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Abstract The lowland dipterocarp forests of Southeast Asia support a substantial pro-

portion of the world’s biodiversity. They are of considerable environmental and economic

value at the local, regional and global scale, providing many goods and services to a

growing population. The forests of this region are among the fastest disappearing in the

world and restoration is urgently required. This paper provides a review of the ecological

constraints to restoration of lowland dipterocarp forest in Southeast Asia. It focuses on the

production of planting stock, the significance of site-species matching and post-planting

site maintenance. It identifies gaps in our knowledge and highlights priority areas of

research. Adopting a long-term view is essential for restoring as well as conserving the

dipterocarp forests of Southeast Asia. An immediate strategy for the conservation and

management of dwindling genetic resources of these important timber species is essential.

This will provide the foundations for sourcing seed and production of planting material for

longer term restoration. The importance of species-site matching, mycorrhizal fungi and

post-planting maintenance for restoration are apparent. Financing is a major limiting factor

to dipterocarp forest restoration. Trading in carbon, private finance and environmental

markets afford considerable opportunities for restoring these forests providing their

total value is recognised. Despite the wealth of ecological knowledge we already have

for scientifically-informed forest restoration, without the backing of governments and

corporate stakeholders, forest restoration will not gain the urgently required momentum.
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Introduction

The lowland rainforests of Southeast Asia are globally significant and among the most

diverse forests in the world supporting a sizeable proportion of the world’s biodiversity

(Myers et al. 2000; Davies et al. 2005). These forests provide numerous ecosystem services

including fresh water management, soil protection and pollination services. From a global

perspective, perhaps the most significant is the storage of carbon. Deforestation accounts

for 18% of global greenhouse gas emissions (Angelsen et al. 2009). Moreover, Southeast

Asia is estimated to contribute 29% of the global total from deforestation (Phat et al. 2004).

Recent reports indicate that the rate of tropical forest loss in the region is greater than all

other tropical regions (Bradshaw et al. 2009). The rapid degradation of tropical forests and

its conversion to alternative land use is predicted to have catastrophic implications for

biodiversity (Wilcove and Koh 2010), and the resilience of these regions.

Substantial areas of forest in Southeast Asia are dominated by the single family of trees

the Dipterocarpaceae, with 13 of the 16 genera and 92% of the 510 species restricted to

Asia (Bawa 1998). The family is ecologically dominant and also economically significant.

The dipterocarps account for 80% of timber exports from the region providing a major

source of revenue for many developing nations. Round-wood logs of dipterocarp species

formed 25% of global consumption of tropical hardwoods, valued at almost half a billion

US$ between 2006 and 2007 (ITTO 2008). The long-term resilience and resistance of these

lowland dipterocarp forests and the conservation of the supported biodiversity depends on

a myriad of factors, including economics, political will and scientifically-informed

management.

There is an urgent need not only to arrest current rates of deforestation (Koh 2007a) but

to reverse the trend in declining native forest cover in Southeast Asia. This paper provides

a review of the ecological constraints to lowland dipterocarp forest restoration. It identifies

major gaps in our knowledge and highlights areas of research that should be a priority. It is

recognised that other tree families such as the Burseraceae, Lauraceae, Fabaceae and

Moraceae are important in restoration, but this manuscript focuses specifically on the

Dipterocarpaceae as one of ecologically and economically dominant groups within the

region. Specifically it focuses on the production of planting stock of dipterocarp species for

restoration, the significance of site-species matching, and post-planting site maintenance

for successful restoration.

Current situation

Secondary forest constituted 63% of the total forest cover in Southeast Asia in 2005 (data

extracted from Koh 2007a). Secondary forests have an important role in sustaining the

region’s biodiversity (Barlow et al. 2007; Meijaard and Sheil 2007) and providing other

ecosystem services such as carbon storage (Berry et al. 2010). However, due to declining

timber stocks (FAO 2007) and reduction in timber concessions (Dennis et al. 2008) such

forests become increasingly at risk of conversion. Rural poverty and shifting cultivation

(Lawrence 2004) conversion to biofuels (Koh 2007b; Wilcove and Koh 2010), as well as

increasing fire frequency (Langner and Siegert 2009) all jeopardise the resilience of forest

landscapes in Southeast Asia. Meeting international targets to prevent biodiversity loss

(Convention on Biological Diversity) and mitigate climate change (Kyoto Protocol)

require a radical shift in strategy to increase the ecological and economic value of degraded

forest lands. There are a number of ecological reasons why dipterocarp forests may be
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especially sensitive to habitat degradation and fragmentation. Briefly, many species have a

low density of reproductive adults, they are insect pollinated, have poor seed dispersal, and

recalcitrant seeds, traits which are likely to reduce the resilience of dipterocarp forest to

fragmentation (Aguilar et al. 2006). A more holistic approach to Sustainable Forest

Management which incorporates these factors is urgently needed to prevent future deg-

radation (de Freitas and Pinard 2008; Sist et al. 2008). However, for the large areas of

already degraded forest land, planting of nursery-reared native tree seedlings can increase

their economic and ecological value (Edwards et al. 2009).

Challenges to restoration of dipterocarp forest

When and where is planting necessary?

Nearly two decades ago it was estimated that there were at least 70 million hectors of

seriously depleted forest which has been over-logged and subject to shifting cultivation in

Southeast Asia (ITTO 1990 in Adjers et al. 1995). In order to gain an up-to-date, albeit

coarse, picture of the extent of land that might be amenable for planting, the following

simple analysis was conducted. I calculated two estimates of degradation based upon area

of forest with (i) canopy cover[10 and\25% and (ii) canopy cover[10 and\50%. These

data are derived from automated algorithms run on data gathered by the Moderate Reso-

lution Imaging Spectroradiometer (MODIS) instrument during 2000 (WRI 2009). To these

estimates I added land area dominated by the invasive grass Imperata cylindrica taken

directly from Garrity et al. (1997). Based upon these assumptions it is predicted that as

much as 15–30% of total land cover (50–130 million hectors) in Southeast Asia may be

amenable to reforestation or restoration (Fig. 1). The resolution of current data sets to

estimate land amenable for forest restoration is limited. Developing new data sets based on

landscape indicators, such as forest canopy gap fraction (Asner et al. 2006), cropland

expansion (Morton et al. 2006), and fire damage (Langner and Siegert 2009) which can be

determined using remote sensing should provide greater resolution.

The strategies which can be employed to restore tropical forests have been reviewed by

Lamb et al. (2005). Decisions on which strategies to adopt are based upon weighing the cost

and benefits associated with the specific objectives of restoration, and especially the extent

to which processes of natural regeneration are severed. Restoration of dipterocarp forest and

degraded land are most likely to be via two main pathways: (a) enrichment planting:

planting seedlings of the most economically desirable dipterocarp seedlings in degraded

forest in order to increase its timber productivity; (b) complete forest restoration, which

involves establishing a nurse canopy of fast-growing light-demanding species followed by

under-planting with dipterocarps. Table 1 summarises the main strategies and highlights the

(hypothetical) optima where the greatest benefit is gained at the least cost. In reality such

decisions will be made on a case by case basis and will often be driven by other social and

political factors. To prevent further conversion of secondary or primary forest to croplands,

conservationists are calling for completely degraded land to be used for the expansion of

crops, such as oil palm plantations, as a matter of priority (Wilcove and Koh 2010).

There have recently been a number of major initiatives to rehabilitate forests via planting.

These include international initiatives, such as the UNEP billion trees campaign, and more

regional projects, such as the 5MHRP in Vietnam (McNamara et al. 2005), the Sow a Seed

program funded by IKEA and the FACE Foundation Innoprise project which respectively

aim to restore 8000 and 30000 ha of degraded dipterocarp forest in Borneo (www.searrp.org,
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2009) by enrichment planting (Moura-Costa et al. 1994). The real biodiversity benefits of

these projects will depend on their ability to restore ecological function. Plantations of exotic

species which are destined to be clear felled should not be accepted as forms of forest

rehabilitation. Enrichment planting of native tree species on logged dipterocarp forest has

recently been reported to increase the landscape scale diversity of avian assemblages

(Edwards et al. 2009) clearly enhancing biodiversity value. There is an urgent need for

internationally recognised criteria for what constitutes forest rehabilitation to ensure that

such projects have a genuine biodiversity and environmental benefit. Enrichment planting of

commercially logged dipterocarp forest has been extensively established in Indonesia, while

Malaysia has only more recently begun to investigate this as a management strategy

(Weinland 1998). Establishment of commercial plantations of valuable dipterocarp species

has been the focus of research in Southeast Asia for nearly a century. To date, juvenile

Fig. 1 Illustration of the proportion of total land area per Southeast Asian country which may be amenable
to forest restoration and rehabilitation, based on extent of Imperata grasslands and forests with less than
25% or less than 50% canopy cover
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dipterocarps have been considered too sensitive for even age plantations (Weinland 1998).

Although plantation forest is increasingly being recognised for its biodiversity benefits in

temperate regions (Brockerhoff et al. 2008) plantations of exotic species in the tropics have

considerably lower biodiversity value than secondary forest (Barlow et al. 2007) and con-

version of secondary forest to exotic plantation will lead to further biodiversity losses. The

use of native species for plantations is likely to have far greater biodiversity benefits than

either exotic plantations or conversion to other land uses such as oil palm. Of course, these

management strategies fundamentally depend on the ability to produce sufficient numbers of

viable seedlings of appropriate native tree species for planting.

Challenges to large scale production of dipterocarp planting material

Seed collection

The technical knowledge to propagate dipterocarps on a relatively large scale exists

(Weinland 1998) although at the national level capacity may be limited. Dipterocarp

reproductive ecology however, provides considerable challenges for the forest nurseries,

which may in part explain why enrichment planting and restoration have not been highly

successfully in the past (Appanah 1998). Firstly, seed production in dipterocarps is

unpredictable (Bawa 1998; Paquette et al. 2009) and mast-fruiting is often super-annual

Table 1 Matrix of forest degradation and different strategies of forest restoration scored for their associated
financial costs and benefits (ecological, social and economic)

The shaded cells indicate those scenarios where the benefits are greater than the costs. The ellipse indicates a
hypothetical window of optimal decisions
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with trees producing fruits at the same time with overlapping windows between species

(Ashton et al. 1988; Maycock et al. 2005; Brearley et al. 2007a). This challenge is

exacerbated by the fact that diptercarp seeds are recalcitrant and cannot be stored for long

periods of time (Adjers and Otsamo 1996). Secondly, most dipterocarps are huge trees,

many ranging in height from 30 to 60 m and with dbh [ 3 m. Climbing trees to collect

seeds is an extremely technical and often dangerous task, meaning that it is not easy to

collect seeds before they fall. From a practical perspective, collecting seeds has to be done

over relatively short intensive periods of a few weeks, with regular phenological moni-

toring. Knowledge on dipterocarp seed handling and storage, as well as germination and

potting, has been established for the major commercial species (Adjers and Otsamo 1996).

Seeds need to be collected as quickly as possible, protected from fungal infection, over-

heating, physiological breakdown and germinated as soon as possible. This makes the

collection of rare species of dipterocarp very difficult, given that many only survive in

remote forest locations.

Genetic constraints

The genetic quality of dipterocarp seed collections has received little research attention.

Recent studies of gene flow and genetic diversity in adult populations (Konuma et al. 2000;

Kenta et al. 2002, 2004; Ng et al. 2004; Lee et al. 2006; Fukue et al. 2007) enable us to

make some generalisations. Habitat fragmentation is likely to lead to a reduction in the

effective population size of many dipterocarp species, especially small-flowered species

which may have more restricted gene flow (Kettle et al., submitted-b). A reduction in stand

density and isolation of individuals may lead to elevated inbreeding. Seed collections for

restoration, which constitute a high proportion of inbred individuals, have been reported in

tropical conifers (Kettle et al. 2008). Ideally seed collections should be made from primary

forest stands with a good density of reproductive adults. Unfortunately, due to the extent of

forest degradation this may not always be an option. Seed production in logged forest has

been recorded as low as 23% compared to primary forest for dipterocarps (Curran and

Webb 2000). There is a major gap in our knowledge of seed yields for commercial

dipterocarp species. Such data will be especially important for developing sustainable seed

harvesting strategies. Recent studies indicate that species of dipterocarp are likely to be

differentially susceptible to the negative genetic consequence of fragmentation (Kettle

et al., submitted-a, submitted-b) and selective logging (Ng et al. 2009).

Wildling collection

An alternative and favoured approach is to collect wildlings (wild seedlings) from the

forest floor. This may result in better genetic quality of the planting stock because these

seedlings have already been through a selection process on the forest floor (Kettle et al.

2008). Wild seedlings are likely to have been the result of several reproductive seasons and

thus be more genetically diverse than a single seed collection. Collection of wildings is not

without its challenges, they often suffer from rapid and high mortality post-germination on

the forest floor, and collection and transport can be logistically difficult, together with slow

hardening off periods before planting (Weinland 1998). The extent to which wilding

collections may negatively impact on natural regeneration in remnant forest is not well

understood and seedling banks in some reserve forests of Borneo have been devastated by

wildling collecting (Nilus, Pers. Commun.).
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Vegetative propagation

The large majority of enrichment planting in Indonesia uses plants propagated using

vegetative stem cutting from wildlings (Weinland 1998). In Malaysia vegetative propa-

gation has remained largely experimental, although bulk clones of seedlings from collected

wildings for a number of commercial species (Shorea parvifolia, S. leprosula, S. acumi-
nata, S. bracteolata, S. roxburgii and Hopea odorata) have been established (Ahmad

2006). Vegetative propagation has a number of practical and economic advantages over

sexual propagation. It saves time and can produce uniform planting stock continuously

throughout the year from selected parental stock. There are obvious disadvantages; by

definition this leads to the homogenisation of the planting material which could increase

vulnerability of planting material to both existing and novel pests and pathogens, as

illustrated in crop species (Zhu et al. 2000). This could also have serious implications for

future reproduction of restored forest and their long-term viability. If species are highly

self-incompatible then breeding between ramets of the same clone is likely to fail. Fur-

thermore, if restored forests are made up of a high proportion of clonal ramets of specific

genotypes, this could lead to the loss of genetic variation in remnant natural forest stands

through genetic swamping of remnant population with maladaptive genes (Hedrick 2005).

The constraints on seed and wildling collections are significant, but the use of vegetative

propagation should not be viewed as a panacea.

Scientifically-informed seed and wildling collections, coupled with a long-term com-

mitment to establish in-situ and ex-situ seed orchards and genetic reserves, should be high

on the agenda of the forestry sector. Such seed orchards represent a win–win situation in

the long term, as these can be established from selected genotypes of mother trees which

show adaptation to given sites, have desirable form and ensure the maintenance of species

genetic diversity. Seed orchards could be established alongside areas in need of restoration

and could increase connectivity within the forested landscape as well as more accessible

seed and/or seedlings. Selection of progeny from a sufficiently large number of Plus trees

(trees selected for superior form and value) to establish seed orchards should ensure the

minimum of inbreeding (Lee 2000). Theoretically collecting from 30 to 50 adult trees

should be sufficient, assuming that viability is equivalent across individuals. Seed orchards

not only provide a means of seed production and ex-situ conservation, but also the

opportunity to explore levels of local adaptation, site specificity and a means of certifi-

cation of provenance in addition to providing employment in rural locations. Seed orchards

could be integrated into other agroforestry systems (Erdmann 2005) or even in oil palm

plantations, under new initiatives such as POTICO described by Wilcove and Koh (2010).

These would not only increase the biodiversity value of such lands but increase the

landscape connectivity for many forest species (Brockerhoff et al. 2008).

What to plant and where

Site conditions can provide major constraints to survival of seedlings whether in enrich-

ment planting of logged forest, secondary forest or totally degraded land. These constraints

can be separated into abiotic effects associated with limited resource availability (soil

nutrients, moisture and light) and biotic effects, such as herbivory, pathogens, competition

and microbial symbiosis. This necessitates the careful selection of appropriate site and

species. Soil compaction is a major constraint to the survival of naturally regenerating and

planted dipterocarp seedlings (Nussbaum et al. 1995; Nussbaum 1996). Loss of the surface

soil, which contains much of the nutrients for plant growth, limits seedling establishment.
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Restoration of degraded lands

The natural succession pathways for forest recovery following anthropogenic disturbance

can be very slow or even completely blocked. Many studies have demonstrated that

planting native species can reverse this process (Lamb et al. 2005). In Southeast Asia,

nitrogen fixing exotic pioneer species such as Acacia mangium have been favoured as

plantation species and as a nurse species for restoration of native forest on degraded sandy

soils (Norisada et al. 2005). However, given the increasing reports of invasion by exotic

species, including A. mangium in Brunei (Osunkoya et al. 2005) native species should be

used as a preference for establishing nurse canopies for reforestation. A recent study

(Shono et al. 2007) using 45 native tree species to restore degraded land in Singapore,

revealed survival rates over a period of five years greater than 90% across species. Among

the seven dipterocarp species planted, four showed good performance, emphasising the

variation between species exposure tolerance during early establishment (Shono et al.

2007). Shorea leprosula, for example, is known to benefit from open conditions. In contrast

S. ovalis and S. macroptera have consistently been shown to perform poorly in open sites

(Shono et al. 2007). These findings emphasise the importance of research to enable site-

species matching for restoration of dipterocarp forest, and the potential for native species

to be used to establish a nurse canopy.

Dipterocarp species have been shown to have habitat associations with both topography

and edaphic factors in a number of studies (Paoli et al. 2006; Russo et al. 2008; Suzuki

et al. 2009). Paoli et al. (2006) showed that 18 of 22 species of dipterocarp at a site in

Borneo showed negative or positive associations with either granitic or alluvial soils,

similar observations were also made with soil nutrients. These associations are thought to

reflect trade-offs between fast growth and low mortality (Russo et al. 2008). In a study of

eleven species of dipterocarp at a site in Peninsular Malaysia, Shorea maxwelliana was

associated with well-drained alluvial soils on flat lands, while S. leprosula favoured less

well-drained valley soils (Suzuki et al. 2009). Many of these habitat associations were

significant at early life stages, emphasising the importance of these factors for site-species

matching in the early establishment phase of forest restoration. There is a substantial body

of knowledge on the floristic variation in dipterocarp forest over relatively large geo-

graphic scales, for example over the whole of Sarawak (Potts et al. 2002). However, such

information may not always be adopted or in a form accessible to forestry practitioners.

Research investigating levels of local adaptation in dipterocarps, including provenance

trials, will not only improve our ability for site-species matching, but also the extent to

which generalisations can be made across regions.

Taxonomy

The high diversity and lack of specialist taxonomists able to determine species of dip-

terocarp presents a considerable constraint for their management. While identification of

some of the most widespread and common species is less problematic, identification of rare

species, and especially wildlings collected for either ex-situ conservation or restoration,

can be a problem. Given the importance of site-species matching for the success of res-

toration programmes, correct determination of seedlings to the species level is relevant.

Recent advances in DNA barcoding of land plants (CBOL 2009) are likely to revolutionise

species delimitation in the future. This will be especially useful for seedling discrimination

of taxonomically cryptic species but, only when such methods are relatively routine and

inexpensive.
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Mycorrhizae

The Dipterocarpaceae are largely ectomycorrhizal in their associations, although a few

species are thought to form both ecto- and arbuscular mycorrhizas (Lee 2006). The main

groups of fungi involved in dipterocarp symbiotic associations include: Russulales,

Amanitales, Botetales, Cantharellales and some hypogeous taxa (Lee et al. 2008).

Molecular evidence indicates that the Thelephoraceae are commonly associated with the

Dipterocarpaceae (Sirikantaramas et al. 2003). In Sabah, the diversity of morphospecies

found on seedlings of Hopea nervosa was 40% greater in unlogged than logged forest

(Alexander and Lee 2005). The potential for improved establishment of dipterocarp

seedlings with the inoculation of mycorrhiza has been demonstrated for several species

(Brearley et al. 2007b; Lee et al. 2008). This work has demonstrated that species of

dipterocarp and their mycorrhizal symbionts can be partitioned along contrasting abiotic

axes (Brearley et al. 2007b). On a more practical level, inocula isolated from one species

can be successfully inoculated into other species and even genera, leading to improved

mineral nutrition and drought tolerance (Lee et al. 2008). Dipterocarp seedlings inoculated

with ectomycorrhizal fungi do not always successfully develop ectomycorrhizas, but

inoculation of unidentified fungi improves phosphorus uptake and growth of some dip-

terocarp seedlings in the nursery. A native species isolated from Shorea parvifolia has

shown to persist on roots up to 6 months after planting in degraded sites (Lee et al. 2008).

Isolating ectomycorrhiza inoculum that persist on hosts dipterocarp seedlings both in

nursery and field conditions, show signs of improving seedling growth and survival in the

early stages of establishment (Lee et al. 2008). However, a clear gap in our knowledge is the

extent to which inocula are adapted to certain host species and site conditions. Advances in

molecular techniques used to refine our knowledge of the taxonomy, inter and intra-specific

genetic variation within mycorrhiza will help with this endeavor (van der Heijden et al. 2008).

Herbivory and pathogens

Changes in the herbivore community as a consequence of habitat degradation have con-

sequences for seedling communities, whether natural or planted. A reduction in herbivores

can lead to an increase in seedling density but a substantial loss of species diversity

(Dalling and Burslem 2008). Fragmentation can often have similar and synergistic effects

where trophic cascade effects on the herbivore community have resulted in increased

seedling herbivory (Dalling and Burslem 2008). Evidence of density dependent mortality

and pathogen outbreaks can impact on adult tree density (Augspurger and Kelly 1984).

This has implications for the patterns and densities under which seedlings should be

planted. For example, high densities of conspecific seedlings could suffer greater mortality.

Planting a high species diversity of seedlings is likely to minimise the effects of density

dependent mortality. Moreover, planting seedlings at a distance from adult conspecifics

which may harbour pests or pathogens may also reduce mortality (Okuda et al. 1997).

Planted and not forgotten

Tending and site maintenance

Understanding the regeneration niche of dipterocarps and how they partition along axes

associated with light as well as edaphic factors (Matsune et al. 2006; Romell et al. 2008;

Dent and Burslem 2009; Romell et al. 2009) is not only important for site selection, but for
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determining their requirements post-planting. Although low light intensity is important

during germination and early establishment, there is considerable variation between spe-

cies survival and growth rates in response to tending, weeding and gap management, such

as by girdling or thinning of fast growing pioneer species (Adjers et al. 1995; Matsune

et al. 2006). Research on the effects of gap creation and its shape has provided insight into

the importance of light environment for regeneration of dipterocarp forest (Romell et al.

2008, 2009). Survival rates for planted dipterocarps in gap or line planting have been

recorded ranging from 40 to 86%. Artificial shade house experiments (Ashton et al. 2006)

recorded survival between 67 and 97% in seedlings of two Dipterocarpus species for

two years, with the highest mortality under deep shade. Reduction in the density of the

subcanopy has shown to increase seedling survival in three out of four study species

(Romell et al. 2008). Shorea pauciflora, the one exception, has high survival rate irre-

spective of subcanopy treatment, indicating differential capability to respond to low light

levels. Canopy openness appears to have clear effects on growth, with dipterocarp seed-

lings growing faster under wider gaps (Adjers et al. 1995; Otsamo 2000; Bebber et al.

2002; Romell et al. 2008). Interestingly, girdling of canopy trees led to increased relative

height growth (Romell et al. 2008) despite having no effect on light availability (Romell

et al. 2009), suggestive of the potential effects of below ground competition. In summary,

once planted, dipterocarp seedlings are likely to require considerable tending to maintain

optimal light environments for growth and survival, especially during restoration of

completely degraded lands. Such tending is species and site specific, and will add con-

siderable cost to any restoration project.

Financial constraints

The economic, social and environmental values of forests are widely recognised. Some

1.6 billion people depend on forests for food, fuel and livelihoods (UN-DESA 2009). The

importance of sustaining forest landscapes for poverty alleviation is becoming increasingly

clear (MDG 2009). However, immediate local needs often drive decisions for land use

change. Restoration of forest landscapes is a long-term process which requires sustained

sources of funding as well as substantial political will. Opportunities for long-term funding

are available across the private, public, international and NGO sectors, including payment

for environmental services, such as watershed protection or carbon storage, taxes, subsi-

dies, multilateral donors as well as private for-profit sources such as socially and envi-

ronmentally responsible investment companies and certified forest goods such as the Forest

Stewardship Council (FSC). Access to such financing requires unification of the economic,

social and environmental objectives of forest restoration so as to demonstrate the signifi-

cance of restoration for poverty alleviation (Schuyt 2005). Accurate estimates of the full

economic value of a forest restoration will enable this to be weighted realistically against

other land uses. Reforestation projects are increasingly being financed under the auspices

of the Clean Development Mechanism (CDM) ratified by the Kyoto Protocols scheme for

trading ‘‘Certified Emissions Reductions’’ CER’s (UNFCCC 2009; Paquette et al. 2009).

Currently afforestation/reforestation accounts for a tiny fraction of registered CDM’s

(0.03%) (UNFCCC 2009). Such schemes have the potential to provide low-income

communities with a source of income and other ecological and social benefits. However,

the feasibility of small scale reforestation projects has been questioned (Coomes et al.

2008). Currently, to be eligible for financing under the CDM, sites must have been devoid

of forest as of the end of 1989. In effect this excludes schemes which employ enrichment

planting of existing but degraded forest, from being financed under the CDM, despite the
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major economic and ecological advantages they may offer (Paquette et al. 2009). For

example, enrichment planting of dipterocarp forest in Malaysian Borneo is estimated to

cost between 10 and 30% of the costs for restoration of completely degraded land

(Maycock, Pers. Commun.)

Outlook and conclusion

Rates of deforestation in Southeast Asia remain among the fastest in the world. Degra-

dation of secondary forest and subsequent land conversion has global consequences.

Establishment of strategies for restoration and regeneration of degraded lowland rainforest

is of paramount importance. There are a number of circumstances where the recovery of

lowland rainforest will only be realised by planting native species. Enrichment planting

and complete restoration can increase the biodiversity and long-term economic value of

large areas of Southeast Asia. When weighting the fundamental cost-benefits of these

alternative approaches, enrichment planting is likely to be the preferable option. However,

the visibility of complete forest restoration may raise community environmental con-

sciousness with additional societal and political benefits. Such aims require great political

will and considerable economic incentives which may be facilitated by international

agreements based upon the Kyoto protocol. However, ecological constraints to restoration

and regeneration associated with the Dipterocarpaceae need to be addressed by scientific

research and local capacity building. Establishment of ex-situ conservation units, seed

orchards and research on the genetic resources of major dipterocarp species are urgently

required. Increasing our knowledge and capacity to generate large volumes of appropriate

and genetically diverse planting stock from a range of species is fundamental to successful

forest recovery. In the long-term these initiatives could have major ecological and eco-

nomic benefits but action is needed now to ensure that the vital genetic resources of many

important species are not lost forever. Although much of the ecological knowledge to

achieve successful forest restoration already exists, without the backing of governments

and corporate stakeholders, scientifically-informed forest restoration action will not gain

the urgently required momentum.
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