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Abstract Cascading failures on techno-socio-economic systems can have dramatic and
catastrophic implications in society. A damage caused by a cascading failure, such as a
power blackout, is complex to predict, understand, prevent and mitigate as such complex
phenomena are usually a result of an interplay between structural and functional non-
linear dynamics. Therefore, systematic and generic measurements of network reliability
and repairability against cascading failures is of a paramount importance to build a more
sustainable and resilient society. This paper contributes a probabilistic framework for mea-
suring network reliability and repairability against cascading failures. In contrast to related
work, the framework is designed on the basis that network reliability is multifaceted and
therefore a single metric cannot adequately characterize it. The concept of ‘repairability
envelope’ is introduced that illustrates trajectories of performance improvement and trade-
offs for countermeasures against cascading failures. The framework is illustrated via four
model-independent and application-independent metrics that characterize the topological
damage, the network spread of the cascading failure, the evolution of its propagation, the
correlation of different cascading failure outbreaks and other aspects by using probability
density functions and cumulative distribution functions. The applicability of the framework
is experimentally evaluated in a theoretical model of damage spread and an empirical one
of power cascading failures. It is shown that the reliability and repairability in two systems
of a totally different nature undergoing cascading failures can be better understood by the
same generic measurements of the proposed framework.
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1 Introduction

Cascading failures in techno-socio-economic infrastructures such as power grids, water/gas
networks, economic markets, traffic systems and other critical infrastructures are the cause
of massive social disruption and unrest, especially when their cause may be a result of
targeted cyber attacks.1 Their cost can be supreme for a society to afford, for instance, a
2003 power blackout in Canada has estimated costs of $4-$10 billions, with 50 millions
of people left without electricity for up to 4 days (Liscouski and Elliot 2004). Cascading
failures are often a result of non-linear dynamics in which the interplay between structural
and functional elements of a network is highly complex and challenging to measure. Given
that the introduction of Internet of Things and pervasive computing in large-scale critical
infrastructures brings unprecedented opportunities for online automated control, advanced
measurements of cascading failures turns out to be of paramount importance. This paper
introduces a framework for generic, yet highly empirical measurements of cascading fail-
ures that can characterize the system reliability as well as repairability when preventive or
mitigation strategies are employed against cascading failures (Pournaras et al. 2013).

The proposed evaluation framework is based on probabilistic measurements that charac-
terize the overall network reliability and repairability of a system using probability density
functions and cumulative distribution functions computed from empirical data. The over-
all network characterization is achieved by evaluating cascading failures triggered by every
possible node or link failure, however, the analysis can be customized to more targeted
link failures given the availability of empirical data (Ren et al. 2013; Dobson et al. 2007;
Nedic et al. 2006) or other models studied in related work (Wang et al. 2015; Wang and
Chen 2008; Dobson et al. 2010). The framework is studied and illustrated by demon-
strating four metrics that capture both topological and functional aspects of several flow
networks: (i) damage spread, (ii) cascade, (iii) spectral radius and (iv) damage correla-
tion. The framework does not exclude other relevant measures, however, this paper shows
how these four metrics can provide a multifaceted indicator of reliability that is application-
independent. Moreover, this paper studies the relevance of the proposed framework in
measurements of repairability scenarios that have a preventive or mitigation role against
cascading failures. The concept of the repairability envelope is introduced that defines for
a certain preventive or mitigation action trajectories of performance improvement or per-
formance trade-offs. The framework is evaluated by illustrating its applicability in two
application scenarios, one in a theoretical model for disaster spread and one in an empir-
ical model for power cascading failures. It is shown how the same measurements can
characterize the overall system reliability and repairability in systems with highly diverse
dynamics.

The contributions of this paper are the following:

– A generic probabilistic measurement framework of flow networks for a multifaceted
characterization of network reliability under cascading failures.

1For instance, US government claims that cyber attacks are the cause of power outages in Ukraine in 2015:
https://ics-cert.us-cert.gov/alerts/IR-ALERT-H-16-056-01 (last accessed: December 2016).
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– The concept of repairability envelope that defines the performance improvement and
performance trade-offs when preventive or mitigation strategies against cascading
failures are employed.

– An expanded evaluation methodology based on the proposed framework that provides
new insights on earlier work (Buzna et al. 2007; Pournaras and Espejo-Uribe 2016).

This paper is outlined as follows: Section 2 introduces the proposed measurement frame-
work of cascading failures. Section 3 studies the applicability and experimentally evaluates
the proposed framework in a theoretical model of disaster spread and an empirical model
of power cascading failures. Section 4 compares the measurement framework with related
work. Finally, Section 5 concludes this paper and outlines future work.

2 Measuring cascading failures

Table 1 illustrates the mathematical symbols used for the rest of this section in the order they
appear. Assume a flow network of n nodes and l links represented by a directed weighted
graph. Each node or link i in the network has a flow fi and a capacity ci . A cascading
failure refers to consecutive overflows fi > ci as a result (i) of an initial perturbation in the
flow of the network and (ii) T redistributions of flow occurring over the directed links of the
network. A flow perturbation refer to the removal of one or more nodes/links, the rewiring
of a link, or changes in the flow of one or more nodes/links. The redistributions of the flow
are referred to as cascade iterations.

This paper focuses on the m − 1 contingency analysis as the perturbation model of
cascading failures, where m is defined as follows:

m =
{

n if cascade over nodes
l if cascade over links

(1)

This model repeats the following process: a node or link is removed, the network under-
goes a cascading failure, network performance is measured at every cascade iteration, the
network is restored to its initial state and the whole process repeats for all m node or
link removals. This model characterizes probabilistically the overall network reliability and
repairability for a broad spectrum of stochastic perturbations. Moreover, an m − 1 contin-
gency analysis can be parallelized and efficiently computed in a fully distributed fashion,
as well as in real-time if networks are not too large or computational resources not too
limited (Balasubramaniam et al. 2013; Qin 2015; Pournaras and Espejo-Uribe 2016). The
model can be extended to m − x contingency analysis, which however has a higher com-
putational complexity (Huang et al. 2009). Targeted attacks can also be computed via the
m − 1 contingency analysis by assigning failure probabilities to each node or link removal.
Such probabilities can be computed using empirical data (Ren et al. 2013; Dobson et al.
2007; Nedic et al. 2006).

2.1 Network reliability and repairability

The concepts of network reliability and repairability are multifaceted and therefore, this
paper claims that a single metric cannot capture the dynamics of different application
domains. Thus, the reliability and repairability of a network against cascading failures, stud-
ied with the m − 1 contingency analysis model, are measured by a sequence of metrics,
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Table 1 An overview of the mathematical symbols

Symbol Interpretation

n Number of nodes

l Number of links

i An element: node or link

fi The flow of a node or link i

ci The capacity of a node or link i

T Number of cascade iterations

m Number of network elements: nodes or links

u Metric index

t Cascade iteration index

R Reliability

vu,i,t Value of reliability metric u at cascade iteration t after element removal
i

o Number of metrics measuring reliability and repairability

R̂ Network repairability

v̂u,i,t,j Value of reliability metric u at cascade iteration t after element removal
i with configuration j

fu,t (x) Probability density function for reliability using metric u at cascade
iteration t

fu,i (x) Probability density function for reliability using metric u after element
removal i

f̂u,t,j (x) Probability density function for repairability using metric u at cascade
iteration t with configuration j

f̂u,i,j (x) Probability density function for repairability using metric u after ele-
ment removal i with configuration j

Fu,t (x) Cumulative distribution function for reliability using metric u at cas-
cade iteration t

Fu,i (x) Cumulative distribution function for reliability using metric u after
element removal i

F̂u,t,j (x) Cumulative distribution function for repairability using metric u at
cascade iteration t with configuration j

F̂u,i,j (x) Cumulative distribution function for repairability using metric u after
element removal i with configuration j

m̂ Number of survived nodes or links after a cascading failure

pi,t Probability to progress to the cascade iteration t after element removal i

Ai,t Network adjacency matrix after element removal i at cascade iteration t

ρ(Ai,t ) Spectral radius after element removal i at cascade iteration t

λn The nth eigenvalue of the adjacency matrix

rxy Pearson correlation coefficient

where each metric u is measured after the removal of node/link i at the t th cascade
iteration:

R = vu,i,t ,

∀t ∈ {1, ..., Ti},
∀i ∈ {1, ..., m} and

∀u ∈ {1, ..., o},
(2)
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where Ti is the number of cascade iterations for the removal of node/link i, m is the number
of each individual node or link removal for the m − 1 contingency analysis and o is the
number of metrics that characterize network reliability. Network repairability R̂ refers to
the increase of reliability R using preventive and mitigation strategies against cascading
failures. It is measured as follows:

R̂ = v̂u,i,t,j − vu,i,t ,

∀t ∈ {1, ..., Ti},
∀i ∈ {1, ..., m},
∀u ∈ {1, ..., o} and

∀j ∈ {1, ..., k},

(3)

where v̂u,i,t,j ,∀t ∈ {1, ..., Ti}, ∀i ∈ {1, ..., m}, ∀u ∈ {1, ..., o} and ∀j ∈ {1, ..., k} is
the reliability of the network when preventive and mitigation strategies are employed.
The additional dimension j ∈ {1, .., k} is the number of configurations in which a pre-
ventive or mitigation strategy can operate. A configuration may represent a parameter
tuning for improving performance or making a trade-off. The values of the metrics for all
configurations form the envelope of repairability.

Given these fine grained measurements, the reliability and repairability can be illustrated
with the following probability density functions:

fu,t (x) = P(vu,t = x), fu,i(x) = P(vu,i = x), (4)

f̂u,t,j (x) = P(v̂u,t,j = x), f̂u,i,j (x) = P(v̂u,i,j = x), (5)

where the probability density functions can be computed using the measurements of the
m − 1 contingency analysis for a certain cascade iteration t , or using the measurements of
the cascade iterations for a certain node/line removal i. Alternatively, a formulation with the
cumulative distribution function can be given as follows:

Fu,t (x) = P(vu,t ≤ x), Fu,t (x) = P(vu,t ≤ x), (6)

F̂u,t,j (x) = P(v̂u,t,j ≤ x), F̂u,i,j (x) = P(v̂u,i,j ≤ x), (7)

The rest of this section illustrates four metrics that can be included in the aforementioned
expressions to characterize the reliability and repairability of several real-world complex
networked systems.

2.2 Metrics

This paper illustrates four metrics for measuring network reliability and repairability under
cascading failures: (i) damage spread, (ii) cascade, (iii) spectral radius and (iv) damage
correlation. Although several other metrics (Yan et al. 2014; Mazauric et al. 2013; Youssef
et al. 2011; Wang et al. 2015) can be used, this paper focuses on the aforementioned four
ones that are model-independent and cover both topological and flow dynamics in networks
undergoing cascading failures.
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2.2.1 Damage spread

This metric concerns the probability of decreasing the percentage of remaining nodes or
links, the nodes or links survivability, over the iterations of the cascade. It is defined as
follows:

v1,t =
∑
x

F1,t (x)�x −
∑
x

F1,t−1(x)�x, (8)

where x represents the nodes or links survivability m̂i

m
with m̂i ≤ m the number of nodes or

links survived after removal of node or link i. �x is the integration step of the cumulative
distribution function over the iterations of the cascading failure.

2.2.2 Cascade

This metric concerns the probability of advancing the iteration of a cascading failure. It is
defined as follows:

v2,t = 1

m

m∑
i=1

pi,t , (9)

where:

pi,t =
{

1 if cascade progresses to t

0 otherwise
(10)

represents the progress or not of the cascade to the next iteration after the removal of node
or link i.

2.2.3 Spectral radius

This is a graph spectral metric calculated by the largest eigenvalue of the adjacency matrix
Ai,t of the network: ρ(Ai,t ) = max{|λ1|, ..., |λni

|}. By performing an n − 1 contingency
analysis, the spectral radius can be illustrated by the cumulative distribution function as
follows:

v3,t = F3,t (x), (11)

where x are the values of the ρ(Ai,t ) for each removal of node i. Note that the measure-
ments of the spectral radius can be also expressed with the area increase or decrease of the
cumulative distribution function as expressed in (8) for the damage spread:

v3,t =
∑
x

F3,t (x)�x −
∑
x

F3,t−1(x)�x, (12)

2.2.4 Damage correlation

Damage correlation computes the Pearson correlation coefficient rxy between two vectors
x and y of node or link values:

v4,t = rxy, (13)

where the vectors represent the status of the network after a node or link removal i and j

respectively. Several relevant metrics for nodes and links can be used to measure the values
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of the vectors, for example, a binary variable denoting if the nodes or links fail during a
cascading failure or the ratio fi

ci
that denotes the utilization of the nodes or links.

3 Applicability and experimental evaluation

The proposed measurement framework is evaluated on the basis of two illustrations: (i)
The applicability of the cascading failure measurements in two use cases, one in a theoret-
ical state-of-the-art model (Buzna et al. 2007) of disaster spread and one in the application
domain of power networks (Pournaras and Espejo-Uribe 2016). (ii) Quantitative results on
reliability and repairability for each of the two use cases. The goal of this section is to make
a proof-of-concept and inspire community to expand the proposed framework with new reli-
ability and repairability metrics as well as further use cases. The results illustrated in this
paper are new and they are not shown in the primary earlier work of the two use cases. The
measurements shown in this section are agnostic and independent of the two very different
use cases, in contrast to the primary earlier work in which model-dependent measurements
are performed.

The proposed framework2 is implemented using the SFINA framework3, the Simulation
Framework for Intelligent Network Adaptations (Pournaras et al. 2017). Experiments ran on
a MacBook Pro, 2.3 GHz Intel Core i5 with 4 GB RAM. Cascading failures are visualized
with an implemented integration4 of Gephi in SFINA. In this paper, ‘baseline’ refers to the
networks undergoing cascading failures without any repairability strategy applied.

3.1 Theoretical model: disaster spread

The theoretical model for disaster spread is evaluated on two artificial networks: (i)
Barabási-Albert and (ii) small world. The two networks have 100 nodes and 100 bidirec-
tional links. The Barabási-Albert network is built with a probability of 0.15 that a new node
added is connected to an existing node. The small world network is built with a rewiring
probability of 0.15 and mean degree of 3.

According to the damage spread model, each node calculates a set of coupled differential
equations. Each equation governs the change of ‘damage’ in a node over time. Each node
is characterized by a damage level and a tolerance threshold θ with an α gain parameter
over which the node is fully damaged. Moreover, each node has a recovery rate τstart and
the spread of the damage in interconnected nodes is a function of the node degree. Each
link is characterized by the connection strength, a time delay tij and the β parameter that
models the physical characteristics of the surrounding. The a and b fit parameters weight
the influence of node degree on the disaster spread process. More information about the
mathematical model and its parameters is out of the scope of this paper. They are defined in
detail in (2) of the earlier work (Buzna et al. 2007).

The m−1 contingency analysis introduces a damage level of 4.0 in a node and repeats the
process for all nodes. The parameters of the model are illustrated here for the repeatability
of results. Node parameters are chosen as α = 5, β = 0.025, θ = 0.5 and τstart = 4. Link
parameters are chosen as a connection strength of 0.5, tij from a χ2 distribution with μ = 4,

2Available at https://github.com/SFINA/Flow-Monitor (last accessed: December 2016).
3Available at https://github.com/SFINA (last accessed: December 2016).
4Available at http://gephi.github.io (last accessed: December 2016).
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(a) BarabásiAlbert network (b) Small world network

Fig. 1 Likelihood of damage spread for the two artificial networks using strategy A and B

a scaling factor of 0.05 and a translation factor of 1.2. Moreover, it is set a = 4 and b = 3.
Two repairability strategies5 are employed from the earlier published work: (i) strategy A
and (ii) strategy B. The strategies are implemented as SFINA applications by extending the
simulation agent so that they can be reused by other disaster spread models in the future.
This flexibility is the result of the generic and modular design of SFINA Pournaras et al.
(2017). The strategies define resources for recovery from a resource distribution function
r(t) = a1t

b1e−c1t , with a1 = 10, b1 = 0.5 and c1 = 0.03. Parameter a1 is the one varied to
compute the envelope of repairability. The equation and parameters model an initial expo-
nential increase and a gradual decay of resources over time. Resources are supplied after
the 10th simulation step. Finally, the recovery rate of a node at a specified time is given by
1/τi(t) = 1/(τstart − β2)e

−α2Ri(t) + β2 with α2 = 0.58 and β2 = 0.2. These parameters
are evaluated earlier to give an efficient response to disaster spread.

Figure 1 illustrates the likelihood of damage spread for the two artificial networks. In
the Barabási-Albert network of Fig. 1a, the two repairability strategies decrease the overall
damage spread by 8.7% and 9.1% respectively, however, the damage spreads rapidly over
the hub nodes of the network. The damage increasingly spreads during the first 20 itera-
tions, while at the later cascade iterations the recovery process minimizes the spread. On the
other hand, the small world network of Fig. 1b has lower levels of damage spread with the
strategies providing a higher repairability compared to the Barabási-Albert network: 17.5%
and 34.4% respectively.

The damage spread and damage correlation measurements are validated quantitatively
and qualitatively in Appendix B for a Barabási-Albert and a small world network.

In case the resources available for the recovery can increase using higher values of a1, the
envelope of self-repairability is formed according to Fig. 2. The Barabási-Albert network of
Fig. 2a has a broadening envelope as damage spread increases and a narrowing envelope as
the damage spread decreases. The same holds for the small world network of Fig. 2b that
has overall broader envelope even if lower values of the a1 parameter are used.

5These strategies correspond to the strategy 3 and 4 in the earlier work (Buzna et al. 2007).
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(a) Barabasi network (b) Small world network

Fig. 2 Repairability envelopes for the two artifical networks and strategy B by varying the parameter a1

In contrast to the evaluation methodology illustrated in the original earlier work (Buzna
et al. 2007), the reliability and repairability of two different artificial networks with differ-
ent settings are illustrated without measuring model-specific parameters but rather generic
metrics that equip the proposed framework. The rest of this section illustrates how the same
metrics can characterize the reliability and repairability in an empirical networked system
of a totally different nature: power systems undergoing cascading failures and using smart
transformers for system self-repair.

3.2 Empirical model: power cascading failures

In the use case of power networks, three IEEE reference networks are used:6 (i) case-39,
(ii) case-57, (iii) case-118 and (iv) case-2383. Case-39 has capacity information referred to
as link rating, while the rest of the networks use the α = 2.0 parameter that computes the
link capacities based on the load profile of the networks. All power networks run AC power
flow analysis except case-2383 that runs DC power flow analysis for faster performance
and convergence. In all cases, the power flow analysis runs using the InterPSS7 (Zhou and
Zhou 2007) SFINA backend.

The m − 1 contingency analysis is applied by removing a link and repeating the pro-
cess for all links. The simulation model of cascading failures is illustrated in earlier
work (Pournaras and Espejo-Uribe 2016) and it concerns redistribution of power flows after
link failures caused by flows overpassing link capacities, the line ratings. For the repairabil-
ity of the case-39 network against cascading failures, 5 coordinating smart transformers
are introduced in a random placement.8 The smart transformers control and collectively
optimize the phase angle of the link they reside on to improve reliability (Pournaras and
Espejo-Uribe 2016). The envelope of repairability is computed by varying the penalty

6Available at http://www.pserc.cornell.edu/matpower/docs/ref/matpower5.0/menu5.0.html (last accessed:
December 2016).
7Available at http://www.interpss.com (last accessed: December 2016).
8Several such placements are evaluated in earlier work (Pournaras and Espejo-Uribe 2016).
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parameter λ of the optimization, with the default value being λ = 1.0. This parameter
controls the penalization applied in the magnitude of change in the phase angle. Strategy B
from earlier work (Pournaras and Espejo-Uribe 2016) is used in the performed experiments.

Figure 3 illustrates the likelihood of damage spread and cascade in the three power net-
works. Case-57 has the highest disaster spread followed by case-118 and case-2383. It is
evident that the size of the network plays a role here given that the m − 1 contingency anal-
ysis always removes a single link. Line failures spread further in case-2383 with the highest
size, however, the percentage of links affected is still lower than case-118 and case-57 that
have a lower size.

The damage spread in Fig. 3a is computed based on (8). The original cumulative dis-
tribution functions for link survivability based on which (8) is computed are illustrated
in Fig. 4a, c and e. For each of these plots, the respective plot for the spectral radius is
shown as well. The plots show the evolution of the cascading failures by increasing prob-
abilities values of the lower link survivability values at the later cascade iterations. The
spectral radius shows a similar trend. Case-57 has lower values of spectral radius than
case-118.

Figure 5 illustrates the damage correlation for case-57 and case-118. Due to the large
network size, case-2383 does not show significant influence on damage correlation and
therefore, results are not shown. The damage correlation map in case-57 remains similar
during the evolution of the cascading failure. In contrast, the damage correlations of case-
118 shift to different link pairs at the last iteration of the cascading failure.

Figure 6 illustrates the visualization of the two network at two different iterations of a
cascading failure. The attacked link is indicated at iteration 1 with red color followed by
several other red trimmed links at iteration 5 in case-47 and case-118.

Network repairability is applied by using coordinated smart transformers. Figure 7 shows
the improvement in repairability. In Fig. 7a, the likelihood of increasing damage spread
is 37.5% lower when smart transformers are used. Figure 7b confirms that the cascading
failure terminates at iteration 2 instead of iteration 6 thanks to smart transformers.

(a) Damage spread (b) Cascade

Fig. 3 Likelihood of damage spread and cascade for three networks under cascading failure
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Fig. 4 Evolution of the cumulative distribution functions of link survivability and spectral radius in three
networks under cascading failure
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Fig. 5 Damage correlation in three networks under cascading failure

Figure 8 illustrates the evolution of the spectral radius with and without smart transform-
ers. By mitigating cascading failures, the spectral radius remains at high values throughout
the iterations of the cascading failure.

Figure 9 illustrates the damage correlation matrix. It is shown that the flow redistribu-
tions, which smart transformers perform create highly uncorrelated link failures. This is
because each local control of the phase angle in a link results in a global flow redistribution
in the optimization space that are in contrast to the default redistributions computed by the
cascading failure model.

Figure 10 visualizes a cascading failure in case-39 without and with smart transformers.
It is clearly shown that a fewer number of links are trimmed when smart transformers are
used.

In this empirical scenario, computing the envelope of self-repairability is a way to visu-
ally evaluate parameter fitting for the optimization process that controls the phase angles of
the smart transformers. For this purpose, different λ values are tested and aggregated to the
envelope of Fig. 11. It is confirmed that low values of the penalty parameter achieve higher
repairability, which is a result of allowing higher magnitudes of changes on the phase angle.

The applicability of the framework measurements in this empirical model of power cas-
cading failures confirms its generic design and its flexibility to characterize the multifaceted
aspects of network reliability and repairability against cascading failures. Regardless of DC
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(a) Case-57, iteration 1 (b) Case-57, iteration 5

(c) Case-118, iteration 1 (d) Case-118, iteration 5

Fig. 6 Visualization of cascading failures in two networks. The size and thinkness of the lines is proportional
to the power flows served. Trimmed links are indicated with red color. Generators inject power flows, slack
buses balance power flows and buses transfer and consume them

or AC power flows, the network type, the use of smart transformers for balancing flow distri-
butions, or even the optimization applied for these flow redistributions, the same framework
is capable of characterizing, as well as, comparing system reliability and repairability.

4 Comparison with related work

Several application-independent metrics are introduced in the research area of flow net-
works, which are applicable for use in the proposed framework, for instance through-
put (Todinov 2013; Huseby and Natvig 2013), however they have not been studied in the
context of cascading failures. Other metrics such as the Birnbaum’s, Barlow–Proschan and
the Natvig measures characterize the reliability of a network in respect to the failure or repair
of an individual component. Kuo and Zhu (2012) classify importance measures in relia-
bility into structure, reliability and lifetime types based on the knowledge that determines
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(a) Damage spread (b) Cascade

Fig. 7 Likelihood of damage spread and cascade in case-39 with and without smart transformers
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Fig. 8 Evolution of spectral radius in case-39 with and without smart transformers
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Fig. 9 Damage correlation in case-39 with and without smart transformers
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(a) Without smart transformers (b) With smart transformers

Fig. 10 Visualization of a cascading failure in case-39 without and with smart transformers

them. Given that the proposed framework focuses on the overall characterization of system
reliability and repairability, such metrics are highly relevant when they measure global sys-
tem properties rather than component reliability as well as they do not depend on a specific
model or scenario. Moreover, note that the applicability of several of these metrics require
fine-grained empirical data, for instance, repair and failure rates of individual components.

Metrics for measuring reliability against cascading failures are earlier introduced. Wang
et al. (2015) study cascading failures in power grids and introduce the normalized, to the
load profile of the network, served power demand as a reliability measure. In contrast to this
work, measurements for the evolution of the cascade are not studied and the attack model is
based on the node significance centrality of a single link, whereas, the proposed framework
provides an overall probabilistic estimation of reliability using the m−1 contingency analy-
sis. This is also the case for the work of Zhang et al. (2014) that measures the percentage of
failures in the network and correlates complex networks with reliability measures. Cascad-
ing failures are triggered by random node selections or selections based on node degrees.
No information about the evolution of the cascading failures is measured.

Fig. 11 Repairability envelope
in case-39 without and with
smart transformers of different λ

parameter

 =2

 =150
 =175

  =50
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Wang and Chen (2008) introduce a robustness metric that models link weights based
on the node degrees of the associated nodes. Cascading failures are triggered using the
sandpile model by adding flows incrementally. Although this model can be used in analyses
of how node degrees influence the reliability of flow networks, the use of empirical data
shown in this work can provide more direct, accurate and model-independent calculations
of reliability.

Dobson et al. (2010) introduce a statistical estimator to quantify the propagation of
cascading failures in power transmission lines. Their model relies on Poisson distribution
for the propagation of failures, which may not hold for different flow network mod-
els, cascading processes or application domains. The networks evaluated are low in size
and require parameter tuning, for instance the saturation parameter. In contrast, the mea-
surements proposed in this paper are model-independent, therefore, they have a higher
applicability.

Youssef et al. (2011) illustrate a robustness measure for power grids with respect to
cascading failures. This work draws several parallels with the work proposed in this paper,
for instance, a probabilistic model for link survivals is shown. Moreover, the depth of the
cascading failure is measured and links are ranked according to their failure probabilities
under cascading failures. However, this earlier work is limited to DC power flows and it is
mainly a topological analysis of the network, in contrast to the proposed framework that is
illustrated for several application-independent metrics.

In respect to network repairability and related work on repairability envelopes illus-
trated in this paper, Trajanovski et al. (2013) introduce robustness envelopes by computing
approximate network performance probability density functions as functions of the fraction
of nodes removed. The robustness envelopes and targeted attack responses are computed by
network rewiring to increase or decrease degree assortativity. This is mainly a topological
and graph spectral analysis, in contrast to the envelopes of this work that capture functional
aspects of the network operations and repair mechanisms. Ulanowicz et al. (2009) introduce
the concept of ‘window of vitality’ that circumscribes sustainable behavior in ecosystems.
The window of vitality is studied in the context of biological ecosystems, however, the
concept could be used to heuristically show how different networks and configurations are
reliable given different scenarios.

5 Conclusion and future work

This paper concludes that the proposed measurement framework is generic and can cap-
ture multifaceted aspects of network reliability, as well as repairability, in complex systems
undergoing cascading failures. This is shown by the applicability of the framework and
extensive measurements in a theoretical model of disaster spread and an empirical model of
power cascading failures. It is shown that the same measurements can provide new insights
about system reliability and repairability as well as a better understanding on the evolution
of cascading failures in several networks. This comes in contrast to related work in which
measurements do not capture the evolutionary aspects of cascading failures and are often
tailored to the model under scrutiny or the application domain.

Future work includes the expansion of the framework with other probabilistic mea-
surements and the evaluation of other attack models that use real-world empirical data on
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triggering cascading failures. The feasibility of the framework in real-time system opera-
tions for distributed monitoring and online automated decision-support is also subject of
future work (Pournaras 2013).
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Appendix A: Theoretical model: damage correlation

To better understand the spreading dynamics, the evolution of damage correlation for the
two artificial networks is shown in Figs. 12 and 13. The two figures show how correlated
the spreading of network damages are in all possible pairs of perturbations in the network
and how the correlations evolve during the cascading failure.

Figure 12 confirms that the hubs of the Barabási-Albert network result in highly pos-
itively correlated processes of damage spread, which are actually due to the high levels
of damage diffused in the network. When the recovery process takes place, there is a low
increase in the average correlations for strategy B compared to baseline, for instance, 3.95%
at the 30th cascade iteration compared to 0.5% at the 20th iteration.
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(a) Baseline, iteration 12
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(b) Baseline, iteration 20
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(c) Baseline, iteration 30
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(d) Baseline, iteration 100
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(e) Strategy A, iteration 12
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(f) Strategy A, iteration 20
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(g) Strategy A, iteration 30
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(h) Strategy A, iteration 100

(i) Strategy B, iteration 12
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(j) Strategy B, iteration 20
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(k) Strategy B, iteration 30
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(l) Strategy B, iteration 100

Fig. 12 Damage correlation in the Barabási-Albert network at different cascade iterations. (a)-(d) Baseline,
(e)-(h) strategy A and (i)-(l) strategy B
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(a) Baseline, iteration 15
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(b) Baseline, iteration 30
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(c) Baseline, iteration 70
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(d) Baseline, iteration 100
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(e) Strategy A, iteration 15
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(f) Strategy A, iteration 30
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(g) Strategy A, iteration 70
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(h) Strategy A, iteration 100
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(i) Strategy B, iteration 15
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(j) Strategy B, iteration 30
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(k) Strategy B, iteration 70
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(l) Strategy B, iteration 100

Fig. 13 Damage correlation in the small world network at different cascade iterations. (a)-(d) Baseline,
(e)-(h) strategy A and (i)-(l) strategy B

Figure 13 confirms that the damage spread in small world networks has a strong local-
ity influence. The damage of neighboring nodes results in correlated spread of damages as
it can be clearer seen in Fig. 13a, e and i. As the spread of the damage increases according
the trajectories of Fig. 1b, the correlation of the damages becomes more polarized and vary
between highly positive and negative correlation in different parts of the network. Strategies
decrease correlations compared to the baseline, for instance, 25.44% at the 30th cascade iter-
ation and 41.5% at the 70th iteration for strategy B. However, damage correlations increase
on average during the cascading failure, for example, 87% and 83.6% for baseline and
strategy B respectively and from the 30th to the 70th iteration of the cascading failure.

B: Theoretical model: network visualizations

Figures 14 and 15 show the two artificial networks in the respective cascade iterations that
are also shown for the damage correlations. The initial damaged node is node 7.

The Barabási-Albert network in Fig. 14 clearly shows that the damage of the peripheral
node influences the neighboring nodes (Fig. 14d, f), however, as the central hub is only two
hops away from the damaged node, the damage spreads and eventually affects severely the
whole network already at the 20th iteration (Fig. 14g, i). The repairability strategies can
only alleviate the damage level of individual nodes and therefore, they do not restrict the
cascading disaster.
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(a) Baseline, iteration
1

(b) Strategy A, itera-
tion 1

(c) Strategy B, itera-
tion 1

(d) Baseline, iteration
12

(e) Strategy A,itera-
tion 12

(f) StrategyB, itera-
tion 12

(g) Baseline, iteration
20

(h) Strategy A, itera-
tion 20

(i) Strategy B, itera-
tion 20

(j) Baseline, iteration
30
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tion 30
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tion 30

Fig. 14 Visualization of cascading failure in the Barabási-Albert network. (a), (d), (g), (j): Baseline, (b),
(e), (h), (k) strategy A and (c), (f), (i), (l) strategy B. The pallete indicates the damage level of the nodes in
the range [0, 4]
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(a) Baseline, iteration
1

(b) Strategy A, itera-
tion 1

(c) Strategy B, itera-
tion 1

(d) Baseline, iteration
30

(e) Strategy A, itera-
tion 30

(f) Strategy B, itera-
tion 30

(g) Baseline, iteration
70
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tion 70
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tion 70

(j) Baseline, iteration
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tion 100
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Fig. 15 Visualization of cascading failure in the small world network. (a), (d), (g), (j): Baseline, (b), (e),
(h), (k) strategy A and (c), (f), (i), (l) strategy B. The pallete indicates the damage level of the nodes in the
range [0, 4]
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In contrast, the small world network of Fig. 15 shows that the damage spread is in general
localized at a higher level than the Barabási-Albert network. Strategy B maintains the lowest
damage level in the nodes as also confirmed by Fig. 1b.
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