometry for flow variations at Q = 1.0 ·Q r

81

82

Figure 3.21: s c3 41 03 1 confusor geometry for flow variation, zoom-in

83

84

Figure 3.22: s c3 41 03 1 longitudinal profiles for D, H and F at t = 5900 s

85

3.7.2 Sub-case s c3 41 03 2 : ‘Diffusor’ Geometry

The geometry is set to yield a ‘diffusor’ shape: Initially the cross section up to ≈ 40% of length is
constant at reference values. Then the width vB(k) expands linearly up to 50 m and the bottom vS(k)
slopes down linearly to 3.0 m at ≈ 90 % of length. The final part has constant cross section down to the
outflow.

.sce-files

// s_c3_41_03_2_context
// Glf 26.10.2015
// no vertical dynamics
// diffusor

g = 10.;
// reference op-point
Q_r = 50.0; H_r = 1.5; S_r = 1.0*(-1.0);
D_r = H_r - S_r; B_r = 10.; U_r = 2.0; F_r = 0.40;

lambda = 8.00; L = lambda*D_r;

kap = 1.0;

N= 20; // number of volume+momentum-segments
F_0 = 0.40;

// select actual op-point
Q_0 = 1.00*Q_r;

H_0 = H_r; S_0 = S_r; B_0 = B_r; U_0 = U_r; D_0 = D_r;

D_min = +0.001; D_max = 40*D_r;
Q_min = +0.001; Q_max = 40*Q_r;

// channel geometry
//*****************
// diffusor
vb=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6,...
2.8, 3.0, 3.2, 3.4, 3.6, 3.8, 4.0, 4.2,...
4.4, 4.6, 4.8, 5.0, 5.0, 5.0, 5.0, 5.0,5.0];

vB = B_0*vb;
//******************
// bottom slope

vs=-1.0*[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8,...
1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6,...
2.7, 2.8, 2.9, 3.0, 3.0, 3.0, 3.0, 3.0,3.0];

vS0 = 1.0*vs;
//**************************

// initioal conditions
vd0 = ones(1,(2*N+1)); vD0 = D_0*vd0; vH0 = vD0 + vS0;
vq0 = ones(1,(2*N+1)); vQ0 = Q_0*vq0;

// Inflow data
B_in=vB(1); S_in=vS0(1); D_in=vD0(1); Q_in=vQ0(1);

// GMS-coefficient
k_s = 50.0;

// friction slope of the bottom vS and of the surface vH
vdelSf = zeros(1,(2*N+1));
vSf = zeros(1,(2*N+1));
vDr = D_r*vd0;
vQr = Q_r*vq0;
vdelHf = zeros(1,(2*N+1));
vHf = zeros(1,(2*N+1));
for kk=2:2:(2*N),
vRtilda(kk)=((vB(kk)*vDr(kk))/(vB(kk)+2*vDr(kk)))^(2/3);

vIr(kk) = (vQr(kk)/(vB(kk)*vDr(kk)*k_s*vRtilda(kk)))^2;
vIH(kk) = (vQ0(kk)/(vB(kk)*vDr(kk)*k_s*vRtilda(kk)))^2;

vdelSf(kk) = - L*vIr(kk);
vdelHf(kk) = - L*vIH(kk);

vSf(kk) = vSf(kk-1) + 0.5*vdelSf(kk);
vSf(kk+1) = vSf(kk) + 0.5*vdelSf(kk);

vHf(kk) = vHf(kk-1) + 0.5*vdelHf(kk);
vHf(kk+1) = vHf(kk) + 0.5*vdelHf(kk);

end
for k4= 1:1:(2*N+1),

vS(k4) = vS0(k4) + vSf(k4);
vH(k4) = vH0(k4) + vHf(k4);
vH0(k4) = vH(k4) ;

vD0(k4) = vH0(k4) - vS(k4);
end

// outflow data
B_o=vB(kk+1); S_o=vS(kk+1); D_o=vD0(kk+1); H_o=vH0(kk+1);

Q_o = vQ0(kk+1);

// inflow generation
dQ = 0.40;
t_st_1 = 1200.0; r_1_0 = Q_0; r_1_1=(1.0+1.*dQ)*Q_0;
t_st_2 = 2700.0; r_2_0 = 0.; r_2_1 = -2.*dQ*Q_0;
t_st_3 = 4200.0; r_3_0 = 0.; r_3_1 = +1.*dQ*Q_0;
T_fin = 6000.;
// inflow slew rate
g_st = 1.0; u_up_st = +5.0; u_dn_st = -5.0;
tau_st = 10.0; Q_st_0 = Q_0;

// outflow by GMS
dS_40 = vS0(39) - vS0(41);
if dS_40 >= 0 ...

then g_o = 1.00*k_s*((1*vIr(40) + 0.5*(dS_40/L))^(1/2));
else g_o = 1.00*k_s*((vIr(40) - (dS_40/L))^(1/2));

end;

// Data transfer to Plots
CC = 21; // no of channels 20 + 1 for time
CN = 3000; // no of clockticks up to Tfin
delT = T_fin/CN; // intervall for clock ticks
Asize = 1.01*CC*CN; // size of Data arrays

86

// s_c3_41_03_2_crunplot
// Glf 26.10.2015
// no vertical dynamics
// diffusor
stacksize(’max’);exec(’s_c3_41_03_2_context.sce’, -1);
importXcosDiagram(’s_c3_41_03_2.zcos’);
typeof(scs_m); scs_m.props.context;
Info=list(); Info=scicos_simulate(scs_m,Info);
//**********************************

for kfig = 1:1:10, clf(kfig); end

vcolor = [5, 2, 3, 4, 1, 6, 9,11,13,15,...
17,19,21,22,25,27,29,32, 2, 5];

f1 = scf(1);
plot2d(Q.time,Q.values,vcolor,rect=[1000.,20.0,6000,80.]);
xtitle("Q_2 to Q_40"); xgrid(1);

f2 = scf(2);
plot2d(D.time,D.values,vcolor,rect=[1000.,0.0,6000,3.6]);
xtitle("D_1 to D_39"); xgrid(1);

f3 = scf(3);
plot2d(H.time,H.values,vcolor,rect=[1000.,-2.0,6000,2.0]);
xtitle("H_1 to H_39"); xgrid(1);

f4 = scf(4);
plot2d(F.time,F.values,vcolor,rect=[1000.,0.,6000,2.4]);
xtitle("F_2 to F_40"); xgrid(1);

//**
f5 = scf(5);

plot2d(Q.time,Q.values,vcolor,rect=[1000.,40.0,2500,80.]);
xtitle("Q_2 to Q_40, zoom-in"); xgrid(1);

f6 = scf(6);
plot2d(D.time,D.values,vcolor,rect=[1000.,0.0,2500,3.6]);
xtitle("D_1 to D_39, zoom-in"); xgrid(1);

f7 = scf(7);
plot2d(H.time,H.values,vcolor,rect=[1000.,-2.0,2500,2.0]);
xtitle("H_1 to H_39, zoom-in"); xgrid(1);

f8 = scf(8);
plot2d(F.time,F.values,vcolor,rect=[1000.,0.,2500,2.4]);
xtitle("F_2 to F_40, zoom-in"); xgrid(1);

//**
eX = L*(1:1:N); eXend = 21*L;

for k6= 1:1:N, vSr(k6) = vS(2*k6-1); end

f9 = scf(9); yD =D.values; yH = H.values;
oD = yD(2950,:); oH = yH(2950,:);
vcolor=[2,5,1];
plot2d(eX’,[oD’,oH’,vSr],vcolor,rect=[0.,-3.5,eXend,+3.0]);
xtitle("Longitudinal D (blue) and H (red) at 5900 s,...

bottom (black)");
xgrid(1);

f10 = scf(10); yF =F.values; oF = yF(2950,:);
plot2d(eX’, [oF’], rect=[0.,0.0,eXend,+2.0]);
xtitle("Longitudinal Froude Number at 5900 s ");
xgrid(1);

Case s c3 41 03 2: Discussion

- Fig.3.23 shows the zoom-in to the first flow ramp-up, and Fig.3.24 the longitudinal profiles of vD(k),
vH(k) and vF (k) at t = 5900 s.

- In the first part (up to 90 m) , the flow is accelerating but still subcritical. There are no oscillations
here. The transients are very well damped.

- Then the flow crosses F = 1.0 and reaches a maximum of F ≈ 1.70 at 220 m and drops back
below F = 1.0 at 230 m to the final value of Fm = 0.080. - The calculation confirms this value by
inserting D = 2.5 m, that is Uf = 5 m/s, and U = 50m3/s/(50 m · 2.5 m) = 0.40 m/s, and thus
F = 0.40/5.0 = 0.080.

- At k = 28 . . . 32, in the region of strong deceleration of the subcritical flow, there are strong
oscillations on vQ(k, t) with a period of ≈ 80 s.

- This area is also clearly visible in the longitudinal profile of vH, where the level increases by
≈ 0.30 m over a length of 240 . . . 270 m. This is in fact a ‘hydraulic jump’5.

5This phenomenon will be investigated further in chapter 5

87

Figure 3.23: s c3 41 03 2 diffusor geometry for flow variations at Q = 1.0 ·Q r

88

89

Figure 3.24: s c3 41 03 2 longitudinal profiles for D, H and F at t = 5900 s

90

3.7.3 Sub-case s c3 41 03 3: Bottom Slope Geometry

The geometry layout of the previous sub-case is modified by extending the downward slope of the bottom
until the outflow end. Further the width is not opened but kept constant at its reference value up to the
end.
The aim is to avoid the strong deceleration part of the hydraulic jump and focus on the flow acceleration.

.sce-files

// s_c3_41_03_3_context
// Glf 14.4.14, 26.10.2015
// no vertical dynamics
// bottom slope

g = 10.;
// reference op-point
Q_r=50.0; H_r=1.5; S_r=1.0*(-1.0); D_r=H_r - S_r;
B_r = 10.; U_r = 2.0; F_r = 0.40;

lambda = 8.00; L = lambda*D_r;

kap = 1.0;

N= 20; // number of volume+momentum-segments

F_0 = 0.40;

// select actual op-point
Q_0 = 1.00*50.0;

H_0 = H_r; S_0 = S_r; B_0 = B_r; U_0 = U_r; D_0 = D_r;

D_min = +0.001; D_max = 40*D_r;
Q_min = +0.001; Q_max = 40*Q_r;

// channel geometry
//*****************
// Basic element: constant (nominal) width
vb = 1.0*[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0];

vB = B_0*vb;
//******************

// horizontal to slope until outflow
vs = -1.0*[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8,...
1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6,...
2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5];

vS0 = 1.0*vs;
//**************************

// initial conditions
vd0 = ones(1,(2*N+1)); vD0 = D_0*vd0; vH0 = vD0 + vS0;
vq0 = ones(1,(2*N+1)); vQ0 = Q_0*vq0;

// Inflow data
B_in = vB(1); S_in = vS0(1); D_in = vD0(1); Q_in = vQ0(1);

// GMS-coefficient

k_s = 50.0;

// friction slope of the bottom vS and of the surface vH
vdelSf = zeros(1,(2*N+1));
vSf = zeros(1,(2*N+1));
vDr = D_r*vd0;
vQr = Q_r*vq0;
vdelHf = zeros(1,(2*N+1));
vHf = zeros(1,(2*N+1));
for kk=2:2:(2*N),
vRtilda(kk)=((vB(kk)*vDr(kk))/(vB(kk)+2*vDr(kk)))^(2/3);

vIr(kk) = (vQr(kk)/(vB(kk)*vDr(kk)*k_s*vRtilda(kk)))^2;
vIH(kk) = (vQ0(kk)/(vB(kk)*vDr(kk)*k_s*vRtilda(kk)))^2;

vdelSf(kk) = - L*vIr(kk);
vdelHf(kk) = - L*vIH(kk);

vSf(kk) = vSf(kk-1) + 0.5*vdelSf(kk);
vSf(kk+1) = vSf(kk) + 0.5*vdelSf(kk);

vHf(kk) = vHf(kk-1) + 0.5*vdelHf(kk);
vHf(kk+1) = vHf(kk) + 0.5*vdelHf(kk);

end
for k4= 1:1:(2*N+1),

vS(k4) = vS0(k4) + vSf(k4);
vH(k4) = vH0(k4) + vHf(k4);
vH0(k4) = vH(k4) ;

vD0(k4) = vH0(k4) - vS(k4);
end

// outflow data
B_o=vB(kk+1); S_o=vS(kk+1); D_o=vD0(kk+1); H_o=vH0(kk+1);

Q_o = vQ0(kk+1);

// inflow generation
dQ = 0.40;
t_st_1 = 1200.0; r_1_0 = Q_0; r_1_1=(1.0+1.*dQ)*Q_0;
t_st_2 = 2700.0; r_2_0 = 0.; r_2_1 = -2.*dQ*Q_0;
t_st_3 = 4200.0; r_3_0 = 0.; r_3_1 = +1.*dQ*Q_0;
T_fin = 6000.;
// inflow slew rate
g_st = 1.0; u_up_st = +5.0; u_dn_st = -5.0;
tau_st = 10.0; Q_st_0 = Q_0;

// outflow by GMS
dS_40 = vS0(39) - vS0(41);
if dS_40 >= 0 then...

g_o = 1.39*k_s*((1*vIr(40) + 0.5*(dS_40/L))^(1/2));
else g_o = 1.00*k_s*((vIr(40) - (dS_40/L))^(1/2));
end;

// Data transfer to Plots
CC = 21; // no of channels 20 + 1 for time
CN = 3000; // no of clockticks up to Tfin
delT = T_fin/CN; // intervall for clock ticks
Asize = 1.01*CC*CN; // size of Data arrays

91

// s_c3_41_03_3_crunplot
// Glf 26.10.2015
// no vertical dynamics
// bottom slope
stacksize(’max’);exec(’s_c3_41_03_3_context.sce’, -1);
importXcosDiagram(’s_c3_41_03_3.zcos’);
typeof(scs_m); scs_m.props.context;
Info=list(); Info=scicos_simulate(scs_m,Info);
//**********************************

for kfig = 1:1:6, clf(kfig); end

vcolor = [5, 2, 3, 4, 1, 6, 9,11,13,15,...
17,19,21,22,25,27,29,32, 2, 5];

f1 = scf(1);
plot2d(Q.time,Q.values,vcolor,rect=[1000,20.0,6000,80.]);
xtitle("Q_2 to Q_40"); xgrid(1);

f2 = scf(2);
plot2d(D.time,D.values,vcolor,rect=[1000,0.4,6000,2.8]);
xtitle("D_1 to D_39"); xgrid(1);

f3 = scf(3);
plot2d(H.time,H.values,vcolor,rect=[1000,-3.,6000,+2.]);
xtitle("H_1 to H_39"); xgrid(1);

f4 = scf(4);
plot2d(F.time,F.values,vcolor,rect=[1000,0.,6000,2.4]);
xtitle("F_2 to F_40"); xgrid(1);

//***
f5 = scf(5);

plot2d(Q.time,Q.values,vcolor,rect=[1000.,40.0,2500,80.]);
xtitle("Q_2 to Q_40, zoom-in"); xgrid(1);

f6 = scf(6);
plot2d(D.time,D.values,vcolor,rect=[1000.,0.0,2500,3.6]);
xtitle("D_1 to D_39, zoom-in"); xgrid(1);

f7 = scf(7);
plot2d(H.time,H.values,vcolor,rect=[1000.,-3.0,2500,2.0]);
xtitle("H_1 to H_39, zoom-in"); xgrid(1);

f8 = scf(8);
plot2d(F.time,F.values,vcolor,rect=[1000.,0.,2500,2.4]);
xtitle("F_2 to F_40, zoom-in"); xgrid(1);

//**
eX = L*(1:1:N); eXend = 21*L;

for k6= 1:1:N, vSr(k6) = vS(2*k6-1); end

f9 = scf(9); yD =D.values; yH = H.values;
oD = yD(2950,:); oH = yH(2950,:);
vcolor=[2,5,1];
plot2d(eX’,[oD’,oH’,vSr],vcolor,rect=[0.,-3.5,eXend,+3.0]);
xtitle("Longitudinal D (blue) and H (red) at 5900 s, ...

bottom (black)");
xgrid(1);

f10 = scf(10); yF =F.values; oF = yF(2950,:);
plot2d(eX’, [oF’], rect=[0.,0.0,eXend,+2.0]);
xtitle("Longitudinal Froude Number at 5900 s ");
xgrid(1);

Case s c3 41 03 3: Discussion

- Fig.3.25 shows the zoom-in to the first flow ramp-up, and Fig.3.26 the longitudinal profiles of vD(k),
vH(k) and vF (k) at t = 5900 s.

- In the initial (nominally horizontal) part the flow accelerates continuously over the length.
Starting at F ≈ 0.64 it crosses over F = 1.0 at 160 m and continues to accelerate up to F ≈ 1.47
near the outflow end.

- However the gradient of F on length is much smaller beyond 280 m. The flow is in ‘steady state’
there. It continues to slowly accelerate, as the gravity component on the inclined plane is still a bit
larger than the friction component.

- No oscillations are visible anywhere along the length, as expected.

92

Figure 3.25: s c3 41 03 3 Bottom slope geometry for flow variations at Q = 1.0 ·Q r

93

94

Figure 3.26: s c3 41 03 3 longitudinal profiles for D, H and F at t = 5900 s

95

3.8 case s c3 41 04 power station inlet channel

This case models the typical inlet channel to a hydropower station, where the inflow is fixed and the
outflow is manipulated in a sequence of small and fast ramped steps modelling the action of a tur-
bine/generator power controller. The cross section is set constant, steady state width and depth being
constant at reference values. But flow is set either at 40 % of reference for low power conditions, or at
120 % for maximum power conditions. Thus the Froude number shall stay well below F = 1.0 for all
conditions.
The size of the flow variations is set much smaller here (to ∓0.04 ·Q0) in order to limit the level excursions
within realistic bounds, say ∆D ≤ +0.5 m.
The friction bottom slope for the channel is calculated for the reference flow and kept on for the two
other flow conditions, as in reality.
The symmetric sub-case of constant outflow and variations in inflow has been investigated, but is skipped
here for brevity.

Figure 3.27: top-level diagram for case s c3 41 04 2, with no overfall

96

.sce-files

// s_c3_41_04_2_context
// Glf 26.10.2015
// no vertical dynamics

g = 10.;

// reference op-point
Q_r=50.0; H_r=1.5; S_r=1.0*(-1.0); D_r=H_r - S_r;
B_r = 10.; U_r = 2.0; F_r = 0.40;

lambda = 8.00; L = lambda*D_r;

kap = 1.0;

N= 20; // number Volume+momentum-segments

F_0 = 0.40;

// select actual op-point
Q_0 = 0.40*50.0;

// Q_0 = 1.20*50.0;

H_0=H_r; S_0=S_r; B_0=B_r; U_0=U_r; D_0=D_r;

D_min = +0.0001; D_max = 40*D_r;
Q_min = +0.0001; Q_max = 40*Q_r;

// channel geometry
//*****************
// Basic element: constant (nominal) width
vb = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0];

vB = B_0*vb;
//******************

// basic layout: horizontal bottom
vs = -1.0*[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,1.0];

vS0 = 1.0*vs;
//**************************

vd0 = ones(1,(2*N+1)); vD0 = D_0*vd0; vH0 = vD0 + vS0;
vq0 = ones(1,(2*N+1)); vQ0 = Q_0*vq0;

// Inflow data
B_in=vB(1); S_in=vS0(1); D_in=vD0(1); Q_in=vQ0(1);

// GMS-coefficient
//k_s = 100.;
//k_s = 70.7;

k_s = 50.0;
//k_s = 31.6;

// friction slope of the bottom vS and of the surface vH
vdelSf = zeros(1,(2*N+1));
vSf = zeros(1,(2*N+1));
vDr = D_r*vd0;
vQr = Q_r*vq0;
vdelHf = zeros(1,(2*N+1));
vHf = zeros(1,(2*N+1));
for kk=2:2:(2*N),
vRtilda(kk)=((vB(kk)*vDr(kk))/(vB(kk)+2*vDr(kk)))^(2/3);

vIr(kk) = (vQr(kk)/(vB(kk)*vDr(kk)*k_s*vRtilda(kk)))^2;
vIH(kk) = (vQ0(kk)/(vB(kk)*vDr(kk)*k_s*vRtilda(kk)))^2;

vdelSf(kk) = - L*vIr(kk);
vdelHf(kk) = - L*vIH(kk);

vSf(kk) = vSf(kk-1) + 0.5*vdelSf(kk);
vSf(kk+1) = vSf(kk) + 0.5*vdelSf(kk);

vHf(kk) = vHf(kk-1) + 0.5*vdelHf(kk);
vHf(kk+1) = vHf(kk) + 0.5*vdelHf(kk);

end
for k4= 1:1:(2*N+1),

vS(k4) = vS0(k4) + vSf(k4);
vH(k4) = vH0(k4) + vHf(k4);
vH0(k4) = vH(k4) ;

vD0(k4) = vH0(k4) - vS(k4);
end

// outflow data
B_o=vB(kk+1); S_o=vS(kk+1); D_o=vD0(kk+1); H_o=vH0(kk+1);

Q_o = vQ0(kk+1);

// outflow generation
dQ = 0.05;
t_st_1 = 800.0; r_1_0 = Q_0; r_1_1=(1.0-1.*dQ)*Q_0;
t_st_2 = 2000.0; r_2_0 = 0.; r_2_1 = +2.*dQ*Q_0;
t_st_3 = 3200.0; r_3_0 = 0.; r_3_1 = -1.*dQ*Q_0;
T_fin = 4000.;
// outflow slew rate
g_st = 100.0; u_up_st = +10.0; u_dn_st = -10.0;
tau_st = 10.0; Q_st_0 = Q_0;

// inflow fixed:
Q_in = Q_0;

// Data transfer to Plots
CC = 21; // no of channels 20 + 1 for time
CN = 2000; // no of clockticks up to Tfin
delT = T_fin/CN; // intervall for clock ticks
Asize = 1.01*CC*CN; // size of Data arrays

97

// s_c3_41_04_2_crunplot
// Glf 26.10.2015
// no vertical dynamics

stacksize(’max’);exec(’s_c3_41_04_2_context.sce’, -1);
importXcosDiagram(’s_c3_41_04_2.zcos’);
typeof(scs_m); scs_m.props.context;
Info=list(); Info=scicos_simulate(scs_m,Info);
//**********************************

for kfig = 1:1:4, clf(kfig); end

vcolor = [5, 2, 3, 4, 1, 6, 9,11,13,15,...
17,19,21,22,25,27,29,32, 2, 5];

f1 = scf(1);
plot2d(Q.time,Q.values,vcolor,rect=[0.,18.,4000,23.]);

// plot2d(Q.time,Q.values,vcolor,rect=[0.,54.,4000,66.]);
xtitle("Q_2 to Q_40"); xgrid(1);

f2 = scf(2);
plot2d(D.time,D.values,vcolor,rect=[0.,2.3,4000,3.3]);

// plot2d(D.time,D.values,vcolor,rect=[0.,2.2,4000,3.8]);
xtitle("D_1 to D_39"); xgrid(1);

f3 = scf(3);
plot2d(H.time,H.values,vcolor,rect=[0.,1.2,4000,1.8]);

// plot2d(H.time,H.values,vcolor,rect=[0.,0.8,4000,2.4]);
xtitle("H_1 to H_39"); xgrid(1);

f4 = scf(4);
plot2d(F.time,F.values,vcolor,rect=[0.,0.1,4000,0.2]);

// plot2d(F.time,F.values,vcolor,rect=[0.,0.,4000,0.8]);
xtitle("F_2 to F_40"); xgrid(1);

Case s c3 41 04 2: Discussion

- Fig.3.28 shows the total transients for the low power conditions and Fig.3.29 for the high power
conditions

- As expected, the transients are much less damped than in the GMS-law outflow cases above: The
impedance at the outflow end is much stiffer, in fact it is infinite.

- At the low flow condition, the damping is extremely weak

- Also the travelling wave fronts are neatly visible on vD(k, t).

98

Figure 3.28: s c3 41 04 2 for outflow variations at Q = 0.40 ·Q r, constant inflow

99

100

Figure 3.29: s c3 41 04 for outflow variations at Q = 1.20 ·Q r, constant inflow

101

102

Turbine inlet channel with overfall on first volume compartment

Figure 3.30: lowest-level diagram for element k = 1 with overfall at inflow, s c3 41 04 3

103

.sce-files

// s_c3_41_04_3_context
// Glf 26.10.2015
// no vertical dynamics
// with overfall at inlet

g = 10.;
// reference op-point
Q_r=50.0; H_r=1.5; S_r=1.0*(-1.0); D_r=H_r - S_r;
B_r = 10.; U_r = 2.0; F_r = 0.40;

lambda = 8.00; L = lambda*D_r;

// overfall at inflow compartment
D_ov = D_r - 0.0; g_ov = L*(g^(0.5));

kap = 1.0;

N= 20; // number Volume+momentum-segments

F_0 = 0.40;

// select actual op-point
Q_0 = 0.40*50.0;

// Q_0 = 1.20*50.0;

H_0=H_r; S_0=S_r; B_0=B_r; U_0=U_r; D_0=D_r;

D_min = +0.0001; D_max = 40*D_r;
Q_min = +0.0001; Q_max = 40*Q_r;

// channel geometry
//*****************
// Basic element: constant (nominal) width
vb = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0];

vB = B_0*vb;
//******************

// basic layout: horizontal bottom
vs = -1.0*[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,1.0];

vS0 = 1.0*vs;
//**************************

vd0 = ones(1,(2*N+1)); vD0 = D_0*vd0; vH0 = vD0 + vS0;
vq0 = ones(1,(2*N+1)); vQ0 = Q_0*vq0;

// Inflow data
B_in=vB(1); S_in=vS0(1); D_in=vD0(1); Q_in=vQ0(1);

// GMS-coefficient
//k_s = 100.;
//k_s = 70.7;

k_s = 50.0;
//k_s = 31.6;

// friction slope of the bottom vS and of the surface vH
vdelSf = zeros(1,(2*N+1));
vSf = zeros(1,(2*N+1));
vDr = D_r*vd0;
vQr = Q_r*vq0;
vdelHf = zeros(1,(2*N+1));
vHf = zeros(1,(2*N+1));
for kk=2:2:(2*N),
vRtilda(kk)=((vB(kk)*vDr(kk))/(vB(kk)+2*vDr(kk)))^(2/3);

vIr(kk) = (vQr(kk)/(vB(kk)*vDr(kk)*k_s*vRtilda(kk)))^2;
vIH(kk) = (vQ0(kk)/(vB(kk)*vDr(kk)*k_s*vRtilda(kk)))^2;

vdelSf(kk) = - L*vIr(kk);
vdelHf(kk) = - L*vIH(kk);

vSf(kk) = vSf(kk-1) + 0.5*vdelSf(kk);
vSf(kk+1) = vSf(kk) + 0.5*vdelSf(kk);

vHf(kk) = vHf(kk-1) + 0.5*vdelHf(kk);
vHf(kk+1) = vHf(kk) + 0.5*vdelHf(kk);

end
for k4= 1:1:(2*N+1),

vS(k4) = vS0(k4) + vSf(k4);
vH(k4) = vH0(k4) + vHf(k4);
vH0(k4) = vH(k4) ;

vD0(k4) = vH0(k4) - vS(k4);
end

// outflow data
B_o=vB(kk+1); S_o=vS(kk+1); D_o=vD0(kk+1); H_o=vH0(kk+1);

Q_o = vQ0(kk+1);

// outflow generation
dQ = 0.10;
t_st_1 = 800.0; r_1_0 = Q_0; r_1_1=(1.0-1.*dQ)*Q_0;
t_st_2 = 2000.0; r_2_0 = 0.; r_2_1 = +1.*dQ*Q_0;
t_st_3 = 3200.0; r_3_0 = 0.; r_3_1 = -0.*dQ*Q_0;
T_fin = 4000.;
// outflow slew rate
g_st = 100.0; u_up_st = +10.0; u_dn_st = -10.0;
tau_st = 10.0; Q_st_0 = Q_0;

// inflow fixed:
Q_in = Q_0;

// Data transfer to Plots
CC = 21; // no of channels 20 + 1 for time
CN = 2000; // no of clockticks up to Tfin
delT = T_fin/CN; // intervall for clock ticks
Asize = 1.01*CC*CN; // size of Data arrays

104

// s_c3_41_04_3_crunplot
// Glf 26.10.2015
// no vertical dynamics
// with overfall at inlet
stacksize(’max’);exec(’s_c3_41_04_3_context.sce’, -1);
importXcosDiagram(’s_c3_41_04_3.zcos’);
typeof(scs_m); scs_m.props.context;
Info=list(); Info=scicos_simulate(scs_m,Info);
//**********************************

for kfig = 1:1:4, clf(kfig); end

vcolor = [5, 2, 3, 4, 1, 6, 9,11,13,15,...
17,19,21,22,25,27,29,32, 2, 5];

f1 = scf(1);
plot2d(Q.time,Q.values,vcolor,rect=[0.,17.,4000,22.]);

// plot2d(Q.time,Q.values,vcolor,rect=[0.,52.,4000,64.]);

xtitle("Q_2 to Q_40"); xgrid(1);

f2 = scf(2);
plot2d(D.time,D.values,vcolor,rect=[0.,2.3,4000,3.3]);

// plot2d(D.time,D.values,vcolor,rect=[0.,2.2,4000,3.4]);
xtitle("D_1 to D_39"); xgrid(1);

f3 = scf(3);
plot2d(H.time,H.values,vcolor,rect=[0.,1.2,4000,1.8]);

// plot2d(H.time,H.values,vcolor,rect=[0.,0.8,4000,2.4]);
xtitle("H_1 to H_39"); xgrid(1);

f4 = scf(4);
plot2d(F.time,F.values,vcolor,rect=[0.,0.1,4000,0.2]);

// plot2d(F.time,F.values,vcolor,rect=[0.,0.0,4000,0.8]);
xtitle("F_2 to F_40"); xgrid(1);

Case s c3 41 04 3: Discussion

- Fig.3.31 shows the total transients for the low power conditions and Fig.3.32 for the high power
conditions

- The overfall threshold is set to D ov = D r = 2.5 m,

- and the flow variation is downward only ∆Q = −0.10 · Q to go back to initial Q, (for having an
increasing water level and thus overfall flow)

- At the low flow condition, the damping is still weak, but significantly improved on the end part
of the transient, where vD(1, t) > D ov ∀t, than in the initial part of the transient where vD(1, t)
stays near to D ov.

- Also the travelling wave fronts are neatly visible on vQ(k, t), vD(k, t), vF (k, t).

105

Figure 3.31: s c3 41 04 3 constant inflow, ∆Q0 = 0.10 ·Q r

106

107

Figure 3.32: s c3 41 04 3 for outflow variations at Q = 1.20 ·Q r, constant inflow

108

109

3.9 Case Study ‘Birsfelden’

This is about the upstream basin dynamics of the hydro power station at ‘Birsfelden’ on the Rhine (WGS
84 location: 47.56019, 7.63047), where the outflow on the lower end is manipulated and the inflow at
the upper end is the outflow of the upstream power station. There is no stretch of free river flow on the
upstream end of the reservoir. The basin width is nearly constant along the length of the basin, and
the borders are steep. Thus the constant rectangular cross section model can be used as a reasonable
approximation.

In this case experimental results on level response are available from two level sensors, one on the upstream
pool near the power station and one situated near the upper end of the basin at ≈ 7′000m.

Figure 3.33: step responses on both levels: left at ≈ 1′000m3/s, right at ≈ 500m3/s
Lower track for sensor near power plant, upper track for sensor 7′000m upstream

The experiments dating from 1986 were performed because poor damping was observed on the existing
level control loop at very low river flow conditions. For the tests, the level control loop was put on ‘manual’
and the turbine opening was manipulated in a sequence of rectangular moves. The water level on the
upstream side of the power station was restricted to ≈ ±0.12 m in order to respect the level tolerances
imposed by the Swiss federal agency.
The results were not followed up at that time, but they motivated the author’s ongoing interest in river
basin dynamics and ended up with the modelling, simulation and control design presented in the current
report.

The aim here is to compare the simulation results to the measured ones, and thus to validate the models
built in the previous sections.

3.9.1 Data assembly

The first step will be to collect the data on the river basin and on the experiments. Unfortunately the
data given on the web sites are not complete. So the missing data must be ‘reconstructed’ to give a
consistent framework for the simulation.

The characteristic river flow values are:

110

High flow: 3′000 m3/s (weirs to be opened)
Full turbine flow: 4x400 m3/s = 1′600 m3/s Mean flow: 1′000 m3/s Low flow: 500 m3/s

The upstream basin dimensions are (from Swiss topo maps):
Total length: L tot = 7′850m that is with 21 elements L = 375m Mean width: B = 157m.

The water levels are (given in m above sea level):
Nominal upstream level at power station: 254.25m
downstream levels: at 500m3/s: 245.25m, at 1′000m3/s: 246.26m at 3′000m3/s: 249.52m.
The location of this sensor is not given, it is assumed near to the power station. Also water levels at the
upstream power station (‘Augst-Wyhlen’) are not available.

The bottom levels are not given in a consistent manner. So they have to be ‘reconstructed’. This is done
by considering the free river flow before the power station was built:
There is an indication on the inclination: 150m drop over a distance of 150km, that is a mean inclination
value of I = 10 · 10−4.
Assume I := 10.37 · 10−4 and for the GMS-friction coefficient ks := 32.5 (fine pebble ground).
Then the water depths are (by iteration):
At 500m3/s D = 2.0m, at 1′000m3/s D = 3.0m, at 1′600m3/s D = 4.0m.
Using the downstream water levels given above this produces a bottom level at the power station position
of 243.25m, and an upstream water depth at the power station position of ≈ 11.0m. And the bottom
level rises to the upstream end of the basin by S(41)− S(1) = ∆S = −7.8m.
Then set the reference level “0” such that S r = S(1) := −0.80m and H r = H(41) := 2.20m. Thus at
zero flow the water depth will go from 3.0m at the ‘inflow’ end up to 10.8m at the ‘outflow’ end.

3.9.2 Modelling

The second step is to model the experiment on the plant.

The exact values of the actual river flow 6 are not available precisely but have been estimated to be
≈ 1′000m3/s and ≈ 500m3/s. So they are set to 1′000m3/s and to 500m3/s, as this produces good fits
with the measured data.

The simulation shall be initialised from the free flow situation as specified above. Then the level buildup
to its target value at 254.25m above sea level or 2.20m above the defined ‘zero’-level will be done by a level
controller of PI-type. Its settings kp, ki are tuned experimentally for a settling within approx. 10′000s.
When the control loop has attained its steady state (at 12′000s), the controller input is switched off (the
control error forced to zero), thus opening the level control loop. Next the sequence of turbine opening
changes is applied. The time instants of the sequence are read out from the traces of the upstream level
sensor close to the power station.
At 1′000m3/s:

Outflow up at 00 : 12, down at 00 : 54; that is ∆t = 42min = 2′520s;

up again at 02 : 06; that is ∆t = 72min = 4′320s

and down to near steady state flow at 02 : 45, that is ∆t = 36min = 2′340s;

And at 500m3/s:

Outflow down at 00 : 08, up at 00 : 54; that is ∆t = 46min = 2′760s;

down to near steady state flow at 02 : 32, that is ∆t = 98min = 5′880s;

The step sizes on the turbine flow steps are not available precisely. They have been estimated around
±80m3/s. And the applied ∆Q-sizes have again been ‘reconstructed’ by the measured level deviations
just prior to the next step, see the respective ...context.sce-file for details.

6Note that in contrast to levels, flows are much more difficult and expensive to measure on large hydro plants

111

3.9.3 Implementation in scilab

.zcos diagram for s c3 41 05 10.zcos (for 1′000m3/s) and s c3 41 05 05.zcos (for 500m3/s)

112

context.sce-file for s c3 41 05 10.zcos

// s_c3_41_05_10_context
// Glf 26.10.2015
// Birsfelden 1000m^3/s
// open loop responses

g = 10.;
// reference op-point
Q_r=1000.0; H_r=2.2; S_r=0.80*(-1.0); D_r=H_r - S_r;
B_r = 157.; U_r = 2.02; F_r = 0.368;

L = 375.;

kap = 1.0;

N= 20; // number Volume+momentum-segments

// select actual op-point
Q_0 = 1.00*Q_r;

H_0 = H_r; S_0 = S_r; B_0 = B_r;
U_0 = Q_r/(B_r*D_r); D_0 = D_r;

D_min = +0.0001; D_max = 40*D_r;
Q_min = +0.0001; Q_max = 40*Q_r;

// channel geometry
//*****************
// Basic element: constant (nominal) width
vb = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0];

vB = B_0*vb;
//******************

// basic layout: horizontal bottom
vs = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,1.0];

vS0 = S_0*vs;
//**************************

vd0=ones(1,(2*N+1)); vD0=D_0*vd0; vH0=vD0 + vS0;
vq0 = ones(1,(2*N+1)); vQ0 = Q_0*vq0;

// Inflow data
B_in=vB(1); S_in=vS0(1); D_in=vD0(1); Q_in=vQ0(1);

// GMS-coefficient
//k_s = 100.;
//k_s = 70.7;
// k_s = 50.0;

k_s = 32.5;

// friction slope of the bottom vS and of the surface vH
vdelSf = zeros(1,(2*N+1));
vSf = zeros(1,(2*N+1));
vDr = D_r*vd0;
vQr = Q_r*vq0;
vdelHf = zeros(1,(2*N+1));
vHf = zeros(1,(2*N+1));
vH00 = ones(1,(2*N+1));
for kk=2:2:(2*N),
vRtilda(kk)=((vB(kk)*vDr(kk))/(vB(kk)+2*vDr(kk)))^(2/3);

vIr(kk) = (vQr(kk)/(vB(kk)*vDr(kk)*k_s*vRtilda(kk)))^2;
vIH(kk) = (vQ0(kk)/(vB(kk)*vDr(kk)*k_s*vRtilda(kk)))^2;

vdelSf(kk) = - L*vIr(kk);
vdelHf(kk) = - L*vIH(kk);

vSf(kk) = vSf(kk-1) + 0.5*vdelSf(kk);
vSf(kk+1) = vSf(kk) + 0.5*vdelSf(kk);

vHf(kk) = vHf(kk-1) + 0.5*vdelHf(kk);
vHf(kk+1) = vHf(kk) + 0.5*vdelHf(kk);

end
for k4= 1:1:(2*N+1),

vS(k4) = vS0(k4) + vSf(k4);
vH(k4) = vH0(k4) + vHf(k4);
vH0(k4) = vH(k4) ;

// vH0(k4) = 0.45*vH00(k4);
vH0(k4) = 2.7*vH00(k4);

vD0(k4) = vH0(k4) - vS(k4);
end

// outflow data
B_o=vB(kk+1); S_o=vS(kk+1); D_o=vD0(kk+1); H_o=vH0(kk+1);

Q_o = vQ0(kk+1);

// outflow generation
dQ = 0.0625;
t_st_1 = 12000.0; r_1_0 = Q_0; r_1_1=(1.0+0.8*dQ)*Q_0;
t_st_2 = 14520.0; r_2_0 = 0.; r_2_1 = -1.8*dQ*Q_0;
t_st_3 = 18840.0; r_3_0 = 0.; r_3_1 = +1.8*dQ*Q_0;
t_st_4 = 21180.0; r_4_0 = 0.; r_4_1 = -0.8*dQ*Q_0;
T_fin = 24000.0;
// outflow slew rate
g_st = 100.0; u_up_st = +10.0; u_dn_st = -10.0;
tau_st = 20.0; Q_st_0 = Q_0;

// Outflow Level control
kp_L = 1600.0;
ki_L = 400/1000;
refH_o = 2.2;

T_LevConOFF = 12000.; ulevcon0 = +1.; ulevcon1 = -1.0;

// inflow fixed:
Q_in = Q_0;

// Data transfer to Plots
CC = 21; // no of channels 20 + 1 for time
CN = 2000; // no of clockticks up to Tfin
delT = T_fin/CN; // intervall for clock ticks
Asize = 1.01*CC*CN; // size of Data arrays

113

context.sce-file for s c3 41 05 05.zcos

// s_c3_41_05_05_context
// Glf 16.6.14
// Birsfelden 500m^3/s
// open loop

g = 10.;
// reference op-point
Q_r=1000.0; H_r=2.2; S_r=0.8*(-1.0); D_r=H_r - S_r;
B_r = 157.; U_r = Q_r/(B_r*D_r); F_r = 0.387;

L = 375.;

kap = 1.0;

N= 20; // number Volume+momentum-segments

// select actual op-point
Q_0 = 0.50*Q_r;

H_0=H_r; S_0=S_r; B_0=B_r; U_0=U_r; D_0=D_r;

D_min = +0.0001; D_max = 40*D_r;
Q_min = +0.0001; Q_max = 40*Q_r;

// channel geometry
//*****************
// Basic element: constant (nominal) width
vb = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0];

vB = B_0*vb;
//******************

// basic layout: horizontal bottom
vs = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,1.0];

vS0 = S_0*vs;
//**************************

vd0=ones(1,(2*N+1)); vD0=D_0*vd0; vH0=vD0 + vS0;
vq0 = ones(1,(2*N+1)); vQ0 = Q_0*vq0;

// Inflow data
B_in=vB(1); S_in=vS0(1);D_in=vD0(1); Q_in=vQ0(1);

// GMS-coefficient
//k_s = 100.;
//k_s = 70.7;
// k_s = 50.0;

k_s = 32.5;

// friction slope of the bottom vS and of the surface vH

vdelSf = zeros(1,(2*N+1));
vSf = zeros(1,(2*N+1));
vDr = D_r*vd0;
vQr = Q_r*vq0;
vdelHf = zeros(1,(2*N+1));
vHf = zeros(1,(2*N+1));
vH00 = ones(1,(2*N+1));
for kk=2:2:(2*N),
vRtilda(kk)=((vB(kk)*vDr(kk))/(vB(kk)+2*vDr(kk)))^(2/3);

vIr(kk) = (vQr(kk)/(vB(kk)*vDr(kk)*k_s*vRtilda(kk)))^2;
vIH(kk) = (vQ0(kk)/(vB(kk)*vDr(kk)*k_s*vRtilda(kk)))^2;

vdelSf(kk) = - L*vIr(kk);
vdelHf(kk) = - L*vIH(kk);

vSf(kk) = vSf(kk-1) + 0.5*vdelSf(kk);
vSf(kk+1) = vSf(kk) + 0.5*vdelSf(kk);

vHf(kk) = vHf(kk-1) + 0.5*vdelHf(kk);
vHf(kk+1) = vHf(kk) + 0.5*vdelHf(kk);

end
for k4= 1:1:(2*N+1),

vS(k4) = vS0(k4) + vSf(k4);
vH(k4) = vH0(k4) + vHf(k4);
vH0(k4) = vH(k4) ;

vH0(k4) = 2.625*vH00(k4);
vD0(k4) = vH0(k4) - vS(k4);

end

// outflow data
B_o=vB(kk+1); S_o=vS(kk+1); D_o=vD0(kk+1); H_o=vH0(kk+1);

Q_o = vQ0(kk+1);

// outflow generation
dQ = 0.12;
t_st_1 = 12000.0; r_1_0 = Q_0; r_1_1=(1.0-1.0*dQ)*Q_0;
t_st_2 = 14460.0; r_2_0 = 0.; r_2_1 = +1.6*dQ*Q_0;
t_st_3 = 20340.0; r_3_0 = 0.; r_3_1 = -0.6*dQ*Q_0;
t_st_4 = 24000.0; r_4_0 = 0.; r_4_1 = 0.;
T_fin = 24000.0;
// outflow slew rate
g_st = 100.0; u_up_st = +10.0; u_dn_st = -10.0;
tau_st =20.0; Q_st_0 = Q_0;

// Outflow Level control
kp_L = 1600.0;
ki_L = 100/100;
refH_o = 2.20;

T_LevConOFF = 12000.; ulevcon0 = +1.; ulevcon1 = -1.0;

// inflow fixed:
Q_in = Q_0;

// Data transfer to Plots
CC = 21; // no of channels 20 + 1 for time
CN = 2000; // no of clockticks up to Tfin
delT = T_fin/CN; // intervall for clock ticks
Asize = 1.01*CC*CN; // size of Data arrays

114

crunplot.sce-files for s c3 41 05 10.zcos and s c3 41 05 05.zcos

// s_c3_41_05_10_crunplot
// Glf 26.10.2015
// Birsfelden 1000 m^3/s
// open loop
stacksize(’max’);exec(’s_c3_41_05_10_context.sce’, -1);
importXcosDiagram(’s_c3_41_05_10.zcos’);
typeof(scs_m); scs_m.props.context;
Info=list(); Info=scicos_simulate(scs_m,Info);
//**********************************

for kfig = 1:1:5, clf(kfig); end

vcolor = [5, 2, 3, 4, 1, 6, 9,11,13,15,...
17,19,21,22,25,27,29,32, 2, 5];

T_0 = 0.0; T_1 = 10000.; T_2 = T_fin;
f1 = scf(1);
// plot2d(Q.time,Q.values,vcolor,rect=[T_0,800,T_2,1200]);

plot2d(Q.time,Q.values,vcolor,rect=[T_1,800,T_2,1200]);
xtitle("Q_2 to Q_40"); xgrid(1);

f2 = scf(2);
// plot2d(D.time,D.values,vcolor,rect=[T_0,2.0,T_2,12.0]);

plot2d(D.time,D.values,vcolor,rect=[T_1,2.0,T_2,12.0]);
xtitle("D_1 to D_39"); xgrid(1);

f3 = scf(3);
// plot2d(H.time,H.values,vcolor,rect=[T_0,+1.8,T_2,3.2]);

plot2d(H.time,H.values,vcolor,rect=[T_1,+1.8,T_2,3.2]);
xtitle("H_1 to H_39"); xgrid(1);

f4 = scf(4);
// plot2d(F.time,F.values,vcolor,rect=[T_0,0.0,T_2,0.4]);

plot2d(F.time,F.values,vcolor,rect=[T_1,0.0,T_2,0.4]);
xtitle("F_2 to F_40"); xgrid(1);

//**
eX = L*(1:1:N); eXend = 21*L;

for k6= 1:1:N, vSr(k6) = vS(2*k6-1); end

f5 = scf(5); yH = H.values; oH = yH(1000,:);
vcolor=[5,1];
plot2d(eX’, [oH’, vSr], vcolor, rect=[0.,-9.0,eXend,+4.0]);
xtitle("Longitudinal H (red) at 12000 s, bottom (black)");
xgrid(1);

// s_c3_41_05_05_crunplot
// Glf 26.10.2015
// Birsfelden 600 m^3/s
// open loop
stacksize(’max’);exec(’s_c3_41_05_05_context.sce’, -1);
importXcosDiagram(’s_c3_41_05_05.zcos’);
typeof(scs_m); scs_m.props.context;
Info=list(); Info=scicos_simulate(scs_m,Info);
//**********************************

for kfig = 1:1:5, clf(kfig); end

vcolor = [5, 2, 3, 4, 1, 6, 9,11,13,15,...
17,19,21,22,25,27,29,32, 2, 5];

T_0 = 0.; T_1 = 10000; T_2 = T_fin;
f1 = scf(1);
// plot2d(Q.time,Q.values,vcolor,rect=[T_0,400.,T_2,600.]);

plot2d(Q.time,Q.values,vcolor,rect=[T_1,400.,T_2,600.]);
xtitle("Q_2 to Q_40"); xgrid(1);

f2 = scf(2);
// plot2d(D.time,D.values,vcolor,rect=[T_0,2.0,T_2,12.0]);

plot2d(D.time,D.values,vcolor,rect=[T_1,2.0,T_2,12.0]);
xtitle("D_1 to D_39"); xgrid(1);

f3 = scf(3);
// plot2d(H.time,H.values,vcolor,rect=[T_0,1.8,T_2,2.8]);

plot2d(H.time,H.values,vcolor,rect=[T_1,1.8,T_2,2.8]);
xtitle("H_1 to H_39"); xgrid(1);

f4 = scf(4);
// plot2d(F.time,F.values,vcolor,rect=[T_0,0.0,T_2,0.2]);

plot2d(F.time,F.values,vcolor,rect=[T_1,0.0,T_2,0.2]);
xtitle("F_2 to F_40"); xgrid(1);

//**
eX = L*(1:1:N); eXend = 21*L;

for k6= 1:1:N, vSr(k6) = vS(2*k6-1); end

f5 = scf(5); yH = H.values; oH = yH(1000,:);
vcolor=[5,1];
plot2d(eX’, [oH’, vSr], vcolor, rect=[0.,-9.0,eXend,+4.0]);
xtitle("Longitudinal H (red) at 12000 s, bottom (black)");
xgrid(1);

Remarks

- The settling time of the level control loop has been suppressed in the following plots. They focus
on the interesting part of the open-loop responses to the outflow sequence while the level controller
is switched off.

- The plot of D(k, t) is not shown. The longitudinal profile of H(k) is shown instead to indicate the
‘retention volume’ and the depths when approaching the inflow end of the basin.

- The thick dark green trace shows the variables near the location of the upstream sensor at 7′000m

- And the thick red trace shows the variables at location k = 39 to be consistent with previous plots.
Thus H(39) is shown and not H(41) which is the actual measured value input to the level controller.

115

3.9.4 Simulation Results

Figure 3.34: s c3 41 05 10 for outflow variations at 1′000m3/s, constant inflow

116

117

Figure 3.35: s c3 41 05 05 for outflow variations at 500m3/s, constant inflow

118

119

3.9.5 Discussion

• The travelling time of the wave front from the power station sensor to the second sensor (approx.
7′000m) is from the measurement Fig.3.33 ≈ 17min = 1′020s, and from the simulation ≈ 980s,
which agrees well considering the uncertainty on the bottom shape.

• The difference between the sensor levels in steady state at 1′000m3/s is from the measurement
≈ 0.55m compared to the value from the simulation ≈ 0.53m, whereas at 500m3/s from the
measurement ≈ 0.16m and from the simulation ≈ 0.15m. Again this agrees well.

• The retention effect of the Birsfelden level control on the upriver power station is that it reduces
the available head for the turbines there and thus its power output. This effect is mentioned in a
vague manner at the website www.kw-birsfelden.ch. The following numbers are from the simulation

Q D nat H nat H(1) LevCon ∆H nat ∆H LevCon
200 1.14 0.34 2.25 -1.91 -0.05
500 2.00 1.20 2.50 -1.30 -0.30
1000 3.00 2.20 3.00 -0.80 -0.80
1500 3.90 3.10 3.70 -0.60 -1.50

The second to last column shows the head loss while the level control loop is active to the nat-
ural/free flow level and the last column shows the head loss referenced to the zero flow level at
2.20m. This quantifies a bit better what is happening.

• The shape of the transients agree well for both flow conditions. There are no oscillations visible
on both measured and simulated responses at 1′000m3/s, whereas three peaks are discernible on
both sets of responses at 500m3/s, and there is also (after the second step up on turbine flow) a
typical horizontal phase of length ≈ 1′500s on both sets of responses. – Thus the simulation also
demonstrates a significant reduction in damping from mean flow to low flow conditions.

• The Froude numbers are at the lower half of the basin for 1′000m3/s at 0.06...0.15 and for 500m3/s
at 0.03...0.08. This would indicate a much smaller damping ratio from the momentum flow effect
for the situation where the impedance on the inflow end would be near infinite (meaning a hard
barrier at fixed inflow).

• The longitudinal profiles in H(k) at 1′000m3/s show a marked rise of level over the upper half of
the basin, indicating a sizable ‘retention volume’ over the horizontal surface for zero flow. This is
due to the GMS-friction, which is low at the deeper low end of the basin, but higher at the less deep
upper part of the basin. In other words the wave reflection on the upper end is far from perfect,
there is a finite impedance.
Further at 500m3/s this rise in level is much smaller as the friction is much smaller (Note that the
slope on level H due to the GMS- friction is proportional to the square of mean flow Q). And the
impedance at the upper end increases. – In short the shrinking of the ‘retention volume’ at low flow
is associated with the reduction of the damping ratio.

This hypothesis is tested by simulation at very low flow 200m3/s. The travelling wave is clearly visible in
the plot of the Froude numbers F and of the levels H. The plot of F further shows how small the decrease
of successive peaks of the echo waves are. The longitudinal level profile is now practically horizontal up to
the upper end, the ‘retention volume’ approaches zero, and the impedance at the upper end approaches
that of ‘a hard wall’. All these findings agree well with what the above discussion of causes would predict.

120

Figure 3.36: s c3 41 05 02 for outflow variations at 200m3/s, constant inflow

121

122

123

Chapter 4

The Wide Channel Model

4.1 Introduction

So far the channel geometry has been approximated to be rectangular with constant cross section along
the longitudinal coordinate x. Therefore cross sectional planes stay plane along the water flow. Or flow
lines are neither converging or diverging along x. This corresponds to the basic assumptions for the de
Saint Venant equations.
In this chapter the river/channel geometry is assumed such that the flow components along the lateral
coordinate y are no longer negligible, but become of interest as well.
Usually the rise and fall of water flow is significantly slower than the filling time constants of the system,
especially if there is an upstream lake to act as a low pass filter. In other words the flow regimes are quasi
stationary and a standard finite difference solver is adequate for calculating the flow pattern. However
within the framework of this study the focus shall be on faster flow changes, such as a “ flash flood” due
to a sudden very high rain fall in the upstream area and with no upstream reservoir / low pass filter.

4.1.1 System Geometries

Two cases often arise in practice.

case A
The cross section (Fig.4.1) of the original channel is rectangular and sized for normal river flows. Then
a lateral “foreland” of rectangular cross section is added, which is shallower, as the bottom rises from

xQ_k,m=3

xQ_k,m=1

xD
-S_r

yD

xB

yB

yQ_k-1,m=2

xL = yB

Figure 4.1: Isometric view of the geometry for case A

channel to pool. Its size determines at which flow the foreland starts to get flooded. The foreland is much

124

wider than the original channel bed and extends up to a dam, which runs parallel to the channel and is of
sufficient height to contain an extremely high water flow. Thus the foreland creates more cross section in
order to absorb very high water flows without very high water levels, and thus protects the land outside
the dam from flooding.
The system considered is to be a relatively short length section from a very long river stretch, such that
at equilibrium the longitudinal flows on the river bed Qc and on the foreland Qf are at the same water
levels, Hf := Hc.
A rapid increase in flow will propagate faster along the channel than along the foreland until the foreland
flow will catch up and the new equilibrium of longitudinal flows is reached. Thus there will be a transient
lateral flow from the channel to the foreland, but will decay back to zero. Its size can be expected to
be relatively small for a realistic increase of overall flow. That is the flow pattern is still essentially
longitudinal.

case B
See Fig.4.2 below. Again the cross section of the original channel is rectangular and sized for normal river
flows. There is a foreland as well with a given bottom rise, but it extends longitudinally only for a small
part of the overall system length. Thus this foreland geometry creates a “pool” which fills only for flows
above a given value. It acts as a small size storage element and thus as a low pass filter, although not a
very effective one.

xQ_k,m=3,5

xQ_k,m=1

xD

-S_r

yD

xB

yB_k,m=3,5

yQ_k-1,m=2,4yB_k-1,m=2,4

Figure 4.2: Isometric view of the geometry for case B
lines in blue: level for high flow, lines in pink: level for low flow

For this geometry the flow lines in the pool are obviously no longer parallel, but highly divergent at the
inflow to the pool and convergent at the outflow. Typically large areas with ‘backflow’ (with reverse flow
direction) are to be expected. In other words the flow pattern in the pool is no longer longitudinally
dominant. This must be accounted for in the modelling and makes it more complex.
In this report however only the longitudinally dominant case A shall be considered, where lateral flows
stay small compared to the longitudinal flows.

125

4.2 Modelling

The starting point are (as in Chap.2) the ‘Reynolds Averaged Navier Stokes Equations’. The independent
variables are t, x (longitudinal) and y (lateral), (with z (vertical) omitted here).
The dependent variables are u (longit. velocity), v (lateral velocity) and p (local pressure). Fluid density
is ρ and . . . indicate the eddy viscosity terms.

∂u

∂t
+
∂(uu)

∂x
+
∂(uv)

∂y
= −1

ρ

∂p

∂x
+ ...

∂v

∂t
+
∂(uv)

∂x
+
∂(vv)

∂y
= −1

ρ

∂p

∂y
+ ...

∂u

∂x
+
∂v

∂y
= 0

Step 1

is to apply the product rule to the derivatives to x, y in the first two equations

∂u

∂t
+ 2 · u · ∂u

∂x
+ u · ∂v

∂y
+ v · ∂u

∂y
= −1

ρ

∂p

∂x
+ ...

∂v

∂t
+ u · ∂v

∂x
+ v · ∂u

∂x
+ 2 · v · ∂v

∂y
= −1

ρ

∂p

∂y
+ ...

and from the third equation above for insertion in the first two equations

either u · ∂v
∂y

= −u · ∂u
∂x

or v · ∂u
∂x

= −v · ∂v
∂y

That is

∂u

∂t
+ u · ∂u

∂x
+ v · ∂u

∂y
= −1

ρ

∂p

∂x
+ ...

∂v

∂t
+ v · ∂v

∂y
+ u · ∂v

∂x
= −1

ρ

∂p

∂y
+ ...

Step 2

is to move to spacial discretization, see Fig.4.3.

Each cell shall be identified by index k in the longitudinal (x-) direction and by index m in the lateral
(y-) direction. Each cell shall extend from bottom to surface, without any further discretization in the
vertical (z-) direction. Thus there is no third index n required, as it is trivial to one for all cells.

The cell size is
seen in the x-direction: width := xB(k,m); length := xL(k,m)
and in the y-direction: width := yB(k,m); length := yL(k,m)

where from Fig.4.3

yB(k − 1,m+ 1) = xL(k,m) and yL(k − 1,m+ 1) = xB(k,m).

Then the three dimensional velocity functions u(x, y, z), v(x, y, z) are replaced by single representative
values for each cell:

u(x, y, z)
∣∣∣
k,m

→ xU(k,m) for k = 0, 2, 4, 6, ..., and for m = 1, 3, 5, 7, ...

v(x, y, z)
∣∣∣
k,m

→ yU(k,m) for k = 1, 3, 5, 7, ..., and for m = 0, 2, 4, 6, ...

126

m
m+1 m+2 m+3 m+4m-1 m+5

k

k-1

k-2

k+1

k+2

longit. flow node lateral flow node volume/depth node

k+1,m

k+1,m+1k+1,m-1

k+1,m+2 k+1,m+4

k+1,m+3

k,m

k+2,m k+2,m+1 k+2,m+4

k,m+4k,m+2

k+1,m+5

k-1,m+5k-1,m+3k-1,m+1k-1,m-1

k-1,m k-1,m+2 k-1,m+4

k-2,m+2 k-2,m+4k-2,m

Figure 4.3: The finite element grid

As there is no vertical curvature of the flow lines and thus the associated vertical acceleration is zero, p
is the local hydrostatic pressure for depth −z,

p = ρ · g · z

and the representative value is
P (k,m) = ρ · g ·D(k,m)

Note that this will connect the momentum balance equations for x, y-directions with the volume balance
equation which will yield D.

For strictly positive xU (no reverse flow is allowed here !)1 the momentum balance equation in the positive
x-direction transforms into (see also Fig.4.4)

d

dt
xU(k,m+ 2) + xU(k,m+ 2) · xU(k,m+ 2)− xU(k − 2,m+ 2)

xL(k,m+ 2)

+ yU(k − 1,m+ 1) · xU(k − 2,m+ 2)− xU(k − 2,m)

yL(k − 1,m− 1)

= − 1

ρ
· ρ · g · D(k + 1,m+ 2)−D(k − 1,m+ 2)

xL(k,m+ 2)

rewritten into

d

dt
xU(k,m+ 2) = + g · D(k − 1,m+ 2)−D(k + 1,m+ 2)

xL(k,m+ 2)

+ xU(k,m+ 2) · xU(k − 2,m+ 2)− xU(k,m+ 2)

xL(k,m+ 2)

+ yU(k − 1,m+ 1) · xU(k − 2,m)− xU(k − 2,m+ 2)

yL(k − 2,m+ 1)

1see [1], p.25, about expanding to model local backflow in x− and y− directions as well, (required for case B, Fig.4.2)

127

The part of the formula highlighted in red is the term which transfers momentum (‘momentum cross
over’) from the y-axis into the x-axis. And for small values yU this term stays small compared to the
second term.

And similarly for the y-axis for strictly positive xU

d

dt
yU(k − 1,m+ 1) = + g · D(k − 1,m)−D(k − 1,m+ 2)

yL(k − 1,m)

+ yU(k − 1,m+ 1) · yU(k − 1,m− 1)− yU(k − 1,m+ 1)

yL(k,m+ 1)

+ xU(k − 2,m) · yU(k − 3,m− 1)− yU(k − 1,m− 1)

xL(k − 2,m− 1)

again with the ‘momentum crossover’ part in red.

m=1 m+1 m+2 m+3m-1

k

k-1

k-2

longit.hflowhnode lateralhflowhnode

xU_k,m+2

yU_k-1,m+1

yD_k-1,m+2

xU_k-2,m+2xU_k-2,m

yD_k-1,m

m=1 m+1 m+2 m+3m-1

k

k+1

k-1

yU_k,m+1

yD_k,m+2

xU_k-1,m

yD_k,m

yU_k-2,m-1

yU_k,m-1

k-2
k-3

volume/depthhnode

Figure 4.4: Discretization for the momentum cross over term
(left) from the y-axis to the x-axis and (right) from the x-axis to the y-axis
Note that flow directions are assumed positive on both x− and y− axes

.

Step 3

consists of replacing velocities xU, yU by volume flows xQ = xU · xB ·D, yQ = yU · yB ·D. This is done
by multiplying both sides of the equation for the x-direction by xL · xB · xD and in the y-direction by
yL · yB · yD 2.
In the following k is the longitudinal cell index for both the channel and the foreland, and m = 1 is the
lateral index for the channel, combined with n = 2, 4, ... creates in m+n the index for subsequent lateral
cells in the foreland.

2where xD = xH − S and yD = yH − yS to account for the higher bottom in the foreland

128

For the x-direction in the channel for k = 2, 4, 6, ... and m = 1, where D → xD:

xL(k,m)
d

dt
(xB(k,m) · xD(k,m)) · xU(k,m)

= +g · (xB(k,m) · xD(k,m)) · [xD(k − 1,m)− xD(k + 1,m)]

+ (xB(k,m) · xD(k,m)) · xU(k,m) · [xU(k − 1,m)− xU(k + 1,m)]

+xc(k,m) · yU(k − 1,m− 1) · [xU(k − 2,m− 2)− xU(k − 2,m)]

with

xc(k,m) =
xB(k,m) xD(k,m) xL(k,m)

yL(k − 2,m− 1)

and in the shallower foreland for k = 2, 4, 6, ... and m = 3, where D → yD:

xL(k,m)
d

dt
(xB(k,m) · yD(k,m)) · xU(k,m)

= +g · (xB(k,m) · yD(k,m)) · [yD(k − 1,m)− yD(k + 1,m)]

+ (xB(k,m) · yD(k,m)) · xU(k,m) · [xU(k − 1,m)− xU(k + 1,m)]

+xc(k,m) · yU(k − 1,m− 1) · [xU(k − 2,m− 2)− xU(k − 2,m)]

with

xc(k,m) =
xB(k,m) yD(k,m) xL(k,m)

yL(k − 2,m− 1)

or written in xQ in the channel for k = 2, 4, 6, ... and m = 1, where D → xD:

xL(k,m)
d

dt
(xQ(k,m)) = +g · (xB(k,m) · yD(k,m)) · [yD(k − 1,m)− yD(k + 1,m)]

+xQ(k,m) · [xU(k − 1,m)− xU(k + 1,m)]

+xc(k,m) · yU(k − 1,m− 1) · [xU(k − 2,m− 2)− xU(k − 2,m)]

with

xc(k,m) =
xB(k,m) xD(k,m) xL(k,m)

yL(k − 2,m− 1)

and in the shallower foreland/pool for k = 2, 4, 6, ... and m = 3, where D → yD:

xL(k,m)
d

dt
(xQ(k,m)) = +g · (xB(k,m) · yD(k,m)) · [yD(k − 1,m)− yD(k + 1,m)]

+xQ(k,m) · [xU(k − 1,m)− xU(k + 1,m)]

+xc(m) · yU(k − 1,m+ 1) · [xU(k − 2,m− 2)− xU(k − 2,m)]

with

xc(k,m) =
xB(k,m) yD(k,m) xL(k,m)

yL(k − 2,m− 1)

The first term to the right hand side of the equation is the pressure force balance, and the second term
is the balance of reaction forces due to the momentum in- and outflows. Both are familiar from chap.2
and 3. The third term is the balance of reaction forces due to momentum crossover in- and outflows.

129

And for the positive y-direction into the foreland cell for k = 1, 3, 5, 7, ... and m = 2, where D → yD:

yL(k,m)
d

dt
(yB(k,m) · yD(k,m)) · yU(k,m)

= +g · (yB(k,m) · yD(k,m)) · [yD(k,m− 1)− yD(k,m+ 1)]

+ (yB(k,m) · yD(k,m)) · yU(k,m) · [yU(k,m− 1)− yU(k,m+ 1)]

+yc(k,m) · xU(k − 1,m− 1) · [yU(k − 2,m− 2)− yU(k,m− 2)]

with

yc(k,m) =
yB(k,m) yD(k,m) yL(k,m)

xL(k − 1,m− 2)

or written in yQ, again for k = 1, 3, 5, 7, ... and m = 2, where D → yD::

yL(k,m)
d

dt
(yQ(k,m)) = +g · (yB(k,m) · yD(k,m)) · [yD(k,m− 1)− yD(k,m+ 1)]

+yQ(k,m) · [yU(k,m− 1)− yU(k,m+ 1)]

+yc(k,m) · xU(k − 1,m− 1) · [yU(k − 2,m− 2)− yU(k,m− 2)]

with

yc(k,m) =
yB(k,m) yD(k,m) yL(k,m)

xL(k − 1,m− 2)

Again the first and second terms are straightforward transposes from the longitudinal terms, and the
third term is the corresponding contribution from the momentum crossover flows.

Step 4

is the balance of volume flows for each cell in Fig.4.3. Its general form is, (see Fig.4.5):

d

dt
V = L ·B · d

dt
D =

∑
inflows in x- and y-dir.−

∑
outflows in x- and y-dir.

that is for the channel cells (k = 1, 3, 5, ... and m = 1)

d

dt
V (k,m) = xL(k,m) · xB(k,m) · d

dt
xD(k,m)

= [xQ(k − 1,m) + yQ(k,m− 1)]− [xQ(k + 1,m) + yQ(k,m+ 1)]

and for the foreland cells (k = 1, 3, 5, ... and m = 3)

d

dt
V (k,m) = yL(k,m) · yB(k,m) · d

dt
yD(k,m)

= [xQ(k − 1,m) + yQ(k,m− 1)]− [xQ(k + 1,m) + yQ(k,m+ 1)]

130

m=1
m+1m-1

k

k-1

k-2

longit.pflowpnode lateralpflowpnode

xQ_k+1,m

yQ_k,m+1

xQ_k-1,m

yD_k,m

m+2 = 3m+1m=1 m+3m-1

k

k-1

k-2

yQ_k,m-1

yD_k,m

xQ_k-1,m

yQ_k,m+1

k+2

yQ_k,m-1

k+1
xQ_k,m+n

volume/depthpnode

k+1

k+2

Figure 4.5: Volume balance cells with volume in- and outflows
(left) for the channel cell and
(right) for the foreland cell

Step 5

Bottom slopes:

- In the longitudinal direction of the channel, a fixed bottom slope at a typical value of I := 1.0 ·10−3

is assumed. It is applied to the foreland bottom as well, such that both run parallel downstream.

- A GMS friction coefficient with the typical value of ks := 31.6 is applied for both longitudinal and
lateral flow with individual parameters xks, yks. For convenience both are set to the same value in
the simulations: xks = yks = 31.6.

- Note that on the foreland the flow direction yQ may reverse. This must be taken into account in
the friction head loss and the momentum flow calculation, by replacing yQ ·yU → yQ ·abs(yU)
.
Given the input value xQ and the fixed xks · I1/2 := 1.0 establishes an equilibrium value for xD
by an implicit nonlinear equation (to be computed iteratively with iter4.sce, see the next section
‘implementation’).

- The shoulder height from channel bottom to foreland bottom is computed as follows:
For the given reference total flow value assume a given repartition of total flow between channel
flow and foreland longitudinal flow, say 50 : 50. Then compute the steady state water depths for
both channel and foreland areas at the inflow end, yielding xDr, yDr.
The shoulder height −∆S = Sr − ySr is then −∆S = xDr − yDr. This shoulder height is of course
kept constant for all other flow values.

- A laterally rising bottom slope Ilat is also introduced, in order to let the foreland dry out in a
reasonable time interval after the total flow falls below the threshold value. Its value is set to
Ilat := 1.0 · 10−3, again for convenience.

131

Step 6

Finally note that it saves significantly on model size, if the cell length yL in the foreland region is made
significantly larger than the channel width xB.
In order to investigate this consider the basic model from chapter 2 applied to the lateral direction. Then
the resonance period T r of the basic oscillation mode is compared to the echo travelling time T e of
the Froude wave as a function of the multiple n of length yL 3 of the foreland cell to the channel cell
xB := yL 1.

The resonance period is computed first, by taking the results from the section 2.2.1 ‘Linearized state
space form’:

The time constants in this model are, with n = 1, 2, 3, 4, 6, 8, 16, ...

T1 =
yL1

yU

T2 =
yL2 · yU
g · yD2

=
1 + n

2
· yL1 · yU
g · yD2

; where yL2 :=
1 + n

2
· yL1

T3 =
yL3

yU
=

n · yL1

yU

Then the resonance frequency is

(Ωr)
2 =

T1 + T3

T1 · T2 · T3
=

2

n
·
[
yUF
yL1

]2

where the Froude velocity yUF := g · yD2 has been inserted.

And the resonance period is

Tr = 2π · 1

Ωr
= 2π ·

√
n

2
· yL1

yUF

The echo travelling time is

Te =
2 · yLtotal
yUF

=
2 · (1 + n) · yL1

yUF

Finally the ratio of resonance period to echo travelling time is

Tr
Te

=
π√
2
·
√
n

1 + n

The table collects the numerical results for n = 1, 2, 3, 4, 6, 8, 16:

1 2 3 4 6 8 16
1.1107 1.0472 0.9253 0.8885 0.7773 0.6981 0.5226

Note that for n = 1, 2, 3, 4, the fit is acceptable for practical purposes, as the error of the approximation
is smaller than ±12%. But n > 4 should be avoided.
Also note that in such a reduced order approximation, the actual shape of the lateral swell or sunk wave
is lost. It will not be reproduced as well as with a higher order model on the lateral axis. But at least its
base frequency is reproduced fairly well ...
Finally note that the formula is symmetric in n → 1/n, which may be helpful in other cases.

132

4.3 Implementation

The implementation in scilab/xcos follows the same general pattern as in chapters 2 and 3, and thus
needs no further explanation.
However some small changes had to be made, mainly for easier implementation.

- The basic superblock from chaper 2 and 3 implements two equations, one for the dynamic volume
balance and one for the dynamic longitudinal momentum balance. This had to be split up into two
basic superblocks, one for each dynamic balance plus a third superblock for the lateral dynamic
momentum balance.

- The additional momentum crossflow implementations are inserted at the next level up, where all
lateral blocks m = 1, 2, 3 at one pair of longitudinal locations (for k − 1 and k) are assembled.

- The bottom shoulder from channel to foreland rises very steeply and not gradually as assumed in
chapters 2 and 3. Therefore in the first lateral momentum balance across the shoulder (m = 2), the
foreland bottom is virtually extended laterally at level yS r up to the cell border at m = 1. The
virtual depth there for the momentum balance is computed as follows:

xH(k, 1) = xD(k, 1) + S(k, 1)

yH(k, 1) = xH(k, 1)

yD(k, 1)virt = yH(k, 1)− yS(k, 2)

and yD(k, 1)virt ≥ 0.0

- Parameter numerical values are now transmitted from the context.sce-file by matrices aP (k,m)
instead of vectors aV (k). The needed parameter values are picked up by the individual lowest level
superblock by way of values for k and m inserted in its context.

- Finally note that for the lateral momentum balance k = 1, 3, 5, ... at m = 2 the lateral velocities
yU(k,m = 0) and yU(k,m = 4) are both zero due to the fixed (‘hard’) lateral cell borders.

All further details are to be found in the listings and diagrams.

Data

One motivation for this chapter has been a recent project)‘Hänggelgiesse’ on the ‘Linth’-channel in
eastern Switzerland, WGS 84 location: 47.17179, 0.01264). Therefore the main data have been taken
from there, and are given in the table below.

Q ref 360 m3/s
xL m=1 150 m
xB m=1 36 m

Ir 1.0 · 10−3 -
GMS xks = yks 31.6 -

where the Ir-value is used both for the channel and the foreland area and both in the longitudinal and
lateral directions.

133

4.4 Case A: The Channel and Floodplain case

4.4.1 Overview

The river geometry is illustrated in Fig.4.1.

Its cross section is asymmetric. It may be seen as one half of a symmetric one, which would be mirrored at
the left hand longitudinal plane. In the real world, such symmetric (or nearly symmetric) geometries are
much more frequent. However the motivation for this is a reduction of modelling effort and computation
time. But an extension to a symmetric geometry is straightforward.

The floodplain is also known as foreland. It is to be 4 times larger than the channel width. This may be
a bit small for real world situations, but from the previous section this is at the limit for an acceptable
approximation by a one compartment model. Again this is motivated by a reduction of modelling effort
and computation time.

Further the channel is to be deeper than the floodplain. For low flow (‘normal’) conditions the floodplain
will ‘fall dry’ and all flow will be through the channel. For increasing flow, the water will be flooding the
foreland again up to the longitudinal dam. – Thus ‘falling dry’ and ‘flooding’ will be interesting transient
situations for the simulation.

As a consequence both the longitudinal flow velocity according the the GMS-law and Froude’s velocity
will be greater in the channel than on the floodplain. Thus an increase of Q total will propagate faster
downstream. This will create a level difference from channel to floodplain. And this drives a lateral flow
from channel to floodplain. It will decay to zero when the new flow steady state regime is attained. This
effect will be larger for small water depth on the floodplain, that is just after flooding. – This transient
will be another interesting situation for the simulation.

The investigation will proceed as follows: The operating points and the associated boundary conditions
shall be given and discussed first. Then the model properties are discussed for the inflow area, the main
river part and the outflow area. Next the implementation in Scilab/Xcos is given, the simulation results
are presented, and discussed.

4.4.2 Operating Points

Case Specific Data

Q ref := Q r 360 m3/s
Q lowlow 40 m3/s

Q low 120 m3/s
Q highhigh 640 m3/s

yL m=2 90 m
xB m=3 144 m

longit. inclination -0.150 m per xL = 150 m
floodplain lateral inclin. +0.072 m per xB3/2 = 72m

Shoulder height ∆S r +1.5602 m
channel bottom S r -1.6322 m

foreland bottom yS r -0.072 m
Q flood/dry value 71.48 m3/s

channel depth D r 2.7832 m at channel flow 180m3/s
foreland depth yD r 1.2230 m at foreland flow 180m3/s

134

Comments

Note that this covers two typical cases of river flows. – The first one is a river used for barge navigation
with a dredged channel for seasonal low flow and a less deep area on both sides, which may be navigable
by smaller boats at medium to high flow. This is suggested by the Q r = 360 m3/s-selection. – The
second one would be a river with ‘normal’ flows at around 40 m3/s, subject to frequent ‘flash floods’ from
torrential rain, thundershowers, snow melt, etc., but with no upstream lake to buffer such large inflow
rises. Then the Q r = 360 m3/s-selection may indicate typical cases occurring several times a year, and
the Q r = 640 m3/s could be the maximum for dike dimensioning...

Here for the reference flow Q r the channel and floodplain depths are dimensioned such that the total
flow splits into 180 m3/s each. The calculation is performed with s c4 casA iter.sce:

// s_c4_caseA_iter.sce
// iteration for D_I
// Glf 15.12.2014

k_s = 31.6; I_r = 0.0010;

Q_I = 180.;
// Q_I = 71.48;

B_I = 36;
// B_I = 144;

// initialzing ’iteration loop’
D_I = 3.0;
Q = k_s*(B_I)*(D_I)*(D_I)^(2/3)*(I_r)^(1/2);
n = 1;

sw = %T;
// error feedback gain
gainQ = 0.01*(D_I/Q_I);

// iteration
while sw then

R_I = (B_I*D_I)/(B_I + 2*D_I);
Q = (k_s*(I_r)^(1/2)*B_I)*D_I*(R_I)^(2/3);
eQ = -Q_I + Q;
D_I = D_I - gainQ*eQ;
n = n + 1;
if eQ<-0.01 then sw =%T, elseif eQ>0.01 ...

then sw=%T, else sw =%F, end;
end

It can be used to determine the channel flow values at flooding and drying as well.

The Q-values in the table have been selected as follows:
Q = 360 m3/s as the initial value, then down to
Q = 40 m3/s to be at one ninth of the reference flow and well below the flooding/dryfall value,
Q = 120 m3/s to be above this value and at one third of Q r,
Q = 360 m3/s back to the reference value,
Q = 640 m3/s and finally to very high flow at 16 times the lowest value (compare also to sect. 3.5).

The flow changes are performed as a sequence of ramps with stops at the given values to wait for steady
state.
The ‘up’-ramp is set to +0.5 m3/s in 6 s, that is +50 m3/s in 10 minutes. In reality this would correspond
to a veritable ‘flash flood’ for the small changes, but may be much slower for the large changes.
And the ‘down ramp’ is set to −1 m3/s in 6 s, that is − 50 m3/s in 5 minutes. Note that this is about
a factor of 50...100 faster than in reality for the large down-ramps, but is realistic for small changes for
instance due to lock cycling.

135

4.4.3 Extensions to the Model

Inflow Area

Longitudinal flow change on both the channel and the floodplain must be simultaneous, in order to have
a clear inflow situation for studying the flow propagation downstream both longitudinally and laterally.
This can be obtained by inserting a hydropower station with weirs, turbines and possibly locks, and a tail
pool side by side to the upstream end of the main area model. The outflow of this tail pool is then split
to the channel and the floodplain by applying the GMS-law (see sect.2.6 and 3.1), with the common pool
level as input. And both longitudinal velocities need be evaluated as well for the momentum inflow to
the main area model. Finally the inflow to the tail pool is taken as Q total shaped by the ramp sequence
from above. Concerning the geometry of the tail pool, the overall width is set to xB 1 + xB 3 = 180m,
its length to xL = 150 m, and its bottom at S = − (1.6322 + 5.0) m. No bottom inclination and
no friction slope are introduced. Also no longitudinal or lateral momentum balances are included. These
assumptions are motivated by the larger depth of the pool.

Main Area

In the previous chapter the total length of the river flow was separated into twenty segments, each having
one integrator for the volume/depth variable and one integrator for the momentum/flow variable, plus one
outflow depth integrator, that is in all 41 integrators. Here a similar number of integrators is envisaged:
For each segment in length there are two integrators for level and three integrators for momentum/flow
(two longitudinal and one lateral) that is five integrators per segment. For eight segments, this would be
40 integrators.

Finally note that the lateral flow direction may reverse. Thus the expression for the friction head loss and
the momentum flow in the momentum/flow balance must be replaced by yQ·(yU) → (yQ)·abs(yU) to
produce the correct sign for both flow directions.

Outflow Area

In the outflow segment the two integrators for the longitudinal momentum/flow balances are replaced
by two algebraic blocks implementing the GMS-law for the outflows. However the two integrators for
volume/depth and one integrator for the lateral momentum/flow remain. The overall system length L tot
is 10 · 150 m = 1′500 m

With the 40 integrators for the main area plus one for the inflow pool level yields a grand total of 44
integrators.

136

4.4.4 Implementation

.zcos-Diagrams and -Superblocks

Figure 4.6: s c4 caseA.zcos. zcos-Diagram, top level,
grey: 8 main area segments, dark blue; outflow segment
light blue: power station tail pool, pink: total flow generator

137

Figure 4.7: s c4 caseA.zcos. first level down superblock
zcos-Diagram for one segment of main area
grey: superblocks for volume and flow balances, k, m-values are assigned in their contexts
green: momentum crossover longit. to lateral, greenblue: momentum crossover lateral to longit.

138

Figure 4.8: s c4 caseA.zcos. first level down superblock
zcos-Diagram for the power station tail pool,
pink: superblocks for the GMS-law

Figure 4.9: s c4 caseA.zcos. second level down superblockzcos-Diagram for volume/depth balance

Figure 4.10: s c4 caseA.zcos. third level down superblock
xcos-Diagram for calculating friction head loss in Fig.4.11
yellow: expression block for reverse flow yU2 → yU · abs(yU)

139

Figure 4.11: s c4 caseA.zcos. second level down superblock
zcos-Diagram for longitudinal (x; k) momentum/flow balance

140

Figure 4.12: s c4 caseA.zcos. second level down superblock
zcos-Diagram for lateral (y;m) momentum/flow balance

141

Figure 4.13: s c4 caseA.zcos. first level down superblock
zcos-Diagram for outflow segment
pink: superblock for the GMS-law; green: momentum crossover longit. to lateral

142

.sce-Listings

// s_c4_caseA_context
// Glf 2014.12.09
// no vertical dynamics
// wide channel; lateral dynamics
// Pool at inflow with GMS

g = 10.; L = 150.; kap = 0.5; // centered
xN = 8; // number of longit. segments
yN = 1; // lateral extension

// GMS-friction coefficient
xk_s = 31.6; // longit.
yk_s = 1.0*31.6; // lateral

xc3 = ((4*36.0*150.0)/(144.0));
yc2 = 0.*(150.0*144.0)/150.0;

// reference bottom slope
Q_r = 360.0; B_r = 36.0;
D_r1 = 2.7832; D_r3 =1.2230;
S_r = 1.6322*(-1.0); yS_r = 0.072*(-1.0);

I_r = 0.001;

D_min = +0.0000001; D_max = 40*D_r1;
Q_min = +0.0000001; Q_max = 40*Q_r;

// channel geometry
//*****************
// Basic layout longit.: constant width
vx = 1.0*ones(1,(2*xN+1)); vxB = (B_r*vx)’;
vy = 1.0*ones(1,(2*yN+1)); vyB = (L*vx)’;
aB = [vxB,vyB,4.0*vxB];
vxL=(L*vx)’; vyL1=(2.5*B_r*vx)’; vyL2=(4.0*B_r*vx)’;
aL = [vxL, vyL1,vxL];

// basic layout longit.: bottom ’horizontal’
vxS0 = (S_r)*vx’;
vyS1 = (yS_r+0.00)*vx’; vyS2 = (yS_r+0.072)*vx’;
aS0 = [vxS0, vyS1, vyS2];

vx1D0 = (D_r1*vx)’;
vy2D0=((D_r1+S_r)*vx)’-vyS1; vx3D0=((D_r1+S_r)*vx)’-vyS2;
aD0 = [vx1D0, vy2D0, vx3D0];

vx1Q0=(0.5*Q_r*vx)’; vyQ0=(Q_min*vx)’; vx3Q0=(0.5*Q_r*vx)’;
aQ0 = [vx1Q0, vyQ0, vx3Q0];

// Inflow data
B1_in = aB(1,1); B3_in = aB(1,3);
S1_in = aS0(1,1);S3_in = aS0(1,3);
D1_in = aD0(1,1);D3_in = aD0(1,3);
Q1_in = aQ0(1,1);Q3_in = aQ0(1,3);

// friction slope of the bottom vS
vS0 = S_r*ones(1,(2*xN+1));
vi0 = ones(1,(2*xN+1));
vdelSf = zeros(1,(2*xN+1));
vSf = +0.0*ones(1,(2*xN+1));

vS = ones(1,(2*xN+1));

for kk=2:2:(2*xN),
vI0(kk) = I_r*vi0(kk);
vdelSf(kk) = - L*vI0(kk);
vSf(kk) = vSf(kk-1) + 0.5*vdelSf(kk);
vSf(kk+1) = vSf(kk) + 0.5*vdelSf(kk);

end
for k4 = 1:1:(2*xN+1),

vS(k4) = vS0(k4) + vSf(k4);
end

aSf = [vSf’, vSf’, vSf’];
aS = aS0 + aSf;

// outflow data
x1B_o = aB(2*xN+1,1); x3B_o = aB(2*xN+1,2*yN+1);
x1S_o = aS(2*xN+1,1); x3S_o = aS(2*xN+1,2*yN+1);
x1D_o = aD0(2*xN+1,1); x3D_o = aD0(2*xN+1,2*yN+1);
x1Q_o = aQ0(2*xN+1,1); x3Q_o = aQ0(2*xN+1,2*yN+1);

// inflow pool
T_in = (B1_in+B3_in)*aL(1,1);
DelS_in = -5.0;
S_in = S_r + DelS_in; D0_in = D1_in - DelS_in;

xg_in = xk_s*((I_r)^(1/2));

//Q down to 40 m^3/s, stepwise up
dQ = 1.0;

t_st_1 = 1000.0;
r_1_0 = Q_r; r_1_1=(1.0-0.8888*dQ)*Q_r;

t_st_2 = 14000.0;
r_2_0 = 0.; r_2_1 = +0.2222*dQ*Q_r;

t_st_3 = 20000.0;
r_3_0 = 0.; r_3_1 = +0.6667*dQ*Q_r;

t_st_4 = 26000.0;
r_4_0 = 0.; r_4_1 = +0.7778*Q_r;

t_st_5 = 35000.0;
r_5_0 = 0.; r_5_1 = +0.0*Q_r;

t_st_6 = 35000.0;
r_6_0 = 0.; r_6_1 = +0.0*Q_r;

T_fin = 45000.0;

// inflow slew rate
g_st = 10.0; u_up_st = 0.250; u_dn_st = -0.5;
tau_st = 3.0; Q_st_0 = Q_r;

// channel outflow by GMS
xg_o = xk_s*((I_r)^(1/2));
yg_o = yk_s*((I_r)^(1/2));

// Data transfer to Plots
CN = 4500; // no of clockticks up to Tfin
delT = T_fin/CN; // intervall for clock ticks
AsizeD = 1.02*(19)*CN; // size of Data arrays
AsizeH = 1.02*(19)*CN;
AsizeQ = 1.02*(30)*CN;
AsizeF = 1.02*(26)*CN;

143

// s_c4_caseA_crunplot
// Glf 2014.12.09
// no vertical dynamics
// wide channel; lateral dynamics
// with pool at inflow

stacksize(’max’);exec(’s_c4_caseA_context.sce’, -1);
importXcosDiagram(’s_c4_caseA.zcos’);
typeof(scs_m); scs_m.props.context;
Info=list(); Info=scicos_simulate(scs_m,Info);
//**********************************

for kfig = 1:1:8, clf(kfig); end

vcolor18= [5, 1, 3, 2, 6,32, 9,11,13,15,...
17,19,21,22,25,27, 5, 1];

vcolor25= [5, 1, 3, 2, 6,32, 9,11,13,15,...
17,19,21,22,25, 5, 2, 3, 4, 6,...
32,19,21, 5, 1];

vcolor29= [5, 1, 3, 2, 6,32, 9,11,13,15,...
17,19,21,22,25, 5, 2, 3, 4, 6,...
32, 9,11,13,15,17,19, 5, 1];

// full view
T0 = 0.0; T4 = T_fin;

f1 = scf(1);
plot2d(Q.time,Q.values,vcolor29,rect=[T0,-50.0,T4,400.]);
legend("Q in,1","Q in,3",...
"Q 2,1","Q 1,2","Q 2,3","Q 4,1","Q 3,2","Q 4,3",...
"Q 6,1","Q 5,2","Q 6,3","Q 8,1","Q 7,2","Q 8,3",...
"Q 10,1","Q 9,2","Q 10,3","Q 12,1","Q 11,2","Q 12,3",...
"Q 14,1","Q 13,2","Q 14,3","Q 16,1","Q 15,2","Q 16,3",...
"Q out,1","Q 17,2","Q out,3",4);

xtitle("Q"); xgrid(1);

f2 = scf(2);
plot2d(D.time,D.values,vcolor18,rect=[T0,-0.5,T4,3.5]);
legend(...
"D 1,1","D 1,3","D 3,1","D 3,3","D 5,1","D 5,3",...
"D 7,1","D 7,3","D 9,1","D 9,3","D 11,1","D 11,3",...
"D 13,1","D 13,3","D 15,1","D 15,3","D 17,1","D 17,3",4);
xtitle("D"); xgrid(1);

f3 = scf(3);
plot2d(H.time,H.values,vcolor18,rect=[T0,-2.0,T4,2.0]);
legend(...
"H 1,1","H 1,3","H 3,1","H 3,3","H 5,1","H 5,3",...
"H 7,1","H 7,3","H 9,1","H 9,3","H 11,1","H 11,3",...
"H 13,1","H 13,3","H 15,1","H 15,3","H 17,1","H 17,3",4);
xtitle("H"); xgrid(1);

f4 = scf(4);
plot2d(F.time,F.values,vcolor25,rect=[T0,-0.30,T4,0.7]);
legend(...
"F 2,1","F 1,2","F 2,3","F 4,1","F 3,2","F 4,3",...
"F 6,1","F 5,2","F 6,3","F 8,1","F 7,2","F 8,3",...
"F 10,1","F 9,2","F 10,3","F 12,1","F 11,2","F 12,3",...
"F 14,1","F 13,2","F 14,3","F 16,1","F 15,2","F 16,3",...
"F 17,2", 4);
xtitle("F"); xgrid(1);

// Zoom-in on flooding of floodplain
T5 = t_st_2; T6 = t_st_3;

f5 = scf(5);
plot2d(Q.time,Q.values,vcolor29,rect=[T5,-5.0,T6,+5.0]);
legend("Q in,1","Q in,3",...
"Q 2,1","Q 1,2","Q 2,3","Q 4,1","Q 3,2","Q 4,3",...
"Q 6,1","Q 5,2","Q 6,3","Q 8,1","Q 7,2","Q 8,3",...
"Q 10,1","Q 9,2","Q 10,3","Q 12,1","Q 11,2","Q 12,3",...
"Q 14,1","Q 13,2","Q 14,3","Q 16,1","Q 15,2","Q 16,3",...
"Q out,1","Q 17,2","Q out,3",4);

xtitle("Q zoom-in"); xgrid(1);
//
f6 = scf(6);
plot2d(D.time,D.values,vcolor18,rect=[T5,-0.05,T6,0.35]);
legend(...
"D 1,1","D 1,3","D 3,1","D 3,3","D 5,1","D 5,3",...
"D 7,1","D 7,3","D 9,1","D 9,3","D 11,1","D 11,3",...
"D 13,1","D 13,3","D 15,1","D 15,3","D 17,1","D 17,3",4);
xtitle("D zoom-in"); xgrid(1);
//
f7 = scf(7);
plot2d(H.time,H.values,vcolor18,rect=[T5,-1.8,T6,0.40]);
legend(...
"H 1,1","H 1,3","H 3,1","H 3,3","H 5,1","H 5,3",...
"H 7,1","H 7,3","H 9,1","H 9,3","H 11,1","H 11,3",...
"H 13,1","H 13,3","H 15,1","H 15,3","H 17,1","H 17,3",4);
xtitle("H zoom-in"); xgrid(1);
//
f8 = scf(8);
plot2d(F.time,F.values,vcolor25,rect=[T5,-0.15,T6,0.55]);
legend(...
"F 2,1","F 1,2","F 2,3","F 4,1","F 3,2","F 4,3",...
"F 6,1","F 5,2","F 6,3","F 8,1","F 7,2","F 8,3",...
"F 10,1","F 9,2","F 10,3","F 12,1","F 11,2","F 12,3",...
"F 14,1","F 13,2","F 14,3","F 16,1","F 15,2","F 16,3",...
"F 17,2", 4);
xtitle("F zoom-in"); xgrid(1);

// longitudinal Q-profiles at steady state
vQ=Q.values(1395,:);
for k0 = 1:1:9,

k6 = 3*k0; k7 = k6+1; k8=k6+2;
vQ1(k0) = vQ(k6); vQ2(k0) = vQ(k7); vQ3(k0) = vQ(k8);

end
aQlp_040 = [vQ1,vQ2,vQ3];

vQ=Q.values(2600,:);
for k0 = 1:1:9,

k6 = 3*k0; k7 = k6+1; k8=k6+2;
vQ1(k0) = vQ(k6); vQ2(k0) = vQ(k7); vQ3(k0) = vQ(k8);

end
aQlp_360 = [vQ1,vQ2,vQ3];

vQ=Q.values(3500,:);
for k0 = 1:1:9,

k6 = 3*k0; k7 = k6+1; k8=k6+2;
vQ1(k0) = vQ(k6); vQ2(k0) = vQ(k7); vQ3(k0) = vQ(k8);

end
aQlp_640 = [vQ1,vQ2,vQ3];

3

3Here the simulation runtime is significantly longer than for the previous cases ...

144

4.4.5 Transients

Figure 4.14: s c4 caseA: flow variations

145

146

Figure 4.15: s c4 caseA, zoom-in on flooding of floodplain

147

148

Flow pattern at Q tot = 40, 360, 640m3/s

see in s c4 caseA crunplot.sce for aQlp xx

// s_c4_caseA_FlowPattern
// 2017_06_12 Glf

aQlp_40 =
k/m 1 2 3
2 40.03225 - 0.0000439 0.0014255
4 40.033372 - 0.0007975 0.0066071
6 40.036331 - 0.0024628 0.0145703
8 40.041551 - 0.0045047 0.0252585

10 40.05019 - 0.0076639 0.0367465
12 40.061405 - 0.0099636 0.0492359
14 40.076887 - 0.0139587 0.0610140
16 40.094247 - 0.0156300 0.0731332
18 40.116366 - 0.0203015 0.0829704

aQlp_360 =
k/m 1 2 3
2 180.01416 - 0.0044737 180.01613
4 180.01472 - 0.0035564 180.0082
6 180.01407 - 0.0028524 179.99952
8 180.01228 - 0.0021496 179.98995

10 180.00935 - 0.0013628 179.97956
12 180.00525 - 0.0004331 179.96852
14 179.99993 0.0006783 179.95717
16 179.99349 0.0018563 179.94591
18 179.97951 0.0096679 179.94187

aQlp_640 =
k/m 1 2 3
2 253.27887 - 0.0001957 386.76511
4 253.27887 - 0.0002096 386.76511
6 253.27887 - 0.0002164 386.7651
8 253.27886 - 0.0002157 386.7651

10 253.27886 - 0.0002085 386.76509
12 253.27886 - 0.0001951 386.76509
14 253.27886 - 0.0001755 386.76508
16 253.27885 - 0.0001504 386.76508
18 253.27885 - 0.0001162 386.76509

4.4.6 Discussion

The flow patterns for steady state at 40, 360, 640 m3/s show that the longitudinal flows are stable and
stay very close to the inflow values. And the lateral flows are very close to zero (|yQ k, 2| ≤ 0.01 m3/s).

During the ‘flooding’ transient from 40 m3/s → 120 m3/s, the lateral flow is |yQ k, 2|max ∼ 4 m3/s.
This is about 20 % of the floodplain longitudinal steady state flow (≈ 20 m3/s).
And the transient level differences driving these lateral flows are |∆H k, 2| ≤ 0.10 m.

The time to peak flow is ≈ 900 s and the settling time to steady state ≈ 3′600s.

The lateral flow distribution along the channel length in the lower and outflow areas is positive (from the
channel to the floodplain), as expected from the discussion above.
However in the inflow area in the first segment the flow is negative. This is due to the fact that here the
delay between channel and floodplain longitudinal flows is still small. Further the level in the channel is
still far below the flooding threshold and has to filled up first. This is clearly visible in the zoomed-in
transient of H k,m. – Thus both the level difference driving the lateral flow and the lateral flow itself
are negative.

The high flow zoom-in transients from 120 m3/s → 360 m3/s and from 360 m3/s → 640 m3/s are not
shown here for brevity. But the results shall be summarized briefly: The signs of the lateral flows are the
same as above. The lateral flows magnitude are |yQ k, 2|max ∼ 1 m3/s, and the driving level differences
are |∆H k,m| < 0.01 m. The settling time to steady state is ≈ 1′000s. – Thus the transients are smaller
and faster, due to the higher flow levels.

To summarize, the simulation model responds as expected.

149

Chapter 5

The Short Channel Model

5.1 Introduction

The main feature of such short and open-ended channels is that the water surface is no longer level
but is significantly inclined along the longitudinal axis x. And the inclination changes along x, that is
the level surface has a significant curvature. In other words the mass along the vertical axis z must be
accelerated to follow this curvature, and this needs changing the pressure p(x) at its bottom from the
purely hydrostatic one p(x) = ρ · g ·D(x) used up to now. Therefore this chapter will deal with added-on
‘vertical dynamics’.

This shall be done by investigating several specific situations which often arise in Hydro Plants.
But first the modelling and implementation of the basic “compartments element” shall be explained in
more detail in the next section. The main subject will be the spacial discretisation along the z− and the
x−axis. – The modelling of the boundary conditions both from the channel geometry and from the inflow
and the outflow will be done individually for each specific case.

The first situation is a “spillway”. It is typically used in Hydro plants to discharge large inflows to the
basin which exceed the flow through the turbines, in order to keep the basin level within bounds. It is
normally located at the dam crown and may be always open or be shut by a flap, which is lowered when
needed. Its outflow beyond the flap may proceed into a long channel or turn into a ‘free jet’ after the
channel bottom ends.
Within the context here it is a ‘short open ended channel’. Its geometry is an inlet confusor followed by
a constant width part with an essentially horizontal bottom. Flow velocity starts at a very low value at
the confusor inlet and accelerates up to near the Froude velocity UF for the end depth D.
Two different operational modes shall be investigated. The first one is with the exit flap. Initially it is
raised to a point where a small flow through the channel is maintained. The initial surface level is then
approx. equal to the basin level. Then the flap is slowly1 lowered to its fully open position which is lying
flat on the channel bottom. Normally the intake level is constant irrespective of the spillway flow, due
to the very large surface area of the forebay. Here this is modelled by inserting a PI-level-controller. Its
setpoint is fixed at such a value that the nominal discharge (125 m3/s, see further below) through the
spillway is reached. The results are the quasi-stationary length profiles of the main variables Q,D,H,F ,
vertical velocity W , and bottom pressure P .
Instead of P = ρ · P ∗ the variable ∆P ∗ = P ∗ − g ·D will be plotted both over time t and length x. This
variable shows the deviation of pressure from the hydrostatic one, and thus the additional effect of the
‘vertical dynamics’.
The second operational mode is modelled by keeping the flap fully open at all times and by letting the
forebay water level slowly rise at the confusor intake. This is done by continuously adjusting the inflow
to the confusor by applying again the addtitional level controller of PI-type. Its setpoint is ramped up
slowly from initially close above the flat part of the channel bottom to the same basin level as above.
Both operational modes are of equal importance for practical design. Therefore they are attributed a

1‘slowly’ as compared to the filling of the channel at full flow

150

separate case:

(1) The first case is to be the spillway with the slowly lowered outflow flap

(2) and the second case is the spillway with fully open flap and slowly rising forebay level.

(3) The third case is a so-called ‘dam break’. This is a (hopefully never to happen) situation often
investigated at the design stage for storage hydro plants. It is to estimate water levels and flows
(both peak values and time evolutions) at the critical location closely downstream of the dam.
This will be modelled by using the same model as above for the spillway. However the overall basin
length is increased to obtain a more realistic emptying time. Then the inflow is set to a very small
fraction of the design flow (Qr := 50 m3/s) and kept constant throughout the transient. Finally
the transient will be generated by lowering the ‘flap’ from above to fully open, but now ‘very fast’
in order to catch the maximum flow values.

(4) The fourth case is a so-called ‘surge wave’. This is a very dangerous situation in river beds used
as a bypass to a hydro power station. There the flow is very low in normal operation. Then the
spillways may be opened raidly due to a turbine trip. This will generate a surge wave in the river
bed. Also surge waves may be produced by sudden inflow increase due to torrential rain, or by
emptying of a temporary lake behind an ice barrier which suddenly collapses.
The similarity to the ‘dam break’ case is evident. However the focus is now shifted from the upstream
basin to the downstream channel. – The model for the first case is modified as follows: The length
of the individual compartments is kept short to get a good view on the surge wave front. Also
the outflow modelling is changed from the flap to a continuing open channel with GMS-friction.
Again the initial flow states are very small. Then the inflow is stepped up ‘very fast’ to the nominal
channel flow value (Qr = 50 m3/s).

In all four cases so far the inflow to the model is initially very low and thus also the initial Froude numbers
F at this location, 0 < F � 1.0. During the transients the peak Froude numbers at the channel end will
rise up to around 1.0. Thus the flow characteristics will change from low subcritical to around critical.
In contrast the next two cases will start initially from a supercritical flow Finit � 1.0. The flow is disturbed
in such a way that a ‘hydraulic jump’ appears, where the supercritical flow transits to a subcritical one
(Fend � 1.0). From observations on real hydro plants this transition zone is not very short (such as in
sonic shock fronts from supersonic aircraft) but may extend over a longitudinal distance of several times
the water depth Dend, and will show large and strong turbulence (‘rollers’).

(5) The fifth case is a ‘hydraulic jump at a weir’. This situation considers the flow under a weir at
low partial opening and a consecutive channel with essentially horizontal bottom.
From the high upstream water level this generates a relatively thin supercritical jet down near the
channel bottom where the weir opening is located.
Then the weir shall be moved up a small amount which results in a stepwise increase of jet flow.
And the outflow of the channel shall be kept constant at the initial inflow value (as a simple model
for e.g. turbine flow). This disturbance will result in a hydraulic jump which moves upstream with
constant but low speed. – Before the jump front reaches the weir position however, the weir shall
be moved down again to restore the initial inflow value. The hydraulic jump then stops moving and
will remain stationary at this longitudinal position.
Thus the hydraulic jump is generated by a flow disturbance and persists after the flow disturbance
is no longer there. In other words the supercritical flow regime is at an unstable equilibrium, while
the supercritical-hydraulic jump-subcritical regime is a stable equilibrium.

(6) And the sixth case is a ‘hydraulic jump at a low dam’. This situation considers a dam with
overfall and a slope on the downstream side (see also subsect.3.7.3), such that the overfall flow will
cling to the sloped backside surface and accelerate to a supercritical velocity. The flow depth shall
be such that no travelling waves are observed 2.
About halfway along the total channel length the bottom shall flatten out into being essentially
horizontal. This geometric disturbance will generate a stationary hydraulic jump, but only for

2which are visible at very low flow, that is in a thin water layer

151

intermediate flow conditions. At low flows the jump will be very small and barely noticeable. And
for very high flow the dam will be ‘flooded’ or ‘submerged’ and the typical hydraulic jump is no
longer visible.

Again the simulation results on the dynamic model are expected to reproduce these general observations
on real hydro installations. Also a reasonable approximation for the overall length of the transition zone
would be nice to have. More cannot be expected, as the large scale turbulence in this zone would clearly
need much more than one single compartment in the vertical direction (see next section).

5.2 Modelling

The focus is on the two compartment case, which is the building block for higher order models required
for longer channels.

The starting point is (as in Chap.2 and 4) the ‘Reynolds Averaged Navier Stokes Equations’, with the
independent variables t and x (longitudinal) and z (vertical), while y (lateral) is omitted. The dependent
variables are u (longit. velocity), w (vertical velocity) and p is the local pressure, fluid density is ρ
and . . . indicate the eddy viscosity terms.

momentum balances
∂u

∂t
+
∂(uu)

∂x
+
∂(uw)

∂z
= −1

ρ

∂p

∂x
+ ...

∂w

∂t
+
∂(uw)

∂x
+
∂(ww)

∂z
= −1

ρ

∂p

∂z
− g + ...

volume balance
∂u

∂x
+
∂w

∂z
= 0

for w = ws along the surface contour h(t, x) ws =
∂h

∂t
+ us · ∂h

∂x

and for w = wb along the bottom contour s(t, x) wb =
∂s

∂t
+ ub · ∂s

∂x

and as the bottom is fixed in time
∂s

∂t
= 0 → wb = u · ∂s

∂x

Step 1

As in chap.4 the product rule is applied to the spacial derivatives in the momentum equations. Then the
volume equation is used in the same way as in chap.4, which finally leads to the following momentum
equations

∂u

∂t
+ u · ∂u

∂x
+ w · ∂u

∂z
= −1

ρ

∂p

∂x
+ ...

∂w

∂t
+ w · ∂w

∂z
+ u · ∂w

∂x
= −1

ρ

∂p

∂z
− g + ...

152

Step 2

The next step is to move to spacial discretisation. Along the x-axis the index is again k, and i in the
z-direction.
So far the momentum balance compartment in the x-direction has not been separated vertically into
more than one layer. Being consistent to the models from chap.2 would mean that this assumption of
one layer should be carried over to here. As a direct consequence, the momentum compartment in the
z-direction should also not be divided into more than one consecutive compartments, that is it consist of
just one balance for i := 1.
This also means that the representative longitudinal velocity U (representative values are denoted by
capital letters in the following) is no longer a function of z, but constant on z:

∂U

∂z
:= 0

And this implies that vertical cross-sections stay vertical along x.
Further the vertical velocity function w(z) is replaced by one representative vertical velocity W .

The representative values of the variables are chosen by the “finite volume” method ([3]) rather than the
“finite element” method. This means that values at the interior of the element, at or very near its center
of gravity, are used rather than the values on the surfaces of the element.
Specifically for the vertical velocity there are two boundary values, ws at the surface and wb at the
bottom, which are not the same in the general case3. The value of w(z) is assumed to be linear between
wb and ws, that is

w(z) = wb +
ws − wb

D
· z = wb + ζ · z for z = 0...D

which defines ζ.
The representative value for the vertical velocity W at location x is calculated using the mean value
of the vertical momentum content as follows

I(x) =

∫ D

0

w(z)dm = ρLB

∫ D

0

w(z)dz

= ρLB

[
wb
∫ D

0

dz + ζ

∫ D

0

zdz

]

= ρLB

[
wb ·D + ζ · 1

2
D2

]
= ρLBD

[
wb +

1

2

(
ws − wb

)]
= ρLBD

[
1

2

(
ws + wb

)]
= ρLBD ·W (x) with W (x) :=

1

2

(
ws + wb

)
where the representative value W (x) is the arithmetic mean of ws(x) and wb(x).

And by discretising at x-location k and using the main variable D instead of H:

Wk =
1

2

[
W s
k +W b

k

]
=

1

2

[
dHk

dt
+ Uk−1

(
Hk −Hk−2

Lk

)
+ Uk−1

(
Sk − Sk−2

Lk

)]
=

1

2

[
dDk

dt
+
Uk−1

Lk
[(Dk + 2Sk)− (Dk−2 + 2Sk−2)]

]
where dSk/dt := 0 is assumed.

3They are only equal for steady state flow in a constant cross section channel with constant bottom inclination just
compensating the friction slope.

153

Using the finite volume [3] approach, the representative value of the vertical momentum flow is

Wk · |Wk|

This is to be the outflow term in the vertical momentum flow balance. And the inflow term there is set
to

W b
k · |W b

k | with W b
k =

1

2
Uk−1

sk − sk−2

Lk

For the local pressure p a slightly different approach is used. The modelling in chap.2 has implicitly
used the hydrostatic pressure at the bottom to calculate the longitudinal pressure force. To be consistent
with this, the bottom pressure P is used here as well for the representative value. This is also the pressure
which keeps the water column above it in place or lets it move up or down along the streamline trajectory.
And it is further assumed that the pressure decreases linearly along z to zero at the surface.
Using

p∗ :=
1

ρ
· p

this means
∂p∗

∂z

∣∣∣∣∣
k

→ − P ∗k
Dk

Step 3

Starting with the volume balance centered around the x-axis location at k with

∂u

∂x

∣∣∣∣∣
k

→ 1

Lk
· (Uk+1 − Uk−1) and

∂w

∂z

∣∣∣∣∣
k

→ 1

Dk
·
(
W s −W b

) ∣∣∣∣∣
k

Volume balance

0 =
1

Lk
(Uk+1 − Uk−1) +

1

Dk

(
W s
k −W b

k

)
= Dk (Uk+1 − Uk−1) + Lk

(
W s
k −W b

k

)
= Dk (Uk+1 − Uk−1) + Lk

[
d

dt
Hk + Uk ·

1

Lk
((Hk+1 −Hk−1)− (Sk+1 − Sk−1))

]
that is

Lk ·
d

dt
Hk = −Dk (Uk+1 − Uk−1)− Uk · (Dk+1 −Dk−1)

Using linear interpolation

Dk =
1

2
[Dk+1 +Dk−1] ; Uk =

1

2
[Uk+1 + Uk−1]

and inserting yields after a short calculation

Lk ·
d

dt
Hk = +Dk−1 · Uk−1 −Dk+1 · Uk+1

Introducing a constant channel width Bk−1 = Bk = Bk+1 gives

BkLk
d

dt
Hk = +Bk−1Dk−1 · Uk−1 −Bk+1Dk+1 · Uk+1

or finally in the form used in the previous chapters

d

dt
Vk = Qk−1 −Qk+1

where d/dt(S) := 0 is used and D, H and both Q’s are directly such representative values taken at the
center of the corresponding balance compartment (namely k for volume and k − 1, k + 1 for flows).

154

Step 4

Then for the vertical momentum balance

d

dt
Wk +

Wk · |Wk| −W b
k · |W b

k |
Dk

+ Uk−1 ·
Wk −Wk−2

Lk
=

P ∗k
Dk

− g

or Dk
d

dt
Wk +

[
Wk · |Wk| −W b

k · |W b
k |
]

+ Uk−1
Dk

Lk
[Wk −Wk−2] = P ∗k − gDk

or by inserting Bk then

BkDkLk
d

dt
Wk + BkLk

[
Wk · |Wk| −W b

k · |W b
k |
]

+ BkDkUk−1 ·(Wk −Wk−2) := BkLk [P ∗k − g ·Dk]

where

BkDkLk = Vk is the volumetric (‘mass’) content

BkLkWk = zQk−1 is the volumetric (‘mass’) vertical flow

BkDkUk−1 ≈ xQk−1 is the volumetric (‘mass’) longitudinal flow, and

BkLk [P ∗k − g ·Dk] is the resulting vertical ‘pressure’ force

That is

Vk
d

dt
Wk := BkLk [P ∗k − gDk] + xQk−1 [Wk−2 −Wk] + zQk

[
W s
k −W b

k

]
Step 5

And for the longitudinal momentum balance starting from

∂u

∂t
+ u · ∂(u)

∂x
= −1

ρ

∂p

∂x

discretising at location k + 1 on the x-axis

d

dt
Uk+1 = −1

2

P ∗k+2 − P ∗k
Lk+1

− Uk+1 ·
(Uk−1 − Uk+1)

Lk+1

where the pressure derivative is taken ‘centered’ and the velocity derivative taken ‘upstream’, such that
both directly use the representative variables.
Going to pressure forces and momentum flows on the mass element

Vk+1
d

dt
Uk+1 = Bk+1

[
1

2

(
P ∗kDk − P ∗k+2Dk+2

)
+

1

2

(
P ∗k + P ∗k+2

)
(Sk − Sk+2)

]
...

+Bk+1Dk+1Uk+1 [Uk−1 − Uk+1]

or Lk+1
d

dt
Qk+1 = Bk+1

[
1

2

(
P ∗kDk − P ∗k+2Dk+2

)
+

1

2

(
P ∗k + P ∗k+2

)
(Sk − Sk+2)

]
...

+Qk+1 [Uk−1 − Uk+1]

where for j = 1, 3

Uk−j =
Qk−j

Bk−j ·Dk−j
≈ Qk−j

Bk−j ·Dk−j−1

again by using the upstream representative variable Dk−j−1 instead of Dk−j .

To simplify matters further, the product Qk+1Uk−1 is replaced by Qk−1Uk−1. This introduces a (small)
error in the transient but not in steady state, where Q is constant along the channel.
Then finally

Lk+1
d

dt
Qk+1 = Bk+1

[
1

2

(
P ∗kDk+1 − P ∗k+2Dk+1

)]
+

+Bk+1

[
1

2

(
P ∗k + P ∗k+2

)
(Sk − Sk+2)

]
+

+

[
Q2
k−1

Bk−1Dk−2
−

Q2
k+1

Bk+1Dk

]

155

Now if the ‘no curvature’ case (see below) is considered, that is P ∗j := gDj for j = k, k + 2 then

Lk+1
d

dt
Qk+1 = gBk+1Dk+1 [(Dk −Dk+2) + (Sk − Sk+2)] +

[
Q2
k−1

Bk−1Dk−2
−

Q2
k+1

Bk+1Dk

]
= gBk+1Dk+1 [(Hk −Hk+2)] +

[
Q2
k−1

Bk−1Dk−2
−

Q2
k+1

Bk+1Dk

]
as in the previous chapters.

Step 6 Discussion:

The influence of the flow line ‘curvature’ (its spacial second derivative) on the pressure P ∗ will be
investigated.
Steady state flow is assumed in the vertical momentum balance, with dHk/dt = 0. Linking the vertical
velocity to surface and bottom geometry

Wk =
1

2

[
Uk−1

Hk −Hk−2

Lk
− Uk−1

Sk − Sk−2

Lk

]

and Wk−2 =
1

2

[
Uk−3

Hk−2 −Hk−4

Lk−2
− Uk−3

Sk−2 − Sk−4

Lk−2

]
Setting Lk = Lk−2 = L

2L

Uk−1
(Wk −Wk−2) = (Hk −Hk − 2)− Uk−3

Uk−1
(Hk−2 −Hk−4) · · ·

− (Sk − Sk−2) +
Uk−3

Uk−1
(Sk−2 − Sk−4)

For small longitudinal velocity variations Uk−3 := Uk−1 = U

1

L
(Wk −Wk−2) → 1

2
U

[
Hk − 2Hk−2 +Hk−4

L2
− Sk − 2Sk−2 + Sk−4

L2

]

=
1

2
U

[
Dk − 2Dk−2 +Dk−4

L2

]
where in the first equation the first term is the ‘curvature’ (the second spacial derivative) of the surface
contour Hk−j and the second is the curvature of the bottom contour. In the second equation this is
collected into the curvature of depth Dk−j .
If the depth is constant, then Uk−1 = Uk−3, the second derivative is zero and the pressure tends to be
equal to the hydrostatic one.

A more general result for the influence of Wk −Wk−2 of P ∗k can be obtained by starting from

1

L
(Wk −Wk−2) =

1

2

1

L2
[Uk−1 (Dk −Dk−2)− Uk−3 (Dk−2 −Dk−4)]

after some algebra this leads to

1

L
(Wk −Wk−2) =

1

2

Q

BL2

[
DkDk−4 −D2

k−2

DkDk−2

]
Setting now Dk−2 to the arithmetic mean of Dk, Dk−4, that is straight but convergent flow lines, then

1

L
(Wk −Wk−2) =

1

2

Q

BL2
· 1

4
[Dk−4 −Dk]

2 6= 0

Thus for convergent flow lines, Dk−4 > Dk, the pressure P ∗k gets augmented to accelerate the flow.

156

Step 7 Preparing the Implementation

The starting point is the set of three differential equations, the first one for volume (that is state variable
D) at compartment positions k, k−2, ..., the second for vertical momentum (for W) at the same positions,
and the third for longitudinal momentum (that is Q,U) at positions k − 1, k + 1,

LkBk
d

dt
Dk = Qk−1 − Qk+1

LkBkDk
d

dt
Wk = BkLk [P ∗k − gDk] +Qk−1 [Wk−2 −Wk] +BkLk

[
W b
k · |W b

k | −Wk · |Wk|
]

Lk+1
d

dt
Qk+1 = Bk+1

[
1

2

(
P ∗kDk+1 − P ∗k+2Dk+1

)
+

1

2

(
P ∗k + P ∗k+2

)
(Sk − Sk+2)

]
...

+

[
Q2
k−1

Bk−1Dk−2
−

Q2
k+1

Bk+1Dk

]
There are four unknown variables, D,W,Q, P ∗. Thus one further equation is needed. This is the algebraic
equation which links W to the bottom contour S(x) and the surface/level contour H(x), see also [4].

Wk :=
1

2

[
d

dt
Hk + Uk−1

Hk −Hk−2

Lk
+ Uk−1

Sk − Sk−2

Lk

]
with Hk := Dk + Sk

finally Wk :=
1

2

[
d

dt
Dk + Uk−1

(Dk + 2Sk)− (Dk−2 + 2Sk−2)

Lk

]
And H is produced by the volume balance equation for D and the geometric relation Hk := Dk + Sk.
Also note that the time derivative of H need not be obtained by differentiation, but can be picked up at
the input to the integrator for D (as the bottom contour is not time-varying).
In other words W is not really a free variable, but is ‘forced’ by these geometric boundary conditions.

As Wk is thus given, then P ∗k can be obtained from the vertical momentum equation:

P ∗k = Dk ·
[
d

dt
Wk +

1

Dk

[
Wk · |Wk| −W b

k · |W b
k |
]

+ Uk−1
Wk −Wk−2

Lk
+ g

]
Note that the time derivative of W must be obtained by differentiation. This shall be implemented by
a high pass filter of first order GF (s). It is created by a feedback loop with forward gain ω and integral
unity feedback 1/s:

GF (s) =
ω

1 + ω 1
s

= s · 1

1 + s
ω

with filter break frequency ω to be selected sufficiently above the highest harmonic of the longitudinal
dynamics (see further below).

- Then P ∗k ist introduced into the longitudinal momentum equation, producing Qk+1.
- This Qk+1 is then entered into the volume balance equation, to produce Dk and further also Uk+1

- and next into the geometric condition for Wk

- and last into the vertical momentum balance equation for P ∗k .
- Putting this again into the longitudinal volume balance produces a correction on dQk+1/dt
and then on Qk+1, etc.

This iteration loop is handed over to the integration method/subroutines of the simulation pack-
age.

Step 8 Implementation of the Basic Element for k, k + 1

The diagram Fig.5.1 shows how the ‘Basic Element’ is implemented in scilab/xcos. This will serve as
the building block to assemble the channel model of 41th order, and thus produce the main superblock.
The inflow and outflow generating blocks for the different case studies given in the introduction will be
specified and added to this main superblock in the corresponding sections in the *.zcos-diagrams.
There all parameter values will be given as well in the associated * *.sce-file pairs.

157

Figure 5.1: For s c5 0∗ ∗.zcos ‘Basic Element’, xcos-Diagram, bottom level,
red: longitudinal momentum balance for Q, light blue: volume balance for D, H
violet: W - and W b -generators, yellow: time derivative of W green: P ∗-generator

158

5.3 spillway cases: common material

First a ‘basic result’ shall be presented for steady state flow conditions and at the outflow with fully
opened flap.
Then the common data set for both cases shall be given.

5.3.1 The ‘basic result’

The spillway of Fig.5.2 consists of two elements, the confusor part between locations 0 to 1 and the
horizontal part between locations 1 to 2 with constant cross section. The channel width in the confusor
part is strongly decreasing B 0� B 1 = B 2 similar to the bottom contour |S 0| � |S 1|.
The aim is to find H2 such that the outflow Q2 is at its maximum.

H_0

H_1 H_2

U_0 U_1 U_2

Q_0 Q_1 Q_2

S_0

Figure 5.2: lateral view of the spillway

Then applying Bernoulli’s law to the confusor part, and neglecting friction losses:

1

2
U2

0 + gH0 =
1

2
U2

1 + gH1 → U1 =
√

2g (H0 −H1)

as U0 → 0 due to the large inflow cross section B0(H0 − S0)

and to the second part with constant cross section, no friction and horizontal bottom

1

2
U1

0 + gH1 =
1

2
U2

2 + gH2 → U1 = U2; H1 = H2

Now the outflow is

Q2 = Q1 = B1D1U1 = B1H1U1 = B1H1

√
2g (H0 −H1)

= B1H0

√
2gH0 ·

(
H1

H0

)√
1−

(
H1

H0

)
= c · x ·

√
1− x

or (Q1)2 = c2 · x2 (1− x) = c2 ·
(
x2 − x3

)
For extremal Q1(x) set:

d

dx
(Q1)2 := 0 = c2

(
2x− 3x2

)
as c2 6= 0

0 = x · (2− 3x) for x = 0 → minimum Q

and for x =
2

3
→ maximum Q

159

Then

H1 =
2

3
H0 that is H0 −H1 =

1

3
H0

or H0 =
3

2
H1 that is H0 −H1 =

1

2
H1

That is

U1max =
√

2g(H0 −H1) =

√
2g

1

2
H1 =

√
gH1

!
= U1Froude

Note that this provides no information about the length of the acceleration zone from location 0 to
location 1. From observation however this distance is about 4 to 5 times the final depth D 2 (which is
here equal to H 1)

5.3.2 Common Data Sets

Basic geometry and flows

Qr = 50 m3/s

Br = 10 m

Hr = +2.5 m

Sr = −0.0 m

Ur = 2.0 m/s

→ Dr = 2.5 m

→ UF = 5.0 m/s and QF = 125 m3/s

→ H0 = 1.50 ∗ 2.5 m = 3.75 m

GMS-friction coefficient ks = 100.

Compartment length L

Inserting the total length for the acceleration phase at 4 · Dr :≈ 10m and letting this to be half of the
total length for the 40 interleaved compartments yields Ltot = 20 m and thus

Lr := 1.0 m

Thus for the acceleration phase there are 10 interpolation points for H or depth D and 10 such points
for flow Q and Froude number F .

To investigate the influence of the Lr-value selection on the longitudinal profiles of D,H and Q,F , two
adjacent values for L are prepared at 0.80 Lr = 0.8 m and at 1.25 Lr = 1.25 m.

confusor geometry contour

The procedure for generating the contour is based on the investigation in chapter 2 where the main
parameters were ∆B/B = const and ∆S/S = const. This produces exponential contours. Further from
chapter 2 the parameter values should not be larger than ≈ 0.20.
Simulations have shown however that this simple procedure needs to be refined: There is a non-smooth
transition of the longitudinal derivative of F from the constant cross section part to such a confusor part.
This is improved by letting the increments ∆B/B,∆S/S = const increase linearly over a given longitu-
dinal distance from zero to its final constant value.

Further simulations have shown that this discontinuity can be reduced to a small enough value by trim-
ming the parameters as follows:

160

- For the reference case L = Lr = 1.0 m the constant increments ∆Bk/Bk,∆Sk/Sk are set to 0.122
for the first 2.0 m of length, and then linearly decreased to zero for the next 4.0 m, that is for an
overall length of 6 m or 30% of the total length of 20 m from above.
Thus the index of arrays vB(k), vS(k) for the constant increment part runs from 1 to 4. and for
the linearly decreasing increment part runs from 5 to 12.

This results at the inflow location a width B in ≈ 24 m and bottom position S in = −1.4 m. Adding
the level at the inflow location ≈ 1.5 ∗ 2.5 = 3.75 m yields an inflow depth D in ≈ 5.15 m and thus an
inflow cross section area A in ≈ 123.6 m2. And this leads to an inflow velocity at full flow Q = 125 m3/s
of U in ≈ 1.0 m/s or 20% of outflow velocity UF .
Further this leads to an additional level decrease ∆H [in] from U in = 0 (an infinitely large upstream
reservoir as assumed for the basic Euler result from above)

∆Hin = U2
in/(2 · g) ≈ 0.050 m or ≈ 4 % of the total level difference from inflow to outflow

Thus the deviation from the basic Euler case is small enough to be neglected. Therefore no wider inflow
width B in and inflow bottom position S in are considered.

Finally the simulations have shown that the contour thus generated should be independent of the current
compartment length L. This has been achieved here by trimming the increment value and the lengths for
constant and linearly decreasing increments as follows:

- for 0.80 Lr the constant increment is set to := 0.100 over length index 1 to 6 and linearly decreasing
over length index 7 to 16, that is an overall length 16 ∗ 0.40 m = 6.4 m.

- and for 1.25 Lr the constant increment is set to := 0.144 over length index 1 to 3 and linearly
decreasing over length index 4 to 9, that is an overall length of 5.625 m.

Note that the integer nature of the index does not let to achieve exactly the same contour for all three cases
within the given length of 6 m. This would require a confusor length of 10 m. However the simulations
again have shown that this is too long compared to the finite overall model length, especially so for short
values of Lr ≤ 0.80 m where the overall model length is 16 m . . .

This procedure is implemented in the contour.sce-file, and the resulting contours are documented in
Fig.5.3.

Filtered derivative, ome

The reference for selecting the bandwidth ome for the filter is the typical frequency of the highest
resonance mode ω:

ω =

√
2gDtyp

L2

Let Dtyp := 3.20 m and L := 0.80 m, then ω = 10 [rad/s] and thus

ome := 10 · ω = 100 [rad/s]

Designing the Level Controller gains gQ i and T Q i

The inflow Q in is rising with approx 1.0 m3/s from near zero to full flow Q = 125 m3/s, that is in about
2 minutes.
The design proceeds in three steps. First the integral action gain is designed to provide a small enough
steady state error along the flow ramp up. Then the proportional gain is determined to give reasonable
closed loop dynamics. Finally the result is checked for the actual plant dynamics.

161

Figure 5.3: Width contour B and bottom contour S for the three cases of Lr

1. With a steady state control error e at the input to the integral action the output rising given is
attained by

dQ in

dt
:= 1.0 = e · 1

T Q i

Thus setting T Q i := 0.010 yields e := 0.01 [m] = 1 [cm]

2. The ‘plant’ dynamics is assumed to be of first order open integrator type with time constant T in
(this is checked in the third step below), where

T in =
Lr
U in

:= 1.0 [s]

using Lr = 1.0 m and U in = 1.0 [m/s] from the inlet confusor geometry design above. then from
the standard closed loop pole placement procedure at Ω and 2 ζ

1

T Q i
= Ω2 · T in → Ω = 10

gQ i = 2 · ζ · Ω · T in → gQ i ≈ 20

162

3. In fact the ‘plant’ is of third order (see chapter 2).
However the gain gQ i is high, which reduces the time constant of the first volume integrator from
T 1 = 1.0 s to T 1 → 1/20 s.
Also the resonance frequency (see chapter 2) increases to

ω =

√
T1 + T3

T1T2T3
→ ω′ ≈ 4.5 · ω = 36 [rad/s]

Thus both the first volume dynamics (T1) and the momentum dynamics (ω′) can be considered as
‘may be neglected’ and the second volume dynamic is dominant. In other words the ‘plant’ can be
approximated as one open integrator (this is valid for low enough frequencies only).

Note that this is a very approximative design, as the Ω = 10 [rad/s]-value from step 2 is not that far
from the ‘neglected’ dynamics at 20 [rad/s] and 36 [rad/s].

163

5.4 Case 1: Spillway with slowly lowered outflow flap

5.4.1 Modeling and Data set

Inflow

As mentioned above the inflow level is set to H in = 1.50 · 2.50 [m] = 3.75 [m]

Outflow

The outflow flap width covers the full channel width, B K := B o.

The overfall function Q o (∆dH o) with dH o = H o−Y K, where Y K is the position of the tip of the
flap, is

if dH o ≤ 0 , then Q o = 0.0

if dH o > 0 , then Q o = B o · dH o ·
√
g · dH o = gQ K · dH o1.5

with gQ K := B o · g0.5

and where finally H o will be replaced by D o, and Y o is measured from the bottom position S o up.

The initial tip flap position will be chosen for the simulations such that the initial outflow is about
Q o 0 = 5 m3/s.

dH o =

[
Q o 0

µ B o ·
√

2 g

]2/3

with µ = (2/3)

The interest here is on the quasi stationary response from the ‘Basic Result’ above. Therefore the flap
shall move slowly and with no discontinuities on its slew rate.

This is implemented as in Fig.5.4 by a servo loop with a proportional controller. (Note that ON-OFF-
valves are used in most applications).
To avoid sloshing transients the flap position setpoint is ramped down at a slew saturation of 30 s per
1 m that is 120 s for 4 m from fully up/closed to fully down/open. This is slow enough compared to the
overall filling time T f = L tot / Ur = 10s. And the position control loop inserts an additional first order
filter with time constant 10 s.

5.4.2 Implementation of Case 1

Figure 5.4: Outflow flap position control loop

164

Figure 5.5: Main diagram for Case 1: Spillway with Inflow level control and outflow flap position control

165

// s_c5_01_b_context.sce
// Glf 2015_08_11
// outflow flap lowering
// Inflow with PI-LevelContr

g = 10.; Q_0 = 50.0; H_0 = 2.5; kap = 1.0;

lambda0 = 0.40;
//******************
// lambda = (1.25)*lambda0;

lambda = (1.00)*lambda0;
// lambda = (0.80)*lambda0;
// lambda = (0.64)*lambda0;
//******************
L = lambda*H_0; S_0 = 0.0*(-1.0);
D_0 = H_0 - S_0; B_0 = 10.; U_0 = 2.0;
U_F = sqrt(g*D_0);

N= 20; // no of Vol+Momentum-Segments

// channel inlet geometry
vb_1 = ones(1,((2*N)+1)); vb_2 = vb_1;
vs_1 = vb_1; vs_2 = vs_1;

if lambda == (1.25)*lambda0 then
ik_E = 3; ik_R = 6; delta_b = 0.144;
elseif lambda == 1.0*lambda0 then
ik_E = 4; ik_R = 8; delta_b = 0.122;
elseif lambda == 0.80*lambda0 then
ik_E = 6; ik_R = 10; delta_b = 0.100;
else
ik_E = 8; ik_R = 12; delta_b = 0.089;
end
//***************************************

ik_T = ik_E + ik_R;
vib = ones(1,ik_T);
vd_b = ik_R*ones(1,(ik_T));
for ii = 1:ik_R
vd_b(ii) = ii;

end
vd_b = delta_b*vd_b/ik_R;
vincr_b = vib + vd_b;

for ij = 1:(ik_T)
vib(ij+1) = vib(ij)*vincr_b(ij);

end

vb_0 = vib(ik_T);
vb = vb_0*ones(1,ik_T);

for ijk = 1:ik_T
nijk = ik_T+1 - ijk;
nvib(nijk) = vib(ijk);

end

for k8 = 1:ik_T
vb_2(k8) = nvib(k8);
vs_2(k8) = nvib(k8);

end

vb_2 = vb_2 - vb_1;
vB = B_0*(lambda*H_0*vb_2 + vb_1);

vs_2 = vs_2 - vs_1;
vS = -(lambda*H_0*vs_2);

// setting initial conditions
//***************************************
D_min = +0.001; D_max = 40*D_0;
Q_min = +0.001; Q_max = 40*Q_0;

h0 = 1.52; vh0 = ones(1,(2*N+1));
vH0 = h0*H_0*vh0; vD0 = vH0 - vS;

q0 = 0.060; vq0 = ones(1,(2*N+1));
vQ0 = q0*Q_0*vq0;

vDdot0 = 0*vh0; ome = 100;
P_max = 100.0; P_min = 0.0;

// Inflow-(_i) boundary cond.
B_in = vB(1) + (vB(1) - vB(2))*(1+delta_b);
S_in = vS(1) + (vS(1) - vS(2))*(1+delta_b);
D_in = vH0(1) - S_in; Q_in = vQ0(1);

// GMS-coefficient
k_s = 100.;

// Friction-inclination of bottom
vD_E = H_0*vh0; vQ_E = U_F*B_0*H_0*vq0;

vdelSf = zeros(1,(2*N+1));
vSf = zeros(1,(2*N+1));
for kk=2:2:(2*N),

vRtilda(kk) = ((vB(kk)*vD_E(kk))/ ...
(vB(kk)+2*vD_E(kk)))^(2/3);

vI_E(kk) = (vQ_E(kk)/(vB(kk)* ...
vD_E(kk)*k_s*vRtilda(kk)))^2;

vdelSf(kk) = - L*vI_E(kk);
vSf(kk) = vSf(kk-1) + 0.5*vdelSf(kk);
vSf(kk+1) = vSf(kk) + 0.5*vdelSf(kk);

end
for k4= 1:1:(2*N+1),

vS(k4) = vS(k4) + vSf(k4);
vH0(k4) = vH0(k4) + vSf(k4);
vD0(k4) = vH0(k4) - vS(k4);

end

// outflow-(_o) boundary cond
B_o = vB(kk+1);
S_o = vS(kk+1);
D_o = vD0(kk+1); H_o = vH0(kk+1);
Q_o = vQ0(kk+1);

// inflow PI - level controller
gQ_i = 20.; T_Q_i = 0.01; rD_i = vD0(1) ;

// outflow by flap
dH_o = (Q_o/(((2*g)^0.5)*(2/3)*B_o))^(2/3);
t_f_1 = 75.; f_1_0 = D_o - dH_o; f_1_1 = S_o;
g_f = 10.0; u_up_f = +1.0; u_dn_f = -1.0;
tau_f = 30.0; K_f_0 = f_1_0;
gQ_K = B_o*((g)^(0.5));
delQ_o = ((dH_o^(1.5))*gQ_K); // for checking

T_fin = 300.;

// Datatransfer to Plots
CC = 21; // no of channels 20+1 for time
CN = 3000; // no of clockticks to Tfin
delT = T_fin/CN; // readout-interval clock ticks
Asize = 1.01*CC*CN; // size of data arrays

166

// s_c5_01_b_crunplot
// Glf 2015_04_27

stacksize(’max’); exec(’s_c5_01_b_context.sce’,-1);
importXcosDiagram(’s_c5_01_b.zcos’);
typeof(scs_m); scs_m.props.context;
Info = list(); Info = scicos_simulate(scs_m,Info);
//**********************************

for kfig = 1:1:11, clf(kfig); end

vcolor = [5, 2, 3, 4, 1, 6, 9,11,13,15,...
17,19,21,22,25,27,29,32, 2, 5];

f1 = scf(1);
plot2d(Q.time,Q.values,vcolor,...

rect=[0.,0.0,300,150.]);
xtitle("Q_2 to Q_40");
xgrid(1);

f2 = scf(2);
plot2d(D.time,D.values,vcolor,...

rect=[0.,2.0,300,5.5]);
xtitle("D_1 to D_39");
xgrid(1);

f3 = scf(3);
plot2d(H.time,H.values,vcolor,...

rect=[0.,2.0,300,4.0]);
xtitle("H_1 to H_39");
xgrid(1);

f4 = scf(4);
plot2d(F.time,F.values,vcolor,...

rect=[0.,0.0,300,1.2]);
xtitle("F_2 to F_40");
xgrid(1);

f5 = scf(5);
plot2d(W.time,W.values,vcolor,...

rect=[0.,-1.0,300,+1.0]);
xtitle("W_1 to W_39");
xgrid(1);

f6 = scf(6);
plot2d(P.time,(P.values-g*D.values),vcolor,...

rect=[0.,-5.0,300,5.0]);
xtitle("deltaP*_1 to deltaP*_39");
xgrid(1);

//**

eX = H_0*lambda*(1:1:N); eXend = 22;
for k6= 1:1:N,

vSr(k6) = vS(2*k6-1);
end

vcolor=[2,5];

f7 = scf(7);
clf();
yD =D.values;
iD = yD(700,:); oD = yD(2900,:);
iH = iD + vSr’; oH = oD + vSr’;
plot2d(eX’,[iH’,oH’],vcolor,rect=[0.,2.0,eXend,+4.0]);
xtitle("Longit.Profile H at 70 s (bl) and 290 s (rd)");
xgrid(1);
//
f8 = scf(8);
clf();
yF =F.values;
iF = yF(700,:); oF = yF(2900,:);
plot2d(eX’,[iF’,oF’],vcolor,rect=[0.,0.0,eXend,+1.2]);
xtitle("Longit.Profile F at 70 s (bl) and 290 s (rd)");
xgrid(1);
//
f9 = scf(9);
clf();
yW =W.values;
iW = yW(700,:); oW = yW(2900,:);
plot2d(eX’,[iW’,oW’],vcolor,rect=[0.,-1.0,eXend,+1.0]);
xtitle("Longit.Profile W at 70 s (bl) and 290 s (rd)");
xgrid(1);
//
f10 = scf(10);
clf();
yP =P.values;
iP = yP(700,:)-g*yD(700,:); oP = yP(2900,:)-g*yD(2900,:);
plot2d(eX’,[iP’,oP’],vcolor,rect=[0.,-5.0,eXend,+5.0]);
xtitle("Longit.Profile (P*-gD) at 70s (bl) and 290s (rd)");
xgrid(1);
//
f11 = scf(11);
clf();
eY = 0.5*H_0*lambda*(1:1:(2*N)+1);
plot2d(eY’,[0.1*vB’,vS’],vcolor,rect=[0.,-3.0,eXend,+3.0]);
xtitle("Longit.Channel Geometry,0.1*B(x) (bl), S(x) (rd)");
xgrid(1);

// for assembling logitudinal contours
if lambda == (1.25)*lambda0 then

ac_125 = [eY’,[0.1*vB’,vS’]];
aH_125 = [eX’,oH’]; aF_125 = [eX’,oF’];

elseif lambda == 1.0*lambda0 then
ac_100 = [eY’,[0.1*vB’,vS’]];
aH_100 = [eX’,oH’]; aF_100 = [eX’,oF’];

elseif lambda == 0.80*lambda0 then
ac_080 = [eY’,[0.1*vB’,vS’]];
aH_080 = [eX’,oH’]; aF_080 = [eX’,oF’];

else
ac_064 = [eY’,[0.1*vB’,vS’]];
aH_064 = [eX’,oH’]; aF_064 = [eX’,oF’];

end

// s_c5_01_b_contassemb
// Glf 2015_08_11

for kfig = 12:1:16, clf(kfig); end
eXend = 30;

vcolor3 = [2, 5, 1, 13];
vcolor4 = [2, 5, 1, 13, 2, 5, 1, 13];

f12 = scf(12);
plot2d([ac_125(:,1),ac_100(:,1),ac_080(:,1),ac_064(:,1),...
ac_125(:,1),ac_100(:,1),ac_080(:,1),ac_064(:,1)],...

[ac_125(:,2),ac_100(:,2),ac_080(:,2),ac_064(:,2) ...
ac_125(:,3),ac_100(:,3),ac_080(:,3),ac_064(:,3)],...

vcolor4,rect=[0.,-2.0,eXend,+3.0]);
xtitle("geometry contour 0.1*B and S");
legend("L = 1.25 m","1.00 m","0.80 m", "0.64 m",...

"L = 1.25 m","1.00 m","0.80 m", "0.64 m")

xgrid(1);

f13 = scf(13);
plot2d([aH_125(:,1),aH_100(:,1),aH_080(:,1),aH_064(:,1)],...
[aH_125(:,2),aH_100(:,2),aH_080(:,2),aH_064(:,2)],...
vcolor3,rect=[0.,2.0,eXend,+4.0]);
xtitle(" contours H");
legend("L = 1.25 m","1.00 m","0.80 m", "0.64 m")
xgrid(1);

f14 = scf(14);
plot2d([aF_125(:,1),aF_100(:,1),aF_080(:,1),aF_064(:,1)],...
[aF_125(:,2),aF_100(:,2),aF_080(:,2),aF_064(:,2)],...
vcolor3,rect=[0.,0.0,eXend,+1.2]);
xtitle(" contours F");
legend("L = 1.25 m","1.00 m","0.80 m", "0.64 m")
xgrid(1);

167

5.4.3 Simulation overview for Case 1

Three different situations will be investigated by applying their respective parameter sets.

1. The first situation is generated by the nominal parameter set: E for end / outflow values

H E = H 0 = 2.50 m

S E = 0.0 m

D E = 2.50 m → U F = 5.0 m/s

λ0 = 0.40 and λ = (1.00) · λ0

→ L = 1.0 m given by L = λ ·H0

→ Q E = 125 m3/s

Transients are given for vQ(t), vD(t), vH(t), F (t), W (t), ∆P ∗(t). in the time window t = 0...300 s
and longitudinal profiles over x for vH(x), vF (x), vW (x), ∆P ∗(x) for two time instants, after
stabilizing at low initial flow t = 70 s, and after stabilizing at full flow t = 290 s.

2. The second situation is for testing different compartment lengths L, to check whether the nominal
value of L is a ‘good enough’ choice.
All other variables are carried over from situation 1. Four values for L are entered:

L = 1.25, 1.00, 0.80, 0.64 m

This covers a spread of factor ≈ 2 and includes the nominal value. The effect of the value of L is
shown by assembling the longitudinal profiles of vH(x) and vF (x) in one plot each.

3. The third situation (with the triplet s c5 01 c) is a variation of the nominal depth D E at the
outflow end

D E = H 0 = 3.60, 2.50, 1.60 m

again covering a spread of ≈ 2 and including the nominal value.
This generates

U F E = 6.0, 5.0, 4.0 m/s

Q E = 216, 125, 64 m3/s

The compartment length is set to the same relation L = 1.00 · λ0 ·H 0 as in the nominal case. In
other words L varies proportionally to H 0. This keeps the geometry of the compartments affine in
the lateral plane.
Also the inclination of the bottom is adjusted to the value pairs of U F E, D E with constant
GMS coefficient k s = 100.
The longitudinal profiles of vH(x) and vF (x) are plotted both in absolute values and on scaled
values:

on the x-axis xscaled :=
U Fnom
U Factual

· xactual

=

√
D Enom
D Eactual

· xactual; with factors

[√
2.50

3.60
,

√
2.50

2.50
,

√
2.50

1.60

]

on the y-axis for H Hscaled :=
D Enom
D Eactual

·Hactual; with factors

[
2.50

3.60
,

2.50

2.50
,

2.50

1.60

]
on the y-axis for F Fscaled := Factual; no scaling required

168

5.4.4 Case 1: Simulation results for the reference parameter set

Figure 5.6: C 1: Transient Q for L = 1 [m]

Figure 5.7: C 1: Transient D for L = 1 [m]

169

Figure 5.8: C 1: Transient H for L = 1 [m]

Figure 5.9: C 1: Transient F for L = 1 [m]

170

Figure 5.10: C 1: Transient W for L = 1 [m]

Figure 5.11: C 1: Transient P ∗ − gD for L = 1 [m]

171

Longitudinal profiles at time 290 s

Figure 5.12: C 1: Profile for H for L = 1 [m]

Figure 5.13: C 1: Profile for F for L = 1 [m]

172

Figure 5.14: C 1: Profile for W for L = 1 [m]

Figure 5.15: C 1: Profile for P ∗ − gD for L = 1 [m]

173

5.4.5 Testing for different compartment lengths L = 1.25, 1.00, 0.80, 0.64 m :
Assembly of longitudinal profiles of H and F at time 290 s

// s_c5_01_b_contassemb
// Glf 2015_08_11

for kfig = 12:1:16, clf(kfig); end
eXend = 30;

vcolor3 = [2, 5, 1, 13];
vcolor4 = [2, 5, 1, 13, 2, 5, 1, 13];

f12 = scf(12);
plot2d([ac_125(:,1),ac_100(:,1),ac_080(:,1),ac_064(:,1),...
ac_125(:,1),ac_100(:,1),ac_080(:,1),ac_064(:,1)],...

[ac_125(:,2),ac_100(:,2),ac_080(:,2),ac_064(:,2) ...
ac_125(:,3),ac_100(:,3),ac_080(:,3),ac_064(:,3)],...

vcolor4,rect=[0.,-2.0,eXend,+3.0]);
xtitle("geometry contour 0.1*B and S");
legend("L = 1.25 m","1.00 m","0.80 m", "0.64 m",...

"L = 1.25 m","1.00 m","0.80 m", "0.64 m")

xgrid(1);

f13 = scf(13);
plot2d([aH_125(:,1),aH_100(:,1),aH_080(:,1),aH_064(:,1)],...
[aH_125(:,2),aH_100(:,2),aH_080(:,2),aH_064(:,2)],...
vcolor3,rect=[0.,2.0,eXend,+4.0]);
xtitle(" contours H");
legend("L = 1.25 m","1.00 m","0.80 m", "0.64 m")
xgrid(1);

f14 = scf(14);
plot2d([aF_125(:,1),aF_100(:,1),aF_080(:,1),aF_064(:,1)],...
[aF_125(:,2),aF_100(:,2),aF_080(:,2),aF_064(:,2)],...
vcolor3,rect=[0.,0.0,eXend,+1.2]);
xtitle(" contours F");
legend("L = 1.25 m","1.00 m","0.80 m", "0.64 m")
xgrid(1);

Figure 5.16: C 1: Assembly of Geometry Profiles for 0.1 ·B and S

174

Figure 5.17: C 1: Assembly of Profiles for H

Figure 5.18: C 1: Assembly of Profiles for F

175

5.4.6 Variation of outflow level HE = 3.60, 2.50, 1.60 m
and corresponding flow Q = 216, 125, 64 m3/s

The main diagram s c5 01 c.zcos is renamed from s c5 01 b.zcos without changes.

// s_c5_01_c_context.sce
// Glf 2015_08_11
// outflow flap lowering
// Inflow with PI-LevelContr

g = 10.; Q_0 = 50.0;

//H_0 = 3.6;
//H_0 = 2.5;

H_0 = 1.6;
//******************

lambda0 = 0.40; kap = 1.0;
//******************
//lambda = (1.25)*lambda0;

lambda = (1.00)*lambda0;
//lambda = (0.80)*lambda0;
//lambda = (0.64)*lambda0;
//******************
L = lambda*H_0;
S_0 = 0.0*(-1.0);
D_0 = H_0 - S_0;
B_0 = 10.;
U_0 = 2.0;
U_F = sqrt(g*H_0);

N= 20; // no of Vol+Momentum-Segments

// channel inlet geometry
//***

vb_1 = ones(1,((2*N)+1)); vb_2 = vb_1;
vs_1 = vb_1; vs_2 = vs_1;

if H_0 == 3.60 then
ik_E = 3; ik_R = 6; delta_b = 0.144;
elseif H_0 == 2.50 then
ik_E = 4; ik_R = 8; delta_b = 0.122;
else
ik_E = 6; ik_R = 10; delta_b = 0.100;
end
//***************************************

ik_T = ik_E + ik_R;
vib = ones(1,ik_T);
vd_b = ik_R*ones(1,(ik_T));
for ii = 1:ik_R,
vd_b(ii) = ii ;

end
vd_b = delta_b*vd_b/ik_R;
vincr_b = vib + vd_b;

for ij = 1:(ik_T),
vib(ij+1) = vib(ij)*vincr_b(ij);

end

vb_0 = vib(ik_T);
vb = vb_0*ones(1,ik_T);

for ijk = 1:ik_T,
nijk = ik_T+1 - ijk;
nvib(nijk) = vib(ijk);

end

for k8 = 1:ik_T,
vb_2(k8) = nvib(k8);
vs_2(k8) = nvib(k8);

end

vb_2 = vb_2 - vb_1;
vB = B_0*(lambda*H_0*vb_2 + vb_1);

vs_2 = vs_2 - vs_1;
vS = -(lambda*H_0*vs_2);

// setting initial conditions
//**
D_min = +0.001; D_max = 40*D_0;
Q_min = +0.001; Q_max = 40*Q_0;

h0 = 1.52;
vh0 = ones(1,(2*N+1));
vH0 = h0*H_0*vh0;
vD0 = vH0 - vS;

q0 = 0.060;
vq0 = ones(1,(2*N+1));
vQ0 = q0*Q_0*vq0;

vDdot0 = 0*vh0; ome = 100;
P_max = 100.0; P_min = 0.0;

// Inflow-(_i) boundary cond.
B_in = vB(1) + (vB(1) - vB(2))*(1+delta_b);
S_in = vS(1) + (vS(1) - vS(2))*(1+delta_b);
D_in = vH0(1) - S_in;
Q_in = vQ0(1);

// GMS-coefficient
k_s = 100.;

// Friction-inclination of bottom
vD_E = H_0*vh0; vQ_E = U_F*B_0*H_0*vq0;
vdelSf = zeros(1,(2*N+1)); vSf = zeros(1,(2*N+1));
vRtilda = vdelSf; vI_E = vSf;
for kk=2:2:(2*N),

vRtilda(kk) = ((vB(kk)*vD_E(kk))/ ...
(vB(kk)+2*vD_E(kk)))^(2/3);

vI_E(kk) = (vQ_E(kk)/(vB(kk)* ...
vD_E(kk)*k_s*vRtilda(kk)))^2;

vdelSf(kk) = - L*vI_E(kk);
vSf(kk) = vSf(kk-1) + 0.5*vdelSf(kk);
vSf(kk+1) = vSf(kk) + 0.5*vdelSf(kk);

end
for k4= 1:1:(2*N+1),

vS(k4) = vS(k4) + vSf(k4);
vH0(k4) = vH0(k4) + vSf(k4);
vD0(k4) = vH0(k4) - vS(k4);

end

// outflow-(_o) boundary cond
B_o = vB(kk+1); S_o = vS(kk+1);
D_o = vD0(kk+1); H_o = vH0(kk+1);
Q_o = vQ0(kk+1);

// inflow PI - level controller
gQ_i = 30.; T_Q_i = 0.01; rD_i = vD0(1);

// outflow by flap
dH_o = (Q_o/(((2*g)^0.5)*(2/3)*B_o))^(2/3);
t_f_1 = 45.; f_1_0 = D_o - dH_o; f_1_1 = S_o;
g_f = 10.0; u_up_f = +1.0; u_dn_f = -1.0;
tau_f = 30.0; K_f_0 = f_1_0;
gQ_K = B_o*((g)^(0.5));
delQ_o = ((dH_o^(1.5))*gQ_K); // for checking

T_fin = 300.;

// Datatransfer to Plots
CC = 21; // no of channels 20+1 for time
CN = 300; // no of clockticks to Tfin
delT = T_fin/CN; // readout-interval clock ticks
Asize = 1.01*CC*CN; // size of data arrays

176

// s_c5_01_c_contassemb
// Glf 2015_08_11

for kfig = 12:1:14, clf(kfig); end
eXend = 30;

vcolor3 = [2, 5, 1];
vcolor4 = [2, 5, 1, 2, 5, 1];

f12 = scf(12);
plot2d([ac_360(:,1),ac_250(:,1),ac_160(:,1), ...

ac_360(:,1),ac_250(:,1),ac_160(:,1)],...
[ac_360(:,2),ac_250(:,2),ac_160(:,2), ...
ac_360(:,3),ac_250(:,3),ac_160(:,3)],...
vcolor4,rect=[0.,-2.0,eXend,+3.0]);

xtitle("geometry contour 0.1*B and S");
legend("H_0 = 3.60 m","2.50 m","1.60 m", ...

"H_0 = 3.60 m","2.50 m","1.60 m")
xgrid(1);

f13 = scf(13);
plot2d([aH_360(:,1),aH_250(:,1),aH_160(:,1)],...

[aH_360(:,2),aH_250(:,2),aH_160(:,2)],...
vcolor3,rect=[0.,1.0,eXend,+6.0]);

xtitle(" contours H");
legend("H_0 = 3.60 m","2.50 m","1.60 m")
xgrid(1);
legend("H_0 = 3.60 m","2.50 m","1.60 m")
xgrid(1);

f16 = scf(16);
plot2d([aF_360(:,1),aF_250(:,1),aF_160(:,1)],...

[aF_360(:,2),aF_250(:,2),aF_160(:,2)],...
vcolor3,rect=[0.,0.0,eXend,+1.2]);

xtitle(" contours F");
legend("H_0 = 3.60 m","2.50 m","1.60 m")
xgrid(1);

Figure 5.19: C 1: Assembly of Geometry Profiles for 0.1 ·B and S

177

Figure 5.20: C 1: Assembly of Profiles for H

Figure 5.21: C 1: Assembly of Profiles for F

178

Assemblies with scaling factors applied

// s_c5_01_c_contassemb_scaled
// Glf 2015_08_12

for kfig = 15:1:16, clf(kfig); end
eXend = 30;

vcolor3 = [2, 5, 1];

f15 = scf(15);
plot2d([aH_360(:,1)*sqrt(2.5/3.6),aH_250(:,1), ...

aH_160(:,1)*sqrt(2.5/1.6)],...
[aH_360(:,2)*(2.5/3.6),aH_250(:,2), ...
aH_160(:,2)*(2.5/1.6)],...
vcolor3,rect=[0.,2.0,eXend,+4.0]);

xtitle(" contours H, scaled");
legend("H_0 = 3.60 m","2.50 m","1.60 m")
xgrid(1);

f16 = scf(16);
plot2d([aF_360(:,1)*sqrt(2.5/3.6),aF_250(:,1), ...

aF_160(:,1)*sqrt(2.5/1.6)],...
[aF_360(:,2),aF_250(:,2),aF_160(:,2)],...
vcolor3,rect=[0.,0.0,eXend,+1.2]);

xtitle(" contours F, scaled");
legend("H_0 = 3.60 m","2.50 m","1.60 m")
xgrid(1);

Figure 5.22: C 1: Assembly of scaled Profiles for H (top) and F (bottom)

179

5.4.7 Discussion for Case 1

Transients for the nominal parameter set

B,S The channel geometry is extended backwards to B in = 26.84 m,S in = −1.684 m, using the
generating rule (see context.sce), but not plotted. Thus the inflow cross section is B inD in ≈
148 m2, that is ≈ 6 times the outflow cross section, and thus U in ≈ 0.85 m/s and further ∆H in =
Hinf −H in ≈ 0.036 m.

Q The final flow turns out to be ≈ 125 m3/s, as expected.
The initial flow is set to ≈ 5 m3/s. However the bottom slope is set to full flow at the outflow
location. This causes a small settling transient.

D,H The inflow level H in is set to 1.52 ·H 0 = 3.80m that is +0.05 m. The bottom level at the outflow
location is at S E = −0.022 m. At full flow both H o and D o are ≈ 0.05 m below 2.50 m.

F Initially F starts at ≈ 0.01 and rises to slightly above 1.0 at full flow.

W and

∆P ∗ Both are initially very small and decay back to near zero for steady state full flow.
Values in between are difficult to distinguish. - This has been the main motivation to implement
the longitudinal plots.

Note that the movement of the outflow flap is slow enough to avoid sloshing.

Longitudinal profiles for the nominal parameter set

H There is a smooth descent along the x-axis from H in = 3.8 m to H end,

F and a smooth rise of F from the inflow value ≈ 0.17 to its outflow value ≈ 1.017. Note the small
overshoot at downstream position 16 m up to 1.025 The small bump at 6 m is from the end of the
confusor part.

W At the inflow W is positive (≈ +0.25 m/s) due to the rising bottom profile S. W starts to descend
at 3 m, and crosses zero at ≈ 5 m. This is due to the superposition of vertical velocities at the
bottom and the surface. At position 8 m W attains its minimum (≈ −0.40 m/s) and then decays
slowly to zero at the outflow location.

∆P ∗ starts from near zero at the inflow location, drops to −2.0 units at location 6 m (the end of the
confusor zone), crosses zero at 8 m, rises to +1.0 units at location 10 m, and decays to zero at the
outflow. - Note that the corresponding hydrostatic pressure would be around 30 units, that is the
deviations of P ∗ are −6%,+3%. - Both W and its spacial derivative ∆P ∗ are ‘smooth enough’ for
practical purposes. And this confirms that the model length 40 + 1 compartments is adequate for
this type of flow regimes in ‘short channels’.

Note how informative the longitudinal profiles are. For this reason they will be shown and discussed
exclusively for the next situations.

Longitudinal profiles for different compartment lengths L at nominal conditions

B,S This is shown to illustrate that the channel contours are the same for all four cases of L. The end
of the confusor zone is at position 6 m. The plot starts at vB(1), vS(1), not B in, S in.

H The traces for all four cases of L are close together from the inflow position up to location 8 m
at H ≈ 2.9 m. Then they start to spread out on an interval of ≈ ±0.05 m, but end at the same
level H E ≈ 2.43 m. The slowest decay is for L = 1.25 m, and the fastest for L = 0.64 m. For the
shortest L the final state on H is clearly not yet attained: the model length of 40 + 1 compartments
would have to be increased . . .

180

F mirrors the same form. There is an overshoot of ≈ +0.025 in all cases of L. The end point overshoot
F E is nearly the same for all L, (at ≈ +0.017).

To summarize L = 1.0 m = 0.40 ·H 0 seems to be a ‘good enough’ compromise between model length /
complexity / computation runtime and results being close to experimental findings.

Longitudinal profiles for different levels D E = H 0, absolute axes

For page layout reasons the · · · .sce files are placed just after the three plots. The full outflow values are
not shown in plots, but are given here: for D E = [3.60, 1.60 m] then Q E ≈

[
220, 66 m3/s

]
.

B,S Fig.5.19 shows the channel contours for the three subcases of D E’s and associated L’s, again
starting from vB(1), vS(1). No effort has been made to produce the same contours.

H The profiles are as expected. For the subcase D E = 3.60 m the final H E ≈ 3.50 m. Part of the
deviation is due to the higher friction slope of the bottom.

F Again the profiles are as expected. The maximum overshoot on F is now ≈ +0.035 decaying to
≈ +0.020 at the outflow location.

Longitudinal profiles for different levels D E = H 0, scaled axes

The idea here is to check if there are possibly some similarity laws (?)
As mentioned above, tentatively, the x-axis is scaled by the basic Froude velocity U F E , and the z-axis
for H is scaled by the outflow depth D E. On the z-axis for F obviously no scaling needs to be applied.

H Up to position 10 the traces are bundled within ≈ ±0.05 m. Again there is a divergence when
approaching the outflow position. There is a distinct undershoot down to −0.10 units, below the
target at 2.5 units. This is more pronounced for the larger full flow for D E = 3.60 m.

F This is mirrored for F . Traces stay close together up to position 6 m, then diverge to a band of
±0.05. Then there is an overshoot of F to a maximum of +0.035...+ 0.016 for the largest/smallest
D E subcases, and then decaying to +0.020...+ 0.015.

So one may tentatively deduce from the experimental results that this scaling is indeed valid, and points
to similarity properties. Of course this is a conjecture and no mathematical proof.

181

5.5 Case 2: Spillway with slowly rising forebay level H in(t)

5.5.1 Modeling and Data

The focus here shall be on the elements which are really new. Thus data shall be carried over from case 1
as far as feasible. This concerns the reference data for flow and depth, the channel geometry, the friction
and the resulting bottom slope.

inflow boundary

The inflow level is not constant as in case 1, but moves up from a low initial value up to the value linked
to full flow. The initial level is selected at H = 0.80 m such that a steady state flow Q ≈ 12 m3/s results
that is approx 10 % of full flow. The final value is set as in case 1 at H = 3.80 m which has lead to
Q = 125 m3/s in case 1.
In order to conserve the same flow pattern over the run-up experiment, no lower initial flow level is
attempted here, as this would lead to drying out of the channel and subsequent flooding of the channel
which much higher Froude numbers.
The run-up is planned to take approx 100 s, which is much faster than in most practical applications.
The setpoint ramp is filtered by a first order lag to suppress any sloshing.
Finally the level controller from case 1 with its parameter settings is carried over for tracking the rising
forebay level setpoint by providing the necessary inflow to it.

outflow boundary

The outflow boundary condition is generated here by the GMS law, using the bottom slope I from case
1. It has been determined for D E = 2.5 m and Q E = 125 m3/s, which implies the Froude condition at
this operating point.
Next the case of much lower flow is investigated. As a first approximation, assume that the Froude
condition is still valid. Then for Q = 12 m3/s and B = 10 m

Q = B
√
g ·D3/2 → D =

[
Q

B
√
g

]2/3

and numerically D = D o = 0.524 m; and H in = 1.5 ∗D o = 0.790 m

Applying the GMS-rule

U = k sR2/3I1/2 with R =
BD

B + 2D
= D

1

1 + (2D/B)

with F =
U√
gD

both to the full flow case f and the partial flow case p using I p := I f yields

F p

F f
=

(
R p

R f

)2/3

·
(
D f

D p

)1/2

=

(
D p

D f

)1/6

·
(

1 + (2D f/B)

1 + (2D p/B)

)2/3

=

(
0.524

2.50

)1/6

·
(

(1 + 0.50)

1 + 1.105

)2/3

= 0.945

which is approx. 5 % below the Froude condition F = 1. This is to be checked with the simulation results.

182

5.5.2 Implementation of Case 2

Figure 5.23: Main diagram for Case 2: Spillway with rising inflow level and outflow flap position fully
open

183

// s_c5_02_b_context.sce
// Glf 2015_04_27
// outflow GMS
// Inflow with PI-LevelContr, setpoint ramp-up

g = 10.; Q_0 = 50.0; H_0 = 2.5;

lambda0 = 0.40; kap = 1.0;
//******************
//lambda = (1.25)*lambda0;

lambda = (1.00)*lambda0;
//lambda = (0.80)*lambda0;
//lambda = (0.64)*lambda0;
//lambda = (0.50)*lambda0;
//******************
L = lambda*H_0;
S_0 = 0.0*(-1.0);
D_0 = H_0 - S_0;
B_0 = 10.;
U_0 = 2.0;
U_F = 5.0;

N= 20; // no of Vol+Momentum-Segments

// channel inlet geometry
//***
vb_1 = ones(1,((2*N)+1)); vb_2 = vb_1;
vs_1 = vb_1; vs_2 = vs_1;

if lambda == (1.25)*lambda0 then
ik_E = 3; ik_R = 6; delta_b = 0.144;
elseif lambda == 1.0*lambda0 then
ik_E = 4; ik_R = 8; delta_b = 0.122;
elseif lambda == 0.80*lambda0 then
ik_E = 6; ik_R = 10; delta_b = 0.100;
elseif lambda == 0.64*lambda0 then
ik_E = 8; ik_R = 12; delta_b = 0.089;
else
ik_E = 10; ik_R = 16; delta_b = 0.079;
end
//***************************************

ik_T = ik_E + ik_R;
vib = ones(1,ik_T);
vd_b = ik_R*ones(1,(ik_T));
for ii = 1:ik_R
vd_b(ii) = ii;

end
vd_b = delta_b*vd_b/ik_R;
vincr_b = vib + vd_b;

for ij = 1:(ik_T)
vib(ij+1) = vib(ij)*vincr_b(ij);

end

vb_0 = vib(ik_T);
vb = vb_0*ones(1,ik_T);

for ijk = 1:ik_T
nijk = ik_T+1 - ijk;
nvib(nijk) = vib(ijk);

end

for k8 = 1:ik_T
vb_2(k8) = nvib(k8);
vs_2(k8) = nvib(k8);

end

vb_2 = vb_2 - vb_1;
vB = B_0*(lambda*H_0*vb_2 + vb_1);

vs_2 = vs_2 - vs_1;
vS = -(lambda*H_0*vs_2);
//**

// setting initial conditions
D_min = +0.0001; D_max = 40*D_0;
Q_min = +0.00001; Q_max = 40*Q_0;

h0 = 1.52; delh0 = 0.80; vh0 = ones(1,(2*N+1));
vH0 = delh0*vh0; vD0 = vH0 - vS;

q0 = 0.24; vq0 = ones(1,(2*N+1));
vQ0 = q0*Q_0*vq0;

vDdot0 = 0*vh0; ome = 100;
P_max = 100.0; P_min = 5.0;

// Inflow-(_i) boundary cond.
B_in = vB(1) + (vB(1) - vB(2))*(1+delta_b);
S_in = vS(1) + (vS(1) - vS(2))*(1+delta_b);
D_in = vH0(1) - S_in;
Q_in = vQ0(1);

// GMS-coefficient
k_s = 100.;

// Friction-inclination of bottom
vD_E = H_0*vh0; vQ_E = U_F*B_0*H_0*vq0;
vdelSf = zeros(1,(2*N+1)); vSf = zeros(1,(2*N+1));
for kk=2:2:(2*N),

vRtilda(kk) = ((vB(kk)*vD_E(kk))/ ...
(vB(kk)+2*vD_E(kk)))^(2/3);

vI_E(kk) = (vQ_E(kk)/(vB(kk)* ...
vD_E(kk)*k_s*vRtilda(kk)))^2;

vdelSf(kk) = - L*vI_E(kk);
vSf(kk) = vSf(kk-1) + 0.5*vdelSf(kk);
vSf(kk+1) = vSf(kk) + 0.5*vdelSf(kk);

end
for k4= 1:1:(2*N+1),

vS(k4) = vS(k4) + 1.0*vSf(k4);
vH0(k4) = vH0(k4) + 1.0*vSf(k4);
vD0(k4) = vH0(k4) - 1.0*vS(k4);

end

// outflow-(_o) boundary cond
B_o = vB(kk+1); S_o = vS(kk+1);
D_o = vD0(kk+1); H_o = vH0(kk+1);
Q_o = vQ0(kk+1);

// inflow level controller (PI)
gQ_i = 20.; T_Q_i = 0.01;

// setpoint ramper
t_r_1 = 100.0;
r_1_0 = -vS(1)+delh0; r_1_1 = h0*H_0-vS(1);
g_r = 10.0; u_up_r = +1.0; u_dn_r = -1.0;
tau_r = 30.0; r_f_0 = r_1_0;
r_hi = r_1_1 + 0.05; r_lo = r_1_0 - 0.05;

// **************************************

// Outflow by GMS
g_o = k_s*(vI_E(40)^(1/2));

T_fin = 300.;

// Datatransfer to Plots
CC = 21; // no of channels 20 + 1 for time
CN = 300; // no of clockticks to Tfin
delT = T_fin/CN; // readout-interval for clock ticks
Asize = 1.01*CC*CN; // size of data arrays

184

// s_c5_02_b_crunplot
// Glf 2015_04_27

stacksize(’max’);
exec(’s_c5_02_b_context.sce’,-1);
importXcosDiagram(’s_c5_02_b.zcos’);
typeof(scs_m); scs_m.props.context;
Info = list();
Info = scicos_simulate(scs_m,Info);
//**********************************
for kfig = 1:1:11, clf(kfig); end
vcolor = [5, 2, 3, 4, 1, 6, 9,11,13,15,...

17,19,21,22,25,27,29,32, 2, 5];

f1 = scf(1);
plot2d(Q.time,Q.values,vcolor, ...

rect=[0.,0.0,300,150.]);
xtitle("Q_2 to Q_40");xgrid(1);

f2 = scf(2);
plot2d(D.time,D.values,vcolor, ...

rect=[0.,0.0,300,5.5]);
xtitle("D_1 to D_39");xgrid(1);

f3 = scf(3);
plot2d(H.time,H.values,vcolor, ...

rect=[0.,0.0,300,4.0]);
xtitle("H_1 to H_39");xgrid(1);

f4 = scf(4);
plot2d(F.time,F.values,vcolor, ...

rect=[0.,0.0,300,1.2]);
xtitle("F_2 to F_40");xgrid(1);

f5 = scf(5);
plot2d(W.time,W.values,vcolor, ...

rect=[0.,-1.0,300,+1.0]);
xtitle("W_1 to W_39");xgrid(1);

f6 = scf(6);
plot2d(P.time,(P.values-g*D.values), ...

vcolor,rect=[0.,-5.0,300,5.0]);
xtitle("deltaP*_1 to deltaP*_39");xgrid(1);

//**
eX = H_0*lambda*(1:1:N); eXend = 22;
for k6= 1:1:N, vSr(k6) = vS(2*k6-1); end
//
f7 = scf(7);clf();yD =D.values;
iD = yD(90,:); oD = yD(290,:);
iH = iD + vSr’; oH = oD + vSr’;

vcolorP=[2,5];
plot2d(eX’, [iH’, oH’], vcolorP, ...

rect=[0.,0.0,eXend,+4.0]);
xtitle("Longit.Profile H at 90s (bl), 290s (rd)");
xgrid(1);
//
f8 = scf(8);clf();yF =F.values;
iF = yF(90,:); oF = yF(290,:);
plot2d(eX’, [iF’, oF’], vcolorP, ...

rect=[0.,0.0,eXend,+1.2]);
xtitle("Longit.Profile F at 90s (bl), 290s (rd)");
xgrid(1);
//
f9 = scf(9);clf();yW =W.values;
iW = yW(90,:); oW = yW(290,:);
plot2d(eX’, [iW’, oW’], vcolorP, ...

rect=[0.,-1.0,eXend,+1.0]);
xtitle("Longit.Profile W at 90s (bl), 290s (rd)");
xgrid(1);
//
f10 = scf(10);clf();yP =P.values;
iP = yP(90,:)-g*yD(90,:); oP = yP(290,:)-g*yD(290,:);
plot2d(eX’, [iP’, oP’], vcolorP, ...

rect=[0.,-5.0,eXend,+5.0]);
xtitle("Longit.Profile (P*-gD) at 90 s (bl), 290 s (rd)");
xgrid(1);
//
f11 = scf(11);clf();eY = 0.5*H_0*lambda*(1:1:(2*N)+1);
plot2d(eY’,[0.1*vB’, vS’],vcolorP, ...

rect=[0.,-3.0,eXend,+3.0]);
xtitle("Longit.Channel Geometry, 0.1*B(x)(bl), S(x)(rd)");
xgrid(1);

// for assembling logitudinal contours
if lambda == (1.25)*lambda0 then
ac_125 = [eY’,[0.1*vB’,vS’]]; ...

aH_125 = [eX’,iH’]; aF_125 = [eX’,iF’];
elseif lambda == 1.0*lambda0 then
ac_100 = [eY’,[0.1*vB’,vS’]]; ...

aH_100 = [eX’,iH’]; aF_100 = [eX’,iF’];
elseif lambda == 0.80*lambda0 then
ac_080 = [eY’,[0.1*vB’,vS’]];

aH_080 = [eX’,iH’]; aF_080 = [eX’,iF’];
elseif lambda == 0.64*lambda0 then
ac_064 = [eY’,[0.1*vB’,vS’]];

aH_064 = [eX’,iH’]; aF_064 = [eX’,iF’];
else
ac_050 = [eY’,[0.1*vB’,vS’]];

aH_050 = [eX’,iH’]; aF_050 = [eX’,iF’];
end

5.5.3 Overview of simulations for Case 2

Three subcases shall be investigated.
The first is the nominal case with the transients of Q,D,H,F,W,∆P ∗ due to the inflow level run-up.
The second is checking longitudinal profiles of H,F,W,∆P ∗ at full flow equilibrium for any differences
to the second subcase of case 1.
The third subcase is to look into more detail of the initial low flow equilibrium. The longitudinal profiles
of B,S and H,F are given with different compartment lengths L. Here a further value L = 0.50 m is
inserted, as the shape of the level surface is shorter over x. The similarity rule from case 1 would indicate
a factor of U F p/U f f = 2.30/5.0 ≈ 0.46.

185

5.5.4 Simulation results for Case 2

Figure 5.24: C 2: Transient Q for L = 1 [m]

Figure 5.25: C 2: Transient D for L = 1 [m]

186

Figure 5.26: C 2: Transient H for L = 1 [m]

Figure 5.27: C 2: Transient F for L = 1 [m]

187

Figure 5.28: C 2: Transient W for L = 1 [m]

Figure 5.29: C 2: Transient P ∗ − gD for L = 1 [m]

188

Longitudinal profiles at full flow (time 290 s)

Figure 5.30: C 2: Profile for H for L = 1 [m]

Figure 5.31: C 2: Profile for F for L = 1 [m]

189

Figure 5.32: C 2: Profile for W for L = 1 [m]

Figure 5.33: C 2: Profile for P ∗ − gD for L = 1 [m]

190

Assembly of longitudinal profiles at time 90 s for low initial flow (Q in ≈ 12 m3/s)
for L = 0.50, 0.64, 0.80, 1.0, 1.25 m

// s_c5_02_b_contassemb.sce
// Glf 2015_08_13

for kfig = 12:1:16, clf(kfig); end
eXend = 30;

vcolor3 = [2, 5, 1, 13, 17];
vcolor4 = [2, 5, 1, 13, 17, 2, 5, 1, 13, 17];

f12 = scf(12);
plot2d(...
[ac_125(:,1),ac_100(:,1),ac_080(:,1), ...
ac_064(:,1), ac_050(:,1),...
ac_125(:,1),ac_100(:,1),ac_080(:,1), ...
ac_064(:,1), ac_050(:,1)],...

[ac_125(:,2),ac_100(:,2),ac_080(:,2), ...
ac_064(:,2), ac_050(:,2) ...
ac_125(:,3),ac_100(:,3),ac_080(:,3), ...
ac_064(:,3), ac_050(:,3)],...

vcolor4,rect=[0.,-2.0,eXend,+3.0]);
xtitle("C 2: geometry contour 0.1*B and S");
legend("B: L = 1.25 m","1.00 m","0.80 m", ...

"0.64 m", "0.50 m",...
"S: L = 1.25 m","1.00 m","0.80 m", ...

"0.64 m", "0.50 m")
xgrid(1);

f13 = scf(13);
plot2d(...
[aH_125(:,1),aH_100(:,1),aH_080(:,1), ...

aH_064(:,1),aH_050(:,1)],...
[aH_125(:,2),aH_100(:,2),aH_080(:,2), ...

aH_064(:,2),aH_050(:,2)],...
vcolor3,rect=[0.,0.4,eXend,+1.0]);
xtitle("C 2: contours H");
legend("H: L = 1.25 m","1.00 m","0.80 m", ...

"0.64 m", "0.50 m")
xgrid(1);

f14 = scf(14);
plot2d(...
[aF_125(:,1),aF_100(:,1),aF_080(:,1), ...

aF_064(:,1),aF_050(:,1)],...
[aF_125(:,2),aF_100(:,2),aF_080(:,2), ...

aF_064(:,2),aF_050(:,2)],...
vcolor3,rect=[0.,0.0,eXend,+1.2]);
xtitle("C 2: contours F");
legend("F: L = 1.25 m","1.00 m","0.80 m", ...

"0.64 m", "0.50 m")
xgrid(1);

Figure 5.34: C 2: Assembly of Profiles for 0.10 ·B and S

191

Figure 5.35: C 2: Assembly of Profiles for H

Figure 5.36: C 2: Assembly of Profiles for F

192

5.5.5 Discussion for Case 2

Transients for the nominal parameter set

Q Initially there is a small settling transient decaying within 10 s to 12.1 m3/s. Then the flow run-up
is as expected. No sloshing transients are visible, due to the first order filtered setpoint trajectory.

D, H as to be expected from Q(t). The initial outflow depth D o settles at 0.545 m close to what was
predicted, and the final value is D o = 2.50 m

F initially stabilizes at F o = 0.946, which correlates well with the predicted value. For full flow it
rises to F = 1.005. During the run-up transient the values of F (t) are consistently higher than the
final equilibrium values (due to the filling of the channel).
If the initial flow is decreased significantly, for instance to ≤ 6 m3/s, then the initial equilibrium
values of F increase significantly, to F ≥ 2, as the bottom slope is too steep to allow a subcritical
stationary flow.

W and

∆P ∗ converging both to zero at both equilibria, as expected.

Longitudinal profiles for the nominal parameter set at full flow

B, S The same confusor geometry contour is applied.

H ,

F ,

W , and

∆P ∗ are the same as for subcase 2 of case 1, as expected.

Longitudinal profiles for different compartment lengths L at low flow conditions, Q = 12 m3/s

A further value L = 0.50 m is inserted, in order to generate about the same number points from the
length discretisation for the steep part of the H(x)-descent. From the similarity found in case 1, that
would be a factor p f applied to the nominal length L = 1.0 m

p f =
U F p

U F f
=

√
D p

D f
:=

√
0.525

2.50
≈ 0.50

B,S The contour is manually trimmed to a small spread around the nominal contour, see Fig.5.34

H The spread of H(x) around the nominal shape is surprisingly small, even for L = 1.25 m with only
about 4 data points on the steep part (!) Then there is a long tail to the outflow location, with the
flow slowly accelerating to near equilibrium.
For L = 0.64 m and 0.50 m, the shapes of H(x) tend to spread more to the left (smaller x-values).
Part of it is due to the inflow location of the confusor moving more to the left. And the approach
to near equilibrium is faster, similar to subcase 3 in case 1.

F Again two phases are visible on the F -profiles. The first is the confusor part, up to position x = 6 m,
where no effect of L is discernible. The second is the approach to equilibrium in the constant cross
section area, where the profiles F (x, L) tend to spread out (faster rising for smaller L). The same
effect is visible in subcase 3 of case 1. However the end-points are nearly identical, and at F = 0.945
which closely matches the value pre-calculated above.

.

193

5.6 Case 3: ‘Dam Break’

5.6.1 Motivation

As mentioned in the introduction to this chapter this is the maximum possible incident, which is often
studied using standard grid methods for solving the PDE. Thus this may serve to illustrate any deviations
with the model used here where spacial grid elements are much longer.
It may serve (with small adaptations) to investigate a less catastrophic incident, when the accumulated
sediments in the reservoir are to be flushed in the downstream river by opening a gate at the bottom of
the dam.

5.6.2 Modeling and Data

Two subcases A and B are investigated, where A has a compartment length L = 25 m that is an overall
forebay length of Ltot = 525 m which is typical for a small river hydro installation. And subcase B
puts the focus on the very first phase ≈ 2 s after a nearly instantaneous dam break (within 0.040 s),
with compartment length L = 1.0 m, in order to catch the transient of all main variables as well as the
longitudinal profiles.
The plant model is taken from Case 1 with nominal depth D = 2.50 m, and constant width B = 10.0 m.
The outflow flap shall move rqpidly compared to the filling time constant of the adjacent volume balance
compartment: T f = L/U with U ≈ 2.5 m/s that is T f = 10 s. Thus the flap shall move in 1.0 s
through its full stroke of 2.5 m for subcase A, and in 0.040 s for subcase B.
Finally the inflow shall be kept fixed at Q in = 5 m3/s and this value shall be used to calculate the
bottom friction slope, with D = 2.5 m.

5.6.3 Implementation

The main diagram s c5 03.zcos is carried over from case 1 but with the inflow level control loop replaced
by a constant flow source Q in. Then for the x .sce-files:

// s_c5_03_context.sce
// Glf 2017_06_15
// dambreak; by fast outflow flap lowering
// Inflow constant, small

g = 10.;
Q_0 = 50.0;
H_0 = 2.5; kap = 1.0;
//***
// subcase A:

lambda = 10.0; T_fin = 500.0; CN = 500;tau_f = 0.40;
// subcase B:
// lambda = 0.4; T_fin = 50.0; CN = 500; tau_f = 0.016;
//***
L = lambda*H_0;
S_0 = 0.0*(-1.0);
D_0 = H_0 - S_0;
B_0 = 10.;
U_0 = 2.0;
N= 20; // no of Vol+Momentum-Segments

// Channel-Geometry
// rectangular-cross sect with constant (nominal) width
vb_1 = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0];

vB = B_0*(vb_1);

//horizontal bottom
vs = -[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,...

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,...
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,...
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,...
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0];

vS = S_0*(vs);

D_min = +0.001; D_max = 40*D_0;
Q_min = +0.001; Q_max = 40*Q_0;

h0 = 1.00; vh0 = ones(1,(2*N+1));
vH0 = h0*H_0*vh0; vD0 = vH0 - vS;

q0 = 0.10; vq0 = ones(1,(2*N+1));
vQ0 = q0*Q_0*vq0;

vDdot0 = 0*vh0; ome = 100;
P_max = 100.0; P_min = 0.0;

// Inflow-(_in) boundary cond.
B_in = vB(1); S_in = vS(1);
D_in = vD0(1); H_in = D_in + S_in;
Q_in = vQ0(1);

// GMS-coefficient
k_s = 100.;

// Friction-inclination of bottomv’
vD_E = D_0*vh0; vQ_E = q0*Q_0*vq0;

vdelSf = zeros(1,(2*N+1));
vSf = zeros(1,(2*N+1));
for kk=2:2:(2*N),

vRtilda(kk)=((vB(kk)*vD_E(kk))/ ...
(vB(kk)+2*vD_E(kk)))^(2/3);

vI_E(kk) = (vQ_E(kk)/(vB(kk)*vD_E(kk) ...
*k_s*vRtilda(kk)))^2;

vdelSf(kk) = - L*vI_E(kk);
vSf(kk) = vSf(kk-1) + 0.5*vdelSf(kk);
vSf(kk+1) = vSf(kk) + 0.5*vdelSf(kk);

end
for k4= 1:1:(2*N+1),

vS(k4) = vS(k4) + vSf(k4);
vH0(k4) = vH0(k4) + vSf(k4);

194

vD0(k4) = vH0(k4) - vS(k4);
end

// outflow-(_o) boundary cond
B_o = vB(kk+1); S_o = vS(kk+1);
D_o = vD0(kk+1); H_o = vH0(kk+1);
Q_o = vQ0(kk+1);

// inflow fixed to Q_in

// outflow by flap

dH_o = (Q_o/(((2*g)^0.5)*(2/3)*B_o))^(2/3);
t_f_1 = 1.; f_1_0 = D_o - dH_o; f_1_1 = S_o;
g_f = 10.0; u_up_f = +1.0; u_dn_f = -1.0;
K_f_0 = f_1_0;

gQ_K = 1.0*B_o*((1.0*g)^(0.5));

// Datatransfer to Plots
CC = 21; //no of channels 20 + 1 for time
delT = T_fin/CN; //readout-interval for clock ticks
Asize = 1.01*CC*CN;//size of data arrays

// s_c5_03_crunplot
// Glf 2017_06_15
// dam-break

stacksize(’max’); exec(’s_c5_03_context.sce’,-1);
importXcosDiagram(’s_c5_03.zcos’);
typeof(scs_m); scs_m.props.context;
Info = list(); Info = scicos_simulate(scs_m,Info);
//**********************************
for kfig = 1:1:11, clf(kfig); end
vcolor = [5, 2, 3, 4, 1, 6, 9,11,13,15,...

17,19,21,22,25,27,29,32, 2, 5];

f1 = scf(1);
plot2d(Q.time,Q.values,vcolor,rect=[0.,0.0,T_fin,50.]);
xtitle("Q_2 to Q_40");
xgrid(1);

f2 = scf(2);
plot2d(D.time,D.values,vcolor,rect=[0.,0.0,T_fin,2.6]);
xtitle("D_1 to D_39");
xgrid(1);

f3 = scf(3);
plot2d(H.time,H.values,vcolor,rect=[0.,0.0,T_fin,2.6]);
xtitle("H_1 to H_39");
xgrid(1);

f4 = scf(4);
plot2d(F.time,F.values,vcolor,rect=[0.,0.0,T_fin,1.2]);
xtitle("F_2 to F_40");
xgrid(1);

f5 = scf(5);
plot2d(W.time,W.values,vcolor,rect=[0.,-2.,T_fin,+0.2]);
xtitle("W_1 to W_39");
xgrid(1);

f6 = scf(6);
plot2d(P.time, (P.values - g*D.values), vcolor,...

rect=[0.,-10.0,T_fin,+2.0]);
xtitle("deltaP*_1 to deltaP*_39");
xgrid(1);
//***
eX = H_0*lambda*(1:1:N); eXend = L*22;
for k6= 1:1:N,

vSr(k6) = vS(2*k6-1);
end

//*******************************
if lambda == 10.0 then // subcase A:

vT =[75,150,225,300]; vR=[75,150,225,300];
else // subcase B:
vT =[1.6,2.4,3.2,50]; vR=[16,24,32,500];end

//*******************************
vs = [’0’,’0’,’0’,’0’];
for k8 = 1:1:4,

vs(k8) = msprintf(’%5.2f’,vT(k8));end
vcolorP=[1,2,5,13];

f7 = scf(7); clf(); yQ =Q.values;
vQ=[yQ(vR(1),:)’,yQ(vR(2),:)’,yQ(vR(3),:)’,yQ(vR(4),:)’];
plot2d(eX’,vQ, vcolorP, rect=[0.,-0.0,eXend,+50.]);
vtitle =["Longit.Profile Q at",vs(1),"s (bk),",vs(2),...
"s (bl),",vs(3),"s (rd),",vs(4),"s (gn)"];
xtitle(vtitle); xgrid(1);

f8 = scf(8); clf(); yD =D.values;
iD = yD(vR(1),:); mD = yD(vR(2),:);
oD = yD(vR(3),:); eD = yD(vR(4),:);
plot2d(eX’, [iD’, mD’, oD’, eD’], vcolorP,...
rect=[0.,0.0,eXend,+2.6]);

vtitle =["Longit.Profile D at",vs(1),"s (bk),",vs(2),...
"s (bl),",vs(3),"s (rd),",vs(4),"s (gn)"];
xtitle(vtitle); xgrid(1);

f9 = scf(9); clf(); yF =F.values;
iF = yF(vR(1),:); mF = yF(vR(2),:);
oF = yF(vR(3),:); eF = yF(vR(4),:);
plot2d(eX’, [iF’, mF’, oF’, eF’], vcolorP,...
rect=[0.,0.0,eXend,+1.2]);

vtitle=["Longit.Profile F at",vs(1),"s (bk),",vs(2),...
"s (bl),",vs(3),"s (rd),",vs(4),"s (gn)"];
xtitle(vtitle); xgrid(1);

f10 = scf(10);clf(); yW =W.values;
iW = yW(vR(1),:); mW = yW(vR(2),:);
oW = yW(vR(3),:); eW = yW(vR(4),:);
plot2d(eX’, [iW’, mW’, oW’, eW’], ...
vcolorP, rect=[0.,-1.00,eXend,+0.20]);
vtitle=["Longit.Profile W at",vs(1),"s (bk),",vs(2),...
"s (bl),",vs(3),"s (rd), and",vs(4),"s (gn)"];
xtitle(vtitle); xgrid(1);

f11 = scf(11);clf(); yP =P.values;
vP=...
[yP(vR(1),:)’-g*yD(vR(1),:)’,yP(vR(2),:)’-g*yD(vR(2),:)’,...
yP(vR(3),:)’-g*yD(vR(3),:)’,yP(vR(4),:)’-g*yD(vR(4),:)’];

plot2d(eX’,vP, vcolorP, rect=[0.,-5.0,eXend,+5.0]);
vtitle = ["Longit.Profile (P*-gD) at",vs(1),"s (bk),", ...

vs(2),"s (bl),",vs(3),"s (rd), and",vs(4),"s (gn)"];
xtitle(vtitle);xgrid(1);

The transients and the longitudinal profiles for each variable Q, D, F are paired on one page.

195

5.6.4 Simulation results

Subcase A, L = 25 m

Figure 5.37: C 3: Transient Q(t) for L = 25 [m]

Figure 5.38: C 3: Longit.Profile Q(x) for L = 25 [m]

196

Figure 5.39: C 3: Transient D(t) for L = 25 [m]

Figure 5.40: C 3: Longit.Profile D(x) for L = 25 [m]

197

Figure 5.41: C 3: Transient F (t) for L = 25 [m]

Figure 5.42: C 3: Longit.Profile F (x) for L = 25 [m]

198

Subcase B, L = 1.0 m

Figure 5.43: C 3: Transient Q(t) for L = 1.0 [m]

Figure 5.44: C 3: Longit.Profile Q(x) for L = 1.0 [m]

199

Figure 5.45: C 3: Transient D(t) for L = 1.0 [m]

Figure 5.46: C 3: Longit.Profile D(x) for L = 1.0 [m]

200

Figure 5.47: C 3: Transient F (t) for L = 1.0 [m]

Figure 5.48: C 3: Longit.Profile F (x) for L = 1.0 [m]

201

Figure 5.49: C 3: Transient W (t) for L = 1.0 [m]

Figure 5.50: C 3: Longit.Profile W (x) for L = 1.0 [m]

202

Figure 5.51: C 3: Transient ∆P ∗(x) for L = 1.0 [m]

Figure 5.52: C 3: Longit.Profile ∆P ∗(x) for L = 1.0 [m]

203

5.6.5 Discussion for Case 3

subcase A, L = 25 m

Q At the outflow location the peak value is ≈ 42 m3/s at t ≈ 10 s and decays to ≈ 37 m3/s at
t = 100...150 s for the last 5 compartments. There is a typical plateau phase. At the end of the
time window t = 500 s, Q decays to ≈ 8 m3/s, which includes the 5 m3/s from the steady state
inflow. In other words the emptying transient is at its end.
At the inflow location, Q is at its steady state value up to t ≈ 90 s, then rises to ≈ 10 m3/s at
t = 120 s and the decays to the steady state.
The longitudinal profiles snapshots show how the emptying transient progresses over the length of
the forebay.

D At the inflow location D stays at its initial value 2.5 m up to t ≈ 90 s, which corresponds to the
Froude wave travelling time over 425 m with U F = 5 m/s. At the outflow location the depth D
decays with a time constant of ≈ 20 s to a plateau zone of D ≈ 1.25 m up to t ≈ 160 s. This
would be the ‘echo’ travelling time, where D is decreasing, but both the flow velocity and thus F
are increasing.

F At the outflow location F rises to ≈ 0.90 in ≈ 50 s and stays in this region for the whole time
window.
And at the inflow location F stays at its initial value 0.040 up to the arrival of the Froude wave at
≈ 90 s and then rises slowly. Final stabilization (not shown here) will be at t ≈ 1500s at F 02 ≈ 0.37
and F 40 ≈ 0.86.

Subcase B, L = 1.0 m

The overall emptying transient is faster here (by a factor of ≈ 25).
The general shape of the transients and the profiles are much the same. But note that the effects of the
vertical dynamics on W and ∆P ∗ are now strong.

Q At the outflow Q 40 the peak is at 45 m3/s and the plateau at 40 m3/s up to t ≈ 7 s.

D Again the plateau for D is at ≈ 1.25 m up to t ≈ 7 s.

F F 40 rises to ≈ 0.96 and stays in this region, whereas F 02 rises continuously from t ≈ 7 s.
Steady state is arrived at after t = 150 s with values F 40 ≈ 0.98 and F 02 ≈ 0.74.

204

5.7 Case 4: Surge waves

5.7.1 Introduction

The motivation and the modeling and the main data of the channel have been discussed in the introduction
to this chapter. – The aim here is to show what happens in a channel during the very first seconds after
a sharp rise of inflow from near zero flow to nominal flow. The time window is limited to exclude any
reflections on the outflow boundary of the model channel (which is here of finite length in contrast to a
real river bed of ‘infinite’ length).

5.7.2 Implementation

Figure 5.53: Main diagram for Case 4: Surge wave

205

// s_c5_04_context.sce
// Glf 2017_06_15
// surge wave
// by fast inflow rise
// outflow GMS

g = 10.;

Q_0 = 50.0;
H_0 = 2.5; kap = 1.0;
//******************

lambda = 0.40;
//******************
L = lambda*H_0;
S_0 = 0.0*(-1.0);
D_0 = H_0 - S_0;
B_0 = 10.;
U_0 = 2.0;

N= 20; // no of Vol+Momentum-Segments

q0 = 0.040; Q_I = q0*Q_0; B_I = B_0; S_I = S_0;

// GMS-friction coefficient
k_s = 100.0;

// reference bottom slope
Q_r = 50.0; B_r = 10.0;
D_r = 2.5; S_r = 0*(-1.0);
U_r = 2.0;
R_r = (B_r*D_r)/(B_r + 2*D_r);
I_r = (U_r/(k_s*(R_r)^(2/3)))^2;

// initialzing ’iteration loop’
D_I = D_r;
gainQ = 0.01*(D_I/Q_I);
Q = k_s*(B_I)*(D_I)*(D_I)^(2/3)*(I_r)^(1/2);
eQ = -Q_I + Q;

// iteration loop
while (eQ<-0.0001)|(eQ>0.0001) then

R_I = (B_I*D_I)/(B_I + 2*D_I);
Q = (k_s*(I_r)^(1/2)*B_I)*D_I*(R_I)^(2/3);
eQ = -Q_I + Q;
D_I = D_I - gainQ*eQ;

end

Q_I = Q;
D = D_I;

// Channel-Geometry
//******************************
// rectangular-cross sect with constant (nominal) width
vb_1 = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0];

vB = B_0*(vb_1);
//******************************

//horizontal bottom
vs = -[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,...

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,...
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,...
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,...

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0];
vS = S_0*(vs);

D_min = +0.001; D_max = 40*D_0;
Q_min = +0.001; Q_max = 40*Q_0;

vd0 = ones(1,(2*N+1));
vD0 = D*vd0;
vH0 = vD0 - vS;

vq0 = ones(1,(2*N+1));
vQ0 = q0*Q_0*vq0;

vh0 = ones(1,(2*N+1));
vDdot0 = 0*vh0;
ome = 100;
P_max = 100.0; P_min = 0.0;

// Inflow-(_i) boundary cond.
B_in = vB(1);
S_in = vS(1);
D_in = vD0(1); H_in = D_in + S_in;
Q_in = vQ0(1);

// Friction-inclination of bottom
vD_E = D_0*vd0;
vQ_E = Q_0*vq0;

vdelSf = zeros(1,(2*N+1));
vSf = zeros(1,(2*N+1));
for kk=2:2:(2*N),

vRtilda(kk) =((vB(kk)*vD_E(kk))/...
(vB(kk)+2*vD_E(kk)))^(2/3);

vI_E(kk) =(vQ_E(kk)/(vB(kk)*vD_E(kk)...
*k_s*vRtilda(kk)))^2;

vdelSf(kk) = - L*vI_E(kk);
vSf(kk) = vSf(kk-1) + 0.5*vdelSf(kk);
vSf(kk+1) = vSf(kk) + 0.5*vdelSf(kk);

end
for k4= 1:1:(2*N+1),

vS(k4) = vS(k4) + vSf(k4);
vH0(k4) = vH0(k4) + vSf(k4);
vD0(k4) = vH0(k4) - vS(k4);

end

// outflow-(_o) boundary cond
B_o = vB(kk+1);
S_o = vS(kk+1);
D_o = vD0(kk+1); H_o = vH0(kk+1);
Q_o = vQ0(kk+1);

// inflow generation
t_st_1 = 0.250; r_1_0 = q0*Q_0; r_1_1 = Q_0;
g_st = 10.0; u_up_st = +1.0; u_dn_st = -1.0;
tau_st = 0.016; Q_st_0 = q0*Q_0;

// outflow by GMS
g_o = k_s*((I_r)^(1/2));

T_fin = 3.5; CN = 700;

// Datatransfer to Plots
CC = 21; // no of channels 20 + 1 for time
delT = T_fin/CN; // readout-interval for clock ticks
Asize = 1.01*CC*CN; // size of data arrays

206

// s_c5_04_crunplot
// Glf 2017_06_15
// surge wave

stacksize(’max’); exec(’s_c5_04_context.sce’,-1);
importXcosDiagram(’s_c5_04.zcos’);
typeof(scs_m); scs_m.props.context;
Info = list(); Info = scicos_simulate(scs_m,Info);
//**********************************
for kfig = 1:1:11, clf(kfig); end

vcolor = [5, 2, 3, 4, 1, 6, 9,11,13,15,...
17,19,21,22,25,27,29,32, 2, 5];

f1 = scf(1);
plot2d(Q.time,Q.values,vcolor,rect=[0.,0.0,T_fin,65.]);
xtitle("Q_2 to Q_40");
xgrid(1);

f2 = scf(2);
plot2d(D.time,D.values,vcolor,rect=[0.,0.0,T_fin,1.6]);
xtitle("D_1 to D_39");
xgrid(1);

f3 = scf(3);
plot2d(H.time,H.values,vcolor,rect=[0.,0.0,T_fin,1.6]);
xtitle("H_1 to H_39");
xgrid(1);

f4 = scf(4);
plot2d(F.time,F.values,vcolor,rect=[0.,0.0,T_fin,2.0]);
xtitle("F_2 to F_40");
xgrid(1);

f5 = scf(5);
plot2d(W.time,W.values,vcolor,...
rect=[0.,-0.2,T_fin,+1.0]);
xtitle("W_1 to W_39"); xgrid(1);

f6 = scf(6);
plot2d(P.time, (P.values - g*D.values),vcolor,...
rect=[0.,-0.50,T_fin,3.0]);
xtitle("deltaP*_1 to deltaP*_39"); xgrid(1);
//**
//
eX = H_0*lambda*(1:1:N); eXend =22;
for k6= 1:1:N, vSr(k6) = vS(2*k6-1); end
vcolorP=[1,2,5,13];
//
vT=[0.75,1.50,2.50,3.40]; vR=[150,300,500,680];
vs = [’0’,’0’,’0’,’0’];

for k8 = 1:1:4,
vs(k8) = msprintf(’%5.2f’,vT(k8));end

f7 = scf(7); clf(); yQ =Q.values;
iQ = yQ(vR(1),:); mQ = yQ(vR(2),:);
oQ = yQ(vR(3),:); eQ = yQ(vR(4),:);
plot2d(eX’, [iQ’, mQ’, oQ’, eQ’], vcolorP, ...
rect=[0.,0.0,eXend,+65.]);

vtitle=...
["Longit.Profile Q at",vs(1),"s (bk),",vs(2),...
"s (bl),",vs(3),"s (rd), and",vs(4),"s (gn)"];

xtitle(vtitle); xgrid(1);

f8 = scf(8); clf(); yD =D.values;
iD = yD(vR(1),:); mD = yD(vR(2),:);
oD = yD(vR(3),:); eD = yD(vR(4),:);
plot2d(eX’, [iD’, mD’, oD’, eD’], ...
vcolorP, rect=[0.,0.0,eXend,+1.6]);
vtitle=...
["Longit.Profile D at",vs(1),"s (bk),",vs(2),...
"s (bl),",vs(3),"s (rd), and",vs(4),"s (gn)"];

xtitle(vtitle); xgrid(1);

f9 = scf(9); clf(); yF =F.values;
iF = yF(vR(1),:); mF = yF(vR(2),:);
oF = yF(vR(3),:); eF = yF(vR(4),:);
plot2d(eX’, [iF’, mF’, oF’, eF’], vcolorP, ...
rect=[0.,0.0,eXend,+2.0]);

vtitle=...
["Longit.Profile F at",vs(1),"s (bk),",vs(2),...
"s (bl),",vs(3),"s (rd), and",vs(4),"s (gn)"];

xtitle(vtitle); xgrid(1);

f10 = scf(10); clf(); yW =W.values;
iW = yW(vR(1),:); mW = yW(vR(2),:);
oW = yW(vR(3),:); eW = yW(vR(4),:);
plot2d(eX’, [iW’, mW’, oW’, eW’], vcolorP, ...
rect=[0.,-0.20,eXend,+1.0]);
vtitle=...
["Longit.Profile W at",vs(1),"s (bk),",vs(2),...
"s (bl),", vs(3),"s (rd), and",vs(4),"s (gn)"];

xtitle(vtitle); xgrid(1);

f11 = scf(11); clf(); yP =P.values;
vP=...
[yP(vR(1),:)’-g*yD(vR(1),:)’,yP(vR(2),:)’-g*yD(vR(2),:)’,...
yP(vR(3),:)’-g*yD(vR(3),:)’,yP(vR(4),:)’-g*yD(vR(4),:)’];
plot2d(eX’,vP, vcolorP, rect=[0.,-0.5,eXend,+3.0]);
vtitle=["Longit.Profile (P*-gD) at",vs(1),"s (bk),", ...

vs(2),"s (bl),",vs(3),"s (rd), and",vs(4),"s (gn)"];
xtitle(vtitle); xgrid(1);

Again the transients and longitudinal profiles for each variable are paired on one page.

207

5.7.3 Simulation Results

Figure 5.54: C 4: Transient Q(t) for L = 1.0 [m]

Figure 5.55: C 4: Longit.Profile Q(x) for L = 1.0 [m]

208

Figure 5.56: C 4: Transient D(t) for L = 1.0 [m]

Figure 5.57: C 4: Longit.Profile D(x) for L = 1.0 [m]

209

Figure 5.58: C 4: Transient F (t) for L = 1.0 [m]

Figure 5.59: C 4: Longit.Profile F (x) for L = 1.0 [m]

210

Figure 5.60: C 4: Transient W (t) for L = 1.0 [m]

Figure 5.61: C 4: Longit.Profile W (x) for L = 1.0 [m]

211

Figure 5.62: C 4: Transient ∆P ∗(x) for L = 1.0 [m]

Figure 5.63: C 4: Longit.Profile ∆P ∗(x) for L = 1.0 [m]

212

5.7.4 Discussion for Case 4

The friction slope is assumed to be the nominal one from above, with Q := 50 m3/s, D := 2.5 m,B :=
10 m, k s := 100, that is I r = 0.2024 · 10−3.

Q The initial flow is set to Q 0 := 2.0 m3/s. This yields D 0 := 0.316 m,F 0 := 0.356.
Then the inflow is raised to 50 m3/s in ∆t = 0.80 s. No filter is applied to this ramp-up.
Note that Q 10 and further downstream values overshoot to ≈ 54 m3/s and then slowly fall back
to 50 m3/s.
This transient peaking shows up in other variables as well.

D At the inflow location and 50 m3/s the depth stabilizes at D 03 ≈ 0.95 m. Further downstream D
overshoots to ≈ 1.20 m and slowly drops back to 0.95 m.

F At the inflow, the Froude number F 02 rises in less than 1 s to ≈ 1.7 and remains in the region.
Further downstream, for instance at location 10 and following, there is a plateau in F at ≈ 1.40,
from where the local F ’s rise further to 1.70. The plateau is also clearly visible on the profile F (x).

W and

∆P ∗ The profiles show a distinct wave travelling downstream as with Q,D.

To summarize: there is an overshoot in Q and D travelling downstream close after the wave front (the
delay is ≈ 1...2 s). Also the flow is accelerated to supercritical (up to f ≈ 1.7) in this short time interval,
respectively over a distance of a few m. This is due to the steep initial wave front, which builds up a
strong hydrostatic pressure differential.
The transient responses and the profiles correlate reasonably well with observations of such surge waves.
However the flow observed in reality is highly turbulent which cannot be modeled with the basic modeling
approach used here...

213

5.8 Case 5: Hydraulic Jump after a Weir

In the next sections two cases of ‘Hydraulic Jump’ shall be investigated. The first case is ‘after a weir’,
where water flows below the shutoff device and then meets a small flow discontinuity.
The second case will be ‘after a dam’, where water flows over its crown, accelerates on the backside slope
of the dam, and finally hits the horizontal bottom.

5.8.1 Modeling and Data set

Another ‘Basic Result’

The aim is to find a basic result similar as for the spillway case for checking the simulation result.
The jump position is considered stationary on x. Also the flow shall be stationary. And no information
about the spacial shape of the hydraulic jump is asked for.
Denoting the locations far upstream of the jump with index .1 and far downstream with .2 then, with
B1 = B2 = B

for the volume balance B · U1 ·D1 = B · U2 ·D2

for the momentum balance ρB

[
1

2
g D2

1 +D1 · U2
1

]
= ρB

[
1

2
g D2

2 +D2 · U2
2

]
Rearranging

D1U
2
1 −D2U

2
2 =

1

2
g
[
D2

2 −D2
1

]
D1U1 [U1 − U2] = g

1

2
[D2 +D1] · [D2 −D1]

with Dm =
1

2
[D2 +D1] and D2 =

U1D1

U2

D1U1 [U1 − U2] = gDm
D1

U2
· [U1 − U2]

finally U1 · U2 = gDm = U2
Fm

or
U1√
gDm

· U2√
gDm

= 1.0

that is F1m · F2m = 1.0

Note that the Froude numbers are not those at .1, .2 locations (as displayed in all graphs so far) but
taken with a ‘synthetic’ Froude velocity UFM

=
√
gDm !

Experiment setup

Initially the flow down the channel is constant/nominal Q = 50 m3/s, in inflow/outflow equilibrium
and supercritical at F = 2.0. Then the inflow is ramped up to 55 m3/s in 1 s. This will generate a
wave travelling downstream with flow velocity plus Froude velocity. But the outflow is kept fixed at
the initial value, for instance by inserting a weir board. This will cause an echo wave travelling slowly
upstream. When this echo wave is about halfway upstream, the inflow is ramped back to its initial value,
restoring flow equilibrium again. The aim is to show that a stationary hydraulic jump is produced, what
its longitudinal profile is, and whether is complies to the basic result from above.
This simple clinical experiment may seem somewhat artificial, as in real situations such hydraulic jumps
are generated mostly by discontinuities of the bottom (or sidewalls), see the following case.

214

Data set

The channel geometry is assumed at constant cross section B = 10 m.
For Q0 := 50 m3/s, F0 := 2.0 results D0 = 0.855 m,U0 = 5.848 m/s with UF = 2.924 m/s.
The bottom slope is calculated using the GMS-factor ks = 1000. This amounts to very small friction
and requires a very smooth surface. Note that the basic result from above assumes no friction loss at
all. Letting ks = 100 (as in cases above) already has a visible effect on the simulation results (not shown
here).
Further the compartment length is set to L = 1.0 m as in the previous cases.

5.8.2 Implementation

Figure 5.64: Main diagram for Case 5: Hydraulic Jump after a Weir

215

// s_c5_05_context.sce
// Glf 2017_06_15
// hydraulic jump on flat bottom
// by fast inflow rise
// outflow fixed at Q_0

g = 10.;
Q_0 = 50.0; H_0 = 2.5; kap = 1.0;
//******************

lambda = 0.400;
//******************
L = lambda*H_0;
S_0 = 0.0*(-1.0); D_0 = H_0 - S_0;
B_0 = 10.; U_0 = 2.0;
N= 20; // no of Vol+Momentum-Segments

//Given: Q_0 and Fr_0; determine D_0
Fr_0 = 2.0;
D_0 = ((1/g)*((Q_0/(B_0*Fr_0))^2))^(1/3);

// GMS-friction coefficient
k_s = 1000;

// reference bottom slope
Q_r = 50.0; B_r = 10.0;
D_r = 2.5; S_r = 0*(-1.0); U_r = 2.0;
R_r = (B_r*D_r)/(B_r + 2*D_r);
I_r = (U_r/(k_s*(R_r)^(2/3)))^2;

// Channel-Geometry
//******************************
// rectangular-cross sect with constant (nominal) width
vb_1 = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0];

vB = B_0*(vb_1);
//******************************

//horizontal bottom
vs = -[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,...

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,...
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,...
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,...
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0];

vS0 = S_0*(vs);

D_min = +0.001; D_max = 40*D_0;
Q_min = +0.001; Q_max = 40*Q_0;

vd0 = ones(1,(2*N+1));
vD0 = D_0*vd0; vD_r = D_r*vd0;

vH0 = vD0 - vS0;
q0 = 1.00;
vq0 = ones(1,(2*N+1));
vQ0 = q0*Q_0*vq0;

vh0 = ones(1,(2*N+1));
vDdot0 = 0*vh0; ome = 100;
P_max = 100.0; P_min = 0.0;

// Inflow-(_i) boundary cond.
B_in = vB(1); S_in = vS0(1);
D_in = vD0(1); H_in = D_in + S_in;
Q_in = vQ0(1); W_in = 0.;

// Friction-inclination of bottom
vdelSf = zeros(1,(2*N+1));
vSf = zeros(1,(2*N+1));
for kk=2:2:(2*N),

vRtilda(kk) = ((vB(kk)*vD0(kk))/ ...
(vB(kk)+2*vD0(kk)))^(2/3);

vI0(kk) = (vQ0(kk)/(vB(kk)*vD0(kk)...
*k_s*vRtilda(kk)))^2;
vdelSf(kk) = - L*vI0(kk);
vSf(kk) = vSf(kk-1) + 0.5*vdelSf(kk);
vSf(kk+1) = vSf(kk) + 0.5*vdelSf(kk);

end
for k4= 1:1:(2*N+1),

vS(k4) = vS0(k4) + vSf(k4);
vH0(k4) = vH0(k4) + vSf(k4);
vD0(k4) = vH0(k4) - vS(k4);

end

// outflow-(_o) boundary cond
B_o = vB(kk+1); S_o = vS(kk+1);
D_o = vD0(kk+1); H_o = vH0(kk+1); Q_o = vQ0(kk+1);

// inflow generation
t_st_1 = 10.0; r_1_0 = Q_0; r_1_1 = (1.0+0.1)*Q_0;
t_st_2 = 40.0; r_2_0 = 0.; r_2_1 = -0.10*Q_0;
// inflow slew rate
g_st = 100.0; u_up_st = +1.0; u_dn_st = -1.0;
tau_st = 0.20; Q_st_0 = Q_0;

// outflow by GMS
// g_o = k_s*((I_r)^(1/2));

T_fin = 100.0; CN = 1000;

// Datatransfer to Plots
CC = 21; // no of channels 20 + 1 for time
delT = T_fin/CN; // readout-interval for clock ticks
Asize = 1.01*CC*CN; // size of data arrays

// s_c5_05_runplot
// Glf 2017_06_15
// Hydraulic jump on flat bottom

stacksize(’max’);
exec(’s_c5_05_context.sce’, -1);
importXcosDiagram(’s_c5_05.zcos’);
typeof(scs_m); scs_m.props.context;
Info = list(); Info = scicos_simulate(scs_m,Info);
//**********************************
for kfig = 1:1:11, clf(kfig); end

vcolor = [5, 2, 3, 4, 1, 6, 9,11,13,15,...
17,19,21,22,25,27,29,32, 2, 5];

f1 = scf(1);
plot2d(Q.time,Q.values,vcolor,rect=[0.,0.0,T_fin,60.]);
xtitle("Q_2 to Q_40"); xgrid(1);

f2 = scf(2);
plot2d(D.time,D.values,vcolor,rect=[0.,0.0,T_fin,3.0]);
xtitle("D_1 to D_39"); xgrid(1);

f3 = scf(3);
plot2d(H.time,H.values,vcolor,rect=[0.,0.0,T_fin,3.0]);
xtitle("H_1 to H_39"); xgrid(1);

f4 = scf(4);

plot2d(F.time,F.values,vcolor,rect=[0.,0.0,T_fin,3.0]);
xtitle("F_2 to F_40"); xgrid(1);

f5 = scf(5);
plot2d(W.time,W.values,vcolor,rect=[0.,-0.4,T_fin,1.4]);
xtitle("W_1 to W_39"); xgrid(1);

f6 = scf(6);
plot2d(P.time, (P.values-g*D.values), vcolor,...

rect=[0.,-5.0,T_fin,5.0]);
xtitle("deltaP*_1 to deltaP*_39"); xgrid(1);
//***
eX = H_0*lambda*(1:1:N); eXend = 22;
for k6= 1:1:N,

vSr(k6) = vS(2*k6-1);
end
vT = [t_st_1-5.0, t_st_2, T_fin-5.0];
vR = [50, 390, 950]; vs = [’0’,’0’,’0’];
for k8 = 1:1:3,vs(k8)=msprintf(’%5.1f’,vT(k8));end
vcolorP=[13,2,5];

f7 = scf(7); clf(); yQ =Q.values;
vQ=[yQ(vR(1),:)’,yQ(vR(2),:)’,yQ(vR(3),:)’];
plot2d(eX’,vQ,vcolorP,rect=[0.,0.0,eXend,+60.]);
vtitle = ["Longit.Profile Q at",vs(1),"s (bk),",...

vs(2),"s (bl), and",vs(3),"s (rd)"];
xtitle(vtitle); xgrid(1);

216

f8 = scf(8); clf(); yD =D.values;
vD=[yD(vR(1),:)’,yD(vR(2),:)’,yD(vR(3),:)’];
plot2d(eX’,vD,vcolorP,rect=[0.,0.0,eXend,+3.0]);
vtitle = ["Longit.Profile D at",vs(1),"s (gn),",...

vs(2),"s (bl), and",vs(3),"s (rd)"];
xtitle(vtitle); xgrid(1);

f9 = scf(9); clf(); yF =F.values;
vF=[yF(vR(1),:)’,yF(vR(2),:)’,yF(vR(3),:)’];
plot2d(eX’,vF,vcolorP,rect=[0.,0.0,eXend,+3.0]);
vtitle = ["Longit.Profile F at",vs(1),"s (gn),",...

vs(2),"s (bl), and",vs(3),"s (rd)"];
xtitle(vtitle); xgrid(1);

f10 = scf(10); clf(); yW =W.values;
vW=[yW(vR(1),:)’,yW(vR(2),:)’,yW(vR(3),:)’];
plot2d(eX’,vW, vcolorP, rect=[0.,-0.40,eXend,+1.6]);
vtitle = ["Longit.Profile W at",vs(1),"s (gn),",...

vs(2),"s (bl), and",vs(3),"s (rd) "];
xtitle(vtitle); xgrid(1);

f11 = scf(11); clf(); yP =P.values;
vPP=[yP(vR(1),:)’-g*yD(vR(1),:)’,...
yP(vR(2),:)’-g*yD(vR(2),:)’,yP(vR(3),:)’-g*yD(vR(3),:)’];
plot2d(eX’,vPP, vcolorP, rect=[0.,-5.0,eXend,+5.0]);
vtitle =["Longit.Profile P* - gD at",vs(1),"s (gn),",...

vs(2),"s (bl), and",vs(3),"s (rd) "];
xtitle(vtitle); xgrid(1);

5.8.3 Discussion for Case 5

- The simulations show a strong hydraulic jump both in D and in F for flow being equal before and
after the flow disturbance. And the jump is stationary.
In other words the supercritical flow regime is an unstable equilibrium, and the supercriti-
cal/subcritical (‘jump’) regime represents a stable equilibrium. – With more friction loss the outflow
depths tend to drift upward (experiments not shown here)

- There is a substantial overshoot in both transient vD(t) and profile vD(x) and a corresponding
undershoot in vF (t), vF (x). This corresponds with observation in real situations.

- A rule of thumb from observations is that the length of the jump zone (in profile D(x) is approx 4...6
times the stationary after-jump depth. This would be 8...12 m for this case. From the simulations
the jump zone length is taken as ≈ 8 m. The difference may be due to the heavy turbulence observed
in the real situations. Note that the steepest flank in the simulations is about 2 m long for 1 m
of depth difference, which may well cause a back-rollover (see remarks in the previous chapter on
locally upstream flow)...

- The downstream wave velocity would be U1 +UF1
≈ 8.8 m/s, whilst the upstream wave velocity of

the jump peak is about 0.36 m/s (taken from the transient vD(t)). It is very slow compared to the
downstream propagation.

- Checking the ‘basic result’ from this section: only the red profile from Fig.5.68 is relevant, as the
blue one is at non-stationary flow, see Fig.5.66. Reading from the profile

D1 := 0.855 m; D2 := 2.033 m → Dm = 1.444 m; → UFm = 3.80 m/s

with
Q

B
= 5.0 m2/s and D1, D2 from above

yields U1 = 5.848 m/s; U2 = 2.459 m/s

and with UFm
F1m

= 1.539 and F2m
= 0.647

finally F1m · F2m = 1.539 · 0.647 = 0.996 (!)

- Also note from the transients and profiles for W and ∆P ∗ that the linear interpolation (standard
for scilab plots) produces quite ragged curves. This indicates that the entry of L := 1.0 m is at the
upper limit. It should be shortened to L = 0.50 m at least, but that would require a longer model
N = 20 → 40 to maintain sufficient windows in time and space. In other words the limit of the
current compartment model is encountered again.

217

5.8.4 Simulation Results

Figure 5.65: C 5: Transient Q(t) for L = 1.0 [m]

Figure 5.66: C 5: Longit.Profile Q(x) for L = 1.0 [m]

218

Figure 5.67: C 5: Transient D(t) for L = 1.0 [m]

Figure 5.68: C 5: Longit.Profile D(x) for L = 1.0 [m]

219

Figure 5.69: C 5: Transient F (t) for L = 1.0 [m]

Figure 5.70: C 5: Longit.Profile F (x) for L = 1.0 [m]

220

Figure 5.71: C 5: Transient W (t) for L = 1.0 [m]

Figure 5.72: C 5: Longit.Profile W (x) for L = 1.0 [m]

221

Figure 5.73: C 5: Transient ∆P ∗(x) for L = 1.0 [m]

Figure 5.74: C 5: Longit.Profile ∆P ∗(x) for L = 1.0 [m]

222

5.9 Case 6: Hydraulic Jump after a Dam

5.9.1 Modeling and Data Set

The bottom shall ramp down from position x = 2 m to position x = 8 m nominally from S = 0.0 m
down to S = −0.45 m, that is with a nominal slope of −75.0 · 10−3. For 0 ≥ x < 2 and beyond for
8.0 ≥ x ≤ Ltot the bottom shall be nominally horizontal (slope zero). To this the friction slope is added,
using as reference values (see cases above): Qr = 50 m3/s; Dr = 2.5 m : Br = 10 m;Ur = 2 m/s.
The GMS-coefficient is set to ks := 70, which is for this particular situation a more realistic value than
ks = 1000, as used in Case 5.
The nominal compartment length is set to L := 1.0 m as above. In order to check the influence of this
choice on the shape and position of the hydraulic jump, two values of shorter L will be applied, that is
L = 0.50 m and L = 0.667 m. However the shape of the bottom must remain the same, at least as a good
approximation. This is achieved by applying a similar algorithm as with the spillway confusor contour
(see the s c5 06 context.sce-listing below).

The inflow is starting at very low flow Q = 2 m3/s. Then flow is raised in a sequence: Q → 10.0,→
20.0,→ 40.0 m3/s. Each step (rather a fast ramp) is applied after steady state conditions are attained.

The outflow is set to the (nominal) GMS-condition from above.

Further a second value of the GMS-coefficient ks := 40 is applied to check the effect on transients and
profiles. This produces a friction effect approx. three times stronger than for the nominal case ks = 70.

5.9.2 Implementation

// s_c5_06_context.sce
// Glf 2017_06_15
// hydraulic jump on inclined & flat bottom
// by fast inflow rise
// outflow by GMS

g = 10.;
Q_0 = 50.0; H_0 = 2.5; kap = 1.0;
lambda0 = 0.40;
//******************

lambda = (1.00)*lambda0;
// lambda = (0.6667)*lambda0;
// lambda = (0.500)*lambda0;
//******************
L = lambda*H_0; S_0 = 0.0; D_0 = H_0 - S_0;
B_0 = 10.; U_0 = 2.0;

N= 20; // no of Vol+Momentum-Segments

//Given: Q_0 and F_0; determine D_0
F_0 = 1.0;
D_0 = ((1/g)*((Q_0/(B_0*F_0))^2))^(1/3);

// GMS-friction coefficient, usual frict.
k_s = 70.;

// k_s = 40.;

// reference bottom slope
Q_r=50.0; B_r=10.0; D_r=2.5; S_r=0.0; U_r=2.0;
R_r = (B_r*D_r)/(B_r + 2*D_r);
I_r = (U_r/(k_s*(R_r)^(2/3)))^2;

// channel inlet geometry
//**
vb_1 = ones(1,((2*N)+1)); vb_2 = zeros(1,((2*N)+1));
vs_1 = vb_1; vs_2 = vb_2;

if lambda == (1.00)*lambda0 then
ik_E = 4; ik_R = 12; delta_b = 0.1000;
elseif lambda == 0.6667*lambda0 then
ik_E = 6; ik_R = 18; delta_b = 0.06667;
else
ik_E = 8; ik_R = 24; delta_b = 0.0500; end

ik_T = ik_E + ik_R;
vib = zeros(1,ik_T);
vd_b = zeros(1,(ik_T));

for ii = 1:ik_R
vd_b(ii) = delta_b; end

vincr_b = vib + vd_b;

for ij = 1:(ik_T)
vib(ij+1) = vib(ij) + vincr_b(ij); end

vb_0 = vib(ik_T);

for ijk = 1:ik_T
nijk = ik_T+1 - ijk; nvib(nijk) = vib(ijk); end

for k8 = 1:ik_T
vb_2(k8) = nvib(k8); vs_2(k8) = nvib(k8); end

vB = B_0*(vb_1);
vs_2 = vs_2 - vb_0*vs_1;
vS0 = (4.5/12.0)*(vs_2);

//
eY = 0.5*H_0*lambda*(1:1:(2*N)+1);

//*************************************

D_min = +0.001; D_max = 40*D_0;
Q_min = +0.001; Q_max = 40*Q_0;

vd0 = ones(1,(2*N+1));
vD0 = D_0*vd0; vH0 = vD0 - vS0;

q0 = 0.04;
vq0 = ones(1,(2*N+1)); vQ0 = q0*Q_0*vq0;

vh0 = ones(1,(2*N+1));
vDdot0=0*vh0; ome=100; P_max=100.0; P_min=0.0;

// Inflow-(_i) boundary cond.
B_in = vB(1); S_in = vS0(1);
D_in = vD0(1); H_in = D_in + S_in;
Q_in = vQ0(1);

// Friction-inclination of bottom
vdelSf = zeros(1,(2*N+1));
vSf = zeros(1,(2*N+1));
for kk=2:2:(2*N),

vRtilda(kk) = ((vB(kk)*vD0(kk))/ ...
(vB(kk)+2*vD0(kk)))^(2/3);

vI0(kk) = (vQ0(kk)/(vB(kk)*vD0(kk)...

223

*k_s*vRtilda(kk)))^2;
vdelSf(kk) = - L*vI0(kk);
vSf(kk) = vSf(kk-1) + 0.5*vdelSf(kk);
vSf(kk+1) = vSf(kk) + 0.5*vdelSf(kk);

end
for k4= 1:1:(2*N+1),

vS(k4) = vS0(k4) + vSf(k4);
vH0(k4) = vH0(k4) + vSf(k4);
vD0(k4) = vH0(k4) - vS(k4);

end

// outflow-(_o) boundary cond
B_o = vB(kk+1); S_o = vS(kk+1);
D_o = vD0(kk+1); H_o = vH0(kk+1);
Q_o = vQ0(kk+1);

// inflow generation
t_st_1 = 260.0; r_1_0=0.04*Q_0; r_1_1=0.20*Q_0;

t_st_2 = 510.0; r_2_0=0.; r_2_1=0.20*Q_0;
t_st_3 = 760.0; r_3_0=0.; r_3_1=0.40*Q_0;

T_fin = 1000.0;

// inflow slew rate
g_st = 100.0; u_up_st = +1.0; u_dn_st = -1.0;
tau_st = 2.0; Q_st_0 = 0.04*Q_0;

// outflow by GMS
g_o = k_s*((I_r)^(1/2));

// Datatransfer to Plots
CC = 21; // no of channels
CN = 1000; // no of clockticks to Tfin
delT = T_fin/CN; // readout-interval for clock ticks
Asize = 1.01*CC*CN;// size of data arrays

// s_c5_06_crunplot
// Glf 2017_06_15

// Hydraulic jump on inclined & flat bottom
stacksize(’max’);
exec(’s_c5_06_context.sce’, -1);
importXcosDiagram(’s_c5_06.zcos’);
typeof(scs_m); scs_m.props.context;
Info = list();
Info = scicos_simulate(scs_m,Info);
//**********************************
for kfig = 1:1:10, clf(kfig); end

vcolor = [5, 2, 3, 4, 1, 6, 9,11,13,15,...
17,19,21,22,25,27,29,32, 2, 5];

T_st = 200.; T_en = T_fin;

f1 = scf(1);
plot2d(Q.time,Q.values,vcolor,rect=[T_st,0.0,T_en,50.]);
xtitle("Q_2 to Q_40"); xgrid(1);

f2 = scf(2);
plot2d(D.time,D.values,vcolor,rect=[T_st,0.0,T_en,3.0]);
xtitle("D_1 to D_39"); xgrid(1);

f3 = scf(3);
plot2d(H.time,H.values,vcolor,rect=[T_st,-1.0,T_en,2.0]);
xtitle("H_1 to H_39"); xgrid(1);

f4 = scf(4);
plot2d(F.time,F.values,vcolor,rect=[T_st,0.0,T_en,4.0]);
xtitle("F_2 to F_40"); xgrid(1);

f5 = scf(5);
plot2d(W.time,W.values,vcolor,rect=[T_st,-1.,T_en,+1.0]);
xtitle("W_1 to W_39"); xgrid(1);

f6 = scf(6);
plot2d(P.time, (P.values - g*D.values), vcolor,...

rect=[T_st,-2.5,T_en,2.5]);
xtitle("deltaP*_1 to deltaP*_39"); xgrid(1);

//***
eX = H_0*lambda*(1:1:N); eXend = 22;
for k6= 1:1:N, vSr(k6) = vS(2*k6-1); end

vT=[t_st_1-10.0,t_st_2-10.0,t_st_3-10.0,T_fin-10.0];
vs = [’0’,’0’,’0’, ’0’];
for k8 = 1:1:4, vs(k8) = msprintf(’%5.0f’,vT(k8));
end; vcolorP=[1,13,2,5,6];

f7 = scf(7); clf(); yQ =Q.values;
vQ_ = [yQ(250,:)’,yQ(500,:)’,yQ(750,:)’,yQ(990,:)’];
plot2d...
(eX’, [vSr,vQ_], vcolorP, rect=[0.,-0.0,eXend,+50.]);
vtitle=["Longit.Profile Bottom (bk) and Q at",...
vs(1),"s (gn),",vs(2),"s (bl)",vs(3),"s (rd) and",...
vs(4),"s (mg)"]; xtitle(vtitle); xgrid(1);

f8 = scf(8); clf(); yD =D.values;
vD=[vSr,yD(250,:)’,yD(500,:)’,yD(750,:)’,yD(990,:)’];
plot2d(eX’, vD,vcolorP, rect=[0.,-1.0,eXend,+3.0]);
vtitle=["Longit.Profile Bottom (bk) and D at",...
vs(1),"s (gn),",vs(2),"s (bl),",vs(3),"s (rd) and",...
vs(4),"s (mg)"]; xtitle(vtitle); xgrid(1);

f9 = scf(9); clf(); yD =D.values;
vH=[vSr,yD(250,:)’+vSr,yD(500,:)’+vSr,...

yD(750,:)’+vSr,yD(990,:)’+vSr];
plot2d(eX’, vH,vcolorP, rect=[0.,-1.0,eXend,+2.0]);
vtitle=["Longit.Profile Bottom (bk) and H at",...
vs(1),"s (gn),",vs(2),"s (bl),",vs(3),"s (rd) and",...
vs(4),"s (mg)"]; xtitle(vtitle); xgrid(1);

f10 = scf(10); clf(); yF =F.values;
vF=[vSr,yF(250,:)’,yF(500,:)’,yF(750,:)’,yF(990,:)’];
plot2d(eX’,vF, vcolorP, rect=[0.,-1.00,eXend,+4.0]);
vtitle =["Longit.Profile Bottom (bk) and F at",...
vs(1),"s (gn),",vs(2),"s (bl),",vs(3),"s (rd) and",...
vs(4),"s (mg)"]; xtitle(vtitle); xgrid(1);

f11 = scf(11); clf(); yW =W.values;
vW=[vSr,yW(250,:)’,yW(500,:)’,yW(750,:)’,yW(990,:)’];
plot2d(eX’,vW, vcolorP,rect=[0.,-1.0,eXend,+1.0]);
vtitle=["Longit.Profile Bottom (bk) and W at",...
vs(1),"s (gn),",vs(2),"s (bl),",vs(3),"s (rd) and",...
vs(4),"s (mg)"]; xtitle(vtitle); xgrid(1);

f12 = scf(12); clf(); yP =P.values - g*D.values;
vP=[vSr,yP(250,:)’,yP(500,:)’,yP(750,:)’,yP(990,:)’];
plot2d(eX’,vP, vcolorP,rect=[0.,-1.0,eXend,+1.4]);
vtitle=["Longit.Profile Bottom (bk) and P-g*D at",...
vs(1),"s (gn),",vs(2),"s (bl),",vs(3),"s (rd) and",...
vs(4),"s (mg)"]; xtitle(vtitle); xgrid(1);

// for assembling logitudinal contours
if lambda == (1.000)*lambda0 then

aD_100=[eX’,vD]; aH_100=[eX’,vH]; aF_100=[eX’,vF];
elseif lambda == 0.6667*lambda0 then

aD_066=[eX’,vD]; aH_066=[eX’,vH]; aF_066=[eX’,vF];
else

aD_050=[eX’,vD]; aH_050=[eX’,vH]; aF_050=[eX’,vF];
end

224

// s_c5_06_contour plot overlays.sce
// Glf 2017_06_15

for kfig = 13:1:15, clf(kfig); end
eXend = 22;

vcolor5 = [1, 13, 2, 5, 6];

f13 = scf(13);
plot2d([aD_050(:,1)],[aD_050(:,2),aD_050(:,3), ...

aD_050(:,4),aD_050(:,5),aD_050(:,6)],...
vcolor5, rect=[0.,-1.0,eXend,+3.0]);

plot2d([aD_066(:,1)],[aD_066(:,2),aD_066(:,3), ...
aD_066(:,4), aD_066(:,5),aD_066(:,6)],...

vcolor5, rect=[0.,-1.0,eXend,+3.0]);
plot2d([aD_100(:,1)],[aD_100(:,2),aD_100(:,3), ...

aD_100(:,4),aD_100(:,5),aD_100(:,6),],...
vcolor5, rect=[0.,-1.0,eXend,+3.0]);

legend("S","Q_0 = 2.0 m3/s","10 m3/s","20 m3/s","40 m3/s");
xtitle("profiles D"); xgrid(1);

f14 = scf(14);
plot2d([aH_050(:,1)],[aH_050(:,2),aH_050(:,3),...

aH_050(:,4),aH_050(:,5),aH_050(:,6)],...
vcolor5, rect=[0.,-1.0,eXend,+2.0]);

plot2d([aH_066(:,1)],[aH_066(:,2),aH_066(:,3),...
aH_066(:,4),aH_066(:,5),aH_066(:,6)],...

vcolor5, rect=[0.,-1.0,eXend,+2.0]);
plot2d([aH_100(:,1)],[aH_100(:,2),aH_100(:,3),...

aH_100(:,4),aH_100(:,5),aH_100(:,6),],...
vcolor5, rect=[0.,-1.0,eXend,+2.0]);

legend("S","Q_0 = 2.0 m3/s","10 m3/s","20 m3/s","40 m3/s");
xtitle("profiles H"); xgrid(1);

f15 = scf(15);
plot2d([aF_050(:,1)],[aF_050(:,2),aF_050(:,3),...

aF_050(:,4),aF_050(:,5),aF_050(:,6)],...
vcolor5, rect=[0.,-1.0,eXend,+4.0]);

plot2d([aF_066(:,1)],[aF_066(:,2),aF_066(:,3),...
aF_066(:,4),aF_066(:,5),aF_066(:,6)],...

vcolor5, rect=[0.,-1.0,eXend,+4.0]);
plot2d([aF_100(:,1)],[aF_100(:,2),aF_100(:,3),...

aF_100(:,4),aF_100(:,5),aF_100(:,6),],...
vcolor5, rect=[0.,-1.0,eXend,+4.0]);

legend("S","Q_0 = 2.0 m3/s","10 m3/s","20 m3/s","40 m3/s");
xtitle("profiles F"); xgrid(1);

Figure 5.75: Main diagram for Case 6: Hydraulic Jump after a Dam

225

5.9.3 Simulation Results

Transients for L = 1.0 m

Figure 5.76: C 6: Transient vQ(t) (top) and vD(t) (bottom)

226

Figure 5.77: C 6: Transient vH(t) (top) and vF (t) (bottom)

227

Figure 5.78: C 6: Transient vW (t) (top) and v∆P ∗(t) (bottom)

228

Some longitudinal Profiles at L = 1.0 m

Figure 5.79: C 6: Profiles for vH(x) (top) and vF (x) (bottom)

229

Figure 5.80: C 6: Profiles for vW (x) (top) and v∆P ∗(x) (bottom)

230

Selection of Profiles for different compartment lengths

Figure 5.81: C 6: Profiles for vH(x) (top) and vF (x) (bottom)
for L = 1.0 m (full line) L = 0.667 m (long dashes) L = 0.50 m (short dashes)

231

Profiles for higher friction (GMS-coefficient ks := 40) at different compartment lengths

Figure 5.82: C 6: Profiles for vH(x) (top) and vF (x) (bottom) with ks := 40
for L = 1.0 m (full line) L = 0.667 m (long dashes) L = 0.50 m (short dashes)

232

5.9.4 Discussion for Case 6

Transients

- It is not evident from the traces if a hydraulic jump (abbreviated to ‘h-j’ in the following) exists
and what its shape and location are.

- The traces of D,H,W,∆P ∗ at around t = 300 s are similar to those in Case 5: There seems to be
an upstream moving h-j.

- Following the step-ups on Q(t) there are strong transients in a time window of ≈ 300 s, especially
on F (with crossings of F = 1) and on ∆P ∗ (up to ±2.5 units) !

Profiles

- Here the h-j is clearly visible on all variables D,H,W,∆P ∗.

- The h-j shows up for flows at very low, at low and at intermediate level. For high flowQ(t) = 40m3/s
the h-j disappears, the dam is submerged in the flow. Both findings correspond qualitatively to
observations on real installations.

- Note that the h-j location moves upstream for increasing flow Q. At about Q ≈ 30 m3/s it reaches
the dam crown and then disappears (simulation results not shown here).

- The length of the h-j in vD, vH is ≈ 2 m at its steepest part and about 3...4 m overall. This does
not vary perceptibly for the three flow levels.

- vF shows a slow increase along the acceleration zone (over the bottom slope), and a sharp downturn
at the h-j start point.

- On vW, v∆ P ∗ the variations between neighboring data points are very large and abrupt. This
indicates that the ‘large lumps’ spacial discretisation applied here seems to be at its end, again.

Effect of selecting L on Profiles, with nominal friction

- The h-j location does not change significantly and is slightly steeper.

- The abrupt turndown on vF is not rounded off (as one would presume). So the starting of the h-j
is still very distinct and only gets more rounded at intermediate flow (Q = 20 m3/s).

- The F numbers are approx. 1.25 at the inflow for the three lower flow levels, but subcritical (≈ 0.7)
at the ‘flooding’ high flow level. There is no large spread of the F -values over the three values of L.
The main effect is from the Q level.

- The basic formula linking the Froude numbers upstream and downstream of the h-j does not apply,
as the flow in the upstream zone is still accelerating, especially for Q = 20 m3/s.

Effect of increased friction ks := 40

- As expected, the rising flank of the h-j is less steep now,

- the starting zone is less abrupt, but not more spread out on x for the L-values.

- The peak values of F are lower, as expected,

- and the effect from L on the size and location of F peak is still weak.

233

Chapter 6

Level Control Design

6.1 Overview

The aim of this chapter is to use the models developed so far to develop a systematic design of level
control loops. This means that classic model based design techniques for linear plant models are to be
applied, such as pole placement for low order models and frequency domain methods (gain and phase
margins) on high order models. In a second step the design result is to be validated on the high order
nonlinear model.
This will be done for three typical operational situations that is control configurations, see Fig.6.1:

[A]

[B]

[C]

Figure 6.1: The three situations [A], [B], [C], see text

[A] Consider an upstream forebay to a hydropower station, where the level at the outflow end is
controlled by acting on the out-flow, that is turbine and weir openings. This situation is known as
‘co-located sensor-actuators’. The dominant disturbance response is on the inflow, the level reference

234

response is mostly not needed in practical cases. This is the typical ‘industry standard’ case.

[B] Consider the same plant layout, but where now the water level near the inflow location needs to
be controlled to a narrow interval, due to specifications from a regulatory agency. From experience
this is a more difficult control problem than situation [A].

[C] Consider the situation typical for ‘irrigation channels’, where there is an additional lateral outflow
located near the lower end of the channel section to supply the irrigated fields. There the water
level is to be maintained within a narrow interval. The actuator then is placed on the inflow to this
channel section, and has to compensate any disturbances on the lateral outflow take. Furthermore
the next downstream channel section is regulated in the same manner. Thus a disturbance on its
lateral outflow will generate eventually the same disturbance on the longitudinal outflow of the
upstream channel section. And this adds to the disturbance on its lateral outflow take.

To keep the investigation focused, the basic channel geometry shall be used, that is with longitudinally
constant rectangular cross section, constant width B and constant depth D. The bottom shall be hor-
izontal (S = const.), as the friction from the GMS-model shall be neglected 1. The main operational
parameter is flow Q, that is the Froude number F . Only subcritical flow is considered (0 ≤ F < 1).
The second main parameter is the model order N . First the basic case for N = 0 (one compartment) is
considered. Then the model with N →∞ (the partial differential equations ‘pde’ model) is investigated.
Next a linearized state space model with variable order N consisting of 2N + 1 compartments is looked
into. Finally the nonlinear time domain model from chapter 3 is considered with N = 20 and with large
and comparatively rapid flow variations.

6.2 The one compartment model

6.2.1 Limitations

This model consists of only one compartment for the mass/volume balance. No sloshing modes and no
travelling waves are considered. So it is valid only for very low frequencies, that is very slow transients.
Nevertheless it is often used in practice, due to its simplicity, see e.g. [10], and therein chap.8.

6.2.2 Modelling

Volume balance: in s.i. units
d

dt
V = Qin −Qout

in ‘per units’ referenced to the local equilibrium
V

Q
· d
dt

V

V
=

Qin

Q
− Qout

Q

deviations in ‘per units’ around the local equilibrium
V

Q
· d
dt

δV

V
=

δQin

Q
− δQout

Q

finally after re-naming variables Tf ·
d

dt
v = qin − qout

- Note that the ‘filling time constant’ Tf is not a constant coefficient, but floats with the local
operating flow Q, and tends to infinity for very low local flow, that is for F → 0.

- Also note that the volume content variable v needs to be replaced by the more directly measurable
state variable d = δD/D

V = B · L ·D
and δV = B · L · δD

into the volume balance Tf ·
d

dt
d = qin − qout

1This reduces the intrinsic damping in the channel model. Thus the resulting loop design will be on the pessimistic side
especially for larger flows Q, and Froude numbers 0� F < 1.

235

As a next step the (local, floating) reference variables used above are replaced by the (constant) design
values for the channel.

Vd instead of V ; Dd instead of D and Qd instead of Q

yielding

→ Vd

V
· Q
Qd
· V
Q
· d
dt

(
δV

V

)
=

(
Q

Qd
· δQin(t)

Q

)
−
(
Q

Qd
· δQout(t)

Q

)
finally

Vd
Qd
· d
dt

(
δD

Dd

)
=

(
δQin(t)

Qd

)
−
(
δQout(t)

Qd

)
with appropriate reference values d:

- Dd is set to the reference value for depth used for the control loop,

- Vd := L tot B Dd with total channel length L tot,

- Qd := B Dd Ud with Qd specified, and

- Fd := Ud/
√
g ·Dd, for instance Fd := 0.40,

- and

T f d =
Vd
Qd

=
L tot B Dd

B Dd Ud
=
L tot

UF

UF
Ud

=
1

Fd

L tot

UF

where L tot/UF is the travelling time of the Froude wave at zero main flow over the total channel
length

Actuator and Sensor spans
The actuator full span 0 ... 100% shall deliver Qd and shall have a linear characteristic.
Further the sensor full span 0 ... 100% is set to Dd

2.

6.2.3 Controller Design

The focus is on case [A] of Fig.6.1, that is u := qout and y := d.

A PI-controller is used in parallel form with time scaling of the integral action to Ti.

u(s) = (y(s)− r(s)) ·
(
kp +

ki
s · Ti

)
; → Gr(s) =

kp · sTi + ki
sTi

Note the sign selection to obtain the negative loop feedback.

The closed loop characteristic equation is

0 = 1 +Gu(s) ·Gr(s) = (s2) +

(
s

kp
T f d

)
+

(
ki

Ti · T f d

)
Using pole placement as the design method to targets: bandwidth Ω, damping rate 2D := 2.0,
and setting Ti := T f d:

0 = s2 + s · (2D · Ω) + (Ω)2

yields k p d = 2D · (Ω · T f d)

and k i d = (Ω · Ti) · (Ω · T f d) := (Ω · T f d)2

Thus both k p d, k i d have fixed values and do not depend on the equilibrium flow Q at the current
operating condition. This simplifies the implementation.
From general experience, suitable values are Ω·T f d = 1.0...2.0, that is k p d = 2...4 and k i d = 1.0...4.0.
Note that sensor and actuator gains are set to unity here, but their actual values must be included in
any application.

2 For practical cases, typically an offset on the sensor zero of up to +50% is implemented to allow
measuring depths above the reference/setpoint

236

6.2.4 Closed Loop Bandwidth Limitation

Theoretically there is no limitation on the closed loop bandwidth Ω with the pole placement method.
But in most practical applications there are a number of small time constants from sensors, actuators,
and from neglected higher frequency dynamics within the process model. In other words the pure
integrator model used so far is only valid for very low frequencies. The higher frequency dynamics will
add additional phase lags.
It is common usage in control system design to replace those higher frequency dynamics by one pure
delay element with unity gain and delay time Tt and place it in series to the integrator element with
time constant T f d. This approach is used in such well known techniques as the Ziegler-Nichols rules
and related ones.

Putting this delay element in series with the pure integrator model from above yields

Gu(s) = k u d · esTt · 1

s · T f d

The delay element will add −90◦ at frequency ωcrit · Tt = π/2 to the −90◦ from the pure integrator,
and thus produce a zero phase margin. In other words ωcrit is the oscillation frequency in rad/sec at the
stability limit with a P-controller.
Clearly the design bandwidth Ω must be selected below ωcrit to produce a sufficient stability margin
(both in gain and phase margins). A practical rule-of-thumb is applying a factor ϕ in the Bode plot

ϕ :=
ωcrit

Ω
from ≈ 8.0 down to ≈ 4.0

Generally, an acceptable closed loop damping is achieved in the given range of ϕ, where higher values of
ϕ produce better damping.

If this were applied blindly to the specific case from above, intuitively taking the traveling time of the
Froude wave at zero flow operation as the delay Tt, and using the relative bandwidth shift rBW from
open loop to closed loop defined by rBW := Ω · T f d :

Tt :=
L

UF
and with T f d :=

Vd
Qd

=
L

Ud
=

L

UF
· UF
Ud

= Tt
1

Fd

from above ωcrit =
π

2
· 1

Tt

also Ω = rBW · 1

T f d
= rBW · 1

Tt
· Fd

→ ϕ · rBW =
ωcrit

Ω
· Ω · T f d = ωcrit · T f d =

π

2
· 1

Tt
· Tt
Fd

=
π

2
· 1

Fd

Inserting numerical values would yield with L = 500, UF = 5.0 and Fd := 0.40:
that is ϕ · rBW = π/0.80 ≈ 4.0,
and also selecting ϕ := 4:

rBW ≈ 1.0; and thus k r d ≈ 2.0; k i d ≈ 1.0;

and T i d := T f d = (L/UF)/Fd = (500/5.0)/0.40 = 250 s

A note of caution:
Note that the basic assumption to this design approach (the delay connected in series to the integrator)
does not hold here. The situation is quite different: For the industry standard case A the control input is
directly located at the level sensor location, so there is ‘no’ delay. But a large delay is on the echo wave
reflected at the inflow end and having twice the distance L tot to travel. So the controller gains calculated
above are far from reliable...
Therefore a new design method is required, based on a much better model. This is done in the next
section.

237

6.3 The infinite number of compartments model, ‘sys inf’

6.3.1 Motivation and overview

This model is based on the partial differential equation (pde for short) for the variables flow Q and depth
D with respect to time t and longitudinal coordinate X.

- The main motivation is to provide a model much closer to the real physics of the plant than the
simplistic first order one from the last section.

- Further the approach through the pde is very often used in the relevant references ([7, 8, 9, 10] and
further references therein).

- It will be shown that this approach produces a transparent and simple procedure for selecting the
gains of the PI-level controller commonly used in industrial projects.

- In addition it produces simple gain scheduling functions in closed form3 as functions of the flow
operating point.

- It also produces acceptable gain values (being within the range from operating experience with the
usual actuator equipment).

- And the procedure covers all three control situations from Fig.6.1.

6.3.2 Modelling

Overview

First the PDE is derived, both at different operating points (Froude numbers F), but without GMS-
friction, in s.i.-units. The final result is given in ‘per unit’ form, referenced to the design point d.
Then the PDE is solved as function of F with zero friction, without upper and lower channel end
boundaries, first for the water flow qd(x, t) and then for the water depth dd(x, t). Next the end boundaries
are inserted, again first for qd and then for dd. Full reflections are assumed here.
The resulting open loop time responses to inflow and outflow steps are shown by simulations. Finally
the corresponding transfer functions are given in symbolic form and frequency responses are shown in
Bode-plots.

Deriving the pde

Assumptions for the channel flow: total length L0, rectangular cross section, constant width B0, constant
depth D0, bottom horizontal (as for zero friction), Froude celerity U0 =

√
g ·D0, and flow Q at operating

point.

Volume Balance for element with longitudinal length ∆L at position X:

z-axis Qz = ∆L B0 Uz = ∆L B0
∂D(X)

∂t

x-axis ∆Q = − ∂Q
∂X

∆L

volume balance Qz
!
= ∆Q

or ∆L B0
∂D(X)

∂t
= − ∂Q

∂X
∆L

finally B0
∂D(X)

∂t
+
∂Q

∂X
= 0

3no need to be developed by time-consuming experimentation during plant startup or by simulations

238

Scaling from ‘s.i.’-units to ‘p.u. d.’-units, using as reference values:
x = X/L0; dd = D/Dd = D/D0; qd = Q/Qd; Fd = Ud/U0 = Qd/Q0;
and Froude wave travelling time at zero flow regime T0 = L0/U0

B0 D0
∂

∂t
dd +

1

L0
Qd

∂ (Q/Qd)

∂ (X/L0)
= 0

L0 B0 D0

Qd

∂dd
∂t

+
∂qd
∂x

= 0

where
L0 B0 D0

Qd
=

L0 B0 D0

B0 D0 Ud
=
L0

Ud
=
L0

U0

U0

Ud
=
L0

U0

1

Fd
= T0

1

Fd

finally

T0
1

Fd

∂dd
∂t

= − ∂qd
∂x

Momentum Balance for element with longitudinal length ∆L at position X:

rate of momentum
∂

∂t
(m|∆LU) = %∆L

∂Q

∂t

pressure force difference ∆Fp = −(%∆L)gD0B0
∂D

∂X

momentum flow difference ∆I = −(%∆L)
∂

∂X

(
Q2

B0D

)
−(%∆L)

1

(B0D)2

[
(B0D)2Q

∂Q

∂X
−Q2B0

∂D

∂X

]

momentum balance (%∆L)
∂Q

∂t
= (%∆L)

(
−B0 gD0

∂D

∂X
− 1

(B0D0)2

[
(B0D0) 2 Q

∂Q

∂X
−Q2B0

∂D

∂X

])

Scaling from ‘s.i.’-units to ‘p.u. d’-units, while taking off (%∆L) on both sides

Qd
∂qd
∂t

= − B0 D0 gD0
1

L0

∂dd
∂x

−

− Q2
d

(B0 D0)2

[
(B0 D0)

1

L0
2
Q

Qd

∂qd
∂x

−
(
Q

Qd

)2

B0D0
1

L0

∂dd
∂x

]

L0 B0 D0 Ud
∂qd
∂t

= − B0 D0 gD0
∂dd
∂x

−

− (B0 D0)2 U2
d

(B0 D0)2
(B0 D0)

[
2
Q

Qd

∂qd
∂x

−
(
Q

Qd

)2
∂dd
∂x

]

or
L0 Ud
gD0

∂qd
∂t

= − ∂dd
∂x

− U2
d

(gD0)

[
2
U

Ud

∂qd
∂x

−
(
U

Ud

)2
∂dd
∂x

]

with coefficients
L0 Ud
gD0

=
L0

U0

Ud
U0

=
L0

U0
Fd = T0 Fd

and with
U2
d

gD0
= F 2

d ;
U

Ud
=

U

U0

U0

Ud
=

F

Fd
;

(
U

Ud

)2

=

(
F

Fd

)2

finally

T0 Fd
∂qd
∂t

= − ∂dd
∂x

− 2 F Fd
∂qd
∂x

+ F 2 ∂dd
∂x

= − (1− F 2)
∂dd
∂x

− 2 F Fd
∂qd
∂x

239

Remarks:
With nonzero friction the momentum balance turns into

T0 Fd
∂qd
∂t

+ cf qd = − ∂dd
∂x

− 2 F Fd
∂qd
∂x

+ F 2 ∂dd
∂x

= − (1− F 2)
∂dd
∂x

− 2 F Fd
∂qd
∂x

And setting both friction and the Froude number to zero, the momentum balance reduces to

T0 Fd
∂qd
∂t

= − ∂dd
∂x

Together with the volume balance equation from above this is the basic (lateral) wave equation pair well
known from textbooks on pde’s.

Solving the PDE’s, with open ends

The two first order PDE’s for the dependent variables dd, qd are

T0
1

Fd

∂dd
∂t

= − ∂qd
∂x

T0 Fd
∂qd
∂t

= − (1− F 2)
∂dd
∂x

− 2 F Fd
∂qd
∂x

The initial conditions at time t = 0 and along the longitudinal variable x are set to zero. And from the
‘open ends on x’, there are no boundary conditions.

Step 1 is to eliminate one of the two dependent variables to obtain one PDE of second order. Here dd
is eliminated, by partial differentiation of the first equation w.r.t. x, and by partial differentiation of the
second equation w.r.t. t, yielding:

T0
1

Fd

∂2dd
∂t ∂x

= − ∂2qd
∂x2

T0 Fd
∂2qd
∂t2

= − (1− F 2)
∂2dd
∂x ∂t

− 2 F Fd
∂2qd
∂x ∂t

Inserting the first equation in the second one,

T0 Fd
∂2qd
∂t2

= +(1− F 2)
1

T0
Fd

∂2qd
∂x2

− 2 F Fd
∂2qd
∂x ∂t

and taking off the common factor Fd, then finally

T 2
0

∂2qd
∂t2

+ 2 F T0
∂2qd
∂x ∂t

− (1− F 2)
∂2qd
∂x2

= 0

Step 2 is a first Laplace transformation with respect to time, t → s and qd → q̃d. Note that initial
conditions are zero. The partial derivatives transfer to normal derivatives.

(1− F 2)
d2q̃d
dx2

− 2 F (sT0)
dq̃d
dx
− (sT0)2 q̃d = 0

Step 3 is a second Laplace transformation with respect to length position x, x → r and q̃d → ˜̃qd. Note
that there are no boundary conditions due to the open ends assumption.

(1− F 2) r2 ˜̃qd − 2 F (sT0) r ˜̃qd − (sT0)2 ˜̃qd = 0

Step 4: The characteristic equation for the roots of r then is

r2 − 2 F

1− F 2
(sT0) r − 1

1− F 2
(sT0)2 = 0

240

and the roots are

r1,2 =
F

1− F 2
(sT0)±

√(
F 2

(1− F 2)2

)
(sT0)2 +

(
1− F 2

(1− F 2)2

)
(sT0)2

=

[
F

1− F 2
± 1

1− F 2

√
F 2 + (1− F 2)

]
(sT0)

=

[
F

1− F 2
± 1

1− F 2

]
(sT0)

r1 = − 1− F
(1− F)(1 + F)

(sT0) = − s T0

1 + F
= −sT1

with T1 =
T0

1 + F
≤ T0 in downflow direction at position x = +L from the inflow point at x = 0

r2 = +
1 + F

(1− F)(1 + F)
(sT0) = + s

T0

1− F
= +sT2

with T2 =
T0

1− F
≥ T0 in upflow direction at position x = −L from the inflow point at x = 0

Step 5 is the inverse L-Transformation from r → x, and ˜̃qd → q̃d with the roots from above

q̃d1 = er1 = e−sT1 ; q̃d2 = er2 = e+sT2

Step 6 is the inverse L-Transformation from s → t, and q̃d → qd(t ± L). The transfer function from
Step 5 is a pure delay. Thus the time response is a pure time shift of the inflows in the downstream and
upstream direction.

The Froude wave moves downstream with speed C1 = U + UF = U + U0, reaching the point at X = L
at time

X/C1 → L/C1 = L/(U0 + U) = (L/U0)/(1 + F) = T0/(1 + F) := T1.

In the upstream direction, the Froude wave moves with speed C2 = +U −UF , and thus reaches the point
at X = −L at time

−L/C2 = (−L/− UF)/(1− F) = T0/(1− F) := T2.

Thus the responses of qd(X, t) at a distance ±X = ±x · L from the inflow point (at X = 0) are

qd1 = qdin1
(t)(t− X

C1
) = 0.5 · qdin1

(t) (t− x · T1);

qd2 = 0.5 · qdin2
(t) (t− (−x · T2))

Remarks
Observe that for F → 1.0 the upstream travelling time goes to infinity, T2 = T0/(1 − F) → ∞, which
is to be expected...
Note that for F → 0 this is the d’Alembert case, which is well known from textbooks on the (lateral)
wave equation. There the total inflow is split equally to the downstream and upstream directions,
qdin2

= −qdin1
.

Step 7 is to calculate the step increase of dd due to the step increase in flow qd. This is done for the
downstream case by way of the volume balance at time T1:

∆V |t=T1 = ∆D1 B L = ∆Q1 T1 → ∆D1

Dd
B L Dd = ∆Q1 T1

∆D1

Dd
=

∆Q1

B L Dd
·
(
L

UF

1

1 + F

)
=

∆Q1

Qd

Qd
B Dd

·
(

1

UF

1

1 + F

)
=

∆Q1

Qd

B Dd Ud
B Dd

·
(

1

UF

1

1 + F

)
=

∆Q1

Qd

Ud
UF
· 1

1 + F
=

∆Q1

Qd
· Fd ·

1

1 + F

241

that is dd1 = qd1
Fd

1 + F
; and correspondingly dd2 = qd2

Fd
1− F

Step 8 Fig.6.2 illustrates the results for F = 0 and F = Fd = 0.40.

[a]

[b]

-1.0 +1.00.0

-0.60 +1.40

q_d_1q_d_2

d_d_2 d_d_1

q_d_2 q_d_1

d_d_2
d_d_1

1.01.0

1.0 1.0

0.400.40

0.286

0.667

q_d

d_d

q_d

d_d

F = 0.40

F = 0.0

0.0 +1.0-1.0

Figure 6.2: Flows and Depths downstream (to the right) and upstream (to the left)
snapshot taken at time t = T0

[a] for F = 0 (top), [b] for F = 0.40 (bottom)

242

Introducing the boundary conditions at the upper and lower channel end

First the flow and volume content will be investigated, and then the resulting depth changes.

For the flow the analysis starts at the upper end, and continues with the flow to the lower end.

At the inflow boundary it is assumed that up to t = −0 all flow deviations qd1 , qd2 and the disturbance
inflow q1z are zero. At t = +0 the disturbance inflow q1z changes stepwise, and continues at the same step
height for all times. The disturbance inflow is placed at the upper end of the channel. Thus no upstream
travelling wave is possible (in contrast to the open-end model of the preceding subsection), and the full
inflow disturbance will travel downstream. It reaches the lower end of the channel delayed by T1, that is
at time t = T1, now as q1out

.

Consider first the full flow disturbance being reflected fully (no leakage, no other outflows) and instan-
taneously (all of it at the same time instant) at the lower end boundary. Then, in the same manner as
the upstream flow in the open-end model from above, it will travel upstream as a moving step function,
until it reaches the upper end, delayed by T2, that is at t = T1 + T2 = TE (echo delay time TE). There it
gets reflected fully and instantaneously (same reflection properties here as at the lower end boundary) in
the downstream direction. It meets the continuing constant disturbance inflow q1z and adds itself to it.
(It shall have zero back-effect on the inflow). Thus the flow deviation travelling downstream is 2 · q1z .

Thus the cycle repeats itself, and after a second echo delay time, the next flow deviation will be of size
3 · q1z

, and so on. In other words the volume content deviation vd(t) of the channel will increase by time
steps of length TE and step height TE · q1z . This is similar to the output of a discrete time integrator
module I(z) with a step input. This basic notion will be very helpful to start the systematic design of a
feedback controller.

Consider now a nonzero outflow deviation q2u
at the lower boundary, typically from an actuator move-

ment. Then the flow into the upstream leg of the model above is modified to q2in = q1out − q2u

Note the sign convention here: For an increased actuator outflow (q2u > 0) the inflow to the upstream
leg is reduced. — Then the argument runs as above. Now the travelling wave delivers q2in

delayed by T2,
and as q2out

to the upper boundary, where it is added to the inflow deviation q1in
, and so on...

Next the depth changes dd at the inflow and the outflow boundaries are considered. Both the GMS-
friction and the channel bottom slope have been set to zero. Thus the deviations in depth dd1 , dd2 turn
into the deviations of surface level, and therefore can be used as ‘measured process outputs’ yd1 , yd2 for
control purposes 4

Consider the ‘industry standard’ situation, case [A] from Fig.6.1. The relevant level signal is yd2 at the
outflow end. And the level sensor shall be placed a comparatively short distance ∆L upstream of the
outflow boundary. Typically this would be ∆L ≈ B.
Then the first step input to the sensor is the downstream travelling wave front with deviation dd1 in
‘p.u. d’. After a short delay ∆L/(U0 + U) the wave front gets reflected instantaneously at the lower
boundary wall. There the outflow q2u

gets subtracted. And the resulting flow deviation q2in
travels

upstream with a level deviation dd2 . This is detected by the level sensor after the additional delay
∆L/(U0 − U).
Now let ∆L→ 0. Then the time delays vanish, and the deviation sensor signal yd2 in ‘p.u. d’ is

yd2 = dd1 + dd2 = q1out ·
Fd

1 + F
+ q2in ·

Fd
1− F

= q1out
· Fd

1 + F
+ [q1out

− q2u
] · Fd

1− F

Correspondingly for the sensor yd1 at the inflow end, to be used in situations [B] and [C] from Fig.6.1:

yd1 = dd1 + dd2 = q1in
· Fd

1 + F
+ q2out

· Fd
1− F

= q1in
· Fd

1 + F
+ (q1in

+ q1z
) · Fd

1− F

4Note that scaling back into ‘s.i.’-units is required in practical applications

243

Illustrating the results by simulation

First the system layout is visualized by signal flow graphs, Fig.6.3, and then by implementation in a
Scilab/Xcos diagram, Fig.6.4, with simulation results in Fig.6.5, Fig.6.6

delay T_dn

delay T_up

q_1_out

+

+

+

q_1_z

q_1_in

q_2_in q_2_out

_

q_2_u

ks_dn

ks_up

ks_dn

ks_up

+

+

+

+

h_in

h_out

Figure 6.3: Signal flow graphs for flows qd (left) and with added measured outputs for control yd (right)

Figure 6.4: Scilab diagram of the process with no control, s c6 01 0 01.zcos

Remarks: Note that this basic layout delivers the measurable depths/levels at both ends of the channel.
And that is where the level sensors are placed in nearly all application cases.
If a sensor is placed in an intermediate position X with 0 < X < L, because the level signal is needed
there for control purposes, then the delay blocks in both the downstream and upstream paths must each
be broken into two separate delay blocks where distance L is broken into X and L−X and corresponding
delay times T X and T (L −X), both for the up and dn paths. The actual level signal at position X
then is generated by superposition with coefficients ks dn and ks up (as for the channel end positions).
And if further the travelling wave fronts shall be observed over the full length of the channel at interme-
diate positions k · ∆L for k = 0, ..., L/∆L, then the downstream and upstream blocks must be broken
into a corresponding number of delay elements with ∆T = ∆L/(UF · (1± Fd))5.

5Note the relation to the finite difference solution of the pde (re. upper limit of time step), see [1],[2]

244

.sce file for ‘context’

// s_c6_01_0_1_context.sce
// levels response to inflow & outflow steps
// all control loops open
// Glf 2017.06.15
L = 500;
U_F = 5.0;
F_d = 0.40;

// select Froude number
U = 2.0;
U = 0.02;

F = U/U_F;

T_up = (L/U_F)/(1-F);
T_dn = (L/U_F)/(1+F);
T_E = T_up + T_dn;

ks_dn = F_d/(1+F);
ks_up = F_d/(1-F);

gP = 1.0 - 0.000;

ta = 0.10;

// inflow
// Tq = 1.0; zq0 = 0.0; zq1 = 1.0;

Tq = 1.0; zq0 = 0.0; zq1 = 0.0;
// outflow
// Tq_out = 1.; qout0 = 0.0; qout1 = 0.0;

Tq_out = 1.; qout0 = 0.0; qout1 = 1.0;

T_fin = 450;
CN = 3000;
delT = T_fin/CN; // readout clock ticks

bufsize = 90000;

// Datatransfer to Plots
CC = 3; // no of channels 2+1 for time
Asize = 1.01*CC*CN; // size of data arrays

.sce file for ‘run’ and ‘plot’

// s_c6_01_0_01_crunplot
// Glf 2017.06.15
//
stacksize(’max’);
exec(’s_c6_01_0_01_context.sce’, -1);
importXcosDiagram(’s_c6_01_0_01.zcos’);
typeof(scs_m); scs_m.props.context;
Info = list();
Info = scicos_simulate(scs_m,Info);
//**********************************

for kfig = 1:1:1, clf(kfig); end

vcolor = [5, 2];

f1 = scf(1);
plot2d(H.time,H.values,vcolor,...

rect=[0.,-2.4,T_fin,0.1]);
xtitle([’h (t) , response to q_out =’,...
msprintf(’%3.1f’,qout1),...
’and to q_in =’,msprintf(’%3.1f’,zq1),...
’ , Froude F = ’,msprintf(’%5.3f’,F)]);

xgrid(1);
legend(’h_in’, ’h_out’,4)

Figure 6.5: level time responses of the controlled process
for F = 0.004, to inflow z (left), to outflow u (right)

The delay times from the plots are Tdn = 99.5s and Tup = 100.4s with TE = 200s, and the step heights
are for hin = 0.3984 and hout = 0.8000, as expected.

245

For F = Fd = 0.40 the delay times from the plots are Tdn = 71.4s, Tup = 166.7s and TE = 238.1s, with
step heights for hin = 0.286 and hout = 0.286 + 0.666 = 0.952, again as expected.

Figure 6.6: level time responses of the controlled process
for F = Fd = 0.4000, to inflow z (left), to outflow u (right)

Transfer functions and frequency responses for the plant without controllers

The focus here is on the situation case [A]. The delay elements shall be characterised by their transfer
functions, Gdn(s), Gup(s). Then reading from the positive feedback loop in Fig.6.3 yields for the transfer
function (TF for short) from the control outflow q2u

to the outflow from the downstream leg q1out
:

q1out =
Gup ·Gdn

1.0 − Gup ·Gdn
· (− q2u)

And for the ‘measured output’ hout

hout = ksdn · q1out
+ ksup · (q1out

− q2u
)

= (ksdn + ksup) · q1out
+ ksup · (− q2u

)

that is

hout = (ksdn + ksup) ·
Gup ·Gdn

1.0 − Gup ·Gdn
· (− q2u) + ksup · (− q2u)

→ hout
(− q2u

)
= (ksdn + ksup) ·

Gup ·Gdn
1.0 − Gup ·Gdn

+ ksup

= (ksdn) · Gup ·Gdn
1.0 − Gup ·Gdn

+ (ksup) ·
(

Gup ·Gdn
1.0 − Gup ·Gdn

+ 1.0

)
= (ksdn) · Gup ·Gdn

1.0 − Gup ·Gdn
+ (ksup) ·

(
1

1.0 − Gup ·Gdn

)
hout =

(ksdn) ·Gup ·Gdn + (ksup)

1.0 − Gup ·Gdn
· (− q2u

)

Similarly for the TF from the disturbance inflow q1z
to hout:

hout =
(ksdn + ksup) ·Gdn
1.0 − Gdn ·Gup

· (+ q1z
)

246

And finally by superposition:

hout =
(ksdn) ·Gup ·Gdn + (ksup)

1.0 − Gup ·Gdn
(− q2u

) +
(ksdn + ksup) ·Gdn
1.0 − Gdn ·Gup

· (+ q1z
)

For the situation case[B], the TF’s are needed for hin as well. Following the same path as above produces

hin =
(ksdn) + (ksup) ·Gdn ·Gup

1.0 − Gdn ·Gup
· (+ q1z

) +
(ksdn + ksup) ·Gup
1.0 − Gup ·Gdn

· (− q2u
)

and the TF for measured output hout is the same as for case [A].

Finally for the situation case [C] the inputs must be exchanged while the signs stay the same:

q1z[B]
→ q1u[C]

and q2u[B]
→ q2z[C]

The result is:

hin =
(ksdn) + (ksup) ·Gdn ·Gup

1.0 − Gdn ·Gup
· (+ q1u

) +
(ksdn + ksup) ·Gup
1.0 − Gup ·Gdn

· (− q2z
)

hout =
(ksdn + ksup) ·Gdn
1.0 − Gdn ·Gup

· (+ q1u
) +

(ksdn) ·Gup ·Gdn + (ksup)

1.0 − Gup ·Gdn
(− q2z

)

Discussion

• Inserting the pure delay elements and thus defining GE and TE :

Gdn ·Gup = e−i ωTdn · e−i ωTup = e−i ω(Tdn+Tup) → GE = e−i ω(TE)

• The TF’s share the common factor Go

Go =
1

1−GE
=

1

1− e−i ω(sTE)
=

1

1− (cos(ωTE)− i sin(ωTE))

Points of interest are ωTE = k · π ± δ(ωTE) for k = 0, 1, 2, ...:

For k = 0

Go →
1

1− (cos(ωTE)− i sin(ωTE))
≈ 1

1− 1 + i δ(ωTE)
= −i 1

δ(ωTE)

which is the transfer function of a standard open integrator element.

For k = 1, 2, ...

Go → (1− cos(ωTE)) + i sin(ωTE)

(1− cos(ωTE))
2

+ sin2(ωTE)
=

(1− cos(ωTE)) + i sin(ωTE)

1− 2cos(ωTE) + cos2(ωTE) + sin2(ωTE)

=
1

2

(1− cos(ωTE)) + isin(ωTE)

1− cos(ωTE)

For k = 1→ cos(ωTE) = −1.0; sin(ωTE) = 0.. Then Go = 1+1
2+2 + i 0 = 0.50 + i 0.

For k = 2 set cos(ωTE) ≈ +1.0− 0.5(δ(ωTE))2; sin(ωTE) ≈ 0.0 + δ(ωTE) then:

Go

∣∣∣
k=2

= 0.5 (1.0− i +ωTE
1− 0.5(ωTE)2

) → 0.5 (1.0− i δ(ωTE)

1− 1 + ·0.5 δ(ωTE)2
) = 0.5 (1.0− i 0.5

δ(ωTE)
)

247

At the zero crossover of δ(ωTE) the imaginary part of Go jumps from +i ∞ to −i ∞ and thus
connects to the case of k = 0.
This generates the lowest resonance. Its frequency is at ωr1TE = 2 π. For F = 0 with TE =
2 ·L/UF = 200 s, this is at ωr1 = 3.14 · 10−2rad/s (to be checked with the results of the following
.sce-file...). — Note that the next following resonances will be produced by k = 4, 6, 8, ...

For F = 0.40, the lowest resonance frequency moves down to 2.640 ·10−2 rad/s, due to the increase
of TE from 200s to 238s.

• Consider now the TF from the outflow disturbance input + q2u
:

hout =
(ksdn) ·Gup ·Gdn + (ksup)

1.0 − Gup ·Gdn
· (− q2u)

with the additional factor Gu(s):

Gu = (ksdn) ·Gup ·Gdn + (ksup) = ksup ·
(

1 +
ksdn
ksup

·GE
)

For F = 0, note that ksdn = ksup = ks = 0.40 and

Gu = ks · (1 + GE)

For k = 1, 3, ... then cos(k π) = −1.0 and sin(k π) = 0.0

Gu = ks · (1 + cos(ωTE)− i sin(ωTE)) = ks · (1 + cos(k π)− i sin(k π)) = 0.0 + i 0.0

This generates the anti-resonances, at values k = 1→ 1.57 · 10−2 rad/s, k = 3→ 4.71 · 10−2 rad/s,
etc. The gains at the antiresonance frequencies are zero, that is they dip to −∞ [db] in the Bode
plot. The phase shifts jump at the antiresonance locations from −π/2 to +π/2, with the interleaved
phase shifts at the resonance locations jumping back from +π/2 to −π/2.

For F = 0.40 the lowest anti-resonance moves down to 1.32 · 10−2 rad/s. Due to the difference
in ksup > ksdn there is now a contribution of the real part > 0 in Gu. In other words the gain
spectrum will no longer dip to − ∞ at the anti-resonance locations, but stay at a minimum level
of ≈ −16 db. The detailled calculations are omitted for brevity.

• Consider finally the TF from the inflow disturbance input + q1z :

hout = (ksdn + ksup) ·
Gdn

1.0 − GE
· (+ q1z

)

that is
Gz = (ksdn + ksup) ·Gdn = (ksdn + ksup) · (cos(ωTdn)− i sin(ωTdn))

and for F = 0

Gz = 2 · (ks) · (cos(ωT0)− i sin(ωT0)) with |Gz| = 2.0 and arg(Gz) = −ω · T0

Here the numerator polynomial Gz does not contribute any anti-resonances. Thus the overall gain
contains only the resonance spectrum of the basic factor 1/(1−GE). However Gz adds a continuously
increasing negative phase shift to the periodic phase plot of 1/(1−GE).
And the same holds for F = 0.40.

248

Frequency responses for situation case [A], open loop: .sce file

// s_c6_01_0_02.sce
// Glf 2017_06_15
// plant with no control,
// output: level at outflow point
// inputs: flow through weir at outflow point
// additional flow at inflow point

// plant data
//**************

L = 500; U_F = 5.0;

// select flow operating point
// U = 2.00;

U = 0.02;
F = U/U_F; F_d = 0.40;

// Froude wave traveling time
T_dn = L/(U_F)*(1/(1+F)); T_up = L/(U_F)*(1/(1-F));
T_E = T_dn + T_up; T_0 = 2*L/U_F;

// Froude wave height
ks_dn = F_d/(1 + F); ks_up = F_d/(1 - F);
ks_E = ks_dn + ks_up;

// frequency bounds
vOMmin = (0.030)/T_0; vOMmax = (30.0)/T_0;
vOMstep=0.010/T_0; vOM=(vOMmin :vOMstep :vOMmax);

D_dn=%e^(-imult(vOM*T_dn)); D_up=%e^(-imult(vOM*T_up));
D_E = %e^(-imult(vOM*T_E));

rei = ones(1,length(vOM)); iei = zeros(1,length(vOM));
cei = rei + imult(iei);

// ’zero losses’:
kap = 1.0 - 0.0;

// outflow disturbance Frequ Response
//***********************************
oF_u=ks_up.*(cei+(ks_dn/ks_up).*D_E)./(cei-kap.*D_E);
[ophi_u,odb_u] = phasemag(oF_u,"c")

// inflow disturbance Frequ Response
//***********************************
oF_z= + (ks_dn + ks_up).*(D_dn)./(cei - kap.*D_E);
[ophi_z,odb_z] = phasemag(oF_z,"c")

// Bode plots
//**************
f1 = scf(1); clf();
plot2d(vOM,[odb_u’,odb_z’],logflag = "ln",style=[2,5],...

rect=[vOMmin,-40., vOMmax, +40.0]); xgrid(1);
legend(’h_out [db] for input q_2_u’,...

’h_in [db] for input q_2_u’,3);

f2 = scf(2); clf();
plot2d(vOM,[ophi_u’,ophi_z’],logflag="ln",style=[2,5],...

rect=[vOMmin,-900., vOMmax, +100.0]); xgrid(1)
legend(’h_out [phi] for input q_2_u’, ...

’h_in [phi] for input q_2_u’,3);

Figure 6.7: Bode plots for hout (blue) and for hin (red) from control outflow,
(left) for F = 0.004, (right) for F = Fd = 0.40

249

6.3.3 Control Design, Overview

The ‘industry standard’ situation case [A] is considered first. Initially a P-controller is designed. It is then
augmented to a PI-controller. Case [B] is considered next and a PI-controller is designed, and then the
same for case [C].

6.3.4 Case [A]: Designing a basic P-controller

Fig.6.8 shows the block diagram of the control system, by extension of Fig.6.3.

ks_dn

ks_up

ks_dn

ks_up

+

+

+

+

h_in

h_out

+

_ r_out
k_p

Figure 6.8: Block diagram for P-control path (blue) of h out by control outflow q 2 u,
with controller gain k p. Notice the internal path (red), see text below

Note that the red path internal to the process with gain +1.0 and the control loop negative feedback
with gain − ks dn · k p act in parallel.

They may even cancel, for r out = 0.0 and for

+1.0 − ks dn · k p !
= 0.0

- Then the input path to the T up-block is zero, and thus the contribution with gain ks up to the
measured value h out is zero. This is independent of the current value of q 1 out. This is the so-called
‘impedance matching’ special case, mentioned by Litrico and Fromion in [7].

- The second effect is that the positive feedback loop is cut open. In other words the resonances
discussed in the previous subsection are no longer present! And the loop transfer function 1.0/1.0−
GE degenerates into a series connection of the two blocks with T dn and T up, that is into GE .

- and if r out 6= 0, then the response is h out = GE · ks dn · r out .

- Further note that this effect holds also if the two blocks are no longer pure delays, but may be high
order transfer functions (as shall be discussed in the following sections).

- Also note that the relevant process gain ks dn is a known function of the current operating point
(D, Q):

ks dn =
Fd

1 + F
→ k p :=

1 + F

Fd
for the ‘impedance matching’ case

which is a neat and compact function for gain scheduling to different operating conditions. And by
Fd it covers different design water depths and design flows as well.

- Finally typical values for k p are well within the span from practical experience at around 4.0,
for instance for Fd = 0.40, and for actual flow at design flow (F = Fd) results in

k p = 1+Fd

Fd
= 1.40

0.40 := 3.5.

250

This approach will be investigated in more detail next, starting with the TF and then by simulations.

Transfer function analysis of the P-control loop for case [A]

Control action with P-controller (note the sign convention to obtain negative feedback). The aim is to
gain deeper insight into the effect of the individual components.

q 2 u = k p · (h out− r out)

that is h out = k p ·
[
−ks up+ ks dn GE

1.0−GE

]
· h out

+ k p ·
[
+
ks up+ ks dn GE

1.0−GE

]
· r out

+ (ks dn+ ks up)
Gdn

1.0−GE
· q 1 z

h out ·
[
1.0 + k p · ks up+ ks dn GE

1.0−GE

]
= k p ·

[
+
ks up+ ks dn GE

1.0−GE

]
· r out

+ (ks dn+ ks up)
Gdn

1.0−GE
· q 1 z

h out · [1.0−GE + k p · ks up+ k p · ks dn GE] = (k p ks up) up

[
1.0 +

ks dn

ks dn
GE

]
· r out

+ [(ks dn+ ks up) Gdn] · q 1 z

h out · [(1.0 + k p · ks up)− (1.0− k p · ks dn) GE] = (k p ks up) up

[
1.0 +

ks dn

ks dn
GE

]
· r out

+ [(ks dn+ ks up) Gdn] · q 1 z

finally

h out =
k p ks up

1.0 + k p ks up
·

1.0 + ks dn
ks dn GE[

1− 1.0−k p ks dn
1.0+k p ks up GE

] · r out+ ks dn+ ks up

1.0 + k p ks up
· Gdn[

1− 1.0−k p ks dn
1.0+k p ks up GE

] · q 1 z

Discussion

* the common factor is now

Gc =
1.0[

1.0− 1.0−k p ks dn
1.0+k p ks up GE

]
- for k p = 0 again

Gc =
1.0[

1.0− 1.0−0. ks dn
1.0+0. ks up GE

] → 1.0

1.0−GE

- for 0 < k p < 1.0/ks dn that is k p · ks dn = ε with 0 < ε� 1.0

Gc =
1.0[

1.0− 1.0−ε
1.0+ε ks up

ks dn

GE

] ≈ 1.0

1.0− (1.0− ε) GE

This can be interpreted as a small leakage at the lower channel end. It reduces the resonance
peaks from +∞ (this can be seen by the approach from above at frequencies ωTE = k ·π with
k = 2, 4, ...).

- for k p = 1.0/ks dn

Gc =
1.0[

1.0− 1.0−1.0
1.0+1.0 ks up

ks dn

GE

] → 1.0

1.0− (1.0− 1.0) GE
= 1.0

that is the ‘resonance generator’ from the denominator is suppressed indeed.

251

- for k p > 1.0/ks dn

Gc =
1.0[

1.0 + k p·ks dn−1.0
k p·ks up+1.0 GE

] =
1.0

1.0 + ε GE

Thus the resonance peaks stay suppressed for increasing k p. Note that for increasing F -values
the weight k p · ks up of GE decreases, and thus decreases the contribution of GE in the
denominator of Gc, which decreases the resonance peaks further. – Also Gc in its last form
may be seen as a the typical TF of a closed loop with εGE is the TF of the open loop. Thus
stability and damping of the closed loop may be investigated on the Nyquist plot (gain and
phase margin). Let GE := exp(−iωTE) then its Nyquist contour is a circle centered at the
origin with radius ε · 1.0.

The table collects the numerical results for G open = ε · 1.0 at ωTE = π for three values of F :

k p|F=0 2.5 4.0 6.0 8.0 ∞
k p · ks dn 1.0 1.60 2.40 3.20 ∞
F = 0 0.0 −0.2308 −0.4118 −0.5238 −1.0
F = 0.04 0.0 −0.2195 −0.3889 −0.4925 −1.0

F = Fd = 0.40 0.0 −0.1268 −0.2121 −0.2598 −1.0

Thus the oscillatory stability limit is at k p→∞. Also the value for G open approx. doubles
for F = 0 → F = 0.40. A practical limit to avoid an excessive oscillatory response would be
at |G open| ≤ 0.25, that is at very low flow conditions k p · ks dn ≤ 1.60 and at design flow
F = Fd = 0.40 k p · ks dn ≤ 3.0.6

* The numerator polynomials for both the reference input r out and the disturbance input q 1 z
are the same as in the open loop case. Thus the anti-resonances in the reference response are not
modified by the gain k p, which is to be expected from the general case of control loop with zeros
in the numerator. Also the disturbance response produces no anti-resonances, it is the open-loop
TF GE .

* And the gain factors

for the reference response
k p ks up

1.0 + k p ks up
and the disturbance response

ks up+ ks dn

1.0 + k p ks up

are changed by k p in the typical manner for such P-control loops. Note that here ks up plays the
dominant role.

* Finally note that these conclusions are also valid for the open-loop transfer functions Gi(s) from
the high order compartment models (see the following sections).

Frequency responses

This is to confirm and visualise the results of the analysis above, using the pure delay elements in the
process model.

.sce file

// s_c6_01_1_01
// Glf 2017_06_15
// case [A]: plant with P-controller
// controlled variable: outflow level
// control variable: flow at outflow point
// inputs: level reference & inflow

for kFig = 1:1:2, clf(kFig); end
// plant data
//**************

L = 500;

U_F = 5.0;

// select flow operating point
U = 2.00;

// U = 0.20;
U = 0.02;
F = U/U_F; F_d = 0.40;

//Froude wave traveling time
T_dn = L/(U_F)*(1/(1+F));
T_up = L/(U_F)*(1/(1-F));
T_E = T_dn + T_up; T_0 = 2*L/U_F;

6Note that the typical Ziegler-Nichols rule of |G open| = 0.50 assumes a different form of the plant Nyquist contour !

252

// Froude wave height
ks_dn = F_d/(1 + F);
ks_up = F_d/(1 - F);
ks_E = ks_dn + ks_up;

// select P-controller gain kp
//****************************

kp = 0.0600*(1/F_d)*(1.0+F);
// kp = 1.000*(1/F_d)*(1.0+F);

kp = 1.600*(1/F_d)*(1.0+F);

// frequency bounds
vOMmin = (0.40)/T_0;
vOMmax = (40.0)/T_0;
vOMstep = 0.005/T_0;
vOM = (vOMmin : vOMstep : vOMmax);

D_dn = %e^(-imult(vOM*T_dn));
D_up = %e^(-imult(vOM*T_up));
D_E = %e^(-imult(vOM*T_E));

rei = ones(1,length(vOM));
iei = zeros(1,length(vOM));
cei = rei + imult(iei);

// ’zero losses’:
kap_E = 1.0 - 0.00;

// closed loop
gs_dn = (ks_dn*kp); gs_up = (ks_up*kp);
Np = (cei + (gs_dn/gs_up)*kap_E.*D_E);
Dp = (cei-((1.0-gs_dn)/(1.0+gs_up))*kap_E.*D_E);

cF_r = (gs_up/(1+gs_up))*Np./Dp;
cF_z = (ks_E/(1 + gs_up))*D_dn./Dp;

// Bode
[cphi_r,cdb_r] = phasemag(cF_r,"c");
[cphi_z,cdb_z] = phasemag(cF_z,"c");

f1 = scf(1);
plot2d(vOM,[cdb_r’,cdb_z’],logflag = "ln",style=[2,5],...

rect=[vOMmin,-60., vOMmax, +20.0]); xgrid(1);
legend(’h_out [db] from reference input r_2_u’,...

’h_out [db] from inflow q_1_z’,3);

f2 = scf(2);
plot2d(vOM,[cphi_r’,cphi_z’],logflag="ln",style=[2,5],...

rect=[vOMmin,-800.,vOMmax, +100.0]); xgrid(1);
legend(’h_out [phi] from reference input r_2_u’,...

’h_out [phi] from inflow q_1_z’,3);

Figure 6.9: Bode plots for P-control of of hout (blue) and for hin (red) from control outflow,
(left) for F = 0.004, (right) for F = Fd = 0.40
small leakage at outflow, simulated by k p · ks dn = 0.060

Discussion
Compared to Fig.6.7, Fig.6.9 shows the reduction of the resonance peaks of the disturbance response the
due to the small leakage at the outflow.
And Fig.6.10 documents the further reduction of the resonance peaks in the reference response. The gain
of the disturbance response is flat for the ‘impedance matching’ case at −7.96 db.

253

Figure 6.10: Bode plots for P-control of hout (blue) and for hin (red) from control outflow,
(left) for F = 0.040, (right) for F = Fd = 0.40
(top) k p · ks dn = 1.00 ‘impedance matching’, (bottom) k p · ks dn = 1.60

254

Simulation results

Figure 6.11: Case [A]: Scilab diagram of the P-controlled loop

.sce file for ‘context’

// s_c6_01_1_02_context.sce
// case [A]
// inflow disturbance step; utflow level reference step
// P-controller for outflow level on outflow actuator
// Glf 2016_10_12

L = 500;
U_F = 5.0;

// select Froude number
// U = 2.0;

U = 0.20;

F_d = 0.40; F = U/U_F;

// delay times
T_up = (L/U_F)/(1-F);
T_dn = (L/U_F)/(1+F);
T_E = T_up + T_dn;
bufsize = 1000*T_E/2;

// no losses
gP = 1.0 - 0.00;

// time constant on inputs; on actuator
ta = 2.0; tau = 0.1*ta;

// Froude wave heights
ks_dn = F_d/(1+F);
ks_up = F_d/(1-F);
ks_r = F_d;

// reference step
Tr = 2000.; rh0 = 0.0; rh1 = 1.0*ks_r;

// inflow steps
Tq_1 = 10.0; zq0 = 0.0; zq1 = 1.0;
Tq_2 = 1000.0; zq0 = 0.0; zq2 = -1.0;

// P-controller for out-level on outflow
kp = 1.00*(1/F_d)*(1+F); // imped.match.

// kp = 1.60*(1/F_d)*(1+F);

T_fin = 4000;
CN = 8000;
delT = T_fin/CN;//readout clock ticks

// Datatransfer to Plots
CC = 6; // no of channels 5 + 1 for time
Asize = 1.01*CC*CN; // size of data arrays

.sce file for ‘run’ and ‘plot’

// s_c6_01_1_02_crunplot
// Glf 2017_06_15
//
stacksize(’max’);
exec(’s_c6_01_1_02_context.sce’, -1);
importXcosDiagram(’s_c6_01_1_02.zcos’);
typeof(scs_m); scs_m.props.context;
Info = list(); Info = scicos_simulate(scs_m,Info);
//**********************************
for kfig = 1:1:1, clf(kfig); end

vcolor = [5, 2, 1, 11, 13];

f1 = scf(1);
plot2d(H.time,H.values,vcolor,rect=[0.,-0.80,T_fin,1.40]);
xtitle([’case 1:, P-control, kp =’,msprintf(’%5.2f’,kp),...
’; inflow steps up and down, reference step up, F =’,...
msprintf(’%5.3f’,F)]); xgrid(1);

legend("h_in","h_out","q_2_u","q_1_z","r_out",4)

Discussion
The impedance matching performs as expected for both low flow and design flow conditions, with a ‘dead
beat’ response. Also the gain scheduling of k p as function of F performs as expected.
Note the resulting k p-values given in the plot headings. They are within the usual range.

255

And on the disturbance response the overshoot on h out is ≈ 11% for k p ·ks dn = 1.60 for both F = 0.04
and 0.40. Thus if the value k p ≈ 2.5 from k p · ks dn = 1.0 for F = 0.040 is considered too low, then a
change to k p = 4.0 from k p · ks dn = 1.60 may be considered.

Figure 6.12: outflow level time responses of the P-controlled process, for F = 0.04
(top) with k p · ks dn = 1.00, (bottom) with k p · ks dn = 1.60

256

Figure 6.13: outflow level time responses of the P-controlled process, for F = 0.40
(top) with k p · ks dn = 1.00, (bottom) with k p · ks dn = 1.60

257

6.3.5 Case [A]: Augmenting the P-control to PI-control

The control structure

The integral action is implemented here in a cascaded structure, see Fig.6.14, by extension of Fig.6.8.

ks_dn

ks_up

ks_dn

ks_up

+

+

+

+

h_in

h_out

+

r_out
k_p

k_i
s T_i/ *

+

_
+

Figure 6.14: Block diagram for the cascaded PI-control, designated as PcI
‘master’ controller with I-action (red), ‘slave’ controller with P-action (pink)
‘master’ controller gain k i/T i, ‘slave’ controller gain k p.

The reasons for this roundabout approach are

- This structure can be used directly for cases [B] and [C], where the measured inputs for master and
slave controllers are not the same ones.

- The property of ‘impedance matching’ is conserved, and also the basic gain-scheduling rules from
there.

- The Transfer Function (TF) can be built in steps, using as the first step the previously derived ones
for the closed slave loop, and then multiplying by the master controller Sr = k i/(s · T i) to create
the open loop TF for the overall system, and from there to the TF of the closed loop by using the
basic formulas for feedback loops.

- Further this approach produces directly the 2dof-structure to the reference inputs7.

- Note that the extra parameter T i allows the integral action to be time-scaled to the dominant time
parameter of the plant. In our case this would be the parameter T E from the dominant dynamics
G E(s), that is setting T i := T E.
And then the dosage of the integral action effect is produced by its gain k i.

- Finally the gains kpp, kip for the parallel PI-controller Sr = kpp + kip/(sT ip) structure can be
directly evaluated (set Tip := T i), and from there the gains kps, Tns of the standard 1dof-form
Sr = kps(1.0 + 1/(sTns)).

7highly recommended in this application area to avoid excessive flow surges

258

Transfer functions

From the previous subsection

yout = λr
1 + µGE
1 + κGE

· r2s
+ λz

Gdn
1 + κGE

where λr =
kpksup

1 + kpksup

µ =
ksdn
ksup

κ =
kpksdn − 1

kpksup + 1

λz =
ksdn

1 + kpksup

Inserting the master controller u2m
:= (ki/(sTi)) · (r2m

− yout), where r2s
→ u2m

:

yout = λr
1 + µGE
1 + κGE

· ki
sTi
· r2m − λr

1 + µGE
1 + κGE

· ki
sTi
· yout + λz

Gdn
1 + κGE

· z1

after some algebra

yout =
1

sΘm + 1
· r2m

+
λzGdn

λr(1 + µGE)
· 1

sΘm + 1
· sTi
ki
· z1

with ‘time constant’ Θm: Θm =
Ti
ki

(1 + κGE)

λr(1 + µGE)

Design procedure for the controller parameters

Consider first

1. the special case of ’impedance matching’ kpksdn := 1.0

2. at very low flow F → 0

3. and also at very low frequencies ω → 0

Then

from 3. GE → 1.0 and Gdn → 1.0

from 2. µ =
ksdn
ksup

→ 1.0

from 1. κ = kpksdn − 1 → 0.0

Also λr =
kpksup

1 + kpksup
=

(kpksdn)
ksup

ksdn

1 + (kpksdn)
ksup

ksdn

→ 1.0

1 + 1.0
=

1

2

and Θm → Ti
ki

1.0

λr(1 + 1)
→ Ti

ki

and also λz =
ksdn

1 + (kpksdn)
ksup

ksdn

→ ksdn
2

Thus yout =
1

sTi

ki
+ 1
· r2m

+
0.5ksdn · 1.0

0.5 · 2.0
· 1

sTi

ki
+ 1
· sTi
ki
· z1

finally yout =
1

sTi

ki
+ 1
· r2m + 0.5ksdn ·

1

sTi

ki
+ 1
· sTi
ki
· z1

259

Consider next relaxing item 2, F →≥ 0. Then from the modelling section

ksdn =
Fd

1 + F
and ksup =

Fd
1− F

λr =
(kpksdn) 1+F

1−F

1 + (kpksdn) 1+F
1−F

→
(1.0) 1+F

1−F

1 + (1.0) 1+F
1−F

=
1 + F

(1− F) + (1 + F)
=

1 + F

2

All other elements do not change. Thus for the denominator of the transfer functions

sΘ + 1 = s
Ti
ki

1

λr(1 +GE)
→ s

Ti
ki · (1 + F)

· 1

0.5(1 + 1)
+ 1 = s

Ti
ki · (1 + F)

In other words the gain of the integral action master controller is to be gain-scheduled by ki · (1 + F). –
Note the relation to the gain-scheduling of the proportional gain in the ‘slave’ loop.

Consider further relaxing only item 3, that is 0 ≤ ω · TE � π at F → 0 and for kpksdn = 1. Then the
characteristic equation of the denominator is

0 = s
Ti
ki

+ 0.5 · (1 +GE)

The Nyquist plot of the second term is a circle starting at +1.0 + j0 with center at 0.50 + j0 and running
through the origin 0 + j0 at ωTE = π. It can be approximated by the rational TF Gf

Gf =
kf

1 + sTf
with kf = 1.0 and Tf to be determined next

The phase shift for the original is −45◦ at ωTE = π/2, whereas the approximation has the identical phase
shift at ωTf = 1.0. Therefore select

Tf :=
2

π
TE

Then back to the characteristic equation with the approximation:

0 = s
Ti
ki

+
1

1 + Tf
= sTi(1 + sTf) + ki = s2 + s

1

Tf
+

ki
TiTf

= s2 + s
π

2TE
+

πki
2TiTE

As mentioned before, a reasonable choice for the time scaling of the integral action is the dominant time
parameter of the plant, that is

Ti := TE

Thus
0 = s2 + s

π

2TE
+

π

2T 2
E

· ki

to be compared to the standard form of a damped second order element with parameters 2D and Ω:

0 = s2 + 2DsΩ + Ω2

Equating coefficients for s0 yields:

(ΩTE)2 =
π

2
ki → ΩTE =

√
π

2
ki

and for s1:

2D =
π

2

1

ΩTE
→ 2D =

π

2

1√
π
2 ki

=

√
π

2

1

ki

Set 2D :=
√

2 to obtain a maximally flat Bode gain plot (or a ≈ 5% overshoot of the step response)
produces

ki =
π

4
≈ 0.785 and ΩTE =

π√
8
≈ 1.111

260

Consider also relaxing items 3 and 2 by letting both 0 < ωTE < π and F → Fd, while keeping item
1 at kpksdn = 1.0.
The characteristic equation then modifies to:

0 = sTi
1

ksup+ksdnGE

ksup+ksdn

+ ki with ksup, ksdn as above

= sTi
1

Fd + 1−Fd

1+sTf

+ ki

= sTi
1 + sTf

Fd(1 + sTf) + (1− Fd)
+ ki

= s2TiTf + sTi + sTfFdki + ki

= s2 + s

[
1

Tf
+ Fdki

1

Ti

]
+ ki

1

TiTf

Then using Tf = TE(2/π) and ki = π/4 from above

ΩTE =
π√
8

and 2D =
1

ΩTf
+ Fdki

1

ΩTi
=

π

2

1

ΩTE
+ Fd

π

4

1

ΩTE
=

π

2

1

ΩTE

[
1 +

Fd
2

]
2D = 0.6 ·

√
8 ≈ 1.70 for Fd = 0.40

Consider finally relaxing item 1 to kpksdn = 1.60 > 1.0 while setting item 2 to F → 0, but allowing
0 < ωTE � π. The characteristic equation modifies to

0 = s
Ti
ki

1 + κGE
λr(1 + µGE)

+ 1 with κ =
kpksdn − 1

kpksdn + 1
=

0.60

2.60
= 0.231

with λr = 0.50 and µ = 1.0

approximating 1 + κGE → (1− κ) + 2κ
1

1 + sTf

inserting 0 = sTi

(1−κ)(sTf+1)+2κ
1+sTf

1
1+sTf

+ ki

= sTi [(1− κ)(1 + sTf) + 2κ] + ki

= sTi [(1 + κ) + sTf (1− κ)] + ki

0 = (1− κ)s2TiTf + sTi(1 + κ) + ki

= s2 + s
1

Tf

1 + κ
1− κ

+
ki

1− κ
1

TiTf

to compare to 0 = s2 + 2DcsΩc + Ω2
c with c for closed loop

yielding with Tf =
2

π
TE → (ΩcTE)2 = ki

π

2

1

1− κ
; 2Dc =

1 + κ
1− κ

1

(ΩcTE)

π

2

Let ki = π/4 (fixed) then ΩcTE = 1.27; 2Dc = 1.99
or set ki = (π/4) · (1 + F) (gain-scheduled) then ΩcTE = 1.50; 2Dc = 1.67

Note that the first anti-resonance is at Ωa1TE = π. Thus the frequency margin Ωa1/Ωc is 2...3.

So far both ki and Ti are gain-scheduled. From an application point of view it is more convenient to
replace the gain-scheduled TE by the echo travelling time at zero flow T0 := 2L/UF (which is constant)
valid for 0 ≤ F � 1.0:

ki
Ti

=
(π/4) · (1 + F)

2(Ltot/UF)
·(1−F 2) =

(π/4)

2(Ltot/UF)
·(1+F−F 2−F 3)→≈ (π/4)

2(Ltot/UF)
·(1+F) = (π/4)·(1+F)· 1

T0

261

Summary :
Thus the master controller parameters are set to: ki := (0.80) · (1 + F) and Ti := T0.
Note that for ki this amounts to a compensation of the variable gain ksdn ∼ 1/(1 + F) of the measured
variable hout, that is to a constant overall gain of the integral action. And together with its constant
time parameter Ti = T0 this will keep the dynamic response due to the I-action of the master controller
invariant over F !
This particular property will be aimed at also in cases [B] and [C].

Frequency responses

This is to confirm and visualise the results of the analysis above.

.sce file

// s_c6_01_1_03.sce
// Glf 2017_06_15
// case [A]: plant with cascaded PI-2dof-controller
// controlled master variable: outflow level
// controlled slave variable: outflow level
// control variable: outflow at outflow point
// inputs: level reference and inflow

// plant data
//**************

L = 500; U_F = 5.0;

// select flow operating point
// U = 2.00;

U = 0.20;
F = U/U_F; F_d = 0.40;

//Froude wave traveling time
T_dn=L/(U_F)*(1/(1+F)); T_up=L/(U_F)*(1/(1-F));
T_E = T_dn + T_up; T_0 = 2*L/U_F;

// Froude wave height
ks_dn = F_d/(1 + F);
ks_up = F_d/(1 - F);
ks_E = ks_dn + ks_up;

// P-action, cascaded ‘slave’ controller
//**************************************

kp = 1.00*(1/F_d)*(1.0+F);
// kp = 1.60*(1/F_d)*(1.0+F);

// I-action, cascaded ‘master’ controller
// **************************************

ki = 0.8*(1 + F); Ti = T_0;

// select frequency bounds
// ***********************
vOMmin = (0.20)/T_0; vOMmax =(40.0)/T_0;
vOMstep = 0.01/T_0; vOM=(vOMmin :vOMstep :vOMmax);

D_dn = %e^(-imult(vOM*T_dn));
D_up = %e^(-imult(vOM*T_up));
D_E = %e^(-imult(vOM*T_E));

rei=ones(1,length(vOM)); iei=zeros(1,length(vOM));
cei = rei + imult(iei);

// ’zero losses’:
kap_E = 1.0 - 0.00;

// P-action, closed ‘slave’ loop
gs_dn = (ks_dn*kp); gs_up = (ks_up*kp);
Np = (cei+(gs_dn/gs_up)*kap_E.*D_E);
Dp = (cei-((1.0-gs_dn)/(1.0+gs_up))*kap_E.*D_E);

E_2_v = (gs_up/(1+gs_up))*Np./Dp;
E_2_z = (ks_E/(1 + gs_up))*D_dn./Dp;

// I-action ‘master’ controller
S_2 = - imult(ki./(vOM*Ti));

// open ‘master’ loop
oF_m = E_2_v.*S_2;

// closed master loop, reference input
cF_m_r = (oF_m)./(cei + oF_m);

// closed master loop, disturbance input,
cF_m_z = E_2_z./(cei + oF_m);

// Bode
[cphi_m_r,cdb_m_r] = phasemag(cF_m_r,"c");
[cphi_m_z,cdb_m_z] = phasemag(cF_m_z,"c");

for kFig = 1:1:2, clf(kFig); end
f1 = scf(1);
plot2d(vOM,[cdb_m_r’,cdb_m_z’],logflag="ln",...
style=[2,5], rect=[vOMmin,-40., vOMmax,+5.0]);
xtitle(["case A: PcI-control, closed loop; ...

F =",msprintf(’%5.4f’,F)]); xgrid(1);
legend(’h_out [db] from reference input r_2_u’,...

’h_out [db] from inflow q_1_z’,3);

f2 = scf(2);
plot2d(vOM,[cphi_m_r’,cphi_m_z’],logflag="ln",...
style=[2,5], rect=[vOMmin,-800.,vOMmax,+100.0]);
xtitle(["case A: PcI-control, closed loop; ...

F =",msprintf(’%5.4f’,F)]); xgrid(1);
legend(’h_out [phi] from reference input r_2_u’,...

’h_out [phi] from inflow q_1_z’,3);

Discussion

- The discussion above has focused on the closed loop eigenvalues only, but not on the residua. This
aspect is added here.

- The reference gain response decays with −20db/dec and the mean phase to −90◦. And the inflow
disturbance gain response at low frequency moves up with +20db/dec with phase starting at +90◦,
and then levels out at λz. This corresponds to the TF’s of first order from above with the ‘time
constant’ Θ.

262

- As expected the anti-resonances locations are not modified by the closed loop, and the gain there is
given by the value of F . The resonance peaks are levelled by the P-control action for the reference
response.

- On the inflow disturbance response the gain shows small resonances and anti-resonances. This effect
increases with the slave controller gain kpksdn = 1.0 → 1.6. Also the first peak moves to higher
frequencies and to lower gain, as to be expected from the TF.

Figure 6.15: Case [A]: Bode plots for PcI-control of hout for inputs ‘reference’(blue) and ‘inflow’(red),
(left) for F = 0.040, (right) for F = Fd = 0.40
(solid) for k p · ks dn = 1.00, (dashed) for k p · ks dn = 1.60

263

Simulation results

Figure 6.16: Case [A]: top level diagram of the PcI-controlled loop

.sce file for ‘context’

// s_c6_01_1_04_context.sce
// inflow and outflowlevel reference steps
// case A: cascaded-PI-2dof-controller
// co-located at outflow
// Glf 2017_06_15

L = 500; U_F = 5.0;
// select Froude number and ’best’ gain

U = 2.0;
// U = 0.20;

F = U/U_F; F_d = 0.40;

// delay times
T_up = (L/U_F)/(1-F); T_dn = (L/U_F)/(1+F);
T_E = T_up + T_dn; T_0 = 2*(L/U_F);
bufsize = 1000*T_E/2;

// no losses
gP = 1.0 - 0.00;
ta = 2.5; tau = 0.1*ta;

// size of Froude wave
ks_dn = F_d/(1+F); ks_up = F_d/(1-F);

// reference step
Tr = 2600.; rh0 = 0.0; rh1 = 1.0*F_d;

// inflow steps
Tq_1 = 10.0; zq0 = 0.0; zq1 = 1.0;
Tq_2 = 1200.0; zq0 = 0.0; zq2 = -1.0;

// P-action, cascaded ‘slave’ controller
kp = 1.00*(1/F_d)*(1+F);

// kp = 1.60*(1/F_d)*(1+F);

// I-action, cascade ‘master’ controller
ki = 0.80*(1 + F); Ti = T_0;

// simulation parameters
T_fin = 4000;

CN = 4000;
delT = T_fin/CN; // readout clock ticks

CC = 6; // no of channels 5 + 1 for time
Asize = 1.01*CC*CN; // size of data arrays

.sce file for ‘run’ and ‘plot’

// s_c6_01_1_04_crunplot
// case 1: cascaded PI-2dof-control,
// co-located at outflow
// Glf 2017_06_15

stacksize(’max’);
exec(’s_c6_01_1_04_context.sce’, -1);
importXcosDiagram(’s_c6_01_1_04.zcos’);
typeof(scs_m); scs_m.props.context;
Info = list();
Info = scicos_simulate(scs_m,Info);
//**********************************

vcolor = [5, 2, 1, 11, 13];
f1 = scf(1); clf();
plot2d(H.time,H.values,vcolor,...

rect=[0.,-1.0,T_fin,1.6]);
xtitle([’case A: PcI-control;...

F =’,msprintf(’%5.4f’,F),...
’; kp =’,msprintf(’%5.2f’,kp),...
’, ki = ’,msprintf(’%5.2f’,ki),...
’, Ti = ’,msprintf(’%5.2f’,Ti),]); xgrid(1);
legend(’h_in’,’h_out’,’u_out’,’q_z_1’,’r_out’,4)

264

Discussion

- The design based on the targets for the eigenvalues:
bandwidth π/3.0 < ΩTE < π/2.5, and damping ratio 1.4 < 2D < 1.7

for the approximate system works well on the original system: For all cases the overshoot on hout(t)
is negligible, with no sluggish responses.

- Also the gain-scheduling derived on the approximate system
ki = 0.80(1 + F) and Ti = TE

works well on the original system: The decay transient stays within the acceptable range.

- The decay time to near zero for the case kpksdn = 1.0 is approx 600 s, that is 3 TE , which
corresponds to the prediction from the first order TF with ‘time constant’ Θ.
Going to kpksdn = 1.60 reduces this to approx 500 s.

- The reference step responses are well behaved. There is no perceptible difference between the re-
sponses for both P-gain values, which corresponds with the small deviations of the reference fre-
quency responses, Fig.6.15

- In contrast the inflow disturbance responses differ markedly. For kpksdn = 1.0 the response is
smooth (with the exception of the first step in q u 2 on the arrival of the Froude wave at the
outflow end). But for kpksdn = 1.60 there is a stronger flow peaking and a second smaller jump
after the echo travel time. This may not be admissible for the downstream channel operation.

Figure 6.17: Case [A]: step responses for PcI-control of h out for inputs ‘inflow’ and ‘reference’,
(left) for F = 0.040, (right) for F = Fd = 0.400
(top) for k p · ks dn = 1.00, (bottom) for k p · ks dn = 1.60

265

6.3.6 Case [B]: Designing the PcI-controller

Fig.6.18 shows the block diagram of the control system, by modification of Fig.6.14.

ks_dn

ks_up

ks_dn

ks_up

+

+

+

+

h_in

h_out

+

r_out
k_p

k_i
s T_i/ *

+

_
+

Figure 6.18: Case [B]: Block diagram for PcI-control of h out by ‘slave P-controller’ (pink)
and h in by ‘master I-controller’ (red), acting on control outflow q 2 u

The P-‘slave’-control loop is the same as for case [A]. In order to keep its closed loop response invariant
of F , the gain kp must be set to kp ·ksdn := const. And for the impedance matching design, const := 1.0.

Transfer function analysis

First the TF of the system without any control from control input q u 2 to y in is by using the same
technique as previously:

yin =
1

1−GE
[(ksdn + ksup) ·Gup · (−qu2

) + (ksdn + ksup ·GE)]

Closing the P-‘slave’-loop as for case [A] produces

yout =
1

(1 + kpksup) + (kpksdn − 1)GE
[kp (ksup + ksdnGE) · rout + (ksdn + ksup) ·GE · qz1]

and for the additional output y in needed for the ‘master’-control:

yin =
1

(1 + kpksup) + (kpksdn − 1)GE
[kp (ksup + ksdn) ·Gup · rout + (ksdn + ksup ·GE) · qz1]

Closing the I-‘master’-loop with using the abbreviations κ, µ, λr, λz from above

rout → ui2

Si =
ki
Ti
· (rin − yin)

yin =

[
λr(1 + µ) Gup · rin + λz(µ+ 1.0 GE) · sTi

ki
· qz1

]
[
sTi

ki
· (1 + κGE) + λr (1 + µ)Gup

]
with λr(1 + µ) =

kpksdn · (ksup/ksdn)

1 + kpksdn · (ksup/ksdn)
· (1 + (ksdn/ksup)) and set kpksdn := 1.0

=
(ksup/ksdn) + 1

1 + (ksup/ksdn)
→ 1.0 independent of F !

266

Consider next the common denominator in order to determine the poles of the TF with assuming
kpksdn := 1.0 that is κ = 0:

0 = s
Ti
ki
· (1 + 0) + 1.0 ·Gup with Gup = e−sTup

and replace Gup by the first order lag Gf = 1/(1 + sTf)
with Tf adjusted such that Gf produces the same lag at the same frequency ω = 1.0/Tup as the original
Gup:

Tf :=
π

4
· Tup

where from above Tup =
1

2
T0

1

1− F
and as above Ti := T0

Further define ki := ki0 · (1− F)

that is
Ti
ki

=
Ti

ki0(1− F)
= 2Tup

1

ki0

Thus for the characteristic equation with the approximation

0 = sTi + ki
1

1 + sTf

= s22Tup
π

4
· Tup + s2Tup + ki0

= s2 + s
4

π

1

Tup
+ ki0

2

πT 2
up

equate to 0 = s2 + s2DΩ + Ω2

that is (ΩTup) =

√
2ki0
π

and 2D = 2
√

2
1√
π

1√
ki0

Set ki0 := 1.0, then 2D ≈ 1.60 and ΩT0(1− F) ≈ 0.400(1− F).
Thus the loop bandwidth will decrease with increasing F while the damping stays constant.

Summary controller settings for case [B]: ki := 1.0 · (1− F) and Ti := T0 .

267

Simulation results

Figure 6.19: Case [B]: Top level diagram of the PcI-controlled loop

.sce file for ‘context’

// s_c6_01_2_01_context.sce
// inflow and outflowlevel reference steps
// case B: cascaded PI-2dof-controller
// for inflow level, manipulated at outflow
// Glf 2017_06_15

L = 500; U_F = 5.0; F_d = 0.40;

// select Froude number and ’best’ gain
U = 2.0;

// U = 0.2;

F = U/U_F;
T_dn = (L/U_F)/(1+F); T_up = (L/U_F)/(1-F);
T_E = T_up + T_dn; T_0 = 2*(L/U_F);

ks_dn=F_d/(1+F); ks_up=F_d/(1-F); ks_r=F_d;
gP = 1.0 - 0.00; bufsize = 1500*T_0/2;

ta = 2.5; tau = 0.1*ta;

// reference step
Tr = 2600.; rh0 = 0.0; rh1 = 1.0*ks_r;

// inflow steps
Tq_1 = 10.0; zq0 = 0.0; zq1 = 1.0;
Tq_2 = 1200.0; zq0 = 0.0; zq2 = -1.0;

// P-slave-controller for out-level on outflow
kp = 1.00*(1/F_d)*(1+F); alpha = 0.0;

// kp = 1.26*(1/F_d)*(1+F); alpha = 0.0;

// I-master-controller for in-level on outflow
ki = 1.00*(1-F); Ti = T_0;

T_fin = 4000;
CN = 4000; delT = T_fin/CN;
CC = 6; Asize = 1.01*CC*CN;

.sce file for ‘run’ and ‘plot’

// s_c6_01_2_01_crunplot
// case B: cascaded PI-2dof-control,
// inflow level, manipulated at outflow
// Glf 2017_06_15

stacksize(’max’);
exec(’s_c6_01_2_01_context.sce’, -1);
importXcosDiagram(’s_c6_01_2_01.zcos’);
typeof(scs_m); scs_m.props.context;
Info = list(); Info = scicos_simulate(scs_m,Info);
//**********************************

for kfig = 1:1:1, clf(kfig); end

vcolor = [5, 2, 1, 11, 13];

f1 = scf(1);
plot2d(H.time,H.values,vcolor,rect=[0.,-1.0,T_fin,1.6]);
xtitle([’case B: casc PI-2dof-control, F =’,...
msprintf(’%5.4f’,F),’; kp =’,msprintf(’%5.2f’,kp),...
’, ki = ",msprintf(’%5.2f’,ki),’, Ti = ’,...
msprintf(’%5.2f’,Ti)]); xgrid(1);
legend(’h_in’, ’h_out’, ’u_out’,’zq_in’, ’rd_out’,4)

268

Figure 6.20: Case [B]: step responses for PcI-control of hin for inputs ‘inflow’ and ‘reference’ hin,
(top) for kp ksdn = 1.0 (bottom) for kp ksdn = 1.26
(left) for F = 0.040, (right) for F = Fd = 0.400

Discussion

- Again the design based on the eigenvalues for the approximate system works well on the original
system: For all cases the overshoot on hin(t) is negligible, with no sluggish responses.

- Also the gain-scheduling derived on the approximate system
(kp = 1.0/ksdn, ki = 1.0(1− F), and Ti = T0)

works well on the original system: The decay transient stays within the acceptable range.

- The decay time to near zero for the case kpksdn = 1.0 is approx 600 s, that is 3 TE , which
corresponds to the prediction from the first order TF with ‘time constant’ Θ.

- In contrast to case[A], here the transient response is very sensitive to an increased gain kp. The
responses get very weakly damped for kpksdn = 1.60, especially at the low F -value. To illustrate
this effect simulations are shown for kpksdn =

√
1.60 ≈ 1.26.

- Thus for case [B] only the impedance matching design seems to work well enough.

In other words the level in case [B] is more difficult to control than in case [A]. And in case [C] this will
get even more difficult...

269

6.3.7 Case [C]: Designing the PcI-controller

Fig.6.21 shows the block diagram of the control system, modified from Fig.6.18.

ks_dn

ks_up

ks_dn

ks_up

+

+

+

+

h_in

h_out

_

r_out
k_p

k_i
s T_i/ *

_

+ +

Figure 6.21: Case [C]: Block diagram for PcI-control of h in by ‘slave P-controller’ (pink)
and h out by ‘master I-controller’ (red), acting on control inflow q 1 u

Transfer function analysis

Using the same procedure as for cases [A] and [B] the characteristic equation is

0 = sTi(1 + κGE) + ki · λr · (1 + µ) ·Gdn
where λr · (1 + µ) → 1.0 as above and κ := 0 from kpksdn := 1.0

with Gdn = e−sTdn

and Tdn =
1

2
· T0

1

1 + F

replacing Gdn → Gf =
1

1 + sTf
with Tf =

π

4
Tdn

→ 0 = s2 + s
1

Tf
+ ki

1

TiTf

defining ki := ki0 · (1 + F) and inserting

= s2 + s
4

π

1

Tdn
+

2

π
ki0

[
1

Tdn

]2

= s2 + s2DΩ + Ω2

equating yields with ki0 := 1.0

(ΩTdn) =

√
2ki0
π
≈ 0.80 and 2D = 2

√
2

1√
π
≈ 1.60

and ΩT0(1 + F) ≈ 0.400(1 + F)

Thus the loop bandwidth will increase with increasing F while the damping stays constant.

Summary controller settings for case [C]: ki := 1.0 · (1 + F) and Ti := T0 .

270

Simulation results

Figure 6.22: Case [C]: Top level diagram of the PcI-controlled loop

.sce file for ‘context’

// s_c6_01_3_01_context.sce
// inflow anf outflowlevel reference steps
// case C: cascaded PI-2dof-controller for outflow at inflow
// Glf 2017_06_15

L = 500; U_F = 5.0; F_d = 0.40;

// select Froude number and ’best’ gain
// U = 2.0;

U = 0.2;

F = U/U_F;
T_dn = (L/U_F)/(1+F); T_up = (L/U_F)/(1-F);
T_E = T_up + T_dn; T_0 = 2*(L/U_F);

ks_dn=F_d/(1+F); ks_up=F_d/(1-F); ks_r=F_d;
gP = 1.0 - 0.00; bufsize = 2000*T_E/2;

ta = 2.5; tau = 0.1*ta;

// reference step
Tr = 2600.; rh0 = 0.0; rh1 = 1.0*ks_r;

// inflow steps
Tq_1 = 10.0; zq0 = 0.0; zq1 = 1.0;
Tq_2 = 1200.0; zq0 = 0.0; zq2 = -1.0;

// P-slave-controller for in-level on inflow
kp = 1.00*(1/F_d)*(1-F); alpha = 0.;

// kp = 1.26*(1/F_d)*(1-F); alpha = 0.;
// I-master-controller for out-level on inflow

ki = 1.00*(1-F); Ti = T_0;

T_fin = 4000;
CN = 4000; delT = T_fin/CN;
CC = 6; Asize = 1.01*CC*CN;

.sce file for ‘run’ and ‘plot’

// s_c6_01_3_01_crunplot
// case C: cascaded PI-2dof-control,
// for outflow level, manipulated at inflow
// Glf 2017_06_15
//
stacksize(’max’);
exec(’s_c6_01_3_01_context.sce’, -1);
importXcosDiagram(’s_c6_01_3_01.zcos’);
typeof(scs_m); scs_m.props.context;
Info = list(); Info = scicos_simulate(scs_m,Info);
//**********************************

for kfig = 1:1:1, clf(kfig); end

vcolor = [5, 2, 1, 11, 13];

f1 = scf(1);
plot2d(H.time,H.values,vcolor,rect=[0.,-1.0,T_fin,2.0]);
xtitle([’case C: casc PI-2dof-control, F =’,...
msprintf(’%5.4f’,F),’; kp=’,msprintf(’%5.2f’,kp),...
’, ki=’,msprintf(’%5.2f’,ki),’, Ti=’,...
msprintf(’%5.2f’,Ti)]); xgrid(1);
legend(’h_in’, ’h_out’, ’u_in’,’zq_out’, ’r_h_out’,4)

271

Figure 6.23: Case [C]: step responses for PcI-control of hout for inputs ‘inflow’ and ‘reference’ rout,
(top) for kp ksdn = 1.0 (bottom) for kp ksdn = 1.26
(left) for F = 0.040, (right) for F = Fd = 0.400

Discussion

- Again the design based on the eigenvalues for the approximate system works well on the original
system: For all cases the overshoot on hin(t) is negligible, with no sluggish responses.

- Also the gain-scheduling derived on the approximate system
kp = 1.0/ksdn, ki = 1.0(1 + F), and Ti = T0

works well on the original system: The decay transient stays within the acceptable range.

- The decay time to near zero for the case kpksdn = 1.0 is approx 600 s, that is 3 TE .

- In contrast to case[B], here the transient response is even more sensitive to an increased gain kp.
The responses get very weakly damped for kpksdn > 1.0, especially at F = 0.40. To illustrate this
effect simulations are shown for kpksdn =

√
1.60 ≈ 1.26. Therefore also for case [C] only the

impedance matching design seems to work well enough for practical applications.

- Further simulations (not shown here) indicate that this effect is mainly due to kp and less to ki, Ti.

The reason for this is the difference in the shape of the open ‘master’-loop Nyquist contour. For case [A]
the delay GE in 1 + GE introduces a circle which is offset on the positive real axis such that it never
crosses the imaginary axis into the left half plane. However in cases [B] with Gup and [C] with Gdn this
circle is centered at the origin and thus crosses well into the left half plane. Therefore the phase shift
from Gup in case [B] or Gdn in case [C] will get much larger than from 1 +GE in case[A] for frequencies
(ω Tup ≥ 1) or (ω Tdn ≥ 1).

And this will make the closed loop dynamics much more sensitive to increasing gain kp.

272

6.4 Control Design for the linearized state space model, ‘sys ss’

6.4.1 Motivation

This is meant as an intermediate step to the final goal to design model based controllers for the nonlinear
wide range time domain model with non-uniform geometry and friction from chapter 3. It will allow
checking the performance of the control design from the previous section (developed with the PDE-model)
both in the frequency and the time domain in a ‘laboratory setting’. Further it allows to demonstrate the
effect of spacial discretisation in a more compact way than with the full time domain model.
In order to stay as close as possible to the PDE model the same assumptions will be used:

- simple geometry: constant width B and constant bottom depth S, long channel Ltot � B,
- zero friction,
- small deviations from a quasi-stationary operating point Q,D, showing the effect of F ,
- starting at a high number of compartments, then down to the chapter 3 number,
- and the same simplified boundary conditions on the inflow and outflow ends as in the PDE-model.

6.4.2 Modelling

The basic element for the plant model is taken from chapter 2 in its state-space form, which is linearized
and with ‘floating’ coefficients around the local operating point (local depth D and flow Q).

Qi(t) → Q

(
1 +

δQi(t)

Q

)
; D2

i−1 → D
2
(

1 + 2
δDi−1(t)

D
+ 0

)
;

Q2
i

D′i
→ Q

2

D

(
1 + 2

δQi(t)

Q
− δD′i(t)

D
+ 0

)
=

Q
2

D

(
1 + 2

δQi(t)

Q
− δDi+1(t)

D
+ 0

)
while using for discretization of Di: κ = 0 for 0 ≤ F ≤ 1.0, (‘downwind’) as the control design shall
focus on the subcritical flow regime.

and further using the abbreviations

δDi−1(t)

D
→ xi−1;

δQi(t)

Q
→ xi;

δDi+1(t)

D
→ xi+1;

δQi−2(t)

Q
→ xi−2 (:= ui−2);

δD′i−2(t)

D
→ xi−1;

δQi+2(t)

Q
→ xi+2 (:= ui+2);

And for the coefficients for the local subsystem around location i with compartment length L := Ltot/(N+
1), where N is the number of momentum balance compartments in the overall channel length Ltot. Note
that this generates a state space system of order 2 ·N + 1.

time constant for filling compartment i− 1
LBD

Q
= Ti−1

time constant for momentum compartment i
LQ

gD
2
B

= Ti

time constant for filling compartment i+ 1
LBD

Q
= Ti+1

coefficient for momentum flows in compartment i
Q

2

gB
2
D

3 =
B

2
D

2
U

2

gB
2
D

3 =
U

2

gD
= F

2
:= φ

Equations for xi−1 and xi+1 are straightforward, but equation for xi needs some further steps

Ti
d

dt
xi = +1xi−1 − 1xi+1 + φ [2xi−2 − xi−1]− φ [2xi − xi−1 − xi+1]

= (1− φ)xi−1 − 2φxi − (1− φ)xi+1 + 2φxi−2

273

The equation for x2 shall be rewritten in condensed form by using the abbreviations, (note again κ := 0)

a = (1− φ)

b = (1− φ)

c = (κφ) = 0.

p = (2φ) = (2F
2
)

Then

Ti−1
d
dtxi−1 = −1 · xi +1 · xi−2

Ti
d
dtxi = +a · xi−1 −p · xi −b · xi+1 +p · xi−2

Ti+1
d
dtxi+1 = +1 · xi −1 · xi+2

The next step is to replace the local reference pair Q, D by the design reference pair Qd, Dd. Then the
state variables are re-defined as

δDi−1(t)

Dd
→ xi−1;

δQi(t)

Qd
→ xi;

δDi+1(t)

Dd
→ xi+1;

δQi−2(t)

Qd
→ xi−2 (:= ui−2);

δD′i−2(t)

Dd
→ xi−1;

δQi+2(t)

Qd
→ xi+2 (:= ui+2);

The coefficients turn into:

time constant for filling compartment i− 1
LBDd

Qd
= Ti−1 =

L

Ud
=

L

UF
· 1

Fd

time constant for momentum compartment i
LQd
gD2

dBd
= Ti =

LUdBdDd

U2
FBdDd

=
L

UF

Ud
UF

=
L

UF
· Fd

time constant for filling compartment i+ 1
LBDd

Qd
= Ti+1 =

L

UF
· 1

Fd

and using D := Dd but generally Q 6= Qd

momentum flows into compartment i from Qk
Q ·Qd
gB2

dD
3 =

B2
dD

2
U · Ud

gB2
dD

3 =
U · Ud
gD

= F · Fd

and from Dk
Q

2

gB2
dD

3 ·
Dd

D
=

Q
2
B2
dD

2
d

U2
FB

2
dD

2
d

= F
2

Dropping the var at the local operating point finally (where κ := 0):

Ti−1
d
dtxi−1 = +1 · xi−2 −1 · xi

Ti
d
dtxi = +2FdF · xi−2 +(1− F 2) · xi−1 −2FdF · xi −(1− F 2) · xi+1

Ti+1
d
dtxi+1 = +1 · xi −1 · xi+2

274

6.4.3 Implementation in Scilab/SciNotes

The standard state space representation syslin of ‘scilab’ with matrices A, B, C, D with state vector
length Mx = 2N + 1 is used. Note that all coefficients in line k need to be divided by Tk. The frequency
responses are obtained by scilab functions repfreq and the step responses by csim.
Two values of the spacial discretization parameter N are taken, the first (N = 100) to be close to the
sysinf-case from above, and the second (N = 20) to correspond to the basic assumption in chapter 3.
No smaller values of N are shown here to conserve space, although the following script is suitable down
to N = 1. – And the results for the system input at z in are omitted for the same reason.

// s_c6_02_0.sce
// Glf 2017_06_15
// Open loop Bode plot, step response
// from outflow, manipulated var. u_out
// and from inflow z_in
// to outflow level x_out and to inflow level x_in

stacksize(’max’);
for kFig= 1:1:6 clf(kFig); end

// reference values
g = 10.; U_d = 2.0; D = 2.5; L_tot = 500.;

// select flow speed / Froude number
// U = 2.0;

U = 0.20;

// selecting SIZE N / building the system:
// N = 100;

N = 20;

Mx = 2*N+1; L = L_tot/(N+1);
// defining matrix elements

U_F = sqrt(g*D); F = U/U_F; F_d = U_d/U_F;
PHI = F^2; PHI_d = F_d^2; T = (L/U_F);
T_1 = T*(1/F_d); T_2 = T*(F_d);
p = 2*F*F_d; a = (1 - PHI); b = a; c = 0;

// time constants vector buildup
vT = ones(1, Mx);
for n= 1:2:Mx-1,
vT(n) = T_1; vT(n+1) = T_2; end;
vT(Mx) = T_1;

// system matrix AM buildup
AM = zeros(Mx,Mx);

// Volume elements
// first line

m = 1; AM(m,m+1) = -1.0/vT(m);
// intermediate non-even numbered lines

for m = 3:2:Mx-2,
AM(m,m-1)= +1.0/vT(m); AM(m,m+1)= -1.0/vT(m); end

//final line
m = Mx; AM(m,m-1) = +1.0/vT(m);

// Flow/Momentum elements
// second line

m = 2;
AM(m,m-1) = +a/vT(m); AM(m,m) = -p/vT(m);
AM(m,m+1) = -b/vT(m);

//all other even numbered lines

for m = 4:2:Mx-1,
AM(m,m-3) = -c/vT(m); AM(m,m-2) = +p/vT(m);
AM(m,m-1) = +a/vT(m); AM(m,m) = -p/vT(m);
AM(m,m+1) = -b/vT(m); end;

//Matrix BM for input u_out
//**************************
BM_u = zeros(Mx,1); BM_u(Mx)= (1/vT(Mx));

// Matrix CM
CM_u=zeros(2,Mx);
CM_u(1,Mx) = 1.0; // for x(out)
CM_u(2,1) = 1.0; // and for x(in)

H_u=syslin(’c’,AM,BM_u,CM_u);

// plant frequency response
f_min=0.00010; f_max=0.10; fstep=0.000010;

f_r=f_min:fstep:f_max;

// Bode plot plant
repf_u = repfreq(H_u,f_r);
[dbB_1,phiB_1]=dbphi(repf_u(1,:));
[dbB_2,phiB_2]=dbphi(repf_u(2,:));

f1 = scf(1);
plot2d(f_r,[dbB_1’,dbB_2’],logflag = ’ln’,...

style=[2,5],rect=[f_min,-50.,f_max,+50.0]);
xgrid(1); legend(’x_out’,’x_in’,2);

xtitle([’plant: Bode plots DB to outflow u_out,...
no. compartments =’,msprintf(’%3.0f’,Mx),...

’ , Froude F = ’,msprintf(’%5.2f’,F)]);

f2 = scf(2);
plot2d(f_r,[phiB_1’,phiB_2’],logflag = ’ln’,...

style=[2,5],rect=[f_min,-500.,f_max,+100.0]);
xgrid(1); legend(’x_out’,’x_in’,2);

xtitle([’plant: Bode plots ARG to outflow u_out,...
no. compartments =’,msprintf(’%3.0f’,Mx),...

’ , Froude F = ’,msprintf(’%5.2f’,F)]);

// step response
T_f = 1200.; vvt = [0.: 1.0 : T_f];
[vy] = csim(’step’, vvt, H_u);

f3 = scf(3);
plot2d(vvt’,[vy]’,style=[2,5]);
legend(’x_out’,’x_in’,2); xgrid(1);
xtitle([’plant: step response to outflow u_out,...

no. compartments =’,msprintf(’%3.0f’,Mx),...
’ , Froude F = ’,msprintf(’%5.2f’,F)]);

Discussion for open loop frequency responses:

- By comparing with the Bode diagrams for the sys inf-case, both the resonance peaks and the
anti-resonance minima are no longer constant. The peaks are highest at the lowest resonance and
for increasing frequency decrease with −40dB/dec. This must be due to the low pass filter effect of
the basic second order oscillation element.

- Further the first resonance peak height increases for lower F -values, approx. with the ratio F d/F .

- And it also rises with the number N , approx. with N/N d, where N d := 20.

These findings agree with intuitive expectations. However they are only correlations from the simulations.
A formal derivation is not attempted here.

275

Figure 6.24: Responses of open loop system of hout and hin to input ‘outflow’ uout,
for spacial discretisation parameter N = 100: → 201 compartments with length L ≈ 5m
(left) for F = 0.040, (right) for F = Fd = 0.400
(top, center) Bode plots (bottom) step responses

Discussion for step responses:

- For N = 100; F = 0.040, and comparing with the sysinf-case, the responses have essentially the
same step shape. For F = 0.400, a filter effect of second order appears with a period of T ≈ 220s.
This correlates with the lowest resonance peak.

- For N = 20; F = 0.040 a damped oscillation appears on the steps with T ≈ 20s. Its period increases
with time. For F = 0.400, the response reduces to the dominant oscillation with T ≈ 220s.

276

Figure 6.25: Responses of open loop system of hout and hin to input ‘outflow’ uout,
for spacial discretisation parameter N = 20: → 41 compartments with length L ≈ 25m
(left) for F = 0.040, (right) for F = Fd = 0.400
(top, center) Bode plots (bottom) step responses

277

6.4.4 Control layout Case [A]

The system is extended directly to PcI-control. The integral action adds one element at position Mx =
2N + 2 of the state vector.

// ss_c6_02_1.sce
// Glf 2017_06_15
// control case [A] "industry standard"
// Closed loop Bode plots, step responses
// PI_2dof-controller, gain Kp, Ki, T_i,
// I from x_out, cascaded to P from x_out
// manipulated var. u_out
// inputs: reference r_out and inflow z_in steps
// output traces: responses on x_out, x_in, u_out

stacksize(’max’);
// reference values

g = 10.; U_d = 2.0; D = 2.5; L_tot = 500.;

// select flow speed / Froude number
// U = 2.00;

U = 0.20;

// no. of compartements
N = 20; // nominal

// building the system: SIZE N, Mx
//*********************************

Mx = 2*N+2; L = L_tot/(N+1);

// defining matrix elements
U_F = sqrt(g*D); F = U/U_F; F_d = U_d/U_F;
PHI = F^2; PHI_d = F_d^2; T = (L/U_F);
T_1 = T/F_d; T_2 = T*(F_d);
p = 2*F*F_d; a = (1 - PHI); b = a; c = 0.0;
T_0 = 2*L_tot/U_F;

// Kp, Ki, T_i from sys_inf, with gain scheduling
Kp = 1.0*(1/F_d)*(1+F); // impedance matching

// Kp = 1.6*(1/F_d)*(1+F);
// Kp = 2.4*(1/F_d)*(1+F);

Ki = 0.80*(1+F); T_i = T_0;

// time constants vector buildup
vT = ones(1, Mx);
for n= 1:2:Mx-1,

vT(n) = T_1; vT(n+1) = T_2; end;
vT(Mx-1) = T_1; vT(Mx) = T_i;

// system matrix AM buildup
AM = zeros(Mx,Mx);

// Volume elements
// first line
m = 1; AM(m,m+1) = -1.0/vT(m);
// intermediate non-even numbered lines
for m = 3:2:Mx-3,
AM(m,m-1)= +1.0/vT(m); AM(m,m+1)= -1.0/vT(m); end
//final line for plant
AM(Mx-1,Mx-2) = +1.0/vT(Mx-1);

// line and column element for P-action
AM(Mx-1,Mx-1)= - Kp/vT(Mx-1);

// line and column elements for I-action
AM(Mx,Mx-1)= -Ki/vT(Mx); AM(Mx-1,Mx)= +1*Kp/vT(Mx-1);

// Flow/Momentum elements
// second line

m = 2;
AM(m,m-1) = +a/vT(m); AM(m,m) = -p/vT(m);
AM(m,m+1) = -b/vT(m);

//all other even numbered lines
for m = 4:2:Mx-1,

AM(m,m-3) = -c/vT(m); AM(m,m-2) = +p/vT(m);
AM(m,m-1) = +a/vT(m); AM(m,m) = -p/vT(m);
AM(m,m+1) = -b/vT(m); end;

//Matrix BM for reference r_out
BM_r = zeros(Mx,1); BM_r(Mx) = +1.0*(Ki/vT(Mx));

// Matrix CM
CM = zeros(3,Mx);

CM(1,Mx-1)=1.0; CM(2,1)=1.0; //for x_out and x_in
CM(3,Mx-1) = + Kp ; // for trace u_out
CM(3,Mx) = - Kp; // "

H_r=syslin(’c’,AM,BM_r,CM);

// responses to outlevel reference r_out
//***************************************
f_min=0.00005; f_max=0.10; fstep=0.00001;
f_r=f_min:fstep:f_max;
FR_r = repfreq(H_r,f_r);

// Bode plot to r_out
repf_r = repfreq(H_r,f_r);
[dbB_1,phiB_1]=dbphi(repf_r(1,:));
[dbB_2,phiB_2]=dbphi(repf_r(2,:));

f1 = scf(1);
plot2d(f_r,[dbB_1’,dbB_2’],logflag = ’ln’,...
style=[2,5],rect=[f_min,-30.,f_max,+10.0]); xgrid(1);
legend(’x_out’,’x_in’,2);
xtitle([’case[A]: Bode plots DB from r_out,...
no. compartments =’,msprintf(’%3.0f’,Mx-1),...
’ , Froude F = ’,msprintf(’%5.2f’,F)]);

f2 = scf(2);
plot2d(f_r,[phiB_1’,phiB_2’],logflag = ’ln’,...
style=[2,5],rect=[f_min,-200.,f_max,+100.0]);xgrid(1);
legend(’x_out’,’x_in’,2);
xtitle([’case[A] Bode plots PHI from r_out,...

no. compartments =’,msprintf(’%3.0f’,Mx-1),...
’ , Froude F = ’,msprintf(’%5.2f’,F)]);

// step response to r_out with u(t) trace
T_f=1200.; vvt=[0.:1.0:T_f]; [vy]=csim(’step’,vvt,H_r);

f3 = scf(3); plot2d(vvt’,[vy]’,style=[2,5,1],...
rect=[0.,-1.8,T_f,+1.2]);legend(’x_out’,’x_in’,’u_out’,4);
xtitle([’case[A]: step response to ref. r_out,...
no. compartments =’,msprintf(’%3.0f’,Mx-1),...

’ , Froude F = ’,msprintf(’%5.2f’,F)]);xgrid(1);

// responses to inflow disturbance z_in
//*************************************
BM_z=zeros(Mx,1);
BM_z(1)= +(1.0/vT(1)); BM_z(2)= +p*(1.0/vT(2));
H_z = syslin(’c’,AM,BM_z,CM);

// Bode plot
repf_z = repfreq(H_z,f_r);
[dbBd_1,phiBd_1]=dbphi(repf_z(1,:));
[dbBd_2,phiBd_2]=dbphi(repf_z(2,:));

f4 = scf(4);
plot2d(f_r,[dbBd_1’,dbBd_2’],logflag = ’ln’,...
style=[2,5],rect=[f_min,-30.,f_max,+10.0]);

xgrid(1); legend(’x_out’,’x_in’,2);
xtitle([’case[A]: Bode plots DB, from z_in,...
no. compartments =’,msprintf(’%3.0f’,Mx-1),...
’ , Froude F = ’,msprintf(’%5.2f’,F)]);

f5 = scf(5);
plot2d(f_r,[phiBd_1’,phiBd_2’],logflag = ’ln’,...

style=[2,5],rect=[f_min,-200.,f_max,+100.0]);
xgrid(1); legend(’x_out’,’x_in’,2);
xtitle([’case[A]: Bode plots PHI, from z_in ,...
no. compartments =’,msprintf(’%3.0f’,Mx-1),...
’ , Froude F = ’,msprintf(’%5.2f’,F)]);

// step response
T_f = 1200.; vvt=[0.:1.0:T_f]; [vy]=csim(’step’,vvt,H_z);

f6 = scf(6);
plot2d(vvt’,[vy]’,style=[2,5,1],rect=[0.,-1.0,T_f,+2.0]);
legend(’x_out’,’x_in’,’u_out’,1);
xtitle([’case[A]: step response to inflow z_in,...

no. compartments =’,msprintf(’%3.0f’,Mx-1),...
’ , Froude F = ’,msprintf(’%5.2f’,F)]); xgrid(1);

278

Figure 6.26: Case [A]: Responses of closed loop system (PcascI) to reference r out,
for spacial discretisation parameter N = 20: → 41 compartments
(left) for F = 0.040, (right) for F = Fd = 0.400
(top, center) Bode plots (bottom) step responses
(solid) for Kp = 1.00 ∗ (1/Fd) ∗ (1 + F) (dashed) for Kp = 1.60 ∗ (1/Fd) ∗ (1 + F)

Discussion:
The frequency response shows the same bandwidth as for the sysinf-case Fig.6.15, but then decays
faster. And the step response is very close to Fig.6.17 with the same settling time ≈ 600s(≈ 3TE) and
the same near optimal damping. Note that at low flow F = 0.040 and at higher Kp-values (see .sce-file),
the damping decreases sharply, but not so at design flow F = 0.400 (simulation results omitted here).

279

Figure 6.27: Case [A]: Responses of closed loop system (PcascI) to inflow z in,
for spacial discretisation parameter N = 20: → 41 compartments
(left) for F = 0.040, (right) for F = Fd = 0.400
(top, center) Bode plots (bottom) step responses
(solid) for Kp = 1.00 ∗ (1/Fd) ∗ (1 + F) (dashed) for Kp = 1.60 ∗ (1/Fd) ∗ (1 + F)

Discussion:
The same findings apply. - For practical applications the maximum deviation of the controlled variable
(outflow level) is often specified. For F = 0.040 and Kp = 1.00 ∗ (1/Fd) ∗ (1 + F) it is ≈ 0.39 (equal
to the height of the downstream Froude-wave), and reduces to 0.28 (that is approx 72%) for Kp =
1.60 ∗ (1/Fd) ∗ (1 + F). And the outflow peak overshoot rises from approx 0.30 to 0.508.

8In a cascade of run-of-river plants with individual level control this will lead to stronger downstream ‘surge flow pileup’

280

6.4.5 Control layout Case [B]

// s_c6_02_2.sce
// Glf 2017_06_15
// control case [B] "upstream level control by outflow"
// Closed loop: Bode plots, step responses
// PI-2dof-controller, gain Kp, Ki, T_i
// split-action: I from x_in, cascaded to P from x_out
// manipulated variable: u_out
// inputs: reference r_in and inflow z_in steps
// output traces: responses on x_out and x_in, u_out

// reference values
g = 10.; U_d = 2.0; D = 2.5; L_tot = 500.;

// operating point: select flow speed / Froude number
// U = 2.0;

U = 0.20;

// no. of compartements
N = 20;

// building the system: SIZE N, Mx
//*********************************

Mx = 2*N+2; L = L_tot/(N+1);

// defining matrix elements
U_F = sqrt(g*D); F = U/U_F; F_d = U_d/U_F;
PHI = F^2; PHI_d = F_d^2;
T_1 = (L/U_F)*(1/F_d); T_2 = (L/U_F)*(F_d);
p = 2*F*F_d; a = (1 - PHI); b = a; c = 0.0;
T_t_up = L_tot/(U_F - U); //delay upstream direct.
T_0 = 2*(L_tot/U_F);

// PI-controller from sys_inf, with gain scheduling
Kp = 1.00*(1/F_d)*(1+F); // impedance matching

// Kp = 1.26*(1/F_d)*(1+F);
// Kp = 1.60*(1/F_d)*(1+F);

Ki = 1.0*(1 - F); Ti = T_0;

// time constants vector buildup
vT = ones(1, Mx);
for n= 1:2:Mx-1, vT(n)=T_1; vT(n+1)=T_2; end;
vT(Mx-1) = T_1; vT(Mx) = Ti;

// system matrix AM buildup
AM = zeros(Mx,Mx);

// Volume elements, first line
m = 1; AM(m,m+1) = -1.0/vT(m);

// intermediate non-even numbered lines
for m = 3:2:Mx-3,

AM(m,m-1)=+1.0/vT(m); AM(m,m+1)=-1.0/vT(m); end
//final line for plant

AM(Mx-1,Mx-2) = +1.0/vT(Mx-1);

// line and column element for P-action
AM(Mx-1,Mx-1)= - Kp/vT(Mx-1);

// line and column elements for I-action
AM(Mx,1)=-Ki/vT(Mx); AM(Mx-1,Mx)=Kp/vT(Mx-1);

// Flow/Momentum elements, second line
m = 2; AM(m,m-1)= +a/vT(m); AM(m,m)= -p/vT(m);

AM(m,m+1) = -b/vT(m);
//all other even numbered lines
for m = 4:2:Mx-1,

AM(m,m-3) = -c/vT(m); AM(m,m-2) = +p/vT(m);
AM(m,m-1) = +a/vT(m); AM(m,m) = -p/vT(m);
AM(m,m+1) = -b/vT(m); end;

//Matrix BM_r
BM_r = zeros(Mx,1); BM_r(Mx) = +Ki/vT(Mx);

// Matrix CM
CM = zeros(3,Mx);
CM(1,Mx-1)=1.0; CM(2,1)=1.0;//for x(out),x(in)
CM(3,Mx-1) = Kp; CM(3,Mx) = -Kp; //for u_out

H_r=syslin(’c’,AM,BM_r,CM);

// responses to reference r_in
//*************************************
f_min=0.00005; f_max=0.08; fstep=0.000010;
f_r=(f_min:fstep:f_max); f_rp = f_r;
FR_r = repfreq(H_r,f_r);

// Bode plot to r_in
repf_r = repfreq(H_r,f_r);
[dbB_1,phiB_1]=dbphi(repf_r(1,:));
[dbB_2,phiB_2]=dbphi(repf_r(2,:));

f1 = scf(1);
plot2d(f_rp,[dbB_1’,dbB_2’],logflag = ’ln’,...

style=[2,5],rect=[f_min,-30.,0.10,+10.0]);
xgrid(1); legend(’x_out’,’x_in’,2);

xtitle([’case[B]: PcI-2dof, Bode DB from r_in,...
no. comp. =’,msprintf(’%3.0f’,Mx-1),...

’Froude F =’,msprintf(’%5.2f’,F)]);

f2 = scf(2);
plot2d(f_rp,[phiB_1’,phiB_2’],logflag = ’ln’,...

style=[2,5],rect=[f_min,-400.,0.10,+0.0]);
xgrid(1); legend(’x_41’,’x_1’,1);

xtitle([’case[B]: PcI-2dof, Bode PHI from r_in,...
no. comp. =’,msprintf(’%3.0f’,Mx-1),...

’Froude F =’,msprintf(’%5.2f’,F)]);

// step response with u(t) trace
T_f = 1200; delT = 1.0;

vvt=[0.:delT:T_f]; [vy]=csim(’step’,vvt,H_r);

f3 = scf(3);
plot2d(vvt’,[vy]’,style=[2,5,1],rect=[0.,-1.8,T_f,+1.40]);
legend(’x_out’,’x_in’,’u_out’,1); xgrid(1);
xtitle([’case[B]: PcI-2dof,step to ref. r_in,...
no. comp. =’,msprintf(’%3.0f’,Mx-1),...

’Froude F =’,msprintf(’%5.2f’,F)]);

// responses to inflow disturbance z_in
//************************************
BM_z=zeros(Mx,1);
BM_z(1)= +(1.0/vT(1)); BM_z(2)= +p*(1.0/vT(2));
H_z = syslin(’c’,AM,BM_z,CM);

// Bode plot
repf_z = repfreq(H_z,f_r);
[dbBd_1,phiBd_1]=dbphi(repf_z(1,:));
[dbBd_2,phiBd_2]=dbphi(repf_z(2,:));

f4 = scf(4);
plot2d(f_rp,[dbBd_1’,dbBd_2’],logflag = ’ln’,...

style=[2,5],rect=[f_min,-30.,0.10,+10.0]);
xgrid(1); legend(’x_out’,’x_in’,2);
xtitle([’case [B]: PcI-2dof, Bode DB from z_in,...

no. comp. =’,msprintf(’%3.0f’,Mx-1),...
’Froude F =’,msprintf(’%5.2f’,F)]);

f5 = scf(5);
plot2d(f_rp,[phiBd_1’,phiBd_2’],logflag = ’ln’,...

style=[2,5],rect=[f_min,-200.,0.10,+100.0]);
xgrid(1); legend(’x_out’,’x_in’,1);
xtitle([’case [B]: PcI-2dof, Bode PHI from z_in,...

no. comp. =’,msprintf(’%3.0f’,Mx-1),...
’Froude F =’,msprintf(’%5.2f’,F)]);

// step response
[vy]=csim(’step’,vvt,H_z);

f6 = scf(6);
plot2d(vvt’,[vy]’,style=[2,5,1],rect=[0.,-0.40,T_f,+2.0]);
legend(’x_out’,’x_in’,’u_out’,1); xgrid(1);
xtitle([’case [B]: PcI-2dof, step to inflow z_in,...
no. comp. =’,msprintf(’%3.0f’,Mx-1),...

’Froude F =’,msprintf(’%5.2f’,F)]);

281

Figure 6.28: Case [B]: Responses of closed loop system (PcascI) to reference r in,
for spacial discretisation parameter N = 20: → 41 compartments
(left) for F = 0.040, (right) for F = Fd = 0.400
(top, center) Bode plots (bottom) step responses
(solid) for Kp = 1.00 ∗ (1/Fd) ∗ (1 + F) (dashed) for Kp = 1.26 ∗ (1/Fd) ∗ (1 + F)

282

Figure 6.29: Case [B]: Responses of closed loop system (PcI) to inflow z in,
for spacial discretisation parameter N = 20: → 41 compartments
(left) for F = 0.040, (right) for F = Fd = 0.400
(top, center) Bode plots (bottom) step responses
(solid) for Kp = 1.00 ∗ (1/Fd) ∗ (1 + F) (dashed) for Kp = 1.26 ∗ (1/Fd) ∗ (1 + F)

Discussion:
From an application point of view, by inspection the transient responses are sufficiently close to those for
the sysinf-case, Fig.6.20. That is the findings from there are valid here as well.

283

6.4.6 Control layout Case [C]

// s_c6_02_3.sce
// Glf 2017_06_15
// control case [C]: "irrigation channel loop layout"
// Closed loop: Bode plots, step responses
// PI-2dof-controller, gain Kp, Ki, T_i
// split-structure: I from outflow level, P from inflow level
// manipulated variable: inflow
// inputs: reference r_out and outflow z_out steps
// output traces: responses on x_out and x_in, u_in

// reference values
g = 10.; U_d = 2.0; D = 2.5; L_tot = 500.;

// operating point: select flow speed / Froude number
// U = 2.0;

U = 0.20;

// no. of compartements
N = 20;

// building the system: SIZE N, Mx
//*********************************

Mx = 2*N+2; L = L_tot/(N+1);

// defining matrix elements
U_F = sqrt(g*D); F = U/U_F; F_d = U_d/U_F;
PHI = F^2; PHI_d = F_d^2;
T_1 = (L/U_F)*(1/F_d); T_2 = (L/U_F)*(F_d);
p = 2*F*F_d; a = (1 - PHI); b = a; c = 0.0;
T_t_dn = L_tot/(U_F + U); //delay downstream direct.
T_0 = 2*(L_tot/U_F);

// PI-controller from sys_inf, with gain scheduling
Kp = 1.0*(1/F_d)*(1-F); // impedance matching

// Kp = 1.26*(1/F_d)*(1-F);

Ki = 1.0*(1+F); Ti = T_0;

// time constants vector buildup
vT = ones(1, Mx);
for n= 1:2:Mx-2, vT(n)=T_1; vT(n+1)=T_2; end

vT(Mx-1) = T_1; vT(Mx) = Ti;

// system matrix AM buildup
AM = zeros(Mx,Mx);

// volume elements
// first line
m = 1; AM(m,m+1) = -1.0/vT(m);
// intermediate non-even numbered lines

for m = 3:2:Mx-3,
AM(m,m-1)=+1.0/vT(m); AM(m,m+1)=-1.0/vT(m); end
//final line for plant
m = Mx-1; AM(m,m-1) = +1.0/vT(m);

// line and column element for P-action
AM(1,1) = - Kp/vT(1);

// line and column elements for I-action
AM(Mx,Mx-1)=-Ki/vT(Mx); AM(1,Mx)=Kp/vT(1);

// Flow/Momentum elements
// second line
m = 2;AM(m,m-1)=(+a - Kp*p)/vT(m); AM(m,m)=-p/vT(m);
AM(m,m+1) = -b/vT(m); AM(m,Mx) = + Kp*p/vT(m);
//all other even numbered lines
for m = 4:2:Mx-1,

AM(m,m-3) = -c/vT(m); AM(m,m-2) = +p/vT(m);
AM(m,m-1) = +a/vT(m); AM(m,m) = -p/vT(m);
AM(m,m+1) = -b/vT(m); end

//Matrix BM_r
BM_r = zeros(Mx,1); BM_r(Mx)=+(Ki/vT(Mx));

// Matrix CM
CM = zeros(3,Mx);
CM(1,Mx-1)= 1.0; CM(2,1)= 1.0;//for x(out),x(in)
CM(3,1)= - Kp; CM(3,Mx)= + Kp; // for trace u_in

H_r=syslin(’c’,AM,BM_r,CM);

// responses to reference r_out
//*************************************
f_min=0.00005;f_maxf=0.080;f_max=0.10; fstep=0.00001;
f_r=f_min:fstep:f_maxf; FR_r = repfreq(H_r,f_r);

// Bode plot to r_out
repf_r = repfreq(H_r,f_r);
[dbB_1,phiB_1]=dbphi(repf_r(1,:));
[dbB_2,phiB_2]=dbphi(repf_r(2,:));

f1 = scf(1);
plot2d(f_r,[dbB_1’,dbB_2’],logflag = ’ln’,...

style=[2,5],rect=[f_min,-30.,f_max,+10.0]);
xgrid(1); legend(’x_out’,’x_in’,2);
xtitle([’case[C]: PcI-2dof, Bode DB from r_out,...
no. comp. =’,msprintf(’%3.0f’,Mx-1),...

’Froude F =’,msprintf(’%5.2f’,F)]);

f2 = scf(2);
plot2d(f_r,[phiB_1’,phiB_2’],logflag = ’ln’,...

style=[2,5],rect=[f_min,-400.,f_max,+0.0]);
xgrid(1); legend(’x_out’,’x_in’,1);

xtitle([’case[C]: PcI-2dof, Bode PHI from r_out,...
no. comp. =’,msprintf(’%3.0f’,Mx-1),...

’Froude F = ’,msprintf(’%5.2f’,F)]);

T_f = 1200; delT = 1.0;
vvt=[0.:delT:T_f]; [vy]=csim(’step’,vvt,H_r);

f3 = scf(3);
plot2d(vvt’,[vy]’,style=[2,5,1],rect=[0.,-0.8,T_f,+2.0]);
legend(’x_out’,’x_in1’,’u_in’,1);
xgrid(1); xtitle([’case[C]: PcI-2dof,step to ref. r_out,...
no. comp. =’,msprintf(’%3.0f’,Mx-1),...
’Froude F =’,msprintf(’%5.2f’,F)]);

// responses to outflow disturbance z_out
//************************************
BM_z=zeros(Mx,1);
BM_z(Mx-1)= -(1.0/vT(Mx-1));
H_z = syslin(’c’,AM,BM_z,CM);

// Bode plot
repf_z = repfreq(H_z,f_r);
[dbBd_1,phiBd_1]=dbphi(repf_z(1,:));
[dbBd_2,phiBd_2]=dbphi(repf_z(2,:));

f4 = scf(4);
plot2d(f_r,[dbBd_1’,dbBd_2’],logflag = ’ln’,...

style=[2,5],rect=[f_min,-30.,f_max,+10.0]);
xgrid(1); legend(’x_out’,’x_in’,2);
xtitle([’case[C]: PcI-2dof, Bode DB from z_out...

, no. comp. =’,msprintf(’%3.0f’,Mx-1),...
’Froude F =’,msprintf(’%5.2f’,F)]);

f5 = scf(5);
plot2d(f_r,[phiBd_1’,phiBd_2’],logflag = ’ln’,...

style=[2,5],rect=[f_min,-400.,f_max,+0.0]);
xgrid(1); legend(’x_out’,’x_in’,2);

xtitle([’case[C]: PcI-2dof, Bode ARG from z_out...
, no. comp.=’,msprintf(’%3.0f’,Mx-1),...
’Froude F =’,msprintf(’%5.2f’,F)]);

// step response
[vy]=csim(’step’,vvt,H_z);

f6 = scf(6);
plot2d(vvt’,[vy]’,style=[2,5,1],rect=[0.,-1.4,T_f,+2.0]);
legend(’x_out’,’x_in’,’u_1’,1); xgrid(1);
xtitle([’case[C]: PcI-2dof, step to outflow z_out,...
, no. comp. =’,msprintf(’%3.0f’,Mx-1),...
’, Froude F = ’,msprintf(’%5.2f’,F)]);

284

Figure 6.30: Case [C]: Responses of closed loop system (PcascI) to reference r out,
for spacial discretisation parameter N = 20: → 41 compartments
(left) for F = 0.040, (right) for F = Fd = 0.400
(top, center) Bode plots (bottom) step responses
(solid) for Kp = 1.00 ∗ (1/Fd) ∗ (1 + F) (dashed) for Kp = 1.26 ∗ (1/Fd) ∗ (1 + F)

285

Figure 6.31: Case [C]: Responses of closed loop system (PcI) to inflow z out,
for spacial discretisation parameter N = 20: → 41 compartments
(left) for F = 0.040, (right) for F = Fd = 0.400
(top, center) Bode plots (bottom) step responses
(solid) for Kp = 1.00 ∗ (1/Fd) ∗ (1 + F) (dashed) for Kp = 1.60 ∗ (1/Fd) ∗ (1 + F)

Discussion:
Again the transient responses are sufficiently close to those for the sysinf-case, Fig.6.23. Thus the same
findings apply.

286

6.5 Control Design for the nonlinear time domain model

6.5.1 Motivation

This is to be the last verification step before applying the control design procedure to real plant situations.
The focus is on the effect of GMS-friction, with the bottom slope at reference inclination (for design flow
and depth) and for different flows but at reference depth at the controlled location.

A typical real world application case would be (among many others) the Channel Hydro Power Station
‘Wildegg-Brugg’ on the lower Aare river (WGS 84 location: 47.468993 8.170052).

6.5.2 Modelling

The process model is carried over from sect.3.3, the case s c3 41 00 with the basic geometry ‘constant
cross section’ (constant width B(k) and nominally horizontal bottom S(k) = const.. The bottom inclina-
tion is then calculated from the GMS formula to obtain constant (reference) depth D r for the reference
flow Q r.

Now the model variables are given in SI-units (and not in p.u. as in the previous section). In order to
apply the control design procedure directly the reference values of flow Q ref and depth D ref are used
for sensor scaling and actuator scaling

sensor gain = 1.00/D r and actuator gain = Q r/1.00

Note that this assumes that the design location depth is used directly for the sensor input (as in the
previous sections) and not the measured level there and also with no sensor zero offset 9.
And the integral action time scaling is set here to the (artificial) echo travelling time at zero flow and
reference depth Ti0 := 2 · (L tot/

√
g ·D r). Note that this assumes that the bottom geodesic height

difference from the inflow location to the outflow location is small compared to D ref .

The flow now may vary continuously over the whole operating range. Here it shall cover the range
from Q = Q r = 50 m3/s down to Q = 0.10 · Q r, while D is kept at D r. This results in F from
F = F r = 0.400 down to F = 0.040. The speed of the these large scale flow variations usually is very
low. A typical rate for a medium size run-of-river plant would be ≈ ±5% of Q r per one hour. — Here
this is set to ‘per 180s or 3min’ that is a factor of 20 faster (to keep the simulation time within bounds).
Note that this will produce tracking errors in the control loop simulation which are greater than what is
to be expected in real installations.
Superposed to this large scale ‘drift’ of the flow, there will be small local changes of flow due to turbine
runup/shutdown not fully compensated by the parallel weir flow, filling/emptying of locks, etc. They are
assumed to be ‘steps’ of size ±4% of Q r = 2.0 m3/s. They shall occur at Q = Q r and at Q = 0.10 ·Q r
during ‘steady state’ conditions (again keeping in mind that the underlying large scale flow drift is much
slower in reality).

Next the open loop step responses of the plant are simulated and compared to the results from the two
previous models. Then the closed loop responses for the control cases [A], [B] and [C] are investigated.

9as in most real plant applications

287

6.5.3 Open loop responses

Figure 6.32: Top level diagram for open loop step responses to outflow z out

The single outflow ‘step’ is set to − 2% that is − 1 m3/s at 50 s. The simulation runs for 1200 s that is
for ≈ 6 times the echo travel time at zero flow.

288

// s_c6_03_0_context
// open loop response to outflow step
// Glf 2017_06_15

N= 20; // no Volume and Momentum-segments
g = 10.; L_tot = 500.; L = L_tot/(N+1);
kap = 0.0; // "downwind"

// operating point
Q_d = 50.0; D_d = 2.50; B_d = 10.0; S_d = 1*(-1.0);
U_d = 2.0; U_F_d = 5.0; F_d = 0.40;

// GMS-friction coefficient
// k_s = 50.0;

k_s = 100.0;

// reference bottom slope
U_d = 2.0; R_d = (B_d*D_d)/(B_d + 2*D_d);
I_d = (U_d/(k_s*(R_d)^(2/3)))^2;

//working spans for integrators
D_min = +0.001; D_max = 4*D_d;
Q_min = +0.001; Q_max = 4*Q_d;

// channel geometry
//*****************
// Basic layout: constant width
vb = 1.0*[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0];

vB = B_d*vb;

// basic layout: bottom ’horizontal’
vs = -1*[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,1.0];

vS0 = (-S_d)*vs;

// inflow fixed
// Q_0 = Q_d;

Q_0 = 0.10*Q_d;

// outflow generation
dQ = 1.0; // -> 1.0 m^3/s, or 2 % of Q_d
t_st_1 = 50.0; r_1_0 = Q_0; r_1_1 = Q_0 - dQ;
t_st_2 = 1200.0; r_2_0 = 0.; r_2_1 = +2*dQ;
t_st_3 = 1200.0; r_3_0 = 0.; r_3_1 = -1.0*dQ;
T_fin = 1200.;
// outflow slew rate
g_st = 10.0; u_up_st = +1.0; u_dn_st = -1.0;
tau_st = 10.0; Q_st_0 = Q_0;

vd0 = ones(1,(2*N+1)); vD0 = D_d*vd0;
vq0 = ones(1,(2*N+1)); vQ0 = Q_0*vq0;

// friction slope of the bottom vS
vi0 = ones(1,(2*N+1));
vdelSf = zeros(1,(2*N+1));
vSf = zeros(1,(2*N+1));
for kk=2:2:(2*N),

vI0(kk) = I_d*vi0(kk);
vdelSf(kk) = - L*vI0(kk);
vSf(kk) = vSf(kk-1) + 0.5*vdelSf(kk);
vSf(kk+1) = vSf(kk) + 0.5*vdelSf(kk);

end
for k4= 1:1:(2*N+1),

vS(k4) = vS0(k4) + vSf(k4); end
// shift bottom zero to outflow point

Sf_o = vSf(kk+1);
for k5= 1:1:(2*N+1),

vS(k5) = vS(k5) - Sf_o*vi0(k5); end

// initial depths
if Q_0 <= 0.15*Q_d then

vH0 = (D_d + S_d)*ones(1,(2*N+1));
for k6 = 1:1:(2*N+1),

vD0(k6) = vH0(k6) - vS(k6); end
else vD0 = D_d*vd0; end

// Inflow and outflow data
B_in=vB(1); S_in=vS0(1); D_in=vD0(1); Q_in=vQ0(1);
B_o=vB(kk+1);S_o=vS(kk+1);D_o=vD0(kk+1);Q_o=vQ0(kk+1);

// Data transfer to Plots
CC=21; CN=1200; delT=T_fin/CN; Asize=1.01*CC*CN;
C41 = 2; D41size = 1.01*C41*CN;

// s_c6_03_0_crunplot
// Glf 2017_06_15

stacksize(’max’); exec(’s_c6_03_0_context.sce’, -1);
importXcosDiagram(’s_c6_03_0.zcos’);
typeof(scs_m); scs_m.props.context;
Info=list(); Info=scicos_simulate(scs_m,Info);
//**********************************

for kfig = 1:1:1, clf(kfig); end

vcolor = [5, 2, 3, 4, 1, 6, 9,11,13,15,...
17,19,21,22,25,27,29,32, 2, 5];

if Q_0 <= 0.10*Q_d then

if k_s <= 60 then

f1 = scf(1);
plot2d(D.time,D.values,vcolor,rect=[0.,2.1,T_fin,2.7]);
plot2d(D41.time,D41.values,rect=[0.,2.1,T_fin,2.7]);
xtitle("case [o]: D_1 to D_41"); xgrid(1);

else
f1 = scf(1);
plot2d(D.time,D.values,vcolor,rect=[0.,2.3,T_fin,2.7]);
plot2d(D41.time,D41.values,rect=[0.,2.3,T_fin,2.7]);
xtitle("case [o]: D_1 to D_41"); xgrid(1);

end

else
f1 = scf(1);
plot2d(D.time,D.values,vcolor,rect=[0.,2.4,T_fin,2.8]);
plot2d(D41.time,D41.values,rect=[0.,2.4,T_fin,2.8]);
xtitle("case [o]: D_1 to D_41"); xgrid(1);
end

289

Figure 6.33: open loop step responses of depth D to outflow z out,
(left column) for F = 0.040 (right column) for F = 0.400,
(top row) for k s = 100 (bottom row) for k s = 50

Discussion:

- top left: very similar to observed open loop responses of the sysinf-model.
The Froude waves are very distinct, dissipation is low.
There is now a wave slope, highest on the first step, decreasing for later reflections
and there is a small damped oscillation after the slope ends.
The height for the first outflow ‘step’ is 0.20 and increases to 0.40 for the first inflow
reflection.
The ‘plateau’ between steps is approx. horizontal.

- bottom left: The depth spread is 4 times higher than for top left, as expected.
The wave slope and height is approx. the same as above.
But the ‘plateau’ phase is no longer horizontal but with increasing inclination

- top right: F = 0.04→ F = 0.40: The Froude waves are dissipated after approx 4 peaks.
The wave height is reduced, as with the sysinf-model,
and the ‘plateau’ phase inclination increases more quickly than for F = 0.040.

- bottom right: The dissipation is even stronger, the Froude waves disappear after the second peak.
This will help to reduce the overshoot of the closed loop response.

290

6.5.4 Case [A]

Figure 6.34: Case [A]: top level diagram for closed loop step responses to inflow z in

291

// s_c6_03_1_context
// Glf 2017_06_15

N= 20; // no Volume and Momentum-segments
g = 10.; L_tot = 500.; L = L_tot/(N+1);
kap = 0.50; // "centered"

// operating point
Q_d = 50.0; D_d = 2.50;
B_d = 10.0; S_d = 1*(-1.0);
U_d = 2.0; U_F_d = 5.0; F_d = 0.40;

// GMS-friction coefficient
// k_s = 30.0;

k_s = 60.0;
// k_s = 100.0;

// reference bottom slope
R_d = (B_d*D_d)/(B_d + 2*D_d);
I_d = (U_d/(k_s*(R_d)^(2/3)))^2;

//working spans for integrators
D_min = +0.001; D_max = 4*D_d;
Q_min = +0.001; Q_max = 4*Q_d;

// channel geometry
// Basic layout: constant width
vB = B_d*ones(1,(2*N+1));

// basic layout: bottom ’horizontal’
vS0 = (S_d)*ones(1,(2*N+1));

vd0 = ones(1,(2*N+1)); vD0 = D_d*vd0;
vq0 = ones(1,(2*N+1)); vQ0 = Q_d*vq0;

// Inflow data
B_in=vB(1); S_in=vS0(1); D_in=vD0(1); Q_in=vQ0(1);

// friction slope of the bottom vS
vi0 = ones(1,(2*N+1));
vdelSf = zeros(1,(2*N+1));
vSf = zeros(1,(2*N+1));

for kk=2:2:(2*N),
vI0(kk) = I_d*vi0(kk);
vdelSf(kk) = - L*vI0(kk);
vSf(kk) = vSf(kk-1) + 0.5*vdelSf(kk);

vSf(kk+1) = vSf(kk) + 0.5*vdelSf(kk);
end
for k4= 1:1:(2*N+1),

vS(k4) = vS0(k4) + vSf(k4);
end
// shift bottom zero to outflow point

Sf_o = vSf(kk+1);
for k5= 1:1:(2*N+1),

vS(k5) = vS(k5) - Sf_o*vi0(k5);
end

// outflow data
B_o=vB(kk+1);S_o=vS(kk+1);D_o=vD0(kk+1);Q_o=vQ0(kk+1);

// inflow generation
dQ_sm = 0.04; dQ_la = 0.90;

t_st_1 = 100.0; r_1_0 =Q_d; r_1_1=(1.0+dQ_sm)*Q_d;
t_st_2 = 1400.0; r_2_0 = 0.; r_2_1=-(dQ_la+dQ_sm)*Q_d;
t_st_3 = 7000.0; r_3_0 = 0.; r_3_1= + dQ_sm*Q_d;
t_st_4 = 9000.0; r_4_0 = 0.; r_4_1=+(dQ_la-dQ_sm)*Q_d;
t_st_5 = 13000.0; r_5_0 = 0.; r_5_1= + dQ_sm*Q_d;
T_fin = 16000.0;
// inflow slew rate
g_st = 10.0; u_up_st = +1.00; u_dn_st = -1.00;
tau_st = 72.0; Q_st_0 = Q_d;

// sensor & actuator scaling factors
c_41 = 1.00 / D_d; b_41 = Q_d / 1.00;

// nonlinear filtering of F_40
b = 0.040; bhi = +0.380; blo = 0.0; bhys = 0.005;
T_fil = 300.0; F_f_0 = F_d ;
g_paral = 0.5;

// controller gain settings
T_E_d = 2.0*(L_tot / U_F_d);
r_41 = 1.0; // <- D_41=2.50m, H_41=1.50m

Kp0 = 1.0*(1/F_d); // impedance matching

Ki0 = 1.0; Ti0 = T_E_d;
// initial cond. xi0 for I-action
Kp1 = Kp0*(1+F_d); xi0 = (Kp1 - 1.0)/Kp1;

// Data transfer to Plots
CC = 21; CN = 3200; delT = T_fin/CN;
Asize = 1.01*CC*CN; Afilsize=1.01*3*CN;
C41 = 2; D41size = 1.01*C41*CN;

// s_c6_03_1_crunplot
// Glf 2017_06_15

stacksize(’max’); exec(’s_c6_03_1_context.sce’, -1);
importXcosDiagram(’s_c6_03_1.zcos’);
typeof(scs_m); scs_m.props.context;
Info=list(); Info=scicos_simulate(scs_m,Info);
//**********************************
for kfig = 1:1:10, clf(kfig); end
vcolor = [5, 2, 3, 4, 1, 6, 9,11,13,15,...

17,19,21,22,25,27,29,32, 2, 5];

t_0 = t_st_1 - 100.0; t_e0 = t_st_1+1200.0;
f1 = scf(1);
plot2d(Q.time,Q.values,vcolor,rect=[t_0,48.,t_e0,57.]);
xtitle([’case [A]: Q_2 to Q_40; F = 0.400; k_s = ’,...
msprintf(’%4.0f’, k_s)]); xgrid(1);

f2 = scf(2);
plot2d(D.time,D.values,vcolor,rect=[t_0,2.46,t_e0,2.66]);
plot2d(D41.time,D41.values,style=1,rect=[t_0,2.40,t_e0,2.60]);
xtitle([’case [A]: D_1 to D_41; F = 0.400; k_s = ’,...
msprintf(’%4.0f’, k_s)]); xgrid(1);

f3 = scf(3);
plot2d(H.time,H.values,vcolor,rect=[t_0,1.4,t_e0,2.8]);
xtitle([’case [A]: H_1 to H_41; F = 0.400; k_s = ’,...
msprintf(’%4.0f’, k_s)]); xgrid(1);

f4 = scf(4);
plot2d(F.time,F.values,vcolor,rect=[t_0,0.38,t_e0,0.45]);
xtitle([’case [A]: F_2 to F_40; F = 0.400; k_s = ’,...
msprintf(’%4.0f’, k_s)]); xgrid(1);

t_6=t_st_3-100.0; t_e6=t_st_3+1200.0;
f5 = scf(5);
plot2d(Q.time,Q.values,vcolor,rect=[t_6,4.0,t_e6,12.0]);
xtitle([’case [A]: Q_2 to Q_40; F = 0.040; k_s = ’,...
msprintf(’%4.0f’, k_s)]); xgrid(1);

f6 = scf(6);
plot2d(D.time,D.values,vcolor,rect=[t_6,1.3,t_e6,2.7]);
plot2d(D41.time,D41.values,style=1,rect=[t_6,2.0,t_e6,2.6]);
xtitle([’case [A]: D_1 to D_41; F = 0.040; k_s = ’,...
msprintf(’%4.0f’, k_s)]); xgrid(1);

f7 = scf(7);
plot2d(H.time,H.values,vcolor,rect=[t_6,1.3,t_e6,1.7]);
xtitle([’case [A]: H_1 to H_41; F = 0.040; k_s = ’,...
msprintf(’%4.0f’, k_s)]); xgrid(1);

f8 = scf(8);
plot2d(F.time,F.values,vcolor,rect=[t_6,0.02,t_e6,0.22]);
xtitle([’case [A]: F_2 to F_40, F = 0.040; k_s = ’,...
msprintf(’%4.0f’, k_s)]); xgrid(1);

f9 = scf(9);
plot2d(Q.time,Q.values,vcolor,rect=[0,0,T_fin,60]);
xtitle([’case [A]: Q_2 to Q_40; ; k_s = ’,...
msprintf(’%4.0f’, k_s)]); xgrid(1);

f10 = scf(10);
plot2d(Ffil.time,Ffil.values,style=[5,2],...

rect=[0,0.,T_fin,0.50]);
xtitle([’case [A]: F_40 (red), Ffil (blue); k_s = ’,...
msprintf(’%4.0f’, k_s)]); xgrid(1);

292

The nonlinear filter in Fig.6.34 is to decouple the dynamics of the gain scheduling loop from the dynamics
of the level control loop.
In most practical cases large shifts of the operating point (by Q) are very slow compared to the small
‘steps’ in Q for the level control loop. Here a much shorter time span shall be used: The operating point
on Q is set to move from its design value Q d down to (extrapolated) zero in 3′600s, to be compared to
the echo travelling time at zero flow of 200s.
The decoupling of the scheduling parameter Ffil(t) from the actual F (t) is designed as follows: The basis
is a first order tracking loop, Fig.6.35. A dead band of span ±b is inserted around its equilibrium by the
two relay blocks to suppress changes of the ‘scheduling F ’ around its equilibrium. And a linear path is
added with gain g paral to drift the filter output slowly to the dead span center. The filter time constant
T fil = 300 s is adjusted such that the output Fil out will stay near the previous equilibrium during the
small transient dynamic but then will follow fast enough to the next equilibrium.
This nonlinear filter has been necessary for case [C], where the closed loop response would be not accept-
able without it. It has been also helpful for case [B], but is really not needed for case[A].

Figure 6.35: Case [A]: closed loop responses of Q and F to large inflow shifts and small ‘steps’ z in,
(top) diagram for nonlinear filtering of F 40
(center) Q for full time range
(bottom) for nonlinearly filtered F

293

Figure 6.36: Case [A]: zoomed-in responses of Q, D, H, F to inflow ‘steps’ z in,
(left) F = 0.040, (right) F = 0.400

294

Discussion:

- Fig.6.35:
The nonlinear filter for gain scheduling F performs approximately as expected. It will need further
refinement before it is ready for implementation on a real plant...

- Fig.6.36:
At F = 0.040 the overshoot on Q is ≈ +0.30 at ≈ 400s and the response is decayed at ≈ 800s.
The corresponding values for the step response from section 6.4 are ≈ +0.30, ≈ 300s, ≈ 700s.
Considering that here the ‘step’ is in fact a ramp, taking 100s to reach the new steady state, this
agrees well.

- For the inflow level the overshoot peak is ≈ 0.04m, that is ≈ 0.016 of Dd. This is for ∆Q = 0.4
of the local steady state Q = 5m3/s. This yields a relative size of 0.40, which agrees well with the
value for ∆x in from sections 6.3 and 6.4.

- At F = 0.40 the effect of the friction is more pronounced on the overshoots. The relative overshoot
in Q is now 0.10, compared to 0.25 from section 6.4. And the relative overshoot on the inflow level
is ≈ 0.20, compared to 0.30 from sect. 6.4.

- The decay time however is not affected markedly by the friction. It is ≈ 700s, which again agrees
well with the corresponding values from section 6.4.

- Finally note that at F = 0.040 the observed variation ∆F = 0.0155 agrees well with the expected
one of 0.016 for the relative flow increase of 0.40 there. And also at F = 0.40 the observed variation
of ∆F = 0.016 for the relative flow increase of 0.04.

To summarize , for case[A]: The responses for the nonlinear time domain model agree well with the
results from the linearized model section 6.4 and thus from the pure delay model section 6.3. The only
marked difference is the steady state level and depth spread along the channel length, due to the friction.

295

6.5.5 Case [B]

Figure 6.37: Case [B]: top-level diagram for closed loop step responses to inflow z in

296

// s_c6_03_2_context
// Glf 2017_06.15
N= 20; // no Volume and Momentum-segments
g = 10.; L_tot = 500.; L = L_tot/(N+1);
kap = 0.5; // "centered"

// operating point
Q_d = 50.0; D_d = 2.50;
B_d = 10.0; S_d = 1*(-1.0);
U_d = 2.0; U_F_d = 5.0; F_d = 0.40;

// GMS-friction coefficient
k_s = 50.0;

// reference bottom slope
R_d = (B_d*D_d)/(B_d + 2*D_d);
I_d = (U_d/(k_s*(R_d)^(2/3)))^2;

//working spans for integrators
D_min = +0.001; D_max = 4*D_d;
Q_min = +0.001; Q_max = 4*Q_d;

// channel geometry
// Basic layout: constant width
vB = B_d*ones(1,2*N+1));

// basic layout: bottom ’horizontal’
vS0 = (S_d)*ones(1,(2*N+1));

vd0 = ones(1,(2*N+1)); vD0 = D_d*vd0;
vq0 = ones(1,(2*N+1)); vQ0 = Q_d*vq0;

// Inflow data
B_in=vB(1); S_in=vS0(1); D_in=vD0(1); Q_in=vQ0(1);

// friction slope of the bottom vS
vi0 = ones(1,(2*N+1));
vdelSf = zeros(1,(2*N+1));
vSf = zeros(1,(2*N+1));

for kk=2:2:(2*N),
vI0(kk) = I_d*vi0(kk);
vdelSf(kk) = - L*vI0(kk);
vSf(kk) = vSf(kk-1) + 0.5*vdelSf(kk);
vSf(kk+1) = vSf(kk) + 0.5*vdelSf(kk);

end
for k4= 1:1:(2*N+1),

vS(k4) = vS0(k4) + vSf(k4);

end
// shift bottom zero to outflow point

Sf_o = vSf(kk+1);
for k5= 1:1:(2*N+1),

vS(k5) = vS(k5) - Sf_o*vi0(k5);
end

// outflow data
B_o=vB(kk+1); S_o=vS(kk+1);
D_o=vD0(kk+1); Q_o=vQ0(kk+1);

// inflow generation
dQ_sm = 0.04; dQ_la = 0.90;

t_st_1 = 100.0; r_1_0 =Q_d; r_1_1=(1.0+dQ_sm)*Q_d;
t_st_2 = 2600.0; r_2_0 = 0.; r_2_1=-(dQ_la+dQ_sm)*Q_d;
t_st_3 = 8200.0; r_3_0 = 0.; r_3_1= + dQ_sm*Q_d;
t_st_4 = 10200.0; r_4_0 = 0.; r_4_1=+(dQ_la-dQ_sm)*Q_d;
t_st_5 = 15000.0; r_5_0 = 0.; r_5_1= + dQ_sm*Q_d;
T_fin = 18000.0;
// inflow slew rate
g_st = 10.0; u_up_st = +1.00; u_dn_st = -1.00;
tau_st = 60.0; Q_st_0 = Q_d;

// outflow by outlevel PcI-control
// ********************************
// sensor & actuator scaling factors
c_41 = 1.00 / D_d; b_41 = Q_d / 1.00;

// nonlinear filtering of F_02
T_sw = t_st_1; rsw0 = -1.0; rsw1 = +1.0;
b = 0.040; bhi = +0.380; blo = 0.0; bhys = 0.005;
T_fil = 300.0; F_f_0 = F_d ;
g_paral = 0.5;

// controller gain settings
T_E_d = 2.0*(L_tot / U_F_d);
r_01 = 1.0 ;

Kp0 = 1.0*(1/F_d); // impedance matching

Ki0 = 1.0; Ti0 = T_E_d;

// initial cond. xi0 for I-action
Kp1 = Kp0*(1+F_d); xi0 = (Kp1 - 1.0)/Kp1;

// Data transfer to Plots
CC = 21; CN = 3600; delT = T_fin/CN;
Asize = 1.01*CC*CN; Afilsize=1.01*3*CN;

// s_c6_03_2_crunplot
// Glf 2017_06_15
stacksize(’max’); exec(’s_c6_03_2_context.sce’, -1);
importXcosDiagram(’s_c6_03_2.zcos’);
typeof(scs_m); scs_m.props.context;
Info=list(); Info=scicos_simulate(scs_m,Info);
//**********************************
for kfig = 1:1:10, clf(kfig); end
vcolor = [1, 2, 3, 4, 1, 6, 9,11,13,15,...

17,19,21,22,25,27,29,32, 2, 5];

t_0 = t_st_1 - 100.0; t_e0 = t_st_2-100.0;
f1 = scf(1);
plot2d(Q.time,Q.values,vcolor,rect=[t_0,48.,t_e0,54.]);
xtitle(["case [B]: Q_2 to Q_40; F = 0.400;k_s = ",...
msprintf(’%4.0f’, k_s)]); xgrid(1);

f2 = scf(2);
plot2d(D.time,D.values,vcolor,rect=[t_0,2.4,t_e0,2.6]);
xtitle(["case [B]: D_1 to D_41; F = 0.400; k_s = ",...
msprintf(’%4.0f’, k_s)]); xgrid(1);

f3 = scf(3);
plot2d(H.time,H.values,vcolor,rect=[t_0,1.0,t_e0,2.0]);
xtitle(["case [B]: H_1 to H_41; F = 0.400; k_s = ",...
msprintf(’%4.0f’, k_s)]); xgrid(1);

f4 = scf(4);
plot2d(F.time,F.values,vcolor,rect=[t_0,0.35,t_e0,0.45]);
xtitle(["case [B]: F_2 to F_40; F = 0.400; k_s = ",...
msprintf(’%4.0f’, k_s)]); xgrid(1);

t_6=t_st_3-100.0; t_e6=t_st_3+1200.0;
f5 = scf(5);
plot2d(Q.time,Q.values,vcolor,rect=[t_6,3.0,t_e6,12.]);
xtitle(["case [B]: Q_2 to Q_40; F = 0.040; k_s = ",...
msprintf(’%4.0f’, k_s)]); xgrid(1);

f6 = scf(6);
plot2d(D.time,D.values,vcolor,rect=[t_6,2.4,t_e6,2.9]);
xtitle(["case [B]: D_1 to D_41; F = 0.040; k_s = ",...
msprintf(’%4.0f’, k_s)]); xgrid(1);

f7 = scf(7);
plot2d(H.time,H.values,vcolor,rect=[t_6,1.7,t_e6,1.9]);
xtitle(["case [B]: H_1 to H_41; F = 0.040; k_s = ",...
msprintf(’%4.0f’, k_s)]); xgrid(1);

f8 = scf(8);
plot2d(F.time,F.values,vcolor,rect=[t_6,0.01,t_e6,0.14]);
xtitle(["case [B]: F_2 to F_40, F = 0.040; k_s = ",...
msprintf(’%4.0f’, k_s)]); xgrid(1);

f9 = scf(9);
plot2d(Q.time,Q.values,vcolor,rect=[0,0,T_fin,60]);
xtitle(["case [B]: Q_2 to Q_40; k_s = ",...
msprintf(’%4.0f’, k_s)]); xgrid(1);

f10 = scf(10);
plot2d(Ffil.time,Ffil.values,style=[5,2],...

rect=[0,0.,T_fin,0.55]);
xtitle(["case [B]: F_40 (red), Ffil (blue); k_s = ",...
msprintf(’%4.0f’, k_s)]); xgrid(1);

297

Figure 6.38: Case [B]: closed loop responses to inflow ‘steps’ z in, for F 40, Ffil

Discussion:

- Fig.6.38:
The nonlinear filter for gain scheduling F performs approximately as expected.

- Fig.6.39:
At F = 0.040 the overshoot on Q is ≈ +0.40 at ≈ 250s and the response is decayed at ≈ 700s.
The corresponding values for the step response from section 6.4 are ≈ +0.40, ≈ 200s, ≈ 600s.
Considering that here the ‘step’ is in fact a ramp, taking 100s to reach the new steady state, this
agrees well.

- For the inflow level the overshoot peak is ≈ 0.04m, that is ≈ 0.016 of Dd. This is for ∆Q = 0.4
of the local steady state Q = 5m3/s. This yields a relative size of 0.40, which agrees well with the
value for ∆x in from sections 6.3 and 6.4.

- There is a small undershoot ∆Q ≈ 0.05, which is due to the stronger integral action Ki0 = 1.40
instead of 1.0 in section 6.4. This re-tuning has been done to reduce the settling time forF = 0.40,
see below.

- At F = 0.40 the effect of the friction is more pronounced on the overshoot size. The relative
overshoot in Q is now 0.25 at 300s, compared to 0.20 from section 6.4. And the relative overshoot
on the inflow level is ≈ 0.40, compared to 0.30 from sect. 6.4.

- The decay time however is affected strongly by the friction. It is ≈ 1100s, with 750s for the
corresponding values from section 6.4.

- Finally note that at F = 0.040 the observed variation ∆F = 0.016 agrees well with the expected
one of 0.016 for the relative flow increase of 0.40 there. And also at F = 0.40 the observed variation
of ∆F = 0.0165 for the relative flow increase of 0.04.

To summarize , for case [B]: the responses for the nonlinear time domain model agree acceptably with
the results from the linearized model section 6.4 and thus from the pure delay model section 6.3. Note
the (small) re-tuning on the integral action (Ki→ 1.40 · (1 + F) to reduce the even larger settling time
for F = 0.40.

298

Figure 6.39: Case [B]: zoomed-in responses of Q, D, H, F to inflow ‘steps’ z in, (left) F = 0.040, (right)
F = 0.400

299

6.5.6 Case [C]

Figure 6.40: Case [C]: top level diagram for closed loop responses to outflow ‘steps’ z out

300

// s_c6_03_3_context
// Glf 2017_06_15

N= 20; // no Volume and Momentum-segments
g = 10.; L_tot = 500.; L = L_tot/(N+1);
kap = 0.50; // "centered"

// operating point
Q_d = 50.0; D_d = 2.50;
B_d = 10.0; S_d = 1*(-1.0);
U_d = 2.0; U_F_d = 5.0; F_d = 0.40;

// GMS-friction coefficient
// k_s = 50.0;

k_s = 100.0;

// reference bottom slope
R_d = (B_d*D_d)/(B_d + 2*D_d);
I_d = (U_d/(k_s*(R_d)^(2/3)))^2;

// working spans for integrators
D_min = +0.001; D_max = 4*D_d;
Q_min = +0.001; Q_max = 4*Q_d;

// channel geometry
//*****************
// Basic layout: constant width
vB = B_d*ones(1,(2*N+1));

// basic layout: bottom ’horizontal’
vS0 = (S_d)*ones(1,(2*N+1));
//**************************

vd0 = ones(1,(2*N+1)); vD0 = D_d*vd0;
vq0 = ones(1,(2*N+1)); vQ0 = Q_d*vq0;

// Inflow data
B_in=vB(1); S_in=vS0(1); D_in=vD0(1); Q_in=vQ0(1);

// friction slope of bottom vS
vi0 = ones(1,(2*N+1));
vdelSf = zeros(1,(2*N+1));
vSf = zeros(1,(2*N+1));
for kk=2:2:(2*N),

vI0(kk) = I_d*vi0(kk);
vdelSf(kk) = - L*vI0(kk);
vSf(kk) = vSf(kk-1) + 0.5*vdelSf(kk);
vSf(kk+1) = vSf(kk) + 0.5*vdelSf(kk);

end

for k4= 1:1:(2*N+1),
vS(k4) = vS0(k4) + vSf(k4);

end
//shift bottom zero to outflow point

Sf_o = vSf(kk+1);
for k5= 1:1:(2*N+1),

vS(k5) = vS(k5) - Sf_o*vi0(k5);
end

// outflow data
B_o=vB(kk+1);S_o=vS(kk+1);D_o=vD0(kk+1);Q_o=vQ0(kk+1);

// inflow generation
dQ_sm = 0.04; dQ_la = 0.90;

t_st_1 = 2000.0; r_1_0 =Q_d; r_1_1=(1.0+dQ_sm)*Q_d;
t_st_2 = 3400.0; r_2_0 = 0.; r_2_1=-(dQ_la+dQ_sm)*Q_d;
t_st_3 = 9000.0; r_3_0 = 0.; r_3_1= + dQ_sm*Q_d;
t_st_4 = 11000.0; r_4_0 = 0.; r_4_1=+(dQ_la-dQ_sm)*Q_d;
t_st_5 = 15800.0; r_5_0 = 0.; r_5_1= + dQ_sm*Q_d;
T_fin = 18000.0;
// inflow slew rate
g_st = 10.0; u_up_st = +1.00; u_dn_st = -1.00;
tau_st = 60.0; Q_st_0 = Q_d;

// outlevel PcI-control by inflow
// ******************************
// sensor & actuator scaling factors
c_41 = 1.00 / D_d; b_41 = Q_d / 1.00;

// nonlinear filtering of F_02
T_sw = t_st_1, rsw0 = -1.0; rsw1 = +1.0;
b = 0.050; bhi = +0.380; blo = 0.0; bhys = 0.005;
T_fil = 300.0; F_f_0 = F_d ;
g_paral = 0.5;

// controller gain settings
T_E_d = 2.0*(L_tot/U_F_d);
r_H_o = (D_d + S_o)/D_d;

Kp0 = 1.0*(1/F_d); // impedance matching

Ki0 = 1.00; Ti0 = T_E_d;

// initial condition xi0 for I-action
Kp1 = Kp0*(1-F_d); xi0 = (Kp1 + (1.0+(S_o/D_d)))/Kp1;

// Data transfer to Plots
CC = 21; CN = 3600; delT = T_fin/CN;
Asize = 1.01*CC*CN; Afilsize=1.01*3*CN;

// s_c6_03_3_crunplot
// Glf 2017_06_15

stacksize(’max’); exec(’s_c6_03_3_context.sce’, -1);
importXcosDiagram(’s_c6_03_3.zcos’);
typeof(scs_m); scs_m.props.context;
Info=list(); Info=scicos_simulate(scs_m,Info);
//**********************************
for kfig = 1:1:10, clf(kfig); end
vcolor = [5, 2, 3, 4, 1, 6, 9,11,13,15,...

17,19,21,22,25,27,29,32, 2, 1];

t_0 = t_st_1 - 100.0; t_e0 = t_st_1+1200.0;
f1 = scf(1);
plot2d(Q.time,Q.values,vcolor,rect=[t_0,48.,t_e0,54.]);
xtitle(["case [C]: Q_2 to Q_40; F = 0.400; k_s = ",...
msprintf(’%4.0f’, k_s)]); xgrid(1);

f2 = scf(2);
plot2d(D.time,D.values,vcolor,rect=[t_0,2.4,t_e0,2.6]);
xtitle(["case [C]: D_1 to D_41; F = 0.400; k_s = ",...
msprintf(’%4.0f’, k_s)]); xgrid(1);

f3 = scf(3);
plot2d(H.time,H.values,vcolor,rect=[t_0,1.0,t_e0,2.0]);
xtitle(["case [C]: H_1 to H_41; F = 0.400; k_s = ",...
msprintf(’%4.0f’, k_s)]); xgrid(1);

f4 = scf(4);
plot2d(F.time,F.values,vcolor,rect=[t_0,0.38,t_e0,0.45]);
xtitle(["case [C]: F_2 to F_40; F = 0.400; k_s = ",...
msprintf(’%4.0f’, k_s)]); xgrid(1);

t_6=t_st_3-100.0; t_e6=t_st_3+1200.0;

f5 = scf(5);
plot2d(Q.time,Q.values,vcolor,rect=[t_6,3.0,t_e6,12.0]);
xtitle(["case [C]: Q_2 to Q_40; F = 0.040; k_s = ",...
msprintf(’%4.0f’, k_s)]); xgrid(1);

f6 = scf(6);
plot2d(D.time,D.values,vcolor,rect=[t_6,1.8,t_e6,2.9]);
xtitle(["case [C]: D_1 to D_41; F = 0.040; k_s = ",...
msprintf(’%4.0f’, k_s)]); xgrid(1);

f7 = scf(7);
plot2d(H.time,H.values,vcolor,rect=[t_6,1.3,t_e6,1.9]);
xtitle(["case [C]: H_1 to H_41; F = 0.040; k_s = ",...
msprintf(’%4.0f’, k_s)]); xgrid(1);

f8 = scf(8);
plot2d(F.time,F.values,vcolor,rect=[t_6,0.02,t_e6,0.14]);
xtitle(["case [C]: F_2 to F_40, F = 0.040; k_s = ",...
msprintf(’%4.0f’, k_s)]); xgrid(1);

f9 = scf(9);
plot2d(Q.time,Q.values,vcolor,rect=[t_0,0,T_fin,60]);
xtitle(["case [C]: Q_2 to Q_40; k_s = ",...
msprintf(’%4.0f’, k_s)]); xgrid(1);

f10 = scf(10);
plot2d(Ffil.time,Ffil.values,style={5,2],...

rect=[t_0,0.,T_fin,0.5]);
xtitle(["case [C]: F_02 (red), Ffil (blue); k_s = ",...
msprintf(’%4.0f’, k_s)]); xgrid(1);

301

Figure 6.41: Case [C]: closed loop responses of F 02, Ffil to outflow ‘steps’ z out

Discussion:

- Fig.6.41:
Again the nonlinear filter for gain scheduling F performs approximately as expected (to be refined
before any real world application...).

- Fig.6.42:
At F = 0.040 the overshoot on Q is ≈ +0.35 at ≈ 300s and the response is decayed at ≈ 700s.
The corresponding values for the step response from section 6.4 are ≈ +0.45, ≈ 100s, ≈ 400s.
Considering that here the ‘step’ is in fact a ramp, taking 100s to reach the new steady state, this
is still about acceptable.

- For the outflow level the overshoot peak is ≈ −0.04m, that is ≈ −0.016 of Dd. This is for ∆Q = 0.4
of the local steady state Q = 5m3/s. This yields a relative size of −0.40, which agrees well with the
value for ∆x out from sections 6.3 and 6.4. The settling time is ≈ 700s, in contrast to ≈ 400s from
section 6.4.

- At F = 0.40 the effect of the friction is more pronounced on the overshoot size. The relative
overshoot in Q is now 0.60 at 500s, compared to 0.70 at ≈ 220s from section 6.4. And the relative
overshoot on the outflow level is ≈ −0.85 at ≈ 250s, compared to ≈ −0.65 at ≈ 80s from sect. 6.4.

- The settling time however is affected strongly by the friction. It is ≈ 1500s (!), in contrast to ≈ 500s
from section 6.4.

- There is a weakly damped response with the first relative undershoot ∆Q ≈ −0.15, resulting
in a period of ≈ 1′800s. Note that the integral action has been de-tuned already here to Ki =
0.70 · (1 + F).

- Finally note that at F = 0.040 the observed variation ∆F = 0.016 agrees well with the expected
one of 0.016 for the relative flow increase of 0.40 there. And also at F = 0.40 the observed variation
of ∆F = 0.0165 for the relative flow increase of 0.04.

- Further note the strong oscillation on F . This makes the nonlinear filtering of F necessary. Otherwise
an even stronger oscillation results due to the additional feedback through the gain scheduling loop
(simulation results not shown here).

To summarize , for case [C]: the responses for the nonlinear time domain model agree well with the
results from the linearized model section 6.4 and thus from the pure delay model section 6.3., but only
for F = 0.040. For F = 0.40 the weakly damped oscillation is marginally acceptable. A possible cause
may be the larger water level inclination which leads to a higher acceleration and thus to a higher kinetic
energy of the channel content, which has to be countered by the control action 10.

10But this shall remain an open point here...

302

Figure 6.42: Case [C]: zoomed-in responses of Q, D, H, F to outflow ‘steps’ z out,
(left) F = 0.040, (right) F = 0.400

303

Chapter 7

Application Studies

The next step is to verify the control design method on two typical run-of-river plants, one rather large
(“ Birsfelden”), and a small one (“NeueWelt”). The open loop plant model for ‘Birsfelden’ has been
discussed in section 3.9.

7.1 Control Design Verification for case study “Birsfelden”

(WGS 84 location: 47.559308 7.626752)

7.1.1 Modelling

The upstream basin model

The plant model is taken from sect. 3.9 in its nonlinear time-domain form with all coefficients taken over
from there. Note the variable depth along the river reach, at Q d := 1′000m3/s from D in ≈ 3m to
D out = D d := 10.60m, while the river width is B d := 157m is approx. constant. Therefore the Froude
number will change considerably along the reach.

Design of the experiment sequence

The transients for the simulations are modelled as follows:

- The simulation is started at the original level profile before the power station was built. And the
outflow level controller is switched ON. Then the simulation runs until the steady state depth profile
is reached at t > 9′000s. This transient is suppressed in the following plots which start at t = 9′800s.

- At t = 10′000s a step dQ = +100m3/s is applied on the inflow to verify the response at de-
sign/nominal flow.

- At t = 20′000s after the transient has decayed sufficiently a ramp reduction down to Q = 500m3/s
is applied on the inflow, taking 2′700s, that is −0.0926m3/s per sec.
Note the Remark below.

- After the new equilibrium has been reached at t = 38′000s a step dQ = +100m3/s is applied to
verify the response at low flow.

- At t = 48′000s a rising flow ramp is applied up to Q = 1′500m3/s with +0.0926m3/s per sec.

- After equilibration a final step dQ = +100m3/s is applied to verify the response at high flow.

304

- The total river flow exceeds this value several times per year, up to around 3′000m3/s. Then the
weirs parallel to the power station must be lowered. This would require an additional total flow
controller implementing a strategy of splitting flow to the different actuators. This is not considered
further here.

Remark:
Analysis from the available data1 on the river Rhine flow at Birsfelden shows that the maximum rate of
change is approx. +1600m3/s per day that is approx. +0.0185m3/s per sec. This is a factor of 5 slower
than the value used in the simulation. Also note that the down rate is even smaller than this value. So
the value for the simulation is on the safe side...

Level controller design

The value of the design parameter Fd needed for the controller gains is taken at the outflow end where
the control loop is situated.

Fd =
Ud
UFd

|o =
Qd

Bd ·Dd

1√
g ·Dd

:=
1′000

157 · 10.6
· 1√

106
= 0.05836

And the echo travelling time at near zero flow conditions is from sect. 3.9 T e 0 := 1′000s.

The level controller structure is applied from sect. 6.5 without change. Both input and output scalings
need to be applied,
c L o = 1.0/Dd and b L o = Qd/1.0.
Then the design value for the depth reference is refD d := 1.0. Finally the initial condition for the
integral action is from sect. 6.5, case A: xi 0 = (kp L− 1.0)/kp L.

1Swiss Federal office for environment, Hydrology division,
https://www.bafu.admin.ch/bafu/de/home/themen/wasser/...

...publikationen-studien/publikationen-wasser/hydrologisches-jahrbuch-schweiz-2015.html

305

7.1.2 Implementation

Figure 7.1: Case study “Birsfelden”: top level diagram for closed loop step responses to inflow z in

// s_c7_01_10_context
// Glf 2017_06_15
// Birsfelden 1000m^3/s

g = 10.;
// reference op-point
Q_r=1000.0; H_r=2.2; S_r=0.80*(-1.0);
D_r=H_r - S_r; B_r = 157.;
U_r = 2.02; F_r = 0.368; L = 375.;
kap = 1.0; N= 20;

// select design/initial op-point
Q_0 = 1.00*Q_r;
H_0 = H_r; S_0 = S_r; B_0 = B_r;
U_0 = Q_r/(B_r*D_r); D_0 = D_r;
D_min = +0.0001; D_max = 40*D_r;
Q_min = +0.0001; Q_max = 40*Q_r;

// channel geometry
// Basic element: constant (nominal) width
vb =[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,1.0];

vB = B_0*vb;

// basic layout: horizontal bottom
vs=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,...
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,1.0];

vS0 = S_0*vs;

vd0=ones(1,(2*N+1)); vD0=D_0*vd0; vH0=vD0 + vS0;

306

vq0 = ones(1,(2*N+1)); vQ0 = Q_0*vq0;

// Inflow data
B_in=vB(1);S_in=vS0(1);D_in=vD0(1);Q_in=vQ0(1);

// GMS-coefficient
k_s = 32.5;

// friction slope of the bottom vS and of the surface vH
vdelSf = zeros(1,(2*N+1)); vSf = zeros(1,(2*N+1));
vDr = D_r*vd0; vQr = Q_r*vq0;
vdelHf = zeros(1,(2*N+1)); vHf = zeros(1,(2*N+1));
vH00 = ones(1,(2*N+1));
for kk=2:2:(2*N),
vRtilda(kk)=((vB(kk)*vDr(kk))/(vB(kk)+2*vDr(kk)))^(2/3);
vIr(kk) = (vQr(kk)/(vB(kk)*vDr(kk)*k_s*vRtilda(kk)))^2;
vIH(kk) = (vQ0(kk)/(vB(kk)*vDr(kk)*k_s*vRtilda(kk)))^2;
vdelSf(kk) = - L*vIr(kk); vdelHf(kk) = - L*vIH(kk);

vSf(kk) = vSf(kk-1) + 0.5*vdelSf(kk);
vSf(kk+1) = vSf(kk) + 0.5*vdelSf(kk);

vHf(kk) = vHf(kk-1) + 0.5*vdelHf(kk);
vHf(kk+1) = vHf(kk) + 0.5*vdelHf(kk); end;

for k4= 1:1:(2*N+1),
vS(k4)= vS0(k4)+ vSf(k4); vH(k4)= vH0(k4)+ vHf(k4);
vH0(k4) = vH(k4) ; vH0(k4) = 2.20*vH00(k4) ;
vD0(k4) = vH0(k4) - vS(k4); end;

// outflow data
B_o=vB(kk+1); S_o=vS(kk+1); D_o=vD0(kk+1);
H_o=vH0(kk+1); Q_o = vQ0(kk+1);

dQ = 0.10; // small step
// inflow LARGE sequence
ti_st_1= 10000.0;ri_1_0=Q_0; ri_1_1=Q_0;
ti_st_2= 20000.0;ri_2_0=0.;ri_2_1=-(0.50+dQ)*Q_0;
ti_st_3= 48000.0;ri_3_0=0.;ri_3_1=+(1.00-dQ)*Q_0;
// inflow slew rate
gi_st = 1.0; ui_up_st = +1.0; ui_dn_st = -1.0;
taui_st = 10.8; Qi_st_0 = Q_0;

// inflow SMALL sequence
dQ = 0.10;
t_st_1= 10000.0;r_1_0 = 0.; r_1_1=(0.0+dQ)*Q_0;
t_st_2= 38000.0;r_2_0 = 0.; r_2_1 = +dQ*Q_0;
t_st_3= 70000.0;r_3_0 = 0.; r_3_1 = +dQ*Q_0;
// inflow slew rate
g_st = 10.0; u_up_st = +1.0; u_dn_st = -1.0;
tau_st = 1.0; Q_st_0 = 0.;

T_fin = 80000.0;

// Outflow Level control
c_L_o = 1.0/10.60; b_L_o = 1000.0/1.0;
T_e_0 = 2000.0; F_d = 0.0583;
kp_L = 1.0*(1.0/F_d);
ki_L = 1.0; T_i = T_e_0;
refD_d = 1.0; xi_0 = (kp_L - 1.0)/kp_L;

// Data transfer to Plots
CC=21; CN=8000; delT=T_fin/CN;
Asize=1.01*CC*CN; A41size=1.01*2*CN;

// s_c7_01_10_crunplot
// Glf 2017_06_15
// Birsfelden 1000 m^3/s

stacksize(’max’);exec(’s_c7_01_10_context.sce’, -1);
importXcosDiagram(’s_c7_01_10.zcos’);
typeof(scs_m); scs_m.props.context;
Info=list(); Info=scicos_simulate(scs_m,Info);
//**********************************

for kfig = 1:1:9, clf(kfig); end
vcolor = [5, 2, 3, 4, 1, 6, 9,11,13,15,...

17,19,21,22,25,27,29,32, 2, 5];

T_0=0.0;T_1=9500.;T_2=20000;T_3=37500;
T_4=48000.;T_5=69500.; vc = [1];

f1 = scf(1);
plot2d(Q.time,Q.values,vcolor,rect=[T_1,400,T_fin,1700]);
xtitle("Q_2 to Q_40"); xgrid(1);

f2 = scf(2);
plot2d(D.time,D.values,vcolor,rect=[T_1,2.0,T_fin,12.0]);
plot2d(D41.time,D41.values,vc,rect=[T_1,2.0,T_fin,12.0]);
xtitle("D_1 to D_41"); xgrid(1);

f3 = scf(3);
plot2d(H.time,H.values,vcolor,rect=[T_1,+1.8,T_fin,4.2]);
xtitle("H_1 to H_39"); xgrid(1);

f4 = scf(4);
plot2d(F.time,F.values,vcolor,rect=[T_1,0.0,T_fin,0.4]);
xtitle("F_2 to F_40"); xgrid(1);

//**
eX = L*(1:1:N); eXe = 21*L;
for k6= 1:1:N, vSr(k6) = vS(2*k6-1); end

f5 = scf(5); yH = H.values; oH = yH(999,:);
plot2d(eX’,[oH’,vSr],style={5,1},rect=[0.,-9.0,eXe,+4.0]);
xtitle("Longitudinal H (red) at 10000 s, bottom (black)");
xgrid(1);

v = [5]; T_f = T_fin;
f6 = scf(6);
plot2d(D41.time,D41.values,v,rect=[T_1,10.46,T_f,10.74]);
xtitle("D_41, zoom-in"); xgrid(1);

f7 = scf(7);
plot2d(D41.time,D41.values,v,rect=[T_1,10.56,T_2,10.66]);
xtitle("D_41, zoom-in, at Q=1000 m3/s"); xgrid(1);

f8 = scf(8);
plot2d(D41.time,D41.values,v,rect=[T_3,10.56,T_4,10.66]);
xtitle("D_41, zoom-in, at Q= 500 m3/s"); xgrid(1);

f9 = scf(9);
plot2d(D41.time,D41.values,v,rect=[T_5,10.56,T_f,10.66]);
xtitle("D_41, zoom-in, at Q=1500 m3/s"); xgrid(1);

Discussion:

- Note that the Froude number F 40 relevant for controller tuning stays close to zero for the whole
flow range. Thus no gain scheduling is needed here.

- The overall closed loop performance is as expected, the responses on D 41 are well damped. No
further manual tuning was needed. Note that this eliminates a very substantial effort and time-on-
site during commissioning (due to the long settling time of ≈ 7′200 s).

- The tracking error on D 41 along the (much faster than real) flow ramps is ±12 cm and still
conforms to the proscribed limits given in sect.3.9.

- And the peak error on D 41 for the (large and fast) flow steps dQ = +100 m3/s is 4.5 cm, which
is also conforming.

307

7.1.3 Simulation results

Figure 7.2: top group of four: overview of closed loop step responses to inflow z in
lower group of four: zoom-in on closed loop step responses of D to inflow z in
(upper left) for full time sequence (upper right) at Q = 1000m3/s,
(lower left) at Q = 500m3/s, (lower right) at Q = 1500m3/s

308

On this particular plant there are two locks for river barges. The filling takes approx. 500 sec at a flow
of approx. 70 m3/s. To show the effect on the depth control deviation the previous diagram with its .sce
files is suitably modified (not shown here), but the simulation results are given in Fig.7.3.

Figure 7.3: zoom-in on closed loop step responses of D to outflow z out due to lock filling
(upper left) for full time sequence (upper right) at Q = 1000m3/s,
(lower left) at Q = 500m3/s, (lower right) at Q = 1500m3/s

Discussion:
The max. deviation on D 41 is −2.2 cm and of rectangular shape. And the settling time is again ≈ 7′200 s
with an overshoot of approx. +0.5 cm and no undershoot.

309

7.2 Control Design for case study “Neue Welt”

(WGS 84 location: 47.525863 7.621635)

This application case is about a much smaller hydro power station ‘NeueWelt’ on the river Birs near
Basel. The reference flow is Q r = 20m3/s. The upstream river reach has two distinct parts. From the
inflow end there is a rather steep natural river bed of approx. 300 m length and with approx. constant
width 8 m. The second part has an approx. flat bottom and its width increases approx. linearly from 8 m
to approx. 50 m. There is a wide overfall at the outflow end in parallel to one turbine-generator unit, as
well as some fixed small flows to a park nearby and a fish stairs. And the region of transition between
river flow and basin flow is not fixed in space but will move downstream with increasing river flow Q.
The control layout here is the ‘industry standard’ (layout case A).
As to the mode of operation, the turbine flow must be maximized up to a specified residual overfall flow
by way of a level control loop. Below a given threshold in river flow, the turbine flow is to be switched off.
And if the river flow exceeds this threshold again the turbine is to be started and loaded appropriately
by the level control loop.
The hydrological model is taken from chap. 3 in the nonlinear time-domain form. From its particular
shape the Froude number will change considerably along the reach. Its design value Fd needed for the
controller gain design is taken at the outflow end where the level sensor and controller are situated.

7.2.1 Data Assembly and Modelling

The Basin Geometry

This is approximated from the actual geometry (from Swiss topo maps) as follows

Top view
From the inflow to 240m := 6 · L = 6 · 40m downstream the width is set constant to B = Br = 8.0m.
From there on down to the end of the basin at the overfall at 800m, the width increases linearly to 50m
that is from 1.0 ·Br up to 6.25 ·Br.

Lateral view
Starting at the inflow, the bottom shall start at +2.0m above the (arbitrary) zero reference elevation.
The bottom shape is then generated by the GMS-friction by setting the Strickler coefficient ks := 25.0
(as for large pebbles and medium stones 2). At reference flow Qr = 20m3/s and Dr = 1.25m and thus
Ur = 2.0m/s in the natural river part, this yields a slope value Ir ≈ 64 · 10−4. Then the bottom would
go down to the zero reference elevation at 320m ≈ 8 · L from the inflow.
However as the width starts to increase before, the bottom will round out and it will finish at the
downstream end (at ≈ −0.05m) below the zero horizon level, see the longitudinal profile plot.

Flow Distribution

Fixed outflow: Q = 2.8m3/s
Residual Overfall flow (as by Specification): Qmin = 5% of 20m3/s = 1.0m3/s
Turbine flow: QT = 6.0 . . . 18.0m3/s

For a total inflow of Q = 20m3/s and the fixed and minimum overfall outflow as given above, this leaves
for the turbine flow QT = 16.2m3/s that is 1.8m3/s less than the full turbine flow. Thus there is a
sufficient maneuvering margin for the level controller.

Overfall flow calculation

The crown of the overfall is considered flat and sufficiently long that the flow may attain the critical
velocity UF=1.0. For the overfall flow Q of , with H of as the height of the overfall crown above zero

2from photos taken on site

310

reference elevation, and with H 41 as the level just upstream of the overfall:

∆H := H 41−H of

U := UF=1.0 =

√
g · 2

3
∆H

Q of = UF=1.0 ·B of · 2

3
∆H = B of · √g ·

(
2

3
∆H

)3/2

→ ∆H =
3

2
·
(

Q of

B of · √g

)2/3

Using B of := 40m (leaving 10m for the turbine and fixed outflow inlets);

for Q = 1.0m3/s → ∆H ≈ 0.060m

for Q = 20.0− 2.8m3/s → ∆H ≈ 0.37m

Note that for the latter case the crown is too short and the upstream flow to the overfall is far from being
at rest. So this will be a very approximate value to the real one. But this is of no great importance, as it
supposes the level control loop to be switched out, where it normally is switched in.
Finally the crown level has to be at +1.14m above the zero reference elevation in order to obtain the
required minimum overfall flow with the reference of the level-flow controller set at refHo := +1.20m.

Design of the Experiment Sequence

The inflow to the system is modelled as follows, see also Fig.7.7:

- It starts at its design/nominal value Q in = Q d = 20 m3/s with the turbine at shutdown, that is
level control OFF, up to t = 2′000 s. The reference value of the depth/level controller tracks to its
actual value, see lower diagram of Fig.7.5.

- At t = 2′500 s the level control is enabled/switched ON. It starts the turbine and loads it transiently
up to its upper constraint Q T HI = 18 m3/s and stabilises at Q T = 16.2 m3/s. Note that the
integrator time constant in the reference tracker module is set such that the transient outflow to
the downstream river bed does not rise beyond approx. 22 m3/s. Without this additional module
the downstream outflow would peak dangerously higher (at nearly 30 m3/s, which is not shown
here).

- At t = 5′500 s the inflow is reduced in a ramp with 3′600 s for Q d that is − 5.56 10−3 m3/s per
sec.
The test a is for the endpoint at Q in = 4.0 m3/s which will result in an automatic turbine
shutdown.
And test b will stop at Q in = 10.0 m3/s such that the turbine will not be stopped and the level
control loop continues operating at its low end, see Fig.7.6.

- After equilibrium has been attained, at t = 11′200 s the inflow ramps up with 6′000 s for Q d that
is +3.33 · 10−3 m3/s per sec. .

- After full design flow has been attained at t = 14′000 s the final transient to equilibrium is shown.
Total elapsed time is 5 hours.

Note that the ramp down and ramp up of inflow is estimated to be a factor of 5...10 higher than actual
values. Thus the steady state tracking error of the level controller in the simulation will be quite larger
than for the real installation.

311

Level Controller Design

The level controller is active during turbine operation only and has to maintain a target overfall flow
Q of = 1m3/s by manipulating turbine flow Q T .

The operating range of Q T is constrained from 6.0 m3/s to 18 m3/s. This implies that the turbine
must be stopped for low river flow and must be re-started automatically if the river flow increases again,
see Fig.7.5. Due to the high lower constraint value some switching bumps will be unavoidable, even if
anti-windup and reference tracking schemes are added to the controller structure, see Fig.7.4. Note that
these add-on’s require the cascaded control structure from above to be transformed into the equivalent
parallel structure. Also note that all details of turbine startup and shutdown shall be modelled/masked
by a first order ramp filter with ramp time from 0 to 6 m3/s of 90 s.

The level controller design procedure from chap.6 is used.

Thus the main parameter for the controller gains is the Froude number at design conditions Qd, Do and
Fd.

Fd =
Ud
UFd

|o =
Qd

Bo ·Do

1√
g ·Do

:=
20.0

50.0 · 1.25
· 1√

12.5
= 0.09051

. Thus no gain scheduling is required, as ≈ 0.03 ≤ F ≤≈ 0.09.

And the echo travelling time at near zero flow conditions is
for L := 500 m and U F = 3.535 m/s T e 0 := 286s.

Figure 7.4: Case study “NeueWelt”:
(top) diagram for the Level Controller with anti-windup feedback and turbine on/off ramper
(bottom) diagram for reference tracker and ramper

312

7.2.2 Implementation

// s_c7_02_context
// Glf 2017_06_21

g = 10.;
// reference op-point
Q_r = 20.0; D_r = 1.25; S_r = (-2.0)*(-1.0);
H_r = D_r + S_r; B_r = 8.; U_r = 2.00; L = 40.;
kap = 1.0; N= 20;

// select actual op-point
Q_0 = 1.00*Q_r; // design riverflow 20 m^3/s;
H_0=H_r; S_0=S_r; B_0=B_r; U_0=U_r; D_0=1.0*D_r;
D_min = +0.0001; D_max = 40*D_r;
Q_min = +0.0001; Q_max = 40*Q_r;

// channel width
vb =[1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000,...

1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000,...
1.1875, 1.3750, 1.5625, 1.7500, 1.9375, 2.1250,...
2.3125, 2.5000, 2.6875, 2.8750, 3.0625, 3.2500,...
3.4375, 3.6250, 3.8125, 4.0000, 4.1875, 4.3750,...
4.5625, 4.7500, 4.9375, 5.1250, 5.3125, 5.5000,...
5.6875, 5.8750, 6.0625, 6.2500, 6.25];

vB = B_0*vb;

// channel bottom initialization
vs = ones(1:1:(2*N+1));
vS0 = S_0*vs;
vd0=ones(1,(2*N+1)); vD0=D_0*vd0; vH0=vD0 + vS0;
vq0=ones(1,(2*N+1)); vQ0 = Q_0*vq0;

// Inflow data
B_in=vB(1); S_in=vS0(1); D_in=vD0(1); Q_in=vQ0(1);

// GMS-coefficient
k_s = 25.0;

// friction slope of bottom vS and surface vH
vdelSf = zeros(1,(2*N+1)); vSf = zeros(1,(2*N+1));
vDr = D_r*vd0; vQr = Q_r*vq0;vdelHf = zeros(1,(2*N+1));
vHf = zeros(1,(2*N+1)); vH00 = ones(1,(2*N+1));
for kk=2:2:(2*N),
vRtilda(kk)=((vB(kk)*vDr(kk))/(vB(kk)+2*vDr(kk)))^(2/3);
vIr(kk) = (vQr(kk)/(vB(kk)*vDr(kk)*k_s*vRtilda(kk)))^2;
vIH(kk) = (vQ0(kk)/(vB(kk)*vDr(kk)*k_s*vRtilda(kk)))^2;
vdelSf(kk) = - L*vIr(kk); vdelHf(kk) = - L*vIH(kk);
vSf(kk) = vSf(kk-1) + 0.5*vdelSf(kk);
vSf(kk+1) = vSf(kk) + 0.5*vdelSf(kk);
vHf(kk) = vHf(kk-1) + 0.5*vdelHf(kk);
vHf(kk+1) = vHf(kk) + 0.5*vdelHf(kk);
end;
for k4= 1:1:(2*N+1),
vS(k4) = vS0(k4)+ vSf(k4);vH(k4) = vH0(k4)+ vHf(k4);
vH0(k4) = vH(k4); vD0(k4) = D_0*vd0(k4);

vH0(k4) = vD0(k4) + vS(k4);
end;

// outflow data
B_o=vB(kk+1);S_o=vS(kk+1);D_o=vD0(kk+1);H_o=vH0(kk+1);
Q_o=vQ0(kk+1);

// inflow generation
dQ = 1.0; t_st_1 = 5500.0; t_st_2 = 11000.0;
// test a :
// r_1_0 = Q_0; r_1_1=(1.0-0.80*dQ)*Q_0;
// r_2_0 = 0.0; r_2_1 = +0.80*dQ*Q_0;
// // test b :

r_1_1=(1.0-0.50*dQ)*Q_0;
r_2_1 = +0.50*dQ*Q_0;

// inflow slew rate
g_st = 20.0; u_up_st = +0.6; u_dn_st = -1.0;
tau_st = 180.0; Q_st_0 = Q_0;

T_fin = 18000.0;

// overfall outflow
B_of = 40.0; refH_of = 1.14; g_of = B_of*(g^(1/2));

// fixed outflow
Q_o_fixed = 2.80;

// Outflow Level control PI-awf
c_D_o = 1.0/D_0; b_Q_o = Q_0/1.0;
F_d = (Q_0/(B_o*D_0))/((g*D_0)^(1/2));

Q_T_LO = 0.29; Q_T_HI = 0.90;
kp_L=1.0*(1/F_d); ki_L=1.0; T_I=283.; ka_L=kp_L/2.0;

refD_o = 1.2566;

// level control ENABLE
log_OFF=-1.0; log_ON=+1.0; Q_of_off=0.50; Q_of_on=6.0;
T_LevConENABLE = 2700.; ulevcon0=-1; ulevcon1=+1;

// turbine ON/OFF ramp
T_fil=270.0; g_fil=30.0; slewup=1.0; slewdn=-1.0;

// setpoint tracking and ramper
up_spr=0.1;dn_spr=-0.1; g_spr=10.;g_spt=1.; T_spr=360;

// gain for zoom-in on depth deviation
g_delD = 100.0; // 1.0 is 1 cm

// Data transfer to Plots
CC=26; CN=900; delT=T_fin/CN;
Asize=1.01*CC*CN; FLsize=1.01*(6+1)*CN;

// s_c7_02_crunplot
// Glf 2017_06_21

stacksize(’max’);exec(’s_c7_02_context.sce’, -1);
importXcosDiagram(’s_c7_02.zcos’);
typeof(scs_m); scs_m.props.context;
Info=list(); Info=scicos_simulate(scs_m,Info);
//**********************************

for kfig = 1:1:10, clf(kfig); end
vcolor = [5, 2, 3, 4, 1, 6, 9,11,13,15,...

17,19,21,22,25,27,29,32, 2, 5];

T_0 = 0.; T_1 = 2000.; T_2 = T_fin;
f1 = scf(1);
plot2d(Q.time,Q.values,vcolor,rect=[T_1,0.,T_2,30.]);
xtitle("Q_2 to Q_40"); xgrid(1);

f2 = scf(2);
plot2d(D.time,D.values,vcolor,rect=[T_1,.0,T_2,2.0]);
xtitle("D_1 to D_39"); xgrid(1);

f3 = scf(3);
plot2d(H.time,H.values,vcolor,rect=[T_1,+1.0,T_2,4.0]);
xtitle("H_1 to H_39"); xgrid(1);

f4 = scf(4);
plot2d(F.time,F.values,vcolor,rect=[T_1,0.0,T_2,1.0]);
xtitle("F_2 to F_40"); xgrid(1);

f5 = scf(5);
vcolor2=[5,14,2,22,32,1,27];
plot2d(FL.time,FL.values,vcolor2,rect=[T_1,-2,T_2,32]);
xtitle("controlled Water Depth and Flows"); xgrid(1);
h1=legend([’100*(D_o - refD_o)’,’100*delD_o’,...
’Q_turbine’,’Q_overfall’,’Q_fixed’,’Q_in’,’Q_downriver’]);

T_3 = 7000.; T_4 = 9200;
f6 = scf(6);
plot2d(Q.time,Q.values,vcolor,rect=[T_3,3.0,T_4,10.0]);
xtitle("Q_2 to Q_40, Turbine OFF, zoom-in"); xgrid(1);

f7 = scf(7);
plot2d(D.time,D.values,vcolor,rect=[T_3,0.4,T_4,1.4]);

313

Figure 7.5: Case study “NeueWelt”: top level diagram for closed loop responses to inflow z in

xtitle("D_1 to D_39, Turbine OFF, zoom-in");xgrid(1);

314

T_5 = 12200.; T_6 = 14400.;
f8 = scf(8);
plot2d(Q.time,Q.values,vcolor,rect=[T_5,8.,T_6,16.]);
xtitle("Q_2 to Q_40, Turbine ON, zoom-in"); xgrid(1);

f9 = scf(9);
plot2d(D.time,D.values,vcolor,rect=[T_5,0.6,T_6,1.6]);
xtitle("D_1 to D_39, Turbine ON, zoom-in"); xgrid(1);

//**
eX = L*(1:1:N); eXend = 21*L;

for k6= 1:1:N, vSr(k6) = vS(2*k6-1); end

f10 = scf(10);
vcolL = [9,5,13,1]; oH = H.values;
oH02 = oH(100,:); oH05 = oH(250,:); oH10 = oH(500,:);
plot2d(eX’,[oH02’,oH05’,oH10’,vSr],vcolL,rect=[0,-1.0,eXend,+4.0]);
xtitle(’Longitudinal Profiles of levels H and bottom S’);
h1=legend([’H at 2 000s’,’H at 5 000s’,’H at 10 000s’,’S’]);
xgrid(1);

7.2.3 Simulation results

Longitudinal profiles

Figure 7.6: Longitudinal profiles of level H and bottom S, (left) test a, (right) test b

Discussion

- Note that the controller gains have been carried over from the previous sections without any addi-
tional changes being necessary.

- Note also that the ‘reference tracking mode’ is enabled/ON when the turbine is OFF. Then the error
signal delD o of the controller is forced to near zero. Therefore the actual deviation D o(t)−refD o
is plotted in Fig.7.7 as well.

- The closed loop depth response is well damped.

- The overfall flow Q of(t) is acceptably close to its specified value 1 m3/s even for the (very fast)
inflow ramps.

- The ‘turbine OFF’ transient on Q shows a weakly damped oscillation with period of approx. 380 s.
Thus the overfall seems not to be very effective in damping the sloshing.

- The ‘turbine ON’ transient shows a marked overshoot in Q downriver as expected. This must be
due to the much too fast ramp-up on the inflow.

- Test b shows a good performance of the depth control loop over its operating range. Note that the
Froude number F o relevant for the controller gains stays small (in fact ≤ 0.10). Therefore no gain
scheduling is required. Accordingly this add-on has not been used here.

315

Overviews of Transients

Figure 7.7: Transients on depth and flows
(top) test a, down to Q in = 4 m3/s, (bottom) test b, down to Q in = 10 m3/s

Note: 1.0 units in the plot is 1.0 cm actual depth variation

316

Details along the reach for test a

Figure 7.8: Transients for test A
upper block of four: Q, D, F, H for full time sequence
center block of two: zoom-in on Q, D for turbine OFF
lower block of two: zoom-in on Q, D for turbine ON

317

Chapter 8

Scilab/Xcos ‘s cX ’ and
Matlab/Simulink ‘m cX ’

Chapter 2: Basic Longitudinal Element
Q in → D I s c2 03 00 iter
rampQ in s c2 03 01 m c2 01
varied F s c2 03 02 m c2 02
conical cross section s c2 03 03 m c2 03
inlet channel varQ out s c2 03 04 m c2 04

Chapter 3: Long Channel
colour code s c3 41 0x colorcode —

Basic Case, slow rampQ in, N=20 s c3 41 00 m c3 41 00

varied N (number of mom.compartm.) s c3 41 00 N04 m c3 41 00 N04
s c3 41 00 N08 m c3 41 00 N08
s c3 41 00 N16 m c3 41 00 N16
s c3 41 00 N32 —-

fast rampQ in s c3 41 00 N20 m c3 41 00 N20

Low and High Q in s c3 41 01 m c3 41 01

Low to High F s c3 41 02 m c3 41 02

Variable cross section: m c3 41 03 s.slx
confusor s c3 41 03 1 & m c3 41 03 1.m
diffusor s c3 41 03 2 & m c3 41 03 2.m
bottom slope s c3 41 03 3 & m c3 41 03 3.m

Power station inlet channel, varied Q out
no overfall s c3 41 04 2 m c3 41 04 2
with overfall at inlet s c3 41 04 3 m c3 41 04 3

Application ‘Birsfelden’, open loop m c3 41 05 s.slx
1000 m3/s s c3 41 05 10 & m c3 41 05 10

500 m3/s s c3 41 05 05 & m c3 41 05 05
200 m3/s s c3 41 05 02 & m c3 41 05 02

Chapter 4: Wide Channel
Channel & Floodplain, Q → D I s c4 caseA iter.sce m c4 caseA iter.m
Channel & Floodplain, varQ in s c4 caseA m c4 caseA

318

Chapter 5: Short Channel

Spillway contour s c5 spillway contour.sce m c5 spillway contour.m

Case 1: Outflow flap s c5 01 b & contassemb.sce m c5 01 b & contassemb.m
varH out s c5 01 c & contassemb.sce m c5 01 c & contassemb.m

& contassemb scaled.sce & contassemb scaled.sm

Case 2: inflow level s c5 02 b & contassemb.sce m c5 02 b & contassemb.m

Case 3: ‘dam break’ s c5 03 m c5 03

Case 4: Surge waves s c5 04 m c5 04

Case 5: HydrJump after weir s c5 05 m c5 05

Case 6: HydrJump after dam s c5 06 & contourassembly.sce m c5 06 & contourassembly.m

Chapter 6: Control Design

PDE, ‘sys inf’

open loop stepresp. s c6 01 0 01 m c6 01 0 01
open loop freqresp. s c6 01 0 02.sce m c6 01 0 02.m

case A, closed loop, P, freqresp. s c6 01 1 01.sce m c6 01 1 01.m
case A, closed loop, P, stepresp. s c6 01 1 02 m c6 01 1 02
case A, closed loop, PcI, freqresp. s c6 01 1 03.sce m c6 01 1 03.m
case A, closed loop, PcI, stepresp. s c6 01 1 04 m c6 01 1 04

case B, closed loop, PcI, stepresp. s c6 01 2 01 m c6 01 2 01

case C, closed loop, PcI, stepresp. s c6 01 3 01 m c6 01 3 01

linear state space, ‘sys ss’

open loop step- and freq-resp.
N = 100 and N = 20 s c6 01 0.sce m c6 01 0.m

case A, closed loop, PcI, step- & freq-resp. s c6 02 1.sce m c6 02 1.m
case B, closed loop, PcI, step- & freq-resp. s c6 02 2.sce m c6 02 2.m
case C, closed loop, PcI, step- & freq-resp. s c6 02 3.sce m c6 02 3.m

‘nonlinear time domain’

open loop step-resp. s c6 03 0 m c6 03 0

case A, closed loop, PcI, step-resp. s c6 03 1 m c6 03 1
case B, closed loop, PcI, step-resp. s c6 03 2 m c6 03 2
case C, closed loop, PcI, step-resp. s c6 03 3 m c6 03 3

Chapter 7: Application Studies

‘Birsfelden’
slow ramping on Q in s c7 01 10 m c7 01 10
lock cycling by Q out s c7 01 10 lock m c7 01 10 lock

‘NeueWelt’
slow ramping on Q in
select for low min. flow or intermediate min. flow s c7 02 m c7 02

319

Bibliography

[1] Aldrighetti, Elisa (2007)
Computational hydraulic techniques for the de Saint Venant Equations in arbitrarly shaped geometry
Ph.D. Thesis, Dipartimento di Matematica, Universita degli Studi di Trento (IT)
download from http://core.ac.uk/download/pdf/11829733.pdf

[2] Crossley, Amanda Jane (1999)
Accurate and efficient numerical solutions for the Saint Venant Equations of open channel flow
Ph.D. Thesis, University of Nottingham (GB)
download from http://eprints.nottingham.ac.uk/10109/1/ajc thesis.pdf

[3] Beffa, Cornel (2008)
2D-Shallow Water Equations – Basics - Solutions - Applications
download from: http://www.ifu.ethz.ch/EFM/education/Numerical Hydraulics/NHY Kapitel 8 EN.pdf

[4] Iaccarino, Gianluca (2015)
Solution methods for the incompressible Navier-Stokes Equations
download slides from: http://stanford.edu/class/me469b/handouts/incompressible.pdf
lecturer: https://profiles.stanford.edu/gianluca-iaccarino?tab=teaching

Method of Lines

[5] Hamdi S, Schiesser W E, Griffiths G W (2009)
Method of Lines
Scholarpedia, 2(7):2859 at www.scholarpedia.org

[6] Schiesser W E (2000)
Partial Differential Equations
Lecture notes from LeHigh University download at: http://www.lehigh.edu/ wes1/apci/28apr00.pdf

Frequency domain

[7] Litrico X, Fromion V (2004)
Frequency modeling of open channel flow
Journal of Hydraulic Engineering, 130, 8, 806-815

[8] Litrico X, Fromion V, Baume JP, Arranja C, Rijo M (2005)
Experimental validation of a methodology to control irrigation canals based on Sait-Venant equations
Control Engineering Practice, 13, 1425 - 1437

[9] Litrico X, Fromion V (2009)
Boundary control of hyperbolic conservation laws using a frequency domain approach
Automatica 45 (2009) 647-656

[10] Bastin G, Coron J-M (2016)
Stability and Boundary Stabilization of 1-D Hyperbolic Systems
Birkhäuser-Springer International Publishing Switzerland 2016, ISBN 978-3-319-32060-1

320

