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This paper proposes a robustness analysis based on Multiple Criteria Decision Aiding (MCDA). The
ensuing model was used to assess the implementation of green chemistry principles in the synthesis of
silver nanoparticles. Its recommendations were also compared to an earlier developed model for the
same purpose to investigate concordance between the models and potential decision support synergies.
A three-phase procedure was adopted to achieve the research objectives. Firstly, an ordinal ranking of the
evaluation criteria used to characterize the implementation of green chemistry principles was identified
through relative ranking analysis. Secondly, a structured selection process for an MCDA classification
method was conducted, which ensued in the identification of Stochastic Multi-Criteria Acceptability
Analysis (SMAA). Lastly, the agreement of the classifications by the two MCDA models and the resulting
synergistic role of decision recommendations were studied. This comparison showed that the results of
the two models agree between 76% and 93% of the simulation set-ups and it confirmed that different
MCDA models provide a more inclusive and transparent set of recommendations. This integrative
research confirmed the beneficial complementary use of MCDA methods to aid responsible development
of nanosynthesis, by accounting for multiple objectives and helping communication of complex infor-
mation in a comprehensive and traceable format, suitable for stakeholders and/or decision-makers with
diverse backgrounds.
© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The comprehensive assessment of the implementation of green
chemistry principles (GCP) during nanosynthesis processes is a
complex decision-making problem, requiring the consideration of
multiple evaluation parameters. The authors have recently pro-
posed a model to provide a preliminary solution to this challenge
(Cinelli et al., 2015) as well as a holistic set of criteria for the
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sustainability appraisal of nanoproducts (Cinelli et al., 2016).
However, the credibility of sustainability-oriented assessments
relies on the robustness of the results they provide to the Decision-
Makers (DMs) (Sala et al., 2015). In order to achieve credible and
sound decision support, the uncertainties inherent in these evalu-
ations as well as the resulting modelling strategies need to be
accounted for (Dias et al., 2012). This paper proposes a methodol-
ogy that considers these requirements by employing a decision
support method from the Multiple Criteria Decision Aiding (MCDA)
research domain.

Nanomaterials can be produced via different techniques and the
bio-inspired approaches are receiving surging interest from the
scientific community for the possibility of implementing GCP
(Gilbertson et al., 2015; Mata et al., 2015; Varma, 2014). The eval-
uation of how green synthesis processes are for nanomaterials is a
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challenging task, due to the limited information available on the
specific operating conditions and the impacts associated with the
employed materials (Feijoo et al., 2017; Meyer and Upadhyayula,
2014). Some studies have assessed the environmental impacts of
nanomaterials synthesis with life cycle assessment (LCA), though
the main limitation is that data are currently lacking or are of low
quality to assess the implications of synthesis processes for nano-
materials with quantitative methods, especially those which are
based on bio-inspired approaches (Pati et al., 2014; Pourzahedi and
Eckelman, 2015). Nonetheless, qualitative and semi-quantitative
information is available on the types of employed materials, oper-
ational conditions, equipment typologies and products’ perfor-
mance. MCDA methods have been confirmed as excellent
candidates to handle heterogeneous information and uncertainties
and provide intelligible comprehensive evaluations of comparable
materials, processes and technologies (Cinelli et al., 2014; Singh
et al., 2012).

So far nanomaterials have been produced through the “bio-
inspired” route with bacteria, fungi, plants, plants extracts, yeasts
and algae and the literature is steadily growing in this domain
(Stark et al., 2015; Varma, 2016; Virkutyte and Varma, 2013).
However, limited research efforts were devoted to understand
how “green” they are and assess the implementation of GCP in
bio-inspired nanosynthesis processes in the form of a perfor-
mance class (e.g. “green” nano) (Bergeson, 2013; Duan et al.,
2015; Matus et al., 2011). Such research gap is an important
limitation for practitioners who aim at complying with demands
for green nanomaterials and associated synthesis processes,
especially for those that do not yet allow quantitative assess-
ments employing LCA, for example. This article contributes to
this topic by developing an MCDA model that can support such
type of evaluations and should not be seen as a tool in substi-
tution for quantitative methods but rather as a decision aid in-
strument that can help chemists and engineers in reflecting on
the implications of their choices during the development of new
materials and products.

The challenge of assessing the “greenness” of nanosynthesis
processes fits with the MCDA methodology, and the authors of this
paper previously developed another MCDA model based on
Dominance-based Rough Set Approach (DRSA) for the classification
of synthesis processes of silver nanoparticles depending on the GCP
implementation (Cinelli et al., 2015). The DRSA-based model is a
notable contribution for the chemists' and nanosynthesis’ com-
munities because it shows how the MCDA process and one of its
methods can be used through an intelligible approach for prefer-
ences elicitation, by posing limited burden on the DMs and
obtaining condensed and intelligible representation of their
knowledge in the form of decision rules. It can help screening
“greenness” of new or existing processes by supplying quality
classes on a five-level scale and justify the decision recommenda-
tion (i.e. classification) with easily intelligible “if condition, then
decision” rules. However, the robustness of its recommendations
must be verified in the form of its validity and stability according to
a compatible set of modelling constraints (Bouyssou et al., 2006).

This paper presents a robustness analysis structured upon the
MCDA process. The objective was achieved by exploiting a subset of
criteria for the sustainability assessment of nanoproducts recently
published (Cinelli et al., 2016) to develop anMCDAmodel, based on
Stochastic Multi-Criteria Acceptability Analysis (SMAA), yielding
uncertainty-characterized robust findings, which were compared
with the classifications of the DRSA-based model.

This paper has two main objectives:

� Describe the development and application of an MCDA model
(ELECTRE-based (Figueira et al., 2005)) for the assessment of
implementation of GCP in synthetic processes for silver
nanoparticles;

� Use its decision recommendations to evaluate the correspon-
dence with the DRSA-based model described in (Cinelli et al.,
2015) and study the potential decision support synergies.

The paper presents the methodology that was developed to
conduct the robustness analysis (Section 2), and then describes its
results with themain learning insights that MCDA empowers when
supporting sustainability-oriented assessments (Section 3);
tangible conclusions are summarized in Section 4.

2. Methodology

The decision-making challenge tackled in this case study is a
classification problem. Considering that provision of decision rec-
ommendations in the form of a quality class is one of the main
reasons why MCDA has been developed and excels (Cinelli et al.,
2014; Roy and Słowi�nski, 2013), it was employed in this research
project to advance a relevant classification model. This case study
builds upon the decision-making problem described in the afore-
mentioned previous study and the reader is referred to that article
for details on its context (Cinelli et al., 2015).

The justification for the use of MCDA is supported by its ca-
pacities of effectively meeting three main challenges that hamper
the assessment of the “greenness” of nanosynthesis processes,
including (i) the need to account for performance criteria of
different type (e.g. quantitative, qualitative, fuzzy) (Eason et al.,
2011; Mata et al., 2015), (ii) high uncertainty in input dataset
(Mata et al., 2015; Meyer and Upadhyayula, 2014; Pourzahedi et al.,
2017), and (iii) limited capabilities of conventional tools to provide
a comprehensive and easily interpretable evaluation of each pro-
cess (Bates et al., 2015; Eason et al., 2011).

The model presented in this paper (i.e. ELECTRE-based model)
provides classifications for a set of test synthesis processes as those
considered in (Cinelli et al., 2015), which can be defined as robust
following the definition proposed by Dias and Climaco (2000).
Robustness analysis consists in assessing how robust conclusions
are when a precise combination of the parameters (e.g. weights,
thresholds) of the model is not imposed. This type of analysis leads
to survey all the possible recommendations that are compatible
with such modelling constraints. According to the grouping of
robustness analysis forms proposed by Dias (2007), the one adop-
ted in this case is the ex-post, because the research goal consists in
assessing the stability of the recommendations according to a pre-
defined set of compatible models. These models derive from the
consideration of imprecise information, which can be lack of pre-
cise user's preferences and values for the parameters on the input
dataset.

Fig. 1 summarizes the procedure proposed to develop the
ELECTRE-based model and compare its results with the DRSA-
based model. It incorporates the elaboration of the relative
ranking of performance criteria from (Cinelli et al., 2016) (phase 1),
the selection process for the suitable sorting method as well as the
modelling used to obtain comparable classifications for the test
protocols (phase 2), and the strategy used to assess the agreement
between recommendations of the two models (phase 3).

2.1. Identification of alternatives and evaluation criteria

The alternatives used in this MCDA problem are “silver nano-
particle synthesis protocols based on bottom-up approaches that
use reducing and capping agents to convert a silver salt to silver
nanoparticles”. Eight evaluation criteria (gj) were selected and are
shown in Table 1, together with the numerical coding of their scales
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and preference direction. They all have ordinal (i.e. qualitative)
scales with the exception of criteria g5 and g6, which have a cardinal
(i.e. quantitative) scale.

Table 2 shows the five synthesis protocols (t1-5) that were used
as test dataset, which are the same as those employed in the DRSA-
based model (Cinelli et al., 2015).
2.2. Criteria weights

The first phase of the robustness analysis procedure (see Fig. 1)
was inspired by the framework of sustainability evaluation criteria
proposed in a recent paper in this journal, ranked according to their
relative importance (Cinelli et al., 2016). A correspondence between
a subset of such criteria and the evaluation criteria used in this case
study could be derived, as shown in Table 3 and their ranking was
used as preference information for ELECTRE-based model con-
struction. Similar approaches emerged in comparable research
contexts, where rankings of criteria based on experts’ survey were
used as preference information to develop MCDA models (Akadiri
and Olomolaiye, 2012; Tobiszewski and Orłowski, 2015).

Multiple correspondences between the criteria in the survey
and the ELECTRE-based model indicate that various combinations
of criteria priorities are possible (Table 3). As far as the MCDA
models are concerned, the possible correspondence between
criteria from the survey is that “Hazardous materials used or pro-
duced” (2nd rank), “Use of renewable resources” (3rd rank) and
“Use of raw materials” (6th rank) can be represented by reducing
agent (g1), capping agent (g2) and solvent (g3). “Energy efficiency”
(4th rank) and “Energy consumption” (5th rank) are represented by
the criterion equipment type (g7). Consequently, the 2nd, 3rd and
5th positions in the MCDA models (right column in Table 3) can be
taken either by g1, g2 and g3, whereas the fourth position is always
assigned to g7. These conditions lead to the following modelling
constraints. Three criteria (i.e. g1, g2 and g3) can take their rank
either in 2nd, 3rd or 5th position. There can be six permutations in
place (three criteria * two positions to vary) and thus the overall set
of possible rankings to consider is six. Such permutations are
conducted for the five test protocols, which for each modelling set
leads to 30 classifications. What is more, reaction time (g5) and
reaction temperature (g6) can be allotted to rank 7th and 8th and
vice-versa, which doubles the number of classifications to 60 (see
also details in Section 2.3, “Accounting for uncertainty in the
analysis”).
2.3. Sorting method selection and robustness analysis set-up

The decision recommendation provided by the DRSA-based
model is a suggestion of classification of a protocol that results
from inductive learning on the comprehensive evaluation of a set of
reference protocols. This implies the evaluation of the robustness of
its recommendation required a tool capable of providing a suitable
result to which it could be compared (second phase of the robust-
ness analysis procedure, Fig. 1). MCDA is ideal for aggregating in-
formation and providing a classification or ranking of the
alternatives under evaluation (Cinelli et al., 2014; Domingues et al.,
2015; Tervonen et al., 2009b), consequently the development of the
newmodel was grounded on an MCDA method, with the following
requirements driving its selection:

� Need for enforcement of strong sustainability, so that limited
compensation between criteria is guaranteed;

� Independence of criteria weights from their evaluation scales.
This is due to the nature of the importance of the criteria, which
represent their relative importance and not the trade-offs
between their measurement scales (details about weights ty-
pology is available in (Cinelli et al., 2014));

� Decision recommendations (i.e. classes assignment) must be
robust. The MCDA approach needs to investigate the possible
changes in results by accounting for the uncertainty of input
parameters, in this case weights and class profiles;

� Most of the evaluation criteria (six out of the eight) are
expressed on an ordinal scale, with two on a cardinal one. MCDA
method, thus, has to be tailored for this typology.

An assessment of the MCDA methods available in the literature
(drawing from the findings presented in (Cinelli et al., 2014; Ib�a~nez-
For�es et al., 2014; Munda, 2016; Rowley et al., 2012) in relation to
the requirements listed above lead to the identification of SMAA
method (Tervonen et al., 2009a) as a relevant candidate to confront
the research challenge. In this case, SMAA-TRI was selected as it is
an MCDA classification method based on ELECTRE-TRI, with the
added capability of using imprecise measurements values, thresh-
olds, weights and class profiles, so that robust decision recom-
mendations can be achieved through parameter stability analysis
(Tervonen and Lahdelma, 2007).

The main differences this research introduces compared with
previous studies dealing with evaluation of nanosynthesis pro-
cesses based on sustainability metrics (Canis et al., 2010; Naidu
et al., 2008), are that in this case:

� The aim of the evaluation is to classify the processes rather than
to rank them;

� Real preference information is employed as data input;
� The focus of the approach is on the synthesis of silver nano-
particles based on techniques which have been frequently
labelled as green and more sustainable (Changseok et al., 2013;
Dahl et al., 2007; Dubey et al., 2010; Hebbalalu et al., 2013; Karn,
2008; Karn and Wong, 2013; Kavitha et al., 2013; Kaviya et al.,
2011; Kou et al., 2013; Luque, 2013; Matus et al., 2011; Patete
et al., 2011; Pati et al., 2014; Senjen, 2009; Varma, 2014;
Virkutyte and Varma, 2013).

For the sake of simplicity the multiple models developed for the
RA based on SMAA-TRI will be termed “ELECTRE-based model.”

2.3.1. Class profiles and thresholds
The aim of the decision-aiding model is to classify synthesis

protocols in preference-ordered classes, based on the imple-
mentation of the GCP and the technical performance, represented
by the size range of the nanoparticles.

Five classes (C1 < C2 < C3 < C4 < C5) were devised by accounting
for the nature of the data, as well as the arbitrariness that is
inherent in the coding of the criteria values (Table 1):

� C1 ¼ GCP are completely overlooked;
� C2 ¼ limited implementation of GCP and/or satisfaction of
quality requirements;

� C3 ¼ partial fulfilment of GCP and potentials for quality
improvements;

� C4 ¼ performance standards are satisfied and many GCP are
implemented;

� C5 ¼ the process is very good both from a green chemistry and
technical perspective.

This set of classes was used to screen synthesis processes in
terms of how “green” they are, by integrating the information
conveyed by the eight evaluation criteria through the outranking
method SMAA-TRI. C4 and C5 represent the processes with high
potentials, where various GCP are implemented. On the other hand,



Fig. 1. Procedure of robustness analysis, summary of concordance between models recommendation and synergies of decision support.
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processes assigned to C1 and C2 are those that require thorough
considerations about the worthiness of such approaches and need
improvement work to increase their “greenness”.

Every performance class C (C ε f1;2;3;4;5g) in SMAA-TRI is
delimited by a profile bh (see Fig. 2), so that each of them has a
certain discriminatory value for every criterion gj. bj is worse than
bjþ1 on all criteria.

The selection of the values of the profiles for the criteria was
based on analysis of production strategies reported in the literature.
Table 4 shows a summary of the selected profiles values and
Appendix A in Electronic Supplementary Information (ESI) pro-
vides the scientific rationale on selection of such figures.

Elaborate preferences can be accounted for by this MCDA
method using two types of thresholds: indifference threshold qj
and preference threshold pj. There are currently no guidelines to
define such thresholds, however an elaboration of the research
considerations reported by relevant authors in the published
literature allowed them to be extracted (Table 4). Appendix A in ESI
provides the scientific details for such values selection.
2.3.2. Classification of synthesis processes
SMAA-TRI operates with an outranking relation approach based

on pairwise comparisons of alternatives, which means that the
performance of each production process tm on each criterion gj is
compared to profile bh to verify whether the synthesis protocol tm is
“at least as good as” profile bh. In other words, it is checked if
outranking relation tm S bh holds (Dias and Mousseau, 2003). This
leads to the calculation of credibility index r for the outranking
relations tm S bh (see Appendix B in ESI for details on the SMAA-TRI
procedure).

r represents the credibility of outranking of each production
protocol over the class profile. It is used to make a recommendation
of the assignment of production protocols to classes.

SMAA-TRI operates a high number of simulations (i.e. 10,000),
sampling at each run a set of weights (case I below) as well as class
profiles (case II below) from a uniform probability distribution
(Tervonen and Lahdelma, 2007). The final results are Class
Acceptability Indices (CAI), which indicate the share of possible
parameters (expressed as a percentage) that lead a protocol to be
assigned to each class Ch (Tervonen and Lahdelma, 2007). CAI is an
intelligible tool that conveys the stability of the input information,
providing robust conclusions despite having incomplete informa-
tion. The higher the score for a class, the higher the confidence for
such class. The range of this index is between 0 and 1, with 0 indi-
cating that the process will never be assigned to the specific class
whereas 1 denoting that the process will be assigned to the target
class with every combination of uncertain input values.
2.3.3. Weighting
SMAA-TRI uses weights as intrinsic measures of importance of

each criterion so that the value of the weight is independent from
the evaluation scale of each criterion (Figueira et al., 2005). There
are various strategies that can be used to assign weight values to
the criteria in outranking methods (Figueira et al., 2005) and the
approach selected in this case benefits from part of the results
described in Section 2.2, where the criteria priorities obtained from



Table 1
Criteria selected for evaluation of synthesis protocols, including coding and rationale for preference direction (the arrow ‘up’ means that the higher its rank on the list of
possible values, the better it is, and the arrow ‘down’ says the opposite) (adapted from (Cinelli et al., 2015)).

Criterion Criterion values Code Preference order of the values

g1 ¼ Reducing agent Renewable e waste 4 [

Renewable e primary 3
Biodegradable polymer 2
Synthetic 1

g2 ¼ Capping agent Not needed 5 [

Renewable e waste 4
Renewable e primary 3
Biodegradable polymer 2
Synthetic 1

g3 ¼ Solvent Renewable e waste 4 [

Renewable e primary 3
Biodegradable polymer 2
Synthetic 1

g4 ¼ Local resources use Yes 1 [

No 0
g5 ¼ Reaction time In seconds integer Y

g6 ¼ Reaction temperature In Celsius integer Y

g7 ¼ Equipment type Static 8 [

Stirring for at most 5 min 7
Stirring 6
Microwave e sealed vessel (�300 W) 5
Microwave e sealed vessel (>300 W) 4
Microwave e open vessel 3
Conventional (oil bath, steam bath) 2
Not reported 1

g8 ¼ Particles size range 0 � particle size � 30 nm 1 Y

0 � particle size � 60 nm 2
30 < particle size � 60 nm 3
0 < particle size � 100 nm 4
60 < particle size � 100 nm 5

Table 2
Test protocols used to show decision support capabilities of MCDA models (from (Cinelli et al., 2015)).

Test protocol g1 g2 g3 g4 g5 g6 g7 g8 Quality class
(C1 < C2 < C3 < C4 < C5)Reducing

agent code
Capping
agent code

Solvent code Local
resource use code

Reaction time
(seconds)

Temperature
(Celsius)

Equipment
type code

Size range code

t1 3 5 3 0 55 42 5 1 ?
t2 3 2 1 1 2500 85 2 2 ?
t3 2 2 3 0 600 90 2 3 ?
t4 3 3 3 0 70 65 5 1 ?
t5 1 1 1 0 480 100 3 1 ?

Table 3
Relative ranking of criteria (Cinelli et al., 2016) and correspondence with those employed in MCDA models.

Criteria from experts' survey and relative ranking Correspondent evaluation criteria in the MCDA models

1 Functionality Particle size range
2 Hazardous materials used or produced Reducing agent/Capping agent/Solvent
3 Use of renewable resources Reducing agent/Capping agent/Solvent
4 Energy efficiency Equipment type
5 Energy consumption Equipment type
6 Use of raw materials Reducing agent/Capping agent/Solvent
7 Local resources use Local resources use
8 Processing conditions Reaction time

Reaction temperature

M. Cinelli et al. / Journal of Cleaner Production 162 (2017) 938e948942
the survey questionnaire allow defining an ordinal ranking of such
criteria, which can actually be used in SMAA-TRI. The novel
contribution to the research area consists in the use of a method
that does not depend on the opinions of two specific experts, uses
parsimonious information about preferences (i.e. ordinal ranks)
and supplies robust conclusions.

In order to account for an even broader uncertainty in weight-
ing, SMAA-TRI was also runwithout any preference information on
the weights (i.e. missing weights option). The results are
summarized in Appendix H in ESI and do not deviate considerably
from the ones presented and discussed in Section 3.

2.3.4. Accounting for uncertainty in the analysis
Two types of uncertainty had to be treated in the construction of

the ELECTRE-based model: (i) selection of criteria weights; and (ii)
definition of discriminatory profiles between the quality classes.
Consequently, two modelling layouts were defined in this model to
consider such uncertainties.
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2.3.4.1. Case I: certain class profiles. The first modelling set-up with
SMAA-TRI considered only the uncertainty in the weighting pro-
cedure. As described in Section 2.2, the weights of the criteria were
based on an ordinal ranking, which did not impose a specific value
for each of theweights. Furthermore, priorities of the criteria had to
be varied as well, due to the multiple correspondences between
them and those from the survey (see Table 3).

2.3.4.2. Case II: uncertain class profiles. The second set-up of the
SMAA-TRImodel included the previous type of uncertainty and also
the one related to the values for the class profiles. This decision
accounted for the fact that the profiles of the classes adopted for the
discernment of quality of synthesis processes were selected from a
range of possible values. Even though their appointment was based
on the published literature as discussed above and in Appendix A in
ESI, expert judgment was adopted to choose the individual
discriminatory values (see Table 4 for the selected uncertain pro-
files values). This represents a second type of uncertainty that was
considered in themodel, together with the variability of the criteria
weights, as in the previous case.

3. Results and discussion

A robustness analysis of nanosynthesis test processes was con-
ducted by means of SMAA-TRI through several simulations set-up
settings, which included certain (i.e. case I) and uncertain (i.e.
case II) class profiles with criteria in different importance ranks
according to the combinations explained in Section 2.2.

The same five test protocols (see Table 2) used to show the
applicability of DRSA-based model were employed to examine the
decision support synergies with the ELECTRE-basedmodel and also
the decision recommendation (i.e. classification) agreement of the
two models (third phase of the robustness analysis, Fig. 1). In
addition, no veto threshold for any criteria was applied considering
the lack of such type of information in the relevant literature, which
means that only concordance indexes contributed to the calculation
of the credibility indices. Such an approach is in line with a com-
parable case study application in the area of risk assessment of
nanomaterials (Tervonen et al., 2009b). Lastly, the l-cutting level
rangewas ½0:65;0:85�, the recommended and sensible interval to be
used for the ELECTRE-TRI method as it considers the cases for a
simple (though strong, i.e. 65% of criteria weights) as well as above
two-thirds criteria majority (Domingues et al., 2015; Tervonen
et al., 2009b).

A summary of the RA outcomes is provided in Table 5, whereas
the detailed results are reported in Appendices CeF in ESI. In each
case, six different combinations of the materials type criteria were
tested with SMAA-TRI, which leads to a total of 30 agreement
comparisons between the two models. Moreover, a distinction
between certain (case I) and uncertain profiles (case II) was applied.
Fig. 2. Examples of class profiles (bh) for each criterion gj (Adapted from (Merad et al.,
2004)).
In Appendices C and D, reaction time (g5) was kept as the second-
to-last (7th rank) and reaction temperature (g6) was the last one
(8th rank) whereas the setting was the opposite (7th rank for re-
action temperature and 8th rank for reaction time) in Appendices E
and F. The overall modelling sets amount to four as themodels were
run with certain and uncertain profiles, combined with reaction
time in 7th rank and reaction temperature in 8th rank and vice-
versa. This led to a 120 comparisons on the whole.

The overall correspondence was just under 86%, a satisfactory
value for such a different application of MCDA (Dimitras et al., 1999;
Słowi�nski et al., 1997). In all the comparisons it can be seen that
there is a high to very high correspondence between decision
recommendations of the two MCDA models, with values up to
93.3% (i.e., the same class recommended for 28 out of 30 protocols).
The lowest agreement (76.0%) is reached in the case of uncertain
class profiles with reaction temperature in 7th rank and reaction
time in 8th rank, still an acceptable concordance level in this case as
well (Dimitras et al., 1999; Słowi�nski et al., 1997).

Most of the disagreement between the models (14 out of 17
discordance cases) involves protocols t3 and t5. As far as t3 is con-
cerned, the reason is that the protocol employs a renewable pri-
mary material as a solvent, which is considered as good from a
green chemistry perspective. When the solvent is placed at a high
position in the ordinal ranking, its relative weight increases, which
overall determines a higher assignment to class 3 (medium) rather
than 2 (low) as DRSA does. In the case of t5, the reason is that the
process uses a synthetic capping agent, the worst condition from
the green chemistry perspective. In fact, a synthetic material should
be the least preferred choice and the capping agent can be elimi-
nated if a multifunctional reducing agent is used. For this reason, C5
(very low) receives a lot of CAI share from SMAA-TRI, especially
when the capping agent has a high ordinal rank and thus it has a
higher weight.

The comprehensibility of the justifications “behind” the decision
recommendation is an important feature of MCDA models as it can
increase their transparency to non-experts in MCDA who are
interested in understanding why an alternative receives a certain
evaluation while others do not. More specifically, transparency is
essential to avoid the model being perceived as a “black box”
(Słowi�nski et al., 2009). Furthermore, the combined use of MCDA
methods working with different methodological foundations can
enhance the credibility of the recommendations; these detailed
considerations are elaborated in the remaining of this section.

In the case of t1, the DRSA-based model provides a recommen-
dation that is supported by the decision rules 3, 5, 6, 8,11,12,13 (see
Scheme 1 for explanation of rules). These rules point out important
characteristics of green chemistry protocols, including the possi-
bility of producing nanoparticles within short timeframes and
under milder temperatures (rule 3, 13) in combinationwith the use
of a renewable capping agent or the adoption of multifunctional
renewable materials that eliminate the need for a capping agent in
the process (rule 5, 6). This is coupled with the possibility of using
benign solvents such as water (rule 8, 11). These set-ups lead to
fulfilment of several GCP, including reduction in hazardousness of
chemical synthesis, prevention of waste and reduction of de-
rivatives, use of safer solvents and inherently safer chemistry (e.g.
closed vessels and low power). The decision recommendations
provided by the DRSA-based model can be easily traced back to the
protocols that applied these principles and that form the basis of
the decision rules.

The example for t3 leads to other considerations as the matching
rules are 11, 12, 19, 20, 23, 24, 25, 26 (see Scheme 2 for explanation
of rules). The learning process in this case is more elaborate as there
are both types of rules involved, “at least” and “at most.” As far as
the “at least” rules are concerned (i.e.11,12), the DRSA-basedmodel



Table 4
Class profiles, thresholds and preferences directions for criteria used in SMAA-TRI (*: the numbers within brackets indicate the code used for the value of each criterion).

Class profiles g1 g2 g3 g4 g5 g6 g7 g8

Reducing
agent code

Capping
agent code

Solvent code Local
resource use
code

Reaction
time
(seconds)

Temperature
(Celsius)

Equipment type code Size range code

Case A: Certain b4 ¼ C5 � C4 Renewable e

primary (3*)
Renewable e

waste (4)
Renewable e

primary (3)
Yes (1) 50 30 Stirring � 5 min (7) 0 � particle

size � 30 nm (1)
b3 ¼ C4 � C3 Renewable e

primary (3)
Renewable e

primary (3)
Renewable e

primary (3)
Yes (1) 100 40 Stirring (6) 0 � particle

size � 60 nm (2)
b2 ¼ C3 � C2 Biodegradable

polymer (2)
Renewable e

primary (3)
Biodegradable
polymer (2)

No (0) 400 60 Microwave e

sealed vessel
(>300 W) (4)

30 < particle
size � 60 nm (3)

b1 ¼ C2 � C1 Synthetic (1) Biodegradable
polymer (2)

Synthetic (1) No (0) 1500 95 Conventional (2) 0 < particle
size � 100 nm (4)

Case B: Uncertain b4 ¼ C5 � C4 3.0e3.5 4.0e4.5 3.0e3.5 1 35e75 25e35 5e7 1
b3 ¼ C4 � C3 2.5e3.0 3.5e4.0 2.5e3.0 1 75e125 35e50 4e5 2
b2 ¼ C3 � C2 2.0e2.5 3.0e3.5 2.0e2.5 0 125e675 50e80 3e4 3
b1 ¼ C2 � C1 1.0e2.0 1.0e3.0 1.0e2.0 0 675e2250 80e115 2e3 4

Indifference threshold 0 0 0 0 10 5 0 0
Preference threshold 1 1 1 0 30 10 1 1
Criterion preference [ [ [ [ Y Y [ Y
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indicates a potentially at least low performance based on the use of
a renewable primary material as a solvent and a bio-polymer as a
capping agent instead of synthetic chemicals. On the other hand,
the other types of rules (i.e. at most) are indicative of several con-
cerns. Firstly, the use of a rather high temperature (80 �C) and the
selection of a capping agent at most bio-polymer (rule 19) in
addition to the use of non-local resources as well as producing
lower quality particles (between 30 and 60 nm size) (rule 20)
suggest a maximum assignment to medium class. This is com-
plemented by the use of a conventional heating technique that
requires rather long reaction times (10 min in this case) (rule 25),
not desirablewhen looking at the process from the green chemistry
perspective (Gilbertson et al., 2015). The intersection of the rules
following the standard DRSA procedure would suggest a low or
medium class as a decision recommendation, whereas the more
elaborate approach provides the low class as an assignment.

These assessment examples show that, from a decision aiding
perspective, the recommendation provided by the DRSA-based
model is traceable and supported by previous knowledge base
that in this case was extracted from the two experts that collabo-
rated during the case study. These rules are a summary of the
characteristics of synthesis processes that have already been
developed in reality and can thus be used as comparative measures
when developing brand new processes or while assessing existing
ones.

The ELECTRE-based model provides a different and comple-
mentary perspective on each process by accounting for the
Table 5
Class recommendation agreement (in % and ratio) between the MCDA models, based on c
based model).

Criteria ranking Appendix Case I: Certain clas

7th rank for reaction time (g5) and 8th rank for
reaction temperature (g6)

C 93.3% (28/30 proto
þ1 class in 2 cases

7th rank for reaction temperature (g6) and 8th
rank for reaction time (g5)

E 86.0% (26/30 proto
þ1 class in 2 cases
þ1 class in 2 cases
performance on each criterion and aggregating the information
following the procedure presented in Section 2.3 and Appendix B.
This means that the decision aiding support is focused on the
evaluation of the performance of each protocol for every criterion
in respect to a performance profile for each class. Tables 6 and 7
illustrate the scoring on the evaluation criteria for the first (t1)
and third (t3) test protocols with respect to every class profile,
together with the assigned CAI for each quality class. Process t1
performs well in relation to the class profiles, which explains the
high percentage for the very high CAI (i.e. 81%), though there is not
a specific indication/explanation about the combined effect of the
criteria on the decision recommendation (Table 6). Similarly, when
considering process t3 it is evident that the protocol does not
perform well on the green chemistry criteria, which explains the
reason behind the recommendation mostly for a low performance
class (Table 7). In this case, the developer of a new process could
consider the improvement on the worst criteria (e.g. capping agent
g2, processing conditions g5, g6 and equipment g7), however he/she
would not be provided with a recommendation on how the process
could be improved by taking exemplary real case processes as
indicative guidelines, which is what the DRSA-based model does
through the supporting protocols for the rules.

One key advantage of SMAA-TRI is the possibility of obtaining
results that do not depend on a specific weights vector elicited from
some DM. The method empower the analysts to use different
rankings of the criteriaweights based on the survey involvingmany
experts, resulting in conclusions which are more acceptable, since
lass with highest CAI. (þ/� ¼ higher or lower SMAA-TRI classes compared to DRSA-

s profiles Appendix Case II: Uncertain class profiles case

cols) D 86.0% (26/30 protocols)
: protocol t3 �1 class in 4 cases: protocol t5
cols) F 76.0% (23/30 protocols)
: protocol t3
: protocol t4

�1 class in 4 cases:
protocol t5
2 cases of same index for two classes: protocol t5
1 case of same index for two classes: protocol t4



Scheme 1. Performance of test protocol t1, matching rules from DRSA-based model and recommendation of performance class based on standard classification scheme (a ¼ number
of protocols that support the rule; b ¼ percentage of protocols that satisfy the conditions of the rule and are assigned to the class or union of classes) (adapted from (Cinelli et al.,
2015)).
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they are not contingent on the opinion of a specific person or a
small group.

This research has shown the benefit of MCDA methods to foster
traceable and robust decision support. They enable integration of
evaluation criteria of production processes for a typology of
nanomaterials in the form of a comprehensive preference-oriented
class, enhancing the understandability of the performance of each
of them. However, it needs to be mentioned that these models are
not substitutes for quantitative assessment tools that can cover the
whole life cycle impact of nanomaterials. They are rather powerful
instruments that could include the results of such tools in the form
of criteria to allow a comprehensive understanding of the envi-
ronmental as well as sustainability impacts of nanomaterials.

It is also worthy highlighting that the use of different MCDA
methods for the same case study has the added benefit of providing
multiple facets of the potentials of decision support tools. Within
this perspective, the authors have recently proposed a MCDA
methodology to study this dataset and classify the nanoparticle
synthesis protocols using a value function approach, interestingly
supplying the same pattern of recommendations as the DRSA-
based and ELECTRE-based models (Kadzi�nski et al., 2016).

4. Conclusions

There is currently a vital need for decision support models in the
area of nanosynthesis to improve the understanding of the
comprehensive implications that it can have on the environment,
the economy and the society as well. MCDA processes and methods
have received growing interest from the scientific community
because of their capabilities to develop such models and clearly
condense the results in the form of a ranking, classification or
performance score.

In this paper, the contribution and impact that MCDA methods
can have in the synthesis of silver nanoparticles has been shown
through (i) the development of an ELECTRE-based model providing
uncertainty-characterized performance classes of synthesis pro-
cesses for silver nanoparticles and (ii) the concordance assessment
as well as evaluation of decision support synergies of its recom-
mendations with those of a comparable model based on the DRSA
approach (Cinelli et al., 2015).

The research objectives were achieved through a three-phase
procedure that integrated part of the results from an experts’ sur-
vey with another MCDA method. Firstly, an ordinal ranking of the
evaluation parameters was derived from the relative priorities of a
comprehensive framework of sustainability evaluation criteria for
nanoproducts presented in another paper recently (Cinelli et al.,
2016). Secondly, a suitable method capable of providing a deci-
sion recommendation comparable with the one of the DRSA-based
model was identified. This was the SMAA-TRI, an MCDA method
specifically tailored to supply uncertainty-characterized classifica-
tions. The integration of criteria rankings and SMAA-TRI method
led to another model, called ELECTRE-based model to derive



Scheme 2. Performance of test protocol t3, matching rules from DRSA-based model and recommendation of performance class based on standard classification scheme (a ¼ number
of protocols that support the rule; b ¼ percentage of protocols that satisfy the conditions of the rule and are assigned to the class or union of classes) (adapted from (Cinelli et al.,
2015)).

Table 6
Performance of t1 with respect to the class profiles of ELECTRE-based model and resulting share of CAI (case for reducing agent (g1) > capping agent (g2) > solvent (g3)).

Class profiles 

g1 g2 g3 g4 g5 g6 g7 g8  

CAI Reducing 
agent 

Capping 
agent  Solvent 

Local 
resource 

use 

Reac on 
me 

(seconds) 

Tempera-
ture 

(Celsius) 

Equipment 
type  Size range  

Case A: 
Certain 

Class very 
high (5) t1 t1 t1   t1     t1 81% 

b4 = Very 
high - high 

Renewable 
– primary 

Renewable 
– waste 

Renewable 
– primary Yes 50 30 S rring ≤  5 

minutes 

0 ≤ par cle 
size ≤ 30 

nm 
 

Class high 
(4)           t1     6% 

b3 = High - 
medium 

Renewable 
– primary 

Renewable 
– primary 

Renewable 
– primary Yes 100 40 S rring 

0 ≤ par cle 
size ≤ 60 

nm 
 

Class 
medium (3)       t1     t1   13% 

b2 = 
Medium - 

low 

Biodegrada
ble 

polymer 

Renewable 
– primary 

Biodegrada
ble 

polymer 
No 400 60 

Microwave 
– sealed 
vessel  

(> 300 W) 

30 < 
par cle 
size ≤ 60 

nm 

 

Class low 
(2)                  

b1 = Low - 
very low Synthe c  

Biodegrada
ble 

polymer 
Synthe c  No 1500 95 Conven on

al 

0 < par cle 
size ≤ 100 

nm 

 

Class very 
low (1)                  
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Table 7
Performance of t3 with respect to the class profiles of ELECTRE-based model and resulting share of CAI (case for reducing agent (g1) > capping agent (g2) > solvent (g3)).

Class profiles

g1 g2 g3 g4 g5 g6 g7 g8

CAIReducing 
agent

Capping 
agent Solvent

Local 
resource 

use

Reac on 
me 

(seconds)

Tempera-
ture 

(Celsius)

Equipment 
type Size range 

Case A: 
Certain

Class very 
high (5) t3

b4 = Very 
high - high

Renewable 
– primary

Renewable 
– waste

Renewable 
– primary Yes 50 30 S rring ≤  5 

minutes

0 ≤ par cle 
size ≤ 30 

nm
Class high 

(4)

b3 = High -
medium

Renewable 
– primary

Renewable 
– primary

Renewable 
– primary Yes 100 40 S rring

0 ≤ par cle 
size ≤ 60 

nm
Class 

medium (3) t3 t3 t3 23%

b2 = Medium 
- low

Biodegrada
ble polymer

Renewable 
– primary

Biodegrada
ble polymer No 400 60

Microwave 
– sealed 
vessel 

(> 300 W)

30 < 
par cle size 
≤ 60 nm

Class low (2) t3 t3 t3 t3 77%

b1 = Low -
very low Synthe c Biodegrada

ble polymer Synthe c No 1500 95 Conven on
al

0 < par cle 
size ≤ 100 

nm
Class very 

low (1)
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probabilistically characterized quality classes for the same test
protocols with which the DRSA-based model was trialled with. A
key strength of this model, from a decision support perspective, is
the possibility of not imposing specific weights vectors on the
criteria and the capacity of providing robust conclusions.

The last research stage entailed comparing the decision rec-
ommendations from the two models to assess their concordance
and discuss the decision support synergies of these decision sup-
port tools. This was achieved by comparing the classification for
five test protocols from the model based on DRSA with those
derived by the one based on ELECTRE, adopting different criteria
weights and discriminatory class profiles to account for input data
variability. Out of 120 classifications comparisons, the overall cor-
respondence reached a remarkable level of just under 86%, whereas
it varied between 76.0% and 93.3% depending on the settings of the
analysis.

This multidisciplinary research confirmed the beneficial com-
plementary use of MCDA methods to aid criteria aggregation in a
traceable and understandable format. DRSA method enriches the
decision support by means of decision rules which substantiate the
classification with previously stored knowledge in the form of
simple “if … then …” connectors, whereas SMAA-TRI employs
parsimonious information on preferences to lead to robust con-
clusions according to traceable modelling constraints. These po-
tentials can be particularly useful in research domains
characterized by conflicting criteria, such as LCA, life cycle costing
(LCC) and social LCA (SLCA), where alternatives excel on some in-
dicators while underperform on others, and for this reasonmultiple
objectives must be addressed to reach a decision recommendation
as transparent as possible.
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