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Abstract This work presents a theoretical study of the
forces established between colloidal particles connected by
means of a concave liquid bridge, where the solid particles
are partially wetted by a certain amount of liquid also
possessing a dry portion of their surfaces. In our analysis,
we adopt a two-particle model assuming that the solids are
spherical and with the same sizes and properties and that
the liquid meniscus features an arc-of-circumference con-
tour. The forces considered are the typical capillary ones,
namely, wetting and Laplace forces, as well as the van der
Waals force, assuming the particles uncharged. We analyze
different parameters which govern the liquid bridge:
interparticle separation, wetting angle, and liquid volume,
which later determine the value of the forces. Due to the
dual characteristic of the particles' surfaces, wet and dry,
the forces are to be determined numerically in each case.
The results indicate that the capillary forces are dominant in
most of the situations meanwhile the van der Waals force is
noticeable at very short distances between the particles.

Keywords Liquid bridge .Meniscus . Capillary forces .

van derWaals

Introduction

The insertion of liquid film in between fine particles
modifies the film geometry, which further forms a liquid
bridge with a curved meniscus shape. The contact between

the three phases, solid, liquid, and gas, induces the onset of
forces between these particles, which will depend on
physical–chemical aspects like the wettability of the
particles, the geometry of the meniscus as well as the
particles size, and separation between them.

Capillary forces between pairs of particles due to a liquid
bridge have been investigated by different authors, i.e.,
[1–13], since this is the scenario found in many practical
situations like in wet granular media [14], particle stabilized
foams [15], etc. and processes like liquid phase sintering
[6]. Nevertheless, in these studies, typical colloidal forces
are not usually considered even though the size of the
particles may fall into the colloidal domain. This approach
can lead in an insufficient description of the liquid bridge
system, which could mask some results about the mechan-
ics of the system. The aim of the present work is to
contribute to this topic by studying the forces established
between two colloidal particles in contact with a liquid
bridge taking into account not only the capillary forces, but
also the van der Waals force, as representative for the
colloidal forces. In the present work, the particles are
considered to be uncharged in order to avoid the introduc-
tion of the electrostatic interaction, as well as other forces
of colloidal nature, which would add more complexity to
such a study. Nevertheless, recall that there are situations
like flotation, where the particles are confined at the air–
water interface, in which the electrostatic interaction, if
present, is very important or even the dominant force due to
its strength and long range.

System description

Let us consider a linear string of solid monosized spherical
colloidal particles, all spherical and with the same sizes and
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properties. The surface of the particles is assumed to be
perfectly smooth and chemically homogeneous, thus the
wetting angle, θ, between the solid and liquid interfaces
will be constant against any relative displacement of the
particles, and any wetting hysteresis will not occur [16].
The particles are partially wetted by the liquid, which forms
a concave liquid bridge between the spheres in the so-called
pendular state (where the liquid phase is discontinuous).
Considering that the particles' size is in the colloidal range,
the effect of gravity is negligible, and no other buoyancy
force will be considered. In such a case, the liquid bridge
has a constant pressure [17], and the meniscus posses the
shape of a surface of revolution [18, 19] with the same
mean curvature everywhere [9]. The meniscus shape is
defined as an arc of one of the Delaunay's surfaces [20],
which are generated by the rotation around the basis of the
Delaunay's roulettes [17]. Also, other axisymmetric profiles
of uniform mean curvature, like the nodoid, catenoid, or
unduloid, have been considered [5, 9]. In the present work,
for sake of simplicity, we will assume a meniscus profile
described by an arc of circumference, as sketched in Fig. 1,
under the assumption that the error brought about by this
approximation is small in most cases [6, 9, 18, 21].

Considering, for sake of simplicity, just the upper right
quadrant, the liquid and solid profiles are described,
respectively, by:

yLðxÞ ¼ rþ Lð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � x2

p
ð1Þ

and:

ySðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � x� H

2
� R

� �2
s

ð2Þ

The principal radii, ρ and L, are described in terms of
both representative angles, α and θ, and the coordinates of
the contact point:

r ¼ xa
cos a þ qð Þ ð3Þ

and

L ¼ ya þ r 1� sin a þ qð Þ½ � ð4Þ
Notice that the principal radius ρ is related to the

concave–convex character of the liquid meniscus, mean-
while the radius L gives an indication of the meniscus
thickness.

The liquid volume of the bridge, V, may be determined
for a given distance between particles, H, by definite
integration of both the solid and liquid profiles:

V ¼ 2p ∫xa0 yLðxÞ½ �2dx� 2p ∫xaH=2 ySðxÞ½ �2dx ð5Þ

This volume must be calculated numerically for a certain
separation H and wetting angle θ. Once this value is
obtained, ρ and L are also determined. On what follows, we
will refer to the liquid volume of the bridge throughout the
relative volume, Vrel, of the liquid with respect to the
volume of the sphere, then, Vrel=3V/(4πR3).

The possible separation of the particles, H, for any liquid
bridge, is limited by lower and upper values. Indeed, if the
particles depart beyond a certain distance Hmax, the bridge
becomes unstable due to Rayleigh instabilities [22] and
breaks [7, 11, 23], meanwhile if the particles are closer than
Hmin, the concave geometry is not further preserved.

The minimum distance, Hmin, is found to be [24]:

Hmin ¼ 2R
2Vrel þ 1� sin qð Þ2 2þ sin qð Þ

3cos2q
� 1� sin qð Þ

" #

ð6Þ

For the maximum distance, Hmax, Lian et al. [25]
proposed the following expression for moderate wetting
angles:

Hmax ¼ R 1þ q
2

� �
3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

3
p Vrel

r
ð7Þ

Therefore, a concave liquid bridge is expected to be
found only at interparticle distances Hmin≤H≤Hmax for the
corresponding values of liquid content and wetting angle.

Calculation of capillary forces

The capillary force consists of two components. The first is
a surface tension term acting at the wetting perimeter,

Fig. 1 Sketch of the liquid bridge geometry. R is the solid particle's
radius, xa and ya are the coordinates of the contact point between the
solid and liquid profile, α is the half-filling angle, θ is the wetting angle,
ρ and L are the principal radius of the liquid meniscus, H is the surface-
to-surface distance between the solid particles, d is the wetted portion of
each hemisphere, h is the distance between elements of integration used
in the calculation of the van der Waals force, and r their radius
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tangent to the meniscus at the intersection with the solid
surface, and directed towards the liquid. The second
component comes from the pressure difference across the
curved gas–liquid interface, which can be described by the
Laplace–Young equation, computed over the axially pro-
jected wetted area of each particle. Thus, the capillary force
may be expressed as:

Fcap ¼ �2p g R sina sin a þ qð Þ � p g R2sin2a
1

L
� 1

r

� �

ð8Þ
where the first term corresponds to the wetting force and
the second to the Laplace force, being γ the surface tension
of the liquid. This force can be made dimensionless
dividing by the product (γR).

Figure 2 displays some results of the dimensionless
capillary force, Fcap/(γR), when θ=30°, at different liquid
volumes and distances between the solid particles. In
general terms, it is observed that the capillary force may
show two characters, repulsive and attractive, arising
mainly from the behavior of the Laplace component.
Indeed, due to the different signs of the principal radii ρ
and L, this component may be attractive or repulsive. For
small distances and small liquid amounts, the Laplacian
repulsion is able to dominate over the always attractive
wetting force following in repulsive capillary forces. This
behavior is quite limited and beyond a certain distance
between the solid surfaces, H0, the wetting component is
higher, and the capillary force becomes attractive. When the
liquid volume is larger, the capillary force is attractive in
any case, increasing its magnitude for increasing volumes

of liquid due to a higher contact area between the liquid and
solid. Repulsive capillary forces have been reported in both
theoretical [25, 26] and experimental approaches [3, 9].

Calculation of van der Waals forces

When the particles are, like in the present case, only
partially covered by the liquid phase, also possessing a dry
portion of their surfaces, the typical expression for the van
der Waals interaction between particles fully immersed in
the liquid, in a proper colloidal suspension, is not longer
valid. On contrary, it must be taken into account that the
Hamaker constant is different for both wet and dry portions
of the particle, thus inducing different potentials between
the portions. In addition, the wetted fraction of each solid
particle, d, (Fig. 1) depends on the separation between the
particles, the liquid volume of the bridge, and the wetting
angle between the solid and liquid surfaces, which must be
calculated as shown above.

In determining the van der Waals interaction, the
Derjaguin approximation [27, 28] will be used:

VvdW
sphere�sphereðHÞ ¼ ∫VflatðhÞdSðhÞ ð9Þ

where Vflat is the interaction potential per unit area between
flat surfaces:

VflatðhÞ ¼ � A

12p h2
ð10Þ

and h is the local distance between surface elements, Fig. 1,
and A is the Hamaker constant. A method, based on this
Derjaguin approximation, the surface element integration,
has been proposed [29, 30] assuming that this method is not
limited by separation distances, particle size, or shape [29].
The distance h can be expressed as:

h ¼ H þ 2R� 2R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r

R

� �2
r

ð11Þ

where the “−“sign corresponds to the two close faces
and “+” to the opposite faces. The potential consists out of
four terms, arising from the interactions between the two
half spheres:

VvdW ðHÞ ¼ VA1A1 þ VA2A2 � VA1A2 � VA2A1 ð12Þ

being:

VA1A1 ¼ � A

6
∫
R

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r

R

� �2
r

r dr

H þ 2R� 2R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r

R

� �2q� 	2

ð13Þ
Fig. 2 Scaled capillary force, Fcap/(γR), as a function of the
dimensionless interparticle distance, H/R, for different liquid contents
when θ=30°
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VA2A2 ¼ � A

6
∫
R

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r

R

� �2
r

r dr

H þ 2Rþ 2R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r

R

� �2q� 	2

ð14Þ

VA1A2 ¼ VA2A1 ¼ � A

6
∫
R

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r

R

� �2
r

r dr

H þ 2R½ �2 ð15Þ

Then, combining all these terms, it follows:

VvdW ðHÞ ¼ � A

6
∫
R

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r

R

� �2
r

1

H þ 2R� 2R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r

R

� �2q� 	2 þ 1

H þ 2Rþ 2R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r

R

� �2q� 	2 � 2

H þ 2R½ �2

2
6664

3
7775 r dr ð16Þ

Due to the partially wetting of the solid surface, we have
to consider that for distances 0≤h≤d, the surface is wet,
and that if d≤h≤R, the surface is dry. Accordingly, the
integral, Eq. 16, has to be cut into two parts:

VvdW ðHÞ ¼ � Awet

6
∫
d

0
IðrÞ dr � Adry

6
∫
R

d
IðrÞ dr ð17Þ

where Awet and Adry are the Hamaker constants for the
solid's wet and dry surfaces, respectively, and I(r) is the
integrand displayed in Eq. 16. The van der Waals force
between a pair of particles is calculated considering the
derivative of the potential:

FvdW ¼ � @VvdW

@H
ð18Þ

Finally, introducing Eq. 17 into Eq. 18, it is obtained:

FvdW ðHÞ ¼ Awet

6
∫
d

0

@IðrÞ
@H

dr þ Adry

6
∫
R

d

@IðrÞ
@H

dr ð19Þ

The van der Waals force, FvdW, has to be determined
numerically for the corresponding conditions of H, Vrel, and
θ. This force can be made dimensionless dividing by the
factor (Awet/R). Notice that we considered the nonretarded
expression of the potential in Eq. 10. In case that the
retardation effect is desired to be taken into account, one
just needs to write such a version of the potential [30] in
Eq. 10 and proceed with the calculations as performed
above. Since the effect of the retardation is to decrease the
value of the potential with the interparticular distance a bit
faster, qualitatively, the following discussion could be
extended for such a case.

Figure 3 displays some exemplary cases of the dimen-
sionless van der Waals force, FvdW/(Awet/R), as a function of

the wetted portion of the particle, d, for different interpar-
ticle separations, considering that the Hamaker constant for
the surface exposed to the air is ten times higher than the
constant for the surface in contact with the liquid (water),
typical ratio for many materials [31]. As observed, the force
is attractive for any value of the wetted portion and
decrease in absolute value as d increases, in other words,
as the particle is more and more wetted by the liquid, as
expected. This means that, in first instance, the van der
Waals interaction will be more important in those liquid
bridges with the smallest liquid content. The trivial cases
are d=0 which corresponds to a particle completely dry and
d=R corresponding to a particle fully immersed in the
liquid. The dependence of FvdW with d is not linear,
indicating that it should not be correct to just assume a

Fig. 3 Scaled van der Waals force, FvdW/(Awet/R), as a function of the
particle's wetted portion, d, divided by the particle's radius, R, at
different interparticle distances, when Adry=10Awet and θ=20°
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simple proportion of the van der Waals force from the bulk
case.

Recall that the wetted portion of the sphere, d, beside the
liquid content, Vrel, and wetting angle, θ, also depends on
the interparticle distance, H. When varying the distance
between the particles, Fig. 4, it is observed that despite the
always attractive character of the van der Waals force, it
decreases rapidly as the distance increases, analogous as
for the bulk case. Observe the truncation of the plots
according to the limiting distances Hmin, Eq. 6, and Hmax,
Eq. 7, above mentioned. As expected, this force decreases
as the amount of liquid increases because the wetted portion
of the particles, having a smaller Hamaker constant, also
increases.

Comparison between both types of forces

In order to compare quantitatively both types of forces, let
us give some practical values to the parameters involved.
Let us consider a particle's size R=100 nm and that the
liquid of the bridge is water, and the gaseous phase is air,
with value of the surface tension, γ=72.8 mN/m. The
Hamaker constant for the solid material in contact with
water is taken to be Awet=10

−21 J, typical order of
magnitude found for e.g., inorganic or ceramic particles
[32, 33]. On view of Figs. 2 and 4, displaying the capillary
and van der Waals forces, respectively, it can be stated a
priori that the most important forces in this scenario are the
capillary ones. Indeed, with the mentioned values, they
scale as γR≈10−8N meanwhile the van der Waals force

does it as Awet/R≈10−14N. Therefore, it is expected a ratio
FvdW/Fcap in the order of 10−6.

Figure 5 shows such a direct comparison for the case θ=
20°. It is observed that the above prediction is reached at
moderate distances between the particles, but for larger
ones, the ratio between the forces decreases continuously
and strongly, being the van der Waals force seven to eight
orders of magnitude smaller than the capillary force. This is
the expected behavior since FvdW approaches to zero very
fast as the interparticle distance increases.

Nevertheless, there are two situations where both types
of forces are comparable in value, or even the van der
Waals is higher than the capillary one, determining the
force balance: (1) very close approximation of the particles
and (2) particles' position such that the capillary force is
null, when available.

For checking case 1, Fig. 6 displays some exemplary
cases of the total force, Ftot=Fcap+FvdW, when θ=30° and
several relative liquid volumes, Vrel. Observe that the total
force shows a deep minimum for H=0, arising from the van
der Waals' one, meanwhile the capillary force shows a
smaller absolute value at this interparticle distance (see
inserted magnification in Fig. 6 for the particular case Vrel=
0.005). This means that if H=0 is allowed, as soon as the
particles approach very close, they fall into this attractive
minimum being practically impossible for the particles to
leave it. When the interparticle distance, H, is a bit larger or
the liquid volume is high enough that such close inter-
particle distances are not possible, the impact of FvdW on
Ftot is practically negligible, as indicated by the ratio FvdW/
Fcap displayed in Fig. 5.

Fig. 5 Ratio FvdW/Fcap as a function of the dimensionless interpar-
ticles distance, for several relative volume of meniscus liquid, Vrel,
being θ=20° and Adry=10Awet

Fig. 4 van der Waals force as a function of the dimensionless
interparticles distance, for several relative volume of meniscus liquid,
Vrel, for a wetting angle θ=30°, when Adry=10Awet
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Regarding case 2, when Fcap=0, the ratio FvdW/Fcap

obviously diverges at the corresponding distance H0, Fig. 5.
At this distance, the only acting force is the van der Waals
one, whose attractive character makes the particles to attract
each other, although weakly. The distances H0 are shifted
to smaller values, where Ftot=0. This is shown in Fig. 7 for
θ=60° and 70°. This effect is more pronounced when θ is
very high, where H0 are rather small, being less accused, or
practically imperceptible, for decreasing angles. Indeed,
when H0 is longer than ≈5 nm, the correction due to the van
der Waals interaction is in the second decimal, but on the
third to fourth decimal, if such distances are longer than
≈10 nm. Since for distances H<H0 the capillary force is
repulsive, the attractive character of the van der Waals force
reduces the range of volumes and distances for which Ftot>
0. It could be expected a larger gap between both sets of
distances for the smaller liquid contents, where the particle'
dry portion is larger, and FvdW is higher, but in this case,
Fcap is even higher and compensates the effect of FvdW.
Indeed, the capillary force decreases towards more negative
values when Vrel increases, reducing its highness and
flattening its plot, Fig. 2.

On the overall, it may be claimed that when determining
the forces acting between a pair of particles binded by a
liquid bridge, not only the capillary forces have to be
calculated, but also the van der Waals force (and the rest of
colloidal forces like the electrostatic in charged particles, if
considering than they are of the same range of magnitude
than those) should be taken into account in case than the
particles are separated by very short distances, where FvdW

is dominant. For moderate to large interparticle distances,
the van der Waals force can be neglected.

Conclusions

In the present work, we have studied from a numerical
approach the scenario displayed when colloidal particles are
partially wetted by means of a liquid bridge, considering
some of the possible forces that arise in such a situation:
capillary and van der Waals force, as representative of the
typical colloidal interactions. In order not to introduce more
complexity to the system, we have considered the particles
uncharged just to avoid electrical interactions and restrict
the study to the van der Waals one.

Since both types of forces depend on the geometry of the
liquid meniscus, its shape is determined for any value of
liquid volume, wetting angle, and interparticle separation.
Thus, the principal radii of the meniscus, which mainly
govern the capillary force, are calculated, as well as the size
of the wetted surface portion of the particles, which splits
the contributions from the dry and wet particle areas to the
van der Waals force.

The capillary force is found to show both characters,
attractive, but also repulsive, the later found to occur in
those cases where the liquid content is rather small. As
expected, the van der Waals force is always attractive.
When comparing in quantitative terms both forces using
typical values, it is found that in general terms, the capillary
force dominates over the van der Waals. The later pulls
down the total force, sum of both, to more negative values,
but this effect is practically negligible for moderate or long
distances between the particles. Nevertheless, the contribu-
tion of the van der Waals force is noticeable and even
dominant at very short distances. Indeed, it induces a deep
minimum at distances close to zero, not present for the

Fig. 7 Interparticles distances, H0, at which Fcap and Ftot are zero, as
a function of the relative volume of meniscus liquid, Vrel, for wetting
angles θ=60° and 70°

Fig. 6 Total force, as a function of the dimensionless interparticles
distance, for several relative liquid volumes, Vrel, when θ=30° and
Adry=10Awet. Inserted, a short distance magnification of the case Vrel=
0.005, also displaying the van der Waals and capillary forces

138 Colloid Polym Sci (2010) 288:133–139



capillary force alone. Also, FvdW shifts to smaller ones the
distances, H0, at which Fcap=0, this effect more evident for
the highest wetting angles at the shorter distances.
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