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Abstract How does risk tolerance vary with stake size? This important ques-
tion cannot be adequately answered if framing effects, nonlinear probability
weighting, and heterogeneity of preference types are neglected. We show that
the observed increase in relative risk aversion over gains cannot be captured
by the curvature of the value function. Rather, it is predominantly driven by a
change in probability weighting of a majority group of individuals who weight
probabilities of high gains more conservatively. Contrary to gains, no coherent
change in relative risk aversion is observed for losses. These results not only
challenge expected utility theory, but also prospect theory.

Keywords Stake effects · Prospect theory · Expected utility theory ·
Risk aversion

JEL Classification D81 · C91

Risk is a ubiquitous feature of social and economic life. Many of our decisions,
such as what trade to learn and where to live, involve risky consequences of
great importance. Often these choices entail substantial monetary costs and
rewards. Therefore, risk taking behavior under high stakes is a relevant area of
economic research. The effect of stake size on risk tolerance has been debated
since the early days of expected utility theory as economic theory is agnostic
about the existence, direction and size of stake effects. In a classical paper,
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Markowitz (1952) surmised that risk preferences are likely to reverse from risk
seeking over very small stakes to risk aversion over high stakes.

Markowitz did not test his conjecture experimentally, but abundant evi-
dence has accumulated by now showing that relative risk aversion indeed rises
with stake size. However, due to the limits of experimental budgets, the bulk of
the studies addressing stake sensitivity are either based on quite limited payoff
ranges or, when substantial payoffs are involved, on hypothetical choices
(Hogarth and Einhorn 1990; Bosch-Domenech and Silvestre 1999; Kuehberger
et al. 1999; Weber and Chapman 2005; Astebro et al. 2009). While experiments
with payoffs in the range of a few dollars may not reveal the effective degree
of risk tolerance over truly high stakes, results based on hypothetical choices
may not be informative, either, as the literature on incentive effects suggests. A
large body of experimental evidence shows that it makes a difference whether
subjects respond to decision situations with hypothetical or real monetary
consequences: In general, subjects tend to be relatively more risk averse when
real money is at stake (Smith and Walker 1993; Wilcox 1993; Beattie and
Loomes 1997; Camerer and Hogarth 1999). A striking example is provided
by Holt and Laury (2002, 2005) who find that, contrary to their results on
real payoffs, subjects’ risk aversion exhibited over hypothetical lotteries does
not change with increasing stake size at all. Therefore, in order to be able to
address the issue of stake sensitivity in a satisfactory way, experiments with
real substantial payoffs are needed.

Not surprisingly, there are only a handful of experiments with substantial
monetary incentives, typically conducted in developing countries (Grisley and
Kellog 1987; Wik et al. 2004). Two prominent studies in this category, both
of which investigate behavior over risky gains only, are Binswanger (1981)
and Kachelmeier and Shehata (1992). Binswanger reports data on subjects
from rural India with stakes amounting to a month’s average income. He
reaches the same conclusion as Kachelmeier and Shehata who paid up to
three month’s wages in Beijing, China: Relative risk aversion over gains
increases significantly when stakes are raised from low payoffs to substantial
ones. In agreement with these experimental findings field data on behavior in
game shows, where prizes up to a million dollars can be won, also show that
contestants tend to behave more conservatively when faced with higher stakes
(Bombardini and Trebbi 2005; Andersen et al. 2006b; Baltussen et al. 2008;
Post et al. 2008).1 Therefore, the empirical evidence so far seems to confirm
Markowitz’s conjecture of increasing relative risk aversion.

1Arguably, game shows provide a decision environment which differs radically from everyday
situations. Contestants face a once-or-never opportunity to win an extremely high amount of
money, and they have to take their decisions under time pressure and under the scrutiny of a
large audience. Estimates of overall risk aversion in game shows suggest a relatively high level
of risk tolerance which is most likely not representative of risk attitudes in “normal” situations.
Nevertheless, in line with the experimental evidence, when facing comparatively higher stakes
contestants become relatively more risk averse.
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In decision situations with clearly defined monetary outcomes and objec-
tively given probabilities, such as in controlled experimental settings with
context, framing and response mode held constant, changes in risk taking
behavior should only result from a change in the evaluation of outcomes
and/or probabilities. Most economists would attribute this change in relative
risk aversion to the characteristics of the utility for money, and would search
for suitable functional forms that are able to accommodate this behavioral
pattern. Little is known about the underlying forces of the increase in relative
risk aversion, however. In particular, it is not clear whether the change in risk
tolerance is actually a consequence of the way people value low versus high
amounts of money or whether probability weighting is sensitive to stake size.

Most previous studies focused on the overall effect of stake size on risk
taking, ignoring probability weighting. In their seminal contribution, Tversky
and Kahneman (1992) already suspected that probability weights might be
responsive to the level of outcomes, but they questioned whether increasing
the complexity of decision theory was worth the costs of such an endeavor.
Some preliminary findings indeed suggest that probability weights may be
stake dependent (Camerer 1991). One of the few experimental studies that
explicitly addressed this possibility is Kachelmeier and Shehata (1992). They
find that there is an interaction effect of stake size with probability level,
namely that stake-sensitivity is greater for smaller probabilities, but their data
set is not sufficiently rich to draw any conclusions on the relative contributions
of outcome valuation and probability weighting to the change in risk attitudes.
Etchart-Vincent (2004), on the other hand, who directly investigates the stake
dependence of probability weights under hypothetical losses does not detect
any clear stake effect, which may be due to hypothetical bias discussed above.
To summarize, relative risk aversion over real gains increases significantly with
stake size. Whether utility for money or probability weighting is the driving
force behind this change has not been systematically studied so far. Moreover,
evidence on losses is scarce and not conclusive.

In order to close this gap, we analyze comprehensive choice data stemming
from an experiment conducted in Beijing in 2005. The experimental subjects
had to take decisions over substantial real monetary stakes with maximum
payoffs amounting to more than an average subject’s monthly income. In total,
subjects were presented with 28 lotteries over gains and another 28 otherwise
identical lotteries framed as losses in order to be able to investigate the effect
of increasing stake size on relative risk aversion in both decision domains. To
disentangle the effects of stake size on the valuation of monetary outcomes
and probability weighting, we estimated the parameters of a flexible sign-
and rank-dependent decision model, which nests expected utility theory as
a special case. Furthermore, as average estimates may gloss over potentially
important differences in individual behavior we account for the existence of
heterogeneous preference types. We estimated a finite mixture regression
model, which assigns each individual to one of several distinct behavioral types
and provides type-specific parameter estimates for the underlying decision
model (El-Gamal and Grether 1995; Stahl and Wilson 1995; Houser et al.
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2004). Its ability to parsimoniously characterize distinct behavioral types is
probably the most attractive feature of finite mixture models.

The following results emerge from our analysis. First, at the level of ob-
served behavior, we find a strong and significant difference between subjects’
evaluations of risky gains and losses. Whereas observed certainty equivalents
over gains exhibit significantly increasing relative risk aversion, there is no
coherent stake-dependent pattern in subjects’ behavior over the same lotteries
presented as losses, implying a significant framing effect.

Second, model estimates show that, contrary to many economists’ expecta-
tions, value function parameters remain stable over increased stakes in both
decision domains, implying that the observed increase in average relative
risk aversion over gains cannot be explained by changing attitudes towards
monetary outcomes. Rather, it can be predominantly attributed to a change
in probability weighting. The probability weighting function for high gains
is characterized by substantially lower probability weights over a wide range
of probabilities than the respective function for low stakes, entailing less
optimistic lottery evaluation and, thus, greater relative risk aversion at high
stakes. This change is particularly pronounced for smaller probabilities for
which the average decision maker tends to be risk seeking, corroborating the
findings by Kachelmeier and Shehata (1992). In the loss domain, however,
no such change in probability weights can be inferred from the estimates,
consistent with the observed pattern of behavior.

Third, a model allowing for heterogeneity of preference types is clearly
preferable to a representative-agent model. We find two distinct behavioral
groups: The majority of about 73% of the subjects exhibit an inverted
S-shaped probability weighting curve, whereas the minority can essentially be
characterized as expected value maximizers. Furthermore, we show that the
observed increase in average relative risk aversion over gains can exclusively
be attributed to a change in behavior by the majority group of decision makers,
who evaluate high-stake prospects more cautiously by putting lower weights
on stated gain probabilities. In contrast, the minority type’s behavior is not
affected by rising stakes at all.

Our results entail material consequences for decision theory as well as
applied economics. The first two findings, the framing effect as well as the
probability weighting function as carrier of changing risk attitudes, effectively
rule out expected utility theory as a candidate for explaining increasing relative
risk aversion. Since it is the probability weights that are responsible for
the change in relative risk aversion, more flexible utility functions cannot
adequately solve the problem of modeling increasing risk aversion. While the
observed differences between the evaluation of gains and losses, in principle,
lends support to sign-dependent decision models, such as prospect theory,
stake dependence of probability weights, however, calls theories based on
stake-invariant probability weights into question.

The third finding poses a challenge to type-independent models of choice
under risk, which might be prone to aggregation bias. We show that the vast
heterogeneity in individual risk taking behavior, typically found in choice data
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(Hey and Orme 1994; Gonzalez and Wu 1999; Cohen and Einav 2007), is
substantive in the sense that a single preference model is unable to adequately
describe behavior. If maximization of expected utility is accepted as normative
standard of rational behavior the majority of the individuals clearly deviate
from rationality. The heterogeneity of preference types may render policy
recommendations based on average parameter estimates inappropriate when
strategic interactions among market participants play a role. As the literature
on individual irrationality and aggregate outcomes has shown (Haltiwanger
and Waldman 1985, 1989; Fehr and Tyran 2005, 2008; Camerer and Fehr
2006), the mix of behavioral types may be crucial for the market outcome
and, depending on the nature of the strategic interdependence, the behavior
of even a minority of players may be decisive for the aggregate outcome.
Furthermore, regulatory policy should be designed in such a way that it creates
large benefits for those who make errors, while imposing little or no harm
on those who are fully rational (Camerer et al. 2003). Obviously, total net
benefits of a regulatory policy measure depend not only on the costs for the
rational citizens and the benefits for the irrational ones, but also on the relative
numbers of rational and irrational types in the population. Therefore, knowing
the mix of behavioral types is important for designing cost efficient programs
and regulations.

To the best of our knowledge, this is the first study that provides a systematic
examination of stake effects on probability weights for real substantial payoffs.
Neither are we aware of any other study that examines the relevance of
framing and type heterogeneity for the impact of stakes on risk tolerance.

The remainder of the paper is structured as follows. Section 1 describes
the experimental design and procedures. The decision model applied to the
experimental data as well as the finite mixture regression model are presented
in Section 2. The results of the estimation procedure are discussed in Section 3.
Section 4 concludes the paper.

1 Experiment

In the following section, the experimental setup and procedures are described.
The experiment took place in Beijing in November 2005. The subjects were
recruited by flier distributed at the campuses of Peking University and Tsinhua
University. Interested people had to register by email for one of two sessions
conducted on the same day. Subjects were selected to guarantee a balanced
distribution of genders and fields of study. In total, 153 subjects’ responses
were analyzed.

The experiment served to elicit certainty equivalents for 56 two-outcome
lotteries over a wide range of outcomes and probabilities.2 Twenty-eight
lotteries offered low-stake outcomes between 4 and 55 Chinese Yuan (CHN)

2Instructions are available upon request.
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Table 1 Gain lotteries (x1, p; x2)

p x1 x2 p x1 x2 p x1 x2

0.05 15 4 0.25 250 65 0.75 250 65
0.05 20 7 0.25 320 130 0.75 320 130
0.05 55 20 0.50 7 4 0.90 7 4
0.05 250 65 0.50 15 4 0.90 130 65
0.05 320 130 0.50 20 7 0.95 15 4
0.05 950 320 0.50 130 65 0.95 20 7
0.10 7 4 0.50 250 65 0.95 250 65
0.10 130 65 0.50 320 130 0.95 320 130
0.25 15 4 0.75 15 4
0.25 20 7 0.75 20 7

Outcomes x1 and x2 are denominated in Chinese Yuan. p denotes the probability of the higher
gain

with an expected payoff of about 16 CHN, approximately equal to the going
hourly wage rate. Another 28 lotteries entailed high-stake outcomes from 65
to 950 CHN. Overall, payoffs spanned the range of 0.25 to approximately 60
hourly wages.3 The high-stake lotteries were constructed from the low-stake
ones by inflating the outcomes by approximately the same factor such that
reasonable integer numbers were obtained and the highest obtainable payoff
amounted to a student’s monthly allowance, amounting to less than 1,000
CHN for the majority of students. Average total earnings per subject summed
to approximately 323 CHN, including a show up fee of 20 CHN. Monetary
incentives were substantial given the subjects’ average monthly disposable
income of about 700 CHN.

Probabilities of the lotteries’ higher gain or loss varied from 5% to 95%.
One half of the lotteries were framed as choices between risky and certain
gains (“gain domain”); the same 28 decisions were also presented as choices
between risky and certain losses (“loss domain”). For each lottery in the loss
domain, subjects were provided with a specific endowment which served to
cover their potential losses. These initial endowments rendered the expected
payoff for each loss lottery equal to the expected payoff of an equivalent gain
lottery. The set of gain lotteries is presented in Table 1.

Subjects were entitled to one random draw from their low-stake decisions
and one random draw from their high-stake decisions. In order to preclude
order effects, low-stake and high-stake lotteries were intermixed and appeared
in random order in a booklet containing the decision sheets.

For each lottery, a decision sheet, such as presented in Fig. 1, contained the
specifics of the lottery and a list of 20 equally spaced certain outcomes ranging
from the lottery’s maximum payoff to the lottery’s minimum payoff. Subjects
had to indicate whether they preferred the lottery or the certain payoff for
each row of the decision sheet. The lottery’s certainty equivalent was then

3At the time of the experiment one Chinese Yuan equaled about 0.12 U.S. Dollars (USD). Low-
stake outcomes ranged from 0.48 to 6.6 USD, high-stake outcomes from USD 7.8 to 114 USD.
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Fig. 1 Design of the decision sheet

calculated as the arithmetic mean of the smallest certain amount preferred to
the lottery and the subsequent certain amount on the list. For example, if a
subject’s preferences corresponded to the small circles in Fig. 1, her certainty
equivalent would amount to 13.5 CHN. This elicitation procedure has been
widely used in the experimental literature (Tversky and Kahneman 1992). We
chose this method because it is transparent, easy to understand and well suited
for a paper-and-pencil experiment.4

Before subjects were permitted to start working on the experimental deci-
sions, they were presented with two hypothetical choices to become familiar
with the procedure. Subjects could work at their own speed. The vast majority
of them needed considerably less than 90 min to complete the experiment. Af-
ter completion of the experimental tasks and a complementary socioeconomic
questionnaire one of each subject’s low-stake as well as high-stake choices
were randomly selected for payment. Subjects executed the random draws
themselves and were paid in private afterwards.

2 Econometric model

This section discusses the specification of the econometric model, which is
based on several building blocks: first, the basic decision model; second, the
specification of stake dependence; third, assumptions on the error term; and

4Advantages and potential drawbacks are discussed in Andersen et al. (2006a).
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finally, a finite mixture regression approach which accounts for heterogeneity
in behavior. At the end of this section we also briefly discuss some of the issues
typically encountered when estimating finite mixture regression models.

2.1 The basic decision model

The basic model of decision under risk should be able to accommodate a
wide range of different behaviors. Sign- and rank-dependent models, such
as cumulative prospect theory (CPT), capture robust empirical phenomena
such as nonlinear probability weighting and loss aversion (Starmer 2000).
Therefore, the flexible approach of CPT, lends itself to describing risk taking
behavior. According to CPT, an individual values any binary lottery Gg =
(x1g, pg; x2g), g ∈ {1, . . . , G}, where |x1g| > |x2g|, by

v
(
Gg

) = v
(
x1g

)
w

(
pg

) + v
(
x2g

) (
1 − w

(
pg

))
. (1)

The function v(x) describes how monetary outcomes x are valued, whereas the
function w(p) assigns a subjective weight to every outcome probability p. The
lottery’s certainty equivalent ĉeg can then be written as

ĉeg = v−1 [
v

(
x1g

)
w

(
pg

) + v
(
x2g

) (
1 − w

(
pg

))]
. (2)

In order to make CPT operational we have to assume specific functional
forms for the value function v(x) and the probability weighting function w(p).
A natural candidate for v(x) is a sign-dependent power function

v(x) =
{

xα if x ≥ 0
−(−x)β otherwise,

(3)

which can be conveniently interpreted and which has also turned out to be
the best compromise between parsimony and goodness of fit in the context
of prospect theory (Stott 2006). For this specification of the value function,
a separate parameter of loss aversion, i.e. capturing that “losses loom larger
than corresponding gains”, is not identifiable in our data.5 As Koebberling and
Wakker (2005) point out, loss aversion should be interpreted as the difference
between risk aversion with respect to mixed gambles, encompassing both gains
and losses, and nonmixed gambles, confined to single-domain outcomes. Our
lottery design comprises nonmixed gambles only and, therefore, the concept
of loss aversion in this interpretation cannot be applied to our analysis.

A variety of functions for modeling probability weights w(p) have been
proposed in the literature (Quiggin 1982; Tversky and Kahneman 1992; Prelec

5To see this, assume v(x) = −λ(−x)β for losses. For nonmixed loss lotteries the parameter
of loss aversion λ cancels out in the definition of the certainty equivalent ce: −λ(−ce)β =
−λ(−x1)

βw(p) − λ(−x2)
β(1 − w(p)) holds for any arbitrary value of λ.
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1998). We use the linear-in-log-odds function6 introduced by Goldstein and
Einhorn (1987) and applied by Lattimore et al. (1992):

w(p) = δpγ

δpγ + (1 − p)γ
, δ ≥ 0, γ ≥ 0. (4)

We favor this specification because it has proven to account well for individual
heterogeneity (Wu et al. 2004)7 and its parameters have an intuitively appeal-
ing interpretation: The parameter γ largely governs the slope of the curve,
whereas the parameter δ largely governs its elevation. The smaller the value
of γ , the more strongly S-shaped is the curve. Thus, this parameter can be
interpreted as a measure of departure from rationality if linear weighting is
considered to be the standard for rationality. The parameter δ can be viewed
as indicator of optimism: The larger the value of δ, the more elevated is the
curve, ceteris paribus, i.e. the higher is the weight put on any probability.
Linear weighting is characterized by γ = δ = 1. In a sign-dependent model,
the parameters may take on different values for gains and for losses, yielding a
total of six behavioral parameters to be estimated.

2.2 Stake dependence

In order to address our focal question of stake-size effects, we introduce a
dummy variable HIGH into the basic decision model, such that HIGH = 1
if the lottery under consideration contains high-stake payoffs amounting to
65 CHN or more, and HIGH = 0 otherwise. Each one of the behavioral
model parameters ω ∈ {α, β, γ ′, δ′}, with γ ′ and δ′ comprising the domain-
specific parameters for the slope and the elevation of the probability weighting
functions, is assumed to depend linearly on HIGH in the following fashion:

ω = ω0 + ωHIGH × HIGH, (5)

with ω0 representing the respective low-stake parameter. This step adds an-
other six behavioral parameters to the set of model parameters.

If relative risk aversion indeed changes with stake size, at least one of the
coefficients of the high-stake dummy HIGH should turn out to be significantly
different from zero. If the estimates of αHIGH or βHIGH were significant,
the present model would be mis-specified, as the power function, used for
estimation, cannot account for changing relative risk aversion. In this case, an
alternative specification of the value function that can accommodate changing
relative risk aversion would be called for. In particular, if the valuation of

6A necessary and sufficient preference condition for this specification is presented in Gonzalez
and Wu (1999).
7Moreover, the function generally fits equally well as the two-parameter function developed by
Prelec (1998).
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monetary outcomes is the driving force behind the observed change in risk
tolerance over gains, αHIGH should be negative, material in size and statistically
significant.

2.3 Error specification

In the course of the experiment, risk taking behavior of individual i ∈
{1, . . . , N} was measured by her certainty equivalents ceig for a set of different
lotteries G. Since the behavioral model explains deterministic choice, an indi-
vidual’s actual certainty equivalents ceig are bound to deviate from the pre-
dicted certainty equivalents ĉeg by an error εig, i.e. ceig = ĉeg + εig. There may
be different sources of error, such as carelessness, hurry or inattentiveness,
resulting in accidentally wrong answers (Hey and Orme 1994). The Central
Limit Theorem supports our assumption that errors are normally distributed
and simply add white noise.

Furthermore, we allow for three different sources of heteroskedasticity in
the error variance. First, for each lottery subjects have to consider 20 certain
outcomes, which are equally spaced throughout the lottery’s outcome range
|x1g − x2g|. Since the observed certainty equivalent ceig is calculated as the
arithmetic mean of the smallest certain amount preferred to the lottery and
the subsequent certain amount, the error is proportional to the outcome range,
which has to be taken account of by the estimation procedure.

Second, since our approach models a representative agent’s behavior, an
individual’s choices will most likely depart from the average prediction. As
subjects may be heterogeneous with respect to their previous knowledge, their
ability of finding the correct certainty equivalent as well as their attention span,
we expect the error variance to differ by individual. Rather than imposing
additional assumptions on the error distribution8 we estimate the standard
deviations of the individual errors σig directly by

σig = ξi
∣
∣x1g − x2g

∣
∣ , (6)

where ξi is an individual-specific parameter. As expected, ξi = ξ is rejected by
a likelihood ratio test with a p-value close to zero, favoring specification of
individual errors.

Third, lotteries in the gain domain may be evaluated differently from the
ones in the loss domain.9 Therefore, we additionally allow for domain-specific
variance in the error term. Our assumption is justified by a likelihood ratio test

8As the graphs in Appendix B show, the distributions of the estimated ξi clearly depart from
normality.
9As all the lotteries under consideration here are single-domain ones with a maximum of two
non-zero outcomes only, there seems to be no need for modeling any lottery-specific errors, such
as heteroskedasticity due to the position of the lottery in the sequence of choices, in addition to
range dependence and domain dependence. The approach adopted in this paper is to characterize
average behavior of large groups of people. Any sequence effects at the individual level disappear
at the aggregate level if the order of the lotteries is individually randomized.
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which rejects that ξi are the same for gains and losses. These considerations
imply that we control for all three types of heteroskedasticity in the estimation
procedure, which adds two more parameters per individual, i.e. 153 parameters
for gains and 153 parameters for losses, to the econometric model.

2.4 Accounting for heterogeneity

A suitable estimation procedure, such as maximum likelihood, yields estimates
for the average values of the behavioral parameters θ = (α′, β ′, γ ′, δ′)′. If
there is heterogeneity of a substantive kind, i.e. if there are several distinct
data generating processes, a representative-agent model may be inferior to a
model allowing for distinct types. For this reason, we estimate a finite mixture
model which accounts for heterogeneity in a parsimonious way. The basic
idea of the mixture model is assigning an individual’s risk-taking choices to
one of C different types of behavior, each characterized by a distinct vector
of parameters θc = (α′

c, β
′
c, γ

′
c, δ

′
c)

′, c ∈ {1, . . . , C}. The estimation procedure
yields estimates of the relative sizes of the different groups πc, as well as the
group-specific parameters θc of the underlying behavioral model.

In this paper we define groups across decision domains, i.e. each individual
is classified on the basis of all of her choices over both gains and losses. In
principle, one could analyze behavior over gains separately from behavior over
losses. However, as we show in Appendix A, such an approach is inferior to
an overall classification. Therefore, we define behavioral groups in a domain-
independent way and estimate πc jointly for gains and losses.10

Given our assumptions on the distribution of the error term, the density of
type c for the i-th individual can be expressed as

f
(
cei,G; θc, ξi

) =
G∏

g=1

1

σig
φ

(
ceig − ĉeg

(
Gg; θc

)

σig

)

, (7)

where φ(·) denotes the density of the standard normal distribution and ξi

accounts for individual-specific heteroskedasticity. Since we do not know a
priori which group a certain individual belongs to, the relative group sizes
πc are interpreted as probabilities of group membership. Therefore, each
individual density of type c has to be weighted by its respective mixing pro-
portion πc, which is unknown and has to be estimated as well. Taking the sum
over the weighted type-specific densities yields the individual’s contribution
to the model’s likelihood function L(�; ce,G). The log likelihood of the finite
mixture regression model is then given by

ln L (�; ce,G) =
N∑

i=1

ln
C∑

c=1

πc f
(
cei,G; θc, ξi

)
, (8)

10The estimates of the model viewing types as domain specific are presented in Appendix A.
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where the vector � = (θ ′
1, . . . , θ

′
C, π1, . . . , πC−1, ξ

′
1, . . . , ξ

′
N)′ summarizes the

parameters to be estimated.

2.5 Estimation

In order to deal with the issues of non-linearity and multiple local maxima
encountered when maximizing the likelihood of a finite mixture regression
model (McLachlan and Peel 2000), the iterative Expectation Maximization
(EM) algorithm is the method of choice here (Dempster et al. 1977). This
algorithm also provides an additional feature: It calculates, by Bayesian updat-
ing in each iteration, an individual’s posterior probability τic of belonging to
group c, given the fit of the model. These posterior probabilities τic represent
a particularly valuable result of the estimation procedure. Not only does the
procedure endogenously assign each individual to a specific group, but it also
supplies us with a method of judging classification quality. The τic can be
used to calculate a summary measure of ambiguity, such as the Normalized
Entropy Criterion NEC (Celeux 1996), in order to gauge the extent of dubious
assignments. If all the τic of the final iteration are either close to zero or one,
all the individuals are unambiguously assigned to one specific group and a low
measure of entropy is observed.

Furthermore, entropy measures provide an additional criterion to discrimi-
nate between models with differing numbers of types. Since the finite mixture
regression model is defined over a pre-specified number of groups, a criterion
for assessing the correct number of groups is called for. Classical criteria,
such as the Akaike Information Criterion AIC or the Bayesian Information
Criterion BIC, trade off model parsimony against goodness of fit, but do not
measure the ability of the mixture to provide well separated and nonover-
lapping components, which, ultimately is the objective of estimating mixture
models (Celeux 1996).

Various problems may be encountered when maximizing the likelihood
function of a finite mixture regression model and, therefore, a customized
estimation procedure has to be used, which can adequately deal with these
problems. Details of the estimation procedure are discussed in Appendix C
(see also Bruhin et al. 2007).

3 Results

In the following sections we investigate the stake-size sensitivity of observed
risk taking behavior and present the estimates of the decision model assuming
one homogeneous type of preferences. Furthermore, we show that substantive
heterogeneity is present in our data and discuss the quality of the classification
procedure as well as the number of distinct behavioral types identified in the
data. Finally, we characterize these different types by their average behavioral
parameters and discuss the effect of stake size on each group’s behavior.
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3.1 Aggregate behavior

Result 1 On average, observed behavior exhibits the fourfold pattern of risk atti-
tudes, predicted by prospect theory, for both low-stake and high-stake outcomes.
Stake-specif ic behavior is subject to a strong framing ef fect, however: When
gains are at stake, relative risk aversion increases with stake size at almost all
levels of probability. In the loss domain no such clear picture emerges.

Support In Fig. 2, observed risk taking behavior is summarized by the median
relative risk premia RRP = (ev − ce)/|ev|, where ev denotes the expected
value of a lottery’s payoff and ce stands for its certainty equivalent. RRP > 0
indicates risk aversion, RRP < 0 risk seeking, and RRP = 0 risk neutrality.
The light gray bars in Fig. 2 represent the observed median RRP for low-
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stake lotteries, the dark gray ones represent the respective high-stake median
RRP. The median relative risk premia RRP, sorted by the probability p of the
higher gain or loss, show a systematic relationship with p. For both low stakes
and high stakes, subjects’ choices display a fourfold pattern (Tversky and
Kahneman 1992), i.e. they are risk averse for low-probability losses and high-
probability gains, and they are risk seeking for low-probability gains and high-
probability losses. Therefore, at first glance, average behavior is adequately
described by a model such as CPT.

What the bar plots also reveal is that median relative risk premia differ
substantially by stake level: When subjects’ preferences exhibit increasing rel-
ative risk aversion, we should observe different low-stake and high-stake RRP,
namely, high-stake choices should be relatively less risk tolerant than low-
stake choices. Inspection of Fig. 2 confirms that, in the gain domain, median
high-stake choices are considerably less risk seeking for small probabilities
and somewhat more risk averse for large probabilities than their median low-
stake counterparts. For losses, the evidence is not so clear-cut, however. At
some levels of probability, low-stake median RRP display relatively higher risk
aversion than high-stake RRP, and at some other levels the reverse is true.

In order to judge whether the distributions of the stake-dependent RRP
are significantly different from each other, we performed a series of Wilcoxon
signed-rank tests for each level of probability, which yield the following results
at the conventional level of significance of 5%: With the exception of the
probability of 95%, all the low-stake RRP over gains are significantly smaller
than the high-stake ones. We therefore conclude that there is a significant stake
effect in the data on choices over gains: On average, people are relatively more
risk averse for high gains than for low gains.

In the loss domain, no consistent picture emerges: Low-stake RRP are
significantly smaller at three levels of probability (p ∈ {0.10, 0.75, 0.95}), sig-
nificantly larger at one level (p = 0.05), and insignificantly different at the
remaining three levels of probability (p ∈ {0.25, 0.50, 0.90}). Therefore, we
conclude that there is no obvious systematic relationship between stake-size
effect and level of probability for loss lotteries.

Our data show behavior consistent with nonlinear probability weighting, but
also a substantial framing effect. Relative risk aversion increases with stake
size, albeit only for gains. When subjects evaluate the same lotteries framed as
losses rather than as gains, their relative risk aversion does not systematically
increase. In fact, no coherent pattern of stake-dependent behavior under losses
emerges. This sensitivity to framing, already visible at the level of observed
behavior, clearly excludes expected utility theory from the list of eligible
models for describing average risk taking behavior.

We now turn to one of our major concerns, namely, whether the change in
relative risk aversion over gains can be attributed to a specific component of
lottery evaluation.

Result 2 In the aggregate model, the estimated curvatures of the value functions
do not signif icantly change with rising stakes.
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Table 2 Classification of behavior: overall behavioral types

Gains Losses
Pooled EUT Non-EUT Pooled EUT Non-EUT
(1) (2) (3) (4) (5) (6)

π 0.266 0.734 π 0.266 0.734
(0.026) (0.026) (0.026) (0.026)

α0 0.467 0.996 0.430 β0 1.165 1.157 1.177
(0.109) (0.136) (0.116) (0.110) (0.136) (0.120)

αHIGH 0.047 −0.080 0.066 βHIGH −0.038 −0.137 −0.106
(0.158) (0.165) (0.167) (0.162) (0.178) (0.178)

γ0 0.316 0.863 0.225 γ0 0.383 0.802 0.284
(0.012) (0.067) (0.013) (0.012) (0.067) (0.012)

γHIGH 0.056 0.026 0.058 γHIGH 0.045 0.027 0.046
(0.012) (0.023) (0.012) (0.012) (0.024) (0.012)

δ0 1.304 0.952 1.265 δ0 0.913 0.912 0.917
(0.076) (0.094) (0.080) (0.052) (0.090) (0.058)

δHIGH −0.324 −0.040 −0.344 δHIGH 0.070 0.106 0.099
(0.095) (0.090) (0.098) (0.077) (0.091) (0.087)

ln L 31,536 32,580
Parameters 318 331
Observations 8,560 8,560

Standard errors in parentheses are based on the bootstrap with 2,000 replications. Parameter
vectors include estimates of ξ̂i for domain- and individual-specific error parameters

Support Table 2 contains the parameter estimates for the decision model
discussed in Section 2. For the time being, we focus on the average parameter
estimates displayed in columns (1) and (4), labeled “Pooled”. The curvature
parameters of the value functions over low stakes are denoted by α0 for gains
and β0 for losses.11 αHIGH and βHIGH represent the corresponding estimated
coefficients of the high-stake dummy HIGH, measuring the change in curva-
ture brought about by increased stake levels. For both domains, the estimates
for αHIGH and βHIGH are small in size, and the bootstrapped standard errors,
reported in parentheses below the respective point estimates, indicate that
the coefficients are not significantly different from zero. Furthermore, when
a restricted model with stake-invariant curvature parameters is estimated,
the likelihood ratio test of the restricted model against the unrestricted one
renders a p-value of 0.911. This test result implies that the hypothesis of equal
curvatures over both ranges of outcomes cannot be rejected.

If the valuation of monetary outcomes were the carrier of increasing relative
risk aversion over gains, the estimates of αHIGH would have to be negative,
statistically significant and, presumably, quite sizable, since the specification of
the value function as a power function can only accommodate constant relative

11The curvature for low-stake gains is estimated to be 0.467, in line with numerous previous
findings (Stott 2006). The estimate for β0 amounts to 1.165, indicating slight concavity of the
value function. However, its curvature is not statistically distinguishable for linearity. That the
value function for losses is not convex, as predicted by prospect theory, is not an unusual finding
(Abdellaoui 2000; Bruhin et al. 2007).
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risk aversion. As the estimation results show, however, this is not the case.
Therefore, we conclude that changing attitudes towards monetary outcomes
are not responsible for the observed increase in relative risk aversion. This
finding also holds for alternative specifications of the value function that are
sufficiently flexible to capture changing relative risk aversion, such as the expo-
power function introduced by Saha (1993).

As the curvature of the value function is robust to stake size, the observed
increase in relative risk aversion over gains has to be driven by the other
component of lottery evaluation, probability weighting, as the next result
confirms.

Result 3 At the aggregate, high-gain probability weights deviate signif icantly
from low-gain probability weights. No substantial dif ference in stake-dependent
probability weights results for losses.

Support We first discuss our findings for the gain domain. A first indication
of the stake sensitivity of probability weights for gains can already be found in
the bar plots in Fig. 2. The dif ferences in the observed stake-dependent RRP
decrease markedly with increasing probability level, suggesting a substantial
interaction effect.12

Inspection of column (1) of Table 2 confirms that the estimated change
in the elevation of the curve, measured by δHIGH, is significantly negative
and substantial in size, implying a major decrease in elevation from 1.304 to
0.913. Moreover, the change in the slope of the probability weighting function
γHIGH is significantly positive (0.056), implying a slightly less strongly S-shaped
curve for high stakes. The impact of these parameter changes on the shape
of the probability weighting function can be examined in Fig. 3. The top
panel of the figure shows, for each decision domain, the estimated probability
weighting curves for low stakes, defined by HIGH = 0, plotted against the
high-stake curves, defined by HIGH = 1. Evidently, the high-gain function
is less elevated and slightly less strongly curved than the low-gain function,
indicating a substantial decrease in probability weights.

However, significant changes in single parameter estimates do not tell the
whole story. Since the probability weights are a nonlinear combination of
two parameters, inference needs to be based on γ and δ jointly. Therefore,
the percentile bootstrap method (using 2,000 replications) was employed to

12The study on risky gains by Kachelmeier and Shehata (1992), conducted in Beijing as well, finds
that stake size interacts significantly with probability level, which is in line with our findings, but
their data set is not sufficiently rich to draw any conclusions on relative contributions of outcome
valuation and probability weighting. Furthermore, observed certainty equivalents in our data set
show a clearly defined fourfold pattern of risk attitudes for both low stakes and high stakes,
whereas Kachelmeier and Shehata find practically no risk aversion in choices over low stakes. The
authors attribute this lack of risk aversion to the specifics of their elicitation procedure: Certainty
equivalents were elicited as minimum selling prices, which seems to have induced some kind of
loss aversion in subjects’ responses.
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Fig. 3 Average probability weights by stake size. Dashed lines: 95%-confidence bands based on
the percentile bootstrap method

construct the 95%-confidence bands for the difference in the low-stake and the
high-stake probability weighting curves. In order to judge the overall effect of
rising stakes on the shape of the probability weighting function, we inspect the
bottom panel of Fig. 3, depicting the confidence bands for the stake-dependent
differences in probability weights. Whenever a confidence band includes the
zero line, the hypothesis of stake-invariant probability weights cannot be
rejected. The graph on the left hand side for the gain domain, however,
shows that the difference between low-gain probability weights and high-gain
probability weights is indeed statistically significant over nearly the whole
range of probabilities, mirroring our findings on the observed RRP. Therefore,
we have conclusive evidence that the high-gain probability weighting curve
departs significantly and substantially from the low-gain curve.
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In the domain of losses, a totally different picture emerges. The top panel
of Fig. 3 depicts practically overlapping low-loss and high-loss probability
weighting curves. The high-loss curve is slightly less strongly S-shaped, which
is also reflected in the significant parameter estimate for γHIGH in column (4)
of Table 2, amounting to 0.045. However, this immaterial difference in the
stake-dependent slope parameters does not imply a significant difference in
the overall shape of the curves: The bottom panel of Fig. 3 shows that the
95%-confidence band for the difference in the stake-dependent probability
weighting curves over losses includes the zero line practically for all levels of
probability. This finding implies that, in choices framed as losses, stake effects
are negligible, in line with the lack of any stake-dependent pattern diagnosed
in the observed RRP.

Our findings demonstrate that probability weights are the carrier of chang-
ing risk tolerance observed in the domain of gains, and suggest that prospect
theory, and for that matter many other decision theories which postulate stake-
independent probability weighting, cannot adequately deal with risk taking
choices involving major changes in stake levels.

3.2 Heterogeneous types of behavior

In the previous section we have only considered the evidence for the average
decision maker. If there is heterogeneity in the population, in the sense that
a single preference theory cannot adequately capture behavior, the parameter
estimates of the pooled model may be misleading. For this reason, the analysis
is extended to account for latent heterogeneity by estimating a finite mixture
regression model.

So far we have not addressed the issue whether a finite mixture regression
model is actually to be preferred over a single-component model in the first
place, and what the number of groups C in the mixture model should be. In
order to deal with these questions the researcher needs a criterion for assessing
the correct number of mixture components. The literature on model selection
in the context of mixture models is quite controversial, however, and there is
no best solution.13 For this reason, rather than relying on a single measure,
we examine several criteria with differing characteristics to get a handle on the
problem of model selection: the AIC, the BIC as well as the NEC. According to
these criteria, the model which minimizes the respective criterion value should
be preferred.

Result 4 There is substantive heterogeneity in individual risk preferences render-
ing the aggregate model inferior to a mixture of two distinct types of behavior.

13“The problem of identifying the number of classes is one of the issues in mixture modeling with
the least satisfactory treatment.” (Wedel 2002, p. 364).
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Table 3 Model selection
criteria

AIC BIC NEC

C = 1 −62,436 −60,193 n.a.
C = 2 −64,498 −62,163 0.0018
C = 3 −65,405 −62,978 0.0035

Support We calculated AIC, BIC and NEC for three different model sizes,
C ∈ {1, 2, 3}, presented in Table 3.

AIC and BIC are highest at C = 1, thus C > 1 is clearly favored over C = 1.
As the NEC criterion is not defined for C = 1, Biernacki et al. (1999) argue in
favor of a multi-component model if there is a C > 1 with NEC(C) ≤ 1, which
clearly is the case here. Given the unanimous recommendation by all three
criteria we conclude that a finite mixture model is superior to a representative-
agent model.

With regard to the choice between C = 2 and C = 3, the three-group clas-
sification seems to be favored by the classical criteria but not by NEC. From
the point of view of entropy two groups are sufficient to characterize behavior.
As entropy is generally extremely low for both the two-group and three-group
classifications, both models seem quite sensible. However, it can be shown that
for C = 3 the majority type gets divided into two different subtypes exhibiting
qualitatively similar parameter estimates whereas the minority type, which is
quite distinct, remains stable in size as well as group membership.14 As the
three-group classification does not offer additional material insights, we limit
our discussion to C = 2.

The low value of NEC in our analysis indicates that nearly all the individuals
can be unambiguously assigned to one of the two types. This clean segregation
can also be inferred from the distributions of the posterior probabilities of
group assignment in Fig. 4: τEUT denotes the posterior probability of belonging
to the first group, which can be characterized, as we will demonstrate below,
as expected utility maximizers (“EUT types”): The individuals’ posterior
probabilities of being an expected utility maximizer are either close to one or
close to zero for practically all the individuals. The histogram also shows that
the EUT group encompasses a minority of the decision makers, whereas the
other group represents a majority of approximately 73% of the subjects.

The subsequent group of results addresses the focal questions: How can
these two different types be characterized? And in which way do they react
to rising stake levels?

14Results are available upon request.
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Fig. 4 Clean segregation
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3.2.1 Minority behavior

Result 5 The minority type, constituting about 27% of the subjects, can essen-
tially be characterized as expected value maximizers over both low- and high-
outcome ranges.

Support The estimates of the behavioral parameters for the minority type
are displayed in columns (2) and (5) of Table 2. The relative group size of the
minority type is estimated to be 0.266, matching the size of the corresponding
bar in the histogram of Fig. 4.

In order to be able to characterize decisions as consistent with expected
value maximization, both the value functions and the probability weighting
functions are required to be linear. Turning to outcome valuation, we observe
that α0 and β0 are not statistically distinguishable from one, as the standard
errors reveal. Furthermore, the coefficients of the high-stake dummy are not
significantly different from zero, indicating the robustness of the value function
curvatures to increasing stake size. Therefore, we conclude that the value
functions over both gains and losses are essentially linear and unresponsive
to stake size.

Linearity of the second model component, probability weighting, holds if
the parameter estimates for both γ and δ are equal to one. The low-stake
parameter estimates for δ0 in columns (2) and (5) are not distinguishable
from one, but the respective ones for γ0 are. However, inspection of the
probability weighting curves in Fig. 5 confirms that departures from linear
probability weighting are insubstantial. Furthermore, for both gains and losses,
no stake-size effect is visible in slope or elevation of the probability weighting
curves, as both γHIGH and δHIGH are insignificantly different from zero, and the
95%-confidence bands for the difference in the stake-dependent probability
weighting curves include the zero line, as confirmed by the bottom panel of
Fig. 5. These findings suggest that the minority type of decision makers behaves
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Fig. 5 Probability weights by stake size: EUT types. Dashed lines: 95%-confidence bands based
on the percentile bootstrap method

essentially as expected value maximizers, and therefore consistently with EUT.
These conclusions, based on the estimation results, also bear out at the level of
observed behavior. The EUT types’ median relative risk premia in the bottom
panel of Fig. 6 are close to zero, indicating near risk neutrality for both low
stakes and high stakes.

Obviously, the minority’s behavior is robust over the whole outcome range
and can, therefore, not account for increasing relative risk aversion observed in
the aggregate data. As the next result shows, the second group of individuals,
constituting approximately 73% of the subjects, exhibit a completely different
set of behavioral parameter values.
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Fig. 6 Type-specific median relative risk premia by stake size

3.2.2 Majority behavior

Result 6 The majority group’s behavior is characterized by nonlinear probabil-
ity weighting. Whereas value function parameters remain stable over the whole
outcome range in both decision domains, probability weights for gains do not.
The low-gain probability weighting curve is characterized by signif icantly more
optimistic weighting of probabilities than the high-gain curve. No such ef fect is
present in the probability weighting curves for losses, however.

Support The majority group, labeled “Non-EUT”, consists of about 73% of
the individuals. As in the pooled model, value function parameter estimates
of αHIGH and βHIGH are not significantly different from zero, as can be seen
in columns (3) and (6) in Table 2. Again, the observed change in relative
risk aversion over gains cannot be attributed to the valuation of monetary
outcomes.

In order to examine the stake-specific probability weighting curves for the
majority group we inspect the top panel of Fig. 7. Our findings on the majority
group’s curves reflect the same patterns of stake sensitivity as the pooled ones
do: For both gains and losses the curves are inverted S-shaped, and there is a
major domain-specific difference. In the loss domain the stake-specific curves
practically coincide, and their difference is not statistically significant, as the
left hand side of the bottom panel of Fig. 7 confirms. In the gain domain,
however, we find the high-stake probability weighting curve to be substantially
less elevated than the low-stake one. This change is brought about by the
significant stake sensitivity of the elevation parameter over gains, reflected
by the estimate for δHIGH, −0.344 (see column (3) in Table 2). The high-gain
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Fig. 7 Probability weights by stake size: non-EUT types. Dashed lines: 95%-confidence bands
based on the percentile bootstrap method

probability weighting function is also slightly less curved than the low-gain one,
as γHIGH is estimated to be 0.058.

The joint impact of these parameter changes is statistically significant, as the
right hand side of the bottom panel of Fig. 7 shows. Therefore, we conclude
that increasing relative risk aversion over gains is mainly attributable to the
Non-EUT types’ behavior who weight high-gain probabilities significantly
and substantially less optimistically than low-gain ones. These effects can
also be traced back in the pattern of observed choices: The top panel of
Fig. 7 displays a substantial stake-dependent difference, particularly over
smaller probabilities, in the Non-EUT types’ median RRP, which is much
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more pronounced than the respective difference in the pooled data, shown in
Fig. 2.

The results of the finite mixture regression demonstrate that there is sub-
stantive heterogeneity in risk taking behavior, which may be glossed over when
focusing on a single-preference model. Only one distinct group of individuals
is prone to changing risk tolerance when stakes are increased. These Non-EUT
types tend to evaluate low-gain prospects significantly more optimistically
than high-gain prospects. Thus, prospect theory, even though designed to
explain non-EUT behavior, cannot account for this change in relative risk
aversion.

4 Discussion and conclusions

This paper pursues three goals. First, it studies the effect of substantial real
payoffs, framed as gains and losses, on risk taking. Second, the paper analyzes
the influence of rising stakes on the components of lottery evaluation, i.e. on
the value and probability weighting functions. Third, it examines heterogeneity
in risk taking behavior over varying stake levels. With regard to the first
objective, we find a significant and sizable increase in relative risk aversion
when gains are scaled up. In the domain of losses, however, no such clear
effect is present in the data. We can only speculate on the potential reasons
for this finding. One possible explanation is the use of different rules and
heuristics when losses are at stake. This interpretation is supported by the
empirical regularity that probability weights for gains differ systematically
from probability weights for losses (Abdellaoui 2000; Bruhin et al. 2007).
Another possibility is the hypothetical nature of the losses in our experiment.
Here, losses are effectively gains and only appear as losses due to the framing
of the decisions. Such an interpretation is consistent with the absence of a clear
stake effect for purely hypothetical losses in Etchart-Vincent (2004). In any
case, as subjects evaluate lotteries differently depending on the lotteries being
framed as gains or as losses, expected utility theory is effectively ruled out as a
valid description of behavior.

Concerning the second objective, we presented evidence that the increase in
relative risk aversion over gains can be mainly attributed to a move of the aver-
age probability weighting function towards less optimistic weighting, whereas
attitudes toward monetary payoffs remain essentially stable. That probability
weights are the carrier of changing risk attitudes raises the question of the
driving force behind this change. Unfortunately, little is known empirically
about potential determinants of probability weights. However, evidence is
accumulating that probability weights are systematically affected by specific
characteristics of the decision situation. Not only do they vary with stake size
but they are also sensitive to the delay of uncertainty resolution: Abdellaoui
et al. (2009) find that departure of the probability weighting function from
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linearity decreases with the delay of uncertainty resolution, resulting in an
increase in risk tolerance over time (see also Noussair and Wu 2006).15

Recent generalizations of expected utility theory invoking emotions as
rationale for probability weighting may offer a starting point for explaining
the malleability of probability weights (Bell 1985; Gul 1991; Loomes and
Sugden 1986; Wu 1999). Walther (2003), for instance, shows that an inverse
S-shaped probability weighting function emerges endogenously from utility
maximization when a decision maker’s utility depends not only on monetary
payoffs but also on elation and disappointment anticipated to materialize at
uncertainty resolution. In particular, over- and underweighting of probabilities
is driven by the balance of elation proneness and disappointment aversion:
The stronger is disappointment aversion relative to elation proneness, the
broader will be the range of pessimistically weighted gain probabilities and
vice versa.

Such an affect-based approach may provide a unifying explanation for
the observed stake and delay dependence of probability weights if relative
disappointment aversion signif icantly interacts with the context of the deci-
sion situation.16 In the case of stake dependence, it seems plausible that,
when stakes increase substantially, anticipated feelings of disappointment get
stronger relative to the elation one expects to feel when an advantageous low-
probability event materializes. This effect would shift the probability weighting
curve downwards and induce relatively higher risk aversion. With regard to
uncertainty resolution the vividness of anticipated emotions might generally
be lower for delayed lotteries than for immediately resolved ones, which would
result in the probability weighting curve getting less strongly S-shaped.17 To
our knowledge, the theory of affective utility has not been directly tested
empirically.18 However, the study by Rottenstreich and Hsee (2001) may be
interpreted as preliminary evidence for affect sensitivity of probability weights:
The authors report that people tend to be less responsive to probabilities

15Similarly to our findings, the delay dependence of risk tolerance is solely due to a change
in probability weights whereas delay has no discernible effect on the valuation of monetary
outcomes.
16Such an interaction effect is not modeled by affective utility theories, as intensity of anticipated
emotions is assumed to be independent of lottery characteristics.
17In principle, the framework of affective utility could also account for the absence of a stake
effect for losses as well. Our Chinese subjects exhibit comparatively strong elation proneness over
low-stake gains which diminishes considerably for high-stake gains. In the domain of low-stake
losses elation seeking and disappointment aversion are more equally balanced in the first place
and, therefore, there may be less leeway for decreasing elation proneness further. Note that the
probability weighting curves for losses closely resemble the curve for high-stake gains. Of course,
this conjecture is purely speculative.
18Abdellaoui and Bleichrodt (2007) tested Gul’s theory of disappointment aversion and found it
to be too parsimonious to explain their data.
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when they react to emotion-laden targets, such as a kiss by one’s favorite
movie star or an electric shock, than they do in the case of comparatively
pallid monetary outcomes. Moreover, van Winden et al. (2008) have recently
shown that the intensity of hope and worry indeed decline with the delay of
uncertainty resolution, supporting our conjecture.

Our results pose a number of potential problems to both theoretical and
applied economics. As most theories of decision under risk typically assume
separability of probability weights and outcome valuation, decision models
may misrepresent risk preferences considerably when probability weights in-
teract with the size of payoffs or other lottery characteristics in a material way.
Our findings suggest that such an interaction with stake size is significant and
substantial, which renders rank-dependent models, such as prospect theory,
questionable when risk preferences over a wide range of outcomes are con-
cerned. Models of affective utility, on the other hand, seem to be a promising
point of departure but need to be extended to account for interaction effects
as well.

In pursuing our third major objective, we demonstrated that there is
substantive heterogeneity which can be parsimoniously characterized by two
distinct behavioral types who either weight probabilities near linearly or non-
linearly with only the latter type exhibiting increasing relative risk aversion.
Two clearly segregated groups of comparable size and characteristics were also
found in two independent Swiss data sets (Bruhin et al. 2007) and, for choices
over gains only, in a British data set (Conte et al. 2007), which suggests that
this mix of preference types seems to be quite robust for the class of decisions
studied here.

The question of heterogeneity is an important one in many economic
contexts. For example, it drives the division of labor in organizations, the de-
velopment of human capital and it may create strong selection of participants
into particular markets. Moreover, heterogeneity may make the marginal
individual quite different from the average one, which might be problem-
atic for representative-agent models used in macroeconomics and finance
(Camerer 2006; Cohen and Einav 2007). In addition, heterogeneity drives the
market interactions of rational and boundedly rational agents. Theoretical and
experimental work on market aggregation has shown that the mix of rational
and irrational actors may be crucial for the aggregate outcome (Russell and
Thaler 1985; Haltiwanger and Waldman 1985, 1989; Fehr and Tyran 2005,
2008). This literature demonstrates that whether individual mistakes would
be erased or magnified depends on the nature of strategic interdependence.
When behaviors are strategic complements, even a minority of players may be
pivotal for the market outcome. Substantive heterogeneity is also important
for economic policy. Regulatory policy should be designed in such a way
that it creates large benefits for those who make errors, while imposing little
or no harm on those who are fully rational. In order to be able to gauge a
program’s total net benefits the regulator needs to know the mix of behavioral
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types. Therefore, knowing the composition of the population is important for
designing cost efficient programs and regulations.

It is an open question whether nonlinear probability weighting should be
considered as irrational. In Walther’s model of affective utility nonlinear
probability weighting is a consequence of utility maximization and, thus, not
irrational per se. However, there is evidence that anticipated emotions deviate
significantly from experienced emotions, which drives a wedge between deci-
sion utility and experienced utility, the ultimate standard for welfare judgments
(Kahneman et al. 1997; van Winden et al. 2008). If nonlinear probability
weights are manifestations of systematic errors utility maximization is based on
the wrong premises and, consequently, behavior is merely boundedly rational.
Therefore, investigation into the mechanisms underlying the malleability of
probability weights should be high on the list of priorities for future research.
Moreover, many real world decisions involve substantial risky payoffs as well
as delayed resolution of uncertainty which may have countervailing effects on
risk tolerance. New carefully designed experiments are called for that vary
stake size and delay in order to derive meaningful parameter estimates which
are useful for applied economics. Finally, future research needs to examine the
robustness of our results with respect to other characteristics of the decision
situation, such as complexity. It may well be the case that parameter estimates
as well as the mix of behavioral types will change when decision tasks become
more complex.
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Appendix A: Domain-specific behavior

The main goal of estimating a finite mixture model is to classify each individual
to one of C different behavioral types. Our econometric model, as specified
in Eq. 8, requires that each individual belongs to only one behavioral type,
even though the behavioral parameters of each type are domain specific and
may be different for decisions framed as gains or as losses. This makes the
model very flexible in classifying the individuals into types which may exhibit
domain-specific behavioral patterns, but retains the individual as unit of
classification.

However, one can also estimate the finite mixture model separately for each
domain. In such a case, behavioral types are only characterized within their
specific domain and, consequently, each individual will be classified into two
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types, one for decisions framed as gains and the other for decisions framed as
losses. The (overall) log likelihood of such a specification,

ln L̃
(
�̃; ce,G

) =
[

N∑

i=1

ln
C∑

c=1

π̃ (w)
c f

(
ce(w)

i ,G(w); θ̃ (w)
c , ξ̃

(w)

i

)
]

+
[

N∑

i=1

ln
C∑

c=1

π̃ (l)
c f

(
ce(l)

i ,G(l); θ̃ (l)
c , ξ̃

(l)
i

)]

, (9)

is completely separable into decisions framed as gains, (w), and decisions
framed as losses, (l). Note that since the above model (9) does not nest the
original model (8) we cannot test these two specifications against each other.
Nevertheless, as Table 4 shows, the separated model achieves a lower log
likelihood than the original model, the estimates of which are displayed in
Table 2, even though it has one more parameter. It also results in a higher
value of the BIC (−62,058 vs. −62,163). This shows that the above specification
is clearly inferior to domain-independent typing.

At the level of individual type assignment, the main difference between
the domain-specific model and the domain-independent one is that 13 people,
identified as overall EUT type, move to the Non-EUT group for gains, which
explains the lower percentage of EUT types in the domain-specific model
(19.5% vs. 26.6%).

Table 4 Classification of behavior: domain-dependent types

Gains Losses
Pooled EUT Non-EUT Pooled EUT Non-EUT
(1) (2) (3) (4) (5) (6)

π 0.195 0.805 π 0.275 0.725
(0.067) (0.067) (0.032) (0.032)

α0 0.467 1.028 0.428 β0 1.165 1.165 1.174
(0.109) (0.178) (0.115) (0.110) (0.134) (0.121)

αHIGH 0.047 −0.080 0.078 βHIGH −0.038 −0.124 −0.112
(0.158) (0.155) (0.168) (0.162) (0.166) (0.175)

γ0 0.316 0.913 0.241 γ0 0.383 0.782 0.279
(0.012) (0.120) (0.027) (0.012) (0.076) (0.015)

γHIGH 0.056 0.019 0.058 γHIGH 0.045 0.032 0.046
(0.012) (0.023) (0.013) (0.012) (0.025) (0.012)

δ0 1.304 0.914 1.287 δ0 0.913 0.906 0.915
(0.076) (0.147) (0.087) (0.052) (0.094) (0.059)

δHIGH −0.324 −0.018 −0.357 δHIGH 0.070 0.103 0.101
(0.095) (0.106) (0.097) (0.077) (0.087) (0.085)

ln L 31,536 16,132 31,536 16,401
Parameters 318 166 318 166
Observations 8,560 4,278 8,560 4,282

Standard errors in parentheses are based on the bootstrap with 2,000 replications. Parameter
vectors include estimates of ξ̂i for domain- and individual-specific error parameters



J Risk Uncertain (2010) 40:147–180 175

Appendix B: Error parameter distribution
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Fig. 8 Distributions of estimated ξ̂i by domain

Appendix C: Estimation of the finite mixture regression model

As it is generally the case in finite mixture models, direct maximization of the
log likelihood function

ln L
(
�; ce,G

) =
N∑

i=1

ln
C∑

c=1

πc f
(
cei,G; θc, ξi

)
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may encounter several problems, even if it is in principle feasible (for a general
treatise see for example McLachlan and Peel (2000)). First, the highly non-
linear form of the log likelihood causes the optimization algorithm to be
rather slow or even incapable of finding the maximum. Second, the likelihood
of a finite mixture model is often multimodal and, therefore, we have no
guaranty that a standard optimization routine will converge towards the global
maximum rather than to one of the local maxima.

However, if individual group-membership were observable and indicated
by tic ∈ {0, 1} the individual contribution to the likelihood function would be
given by

�̃
(
�i; cei,G, ti

) =
C∏

c=1

[
πc f

(
cei,G; θc, ξi

)]tic

By using the above formulation and taking logarithms, the complete-data log
likelihood function

ln L̃
(
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) =
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[
ln πc + ln f

(
cei,G; θc, ξi

)]

would follow directly. As relative group sizes sum up to one, their maximum
likelihood estimates, π̂c = 1/N

∑N
i=1 tic, would be given analytically by the

relative number of individuals in the respective group. Furthermore, the max-
imum likelihood estimates of the group-specific parameters could be obtained
separately in each group by numerically maximizing the corresponding joint
density function which would simplify the optimization problem considerably.

The EM algorithm proceeds iteratively in two steps, E and M, while it treats
the unobservable tic as missing data. In the E-step of the (k + 1)-th iteration
the expectation of the complete-data log likelihood L̃, given the actual fit of
the data �(k), is computed. This yields, according to Bayes’ law, the posterior
probabilities of individual group-membership
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(
cei,G; �

(k)

i

)
=

π(k)
c f

(
cei,G; θ(k)

c , ξ
(k)

i

)

∑C
m=1 π

(k)
m f

(
cei,G; θ

(k)
m , ξ

(k)

i

)

which replace the unknown indicators of individual group-membership, tic.

Given τic

(
cei,G; �

(k)

i

)
, the complete-data log likelihood, L̃, is maximized in

the following M-step which yields the updates of the model parameters,
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As Dempster et al. (1977) show, the likelihood never decreases from one
iteration to the next, i.e. L

(
�(k+1); ce,G

) ≥ L
(
�(k); ce,G

)
, which makes the

EM algorithm converge monotonically towards the nearest maximum of the
likelihood function regardless whether this maximum is global or just local.
Therefore, one may apply a stochastic extension, the Simulated Annealing
Expectation Maximization (SAEM) algorithm proposed by Celeux et al.
(1996), in order to overcome the EM algorithm’s tendency to converge towards
local maxima. In each iteration, there is a non-zero probability that the SAEM
algorithm leaves the current optimization path and starts over in a different
region of the likelihood function, which results in much higher chances of
finding the global maximum. But this robustness against multimodality of the
objective function comes at the cost of much higher computational demands.

As the EM algorithm is computationally highly demanding, even in its basic
form, and tends to become tediously slow when close to convergence, our
estimation routine relies on a hybrid estimation algorithm (Render and Walker
1984): It first uses either the EM or the SAEM algorithm and takes advantage
of their robustness before it switches to the direct maximization of the log
likelihood by the much faster BFGS algorithm.19 The estimation routine in this
form turned out to be efficient and robust as it reliably converged towards the
same maximum likelihood estimates regardless of the randomly chosen start
values.
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